Sample records for temperature compression testing

  1. An Evaluation of High Temperature Airframe Seals for Advanced Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    DeMange, Jeffrey J.; Dunlap, Patrick H.; Steinetz, Bruce M.; Drlik, Gary J.

    2007-01-01

    High temperature seals are required for advanced hypersonic airframe applications. In this study, both spring tube thermal barriers and innovative wafer seal systems were evaluated under relevant hypersonic test conditions (temperatures, pressures, etc.) via high temperature compression testing and room temperature flow assessments. Thermal barriers composed of a Rene 41 spring tube filled with Saffil insulation and overbraided with a Nextel 312 sheath showed acceptable performance at 1500 F in both short term and longer term compression testing. Nextel 440 thermal barriers with Rene 41 spring tubes and Saffil insulation demonstrated good compression performance up to 1750 F. A silicon nitride wafer seal/compression spring system displayed excellent load performance at temperatures as high as 2200 F and exhibited room temperature leakage values that were only 1/3 those for the spring tube rope seals. For all seal candidates evaluated, no significant degradation in leakage resistance was noted after high temperature compression testing. In addition to these tests, a superalloy seal suitable for dynamic seal applications was optimized through finite element techniques.

  2. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment.

    PubMed

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-12-26

    The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  3. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment

    PubMed Central

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-01-01

    The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature. PMID:29278398

  4. Dynamic High-temperature Testing of an Iridium Alloy in Compression at High-strain Rates: Dynamic High-temperature Testing

    DOE PAGES

    Song, B.; Nelson, K.; Lipinski, R.; ...

    2014-08-21

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-strain -rate performance are needed for understanding high-speed impacts in severe environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain -rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. In our study, we analyzed the difficulties encountered in high-temperature Kolsky bar testing of thin iridium alloy specimens in compression. We made appropriate modifications using themore » current high-temperature Kolsky bar technique in order to obtain reliable compressive stress–strain response of an iridium alloy at high-strain rates (300–10 000 s -1) and temperatures (750 and 1030°C). The compressive stress–strain response of the iridium alloy showed significant sensitivity to both strain rate and temperature.« less

  5. On the compressibility and temperature boundary of warm frozen soils

    NASA Astrophysics Data System (ADS)

    Qi, Jilin; Dang, Boxiang; Guo, Xueluan; Sun, Xiaoyu; Yan, Xu

    2017-04-01

    A silty-clay obtained along the Qinghai-Tibetan railway and a standard Chinese sand were taken as study objects. Saturated frozen soil samples were prepared for testing. Step-load was used and confined compression was carried out on the soils under different temperatures. Compression index and pseudo-preconsolidation pressure (PPC) were obtained. Unlike unfrozen soils, PPC is not associated with stress history. However, it is still the boundary of elastic and plastic deformations. Different compression indexes can be obtained from an individual compression curve under pressures before and after PPC. The parameters at different thermal and stress conditions were analyzed. It is found that temperature plays a critical role in mechanical behaviours of frozen soils. Efforts were then made on the silty-clay in order to suggest a convincing temperature boundary in defining warm frozen soil. Three groups of ice-rich samples with different ice contents were prepared and tested under confined compression. The samples were compressed under a constant load and with 5 stepped temperatures. Strain rates at different temperatures were examined. It was found that the strain rate at around -0.6°C increased abruptly. Analysis of compression index was performed on the data both from our own testing program and from the literature, which showed that at about -1°C was a turning point in the curves for compression index against temperature. Based on both our work and taking into account the unfrozen water content vs. temperature, the range of -1°C to -0.5°C seems to be the temperature where the mechanical properties change greatly. For convenience, -1.0°C can be defined as the boundary for warm frozen soils.

  6. The Effect of Temperature on Compressive and Tensile Strengths of Commonly Used Luting Cements: An In Vitro Study

    PubMed Central

    Patil, Suneel G; Sajjan, MC Suresh; Patil, Rekha

    2015-01-01

    Background: The luting cements must withstand masticatory and parafunctional stresses in the warm and wet oral environment. Mouth temperature and the temperature of the ingested foods may induce thermal variation and plastic deformation within the cements and might affect the strength properties. The objectives of this study were to evaluate the effect of temperature on the compressive and diametral tensile strengths of two polycarboxylate, a conventional glass ionomer and a resin modified glass ionomer luting cements and, to compare the compressive strength and the diametral tensile strength of the selected luting cements at varying temperatures. Materials and Methods: In this study, standardized specimens were prepared. The temperature of the specimens was regulated prior to testing them using a universal testing machine at a crosshead speed of 1 mm/min. Six specimens each were tested at 23°C, 37°C and 50°C for both the compressive and diametral tensile strengths, for all the luting cements. Results: All the luting cements showed a marginal reduction in their compressive and diametral tensile strengths at raised temperatures. Fuji Plus was strongest in compression, followed by Fuji I > Poly F > Liv Carbo. Fuji Plus had the highest diametral tensile strength values, followed by Poly F = Fuji I = Liv Carbo, at all temperatures. Conclusion: An increase in the temperature caused no significant reduction in the compressive and diametral tensile strengths of the cements evaluated. The compressive strength of the luting cements differed significantly from one another at all temperatures. The diametral tensile strength of resin modified glass ionomers differed considerably from the other cements, whereas there was no significant difference between the other cements, at all the temperatures. PMID:25859100

  7. The effect of temperature on compressive and tensile strengths of commonly used luting cements: an in vitro study.

    PubMed

    Patil, Suneel G; Sajjan, Mc Suresh; Patil, Rekha

    2015-02-01

    The luting cements must withstand masticatory and parafunctional stresses in the warm and wet oral environment. Mouth temperature and the temperature of the ingested foods may induce thermal variation and plastic deformation within the cements and might affect the strength properties. The objectives of this study were to evaluate the effect of temperature on the compressive and diametral tensile strengths of two polycarboxylate, a conventional glass ionomer and a resin modified glass ionomer luting cements and, to compare the compressive strength and the diametral tensile strength of the selected luting cements at varying temperatures. In this study, standardized specimens were prepared. The temperature of the specimens was regulated prior to testing them using a universal testing machine at a crosshead speed of 1 mm/min. Six specimens each were tested at 23°C, 37°C and 50°C for both the compressive and diametral tensile strengths, for all the luting cements. All the luting cements showed a marginal reduction in their compressive and diametral tensile strengths at raised temperatures. Fuji Plus was strongest in compression, followed by Fuji I > Poly F > Liv Carbo. Fuji Plus had the highest diametral tensile strength values, followed by Poly F = Fuji I = Liv Carbo, at all temperatures. An increase in the temperature caused no significant reduction in the compressive and diametral tensile strengths of the cements evaluated. The compressive strength of the luting cements differed significantly from one another at all temperatures. The diametral tensile strength of resin modified glass ionomers differed considerably from the other cements, whereas there was no significant difference between the other cements, at all the temperatures.

  8. Further Investigations of Control Surface Seals for the X-38 Re-Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Curry, Donald M.; Newquist, Charles W.; Verzemnieks, Juris

    2001-01-01

    NASA is currently developing the X-38 vehicle that will be used to demonstrate the technologies required for a potential crew return vehicle (CRV) for the International Space Station. This vehicle would serve both as an ambulance for medical emergencies and as an evacuation vehicle for the Space Station. Control surfaces on the X-38 (body flaps and rudder/fin assemblies) require high temperature seals to limit hot gas ingestion and transfer of heat to underlying low-temperature structures to prevent over-temperature of these structures and possible loss of the vehicle. NASAs Johnson Space Center (JSC) and Glenn Research Center (GRC) are working together to develop and evaluate seals for these control surfaces. This paper presents results for compression. flow, scrub, and arc jet tests conducted on the baseline X-38 rudder/fin seal design. Room temperature seal compression tests were performed at low compression levels to determine load versus linear compression, preload. contact area, stiffness. and resiliency characteristics under low load conditions. For all compression levels that were tested, unit loads and contact pressures for the seals were below the 5 lb/in. and 10 psi limits required to limit the loads on the adjoining Shuttle thermal tiles that the seals will contact. Flow rates through an unloaded (i.e. 0% compression) double arrangement were twice those of a double seal compressed to the 20% design compression level. The seals survived an ambient temperature 1000 cycle scrub test over relatively rough Shuttle tile surfaces. The seals were able to disengage and re-engage the edges of the rub surface tiles while being scrubbed over them. Arc jet tests were performed to experimentally determine anticipated seal temperatures for representative flow boundary conditions (pressures and temperatures) under simulated vehicle re-entry conditions. Installation of a single seat in the gap of the test fixture caused a large temperature drop (1710 F) across the seal location as compared to an open gap condition (140 F) confirming the need for seals in the rudder/fin gap location. The seal acted as an effective thermal barrier limiting heat convection through the seal gap and minimizing temperature increases downstream of the seal during maximum heating conditions.

  9. Rapid-Rate Compression Testing of Sheet Materials at High Temperatures

    NASA Technical Reports Server (NTRS)

    Bernett, E. C.; Gerberich, W. W.

    1961-01-01

    This Report describes the test equipment that was developed and the procedures that were used to evaluate structural sheet-material compression properties at preselected constant strain rates and/or loads. Electrical self-resistance was used to achieve a rapid heating rate of 200 F/sec. Four materials were tested at maximum temperatures which ranged from 600 F for the aluminum alloy to 2000 F for the Ni-Cr-Co iron-base alloy. Tests at 0.1, 0.001, and 0.00001 in./in./sec showed that strain rate has a major effect on the measured strength, especially at the high temperatures. The tests, under conditions of constant temperature and constant compression stress, showed that creep deformation can be a critical factor even when the time involved is on the order of a few seconds or less. The theoretical and practical aspects of rapid-rate compression testing are presented, and suggestions are made regarding possible modifications of the equipment which would improve the over-all capabilities.

  10. Elevated-temperature application of the IITRI compression test fixture for graphite/polyimide filamentary composites

    NASA Technical Reports Server (NTRS)

    Raju, B. B.; Camarda, C. J.; Cooper, P. A.

    1979-01-01

    Seventy-nine graphite/polyimide compression specimens were tested to investigate experimentally the IITRI test method for determining compressive properties of composite materials at room and elevated temperatures (589 K (600 F)). Minor modifications were made to the standard IITRI fixture and a high degree of precision was maintained in specimen fabrication and load alignment. Specimens included four symmetric laminate orientations. Various widths were tested to evaluate the effect of width on measured modulus and strength. In most cases three specimens of each width were tested at room and elevated temperature and a polynomial regression analysis was used to reduce the data. Scatter of replicate tests and back-to-back strain variations were low, and no specimens failed by instability. Variation of specimen width had a negligible effect on the measured ultimate strengths and initial moduli of the specimens. Measured compressive strength and stiffness values were sufficiently high for the material to be considered a usable structural material at temperatures as high as 589 K (600 F).

  11. Dynamic compressive behavior of Pr-Nd alloy at high strain rates and temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Huanran; Cai Canyuan; Chen Danian

    2012-07-01

    Based on compressive tests, static on 810 material test system and dynamic on the first compressive loading in split Hopkinson pressure bar (SHPB) tests for Pr-Nd alloy cylinder specimens at high strain rates and temperatures, this study determined a J-C type [G. R. Johnson and W. H. Cook, in Proceedings of Seventh International Symposium on Ballistics (The Hague, The Netherlands, 1983), pp. 541-547] compressive constitutive equation of Pr-Nd alloy. It was recorded by a high speed camera that the Pr-Nd alloy cylinder specimens fractured during the first compressive loading in SHPB tests at high strain rates and temperatures. From highmore » speed camera images, the critical strains of the dynamic shearing instability for Pr-Nd alloy in SHPB tests were determined, which were consistent with that estimated by using Batra and Wei's dynamic shearing instability criterion [R. C. Batra and Z. G. Wei, Int. J. Impact Eng. 34, 448 (2007)] and the determined compressive constitutive equation of Pr-Nd alloy. The transmitted and reflected pulses of SHPB tests for Pr-Nd alloy cylinder specimens computed with the determined compressive constitutive equation of Pr-Nd alloy and Batra and Wei's dynamic shearing instability criterion could be consistent with the experimental data. The fractured Pr-Nd alloy cylinder specimens of compressive tests were investigated by using 3D supper depth digital microscope and scanning electron microscope.« less

  12. Tensile and Compressive Constitutive Response of 316 Stainless Steel at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Muralidharan, U.; Halford, G. R.

    1983-01-01

    Creep rate in compression is lower by factors of 2 to 10 than in tension if the microstructure of the two specimens is the same and are tested at equal temperatures and equal but opposite stresses. Such behavior is characteristic for monotonic creep and conditions involving cyclic creep. In the latter case creep rate in both tension and compression progressively increases from cycle to cycle, rendering questionable the possibility of expressing a time stabilized constitutive relationship. The difference in creep rates in tension and compression is considerably reduced if the tension specimen is first subjected to cycles of tensile creep (reversed by compressive plasticity), while the compression specimen is first subjected to cycles of compressive creep (reversed by tensile plasticity). In both cases, the test temperature is the same and the stresses are equal and opposite. Such reduction is a reflection of differences in microstructure of the specimens resulting from different prior mechanical history.

  13. Structural efficiencies of various aluminum, titanium, and steel alloys at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Heimerl, George J; Hughes, Philip J

    1953-01-01

    Efficient temperature ranges are indicated for two high-strength aluminum alloys, two titanium alloys, and three steels for some short-time compression-loading applications at elevated temperatures. Only the effects of constant temperatures and short exposure to temperature are considered, and creep is assumed not to be a factor. The structural efficiency analysis is based upon preliminary results of short-time elevated-temperature compressive stress-strain tests of the materials. The analysis covers strength under uniaxial compression, elastic stiffness, column buckling, and the buckling of long plates in compression or in shear.

  14. A materials test system for static compression at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Korellis, J. S.; Steinhaus, C. A.; Totten, J. J.

    1992-06-01

    This report documents modifications to our existing computer-controlled compression testing system to allow elevated temperature testing in an evacuated environment. We have adopted an 'inverse' design configuration where the evacuated test volume is located within the induction heating coil, eliminating the expense and minimizing the evacuation time of a much larger traditional vacuum chamber.

  15. Service Lifetime Estimation of EPDM Rubber Based on Accelerated Aging Tests

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Li, Xiangbo; Xu, Likun; He, Tao

    2017-04-01

    Service lifetime of ethylene propylene diene monomer (EPDM) rubber at room temperature (25 °C) was estimated based on accelerated aging tests. The study followed sealing stress loss on compressed cylinder samples by compression stress relaxation methods. The results showed that the cylinder samples of EPDM can quickly reach the physical relaxation equilibrium by using the over-compression method. The non-Arrhenius behavior occurred at the lowest aging temperature. A significant linear relationship was observed between compression set values and normalized stress decay results, and the relationship was not related to the ambient temperature of aging. It was estimated that the sealing stress loss in view of practical application would occur after around 86.8 years at 25 °C. The estimations at 25 °C based on the non-Arrhenius behavior were in agreement with compression set data from storage aging tests in natural environment.

  16. Investigation of tension-compression fatigue behavior of a cross-ply metal matrix composite at room and elevated temperatures. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyum, E.A.

    1993-12-01

    This research, the first load-controlled tension-compression fatigue testing to be performed on a MMC, extends the existing knowledge of MMC fatigue damage mechanisms to include the tension compression loading condition. To accomplish this, a (0/90)2, SCS-6/Ti-15-3 laminate was subjected to tension-tension fatigue at room temperature, and tension-compression fatigue at both room temperature and 427 deg C. Stress and strain data was taken to evaluate the macro-mechanic behavior of the material. Microscopy and fractography were performed to characterize the damage on a micro-mechanic level. On a maximum applied stress basis, the room temperature tension-tension specimens had longer fatigue lives than themore » room temperature tension-compression specimens. The room and high temperature tension-compression fatigue lives were nearly identical in the fiber-dominated high stress region of the SN curve. However, the increased ductility and diffused plasticity of the titanium matrix at 427 deg C delayed the onset and severity of matrix cracking, and thus increased the elevated temperature fatigue lives in the matrix dominated region of the SN curve. In all cases, matrix damage initiated at reaction zone cracks which nucleated both matrix plasticity and matrix cracking. Metal matrix composite, Elevated temperature, Fatigue testing, Compression, Fully-reversed, Titanium, Silicon carbide.« less

  17. Temperature Measurements in Compressed and Uncompressed SPECTOR Plasmas at General Fusion

    NASA Astrophysics Data System (ADS)

    Young, William; Carter, Neil; Howard, Stephen; Carle, Patrick; O'Shea, Peter; Fusion Team, General

    2017-10-01

    Accurate temperature measurements are critical to establishing the behavior of General Fusion's SPECTOR plasma injector, both before and during compression. As compression tests impose additional constraints on diagnostic access to the plasma, a two-color, filter-based soft x-ray electron temperature diagnostic has been implemented. Ion Doppler spectroscopy measurements also provide impurity ion temperatures on compression tests. The soft x-ray and ion Doppler spectroscopy measurements are being validated against a Thomson scattering system on an uncompressed version of SPECTOR with more diagnostic access. The multipoint Thomson scattering diagnostic also provides up to a six point temperature and density profile, with the density measurements validated against a far infrared interferometer. Temperatures above 300 eV have been demonstrated to be sustained for over 500 microseconds in uncompressed plasmas. Optimization of soft x-ray filters is ongoing, in order to balance blocking of impurity line radiation with signal strength.

  18. Distribution analysis for F100(3) engine

    NASA Technical Reports Server (NTRS)

    Walter, W. A.; Shaw, M.

    1980-01-01

    The F100(3) compression system response to inlet circumferential distortion was investigated using an analytical compressor flow model. Compression system response to several types of distortion, including pressure, temperature, and combined pressure/temperature distortions, was investigated. The predicted response trends were used in planning future F100(3) distortion tests. Results show that compression system response to combined temperature and pressure distortions depends upon the relative orientation, as well as the individual amplitudes and circumferential extents of the distortions. Also the usefulness of the analytical predictions in planning engine distortion tests is indicated.

  19. Tensile and compressive constitutive response of 316 stainless steel at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Muralidharan, U.; Halford, G. R.

    1982-01-01

    It is demonstrated that creep rate of 316 SS is lower by factors of 2 to 10 in compression than in tension if the microstructure is the same and tests are conducted at identical temperatures and equal but opposite stresses. Such behavior was observed for both monotonic creep and conditions involving cyclic creep. In the latter case creep rate in both tension and compression progressively increases from cycle to cycle, rendering questionable the possibility of expressing a time-stabilized constitutive relationship. The difference in creep rates in tension and compression is considerably reduced if the tension specimen is first subjected to cycles of tensile creep (reversed by compressive plasticity), while the compression specimen is first subjected to cycles of compressive creep (reversed by tensile plasticity). In both cases, the test temperature is the same and the stresses are equal and opposite. Such reduction is a reflection of differences in microstructure of the specimens resulting from different prior mechanical history.

  20. Compressive Strength of Notched Poly(Phenylene Sulfide) Aerospace Composite: Influence of Fatigue and Environment

    NASA Astrophysics Data System (ADS)

    Niitsu, G. T.; Lopes, C. M. A.

    2013-08-01

    The purpose of this work is to evaluate the influences of fatigue and environmental conditions (-55 °C, 23 °C, and 82 °C/Wet) on the ultimate compression strength of notched carbon-fiber-reinforced poly(phenylene sulfide) composites by performing open-hole compression (OHC) tests. Analysis of the fatigue effect showed that at temperatures of -55 and 23 °C, the ultimate OHC strengths were higher for fatigued than for not-fatigued specimens; this could be attributed to fiber splitting and delamination during fatigue cycling, which reduces the stress concentration at the hole edge, thus increasing the composite strength. This effect of increasing strength for fatigued specimens was not observed under the 82 °C/Wet conditions, since the test temperature near the matrix glass transition temperature ( T g) together with moisture content resulted in matrix softening, suggesting a reduction in fiber splitting during cycling; similar OHC strengths were verified for fatigued and not-fatigued specimens tested at 82 °C/Wet. Analysis of the temperature effect showed that the ultimate OHC strengths decreased with increasing temperature. A high temperature together with moisture content (82 °C/Wet condition) reduced the composite compressive strengths, since a temperature close to the matrix T g resulted in matrix softening, which reduced the lateral support provided by the resin to the 0° fibers, leading to fiber instability failure at reduced applied loads. On the other hand, a low temperature (-55 °C) improved the compressive strength because of possible fiber-matrix interfacial strengthening, increasing the fiber contribution to compressive strength.

  1. An activated energy approach for accelerated testing of the deformation of UHMWPE in artificial joints.

    PubMed

    Galetz, Mathias Christian; Glatzel, Uwe

    2010-05-01

    The deformation behavior of ultrahigh molecular polyethylene (UHMWPE) is studied in the temperature range of 23-80 degrees C. Samples are examined in quasi-static compression, tensile and creep tests to determine the accelerated deformation of UHMWPE at elevated temperatures. The deformation mechanisms under compression load can be described by one strain rate and temperature dependent Eyring process. The activation energy and volume of that process do not change between 23 degrees C and 50 degrees C. This suggests that the deformation mechanism under compression remains stable within this temperature range. Tribological tests are conducted to transfer this activated energy approach to the deformation behavior under loading typical for artificial knee joints. While this approach does not cover the wear mechanisms close to the surface, testing at higher temperatures is shown to have a significant potential to reduce the testing time for lifetime predictions in terms of the macroscopic creep and deformation behavior of artificial joints. Copyright 2010. Published by Elsevier Ltd.

  2. Behavior of reinforcement SCC beams under elevated temperatures

    NASA Astrophysics Data System (ADS)

    Fathi, Hamoon; Farhang, Kianoosh

    2015-09-01

    This experimental study focuses on the behavior of heated reinforced concrete beams. Four types of concrete mixtures were used for the tested self-compacting concrete beams. A total of 72 reinforced concrete beams and 72 standard cylindrical specimens were tested. The compressive strength under uniaxial loading at 23 °C ranged from 30 to 45 MPa. The specimens were exposed to different temperatures. The test parameters of interest were the compressive strength and the temperature of the specimens. The effect of changes in the parameters was examined so as to control the behavior of the tested concrete and that of the reinforced concrete beam. The results indicated that flexibility and compressive strength of the reinforced concrete beams decreased at higher temperatures. Furthermore, heating beyond 400 °C produced greater variations in the structural behavior of the materials in both the cylindrical samples and the reinforced concrete beams.

  3. Fabrication and evaluation of cold/formed/weldbrazed beta-titanium skin-stiffened compression panels

    NASA Technical Reports Server (NTRS)

    Royster, D. M.; Bales, T. T.; Davis, R. C.; Wiant, H. R.

    1983-01-01

    The room temperature and elevated temperature buckling behavior of cold formed beta titanium hat shaped stiffeners joined by weld brazing to alpha-beta titanium skins was determined. A preliminary set of single stiffener compression panels were used to develop a data base for material and panel properties. These panels were tested at room temperature and 316 C (600 F). A final set of multistiffener compression panels were fabricated for room temperature tests by the process developed in making the single stiffener panels. The overall geometrical dimensions for the multistiffener panels were determined by the structural sizing computer code PASCO. The data presented from the panel tests include load shortening curves, local buckling strengths, and failure loads. Experimental buckling loads are compared with the buckling loads predicted by the PASCO code. Material property data obtained from tests of ASTM standard dogbone specimens are also presented.

  4. Effects of hot compression deformation temperature on the microstructure and properties of Al-Zr-La alloys

    NASA Astrophysics Data System (ADS)

    Yue, Xian-hua; Liu, Chun-fang; Liu, Hui-hua; Xiao, Su-fen; Tang, Zheng-hua; Tang, Tian

    2018-02-01

    The main goal of this study is to investigate the microstructure and electrical properties of Al-Zr-La alloys under different hot compression deformation temperatures. In particular, a Gleeble 3500 thermal simulator was used to carry out multi-pass hot compression tests. For five-pass hot compression deformation, the last-pass deformation temperatures were 240, 260, 300, 340, 380, and 420°C, respectively, where the first-pass deformation temperature was 460°C. The experimental results indicated that increasing the hot compression deformation temperature with each pass resulted in improved electrical conductivity of the alloy. Consequently, the flow stress was reduced after deformation of the samples subjected to the same number of passes. In addition, the dislocation density gradually decreased and the grain size increased after hot compression deformation. Furthermore, the dynamic recrystallization behavior was effectively suppressed during the hot compression process because spherical Al3Zr precipitates pinned the dislocation movement effectively and prevented grain boundary sliding.

  5. Mechanical Behavior of AZ31B Mg Alloy Sheets under Monotonic and Cyclic Loadings at Room and Moderately Elevated Temperatures

    PubMed Central

    Nguyen, Ngoc-Trung; Seo, Oh Suk; Lee, Chung An; Lee, Myoung-Gyu; Kim, Ji-hoon; Kim, Heon Young

    2014-01-01

    Large-strain monotonic and cyclic loading tests of AZ31B magnesium alloy sheets were performed with a newly developed testing system, at different temperatures, ranging from room temperature to 250 °C. Behaviors showing significant twinning during initial in-plane compression and untwinning in subsequent tension at and slightly above room temperature were recorded. Strong yielding asymmetry and nonlinear hardening behavior were also revealed. Considerable Bauschinger effects, transient behavior, and variable permanent softening responses were observed near room temperature, but these were reduced and almost disappeared as the temperature increased. Different stress–strain responses were inherent to the activation of twinning at lower temperatures and non-basal slip systems at elevated temperatures. A critical temperature was identified to account for the transition between the twinning-dominant and slip-dominant deformation mechanisms. Accordingly, below the transition point, stress–strain curves of cyclic loading tests exhibited concave-up shapes for compression or compression following tension, and an unusual S-shape for tension following compression. This unusual shape disappeared when the temperature was above the transition point. Shrinkage of the elastic range and variation in Young’s modulus due to plastic strain deformation during stress reversals were also observed. The texture-induced anisotropy of both the elastic and plastic behaviors was characterized experimentally. PMID:28788514

  6. In Situ Elevated Temperature Testing of Fly Ash Based Geopolymer Composites.

    PubMed

    Vickers, Les; Pan, Zhu; Tao, Zhong; van Riessen, Arie

    2016-06-03

    In situ elevated temperature investigations using fly ash based geopolymers filled with alumina aggregate were undertaken. Compressive strength and short term creep tests were carried out to determine the onset temperature of viscous flow. Fire testing using the standard cellulose curve was performed. Applying a load to the specimen as the temperature increased reduced the temperature at which viscous flow occurred (compared to test methods with no applied stress). Compressive strength increased at the elevated temperature and is attributed to viscous flow and sintering forming a more compact microstructure. The addition of alumina aggregate and reduction of water content reduced the thermal conductivity. This led to the earlier onset and shorter dehydration plateau duration times. However, crack formation was reduced and is attributed to smaller thermal gradients across the fire test specimen.

  7. An Elevated-Temperature Tension-Compression Test and Its Application to Magnesium AZ31B

    NASA Astrophysics Data System (ADS)

    Piao, Kun

    Many metals, particularly ones with HCP crystal structures, undergo deformation by combinations of twinning and slip, the proportion of which depends on variables such as temperature and strain rate. Typical techniques to reveal such mechanisms rely on metallography, x-ray diffraction, or electron optics. Simpler, faster, less expensive mechanical tests were developed in the current work and applied to Mg AZ31B. An apparatus was designed, simulated, optimized, and constructed to enable the large-strain, continuous tension/compression testing of sheet materials at elevated temperature. Thermal and mechanical FE analyses were used to locate cartridge heaters, thus enabling the attainment of temperatures up to 350°C within 15 minutes of start-up, and ensuring temperature uniformity throughout the gage length within 8°C. The low-cost device also makes isothermal testing possible at strain rates higher than corresponding tests in air. Analysis was carried out to predict the attainable compressive strains using novel finite element (FE) modeling and a single parameter characteristic of the machine and fixtures. The limits of compressive strain vary primarily with the material thickness and the applied-side-force-to-material-strength ratio. Predictions for a range of sheet alloys with measured buckling strains from -0.04 to -0.17 agreed within a standard deviation of 0.025 (0.015 excluding one material that was not initially flat). In order to demonstrate the utility of the new method, several sheet materials were tested over a range of temperatures. Some of the data obtained is the first of its kind. Magnesium AZ31B sheets were tested at temperatures up to 250°C with strain rate of 0.001/s. The inflected stress-strain curve observed in compression at room temperature disappeared between 125°C and 150°C, corresponding to the suppression of twinning, and suggesting a simple method for identifying the deformation mechanism transition temperature. The temperature-dependent behavior of selected advanced high strength steels (TWIP and DP) was revealed by preliminary tests at room temperature, 150°C and 250°C. For Mg AZ31B alloy sheets, the curvature of compressive stress-strain plots over a fixed strain range was found to be a consistent indicator of twinning magnitude, independent of temperature and strain rate. The relationship between curvature and areal fraction of twins is presented. Transition temperatures determined based on stress-strain curvature were consistent with ones determined by metallographic analysis and flow stresses, and depended on strain rate by the Zener-Hollomon parameter, a critical value for which was measured. The transition temperature was found to depend significantly on grain size, a relationship for which was established. Finally, it was shown that the transition temperature can be determined consistently, and much faster, using a single novel "Step-Temperature" test.

  8. Evaluation of Ceramic Honeycomb Core Compression Behavior at Room Temperature

    NASA Technical Reports Server (NTRS)

    Bird, Richard K.; Lapointe, Thomas S.

    2013-01-01

    Room temperature flatwise compression tests were conducted on two varieties of ceramic honeycomb core specimens that have potential for high-temperature structural applications. One set of specimens was fabricated using strips of a commercially-available thin-gage "ceramic paper" sheet molded into a hexagonal core configuration. The other set was fabricated by machining honeycomb core directly from a commercially available rigid insulation tile material. This paper summarizes the results from these tests.

  9. Rudder/Fin Seal Investigations for the X-38 Re-Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Curry, Donald M.

    2000-01-01

    NASA is currently developing the X-38 vehicle that will be used to demonstrate the technologies required for a crew return vehicle (CRV) for the International Space Station. The X-38 control surfaces require high temperature seals to limit hot gas ingestion and transfer of heat to underlying low-temperature structures to prevent over-temperature of these structures and possible loss of the vehicle. This paper presents results for thermal analyses and flow and compression tests conducted on as-received and thermally exposed seals for the rudder/fin location of the X-38. A thermal analysis of the rudder/fin dual seal assembly based on representative heating rates on the windward surface of the rudder/fin area predicted a peak seal temperature of 1900 F. The temperature-exposed seals were heated in a compressed state at 1900 F corresponding to the predicted peak temperature. Room temperature compression tests were performed to determine load versus linear compression, preload, contact area, stiffness, and resiliency characteristics for the as-received and temperature-exposed seals. Temperature exposure resulted in permanent set and loss of resiliency in these seals. Unit loads and contact pressures for the seals were below the 5 lb/in. and 10 psi limits set to limit the loads on the Shuttle thermal tiles that the seals seal against in the rudder/fin location. Measured seal flow rates for a double seal were about 4.5 times higher than the preliminary seal flow goal. The seal designs examined in this study are expected to be able to endure the high temperatures that they will be exposed to for a single-use life. Tests performed herein combined with future analyses, arc jet tests, and scrubbing tests will be used to select the final seal design for this application.

  10. Rudder/Fin Seal Investigations for the X-38 Re-Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Curry, Donald M.

    2000-01-01

    NASA is currently developing the X-38 vehicle that will be used to demonstrate the technologies required for a crew return vehicle (CRV) for the International Space Station. The X-38 control surfaces require high temperature seals to limit hot gas ingestion and transfer of heat to underlying low-temperature structures to prevent over-temperature of these structures and possible loss of the vehicle. This paper presents results for thermal analyses and flow and compression tests conducted on as-received and thermally exposed seals for the rudder/fin location of the X-38. A thermal analysis of the rudder/fin dual seal assembly based on representative heating rates on the windward surface of the rudder/fin area predicted a peak seal temperature of 1900 F. The temperature-exposed seals were heated in a compressed state at 1900 F corresponding to the predicted peak temperature. Room temperature compression tests were performed to determine load versus linear compression, preload, contact area, stiffness, and resiliency characteristics for the as-received and temperature-exposed seals. Temperature exposure resulted in permanent set and loss of resiliency in these seals. Unit loads and contact pressures for the seals were below the five pounds/inch and ten psi limits set to limit the loads on the Shuttle thermal tiles that the seals seal against in the rudder/fin location. Measured seal flow rates for a double seal were about 4.5 times higher than the preliminary seal flow goal. The seal designs examined in this study are expected to be able to endure the high temperatures that they will be exposed to for a single-use life. Tests performed herein combined with future analyses, arc jet tests, and scrubbing tests will be used to select the final seal design for this application.

  11. In Situ Elevated Temperature Testing of Fly Ash Based Geopolymer Composites

    PubMed Central

    Vickers, Les; Pan, Zhu; Tao, Zhong; van Riessen, Arie

    2016-01-01

    In situ elevated temperature investigations using fly ash based geopolymers filled with alumina aggregate were undertaken. Compressive strength and short term creep tests were carried out to determine the onset temperature of viscous flow. Fire testing using the standard cellulose curve was performed. Applying a load to the specimen as the temperature increased reduced the temperature at which viscous flow occurred (compared to test methods with no applied stress). Compressive strength increased at the elevated temperature and is attributed to viscous flow and sintering forming a more compact microstructure. The addition of alumina aggregate and reduction of water content reduced the thermal conductivity. This led to the earlier onset and shorter dehydration plateau duration times. However, crack formation was reduced and is attributed to smaller thermal gradients across the fire test specimen. PMID:28773568

  12. Evaluation, construction and endurance testing of compression sealed pyrolytic boron nitride slot insulation

    NASA Technical Reports Server (NTRS)

    Grant, W. L.

    1969-01-01

    A high-temperature statorette, consisting of an iron-27 percent cobalt magnetic lamination stack and nickel-clad silver conductors, was tested with pyrolytic boron nitride slot insulation. Temperatures were measured in each test to determine characteristics of slot linear heat conductance from statorette conductors. Testing was carried out to temperatures of approximately 1500 F in a vacuum environment of 10-8 torr. Three assemblies were built and tested, each having a different room temperature slot clearance. The final statorette assembly was subjected to a 100-hour vacuum aging test at 1400 F followed by 25 thermal cycles. Temperature data from the three assemblies showed that decreasing slot clearance and increasing compression loading did enhance heat transfer. The temperature difference between slot and lamination at 1400 F increased 4 F during the thermal aging and an additional 10 F during the 25 thermal cycles.

  13. Long-Term Isothermal Aging Effects on Carbon Fabric-Reinforced PMR-15 Composites: Compression Strength

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Roberts, Gary D.; Kamvouris, John E.

    1996-01-01

    A study was conducted to determine the effects of long-term isothermal thermo-oxidative aging on the compressive properties of T-650-35 fabric reinforced PMR-15 composites. The temperatures that were studied were 204, 260, 288, 316, and 343 C. Specimens of different geometries were evaluated. Cut edge-to-surface ratios of 0.03 to 0.89 were fabricated and aged. Aging times extended to a period in excess of 15,000 hours for the lower temperature runs. The unaged and aged specimens were tested in compression in accordance with ASTM D-695. Both thin and thick (plasma) specimens were tested. Three specimens were tested at each time/temperature/geometry condition. The failure modes appeared to be initiated by fiber kinking with longitudinal, interlaminar splitting. In general, it appears that the thermo-oxidative degradation of the compression strength of the composite material may occur by both thermal (time-dependent) and oxidative (weight-loss) mechanisms. Both mechanisms appear to be specimen-thickness dependent.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Bo; Nelson, Kevin; Lipinski, Ronald J.

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzedmore » the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 – 10000 s -1) and temperatures (750°C and 1030°C). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.« less

  15. Space environmental effects on graphite-epoxy compressive properties and epoxy tensile properties

    NASA Technical Reports Server (NTRS)

    Fox, Derek J.; Sykes, George F., Jr.; Herakovich, Carl T.

    1987-01-01

    This study characterizes the effects of electron radiation and temperature on a graphite-epoxy composite material. Compressive properties of the T300/934 material system were obtained at -250 F (-157 C), room temperature, and 250 F (121 C). Tensile specimens of the Fiberite 934 epoxy resin were fabricated and tested at room temperature and 250 F (121 C). Testing was conducted in the baseline (nonirradiated) and irradiated conditions. The radiation exposure was designed to simulate 30 year, worst-case exposure in geosynchronous Earth orbit. Mechanical properties tended to degrade at elevated temperature and improve at cryogenic temperature. Irradiation generally degraded properties at all temperatures.

  16. Analysis of the operation of the SCD Response intermittent compression system.

    PubMed

    Morris, Rh J; Griffiths, H; Woodcock, J P

    2002-01-01

    The work assessed the performance of the Kendall SCD Response intermittent pneumatic compression system for deep vein thrombosis prophylaxis, which claimed to set its cycle according to the blood flow characteristics of individual patient limbs. A series of tests measured the system response in various situations, including application to the limbs of healthy volunteers, and to false limbs. Practical experimentation and theoretical analysis were used to investigate influences on the system functioning other than blood flow. The system tested did not seem to perform as claimed, being unable to distinguish between real and fake limbs. The intervals between compressions were set to times unrealistic for venous refill, with temperature changes in the cuff the greatest influence on performance. Combining the functions of compression and the measurement of the effects of compression in the same air bladder makes temperature artefacts unavoidable and can cause significant errors in the inter-compression interval.

  17. Compression testing of flammable liquids

    NASA Technical Reports Server (NTRS)

    Briles, O. M.; Hollenbaugh, R. P.

    1979-01-01

    Small cylindrical test chamber determines catalytic effect of given container material on fuel that might contribute to accidental deflagration or detonation below expected temperature under adiabatic compression. Device is useful to producers and users of flammable liquids and to safety specialists.

  18. Knock-Limited Performance of Triptane and Xylidines Blended with 28-R Aviation Fuel at High Compression Ratios and Maximum-Economy Spark Setting

    NASA Technical Reports Server (NTRS)

    Held, Louis F.; Pritchard, Ernest I.

    1946-01-01

    An investigation was conducted to evaluate the possibilities of utilizing the high-performance characteristics of triptane and xylidines blended with 28-R fuel in order to increase fuel economy by the use of high compression ratios and maximum-economy spark setting. Full-scale single-cylinder knock tests were run with 20 deg B.T.C. and maximum-economy spark settings at compression ratios of 6.9, 8.0, and 10.0, and with two inlet-air temperatures. The fuels tested consisted of triptane, four triptane and one xylidines blend with 28-R, and 28-R fuel alone. Indicated specific fuel consumption at lean mixtures was decreased approximately 17 percent at a compression ratio of 10.0 and maximum-economy spark setting, as compared to that obtained with a compression ratio of 6.9 and normal spark setting. When compression ratio was increased from 6.9 to 10.0 at an inlet-air temperature of 150 F, normal spark setting, and a fuel-air ratio of 0.065, 55-percent triptane was required with 28-R fuel to maintain the knock-limited brake power level obtained with 28-R fuel at a compression ratio of 6.9. Brake specific fuel consumption was decreased 17.5 percent at a compression ratio of 10.0 relative to that obtained at a compression ratio of 6.9. Approximately similar results were noted at an inlet-air temperature of 250 F. For concentrations up through at least 20 percent, triptane can be more efficiently used at normal than at maximum-economy spark setting to maintain a constant knock-limited power output over the range of compression ratios tested.

  19. Compressive Properties of Open-Cell Al Hybrid Foams at Different Temperatures

    PubMed Central

    Liu, Jiaan; Si, Fujian; Zhu, Xianyong; Liu, Yaohui; Zhang, Jiawei; Liu, Yan; Zhang, Chengchun

    2017-01-01

    Hybrid Ni/Al foams were fabricated by depositing electroless Ni–P (EN) coatings on open-cell Al foam substrate to obtain enhanced mechanical properties. The microstructure, chemical components and phases of the hybrid foams were observed and analyzed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The mechanical properties of the foams were studied by compressive tests at different temperatures. The experiment results show that the coating is mainly composed of Ni and P elements. There was neither defect at the interface nor crack in the coatings, indicating that the EN coatings had fine adhesion to the Al substrate. The compressive strengths and energy absorption capacities of the as-received foam and hybrid foams decrease with the increasing testing temperatures, but the hybrid foams exhibit a lower decrement rate than the as-received foam. This might be attributed to the different failure mechanisms at different testing temperatures, which is conformed by fractography observation. PMID:28772456

  20. Strength and deformation behaviors of veined marble specimens after vacuum heat treatment under conventional triaxial compression

    NASA Astrophysics Data System (ADS)

    Su, Haijian; Jing, Hongwen; Yin, Qian; Yu, Liyuan; Wang, Yingchao; Wu, Xingjie

    2017-10-01

    The mechanical behaviors of rocks affected by high temperature and stress are generally believed to be significant for the stability of certain projects involving rocks, such as nuclear waste storage and geothermal resource exploitation. In this paper, veined marble specimens were treated to high temperature treatment and then used in conventional triaxial compression tests to investigate the effect of temperature, confining pressure, and vein angle on strength and deformation behaviors. The results show that the strength and deformation parameters of the veined marble specimens changed with the temperature, presenting a critical temperature of 600 °C. The triaxial compression strength of a horizontal vein (β = 90°) is obviously larger than that of a vertical vein (β = 0°). The triaxial compression strength, elasticity modulus, and secant modulus have an approximately linear relation to the confining pressure. Finally, Mohr-Coulomb and Hoek-Brown criteria were respectively used to analyze the effect of confining pressure on triaxial compression strength.

  1. Strengthening silicon carbide by quenching

    NASA Technical Reports Server (NTRS)

    Gruver, R. M.; Platts, D. R.; Kirchner, H. P.

    1974-01-01

    Quenching was used to form compressive surface layers in hot-pressed silicon carbide. The presence of the compressive stresses was verified by slotted rod tests. The slotted rod tip deflection was retained at temperatures to at least 1380 C, showing that the stresses are not relieved immediately at elevated temperatures. The flexural strength and impact resistance of specimens quenched from moderate temperatures (2000 C) were increased. Frequently, specimens quenched from higher temperatures were weakened by thermal shock damage.

  2. Comment on "Proposal of a critical test of the Navier-Stokes-Fourier paradigm for compressible fluid continua".

    PubMed

    Felderhof, B U

    2013-08-01

    Recently, a critical test of the Navier-Stokes-Fourier equations for compressible fluid continua was proposed [H. Brenner, Phys. Rev. E 87, 013014 (2013)]. It was shown that the equations of bivelocity hydrodynamics imply that a compressible fluid in an isolated rotating circular cylinder attains a nonequilibrium steady state with a nonuniform temperature increasing radially with distance from the axis. We demonstrate that statistical mechanical arguments, involving Hamiltonian dynamics and ergodicity due to irregularity of the wall, lead instead to a thermal equilibrium state with uniform temperature. This is the situation to be expected in experiment.

  3. Seal material development test program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A program designed to characterize an experimental fluoroelastomer material designated AF-E-124D, is examined. Tests conducted include liquid nitrogen load compression tests, flexure tests and valve seal tests, ambient and elevated temperature compression set tests, and cleaning and flushing fluid exposure tests. The results of these tests indicate the AF-E-124D is a good choice for a cryogenic seal, since it exhibits good low temperature sealing characteristics and resistance to permanent set. The status of this material as an experimental fluorelastomer is stressed and recommended. Activity includes definition and control of critical processing to ensure consistent material properties. Design, fabrication and test of this and other materials is recommended in valve and static seal applications.

  4. A critical Examination of the Phenomenon of Bonding Area - Bonding Strength Interplay in Powder Tableting.

    PubMed

    Osei-Yeboah, Frederick; Chang, Shao-Yu; Sun, Changquan Calvin

    2016-05-01

    Although the bonding area (BA) and bonding strength (BS) interplay is used to explain complex tableting behaviors, it has never been experimentally proven. The purpose of this study is to unambiguously establish the distinct contributions of each by decoupling the contributions from BA and BS. To modulate BA, a Soluplus® powder was compressed into tablets at different temperatures and then broken following equilibration at 25°C. To modulate BS, tablets were equilibrated at different temperatures. To simultaneously modulate BA and BS, both powder compression and tablet breaking test were carried out at different temperatures. Lower tablet tensile strength is observed when the powder is compressed at a lower temperature but broken at 25°C. This is consistent with the increased resistance to polymer deformation at lower temperatures. When equilibrated at different temperatures, the tensile strength of tablets prepared under identical conditions increases with decreasing storage temperature, indicating that BS is higher at a lower temperature. When powder compression and tablet breaking are carried out at the same temperature, the profile with a maximum tensile strength at 4°C is observed due to the BA-BS interplay. By systematically varying temperature during tablet compression and breaking, we have experimentally demonstrated the phenomenon of BA-BS interplay in tableting.

  5. Friction of Compression-ignition Engines

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H , Jr

    1936-01-01

    The cost in mean effective pressure of generating air flow in the combustion chambers of single-cylinder compression-ignition engines was determined for the prechamber and the displaced-piston types of combustion chamber. For each type a wide range of air-flow quantities, speeds, and boost pressures was investigated. Supplementary tests were made to determine the effect of lubricating-oil temperature, cooling-water temperature, and compression ratio on the friction mean effective pressure of the single-cylinder test engine. Friction curves are included for two 9-cylinder, radial, compression-ignition aircraft engines. The results indicate that generating the optimum forced air flow increased the motoring losses approximately 5 pounds per square inch mean effective pressure regardless of chamber type or engine speed. With a given type of chamber, the rate of increase in friction mean effective pressure with engine speed is independent of the air-flow speed. The effect of boost pressure on the friction cannot be predicted because the friction was decreased, unchanged, or increased depending on the combustion-chamber type and design details. High compression ratio accounts for approximately 5 pounds per square inch mean effective pressure of the friction of these single-cylinder compression-ignition engines. The single-cylinder test engines used in this investigation had a much higher friction mean effective pressure than conventional aircraft engines or than the 9-cylinder, radial, compression-ignition engines tested so that performance should be compared on an indicated basis.

  6. Experimental Characterization and Material Modelling of an AZ31 Magnesium Sheet Alloy at Elevated Temperatures under Consideration of the Tension-Compression Asymmetry

    NASA Astrophysics Data System (ADS)

    Behrens, B.-A.; Bouguecha, A.; Bonk, C.; Dykiert, M.

    2017-09-01

    Magnesium sheet alloys have a great potential as a construction material in the aerospace and automotive industry. However, the current state of research regarding temperature dependent material parameters for the description of the plastic behaviour of magnesium sheet alloys is scarce in literature and accurate statements concerning yield criteria and appropriate characterization tests to describe the plastic behaviour of a magnesium sheet alloy at elevated temperatures in deep drawing processes are to define. Hence, in this paper the plastic behaviour of the well-established magnesium sheet alloy AZ31 has been characterized by means of convenient mechanical tests (e. g. tension, compression and biaxial tests) at temperatures between 180 and 230 °C. In this manner, anisotropic and hardening behaviour as well as differences between the tension-compression asymmetry of the yield locus have been estimated. Furthermore, using the evaluated data from the above mentioned tests, two different yield criteria have been parametrized; the commonly used Hill’48 and an orthotropic yield criterion, CPB2006, which was developed especially for materials with hexagonal close packed lattice structure and is able to describe an asymmetrical yielding behaviour regarding tensile and compressive stress states. Numerical simulations have been finally carried out with both yield functions in order to assess the accuracy of the material models.

  7. High Temperature Uniaxial Compression and Stress-Relaxation Behavior of India-Specific RAFM Steel

    NASA Astrophysics Data System (ADS)

    Shah, Naimish S.; Sunil, Saurav; Sarkar, Apu

    2018-07-01

    India-specific reduced activity ferritic martensitic steel (INRAFM), a modified 9Cr-1Mo grade, has been developed by India as its own structural material for fabrication of the Indian Test Blanket Module (TBM) to be installed in the International Thermonuclear Energy Reactor (ITER). The extensive study on mechanical and physical properties of this material has been currently going on for appraisal of this material before being put to use in the ITER. High temperature compression, stress-relaxation, and strain-rate change behavior of the INRAFM steel have been investigated. The optical microscopic and scanning electron microscopic characterizations were carried out to observe the microstructural changes that occur during uniaxial compressive deformation test. Comparable true plastic stress values at 300 °C and 500 °C and a high drop in true plastic stress at 600 °C were observed during the compression test. Stress-relaxation behaviors were investigated at 500 °C, 550 °C, and 600 °C at a strain rate of 10-3 s-1. The creep properties of the steel at different temperatures were predicted from the stress-relaxation test. The Norton's stress exponent ( n) was found to decrease with the increasing temperature. Using Bird-Mukherjee-Dorn relationship, the temperature-compensated normalized strain rate vs stress was plotted. The stress exponent ( n) value of 10.05 was obtained from the normalized plot. The increasing nature of the strain rate sensitivity ( m) with the test temperature was found from strain-rate change test. The low plastic stability with m 0.06 was observed at 600 °C. The activation volume ( V *) values were obtained in the range of 100 to 300 b3. By comparing the experimental values with the literature, the rate-controlling mechanisms at the thermally activated region of high temperature were found to be the nonconservative movement of jogged screw dislocations and thermal breaking of attractive junctions.

  8. High Temperature Uniaxial Compression and Stress-Relaxation Behavior of India-Specific RAFM Steel

    NASA Astrophysics Data System (ADS)

    Shah, Naimish S.; Sunil, Saurav; Sarkar, Apu

    2018-05-01

    India-specific reduced activity ferritic martensitic steel (INRAFM), a modified 9Cr-1Mo grade, has been developed by India as its own structural material for fabrication of the Indian Test Blanket Module (TBM) to be installed in the International Thermonuclear Energy Reactor (ITER). The extensive study on mechanical and physical properties of this material has been currently going on for appraisal of this material before being put to use in the ITER. High temperature compression, stress-relaxation, and strain-rate change behavior of the INRAFM steel have been investigated. The optical microscopic and scanning electron microscopic characterizations were carried out to observe the microstructural changes that occur during uniaxial compressive deformation test. Comparable true plastic stress values at 300 °C and 500 °C and a high drop in true plastic stress at 600 °C were observed during the compression test. Stress-relaxation behaviors were investigated at 500 °C, 550 °C, and 600 °C at a strain rate of 10-3 s-1. The creep properties of the steel at different temperatures were predicted from the stress-relaxation test. The Norton's stress exponent (n) was found to decrease with the increasing temperature. Using Bird-Mukherjee-Dorn relationship, the temperature-compensated normalized strain rate vs stress was plotted. The stress exponent (n) value of 10.05 was obtained from the normalized plot. The increasing nature of the strain rate sensitivity (m) with the test temperature was found from strain-rate change test. The low plastic stability with m 0.06 was observed at 600 °C. The activation volume (V *) values were obtained in the range of 100 to 300 b3. By comparing the experimental values with the literature, the rate-controlling mechanisms at the thermally activated region of high temperature were found to be the nonconservative movement of jogged screw dislocations and thermal breaking of attractive junctions.

  9. Development of procedures for calculating stiffness and damping of elastomers in engineering applications. Part 5: Elastomer performance limits and the design and test of an elastomer damper

    NASA Technical Reports Server (NTRS)

    Tecza, J. A.; Darlow, M. S.; Smalley, A. J.

    1979-01-01

    Tests were performed on elastomer specimens of the material polybutadiene to determine the performance limitations imposed by strain, temperature, and frequency. Three specimens were tested: a shear specimen, a compression specimen, and a second compression specimen in which thermocouples were embedded in the elastomer buttons. Stiffness and damping were determined from all tests, and internal temperatures were recorded for the instrumented compression specimen. Measured results are presented together with comparisons between predictions of a thermo-viscoelastic analysis and the measured results. Dampers of polybutadiene and Viton were designed, built, and tested. Vibration measurements were made and sensitivity of vibration to change in unbalance was also determined. Values for log decrement were extracted from the synchronous response curves. Comparisons were made between measured sensitivity to unbalance and log decrement and predicted values for these quantities.

  10. Elevated temperature creep properties of NiAl cryomilled with and without Y2O3

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Luton, Michael J.

    1995-01-01

    The creep properties of lots of NiAl cryomilled with and without Y2O3 have been determined in compression and tension. Although identical cryomilling procedures were used, differences in composition were found between the lot ground with 0.5 vol% yttria and the lot ground without Y2O3. Compression testing between 1000 and 1300 K yielded similar creep strengths for both materials, while tensile creep rupture testing indicated that the yttria-containing alloy was slightly stronger than the Y2O3-free version. Both compression and tensile testing showed two deformation regimes; whereas the stress state did not affect the high stress exponent (n approximately equals 10) mechanism, the low stress exponent regime n was approximately 6 in tension and approximately 2 in compression. The strengths in tension were somewhat less than those measured in compression, but the estimated activation energies (Q) of approximately 600 kJ/mol for tensile testing were closer to the previously measured values (approximately 700 kJ/mol) for NiAl-AlN and very different from the Q's of 400 and 200 kJ/mol for compression tests in the high and low stress exponent regimes, respectively. A Larson-Miller comparison indicated that cryomilling can produce an alloy with long-term, high-temperature strength at least equal to conventional superalloys.

  11. Diatomite based ceramics macro- and microscopic characterization

    NASA Astrophysics Data System (ADS)

    Aderdour, H.; Bentayeb, A.; Nadiri, A.; Ouammou, A.; Sangleboeuf, J.-C.; Lucas-Girot, A.; Carel, C.

    2005-03-01

    A Moroccan diatomite is characterized chemically and physically. Mechanical properties of ceramics prepared by sintering at different temperatures ranging from 1050 to 1350° C are studied. Compressive strength and Young modulus are determined by compression tests. Densification and evolution of the microstructure are followed by SEM and other tests.

  12. Orientation and temperature dependence of some mechanical properties of the single-crystal nickel-base superalloy Rene N4. III - Tension-compression anisotropy

    NASA Technical Reports Server (NTRS)

    Miner, R. V.; Gabb, T. P.; Gayda, J.; Hemker, K. J.

    1986-01-01

    Single crystal superalloy specimens with various crystallographic directions along their axes were tested in compression at room temperature, 650, 760, 870, and 980 deg C. These results are compared with the tensile behavior studied previously. The alloy, Rene N4, was developed.

  13. 40 CFR 89.405 - Recorded information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... temperature outlet. (10) Engine fuel inlet temperature at the pump inlet. (f) Test data; post-test. (1...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test..., where applicable, for each test. (b) Engine description and specification. A copy of the information...

  14. 40 CFR 89.405 - Recorded information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... temperature outlet. (10) Engine fuel inlet temperature at the pump inlet. (f) Test data; post-test. (1...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test..., where applicable, for each test. (b) Engine description and specification. A copy of the information...

  15. 40 CFR 89.405 - Recorded information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... temperature outlet. (10) Engine fuel inlet temperature at the pump inlet. (f) Test data; post-test. (1...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test..., where applicable, for each test. (b) Engine description and specification. A copy of the information...

  16. 40 CFR 89.405 - Recorded information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... temperature outlet. (10) Engine fuel inlet temperature at the pump inlet. (f) Test data; post-test. (1...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test..., where applicable, for each test. (b) Engine description and specification. A copy of the information...

  17. 40 CFR 89.405 - Recorded information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... temperature outlet. (10) Engine fuel inlet temperature at the pump inlet. (f) Test data; post-test. (1...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test..., where applicable, for each test. (b) Engine description and specification. A copy of the information...

  18. Stainless steel component with compressed fiber Bragg grating for high temperature sensing applications

    NASA Astrophysics Data System (ADS)

    Jinesh, Mathew; MacPherson, William N.; Hand, Duncan P.; Maier, Robert R. J.

    2016-05-01

    A smart metal component having the potential for high temperature strain sensing capability is reported. The stainless steel (SS316) structure is made by selective laser melting (SLM). A fiber Bragg grating (FBG) is embedded in to a 3D printed U-groove by high temperature brazing using a silver based alloy, achieving an axial FBG compression of 13 millistrain at room temperature. Initial results shows that the test component can be used for up to 700°C for sensing applications.

  19. The Quiescent-Chamber Type Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Foster, H H

    1937-01-01

    Report presents the results of performance tests of a single-cylinder 4-stroke-cycle compression-ignition engine having a vertical disk form of combustion chamber without air flow. The number, size, and direction of the orifices of the fuel-injection nozzles used were independently varied. A table and graphs are presented showing the performance of the engine with different nozzles; results of tests at different compression ratios, boost pressures, and coolant temperatures are also included.

  20. The extrusion test and sensory perception revisited: Some comments on generality and the effect of measurement temperature.

    PubMed

    Brenner, Tom; Tomczyńska-Mleko, Marta; Mleko, Stanisław; Nishinari, Katsuyoshi

    2017-12-01

    Relations between sensory perception, extrusion and fracture in shear, extension and compression are examined. Gelatin-based gels are perceived as less firm and less hard than expected based on their mechanical properties compared to polysaccharide gels that have the same mechanical properties at room temperature but melt well above body temperature, underlying the importance of the measurement temperature for gels that melt during mastication. Correlations between parameters from extrusion and compression, extension and shear are verified using mixed polysaccharide gels. We previously reported a high correlation between several sensory attributes and parameters from an extrusion test. The extrusion test showed the most robust correlation, and could be used to assess samples at both extremes of the texture range with respect to elasticity, for example, both samples that could not be extended as their very low elasticity led to their fracture during handling, as well as samples that could not be fractured in compression. Here, we reexamine the validity of the relations reported. We demonstrate the generality of the relations between large deformation tests and extrusion, but the findings underscore the need to take into account the measurement temperature for samples that melt during mastication when correlating instrumental parameters with sensory perception. © 2017 Wiley Periodicals, Inc.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, B.; Nelson, K.; Lipinski, R.

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-strain -rate performance are needed for understanding high-speed impacts in severe environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain -rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. In our study, we analyzed the difficulties encountered in high-temperature Kolsky bar testing of thin iridium alloy specimens in compression. We made appropriate modifications using themore » current high-temperature Kolsky bar technique in order to obtain reliable compressive stress–strain response of an iridium alloy at high-strain rates (300–10 000 s -1) and temperatures (750 and 1030°C). The compressive stress–strain response of the iridium alloy showed significant sensitivity to both strain rate and temperature.« less

  2. The Effect of Curing Temperature on the Properties of Cement Pastes Modified with TiO2 Nanoparticles

    PubMed Central

    Pimenta Teixeira, Karine; Perdigão Rocha, Isadora; De Sá Carneiro, Leticia; Flores, Jessica; Dauer, Edward A.; Ghahremaninezhad, Ali

    2016-01-01

    This paper investigates the effect of curing temperature on the hydration, microstructure, compressive strength, and transport of cement pastes modified with TiO2 nanoparticles. These characteristics of cement pastes were studied using non-evaporable water content measurement, X-ray diffraction (XRD), compressive strength test, electrical resistivity and porosity measurements, and scanning electron microscopy (SEM). It was shown that temperature enhanced the early hydration. The cement pastes cured at elevated temperatures generally showed an increase in compressive strength at an early age compared to the cement paste cured at room temperature, but the strength gain decreased at later ages. The electrical resistivity of the cement pastes cured at elevated temperatures was found to decrease more noticeably at late ages compared to that of the room temperature cured cement paste. SEM examination indicated that hydration product was more uniformly distributed in the microstructure of the cement paste cured at room temperature compared to the cement pastes cured at elevated temperatures. It was observed that high temperature curing decreased the compressive strength and electrical resistivity of the cement pastes at late ages in a more pronounced manner when higher levels of TiO2 nanoparticles were added. PMID:28774073

  3. Temperature distortion generator for turboshaft engine testing

    NASA Technical Reports Server (NTRS)

    Klann, G. A.; Barth, R. L.; Biesiadny, T. J.

    1984-01-01

    The procedures and unique hardware used to conduct an experimental investigation into the response of a small-turboshaft-engine compression system to various hot gas ingestion patterns are presented. The temperature distortion generator described herein uses gaseous hydrogen to create both steady-state and time-variant, or transient, temperature distortion at the engine inlet. The range of transient temperature ramps produced by the distortion generator during the engine tests was from less than 111 deg K/sec (200 deg R/sec) to above 611 deg K/sec (1100 deg R/sec); instantaneous temperatures to 422 deg K (760 deg R) above ambient were generated. The distortion generator was used to document the maximum inlet temperatures and temperature rise rates that the compression system could tolerate before the onset of stall for various circumferential distortions as well as the compressor system response during stall.

  4. Deformation Mechanism Map of Cu/Nb Nanoscale Metallic Multilayers as a Function of Temperature and Layer Thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snel, J.; Monclús, M. A.; Castillo-Rodríguez, M.

    The mechanical properties and deformation mechanisms of Cu/Nb nanoscale metallic multilayers (NMMs) manufactured by accumulative roll bonding are studied at 25°C and 400°C. Cu/Nb NMMs with individual layer thicknesses between 7 nm and 63 nm were tested by in situ micropillar compression inside a scanning electron microscope. Yield strength, strain-rate sensitivities and activation volumes were obtained from the pillar compression tests. The deformed micropillars were examined under scanning and transmission electron microscopy in order to examine the deformation mechanisms active for different layer thicknesses and temperatures. The paper suggests that room temperature deformation was determined by dislocation glide at largermore » layer thicknesses and interface-related mechanisms at the thinner layer thicknesses. The high-temperature compression tests, in contrast, revealed superior thermo-mechanical stability and strength retention for the NMMs with larger layer thicknesses with deformation controlled by dislocation glide. A remarkable transition in deformation mechanism occurred as the layer thickness decreased, to a deformation response controlled by diffusion processes along the interfaces, which resulted in temperature-induced softening. Finally, a deformation mechanism map, in terms of layer thickness and temperature, is proposed from the results obtained in this investigation.« less

  5. Deformation Mechanism Map of Cu/Nb Nanoscale Metallic Multilayers as a Function of Temperature and Layer Thickness

    DOE PAGES

    Snel, J.; Monclús, M. A.; Castillo-Rodríguez, M.; ...

    2017-08-29

    The mechanical properties and deformation mechanisms of Cu/Nb nanoscale metallic multilayers (NMMs) manufactured by accumulative roll bonding are studied at 25°C and 400°C. Cu/Nb NMMs with individual layer thicknesses between 7 nm and 63 nm were tested by in situ micropillar compression inside a scanning electron microscope. Yield strength, strain-rate sensitivities and activation volumes were obtained from the pillar compression tests. The deformed micropillars were examined under scanning and transmission electron microscopy in order to examine the deformation mechanisms active for different layer thicknesses and temperatures. The paper suggests that room temperature deformation was determined by dislocation glide at largermore » layer thicknesses and interface-related mechanisms at the thinner layer thicknesses. The high-temperature compression tests, in contrast, revealed superior thermo-mechanical stability and strength retention for the NMMs with larger layer thicknesses with deformation controlled by dislocation glide. A remarkable transition in deformation mechanism occurred as the layer thickness decreased, to a deformation response controlled by diffusion processes along the interfaces, which resulted in temperature-induced softening. Finally, a deformation mechanism map, in terms of layer thickness and temperature, is proposed from the results obtained in this investigation.« less

  6. Compression, bend, and tension studies on forged Al67Ti25Cr8 and Al66Ti25Mn(g) L1(2) compounds

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Brown, S. A.; Whittenberger, J. D.

    1991-01-01

    Cast, homogenized, and isothermally forged aluminum-rich L1(2) compounds Al67Ti25Cr8 and Al66Ti25Mn(g) were tested in compression as a function of temperature and as a function of strain rate at elevated temperatures (1000 K and 1100 K). Three-point bend specimens were tested as a function of temperature in the range 300 K to 873 K. Strain gages glued on the tensile side of the ambient and 473 K specimens enabled direct strain measurements. A number of 'buttonhead' tensile specimens were electro-discharge machined, fine polished, and tested between ambient and 1073 K for yield strength and ductility as a function of temperature. Scanning electron microscope (SEM) examination of fracture surfaces from both the bend and tensile specimens revealed a gradual transition from transgranular cleavage to intergranular failure with increasing temperature.

  7. Orthotropic elasto-plastic behavior of AS4/APC-2 thermoplastic composite in compression

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Rui, Y.

    1989-01-01

    Uniaxial compression tests were performed on off-axis coupon specimens of unidirectional AS4/APC-2 thermoplastic composite at various temperatures. The elasto-plastic and strength properties of AS4/APC-2 composite were characterized with respect to temperature variation by using a one-parameter orthotropic plasticity model and a one-parameter failure criterion. Experimental results show that the orthotropic plastic behavior can be characterized quite well using the plasticity model, and the matrix-dominant compressive strengths can be predicted very accurately by the one-parameter failure criterion.

  8. Long-term Isothermal Aging Effects on Weight Loss, Compression Properties, and Dimensions of T650-35 Fabric-reinforced PMR-15 Composites-data

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Tsuji, Luis; Kamvouris, John; Roberts, Gary D.

    2003-01-01

    A cooperative program was conducted with the General Electric Aircraft Engines plant in Evendale, Ohio, to study the effects of long-term isothermal aging at elevated temperatures on compression and thermal durability properties of T650 35 fabric-reinforced PMR 15 composites. This degradation study was conducted over an approximate time period of 3 1/2 yr. The aging temperatures were 204, 260, 288, 316, and 343 C. Specimens of different dimensions were evaluated. Specimens with ratios of the cut edge to total surface area of 0.03 to 0.89 were fabricated and aged. The aged and unaged specimens were tested in compression as specified in Test Method for Compressive Properties of Rigid Plastics (ASTM D695M). Thickness changes, degraded surface layer growth, weight loss, and failure modes were monitored and recorded. All property changes were thickness dependent.

  9. High-temperature slow-strain-rate compression studies on CoAl-TiB2 composites

    NASA Technical Reports Server (NTRS)

    Mannan, S. K.; Kumar, K. S.; Whittenberger, J. D.

    1990-01-01

    Results are presented of compressive deformation tests performed on particulate-reinforced CoAl-TiB2 composites in the temperature range 1100-1300 K. Hot-pressed and postdeformation microstructures were characterized by TEM and by optical microscopy. It was found that the addition of TiB2 particles improves the deformation resistance of the matrix, due to dislocation-particle interactions.

  10. O-Ring-Testing Fixture

    NASA Technical Reports Server (NTRS)

    Turner, James E.; Mccluney, D. Scott

    1991-01-01

    Fixture tests O-rings for sealing ability under dynamic conditions after extended periods of compression. Hydraulic cylinder moves plug in housing. Taper of 15 degrees on plug and cavity of housing ensures that gap created between O-ring under test and wall of cavity. Secondary O-rings above and below test ring maintain pressure applied to test ring. Evaluates effects of variety of parameters, including temperature, pressure, rate of pressurization, rate and magnitude of radial gap movement, and pretest compression time.

  11. Experimental and Numerical Study on the Deformation Mechanism in AZ31B Mg Alloy Sheets Under Pulsed Electric-Assisted Tensile and Compressive Tests

    NASA Astrophysics Data System (ADS)

    Lee, Jinwoo; Kim, Se-Jong; Lee, Myoung-Gyu; Song, Jung Han; Choi, Seogou; Han, Heung Nam; Kim, Daeyong

    2016-06-01

    The uniaxial tensile and compressive stress-strain responses of AZ31B magnesium alloy sheet under pulsed electric current are reported. Tension and compression tests with pulsed electric current showed that flow stresses dropped instantaneously when the electric pulses were applied. Thermo-mechanical-electrical finite element analyses were also performed to investigate the effects of Joule heating and electro-plasticity on the flow responses of AZ31B sheets under electric-pulsed tension and compression tests. The proposed finite element simulations could reproduce the measured uniaxial tensile and compressive stress-strain curves under pulsed electric currents, when the temperature-dependent flow stress hardening model and thermal properties of AZ31B sheet were properly described in the simulations. In particular, the simulation results that fit best with experimental results showed that almost 100 pct of the electric current was subject to transform into Joule heating during electrically assisted tensile and compressive tests.

  12. Effect of foaming temperature on the mechanical properties of produced closed-cell A356Aluminum foams with melting method

    NASA Astrophysics Data System (ADS)

    Movahedi, N.; Mirbagheri, S. M. H.; Hoseini, S. R.

    2014-07-01

    In this study an attempt was carried out to determine the effect of production temperature on the mechanical properties and energy absorption behavior of closed-cell A356 alloy foams under uniaxial compression test. For this purpose, three different A356 alloy closed-cell foams were synthesized at three different casting temperatures, 650 °C, 675 °C and 700 °C by adding the same amounts of granulated calcium as thickening and TiH2 as blowing agent. The samples were characterized by SEM to study the pore morphology at different foaming temperatures. Compression tests of the A356 foams were carried out to assess their mechanical properties and energy absorption behavior. The results indicated that increasing the foaming temperature from 650 °C to 675 °C and 700 °C reduces the relative density of closed cell A356 alloys by 18.3% and 38% respectively and consequently affects the compressive strength and energy absorption of cellular structures by changing them from equiaxed polyhedral closed cells to distorted cells. Also at 700 °C foaming temperature, growth of micro-pores and coalescence with other surrounding pores leads to several big voids.

  13. Design and fabrication of Rene 41 advanced structural panels. [their performance under axial compression, shear, and bending loads

    NASA Technical Reports Server (NTRS)

    Greene, B. E.; Northrup, R. F.

    1975-01-01

    The efficiency was investigated of curved elements in the design of lightweight structural panels under combined loads of axial compression, inplane shear, and bending. The application is described of technology generated in the initial aluminum program to the design and fabrication of Rene 41 panels for subsequent performance tests at elevated temperature. Optimum designs for two panel configurations are presented. The designs are applicable to hypersonic airplane wing structure, and are designed specifically for testing at elevated temperature in the hypersonic wing test structure located at the NASA Flight Research Center. Fabrication methods developed to produce the Rene panels are described, and test results of smaller structural element specimens are presented to verify the design and fabrication methods used. Predicted strengths of the panels under several proposed elevated temperature test load conditions are presented.

  14. Circumferential distortion modeling of the TF30-P-3 compression system

    NASA Technical Reports Server (NTRS)

    Mazzawy, R. S.; Banks, G. A.

    1977-01-01

    Circumferential inlet pressure and temperature distortion testing of the TF30 P-3 turbofan engine was conducted. The compressor system at the test conditions run was modelled according to a multiple segment parallel compressor model. Aspects of engine operation and distortion configuration modelled include the effects of compressor bleeds, relative pressure-temperature distortion alignment and circumferential distortion extent. Model predictions for limiting distortion amplitudes and flow distributions within the compression system were compared with test results in order to evaluate predicted trends. Relatively good agreement was obtained. The model also identified the low pressure compressor as the stall-initiating component, which was in agreement with the data.

  15. A Study on the Mechanical Properties and Impact-Induced Initiation Characteristics of Brittle PTFE/Al/W Reactive Materials.

    PubMed

    Ge, Chao; Maimaitituersun, Wubuliaisan; Dong, Yongxiang; Tian, Chao

    2017-04-26

    Polytetrafluoroethylene/aluminum/tungsten (PTFE/Al/W) reactive materials of three different component mass ratios (73.5/26.5/0, 68.8/24.2/7 and 63.6/22.4/14) were studied in this research. Different from the PTFE/Al/W composites published elsewhere, the materials in our research were fabricated under a much lower sintering temperature and for a much shorter duration to achieve a brittle property, which aims to provide more sufficient energy release upon impact. Quasi-static compression tests, dynamic compression tests at room and elevated temperatures, and drop weight tests were conducted to evaluate the mechanical and impact-induced initiation characteristics of the materials. The materials before and after compression tests were observed by a scanning electron microscope to relate the mesoscale structural characteristics to their macro properties. All the three types of materials fail at very low strains during both quasi-static and dynamic compression. The stress-strain curves for quasi-static tests show obvious deviations while that for the dynamic tests consist of only linear-elastic and failure stages typically. The materials were also found to exhibit thermal softening at elevated temperatures and were strain-rate sensitive during dynamic tests, which were compared using dynamic increase factors (DIFs). Drop-weight test results show that the impact-initiation sensitivity increases with the increase of W content due to the brittle mechanical property. The high-speed video sequences and recovered sample residues of the drop-weight tests show that the reaction is initiated at two opposite positions near the edges of the samples, where the shear force concentrates the most intensively, indicating a shear-induced initiation mechanism.

  16. A Study on the Mechanical Properties and Impact-Induced Initiation Characteristics of Brittle PTFE/Al/W Reactive Materials

    PubMed Central

    Ge, Chao; Maimaitituersun, Wubuliaisan; Dong, Yongxiang; Tian, Chao

    2017-01-01

    Polytetrafluoroethylene/aluminum/tungsten (PTFE/Al/W) reactive materials of three different component mass ratios (73.5/26.5/0, 68.8/24.2/7 and 63.6/22.4/14) were studied in this research. Different from the PTFE/Al/W composites published elsewhere, the materials in our research were fabricated under a much lower sintering temperature and for a much shorter duration to achieve a brittle property, which aims to provide more sufficient energy release upon impact. Quasi-static compression tests, dynamic compression tests at room and elevated temperatures, and drop weight tests were conducted to evaluate the mechanical and impact-induced initiation characteristics of the materials. The materials before and after compression tests were observed by a scanning electron microscope to relate the mesoscale structural characteristics to their macro properties. All the three types of materials fail at very low strains during both quasi-static and dynamic compression. The stress-strain curves for quasi-static tests show obvious deviations while that for the dynamic tests consist of only linear-elastic and failure stages typically. The materials were also found to exhibit thermal softening at elevated temperatures and were strain-rate sensitive during dynamic tests, which were compared using dynamic increase factors (DIFs). Drop-weight test results show that the impact-initiation sensitivity increases with the increase of W content due to the brittle mechanical property. The high-speed video sequences and recovered sample residues of the drop-weight tests show that the reaction is initiated at two opposite positions near the edges of the samples, where the shear force concentrates the most intensively, indicating a shear-induced initiation mechanism. PMID:28772812

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Bo; Nelson, Kevin; Jin, Helena

    Iridium alloys have been utilized as structural materials for certain high-temperature applications, due to their superior strength and ductility at elevated temperatures. The mechanical properties, including failure response at high strain rates and elevated temperatures of the iridium alloys need to be characterized to better understand high-speed impacts at elevated temperatures. A DOP-26 iridium alloy has been dynamically characterized in compression at elevated temperatures with high-temperature Kolsky compression bar techniques. However, the dynamic high-temperature compression tests were not able to provide sufficient dynamic high-temperature failure information of the iridium alloy. In this study, we modified current room-temperature Kolsky tension barmore » techniques for obtaining dynamic tensile stress-strain curves of the DOP-26 iridium alloy at two different strain rates (~1000 and ~3000 s-1) and temperatures (~750°C and ~1030°C). The effects of strain rate and temperature on the tensile stress-strain response of the iridium alloy were determined. The DOP-26 iridium alloy exhibited high ductility in stress-strain response that strongly depended on both strain rate and temperature.« less

  18. Evaluation of High Temperature Knitted Spring Tubes for Structural Seal Applications

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn C.; DeMange, Jeffrey J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2004-01-01

    Control surface seals are crucial to current and future space vehicles, as they are used to seal the gaps surrounding body flaps, elevons, and other actuated exterior surfaces. During reentry, leakage of high temperature gases through these gaps could damage underlying lower temperature structures such as rudder drive motors and mechanical actuators, resulting in impaired vehicle control. To be effective, control surface seals must shield lower temperature structures from heat transfer by maintaining sufficient resiliency to remain in contact with opposing sealing surfaces through multiple compression cycles. The current seal exhibits significant loss of resiliency after a few compression cycles at elevated temperatures (i.e., 1900 F) and therefore would be inadequate for advanced space vehicles. This seal utilizes a knitted Inconel X-750 spring tube as its primary resilient element. As part of a larger effort to enhance seal resiliency, researchers at the NASA Glenn Research Center performed high temperature compression testing (up to 2000 F) on candidate spring tube designs employing material substitutions and modified geometries. These tests demonstrated significant improvements in spring tube resiliency (5.5x better at 1750 F) through direct substitution of heat treated Rene 41 alloy in the baseline knit design. The impact of geometry modification was minor within the range of parameters tested, however trends did suggest that moderate resiliency improvements could be obtained by optimizing the current spring tube geometry.

  19. Effect of freezing temperature in thermally induced phase separation method in hydroxyapatite/chitosan-based bone scaffold biomaterial

    NASA Astrophysics Data System (ADS)

    Albab, Muh Fadhil; Yuwono, Akhmad Herman; Sofyan, Nofrijon; Ramahdita, Ghiska

    2017-02-01

    In the current study, hydroxyapatite (HA)/chitosan-based bone scaffold has been fabricated using Thermally Induced Phase Separation (TIPS) method under freezing temperature variation of -20, -30, -40 and -80 °C. The samples with weight percent ratio of 70% HA and 30% chitosan were homogeneously mixed and subsequently dissolved in 2% acetic acid. The synthesized samples were further characterized using Fourier transform infrared (FTIR), compressive test and scanning electron microscope (SEM). The investigation results showed that low freezing temperature reduced the pore size and increased the compressive strength of the scaffold. In the freezing temperature of -20 °C, the pore size was 133.93 µm with the compressive strength of 5.9 KPa, while for -80 °C, the pore size declined to 60.55 µm with the compressive strength 29.8 KPa. Considering the obtained characteristics, HA/chitosan obtained in this work has potential to be applied as a bone scaffold.

  20. Experimental investigation of graphite/polyimide sandwich panels in edgewise compression

    NASA Technical Reports Server (NTRS)

    Camarda, C. J.

    1980-01-01

    The local and general buckling behavior of graphite/polyimide sandwich panels simply supported along all four edges and loaded in uniaxial edgewise compression was investigated. Material properties of adhesive and facings were determined from flatwise tension and sandwich beam flexure tests. Tensile and compressive material properties of the facings were determined at 116, R.T., and 589 K (-250, R.T., and 600 F) using the sandwich beam flexure test method. Results indicate that Gr/PI is a usable structural material for short term use at temperatures as high as 589 K (600 F). Buckling specimens were 30.5 X 33.0 cm (12 x 13 in.), had quasi-isotropic symmetric facings and a glass/polyimide honeycomb core. Core thicknesses varied and three panels of each thickness were tested in edgewise compression at room temperature to investigate failure modes and corresponding buckling formulas. Specimens 0.635 cm (0.25 in.) thick failed by overall buckling at loads close to the analytically predicted buckling load; all other panels failed by face wrinkling. Results of the winkling tests indicate that several buckling formulas were unconservative and therefore not suitable for design purposes; recommended wrinkling equations are presented.

  1. The Effect of Piston-Head Temperature on Knock-Limited Power

    NASA Technical Reports Server (NTRS)

    Imming, Harry S.

    1944-01-01

    To determine the effect of piston-head temperature on knock-limited power. Tests were made in a supercharged CFR engine over a range of fuel-air ratios from 0.055 to 0.120, using S-3 reference fuel, AN-F-28, Amendment-2, aviation gasoline, and AN-F-28 plus 2 percent xylidines by weight. Tests were run at a compression ratio of 7.0 with inlet-air temperatures of 150 F and 250 F and at a compression ratio of 8.0 with an inlet-air temperature of 250 F. All other engine conditions were held constant. The piston-head temperature was varied by circulation of oil through passages in the crown of a liquid-cooled piston. This method of piston cooling decreased the piston-head temperature about 80 F. The data are not intended to constitute a recommendation as to the advisability of piston cooling in practice.

  2. Structural characteristics and elevated temperature mechanical properties of AJ62 Mg alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubásek, J., E-mail: Jiri.Kubasek@vscht.cz; Vojtěch, D.; Martínek, M.

    2013-12-15

    Structure and mechanical properties of the novel casting AJ62 (Mg–6Al–2Sr) alloy developed for elevated temperature applications were studied. The AJ62 alloy was compared to commercial casting AZ91 (Mg–9Al–1Zn) and WE43 (Mg–4Y–3RE) alloys. The structure was examined by scanning electron microscopy, x-ray diffraction and energy dispersive spectrometry. Mechanical properties were characterized by Viskers hardness measurements in the as-cast state and after a long-term heat treatment at 250 °C/150 hours. Compressive mechanical tests were also carried out both at room and elevated temperatures. Compressive creep tests were conducted at a temperature of 250 °C and compressive stresses of 60, 100 and 140more » MPa. The structure of the AJ62 alloy consisted of primary α-Mg dendrites and interdendritic nework of the Al{sub 4}Sr and massive Al{sub 3}Mg{sub 13}Sr phases. By increasing the cooling rate during solidification from 10 and 120 K/s the average dendrite arm thickness decreased from 18 to 5 μm and the total volume fraction of the interdendritic phases from 20% to 30%. Both factors slightly increased hardness and compressive strength. The room temperature compressive strength and hardness of the alloy solidified at 30 K/s were 298 MPa and 50 HV 5, i.e. similar to those of the as-cast WE43 alloy and lower than those of the AZ91 alloy. At 250 °C the compressive strength of the AJ62 alloy decreased by 50 MPa, whereas those of the AZ91 and WE43 alloys by 100 and 20 MPa, respectively. The creep rate of the AJ62 alloy was higher than that of the WE43 alloy, but significantly lower in comparison with the AZ91 alloy. Different thermal stabilities of the alloys were discussed and related to structural changes during elevated temperature expositions. - Highlights: • Small effect of cooling rate on the compressive strength and hardness of AJ 62 • A bit lower compressive strength of AJ 62 compared to AZ91 at room temperature • Higher resistance of the AJ 62 alloy to the creep process in compression compared to AZ91 • Excellent thermal stability and creep resistance of the alloy WE 43 • Improved thermal stability and creep resistance in order WE43 > AJ62 >> AZ91.« less

  3. Influence of High Temperature Treatment on Mechanical Behavior of a Coarse-grained Marble

    NASA Astrophysics Data System (ADS)

    Rong, G.; Peng, J.; Jiang, M.

    2017-12-01

    High temperature has a significant influence on the physical and mechanical behavior of rocks. With increasing geotechnical engineering structures concerning with high temperature problems such as boreholes for oil or gas production, underground caverns for storage of radioactive waste, and deep wells for injection of carbon dioxides, etc., it is important to study the influence of temperature on the physical and mechanical properties of rocks. This paper experimentally investigates the triaxial compressive properties of a coarse-grained marble after exposure to different high temperatures. The rock specimens were first heated to a predetermined temperature (200, 400, and 600 oC) and then cooled down to room temperature. Triaxial compression tests on these heat-treated specimens subjected to different confining pressures (i.e., 0, 5, 10, 15, 20, 25, 30, 35, and 40 MPa) were then conducted. Triaxial compression tests on rock specimens with no heat treatment were also conducted for comparison. The results show that the high temperature treatment has a significant influence on the microstructure, porosity, P-wave velocity, stress-strain relation, strength and deformation parameters, and failure mode of the tested rock. As the treatment temperature gradually increases, the porosity slightly increases and the P-wave velocity dramatically decreases. Microscopic observation on thin sections reveals that many micro-cracks will be generated inside the rock specimen after high temperature treatment. The rock strength and Young's modulus show a decreasing trend with increase of the treatment temperature. The ductility of the rock is generally enhanced as the treatment temperature increases. In general, the high temperature treatment weakens the performance of the tested rock. Finally, a degradation parameter is defined and a strength degradation model is proposed to characterize the strength behavior of heat-treated rocks. The results in this study provide useful data for evaluation of rock properties in high temperature condition.

  4. Compressive and flexural strength of expanded perlite aggregate mortar subjected to high temperatures

    NASA Astrophysics Data System (ADS)

    Zulkifeli, Muhamad Faqrul Hisham bin Mohd; Saman@Hj Mohamed, Hamidah binti Mohd

    2017-08-01

    Work on thermal resistant of outer structures of buildings is one of the solution to reduce death, damages and properties loss in fire cases. Structures protected with thermal resistant materials can delay or avoid failure and collapse during fire. Hence, establishment of skin cladding with advance materials to protect the structure of buildings is a necessary action. Expanded perlite is a good insulation material which can be used as aggregate replacement in mortar. This study is to study on mortar mechanical properties of flexural and compressive strength subjected to elevated temperatures using expanded perlite aggregate (EPA). This study involved experimental work which was developing mortar with sand replacement by volume of 0%, 10%, 20%, 30% and 40% of EPA and cured for 56 days. The mortars then exposed to 200°C, 400 °C, 700 °C and 1000 °C. Flexural and compressive strength of the mortar were tested. The tests showed that there were increased of flexural and compressive strength at 200°C, and constantly decreased when subjected to 400°C, 700°C and 1000 °C. There were also variation of strengths at different percentages of EPA replacement. Highest compressive strength and flexural strength recorded were both at 200 °C with 65.52 MPa and 21.34 MPa respectively. The study conclude that by using EPA as aggregate replacement was ineffective below elevated temperatures but increased the performance of the mortar at elevated temperatures.

  5. Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers

    PubMed Central

    Yao, Bibo; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu

    2016-01-01

    Powder metallurgy (P/M) technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred. PMID:28773285

  6. Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers.

    PubMed

    Yao, Bibo; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu

    2016-03-04

    Powder metallurgy (P/M) technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred.

  7. Sign reversal of transformation entropy change in Co{sub 2}Cr(Ga,Si) shape memory alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiao, E-mail: xu@material.tohoku.ac.jp; Omori, Toshihiro; Kainuma, Ryosuke

    2015-11-02

    In situ X-ray diffraction (XRD) measurements and compression tests were performed on Co{sub 2}Cr(Ga,Si) shape memory alloys. The reentrant martensitic transformation behavior was directly observed during the in situ XRD measurements. The high-temperature parent phase and low-temperature reentrant parent phase were found to have a continuous temperature dependence of lattice parameter, therefore suggesting that they are the same phase in nature. Moreover, compression tests were performed on a parent-phase single crystal sample; an evolution from normal to inverse temperature dependence of critical stress for martensitic transformation was directly observed. Based on the Clausius-Clapeyron analysis, a sign reversal of entropy changemore » can be expected on the same alloy.« less

  8. Isothermal Fatigue, Damage Accumulation, and Life Prediction of a Woven PMC

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.

    1998-01-01

    This dissertation focuses on the characterization of the fully reversed fatigue behavior exhibited by a carbon fiber/polyimide resin, woven laminate at room and elevated temperatures. Nondestructive video edge view microscopy and destructive sectioning techniques were used to study the microscopic damage mechanisms that evolved. The residual elastic stiffness was monitored and recorded throughout the fatigue life of the coupon. In addition, residual compressive strength tests were conducted on fatigue coupons with various degrees of damage as quantified by stiffness reduction. Experimental results indicated that the monotonic tensile properties were only minimally influenced by temperature, while the monotonic compressive and fully reversed fatigue properties displayed noticeable reductions due to the elevated temperature. The stiffness degradation, as a function of cycles, consisted of three stages; a short-lived high degradation period, a constant degradation rate segment composing the majority of the life, and a final stage demonstrating an increasing rate of degradation up to failure. Concerning the residual compressive strength tests at room and elevated temperatures, the elevated temperature coupons appeared much more sensitive to damage. At elevated temperatures, coupons experienced a much larger loss in compressive strength when compared to room temperature coupons with equivalent damage. The fatigue damage accumulation law proposed for the model incorporates a scalar representation for damage, but admits a multiaxial, anisotropic evolutionary law. The model predicts the current damage (as quantified by residual stiffness) and remnant life of a composite that has undergone a known load at temperature. The damage/life model is dependent on the applied multiaxial stress state as well as temperature. Comparisons between the model and data showed good predictive capabilities concerning stiffness degradation and cycles to failure.

  9. Shear compression testing of glass-fibre steel specimens after 4K reactor irradiation: Present status and facility upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerstenberg, H.; Kraehling, E.; Katheder, H.

    1997-06-01

    The shear strengths of various fibre reinforced resins being promising candidate insulators for superconducting coils to be used tinder a strong radiation load, e.g. in future fusion reactors were investigated prior and subsequent to reactor in-core irradiation at liquid helium temperature. A large number of sandwich-like (steel-bonded insulation-steel) specimens representing a widespread variety of materials and preparation techniques was exposed to irradiation doses of up to 5 x 10{sup 7} Gy in form of fast neutrons and {gamma}-radiation. In a systematic study several experimental parameters including irradiation dose, postirradiation storage temperature and measuring temperature were varied before the determination ofmore » the ultimate shear strength. The results obtained from the different tested materials are compared. In addition an upgrade of the in-situ test rig installed at the Munich research reactor is presented, which allows combined shear/compression loading of low temperature irradiated specimens and provides a doubling of the testing rate.« less

  10. MHD simulation of plasma compression experiments

    NASA Astrophysics Data System (ADS)

    Reynolds, Meritt; Barsky, Sandra; de Vietien, Peter

    2017-10-01

    General Fusion (GF) is working to build a magnetized target fusion (MTF) power plant based on compression of magnetically-confined plasma by liquid metal. GF is testing this compression concept by collapsing solid aluminum liners onto plasmas formed by coaxial helicity injection in a series of experiments called PCS (Plasma Compression, Small). We simulate the PCS experiments using the finite-volume MHD code VAC. The single-fluid plasma model includes temperature-dependent resistivity and anisotropic heat transport. The time-dependent curvilinear mesh for MHD simulation is derived from LS-DYNA simulations of actual field tests of liner implosion. We will discuss how 3D simulations reproduced instability observed in the PCS13 experiment and correctly predicted stabilization of PCS14 by ramping the shaft current during compression. We will also present a comparison of simulated Mirnov and x-ray diagnostics with experimental measurements indicating that PCS14 compressed well to a linear compression ratio of 2.5:1.

  11. Longitudinal compressive behaviour of 3D braided composite under various temperatures and strain rates

    NASA Astrophysics Data System (ADS)

    Pan, Zhongxiang; Gu, Bohong; Sun, Baozhong

    2015-03-01

    This paper reports the longitudinal compressive behaviour of 3D braided basalt fibre tows/epoxy composite materials under strain-rate range of 1,200-2,400 s-1 and temperature range of 23-210 °C both in experimental and finite element analyses (FEA). A split Hopkinson pressure bar system with a heating device was designed to test the longitudinal compressive behaviour of 3D braided composite materials. Testing results indicate that longitudinal compression modulus, specific energy absorption and peak stress decreased with elevated temperatures, whereas the failure strain increased with elevated temperatures. At some temperatures above the T g of epoxy resin, such as at 120 and 150 °C, strain distributions and deformations in fibre tows and epoxy resin tended to be the same. It results in relatively slighter damage status of the 3D braided composite material. The FEA results reveal that heating of the material due to the dissipative energy of the inelastic deformation and damage processes generated in resin is more than that in fibre tows. The braiding structure has a significant influence on thermomechanical failure via two aspects: distribution and accumulation of the heating leads to the development of the shear band paths along braiding angle; the buckling inflection segment rather than the straight segment generates the maximum of the heating in each fibre tows. The damage occurs at the early stage when the temperature is below T g, while at the temperature above T g, damage stage occurs at the rear of plastic deformation.

  12. Integrated Testing of a Carbon Dioxide Removal Assembly and a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization

    NASA Technical Reports Server (NTRS)

    Knox, J. C.; Mulloth, Lila; Frederick, Kenneth; Affleck, Dave

    2003-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The carbon dioxide removal assembly (CDRA) of ISS currently operates in an open loop mode without a compressor. This paper describes the integrated test results of a flight-like CDRA and a temperature-swing adsorption compressor (TSAC) for carbon dioxide removal and compression. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of CDRA.

  13. Strengthening of oxidation resistant materials for gas turbine applications

    NASA Technical Reports Server (NTRS)

    Platts, D. R.; Kirchner, H. P.; Gruver, R. M.

    1972-01-01

    Compressive surface layers were formed on hot-pressed silicon carbide and nitride. The objective of these treatments was to improve the impact resistance of these materials at 1590 K (2400 F). Quenching was used to form compressive surface layers on silicon carbide. The presence of the compressive stresses was demonstrated by slotted rod tests. Compressive stresses were retained at elevated temperatures. Improvements in impact resistance at 1590 K (2400 F) and flexural strength at room temperature were achieved using cylindrical rods 3.3 mm (0.13 in.) in diameter. Carburizing treatments were used to form the surface layers on silicon nitride. In a few cases using rectangular bars improvements in impact resistance at 1590 K (2400 F) were observed.

  14. Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H

    1937-01-01

    Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.

  15. Bending cyclic load test for crystalline silicon photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Suzuki, Soh; Doi, Takuya; Masuda, Atsushi; Tanahashi, Tadanori

    2018-02-01

    The failures induced by thermomechanical fatigue within crystalline silicon photovoltaic modules are a common issue that can occur in any climate. In order to understand these failures, we confirmed the effects of compressive or tensile stresses (which were cyclically loaded on photovoltaic cells and cell interconnect ribbons) at subzero, moderate, and high temperatures. We found that cell cracks were induced predominantly at low temperatures, irrespective of the compression or tension applied to the cells, although the orientation of cell cracks was dependent on the stress applied. The fracture of cell interconnect ribbons was caused by cyclical compressive stress at moderate and high temperatures, and this failure was promoted by the elevation of temperature. On the basis of these results, the causes of these failures are comprehensively discussed in relation to the viscoelasticity of the encapsulant.

  16. Temperature Evolution During Plane Strain Compression Of Tertiary Oxide Scale On Steel

    NASA Astrophysics Data System (ADS)

    Suarez, L.; Vanden Eynde, X.; Lamberigts, M.; Houbaert, Y.

    2007-04-01

    An oxide scale layer always forms at the steel surface during hot rolling. This scale layer separates the work roll from the metal substrate. Understanding the deformation behaviour and mechanical properties of the scale is of great interest because it affects the frictional conditions during hot rolling and the heat-transfer behaviour at the strip-roll interface. A thin wustite scale layer (<20 μm) was created under controlled conditions in an original laboratory device adequately positioned in a compression testing machine to investigate plane strain compression. Oxidation tests were performed on an ULC steel grade. After the oxide growth at 1050°C, plane strain compression (PSC) was performed immediately to simulate the hot rolling process. PSC experiments were performed at a deformation temperature of 1050°C, with reduction ratios from 5 to 70%, and strain rates of 10s-1 under controlled gas atmospheres. Results show that for wustite, ductility is obvious at 1050°C. Even after deformation oxide layers exhibit good adhesion to the substrate and homogeneity over the thickness. The tool/sample temperature difference seems to be the reason for the unexpected ductile behaviour of the scale layer.

  17. Understanding High Rate Behavior Through Low Rate Analog

    DTIC Science & Technology

    2014-04-28

    uni- axial compression over all rates tested at 20 °C; (b) True yield stress as a function of strain rate...of temperature. (a) (b) Figure 11. Representative behaviour of PPVC-2. (a) True stress-true strain response in uni- axial compression over all...pages 33 of 78 (a) (b) Figure 15. Representative behaviour of PPVC-6. (a) True stress-true strain response in uni- axial compression

  18. Impact of High Temperature Creep on the Buckling of Axially Compressed Steel Members

    NASA Astrophysics Data System (ADS)

    Włóka, Agata; Pawłowski, Kamil; Świerzko, Robert

    2017-10-01

    The paper presents results of the laboratory tests of the impact of creep on the buckling of axially compressed steel members at elevated temperatures. Tests were conducted on samples prepared of normal strength steel (S235JR) and high strength steel (S355J2). Samples were made in the form of a prismatic bar of a rectangular cross section 12 x 30 mm and a length of 500 mm. Support type of the specimens during tests was hinged on both ends. The tests were done at 600, 700 and 800°C. Experiments were carried out at static loads corresponding to values 0,8Ncr,T, 0,9Ncr,T, 1,0Ngr,T, where Ncr,T was theoretical value of Euler’s critical load at given temperature. Short-term creep analyses were performed in the universal testing machine Instron/Satec KN 600 equipped with a furnace for high-temperature testing type SF-16 2230, that enables testing at temperatures up to 1200°C. Temperature of the sample placed inside the furnace was verified and recorded with use of the compactRIO cRIO-9076 controller, equipped with a module for the connection of NI 9211 and K-type thermocouples. The system for the measurement and recording of the temperature of the analysed samples operated in the LabVIEW software environment. To measure lateral and longitudinal displacements LVTD Solatron ACR 100 displacement transducer was used. During the tests, the samples were heated to the given temperature (600, 700 or 800°C) and then subjected to a constant compressive load. During each test, for each sample following data was registered: the temperature on the surface of samples, longitudinal and lateral displacements in the middle of the sample. Basing on the conducted tests it was noted, for both analysed steel types, at the temperature of 800°C, growth of lateral displacements due to creep was very rapid, and tested elements were losing bearing capacity over the period of tens to hundreds of seconds, depending on stress level and the grade of the steel. At a temperature of 700°C growth of lateral displacements was much slower and the total loss of the bearing capacity of tested samples has occurred after 2 to 5 hours. At the temperature of 600°C samples did not show significant increments of lateral displacements at the test duration more than 6 hours, while maintaining throughout the test rectilinear form.

  19. An experimental platform for triaxial high-pressure/high-temperature testing of rocks using computed tomography

    NASA Astrophysics Data System (ADS)

    Glatz, Guenther; Lapene, Alexandre; Castanier, Louis M.; Kovscek, Anthony R.

    2018-04-01

    A conventional high-pressure/high-temperature experimental apparatus for combined geomechanical and flow-through testing of rocks is not X-ray compatible. Additionally, current X-ray transparent systems for computed tomography (CT) of cm-sized samples are limited to design temperatures below 180 °C. We describe a novel, high-temperature (>400 °C), high-pressure (>2000 psi/>13.8 MPa confining, >10 000 psi/>68.9 MPa vertical load) triaxial core holder suitable for X-ray CT scanning. The new triaxial system permits time-lapse imaging to capture the role of effective stress on fluid distribution and porous medium mechanics. System capabilities are demonstrated using ultimate compressive strength (UCS) tests of Castlegate sandstone. In this case, flooding the porous medium with a radio-opaque gas such as krypton before and after the UCS test improves the discrimination of rock features such as fractures. The results of high-temperature tests are also presented. A Uintah Basin sample of immature oil shale is heated from room temperature to 459 °C under uniaxial compression. The sample contains kerogen that pyrolyzes as temperature rises, releasing hydrocarbons. Imaging reveals the formation of stress bands as well as the evolution and connectivity of the fracture network within the sample as a function of time.

  20. An experimental platform for triaxial high-pressure/high-temperature testing of rocks using computed tomography.

    PubMed

    Glatz, Guenther; Lapene, Alexandre; Castanier, Louis M; Kovscek, Anthony R

    2018-04-01

    A conventional high-pressure/high-temperature experimental apparatus for combined geomechanical and flow-through testing of rocks is not X-ray compatible. Additionally, current X-ray transparent systems for computed tomography (CT) of cm-sized samples are limited to design temperatures below 180 °C. We describe a novel, high-temperature (>400 °C), high-pressure (>2000 psi/>13.8 MPa confining, >10 000 psi/>68.9 MPa vertical load) triaxial core holder suitable for X-ray CT scanning. The new triaxial system permits time-lapse imaging to capture the role of effective stress on fluid distribution and porous medium mechanics. System capabilities are demonstrated using ultimate compressive strength (UCS) tests of Castlegate sandstone. In this case, flooding the porous medium with a radio-opaque gas such as krypton before and after the UCS test improves the discrimination of rock features such as fractures. The results of high-temperature tests are also presented. A Uintah Basin sample of immature oil shale is heated from room temperature to 459 °C under uniaxial compression. The sample contains kerogen that pyrolyzes as temperature rises, releasing hydrocarbons. Imaging reveals the formation of stress bands as well as the evolution and connectivity of the fracture network within the sample as a function of time.

  1. Mechanical Behavior and Microstructure Evolution of Bearing Steel 52100 During Warm Compression

    NASA Astrophysics Data System (ADS)

    Huo, Yuanming; He, Tao; Chen, Shoushuang; Wu, Riming

    2018-05-01

    High-performance bearing steel requires a fine and homogeneous structure of carbide particles. Direct deformation spheroidizing of bearing steel in a dual-phase zone can contribute to achieving this important structure. In this work, warm compression testing of 52100 bearing steel was performed at temperatures in the range of 650-850°C and at strain rates of 0.1-10.0 s-1. The effect of deformation temperatures on mechanical behavior and microstructure evolution was investigated to determine the warm deformation temperature window. The effect of deformation rates on microstructure evolution and metal flow softening behavior of the warm compression was analyzed and discussed. Experimental results showed that the temperature range from 750°C to 800°C should be regarded as the critical range separating warm and hot deformation. Warm deformation at temperatures in the range of 650-750°C promoted carbide spheroidization, and this was determined to be the warm deformation temperature window. Metal flow softening during the warm deformation was caused by carbide spheroidization.

  2. Development of procedures for calculating stiffness and damping properties of elastomers. Part 3: The effects of temperature, dissipation level and geometry

    NASA Technical Reports Server (NTRS)

    Smalley, A. J.; Tessarzik, J. M.

    1975-01-01

    Effects of temperature, dissipation level and geometry on the dynamic behavior of elastomer elements were investigated. Force displacement relationships in elastomer elements and the effects of frequency, geometry and temperature upon these relationships are reviewed. Based on this review, methods of reducing stiffness and damping data for shear and compression test elements to material properties (storage and loss moduli) and empirical geometric factors are developed and tested using previously generated experimental data. A prediction method which accounts for large amplitudes of deformation is developed on the assumption that their effect is to increase temperature through the elastomers, thereby modifying the local material properties. Various simple methods of predicting the radial stiffness of ring cartridge elements are developed and compared. Material properties were determined from the shear specimen tests as a function of frequency and temperature. Using these material properties, numerical predictions of stiffness and damping for cartridge and compression specimens were made and compared with corresponding measurements at different temperatures, with encouraging results.

  3. High temperature tensile behavior and microstructure of Al-SiC nanocomposite fabricated by mechanical milling and hot extrusion technique

    NASA Astrophysics Data System (ADS)

    Soltani, Mohammadreza; Atrian, Amir

    2018-02-01

    This paper investigates the high-temperature tensile behavior of Al-SiC nanocomposite reinforced with 0, 1.5, and 3 vol% SiC nano particles. To fabricate the samples, SiC nano reinforcements and aluminum (Al) powders were milled using an attritor milling and then were cold pressed and hot extruded at 500 °C. Afterward, mechanical and microstructural characteristics were studied in different temperatures. To this end, tensile and compressive tests, micro-hardness test, microscopic examinations, and XRD analysis were performed. The results showed significant improvement of mechanical properties of Al-SiC nanocomposite in room temperature including 40% of ultimate tensile strength (UTS), 36% of ultimate compressive strength (UCS), and 44% of micro-hardness. Moreover, performing tensile tests at elevated temperatures (up to 270 °C) decreased the tensile strength by about 53%, 46%, and 45% for Al-0 vol% SiC, Al-1.5 vol% SiC, and Al-3 vol% SiC, respectively. This temperature rise also enhanced the elongation by about 11% and 133% for non-reinforced Al and Al-3 vol% SiC, respectively.

  4. Creep-fatigue of low cobalt superalloys

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1982-01-01

    Testing for the low cycle fatigue and creep fatigue resistance of superalloys containing reduced amounts of cobalt is described. The test matrix employed involves a single high temperature appropriate for each alloy. A single total strain range, again appropriate to each alloy, is used in conducting strain controlled, low cycle, creep fatigue tests. The total strain range is based upon the level of straining that results in about 10,000 cycles to failure in a high frequency (0.5 Hz) continuous strain-cycling fatigue test. No creep is expected to occur in such a test. To bracket the influence of creep on the cyclic strain resistance, strain hold time tests with ore minute hold periods are introduced. One test per composition is conducted with the hold period in tension only, one in compression only, and one in both tension and compression. The test temperatures, alloys, and their cobalt compositions that are under study are given.

  5. The Mechanical Performance of Subscale Candidate Elastomer Docking Seals

    NASA Technical Reports Server (NTRS)

    Bastrzyk, Marta B.; Daniels, Christopher C.

    2010-01-01

    The National Aeronautics and Space Administration is developing a Low Impact Docking System (LIDS) for future exploration missions. The mechanism is a new state-of-the-art device for in-space assembly of structures and rendezvous of vehicles. At the interface between two pressurized modules, each with a version of the LIDS attached, a composite elastomer-metal seal assembly prevents the breathable air from escaping into the vacuum of space. Attached to the active LIDS, this seal mates against the passive LIDS during docking operation. The main interface seal assembly must exhibit low leak and outgas values, must be able to withstand various harsh space environments, must remain operational over a range of temperatures from -50 C to 75 C, and perform after numerous docking cycles. This paper presents results from a comprehensive study of the mechanical performance of four candidate subscale seal assembly designs at -50, 23, 50, and 75 C test temperatures. In particular, the force required to fully compress the seal during docking, and that which is required for separation during the undocking operation were measured. The height of subscale main interface seal bulbs, as well as the test temperature, were shown to have a significant effect on the forces the main interface seal of the LIDS may experience during docking and undocking operations. The average force values required to fully compress each of the seal assemblies were shown to increase with test temperature by approximately 50% from -50 to 75 C. Also, the required compression forces were shown to increase as the height of the seal bulb was increased. The seal design with the tallest elastomer seal bulb, which was 31% taller than that with the shortest bulb, required force values approximately 45% higher than those for the shortest bulb, independent of the test temperature. The force required to separate the seal was shown to increase with decreasing temperature after 15 hours of simulated docking. No adhesion force was observed at 75 C, while magnitudes of up to 235 lbf were recorded at the refrigerated temperature. In addition, the adhesion force was observed to increase with bulb height. When compared with the LIDS program requirements, the measured compression force values were found to be below the maximum allowable load allotted to the main interface seal. However, the measured adhesion force values at the refrigerated test temperature were found to exceed the program limits.

  6. Program for the development of high temperature electrical materials and components

    NASA Technical Reports Server (NTRS)

    Neff, W. S.; Lowry, L. R.

    1972-01-01

    Evaluation of high temperature, space-vacuum performance of selected electrical materials and components, high temperature capacitor development, and evaluation, construction, and endurance testing of compression sealed pyrolytic boron nitride slot insulation are described. The first subject above covered the aging evaluation of electrical devices constructed from selected electrical materials. Individual materials performances were also evaluated and reported. The second subject included study of methods of improving electrical performance of pyrolytic boron nitride capacitors. The third portion was conducted to evaluate the thermal and electrical performance of pyrolytic boron nitride as stator slot liner material under varied temperature and compressive loading. Conclusions and recommendations are presented.

  7. Test method development for structural characterization of fiber composites at high temperatures

    NASA Technical Reports Server (NTRS)

    Mandell, J. F.; Grande, D. H.; Edwards, B.

    1985-01-01

    Test methods used for structural characterization of polymer matrix composites can be applied to glass and ceramic matrix composites only at low temperatures. New test methods are required for tensile, compressive, and shear properties of fiber composites at high temperatures. A tensile test which should be useful to at least 1000 C has been developed and used to characterize the properties of a Nicalon/glass composite up to the matrix limiting temperature of 600 C. Longitudinal and transverse unidirectional composite data are presented and discussed.

  8. Mechanical properties of metal-ceramic nanolaminates: Effect of constraint and temperature

    DOE PAGES

    Yang, Ling Wei; Mayer, Carl; Li, Nan; ...

    2017-09-21

    Al/SiC nanolaminates with equal nominal thicknesses of the Al and SiC layers (10, 25, 50 and 100 nm) were manufactured by magnetron sputtering. The mechanical properties were measured at 25 °C and 100 °C by means of nanoindentation and micropillar compression tests and the deformation mechanisms were analyzed by in situ micropillar compression tests in the transmission electron microscope. In addition, finite element simulations of both tests were carried out to ascertain the role played by the strength of the Al layers and by the elastic constraint of the ceramic layers on the plastic flow of Al in the mechanicalmore » response. It was found that the mechanical response was mainly controlled by the constraint during nanoindentation or micropillar compression tests of very thin layered (≈10 nm) laminates, while the influence of the strength of Al layers was not as critical. This behavior was reversed, however, for thick layered laminates (100 nm). Here, these mechanisms point to the different effects of layer thickness during nanoindentation and micropillar compression, at both temperatures, and showed the critical role played by constraint on the mechanical response of nanolaminates made of materials with a very large difference in the elasto-plastic properties.« less

  9. Compressive behavior of laminated neoprene bridge bearing pads under thermal aging condition

    NASA Astrophysics Data System (ADS)

    Jun, Xie; Zhang, Yannian; Shan, Chunhong

    2017-10-01

    The present study was conducted to obtain a better understanding of the variation rule of mechanical properties of laminated neoprene bridge bearing pads under thermal aging condition using compression tests. A total of 5 specimens were processed in a high-temperature chamber. After that, the specimens were tested subjected to axial load. The parameter mainly considered time of thermal aging processing for specimens. The results of compression tests show that the specimens after thermal aging processing are more probably brittle failure than the standard specimen. Moreover, the exposure of steel plate, cracks and other failure phenomena are more serious than the standard specimen. The compressive capacity, ultimate compressive strength, compressive elastic modulus of the laminated neoprene bridge bearing pads decreased dramatically with the increasing in the aging time of thermal aging processing. The attenuation trends of ultimate compressive strength, compressive elastic modulus of laminated neoprene bridge bearing pads under thermal aging condition accord with power function. The attenuation models are acquired by regressing data of experiment with the least square method. The attenuation models conform to reality well which shows that this model is applicable and has vast prospect in assessing the performance of laminated neoprene bridge bearing pads under thermal aging condition.

  10. Edgewise Compression Testing of STIPS-0 (Structurally Integrated Thermal Protection System)

    NASA Technical Reports Server (NTRS)

    Brewer, Amy R.

    2011-01-01

    The Structurally Integrated Thermal Protection System (SITPS) task was initiated by the NASA Hypersonics Project under the Fundamental Aeronautics Program to develop a structural load-carrying thermal protection system for use in aerospace applications. The initial NASA concept for SITPS consists of high-temperature composite facesheets (outer and inner mold lines) with a light-weight insulated structural core. An edgewise compression test was performed on the SITPS-0 test article at room temperature using conventional instrumentation and methods in order to obtain panel-level mechanical properties and behavior of the panel. Three compression loadings (10, 20 and 37 kips) were applied to the SITPS-0 panel. The panel behavior was monitored using standard techniques and non-destructive evaluation methods such as photogrammetry and acoustic emission. The elastic modulus of the SITPS-0 panel was determined to be 1.146x106 psi with a proportional limit at 1039 psi. Barrel-shaped bending of the panel and partial delamination of the IML occurred under the final loading.

  11. Accelerated Testing of Polymeric Composites Using the Dynamic Mechanical Analyzer

    NASA Technical Reports Server (NTRS)

    Abdel-Magid, Becky M.; Gates, Thomas S.

    2000-01-01

    Creep properties of IM7/K3B composite material were obtained using three accelerated test methods at elevated temperatures. Results of flexural creep tests using the dynamic mechanical analyzer (DMA) were compared with results of conventional tensile and compression creep tests. The procedures of the three test methods are described and the results are presented. Despite minor differences in the time shift factor of the creep compliance curves, the DMA results compared favorably with the results from the tensile and compressive creep tests. Some insight is given into establishing correlations between creep compliance in flexure and creep compliance in tension and compression. It is shown that with careful consideration of the limitations of flexure creep, a viable and reliable accelerated test procedure can be developed using the DMA to obtain the viscoelastic properties of composites in extreme environments.

  12. Effect of heat bed temperature of 3D bioprinter to hardness and compressive strength of scaffold bovine hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Triyono, Joko; Pratama, Aditya; Sukanto, Heru; Nugroho, Yohanes; Wijayanta, Agung Tri

    2018-02-01

    This study aimed to investigate the effect of heat bed temperature of 3D bioprinter toward compressive strength and hardness bovine bone hydroxyapatite scaffold for bone filler applications. BHA-glycerin mixed with a ratio of 1:1, and keep it for 24 hours. After the homogenization process acquired, bio-Ink with shaped slurry will be used as a material for a 3D printer. The printing process with a temperature variation have performed by setting up heat bed temperature. After printing process was completed, the 3D scaffold was detained on the heat bed for 10 minutes before being picked up. The test results in this study had the lowest hardness value of 9.82±0.62 VHN and the highest number of 24.32±0.99 VHN. The compressive strength testing had the lowest value of 1.62±0.16 MPa with the highest number of 5.67±0.39 MPa. Pore observation using a scanning electron microscope. The result shows that the size of the pores were not much different, that was ±100-200 µm. This observation also indicated that the pore form was square pores.

  13. A kinematic hardening constitutive model for the uniaxial cyclic stress-strain response of magnesium sheet alloys at room temperature

    NASA Astrophysics Data System (ADS)

    He, Zhitao; Chen, Wufan; Wang, Fenghua; Feng, Miaolin

    2017-11-01

    A kinematic hardening constitutive model is presented, in which a modified form of von Mises yield function is adopted, and the initial asymmetric tension and compression yield stresses of magnesium (Mg) alloys at room temperature (RT) are considered. The hardening behavior was classified into slip, twinning, and untwinning deformation modes, and these were described by two forms of back stress to capture the mechanical response of Mg sheet alloys under cyclic loading tests at RT. Experimental values were obtained for AZ31B-O and AZ31B sheet alloys under both tension-compression-tension (T-C-T) and compression-tension (C-T) loadings to calibrate the parameters of back stresses in the proposed model. The predicted parameters of back stresses in the twinning and untwinning modes were expressed as a cubic polynomial. The predicted curves based on these parameters showed good agreement with the tests.

  14. Fractured Rock Permeability as a Function of Temperature and Confining Pressure

    NASA Astrophysics Data System (ADS)

    Alam, A. K. M. Badrul; Fujii, Yoshiaki; Fukuda, Daisuke; Kodama, Jun-ichi; Kaneko, Katsuhiko

    2015-10-01

    Triaxial compression tests were carried out on Shikotsu welded tuff, Kimachi sandstone, and Inada granite under confining pressures of 1-15 MPa at 295 and 353 K. The permeability of the tuff declined monotonically with axial compression. The post-compression permeability became smaller than that before axial compression. The permeability of Kimachi sandstone and Inada granite declined at first, then began to increase before the peak load, and showed values that were almost constant in the residual strength state. The post-compression permeability of Kimachi sandstone was higher than that before axial compression under low confining pressures, but lower under higher confining pressures. On the other hand, the permeability of Inada granite was higher than that before axial compression regardless of the confining pressure values. For the all rock types, the post-compression permeability at 353 K was lower than at 295 K and the influence of the confining pressure was less at 353 K than at 295 K. The above temperature effects were observed apparently for Inada granite, only the latter effect was apparent for Shikotsu welded tuff, and they were not so obvious for Kimachi sandstone. The mechanisms causing the variation in rock permeability and sealability of underground openings were discussed.

  15. Preparation and Dynamic Mechanical Properties at Elevated Temperatures of a Tungsten/Glass Composite

    NASA Astrophysics Data System (ADS)

    Gao, Chong; Wang, Yingchun; Ma, Xueya; Liu, Keyi; Wang, Yubing; Li, Shukui; Cheng, Xingwang

    2018-03-01

    Experiments were conducted to prepare a borosilicate glass matrix composite containing 50 vol.% tungsten and examine its dynamic compressive behavior at elevated temperatures in the range of 450-775 °C. The results show that the homogenous microstructure of the tungsten/glass composite with relative density of 97% can be obtained by hot-pressing sintering at 800 °C for 1 h under pressure of 30 MPa. Dynamic compressive testing was carried out by a separate Hopkinson pressure bar system with a synchronous device. The results show that the peak stress decreases and the composite transforms from brittle to ductile in nature with testing temperature increasing from 450 to 750 °C. The brittle-ductile transition temperature is about 500 °C. Over 775 °C, the composite loses load-bearing capacity totally because of the excessive softening of the glass phase. In addition, the deformation and failure mechanism were analyzed.

  16. Effect of Growth Rate on Elevated Temperature Plastic Flow and Room Temperature Fracture Toughness of Directionally Solidified NiAl-31Cr-3Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Raj, S. V.; Locci, I. E.; Salem, J. A.

    1999-01-01

    The eutectic system Ni-33Al-31Cr-3Mo was directionally solidified at rates ranging from 7.6 to 508 mm/h. Samples were examined for microstructure and alloy chemistry, compression tested at 1200 and 1300 K, and subjected to room temperature fracture toughness measurements. Lamellar eutectic grains were formed at 12.7 mm/h; however cellular structures with a radial eutectic pattern developed at faster growth rates. Elevated temperature compression testing between 10(exp -4) to 10(exp -7)/s did not reveal an optimum growth condition, nor did any single growth condition result in a significant fracture toughness advantage. The mechanical behavior, taken together, suggests that Ni-33Al-31Cr-3Mo grown at rates from 25.4 to 254 mm/h will have nominally equivalent properties.

  17. The compressive behaviour and constitutive equation of polyimide foam in wide strain rate and temperature

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Akifumi; Kobayashi, Hidetoshi; Horikawa, Keitaro; Tanigaki, Kenichi

    2015-09-01

    These days, polymer foams, such as polyurethane foam and polystyrene foam, are used in various situations as a thermal insulator or shock absorber. In general, however, their strength is insufficient in high temperature environments because of their low glass transition temperature. Polyimide is a polymer which has a higher glass transition temperature and high strength. Its mechanical properties do not vary greatly, even in low temperature environments. Therefore, polyimide foam is expected to be used in the aerospace industry. Thus, the constitutive equation of polyimide foam that can be applied across a wide range of strain rates and ambient temperature is very useful. In this study, a series of compression tests at various strain rates, from 10-3 to 103 s-1 were carried out in order to examine the effect of strain rate on the compressive properties of polyimide foam. The flow stress of polyimide foam increased rapidly at dynamic strain rates. The effect of ambient temperature on the properties of polyimide foam was also investigated at temperature from - 190 °C to 270°∘C. The flow stress decreased with increasing temperature.

  18. The dynamic compressive behavior and constitutive modeling of D1 railway wheel steel over a wide range of strain rates and temperatures

    NASA Astrophysics Data System (ADS)

    Jing, Lin; Su, Xingya; Zhao, Longmao

    The dynamic compressive behavior of D1 railway wheel steel at high strain rates was investigated using a split Hopkinson pressure bar (SHPB) apparatus. Three types of specimens, which were derived from the different positions (i.e., the rim, web and hub) of a railway wheel, were tested over a wide range of strain rates from 10-3 s-1 to 2.4 × 103 s-1 and temperatures from 213 K to 973 K. Influences of the strain rate and temperature on flow stress were discussed, and rate- and temperature-dependent constitutive relationships were assessed by the Cowper-Symonds model, Johnson-Cook model and a physically-based model, respectively. The experimental results show that the compressive true stress versus true strain response of D1 wheel steel is strain rate-dependent, and the strain hardening rate during the plastic flow stage decreases with the elevation of strain rate. Besides, the D1 wheel steel displays obvious temperature-dependence, and the third-type strain aging (3rd SA) is occurred at the temperature region of 673-973 K at a strain rate of ∼1500 s-1. Comparisons of experimental results with theoretical predictions indicate that the physically-based model has a better prediction capability for the 3rd SA characteristic of the tested D1 wheel steel.

  19. Effect of Microstructure on the Mechanical Properties of Extruded Magnesium and a Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    McGhee, Paul

    The main objective of this research was to investigate the relationship between the fatigue behavior and crystallographic texture evolution of magnesium (Mg) alloys with a range of microalloying element content processed under various extrusion conditions. Several Mg alloys were processed under a range of extrusion temperatures, extrusion ratios, and alloying content and tested under monotonic and cyclic fatigue loading conditions: fully-reversed condition tested at strain amplitudes of 0.15% - 1.00% in strain-control mode. After fatigue testing, Mg microstructural analysis was performed using SEM, TEM, optical microscopy, and X-ray diffraction techniques. Microstructural observations revealed significant grain refinement through a combination of zirconium (Zr) addition and hot-extrusion, producing fine equiaxed grain structure with grain sizes ranging between 1-5 microm. Texture analysis and partial compression testing results showed that the initial texture of the extruded alloy gradually evolved upon compressive loading along the c-axes inducing extension twinning creating a strong basal texture along the extrusion direction. Full tensile and compression testing at room temperature showed that the combination of hot extrusion and Zr addition can further refine the grains of the Mg alloys microstructure and enhance the texture while simultaneously enhancing the mechanical properties.

  20. Plastometric tests for plasticine as physical modelling material

    NASA Astrophysics Data System (ADS)

    Wójcik, Łukasz; Lis, Konrad; Pater, Zbigniew

    2016-12-01

    This paper presents results of plastometric tests for plasticine, used as material for physical modelling of metal forming processes. The test was conducted by means of compressing by flat dies of cylindrical billets at various temperatures. The aim of the conducted research was comparison of yield stresses and course of material flow curves. Tests were made for plasticine in black and white colour. On the basis of the obtained experimental results, the influence of forming parameters change on flow curves course was determined. Sensitivity of yield stresses change in function of material deformation, caused by forging temperature change within the scope of 0&C ÷ 20&C and differentiation of strain rate for ˙ɛ = 0.563; ˙ɛ = 0.0563; ˙ɛ = 0.0056s-1,was evaluated. Experimental curves obtained in compression test were described by constitutive equations. On the basis of the obtained results the function which most favourably describes flow curves was chosen.

  1. Investigations of Control Surface Seals for Re-entry Vehicles

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Curry, Donald M.; DeMange, Jeffrey J.; Rivers, H. Kevin; Hsu, Su-Yuen

    2002-01-01

    Re-entry vehicles generally require control surfaces (e.g., rudders, body flaps) to steer them during flight. Control surface seals are installed along hinge lines and where control surface edges move close to the vehicle body. These seals must operate at high temperatures and limit heat transfer to underlying structures to prevent them from overheating and causing possible loss of vehicle structural integrity. This paper presents results for thermal analyses and mechanical testing conducted on the baseline rudder/fin seal design for the X-38 re-entry vehicle. Exposure of the seals in a compressed state at the predicted peak seal temperature of 1900 F resulted in loss of seal resiliency. The vertical Inconel rudder/fin rub surface was re-designed to account for this loss of resiliency. Room temperature compression tests revealed that seal unit loads and contact pressures were below limits set to protect Shuttle thermal tiles on the horizontal sealing surface. The seals survived an ambient temperature 1000 cycle scrub test over sanded Shuttle tiles and were able to disengage and re-engage the tile edges during testing. Arc jet tests confirmed the need for seals in the rudder/fin gap location because a single seal caused a large temperature drop (delta T = 1710 F) in the gap.

  2. Toward an Improved Hypersonic Engine Seal

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange,Jeffrey J.; Taylor, Shawn C.

    2003-01-01

    High temperature, dynamic seals are required in advanced engines to seal the perimeters of movable engine ramps for efficient, safe operation in high heat flux environments at temperatures from 2000 to 2500 F. Current seal designs do not meet the demanding requirements for future engines, so NASA s Glenn Research Center (GRC) is developing advanced seals to overcome these shortfalls. Two seal designs and two types of seal preloading devices were evaluated in a series of compression tests at room temperature and 2000 F and flow tests at room temperature. Both seals lost resiliency with repeated load cycling at room temperature and 2000 F, but seals with braided cores were significantly more flexible than those with cores composed of uniaxial ceramic fibers. Flow rates for the seals with cores of uniaxial fibers were lower than those for the seals with braided cores. Canted coil springs and silicon nitride compression springs showed promise conceptually as potential seal preloading devices to help maintain seal resiliency.

  3. Microstructure characterization of Al matrix composite reinforced with Ti-6Al-4V meshes after compression by scanning electron microscope and transmission electron microscope.

    PubMed

    Guo, Q; Sun, D L; Han, X L; Cheng, S R; Chen, G Q; Jiang, L T; Wu, G H

    2012-02-01

    Compressive properties of Al matrix composite reinforced with Ti-6Al-4V meshes (TC4(m)/5A06 Al composite) under the strain rates of 10(-3)S(-1) and 1S(-1) at different temperature were measured and microstructure of composites after compression was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Compressive strength decreased with the test temperature increased and the strain-rate sensitivity (R) of composite increased with the increasing temperature. SEM observations showed that grains of Al matrix were elongated severely along 45° direction (angle between axis direction and fracture surface) and TC4 fibres were sheared into several parts in composite compressed under the strain rate of 10(-3)S(-1) at 25°C and 250°C. Besides, amounts of cracks were produced at the interfacial layer between TC4 fibre and Al matrix and in (Fe, Mn)Al(6) phases. With the compressive temperature increasing to 400°C, there was no damage at the interfacial layer between TC4 fibre and Al matrix and in (Fe, Mn)Al(6) phases, while equiaxed recrystal grains with sizes about 10 μm at the original grain boundaries of Al matrix were observed. However, interface separation of TC4 fibres and Al matrix occurred in composite compressed under the strain rate of 1S(-1) at 250°C and 400°C. With the compressive temperature increasing from 25°C to 100°C under the strain rate of 10(-3) S(-1), TEM microstructure in Al matrix exhibited high density dislocations and slipping bands (25°C), polygonized dislocations and dynamic recovery (100°C), equiaxed recrystals with sizes below 500 μm (250°C) and growth of equiaxed recrystals (400°C), respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. 49 CFR 173.306 - Limited quantities of compressed gases.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., in addition, one container in 2,000 must be tested at the higher temperature. No leakage or permanent... °F) but, in addition, one container in 2,000 must be tested at the higher temperature. No leakage or... the design pressure of the container. If any container shows evidence of leakage at a rate equal to or...

  5. Hardness and compression resistance of natural rubber and synthetic rubber mixtures

    NASA Astrophysics Data System (ADS)

    Arguello, J. M.; Santos, A.

    2016-02-01

    This project aims to mechanically characterize through compression resistance and shore hardness tests, the mixture of hevea brasiliensis natural rubber with butadiene synthetic rubber (BR), styrene-butadiene rubber (SBR) and ethylene-propylene-diene monomer rubber (EPDM). For each of the studied mixtures were performed 10 tests, each of which increased by 10% the content of synthetic rubber in the mixture; each test consisted of carrying out five tests of compression resistance and five tests of shore hardness. The specimens were vulcanized on a temperature of 160°C, during an approximate time of 15 minutes, and the equipment used in the performance of the mechanical tests were a Shimadzu universal machine and a digital durometer. The results show that the A shore hardness increases directly proportional, with a linear trend, with the content of synthetic BR, SBR or EPDM rubber present in the mixture, being the EPDM the most influential. With respect to the compression resistance is observed that the content of BR or SBR increase this property directly proportional through a linear trend; while the EPDM content also increases but with a polynomial trend.

  6. Feasibility Assessment of Thermal Barrier Seals for Extreme Transient Temperatures

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dunlap, Patrick H., Jr.

    1998-01-01

    The assembly joints of modem solid rocket motor cases are generally sealed using conventional O-ring type seals. The 5500+ F combustion gases produced by rocket motors are kept a safe distance away from the seals by thick layers of phenolic insulation. Special compounds are used to fill insulation gaps leading up to the seals to prevent a direct flowpath to them. Design criteria require that the seals should not experience torching or charring during operation, or their sealing ability would be compromised. On limited occasions, NASA has observed charring of the primary O-rings of the Space Shuttle solid rocket nozzle assembly joints due to parasitic leakage paths opening up in the gap-fill compounds during rocket operation. NASA is investigating different approaches for preventing torching or charring of the primary O-rings. One approach is to implement a braided rope seal upstream of the primary O-ring to serve as a thermal barrier that prevents the hot gases from impinging on the O-ring seals. This paper presents flow, resiliency, and thermal resistance for several types of NASA rope seals braided out of carbon fibers. Burn tests were performed to determine the time to burn through each of the seals when exposed to the flame of an oxyacetylene torch (5500 F), representative of the 5500 F solid rocket motor combustion temperatures. Rope seals braided out of carbon fibers endured the flame for over six minutes, three times longer than solid rocket motor burn time. Room and high temperature flow tests are presented for the carbon seals for different amounts of linear compression. Room temperature compression tests were performed to assess seal resiliency and unit preloads as a function of compression. The thermal barrier seal was tested in a subscale "char" motor test in which the seal sealed an intentional defect in the gap insulation. Temperature measurements indicated that the seal blocked 2500 F combustion gases on the upstream side with very little temperature rise on the downstream side.

  7. Experimental investigation of a Mach 6 fixed-geometry inlet featuring a swept external-internal compression flow field

    NASA Technical Reports Server (NTRS)

    Torrence, M. G.

    1975-01-01

    An investigation of a fixed-geometry, swept external-internal compression inlet was conducted at a Mach number of 6.0 and a test-section Reynolds number of 1.55 x 10 to the 7th power per meter. The test conditions was constant for all runs with stagnation pressure and temperature at 20 atmospheres and 500 K, respectively. Tests were made at angles of attack of -5 deg, 0 deg, 3 deg, and 5 deg. Measurements consisted of pitot- and static-pressure surveys in inlet throat, wall static pressures, and surface temperatures. Boundary-layer bleed was provided on the centerbody and on the cowl internal surface. The inlet performance was consistently high over the range of the angle of attack tested, with an overall average total pressure recovery of 78 percent and corresponding adiabatic kinetic-energy efficiency of 99 percent. The inlet throat flow distribution was uniform and the Mach number and pressure level were of the correct magnitude for efficient combustor design. The utilization of a swept compression field to meet the starting requirements of a fixed-geometry inlet produced neither flow instability nor a tendency to unstart.

  8. Yttria catalyzed microstructural modifications in oxide dispersion strengthened V-4Cr-4Ti alloys synthesized by field assisted sintering technique

    NASA Astrophysics Data System (ADS)

    Krishnan, Vinoadh Kumar; Sinnaeruvadi, Kumaran; Verma, Shailendra Kumar; Dash, Biswaranjan; Agrawal, Priyanka; Subramanian, Karthikeyan

    2017-08-01

    The present work deals with synthesis, characterisation and elevated temperature mechanical property evaluation of V-4Cr-4Ti and oxide (yttria = 0.3, 0.6 and 0.9 at%) dispersion strengthened V-4Cr-4Ti alloy processed by mechanical alloying and field-assisted sintering, under optimal conditions. Microstructural parameters of both powder and sintered samples were deduced by X-ray diffraction (XRD) and further confirmed with high resolution transmission electron microscopy. Powder diffraction and electron microscopy study show that ball milling of starting elemental powders (V-4Cr-4Ti) with and without yttria addition has resulted in single phase α-V (V-4Cr-4Ti) alloy. Wherein, XRD and electron microscopy images of sintered samples have revealed phase separation (viz., Cr-V and Ti-V) and domain size reduction, with yttria addition. The reasons behind phase separation and domain size reduction with yttria addition during sintering are extensively discussed. Microhardness and high temperature compression tests were done on sintered samples. Yttria addition (0.3 and 0.6 at.%) increases the elevated temperature compressive strength and strain hardening exponent of α-V alloys. High temperature compression test of 0.9 at% yttria dispersed α-V alloy reveals a glassy behaviour.

  9. Ultra-high modulus organic fiber hybrid composites

    NASA Technical Reports Server (NTRS)

    Champion, A. R.

    1981-01-01

    An experimental organic fiber, designated Fiber D, was characterized, and its performance as a reinforcement for composites was investigated. The fiber has a modulus of 172 GPa, tensile strength of 3.14 GPa, and density of 1.46 gm/cu cm. Unidirectional Fiber D/epoxy laminates containing 60 percent fiber by volume were evaluated in flexure, shear, and compression, at room temperature and 121 C in both the as fabricated condition and after humidity aging for 14 days at 95 percent RH and 82 C. A modulus of 94.1 GPa, flexure strength of 700 MPa, shear strength of 54 MPa, and compressive strength of 232 MPa were observed at room temperature. The as-fabricated composites at elevated temperature and humidity aged material at room temperature had properties 1 to 20 percent below these values. Combined humidity aging plus evaluated temperature testing resulted in even lower mechanical properties. Hybrid composite laminates of Fiber D with Fiber FP alumina or Thornel 300 graphite fiber were also evaluated and significant increases in modulus, flexure, and compressive strengths were observed.

  10. A Comparison of Tension and Compression Creep in a Polymeric Composite and the Effects of Physical Aging on Creep Behavior

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Veazie, David R.; Brinson, L. Catherine

    1996-01-01

    Experimental and analytical methods were used to investigate the similarities and differences of the effects of physical aging on creep compliance of IM7/K3B composite loaded in tension and compression. Two matrix dominated loading modes, shear and transverse, were investigated for two load cases, tension and compression. The tests, run over a range of sub-glass transition temperatures, provided material constants, material master curves and aging related parameters. Comparing results from the short-term data indicated that although trends in the data with respect to aging time and aging temperature are similar, differences exist due to load direction and mode. The analytical model used for predicting long-term behavior using short-term data as input worked equally as well for the tension or compression loaded cases. Comparison of the loading modes indicated that the predictive model provided more accurate long term predictions for the shear mode as compared to the transverse mode. Parametric studies showed the usefulness of the predictive model as a tool for investigating long-term performance and compliance acceleration due to temperature.

  11. Polymer matrix and graphite fiber interface study

    NASA Technical Reports Server (NTRS)

    Adams, D. F.; Zimmerman, R. S.; Odom, E. M.

    1985-01-01

    Hercules AS4 graphite fiber, unsized, or with EPON 828, PVA, or polysulfone sizing, was combined with three different polymer matrices. These included Hercules 3501-6 epoxy, Hercules 4001 bismaleimide, and Hexcel F155 rubber toughened epoxy. Unidirectional composites in all twelve combinations were fabricated and tested in transverse tension and axial compression. Quasi-isotropic laminates were tested in axial tension and compression, flexure, interlaminar shear, and tensile impact. All tests were conducted at both room temperature, dry and elevated temperature, and wet conditions. Single fiber pullout testing was also performed. Extensive scanning electron microphotographs of fracture surfaces are included, along with photographs of single fiber pullout failures. Analytical/experimental correlations are presented, based on the results of a finite element micromechanics analysis. Correlations between matrix type, fiber sizing, hygrothermal environment, and loading mode are presented. Results indicate that the various composite properties were only moderately influenced by the fiber sizings utilized.

  12. Phenomenological study of a cellular material behaviour under dynamic loadings

    NASA Astrophysics Data System (ADS)

    Bouix, R.; Viot, Ph.; Lataillade, J.-L.

    2006-08-01

    Polypropylene foams are cellular materials, which are often use to fill structures subjected to crash or violent impacts. Therefore, it is necessary to know and to characterise in experiments their mechanical behaviour in compression at high strain rates. So, several apparatus have been used in order to highlight the influence of strain rate, material density and also temperature. A split Hopkinson Pressure Bar has been used for impact tests, a fly wheel to test theses materials at medium strain rate and an electro-mechanical testing machine associated to a climatic chamber for temperature tests. Then, a rheological model has been used in order to describe the material behaviour. The mechanical response to compression of these foams presents three typical domains: a linear elastic step, a wide collapse plateau stress, which leads to a densification, which are related to a standard rheological model.

  13. Test of superplastically formed corrugated aluminum compression specimens with beaded webs

    NASA Technical Reports Server (NTRS)

    Davis, Randall C.; Royster, Dick M.; Bales, Thomas T.; James, William F.; Shinn, Joseph M., Jr.

    1991-01-01

    Corrugated wall sections provide a highly efficient structure for carrying compressive loads in aircraft and spacecraft fuselages. The superplastic forming (SPF) process offers a means to produce complex shells and panels with corrugated wall shapes. A study was made to investigate the feasibility of superplastically forming 7475-T6 aluminum sheet into a corrugated wall configuration and to demonstrate the structural integrity of the construction by testing. The corrugated configuration selected has beaded web segments separating curved-cap segments. Eight test specimens were fabricated. Two specimens were simply a single sheet of aluminum superplastically formed to a beaded-web, curved-cap corrugation configuration. Six specimens were single-sheet corrugations modified by adhesive bonding additional sheet material to selectively reinforce the curved-cap portion of the corrugation. The specimens were tested to failure by crippling in end compression at room temperature.

  14. Evaluation of the Transient Liquid Phase (TLP) Bonding Process for Ti3Al-Based Honeycomb Core Sandwich Structure

    NASA Technical Reports Server (NTRS)

    Bird, R. Keith; Hoffman, Eric K.

    1998-01-01

    The suitability of using transient liquid phase (TLP) bonding to fabricate honeycomb core sandwich panels with Ti-14Al-21Nb (wt%) titanium aluminide (T3Al) face sheets for high-temperature hypersonic vehicle applications was evaluated. Three titanium alloy honeycomb cores and one Ti3Al alloy honeycomb core were investigated. Edgewise compression (EWC) and flatwise tension (FWT) tests on honeycomb core sandwich specimens and tensile tests of the face sheet material were conducted at temperatures ranging from room temperature to 1500 F. EWC tests indicated that the honeycomb cores and diffusion bonded joints were able to stabilize the face sheets up to and beyond the face sheet compressive yield strength for all temperatures investigated. The specimens with the T3Al honeycomb core produced the highest FWT strengths at temperatures above 1000 F. Tensile tests indicated that TLP processing conditions resulted in decreases in ductility of the Ti-14Al-21Nb face sheets. Microstructural examination showed that the side of the face sheets to which the filler metals had been applied was transformed from equiaxed alpha2 grains to coarse plates of alpha2 with intergranular Beta. Fractographic examination of the tensile specimens showed that this transformed region was dominated by brittle fracture.

  15. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths

    PubMed Central

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-01-01

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete’s compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength. PMID:28788279

  16. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths.

    PubMed

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-12-08

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete's compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength.

  17. Demonstration of temperature imaging by H₂O absorption spectroscopy using compressed sensing tomography.

    PubMed

    An, Xinliang; Brittelle, Mack S; Lauzier, Pascal T; Gord, James R; Roy, Sukesh; Chen, Guang-Hong; Sanders, Scott T

    2015-11-01

    This paper introduces temperature imaging by total-variation-based compressed sensing (CS) tomography of H2O vapor absorption spectroscopy. A controlled laboratory setup is used to generate a constant two-dimensional temperature distribution in air (a roughly Gaussian temperature profile with a central temperature of 677 K). A wavelength-tunable laser beam is directed through the known distribution; the beam is translated and rotated using motorized stages to acquire complete absorption spectra in the 1330-1365 nm range at each of 64 beam locations and 60 view angles. Temperature reconstructions are compared to independent thermocouple measurements. Although the distribution studied is approximately axisymmetric, axisymmetry is not assumed and simulations show similar performance for arbitrary temperature distributions. We study the measurement error as a function of number of beams and view angles used in reconstruction to gauge the potential for application of CS in practical test articles where optical access is limited.

  18. Physical aging effects on the compressive linear viscoelastic creep of IM7/K3B composite

    NASA Technical Reports Server (NTRS)

    Veazie, David R.; Gates, Thomas S.

    1995-01-01

    An experimental study was undertaken to establish the viscoelastic behavior of 1M7/K3B composite in compression at elevated temperature. Creep compliance, strain recovery and the effects of physical aging on the time dependent response was measured for uniaxial loading at several isothermal conditions below the glass transition temperature (T(g)). The IM7/K3B composite is a graphite reinforced thermoplastic polyimide with a T(g) of approximately 240 C. In a composite, the two matrix dominated compliance terms associated with time dependent behavior occur in the transverse and shear directions. Linear viscoelasticity was used to characterize the creep/recovery behavior and superposition techniques were used to establish the physical aging related material constants. Creep strain was converted to compliance and measured as a function of test time and aging time. Results included creep compliance master curves, physical aging shift factors and shift rates. The description of the unique experimental techniques required for compressive testing is also given.

  19. FY2017 status report: Model 9975 O-ring fixture long-term leak performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daugherty, W. L.

    A series of experiments to monitor the aging performance of Viton® GLT and GLT-S O-rings used in the Model 9975 shipping package has been ongoing since 2004 at the Savannah River National Laboratory. One approach has been to periodically evaluate the leak performance of O-rings being aged in mock-up 9975 Primary Containment Vessels (PCVs) at elevated temperature. Other methods such as compression-stress relaxation (CSR) tests and field surveillance are also on-going to evaluate O-ring behavior. Seventy tests using PCV mock-ups with GLT O-rings were assembled and heated to temperatures ranging from 200 to 450 ºF. They were leak-tested initially andmore » have been tested periodically to determine if they continue to meet the leak-tightness criterion defined in ANSI standard N14.5-97. Due to material substitution, a smaller test matrix with fourteen additional tests was initiated in 2008 with GLT-S O-rings heated to temperatures ranging from 200 to 400 ºF. Leak test failures have been experienced in all of the GLT O-ring fixtures aging at 350 ºF and higher temperatures, and in 8 fixtures aging at 300 ºF. The 300 °F GLT O-ring fixtures failed after 2.8 to 5.7 years at temperature. The remaining GLT O-ring fixtures aging at 300 ºF were retired from testing following more than 5 years at temperature without failure. No failures have yet been observed in GLT O-ring fixtures aging at 200 ºF for 9 to 10.5 years, or in GLT O-ring fixtures aging at 270 ºF for 5.7 years. These aging temperatures bound O-ring temperatures anticipated during normal storage in K-Area Complex (KAC). Leak test failures have been experienced in all of the GLT-S O-ring fixtures aging at 300 ºF and above. No failures have yet been observed in GLT-S O-ring fixtures aging at 200 and 250 ºF for 6.9 to 7.5 years. Data from the O-ring fixtures are generally consistent with results from compression stress relaxation testing, and provide confidence in the predictive models based on those results. However, uncertainty still exists in extrapolating these elevated temperature results to the lower temperatures of interest for normal storage in KAC. Measurement of compression set in O-rings removed from failed fixtures, compared to that from KAC surveillance O-rings, indicates margin remains for O-rings still in service. Aging and periodic leak testing will continue for the remaining PCV fixtures.« less

  20. Deformation behavior of human dentin in liquid nitrogen: a diametral compression test.

    PubMed

    Zaytsev, Dmitry; Panfilov, Peter

    2014-09-01

    Contribution of the collagen fibers into the plasticity of human dentin is considered. Mechanical testing of dentin at low temperature allows excluding the plastic response of its organic matrix. Therefore, deformation and fracture behavior of the dentin samples under diametral compression at room temperature and liquid nitrogen temperature are compared. At 77K dentin behaves like almost brittle material: it is deformed exclusively in the elastic regime and it fails due to growth of the sole crack. On the contrary, dentin demonstrates the ductile response at 300K. There are both elastic and plastic contributions in the deformation of dentin samples. Multiple cracking and crack tip blunting precede the failure of samples. Organic phase plays an important role in fracture of dentin: plasticity of the collagen fibers could inhibit the crack growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Long-Term Stability of Residual Stress Improvement by Water Jet Peening Considering Working Processes.

    PubMed

    Hashimoto, Tadafumi; Osawa, Yusuke; Itoh, Shinsuke; Mochizuki, Masahito; Nishimoto, Kazutoshi

    2013-06-01

    To prevent primary water stress corrosion cracking (PWSCC), water jet peening (WJP) has been used on the welds of Ni-based alloys in pressurized water reactors (PWRs). Before WJP, the welds are machined and buffed in order to conduct a penetrant test (PT) to verify the weld qualities to access, and microstructure evolution takes place in the target area due to the severe plastic deformation. The compressive residual stresses induced by WJP might be unstable under elevated temperatures because of the high dislocation density in the compressive stress layer. Therefore, the stability of the compressive residual stresses caused by WJP was investigated during long-term operation by considering the microstructure evolution due to the working processes. The following conclusions were made: The compressive residual stresses were slightly relaxed in the surface layers of the thermally aged specimens. There were no differences in the magnitude of the relaxation based on temperature or time. The compressive residual stresses induced by WJP were confirmed to remain stable under elevated temperatures. The stress relaxation at the surface followed the Johnson-Mehl equation, which states that stress relaxation can occur due to the recovery of severe plastic strain, since the estimated activation energy agrees very well with the self-diffusion energy for Ni. By utilizing the additivity rule, it was indicated that stress relaxation due to recovery is completed during the startup process. It was proposed that the long-term stability of WJP under elevated temperatures must be assessed based on compressive stresses with respect to the yield stress. Thermal elastic-plastic creep analysis was performed to predict the effect of creep strain. After 100 yr of simulated continuous operation at 80% capacity, there was little change in the WJP compressive stresses under an actual operating temperature of 623 K. Therefore, the long-term stability of WJP during actual operation was analytically predicted.

  2. Vapor Compression Distillation Subsystem (VCDS) component enhancement, testing and expert fault diagnostics development, volume 1

    NASA Technical Reports Server (NTRS)

    Kovach, L. S.; Zdankiewicz, E. M.

    1987-01-01

    Vapor compression distillation technology for phase change recovery of potable water from wastewater has evolved as a technically mature approach for use aboard the Space Station. A program to parametrically test an advanced preprototype Vapor Compression Distillation Subsystem (VCDS) was completed during 1985 and 1986. In parallel with parametric testing, a hardware improvement program was initiated to test the feasibility of incorporating several key improvements into the advanced preprototype VCDS following initial parametric tests. Specific areas of improvement included long-life, self-lubricated bearings, a lightweight, highly-efficient compressor, and a long-life magnetic drive. With the exception of the self-lubricated bearings, these improvements are incorporated. The advanced preprototype VCDS was designed to reclaim 95 percent of the available wastewater at a nominal water recovery rate of 1.36 kg/h achieved at a solids concentration of 2.3 percent and 308 K condenser temperature. While this performance was maintained for the initial testing, a 300 percent improvement in water production rate with a corresponding lower specific energy was achieved following incorporation of the improvements. Testing involved the characterization of key VCDS performance factors as a function of recycle loop solids concentration, distillation unit temperature and fluids pump speed. The objective of this effort was to expand the VCDS data base to enable defining optimum performance characteristics for flight hardware development.

  3. Performance and durability testing of parabolic trough receivers

    NASA Astrophysics Data System (ADS)

    Lei, Dongqiang; Fu, Xuqiang; Zhao, Dongming; Yuan, Guofeng; Wang, Zhifeng; Guo, Minghuan

    2017-06-01

    The paper describes the key performance and durability testing facilities of the parabolic trough receiver developed by Institute of Electrical Engineering, Chinese Academy of Sciences. The indoor heat loss test can be applied at 4-7 different temperature levels within 200-550 on receivers. The optical efficiency test bench consists of 12 metal halide lamps as the solar simulator and a 5 m length half-elliptical cylinder reflector with flat end reflectors. 3 ultra-precision temperature sensors are used in receiver each end to get the temperature difference. The residual gas analysis test bench is applied to analyze and predict the vacuum lifetime of the receiver. It can test the variations of composition and partial pressure of residual gases with temperature and time in the receiver annulus space by a high sensitivity quadrupole mass spectrometer gas analyzer. A coating accelerated ageing test bench, which is also used to test the thermal cycle, has been developed. This test bench uses the absorber tube of the recevier as the resistance heater to heat up the whole receiver. The coating lifetime can be predicted by the Arrhenius parameters. For the cycling test, the compressed air is used to directly cool the inner surface of the absorber tube. The thermal cycling test is performed with temperature cycles from 150 °C to 450 °C for 160 cycles. The maximum thermal cycling frequency is 8 cycles per day. The mechanical fatigue test bench is used to test the bellows and the glass-to-metal seals durability at the same time. Both bellows are expanded and compressed to 6.5 mm in turn with 10,000 cycles. A new rotating test bench was also developed to test the thermal efficiency of the receiver.

  4. Impacts of compression on crystallization behavior of freeze-dried amorphous sucrose.

    PubMed

    Imamura, Koreyoshi; Nomura, Mayo; Tanaka, Kazuhiro; Kataoka, Nobuhide; Oshitani, Jun; Imanaka, Hiroyuki; Nakanishi, Kazuhiro

    2010-03-01

    An amorphous matrix comprised of sugar molecules is used as excipient and stabilizing agent for labile ingredients in the pharmaceutical industry. The amorphous sugar matrix is often compressed into a tablet form to reduce the volume and improve handling. Herein, the effect of compression on the crystallization behavior of an amorphous sucrose matrix was investigated. Amorphous sucrose samples were prepared by freeze-drying and compressed under different conditions, followed by analyses by differential scanning calorimetry, isothermal crystallization tests, X-ray powder diffractometry, Fourier transform infrared spectroscopy (FTIR), and gas pycnometry. The compressed sample had a lower crystallization temperature and a shorter induction period for isothermal crystallization, indicating that compression facilitates the formation of the critical nucleus of a sucrose crystal. Based on FTIR and molecular dynamics simulation results, the conformational distortion of sucrose molecules due to the compression appears to contribute to the increase in the free energy of the system, which leads to the facilitation of critical nucleus formation. An isothermal crystallization test indicated an increase in the growth rate of sucrose crystals by the compression. This can be attributed to the transformation of the microstructure from porous to nonporous, as the result of compression. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Jingli; Chen, Cun; Wang, Gang

    This study explores the temporal scaling behavior induced shear-branching structure in response to variant temperatures and strain rates during plastic deformation of Zr-based bulk metallic glass (BMG). The data analysis based on the compression tests suggests that there are two states of shear-branching structures: the fractal structure with a long-range order at an intermediate temperature of 223 K and a larger strain rate of 2.5 × 10 –2 s –1; the disordered structure dominated at other temperature and strain rate. It can be deduced from the percolation theory that the compressive ductility, ec, can reach the maximum value at themore » intermediate temperature. Furthermore, a dynamical model involving temperature is given for depicting the shear-sliding process, reflecting the plastic deformation has fractal structure at the temperature of 223 K and strain rate of 2.5 × 10 –2 s –1.« less

  6. Effects of temperature on serrated flows of Al 0.5CoCrCuFeNi high-entropy alloy

    DOE PAGES

    Chen, Shuying; Xie, Xie; Chen, Bilin; ...

    2015-08-14

    Compression behavior of the Al 0.5CoCrCuFeNi high-entropy alloy (HEA) was studied at different temperatures from 673 K to 873 K at a low strain rate of 5 x 10 –5/s to investigate the temperature effect on the mechanical properties and serration behavior. The face-centered-cubic (fcc) structure is confirmed at the lower temperature of 673 K and 773 K, and a structure of mixed fcc and body-centered cubic (bcc) is identified at a higher temperature of 873 K after compression tests using high-energy synchrotron x-ray diffraction. As a result, by comparing the stress–strain curves at different temperatures, two opposite directions ofmore » serrations types were found, named upward serrations appearing at 673 K and 773 K and downward serrations at 873 K, which may be due to dynamic strain aging.« less

  7. Dynamic Recrystallization Kinetics of 690 Alloy During Hot Compression of Double-Cone Samples

    NASA Astrophysics Data System (ADS)

    Wang, Jue; Zhai, Shun-Chao

    2017-03-01

    Hot compression tests of double-cone samples were conducted for 690 alloy to study the kinetic behavior of the complete dynamic recrystallization (DRX) process under low deformation temperatures from 960 to 1080 °C. The microstructure of 82 points in the vertical section of every deformed sample was quantitatively analyzed to determine the DRX fraction. Corresponding strain of these points was calculated by finite element simulations. Kinetic curves of the specimens with different preheating temperatures were then constructed. The features of various boundaries with different misorientation angles were investigated by electron backscatter diffraction technology and transmission electron microscope. The results showed that the strain is continuously and symmetrically distributed along the centerline of the vertical section. Large strain of 1.84 was obtained when the compression amount is 12 mm for double-cone samples. All the fitted kinetic curves display an "S" type, which possess a low growth rate of DRX at the beginning and the end of compression. The critical strain of recrystallization decreases with the increase in preheating temperature, while the completion strain remains around 1.5 for all the samples. The initial and maximum growth rates of DRX fraction have the opposite trend with the change in temperature, which is considered to be attributed to the behaviors of different misorientation boundaries.

  8. Controlled-Temperature Hot-Air Gun

    NASA Technical Reports Server (NTRS)

    Munoz, M. C.

    1986-01-01

    Materials that find applications in wind tunnels first tested in laboratory. Hot-Air Gun differs from commercial units in that flow rate and temperature monitored and controlled. With typical compressed-airsupply pressure of 25 to 38 psi (170 to 260 kPa), flow rate and maximum temperature are 34 stdft3/min (0.96 stdm3/min) and 1,090 degrees F (590 degrees C), respectively. Resembling elaborate but carefully regulated hot-air gun, setup used to apply blasts of air temperatures above 1,500 degrees F (815 degrees C) to test specimens.

  9. A study on the performance and emission characteristics of esterified pinnai oil tested in VCR engine.

    PubMed

    Ashok Kumar, T; Chandramouli, R; Mohanraj, T

    2015-11-01

    Biodiesel is a clean renewable fuel derived from vegetable oils and animal fats. It is biodegradable, oxygenated, non toxic and free from sulfur and aromatics. The biodiesel prepared from pinnai oil undergoes acid esterification followed by alkaline transesterification process. The fatty acid methyl esters components were identified using gas chromatography and compared with the standard properties. The properties of biodiesel are comparable with diesel. The yield of the biodiesel production depends upon the process parameters such as reaction temperature, pH, time duration and amount of catalyst. The yield of biodiesel by transesterification process was 73% at 55°C. This fuel was tested in a variable compression ratio engine with blend ratios of B10 and B20. During the test runs the compression ratio of the engine was varied from 15:1 to 18:1 and the torque is adjusted from zero to maximum value of 22Nm. The performance characteristics such as the brake thermal efficiency, brake specific energy consumption and exhaust gas temperature of the engine are analyzed. The combustion characteristics of biodiesel like ignition delay, combustion duration and maximum gas temperature and the emission characteristics are also analyzed. The performance characteristics, combustion characteristics and engine emission are effective in the variable compression ratio engine with biodiesel and it is compared with diesel. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. 40 CFR Appendix A to Subpart D of... - Tables

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-test and post-test values) kPa Pv Saturation pressure at dew point temperature kPa Ra Relative humidity...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment... Percent torque related to maximum torque for the test mode % mass Pollutant mass flow g/h nd, i Engine...

  11. 40 CFR Appendix A to Subpart D of... - Tables

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-test and post-test values) kPa Pv Saturation pressure at dew point temperature kPa Ra Relative humidity...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment... Percent torque related to maximum torque for the test mode % mass Pollutant mass flow g/h nd, i Engine...

  12. 40 CFR Appendix A to Subpart D of... - Tables

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-test and post-test values) kPa Pv Saturation pressure at dew point temperature kPa Ra Relative humidity...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment... Percent torque related to maximum torque for the test mode % mass Pollutant mass flow g/h nd, i Engine...

  13. 40 CFR Appendix A to Subpart D of... - Tables

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-test and post-test values) kPa Pv Saturation pressure at dew point temperature kPa Ra Relative humidity...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment... Percent torque related to maximum torque for the test mode % mass Pollutant mass flow g/h nd, i Engine...

  14. 40 CFR Appendix A to Subpart D of... - Tables

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-test and post-test values) kPa Pv Saturation pressure at dew point temperature kPa Ra Relative humidity...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment... Percent torque related to maximum torque for the test mode % mass Pollutant mass flow g/h nd, i Engine...

  15. Engine Performance and Knock Rating of Fuels for High-output Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Rothbrock, A M; Biermann, Arnold E

    1938-01-01

    Data are presented to show the effects of inlet-air pressure, inlet-air temperature, and compression ratio on the maximum permissible performance obtained on a single-cylinder test engine with aircraft-engine fuels varying from a fuel of 87 octane number to one 100 octane number plus 1 ml of tetraethyl lead per gallon. The data were obtained on a 5-inch by 5.75-inch liquid-cooled engine operating at 2,500 r.p.m. The compression ratio was varied from 6.50 to 8.75. The inlet-air temperature was varied from 120 to 280 F. and the inlet-air pressure from 30 inches of mercury absolute to the highest permissible. The limiting factors for the increase in compression ratio and in inlet-air pressure was the occurrence of either audible or incipient knock. The data are correlated to show that, for any one fuel,there is a definite relationship between the limiting conditions of inlet-air temperature and density at any compression ratio. This relationship is dependent on the combustion-gas temperature and density relationship that causes knock. The report presents a suggested method of rating aircraft-engine fuels based on this relationship. It is concluded that aircraft-engine fuels cannot be satisfactorily rated by any single factor, such as octane number, highest useful compression ratio, or allowable boost pressure. The fuels should be rated by a curve that expresses the limitations of the fuel over a variety of engine conditions.

  16. Mechanical and electrical properties of low temperature phase MnBi

    NASA Astrophysics Data System (ADS)

    Jiang, Xiujuan; Roosendaal, Timothy; Lu, Xiaochuan; Palasyuk, Olena; Dennis, Kevin W.; Dahl, Michael; Choi, Jung-Pyung; Polikarpov, Evgueni; Marinescu, Melania; Cui, Jun

    2016-01-01

    Low temperature phase (LTP) manganese bismuth (MnBi) is a promising rare-earth-free permanent magnet material due to its high intrinsic coercivity and large positive temperature coefficient. While scientists are making progress on fabricating bulk MnBi magnets, engineers have begun considering MnBi magnets for motor applications. Physical properties other than magnetic ones could significantly affect motor design. Here, we report results of our investigation on the mechanical and electrical properties of bulk LTP MnBi and their temperature dependence. A MnBi ingot was prepared using an arc melting technique and subsequently underwent grinding, sieving, heat treatment, and cryomilling. The resultant powders with a particle size of ˜5 μm were magnetically aligned, cold pressed, and sintered at a predefined temperature. Micro-hardness testing was performed on a part of original ingot and we found that the hardness of MnBi was 109 ± 15 HV. The sintered magnets were subjected to compressive testing at different temperatures and it was observed that a sintered MnBi magnet fractured when the compressive stress exceeded 193 MPa at room temperature. Impedance spectra were obtained using electrochemical impedance spectroscopy at various temperatures and we found that the electrical resistance of MnBi at room temperature was about 6.85 μΩ m.

  17. Properties of a Ni(sub 19.5)Pd(sub 30)Ti(sub 50.5) high-temperature shape memory alloy in tension and compression

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald; Padula, Santo, II; Bigelow, Glen; Rios, Orlando; Garg, Anita; Lerch, Brad

    2006-01-01

    Potential applications involving high-temperature shape memory alloys have been growing in recent years. Even in those cases where promising new alloys have been identified, the knowledge base for such materials contains gaps crucial to their maturation and implementation in actuator and other applications. We begin to address this issue by characterizing the mechanical behavior of a Ni19.5Pd30Ti50.5 high-temperature shape memory alloy in both uniaxial tension and compression at various temperatures. Differences in the isothermal uniaxial deformation behavior were most notable at test temperatures below the martensite finish temperature. The elastic modulus of the material was very dependent on strain level; therefore, dynamic Young#s Modulus was determined as a function of temperature by an impulse excitation technique. More importantly, the performance of a thermally activated actuator material is dependent on the work output of the alloy. Consequently, the strain-temperature response of the Ni19.5Pd30Ti50.5 alloy under various loads was determined in both tension and compression and the specific work output calculated and compared in both loading conditions. It was found that the transformation strain and thus, the specific work output were similar regardless of the loading condition. Also, in both tension and compression, the strain-temperature loops determined under constant load conditions did not close due to the fact that the transformation strain during cooling was always larger than the transformation strain during heating. This was apparently the result of permanent plastic deformation of the martensite phase with each cycle. Consequently, before this alloy can be used under cyclic actuation conditions, modification of the microstructure or composition would be required to increase the resistance of the alloy to plastic deformation by slip.

  18. Performance Measurements and Mapping of a R-407C Vapor Injection Scroll Compressor

    NASA Astrophysics Data System (ADS)

    Lumpkin, Domenique; Spielbauer, Niklas; Groll, Eckhard

    2017-08-01

    Environmental conditions significantly define the performance of HVAC&R systems. Vapor compression systems in hot climates tend to operate at higher pressure ratios, leading to increased discharge temperatures. Higher discharge temperatures can lead to higher irreversibilities in the compression process, lower specific enthalpies differences across the evaporator, and possibly a reduction in the compressor life due to the breakdown of the oil used for lubrication. To counter these effects, the use of economized, vapor injection compressors is proposed for vapor compression systems in high temperature climates. Such compressors are commercially available for refrigeration applications, in particular, supermarket refrigeration systems. However, compressor maps for vapor injection compressors are limited and none exist for R-407C. Through calorimeter testing, a compressor map for a single-port vapor injection compressor using R-407C was developed. A standard correlation for mapping single-port vapor injection compressors is proposed and validated using the compressor test results. The system and compressor performance with and without vapor injection was considered. As expected, with vapor injection there was a reduction in compressor discharge temperatures and an increase in the system coefficient of performance. The proposed dimensionless correlation is more accurate than the AHRI polynomial for mapping the injection ratio, discharge temperature, and compressor heat loss. The predicted volumetric efficiency values from the dimensionless correlation is within 1% of the measured valued. Similarly, the predicted isentropic efficiency values are within 2% of the measured values.

  19. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering

    NASA Astrophysics Data System (ADS)

    Johnston, I. D.; McCluskey, D. K.; Tan, C. K. L.; Tracey, M. C.

    2014-03-01

    Polydimethylsiloxane (PDMS) elastomers are extensively used for soft lithographic replication of microstructures in microfluidic and micro-engineering applications. Elastomeric microstructures are commonly required to fulfil an explicit mechanical role and accordingly their mechanical properties can critically affect device performance. The mechanical properties of elastomers are known to vary with both curing and operational temperatures. However, even for the elastomer most commonly employed in microfluidic applications, Sylgard 184, only a very limited range of data exists regarding the variation in mechanical properties of bulk PDMS with curing temperature. We report an investigation of the variation in the mechanical properties of bulk Sylgard 184 with curing temperature, over the range 25 °C to 200 °C. PDMS samples for tensile and compressive testing were fabricated according to ASTM standards. Data obtained indicates variation in mechanical properties due to curing temperature for Young's modulus of 1.32-2.97 MPa, ultimate tensile strength of 3.51-7.65 MPa, compressive modulus of 117.8-186.9 MPa and ultimate compressive strength of 28.4-51.7 GPa in a range up to 40% strain and hardness of 44-54 ShA.

  20. Turbo test rig with hydroinertia air bearings for a palmtop gas turbine

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuji; Isomura, Kousuke; Togo, Shin-ichi; Esashi, Masayoshi

    2004-11-01

    This paper describes a turbo test rig to test the compressor of a palmtop gas turbine generator at low temperature (<100 °C). Impellers are 10 mm in diameter and have three-dimensional blades machined using a five-axis NC milling machine. Hydroinertia bearings are employed in both radial and axial directions. The performance of the compressor was measured at 50% (435 000 rpm) and 60% (530 000 rpm) of the rated rotational speed (870 000 rpm) by driving a turbine using compressed air at room temperature. The measured pressure ratio is lower than the predicted value. This could be mainly because impeller tip clearance was larger than the designed value. The measured adiabatic efficiency is unrealistically high due to heat dissipation from compressed air. During acceleration toward the rated rotational speed, a shaft crashed to the bearing at 566 000 rpm due to whirl. At that time, the whirl ratio was 8.

  1. High-Temperature Inorganic Self-Healing Inorganic Cement Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyatina, Tatiana; Sugama, Toshifumi

    The data files below summarize the results from various experiments testing properties of high-temperature self-healing inorganic cement composites. These properties include cement-carbon steel bond strength, Young's modulus recovery, matrix recovery strength, and compressive strength and Yonug's modulus for cement composites modified with Pozzolanic Clay additives.

  2. Evaluation of hydrogen as a cryogenic wind tunnel test gas

    NASA Technical Reports Server (NTRS)

    Haut, R. C.

    1977-01-01

    The nondimensional ratios used to describe various flow situations in hydrogen were determined and compared with the corresponding ideal diatomic gas ratios. The results were used to examine different inviscid flow configurations. The relatively high value of the characteristic rotational temperature causes the behavior of hydrogen, under cryogenic conditions, to deviate substantially from the behavior of an ideal diatomic gas in the compressible flow regime. Therefore, if an idea diatomic gas is to be modeled, cryogenic hydrogen is unacceptable as a wind tunnel test gas in a compressible flow situation.

  3. Pressure Infusion Cuff and Blood Warmer during Massive Transfusion: An Experimental Study About Hemolysis and Hypothermia.

    PubMed

    Poder, Thomas G; Pruneau, Denise; Dorval, Josée; Thibault, Louis; Fisette, Jean-François; Bédard, Suzanne K; Jacques, Annie; Beauregard, Patrice

    2016-01-01

    Blood warmers were developed to reduce the risk of hypothermia associated with the infusion of cold blood products. During massive transfusion, these devices are used with compression sleeve, which induce a major stress to red blood cells. In this setting, the combination of blood warmer and compression sleeve could generate hemolysis and harm the patient. We conducted this study to compare the impact of different pressure rates on the hemolysis of packed red blood cells and on the outlet temperature when a blood warmer set at 41.5°C is used. Pressure rates tested were 150 and 300 mmHg. Ten packed red blood cells units were provided by Héma-Québec and each unit was sequentially tested. We found no increase in hemolysis either at 150 or 300 mmHg. By cons, we found that the blood warmer was not effective at warming the red blood cells at the specified temperature. At 150 mmHg, the outlet temperature reached 37.1°C and at 300 mmHg, the temperature was 33.7°C. To use a blood warmer set at 41.5°C in conjunction with a compression sleeve at 150 or 300 mmHg does not generate hemolysis. At 300 mmHg a blood warmer set at 41.5°C does not totally avoid a risk of hypothermia.

  4. Orientation and temperature dependence of some mechanical properties of the single-crystal nickel-base superalloy Rene N4. 3: Tension-compression anisotropy

    NASA Technical Reports Server (NTRS)

    Miner, R. V.; Gaab, T. P.; Gayda, J.; Hemker, K. J.

    1985-01-01

    Single crystal superalloy specimens with various crystallographic directions along their axes were tested in compression at room temperature, 650, 760, 870, and 980 deg C. These results are compared with the tensile behavior studied previously. The alloy, Rene N4, was developed for gas turbine engine blades and has the nominal composition 3.7 Al, 4.2 Ti, 4 Ta, 0.5 Nb, 6 W, 1.5 Mo 9 Cr. 7.5 Co, balance Ni, in weight percent. Slip trace analysis showed that primary cube slip occurred even at room temperature for the 111 specimens. With increasing test temperature more orientations exhibited primary cube slip, until at 870 deg C only the 100 and 011 specimens exhibited normal octahedral slip. The yield strength for octahedral slip was numerically analysed using a model proposed by Lall, Chin, and Pope to explain deviations from Schmid's Law in the yielding behavior of a single phase Gamma prime alloy, Ni3(Al, Nb). The Schmid's Law deviations in Rene N4 were found to be largely due to a tension-compression anisotropy. A second effect, which increases trength for orientations away from 001, was found to be small in Rene N4. Analysis of recently published data on the single crystal superalloy PWA 1480 yielded the same result.

  5. Development of laboratory test methods to replace the simulated high-temperature grout fluidity test : [summary].

    DOT National Transportation Integrated Search

    2014-06-01

    Concretes remarkable role in construction depends on its marriage with reinforcing steel. Concrete is very strong in compression, but weak in tension, so reinforcing steel is added to increase tensile strength, yielding structural components capab...

  6. Prediction of Flow Stress in Cadmium Using Constitutive Equation and Artificial Neural Network Approach

    NASA Astrophysics Data System (ADS)

    Sarkar, A.; Chakravartty, J. K.

    2013-10-01

    A model is developed to predict the constitutive flow behavior of cadmium during compression test using artificial neural network (ANN). The inputs of the neural network are strain, strain rate, and temperature, whereas flow stress is the output. Experimental data obtained from compression tests in the temperature range -30 to 70 °C, strain range 0.1 to 0.6, and strain rate range 10-3 to 1 s-1 are employed to develop the model. A three-layer feed-forward ANN is trained with Levenberg-Marquardt training algorithm. It has been shown that the developed ANN model can efficiently and accurately predict the deformation behavior of cadmium. This trained network could predict the flow stress better than a constitutive equation of the type.

  7. Development and Evaluation of High Temperature Gaskets for Hypersonic and Reentry Applications

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Shpargel, Tarah

    2007-01-01

    A wide variety of flexible gasket compositions were developed and tested at high temperatures. The gasket material system has high temperature capability. GRABER sealants were very effective in sealing machined ACC-4 composite surfaces. The gasket composition do not bond strongly with the ACC-4 substrate materials. The density of gasket materials can be tailored to show appropriate compressibility.

  8. The effects of microstructural stability on the compressive response of two cast aluminum alloys up to 300 °C

    DOE PAGES

    Shower, Patrick T.; Roy, Shibayan; Hawkins, Charles Shane; ...

    2017-06-08

    Here in this study, the high temperature compressive response of cast aluminum alloys 319 and RR350 is compared in light of their microstructures. The 319 alloy is widely used in thermally critical automotive applications and provides a baseline for comparison with the RR350 alloy, whose microstructural stability at high homologous temperatures was recently reported. Cylindrical compression samples from each alloy were tested at four temperatures up to 300 °C at a constant true strain rate that was varied over four orders of magnitude. Although both alloys are strengthened by metastable precipitates (nominally Al 2Cu) in the as-aged condition, their mechanicalmore » response diverges at temperatures greater than 250 °C as the strengthening precipitates evolve in the 319 alloy and retain their as-aged morphology in the RR350 alloy. Deformation mechanisms of each alloy are examined using microstructural analysis and empirical activation energy calculations. The stability of the θ' phase in the RR350 alloy leads to effective precipitation hardening at homologous temperatures up to 0.6 and an extensive regime of grain boundary controlled deformation.« less

  9. Effect of Elevated Temperature on the Residual Properties of Quartzite, Granite and Basalt Aggregate Concrete

    NASA Astrophysics Data System (ADS)

    Masood, A.; Shariq, M.; Alam, M. Masroor; Ahmad, T.; Beg, A.

    2018-05-01

    In the present study, experimental investigations have been carried out to determine the effect of elevated temperature on the residual properties of quartzite, granite and basalt aggregate concrete mixes. Ultrasonic pulse velocity and unstressed residual compressive strength tests on cube specimens have been conducted at ambient and after single heating-cooling cycle of elevated temperature ranging from 200 to 600 °C. The relationship between ultrasonic pulse velocity and residual compressive strength of all concrete mixes have been developed. Scanning electron microscopy was also carried out to study micro structure of quartzite, granite and basalt aggregate concrete subjected to single heating-cooling cycle of elevated temperature. The results show that the residual compressive strength of quartzite aggregate concrete has been found higher than granite and basalt aggregate concrete at ambient and at all temperatures. It has also been found that the loss of strength in concrete is due to the development of micro-cracks result in failure of cement matrix and coarse aggregate bond. Further, the basalt aggregate concrete has been observed lower strength due to low affinity with Portland cements ascribed to its ferro-magnesium rich mineral composition.

  10. Advanced Control Surface Seal Development for Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    DeMange, J. J.; Dunlap, P. H., Jr.; Steinetz, B. M.

    2004-01-01

    NASA s Glenn Research Center (GRC) has been developing advanced high temperature structural seals since the late 1980's and is currently developing seals for future space vehicles as part of the Next Generation Launch Technology (NGLT) program. This includes control surface seals that seal the edges and hinge lines of movable flaps and elevons on future reentry vehicles. In these applications, the seals must operate at temperatures above 2000 F in an oxidizing environment, limit hot gas leakage to protect underlying structures, endure high temperature scrubbing against rough surfaces, and remain flexible and resilient enough to stay in contact with sealing surfaces for multiple heating and loading cycles. For this study, three seal designs were compared against the baseline spring tube seal through a series of compression tests at room temperature and 2000 F and flow tests at room temperature. In addition, canted coil springs were tested as preloaders behind the seals at room temperature to assess their potential for improving resiliency. Addition of these preloader elements resulted in significant increases in resiliency compared to the seals by themselves and surpassed the performance of the baseline seal at room temperature. Flow tests demonstrated that the seal candidates with engineered cores had lower leakage rates than the baseline spring tube design. However, when the seals were placed on the preloader elements, the flow rates were higher as the seals were not compressed as much and therefore were not able to fill the groove as well. High temperature tests were also conducted to asses the compatibility of seal fabrics against ceramic matrix composite (CMC) panels anticipated for use in next generation launch vehicles. These evaluations demonstrated potential bonding issues between the Nextel fabrics and CMC candidates.

  11. Thermal Aging Study of a Dow Corning SE 1700 Porous Structure Made by Direct Ink Writing: 1-Year Results and Long-Term Predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Small, Ward; Pearson, Mark A.; Maiti, Amitesh

    Dow Corning SE 1700 (reinforced polydimethylsiloxane) porous structures were made by direct ink writing (DIW). The specimens (~50% porosity) were subjected to various compressive strains (15, 30, 45%) and temperatures (room temperature, 35, 50, 70°C) in a nitrogen atmosphere (active purge) for 1 year. Compression set and load retention of the aged specimens were measured periodically during the study. Compression set increased with strain and temperature. After 1 year, specimens aged at room temperature, 35, and 50°C showed ~10% compression set (relative to the applied compressive deflection), while those aged at 70°C showed 20-40%. Due to the increasing compression set,more » load retention decreased with temperature, ranging from ~90% at room temperature to ~60-80% at 70°C. Long-term compression set and load retention at room temperature were predicted by applying time-temperature superposition (TTS). The predictions show compression set relative to the compressive deflection will be ~10-15% with ~70-90% load retention after 50 years at 15-45% strain, suggesting the material will continue to be mechanically functional. Comparison of the results to previously acquired data for cellular (M97*, M9760, M9763) and RTV (S5370) silicone foams suggests that the SE 1700 DIW porous specimens are on par with, or outperform, the legacy foams.« less

  12. Fabrication and evaluation of superplastically formed/weld-brazed corrugated compression panels with beaded webs

    NASA Technical Reports Server (NTRS)

    Royster, D. M.; Davis, R. C.; Shinn, J. M., Jr.; Bales, T. T.; Wiant, H. R.

    1985-01-01

    A study was made to investigate the feasibility of superplastically forming corrugated panels with beaded webs and to demonstrate the structural integrity of these panels by testing. The test panels in the study consist of superplastically formed titanium alloy Ti-6Al-4V half-hat elements that are joined by weld-brazing to titanium alloy Ti-6Al-4V caps to form either single-corrugation compression panels or multiple-corrugation compression panels. Stretching and subsequent thinning of the titanium sheet during superplastic forming is reduced by approximately 35 percent with a shallow half-hat die concept instead of a deep die concept and results in a more uniform thickness across the beaded webs. The complete panels are tested in end compression at room temperature and the results compared with analysis. The heavily loaded panels failed at loads approaching the yield strength of the titanium material. At maximum load, the caps wrinkled locally accompanied with separation of the weld-braze joint in the wrinkle. None of the panels tested, however, failed catastrophically in the weld-braze joint. Experimental test results are in good agreement with structural analysis of the panels.

  13. Microstructure evolution and dynamic recrystallization behavior of a powder metallurgy Ti-22Al-25Nb alloy during hot compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Jianbo

    The flow behavior of a powder metallurgy (P/M) Ti-22Al-25Nb alloy during hot compression tests has been investigated at a strain rate of 0.01 s{sup −1} and a temperature range of 980–1100 °C up to various true strains from 0.1 to 0.9. The effects of deformation temperature and strain on microstructure characterization and nucleation mechanisms of dynamic recrystallization (DRX) were assessed by means of Optical microscope (OM), electron backscatter diffraction (EBSD) and transmission electron microscope (TEM) techniques, respectively. The results indicated that the process of DRX was promoted by increasing deformation temperature and strain. By regression analysis, a power exponent relationshipmore » between peak stresses and sizes of stable DRX grains was developed. In addition, it is suggested that the discontinuous dynamic recrystallization (DDRX) and continuous dynamic recrystallization (CDRX) controlled nucleation mechanisms for DRX grains operated simultaneously during the whole hot process, and which played the leading role varied with hot process parameters of temperature and strain. It was further demonstrated that the CDRX featured by progressive subgrain rotation was weakened by elevating deformation temperatures. - Highlights: •Flow behavior of a P/M Ti-22Al-25Nb is studied by hot compression tests. •Microstructure evolution of alloy is affected by deformation temperature and strain. •The relationship between peak stress and stable DRX grain size was developed. •The process of DRX was promoted by increasing deformation temperature and strain. •Nucleation mechanisms of DRX were identified by EBSD analysis and TEM observation.« less

  14. Composite materials research and education program: The NASA-Virginia Tech composites program

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.

    1980-01-01

    Major areas of study include: (1) edge effects in finite width laminated composites subjected to mechanical, thermal and hygroscopic loading with temperature dependent material properties and the influence of edge effects on the initiation of failure; (2) shear and compression testing of composite materials at room and elevated temperatures; (3) optical techniques for precise measurement of coefficients of thermal expansion of composites; (4) models for the nonlinear behavior of composites including material nonlinearity and damage accumulation and verification of the models under biaxial loading; (5) compressive failure of graphite/epoxy plates with circular holes and the buckling of composite cylinders under combined compression and torsion; (6) nonlinear mechanical properties of borsic/aluminum, graphite/polyimide and boron/aluminum; (7) the strength characteristics of spliced sandwich panels; and (8) curved graphite/epoxy panels subjected to internal pressure.

  15. Development of a multi-cycle shear-compression testing for the modeling of severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Pesin, A.; Pustovoytov, D.; Lokotunina, N.

    2017-12-01

    The mechanism of severe plastic deformation comes from very significant shear strain. Shear-compression testing of materials is complicated by the fact that a state of large equivalent strain with dominant shear strain is not easily achievable. This paper presents the novel technique of laboratory simulation of severe plastic deformation by multi-cycle shear-compression testing at room temperature with equivalent strain e=1…5. The specimen consisted of a parallelepiped having an inclined gauge section created by two diametrically opposed semi-circular slots which were machined at 45°. Height of the specimen was 50 mm, section dimensions were 25×25 mm, gauge thickness was 5.0 mm and gauge width was 6.0 mm. The specimen provided dominant shear strain in an inclined gauge-section. The level of shear strain and equivalent strain was controlled through adjustment of the height reduction of the specimen, load application direction and number of cycles of shear-compression. Aluminium alloy Al-6.2Mg-0.7Mn was used as a material for specimen. FE simulation and analysis of the stress-strain state were performed. The microstructure of the specimen after multi-cycle shear-compression testing with equivalent strain e=1…5 was examined by optical and scanning electron microscope.

  16. 40 CFR 89.124 - Record retention, maintenance, and submission.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... manufacturer of any nonroad compression-ignition engine must maintain the following adequately organized... emission test data, such as those reporting test cell temperature and relative humidity at start and finish... media, provided that at the Administrator's request, organized, written records in English are promptly...

  17. 40 CFR 89.124 - Record retention, maintenance, and submission.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... manufacturer of any nonroad compression-ignition engine must maintain the following adequately organized... emission test data, such as those reporting test cell temperature and relative humidity at start and finish... media, provided that at the Administrator's request, organized, written records in English are promptly...

  18. Functional Fatigue and Tension-Compression Asymmetry in [001]-Oriented Co49Ni21Ga30 High-Temperature Shape Memory Alloy Single Crystals

    NASA Astrophysics Data System (ADS)

    Krooß, P.; Niendorf, T.; Kadletz, P. M.; Somsen, C.; Gutmann, M. J.; Chumlyakov, Y. I.; Schmahl, W. W.; Eggeler, G.; Maier, H. J.

    2015-03-01

    Conventional shape memory alloys cannot be employed for applications in the elevated temperature regime due to rapid functional degradation. Co-Ni-Ga has shown the potential to be used up to temperatures of about 400 °C due to a fully reversible superelastic stress-strain response. However, available results only highlight the superelastic response for single cycle tests. So far, no data addressing cyclic loading and functional fatigue are available. In order to close this gap, the current study reports on the cyclic degradation behavior and tension-compression asymmetry in [001]-oriented Co49Ni21Ga30 single crystals at elevated temperatures. The cyclic stress-strain response of the material under displacement controlled superelastic loading conditions was found to be dictated by the number of active martensite variants and different resulting stabilization effects. Co-Ni-Ga shows a large superelastic temperature window of about 400 °C under tension and compression, but a linear Clausius-Clapeyron relationship could only be observed up to a temperature of 200 °C. In the present experiments, the samples were subjected to 1000 cycles at different temperatures. Degradation mechanisms were characterized by neutron diffraction and transmission electron microscopy. The results in this study confirm the potential of these alloys for damping applications at elevated temperatures.

  19. Evaluation of superplastic forming and co-diffusion bonding of Ti-6Al-4V titanium alloy expanded sandwich structures

    NASA Technical Reports Server (NTRS)

    Arvin, G. H.; Israeli, L.; Stolpestad, J. H.; Stacher, G. W.

    1981-01-01

    The application of the superplastic forming/diffusion bonding (SPF/DB) process to supersonic cruise research is investigated. The capability of an SPF/DB titanium structure to meet the structural requirements of the inner wing area of the NASA arrow-wing advanced supersonic transport design is evaluated. Selection of structural concepts and their optimization for minimum weight, SPF/DB process optimization, fabrication of representative specimens, and specimen testing and evaluation are described. The structural area used includes both upper and lower wing panels, where the upper wing panel is used for static compression strength evaluation and the lower panel, in tension, is used for fracture mechanics evaluations. The individual test specimens, cut from six large panels, consist of 39 static specimens, 10 fracture mechanics specimens, and one each full size panel for compression stability and fracture mechanics testing. Tests are performed at temperatures of -54 C (-65 F), room temperature, and 260 C (500 F).

  20. Use of phase change materials during compressed air expansion for isothermal CAES plants

    NASA Astrophysics Data System (ADS)

    Castellani, B.; Presciutti, A.; Morini, E.; Filipponi, M.; Nicolini, A.; Rossi, F.

    2017-11-01

    Compressed air energy storage (CAES) plants are designed to store compressed air into a vessel or in an underground cavern and to expand it in an expansion turbine when energy demand is high. An innovative CAES configuration recently proposed is the isothermal process. Several methods to implement isothermal CAES configuration are under investigation. In this framework, the present paper deals with the experimental testing of phase change materials (PCM) during compressed air expansion phase. The experimental investigation was carried out by means of an apparatus constituted by a compression section, a steel pressure vessel, to which an expansion valve is connected. The initial internal absolute pressure was equal to 5 bar to avoid moisture condensation and the experimental tests were carried out with two paraffin-based PCM amounts (0.05 kg and 0.1 kg). Results show that the temperature change during air expansion decreases with increasing the PCM amount inside the vessel. With the use of PCM during expansions an increase of the expansion work occurs. The increase is included in the range from 9.3% to 18.2%. In every test there is an approach to the isothermal values, which represent the maximum theoretical value of the obtainable expansion work.

  1. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures.

    PubMed

    Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo

    2017-07-11

    Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W-B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W-B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33f cu . It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.

  2. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures

    PubMed Central

    Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo

    2017-01-01

    Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W–B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W–B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33fcu. It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load. PMID:28773144

  3. In vitro degradation kinetics of pure PLA and Mg/PLA composite: Effects of immersion temperature and compression stress.

    PubMed

    Li, Xuan; Chu, Chenglin; Wei, Yalin; Qi, Chenxi; Bai, Jing; Guo, Chao; Xue, Feng; Lin, Pinghua; Chu, Paul K

    2017-01-15

    The effects of the immersion temperature and compression stress on the in vitro degradation behavior of pure poly-lactic acid (pure-PLA) and PLA-based composite unidirectionally reinforced with micro-arc oxidized magnesium alloy wires (Mg/PLA or MAO-MAWs/PLA) are investigated. The degradation kinetics of pure-PLA and the PLA matrix in MAO-MAWs/PLA exhibit an Arrhenius-type behavior. For the composite, the synergic degradation of MAO-MAWs maintains a steady pH and mitigates the degradation of PLA matrix during immersion. However, the external compression stress decreases the activation energy (E a ) and pre-exponential factor (k 0 ) consequently increasing the degradation rate of PLA. Under a compression stress of 1MPa, E a and k 0 of pure PLA are 57.54kJ/mol and 9.74×10 7 day -1 , respectively, but 65.5kJ/mol and 9.81×10 8 day -1 for the PLA matrix in the composite. Accelerated tests are conducted in rising immersion temperature in order to shorten the experimental time. Our analysis indicates there are well-defined relationships between the bending strength of the specimens and the PLA molecular weight during immersion, which are independent of the degradation temperature and external compression stress. Finally, a numerical model is established to elucidate the relationship of bending strength, the PLA molecular weight, activation energy, immersion time and temperature. We systematically evaluate the effects of compression stress and temperature on the degradation properties of two materials: (pure-PLA) and MAO-MAWs/PLA (or Mg/PLA). The initial in vitro degradation kinetics of the unstressed or stressed pure-PLA and MAO-MAWs/PLA composite is confirmed to be Arrhenius-like. MAO-MAWs and external compression stress would influence the degradation activation energy (E a ) and pre-exponential factor (k 0 ) of PLA, and we noticed there is a linear relationship between E a and ln k 0 . Thereafter, we noticed that Mg 2+ , not H + , plays a significant role on the mitigation of the PLA degradation and external compression stress brings the molecular structure change of PLA. Finally, we proposed a model to predict the bending strength of the specimens versus immersion time at different immersion temperatures. This fundamental study could provide some scientific basis in our understanding for the evaluations and biomedical applications of these biodegradable materials. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Internal state variable plasticity-damage modeling of AISI 4140 steel including microstructure-property relations: temperature and strain rate effects

    NASA Astrophysics Data System (ADS)

    Nacif el Alaoui, Reda

    Mechanical structure-property relations have been quantified for AISI 4140 steel. under different strain rates and temperatures. The structure-property relations were used. to calibrate a microstructure-based internal state variable plasticity-damage model for. monotonic tension, compression and torsion plasticity, as well as damage evolution. Strong stress state and temperature dependences were observed for the AISI 4140 steel. Tension tests on three different notched Bridgman specimens were undertaken to study. the damage-triaxiality dependence for model validation purposes. Fracture surface. analysis was performed using Scanning Electron Microscopy (SEM) to quantify the void. nucleation and void sizes in the different specimens. The stress-strain behavior exhibited. a fairly large applied stress state (tension, compression dependence, and torsion), a. moderate temperature dependence, and a relatively small strain rate dependence.

  5. Steady-state temperature determination on the base of hysteresis loop energy for CuZn37 brass

    NASA Astrophysics Data System (ADS)

    Lipski, Adam; Skibicki, Dariusz; Pejkowski, Łukasz

    2017-03-01

    This paper presents the verification of the relationship between the temperature and the hysteresis loop energy for the CuZn37 brass under multiaxial fatigue loading. Fatigue tests were performed on the hollow specimens subjected to fully reversed tension-compression, torsion, proportional loading, 90° out-of-phase non-proportional loading and two another non-proportional loadings with frequency differences. All test were strain-controlled. Calculations of a plastic strain energy were based on midlife strain hysteresis loops data. The calculated specimen temperatures were compared with temperatures observed by thermographic camera.

  6. Supercritical-Fluid Extraction of Oil From Tar Sands

    NASA Technical Reports Server (NTRS)

    Compton, L. E.

    1982-01-01

    New supercritical solvent mixtures have been laboratory-tested for extraction of oil from tar sands. Mixture is circulated through sand at high pressure and at a temperature above critical point, dissolving organic matter into the compressed gas. Extract is recovered from sand residues. Low-temperature super-critical solvents reduce energy consumption and waste-disposal problems.

  7. Further Investigations of High Temperature Knitted Spring Tubes for Advanced Control Surface Seal Applications

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn C.; DeMange, Jeffrey J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2006-01-01

    Knitted metallic spring tubes are the structural backbones that provide resiliency in control surface seals for use on current and future reusable space launch vehicles. Control surface seals fill the space between movable control surfaces such as body flaps, rudders and elevons, and the static body structures to which they are attached. These seals must remain in continuous contact with opposing surfaces to prevent the ingestion of damaging hot gases encountered during atmospheric re-entry. The Inconel X-750 (Special Metals Corporation) spring tube utilized in the baseline control surface seal shows significant resiliency loss when compressed at temperatures as low as 1200 F. High temperature compression testing and microstructural analysis show that creep is the dominant deformation mechanism leading to permanent set and resiliency loss in tested spring tube samples. Additional evaluation using a structured design of experiments approach shows that spring tube performance, primarily high temperature resiliency, can be enhanced through material substitution of Rene 41 (Allvac) alloy (for the baseline Inconel X-750 material) when coupled with specialized thermal processing.

  8. Fabrication and characterization of metal-packaged fiber Bragg grating sensor by one-step ultrasonic welding

    NASA Astrophysics Data System (ADS)

    Zhang, Yumin; Zhu, Lianqing; Luo, Fei; Dong, Mingli; Ding, Xiangdong; He, Wei

    2016-06-01

    A metallic packaging technique of fiber Bragg grating (FBG) sensors is developed for measurement of strain and temperature, and it can be simply achieved via one-step ultrasonic welding. The average strain transfer rate of the metal-packaged sensor is theoretically evaluated by a proposed model aiming at surface-bonded metallic packaging FBG. According to analytical results, the metallic packaging shows higher average strain transfer rate compared with traditional adhesive packaging under the same packaging conditions. Strain tests are performed on an elaborate uniform strength beam for both tensile and compressive strains; strain sensitivities of approximately 1.16 and 1.30 pm/μɛ are obtained for the tensile and compressive situations, respectively. Temperature rising and cooling tests are also executed from 50°C to 200°C, and the sensitivity of temperature is 36.59 pm/°C. All the measurements of strain and temperature exhibit good linearity and stability. These results demonstrate that the metal-packaged sensors can be successfully fabricated by one-step welding technique and provide great promise for long-term and high-precision structural health monitoring.

  9. Comparison of three types of full‐body compression garments on throwing and repeat‐sprint performance in cricket players

    PubMed Central

    Duffield, Rob; Portus, Marc

    2007-01-01

    Objective To compare the effects of three types of full‐body compression garments (Skins, Adidas and Under Armour) on repeat‐sprint and throwing performance in cricket players. Methods Following familiarisation, 10 male cricket players performed four randomised exercise sessions (3 garments and a control). Each session involved a 30 min repeat‐sprint exercise protocol comprising 20 m sprints every minute, separated by submaximal exercise. Throwing tests included a pre‐exercise and a postexercise maximal distance test and accuracy throwing tests. During each session, measures of heart rate, skin temperature, change in body mass, rate of perceived exertion and perceived muscle soreness were recorded. Capillary blood samples were analysed before and after exercise for lactate, pH, O2 saturation and O2 partial pressure, and 24 h after exercise for creatine kinase (CK). Ratings of perceived muscle soreness were also obtained 24 h after exercise. Results No significant differences (p>0.05) were evident in repeat‐sprint performance (10 m, 20 m time or total submaximal distance covered) or throwing performance (maximum distance or accuracy). No significant differences (p>0.05) were observed in heart rate, body mass change or blood measures during exercise. Significant differences (p<0.05) were observed by way of higher mean skin temperature, lower 24 h postexercise CK values and lower 24 h postexercise ratings of muscle soreness when wearing compression garments. Analysis between respective brands of compression garments revealed no statistical differences (p>0.05). Conclusions No benefit was noted when wearing compression garments for repeat‐sprint or throwing performance; however, the use of the garments as a recovery tool, when worn after exercise, may be beneficial to reduce postexercise trauma and perceived muscle soreness. PMID:17341589

  10. Comparison of three types of full-body compression garments on throwing and repeat-sprint performance in cricket players.

    PubMed

    Duffield, Rob; Portus, Marc

    2007-07-01

    To compare the effects of three types of full-body compression garments (Skins, Adidas and Under Armour) on repeat-sprint and throwing performance in cricket players. Following familiarisation, 10 male cricket players performed four randomised exercise sessions (3 garments and a control). Each session involved a 30 min repeat-sprint exercise protocol comprising 20 m sprints every minute, separated by submaximal exercise. Throwing tests included a pre-exercise and a postexercise maximal distance test and accuracy throwing tests. During each session, measures of heart rate, skin temperature, change in body mass, rate of perceived exertion and perceived muscle soreness were recorded. Capillary blood samples were analysed before and after exercise for lactate, pH, O(2) saturation and O(2) partial pressure, and 24 h after exercise for creatine kinase (CK). Ratings of perceived muscle soreness were also obtained 24 h after exercise. No significant differences (p>0.05) were evident in repeat-sprint performance (10 m, 20 m time or total submaximal distance covered) or throwing performance (maximum distance or accuracy). No significant differences (p>0.05) were observed in heart rate, body mass change or blood measures during exercise. Significant differences (p<0.05) were observed by way of higher mean skin temperature, lower 24 h postexercise CK values and lower 24 h postexercise ratings of muscle soreness when wearing compression garments. Analysis between respective brands of compression garments revealed no statistical differences (p>0.05). No benefit was noted when wearing compression garments for repeat-sprint or throwing performance; however, the use of the garments as a recovery tool, when worn after exercise, may be beneficial to reduce postexercise trauma and perceived muscle soreness.

  11. Calculations of the Performance of a Compression-Ignition Engine-Compressor Turbine Combination I : Performance of a Highly Supercharged Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Sanders, J. C.; Mendelson, Alexander

    1945-01-01

    Small high-speed single-cylinder compression-ignition engines were tested to determine their performance characteristics under high supercharging. Calculations were made on the energy available in the exhaust gas of the compression-ignition engines. The maximum power at any given maximum cylinder pressure was obtained when the compression pressure was equal to the maximum cylinder pressure. Constant-pressure combustion was found possible at an engine speed of 2200 rpm. Exhaust pressures and temperatures were determined from an analysis of indicator cards. The analysis showed that, at rich mixtures with the exhaust back pressure equal to the inlet-air pressure, there is excess energy available for driving a turbine over that required for supercharging. The presence of this excess energy indicates that a highly supercharged compression-ignition engine might be desirable as a compressor and combustion chamber for a turbine.

  12. Mechanical Properties of T650-35/AFR-PE-4 at Elevated Temperatures for Lightweight Aeroshell Designs

    NASA Technical Reports Server (NTRS)

    Whitley, Karen S.; Collins, TImothy J.

    2006-01-01

    Considerable efforts have been underway to develop multidisciplinary technologies for aeroshell structures that will significantly increase the allowable working temperature for the aeroshell components, and enable the system to operate at higher temperatures while sustaining performance and durability. As part of these efforts, high temperature polymer matrix composites and fabrication technologies are being developed for the primary load bearing structure (heat shield) of the spacecraft. New high-temperature resins and composite material manufacturing techniques are available that have the potential to significantly improve current aeroshell design. In order to qualify a polymer matrix composite (PMC) material as a candidate aeroshell structural material, its performance must be evaluated under realistic environments. Thus, verification testing of lightweight PMC's at aeroshell entry temperatures is needed to ensure that they will perform successfully in high-temperature environments. Towards this end, a test program was developed to characterize the mechanical properties of two candidate material systems, T650-35/AFR-PE-4 and T650-35/RP46. The two candidate high-temperature polyimide resins, AFR-PE-4 and RP46, were developed at the Air Force Research Laboratory and NASA Langley Research Center, respectively. This paper presents experimental methods, strength, and stiffness data of the T650-35/AFR-PE-4 material as a function of elevated temperatures. The properties determined during the research test program herein, included tensile strength, tensile stiffness, Poisson s ratio, compressive strength, compressive stiffness, shear modulus, and shear strength. Unidirectional laminates, a cross-ply laminate and two eight-harness satin (8HS)-weave laminates (4-ply and 10-ply) were tested according to ASTM standard methods at room and elevated temperatures (23, 316, and 343 C). All of the relevant test methods and data reduction schemes are outlined along with mechanical data. These data contribute to a database of material properties for high-temperature polyimide composites that will be used to identify the material characteristics of potential candidate materials for aeroshell structure applications.

  13. Performance of Subscale Docking Seals Under Simulated Temperature Conditions

    NASA Technical Reports Server (NTRS)

    Smith, Ian M.; Daniels, Christopher C.

    2008-01-01

    A universal docking system is being developed by the National Aeronautics and Space Administration (NASA) to support future space exploration missions to low Earth orbit (LEO), to the moon, and to Mars. The candidate docking seals for the system are a composite design consisting of elastomer seal bulbs molded into the front and rear sides of a metal ring. The test specimens were subscale seals with two different elastomer cross-sections and a 12-in. outside diameter. The seal assemblies were mated in elastomer seal-on-metal plate and elastomer seal-on-elastomer seal configurations. The seals were manufactured from S0383-70 silicone elastomer compound. Nominal and off-nominal joint configurations were examined. Both the compression load required to mate the seals and the leak rate observed were recorded while the assemblies were subjected to representative docking system operating temperatures of -58, 73, and 122 F (-50, 23, and 50 C). Both the loads required to fully compress the seals and their leak rates were directly proportional to the test temperature.

  14. Structure and Properties of Silica Glass Densified in Cold Compression and Hot Compression

    NASA Astrophysics Data System (ADS)

    Guerette, Michael; Ackerson, Michael R.; Thomas, Jay; Yuan, Fenglin; Bruce Watson, E.; Walker, David; Huang, Liping

    2015-10-01

    Silica glass has been shown in numerous studies to possess significant capacity for permanent densification under pressure at different temperatures to form high density amorphous (HDA) silica. However, it is unknown to what extent the processes leading to irreversible densification of silica glass in cold-compression at room temperature and in hot-compression (e.g., near glass transition temperature) are common in nature. In this work, a hot-compression technique was used to quench silica glass from high temperature (1100 °C) and high pressure (up to 8 GPa) conditions, which leads to density increase of ~25% and Young’s modulus increase of ~71% relative to that of pristine silica glass at ambient conditions. Our experiments and molecular dynamics (MD) simulations provide solid evidences that the intermediate-range order of the hot-compressed HDA silica is distinct from that of the counterpart cold-compressed at room temperature. This explains the much higher thermal and mechanical stability of the former than the latter upon heating and compression as revealed in our in-situ Brillouin light scattering (BLS) experiments. Our studies demonstrate the limitation of the resulting density as a structural indicator of polyamorphism, and point out the importance of temperature during compression in order to fundamentally understand HDA silica.

  15. Temperature-dependent phase-specific deformation mechanisms in a directionally solidified NiAl-Cr(Mo) lamellar composite

    DOE PAGES

    Yu, Dunji; An, Ke; Chen, Xu; ...

    2015-10-09

    Phase-specific thermal expansion and mechanical deformation behaviors of a directionally solidified NiAl–Cr(Mo) lamellar in situ composite were investigated by using real-time in situ neutron diffraction during compression at elevated temperatures up to 800 °C. Tensile and compressive thermal residual stresses were found to exist in the NiAl phase and Crss (solid solution) phase, respectively. Then, based on the evolution of lattice spacings and phase stresses, the phase-specific deformation behavior was analyzed qualitatively and quantitatively. Moreover, estimates of phase stresses were derived by Hooke's law on the basis of a simple method for the determination of stress-free lattice spacing in inmore » situ composites. During compressive loading, the NiAl phase yields earlier than the Crss phase. The Crss phase carries much higher stress than the NiAl phase, and displays consistent strain hardening at all temperatures. The NiAl phase exhibits strain hardening at relatively low temperatures and softening at high temperatures. During unloading, the NiAl phase yields in tension whereas the Crss phase unloads elastically. Additionally, post-test microstructural observations show phase-through cracks at room temperature, micro cracks along phase interfaces at 600 °C and intact lamellae kinks at 800 °C, which is due to the increasing deformability of both phases as temperature rises.« less

  16. Centrifugal Gas Compression Cycle

    NASA Astrophysics Data System (ADS)

    Fultun, Roy

    2002-11-01

    A centrifuged gas of kinetic, elastic hard spheres compresses isothermally and without flow of heat in a process that reverses free expansion. This theorem follows from stated assumptions via a collection of thought experiments, theorems and other supporting results, and it excludes application of the reversible mechanical adiabatic power law in this context. The existence of an isothermal adiabatic centrifugal compression process makes a three-process cycle possible using a fixed sample of the working gas. The three processes are: adiabatic mechanical expansion and cooling against a piston, isothermal adiabatic centrifugal compression back to the original volume, and isochoric temperature rise back to the original temperature due to an influx of heat. This cycle forms the basis for a Thomson perpetuum mobile that induces a loop of energy flow in an isolated system consisting of a heat bath connectable by a thermal path to the working gas, a mechanical extractor of the gas's internal energy, and a device that uses that mechanical energy and dissipates it as heat back into the heat bath. We present a simple experimental procedure to test the assertion that adiabatic centrifugal compression is isothermal. An energy budget for the cycle provides a criterion for breakeven in the conversion of heat to mechanical energy.

  17. Tensile and compressive creep behavior of extruded Mg–10Gd–3Y–0.5Zr (wt.%) alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H.; The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240; Wang, Q.D., E-mail: wangqudong@sjtu.edu.cn

    2015-01-15

    The tensile and compressive creep behavior of an extruded Mg–10Gd–3Y–0.5Zr (wt.%) alloy was investigated at temperatures ranging from 200 °C to 300 °C and under stresses ranging from 30 MPa to 120 MPa. There existed an asymmetry in the tensile and compressive creep properties. The minimum creep rate of the alloy was slightly greater in tension than in compression. The measured values of the transient strain and initial creep rate in compression were greater than those in tension. The creep stress exponent was approximately 2.5 at low temperatures (T < 250 °C) and 3.4 at higher temperatures both in tensionmore » and in compression. The compression creep activation energy at low temperatures and high temperatures was 83.4 and 184.3 kJ/mol respectively, while one activation energy (184 kJ/mol) represented the tensile–creep behavior over the temperature range examined. Dislocation creep was suggested to be the main mechanism in tensile creep and in the high-temperature regime in compressive creep, while grain boundary sliding was suggested to dominate in the low-temperature regime in compressive creep. Precipitate free zones were observed near grain boundaries perpendicular to the loading direction in tension and parallel to the loading direction in compression. Electron backscattered diffraction analysis revealed that the texture changed slightly during creep. Non-basal slip was suggested to contribute to the deformation after basal slip was introduced. In the tensile–creep ruptured specimens, intergranular cracks were mainly observed at general high-angle boundaries. - Highlights: • Creep behavior of an extruded Mg–RE alloy was characterized by EBSD. • T5 aging treatment enhanced the tension–compression creep asymmetry. • The grains grew slightly during tensile creep, but not for compressive creep. • Precipitate free zones (PFZs) were observed at specific grain boundaries. • Intergranular fracture was dominant and cracks mainly originated at GHABs.« less

  18. Advanced Control Surface Seal Development at NASA GRC for Future Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.

    2003-01-01

    NASA s Glenn Research Center (GRC) is developing advanced control surface seal technologies for future space launch vehicles as part of the Next Generation Launch Technology project (NGLT). New resilient seal designs are currently being fabricated and high temperature seal preloading devices are being developed as a means of improving seal resiliency. GRC has designed several new test rigs to simulate the temperatures, pressures, and scrubbing conditions that seals would have to endure during service. A hot compression test rig and hot scrub test rig have been developed to perform tests at temperatures up to 3000 F. Another new test rig allows simultaneous seal flow and scrub tests at room temperature to evaluate changes in seal performance with scrubbing. These test rigs will be used to evaluate the new seal designs. The group is also performing tests on advanced TPS seal concepts for Boeing using these new test facilities.

  19. A Comparison of Ignition Characteristics of Diesel Fuels as Determined in Engines and in a Constant-volume Bomb

    NASA Technical Reports Server (NTRS)

    Selden, Robert F

    1939-01-01

    Ignition-lag data have been obtained for seven fuels injected into heated, compressed air under conditions simulating those in a compression-ignition engine. The results of the bomb tests have been compared with similar engine data, and the differences between the two sets of results are explained in terms of the response of each fuel to variations in air density and temperature.

  20. Microstructures and mechanical properties of Cu-Sn alloy subjected to elevated-temperature heat deformation

    NASA Astrophysics Data System (ADS)

    Hui, Jun; Feng, Zaixin; Fan, Wenxin; Wang, Pengfei

    2018-04-01

    Cu-Sn alloy was subjected to elevated-temperature isothermal compression with 0.01 s‑1 strain rate and 500 ∼ 700 °C temperature range. The thermal compression curve reflected a competing process of work hardening versus dynamic recovery (DRV) and recrystallization, which exhibited an obvious softening trend. Meanwhile, high-temperature deformation and microstructural features in different regions of the alloy was analyzed through EBSD. The results show that grains grow as the temperature rises, competition among recrystallization, substructural, and deformation regions tends to increase with the increase of temperature, and distribution frequency of recrystallization regions gradually increases and then drops suddenly at 650 °C. At 500 ∼ 550 °C, preferentially oriented texturing phenomenon occurs, low angle boundaries(LABs) are gradually transformed into high angle boundaries (HABs) and the Σ (CSL) boundaries turn gradually into Σ3 boundaries. In tensile test of tin bronze, elongation at break increases slowly, whereas yield strength (YS) and ultimate tensile strength (TS) decrease gradually.

  1. Transition of temporal scaling behavior in percolation assisted shear-branching structure during plastic deformation

    DOE PAGES

    Ren, Jingli; Chen, Cun; Wang, Gang; ...

    2017-03-22

    This study explores the temporal scaling behavior induced shear-branching structure in response to variant temperatures and strain rates during plastic deformation of Zr-based bulk metallic glass (BMG). The data analysis based on the compression tests suggests that there are two states of shear-branching structures: the fractal structure with a long-range order at an intermediate temperature of 223 K and a larger strain rate of 2.5 × 10 –2 s –1; the disordered structure dominated at other temperature and strain rate. It can be deduced from the percolation theory that the compressive ductility, ec, can reach the maximum value at themore » intermediate temperature. Furthermore, a dynamical model involving temperature is given for depicting the shear-sliding process, reflecting the plastic deformation has fractal structure at the temperature of 223 K and strain rate of 2.5 × 10 –2 s –1.« less

  2. Pressure Infusion Cuff and Blood Warmer during Massive Transfusion: An Experimental Study About Hemolysis and Hypothermia

    PubMed Central

    Pruneau, Denise; Dorval, Josée; Thibault, Louis; Fisette, Jean-François; Bédard, Suzanne K.; Jacques, Annie; Beauregard, Patrice

    2016-01-01

    Background Blood warmers were developed to reduce the risk of hypothermia associated with the infusion of cold blood products. During massive transfusion, these devices are used with compression sleeve, which induce a major stress to red blood cells. In this setting, the combination of blood warmer and compression sleeve could generate hemolysis and harm the patient. We conducted this study to compare the impact of different pressure rates on the hemolysis of packed red blood cells and on the outlet temperature when a blood warmer set at 41.5°C is used. Methods Pressure rates tested were 150 and 300 mmHg. Ten packed red blood cells units were provided by Héma-Québec and each unit was sequentially tested. Results We found no increase in hemolysis either at 150 or 300 mmHg. By cons, we found that the blood warmer was not effective at warming the red blood cells at the specified temperature. At 150 mmHg, the outlet temperature reached 37.1°C and at 300 mmHg, the temperature was 33.7°C. Conclusion To use a blood warmer set at 41.5°C in conjunction with a compression sleeve at 150 or 300 mmHg does not generate hemolysis. At 300 mmHg a blood warmer set at 41.5°C does not totally avoid a risk of hypothermia. PMID:27711116

  3. The Effect of Grain Size on the Strain Hardening Behavior for Extruded ZK61 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Lixin; Zhang, Wencong; Chen, Wenzhen; Duan, Junpeng; Wang, Wenke; Wang, Erde

    2017-12-01

    The effects of grain size on the tensile and compressive strain hardening behaviors for extruded ZK61 alloys have been investigated by uniaxial tensile and compressive tests along the extrusion directions. Cylindrical tension and compression specimens of extruded ZK61 alloys with various sized grain were fabricated by annealing treatments. Tensile and compressive tests at ambient temperature were conducted at a strain rate of 0.5 × 10-3 s-1. The results indicate that both tensile strain hardening and compressive strain hardening of ZK61 alloys with different grain sizes have an athermal regime of dislocation accumulation in early deformation. The threshold stress value caused dynamic recovery is predominantly related to grain size in tensile strain hardening, but the threshold stress values for different grain sizes are almost identical in compressive strain hardening. There are obvious transition points on the tensile strain hardening curves which indicate the occurrence of dynamic recrystallization (DRX). The tensile strain hardening rate of the coarse-grained alloy obviously decreases faster than that of fine-grained alloys before DRX and the tensile strain hardening curves of different grain sizes basically tend to parallel after DRX. The compressive strain hardening rate of the fine-grained alloy obviously increases faster than that of coarse-grained alloy for twin-induced strain hardening, but compressive strain hardening curves also tend to parallel after twinning is exhausted.

  4. Deformation Behavior and Microstructure Evolution of As-Cast 42CrMo Alloy in Isothermal and Non-isothermal Compression

    NASA Astrophysics Data System (ADS)

    Qin, Fangcheng; Li, Yongtang; Qi, Huiping; Lv, Zhenhua

    2016-11-01

    The isothermal and non-isothermal multi-pass compression tests of centrifugal casting 42CrMo steel were conducted on a Gleeble-3500 thermal simulation machine. The effects of compression passes and finishing temperatures on deformation behavior and microstructure evolution were investigated. It is found that the microstructure is homogeneous with equiaxed grains, and the flow stress does not show significant change with the increase in passes, while the peak softening coefficient increases first and then decreases during inter-pass. Moreover, the dominant mechanisms of controlled temperature and accumulated static recrystallization for grain refinement and its homogeneous distribution are found after 5 passes deformation. As the finishing temperature increases, the flow stress decreases gradually, but the dynamic recrystallization accelerates and softening effect increases, resulting in the larger grain size and homogeneous microstructure. The microhardness decreases sharply because the sufficient softening occurs in microstructure. When the finishing temperature is 890 °C, the carbide particles are precipitated in the vicinity of the grain boundaries, thus inhibiting the dislocation motion. Thus, the higher finishing temperature (≥970 °C) for centrifugal casting 42CrMo alloy should be avoided in non-isothermal multi-pass deformation, which is beneficial to grain refinement and properties improvement.

  5. Simulation of Thermo-viscoplastic Behaviors for AISI 4140 Steel

    NASA Astrophysics Data System (ADS)

    Li, Hong-Bin; Feng, Yun-Li

    2016-04-01

    The thermo-viscoplastic behaviors of AISI 4140 steel are investigated over wide ranges of strain rate and deformation temperature by isothermal compression tests. Based on the experimental results, a unified viscoplastic constitutive model is proposed to describe the hot compressive deformation behaviors of the studied steel. In order to reasonably evaluate the work hardening behaviors, a strain hardening material constant (h0) is expressed as a function of deformation temperature and strain rate in the proposed constitutive model. Also, the sensitivity of initial value of internal variable s to the deformation temperature is discussed. Furthermore, it is found that the initial value of internal variable s can be expressed as a linear function of deformation temperature. Comparisons between the measured and predicted results confirm that the proposed constitutive model can give an accurate and precise estimate of the inelastic stress-strain relationships for the studied high-strength steel.

  6. Tension-Compression Fatigue Behavior of 2D and 3D Polymer Matrix Composites at Elevated Temperature

    DTIC Science & Technology

    2015-09-21

    temperature calibrations, tests procedures and optical microscopy used in this research. 4.1 Mechanical Testing Equipment A Model 810 MTS servo -hydraulic...Composite Materials”. Oxford University Press , New York, NY, 2nd edition, 1994. 4. F.C. Campbell. “Structural Composite Materials” ASM International...M. “Mechanics of Composite Materials”. CRC Press , second Edition, ISBN-10: 156032712x, July 1998. 13. Ruggles-Wrenn, M. B., D. T. Christensen, A. L

  7. The Temperature Effect on the Compressive Behavior of Closed-Cell Aluminum-Alloy Foams

    NASA Astrophysics Data System (ADS)

    Movahedi, Nima; Linul, Emanoil; Marsavina, Liviu

    2018-01-01

    In this research, the mechanical behavior of closed-cell aluminum (Al)-alloy foams was investigated at different temperatures in the range of 25-450 °C. The main mechanical properties of porous Al-alloy foams are affected by the testing temperature, and they decrease with the increase in the temperature during uniaxial compression. From both the constant/serrated character of stress-strain curves and macro/microstructural morphology of deformed cellular structure, it was found that Al foams present a transition temperature from brittle to ductile behavior around 192 °C. Due to the softening of the cellular structure at higher temperatures, linear correlations of the stress amplitude and that of the absorbed energy with the temperature were proposed. Also, it was observed that the presence of inherent defects like micropores in the foam cell walls induced further local stress concentration which weakens the cellular structure's strength and crack propagation and cell-wall plastic deformation are the dominant collapse mechanisms. Finally, an energy absorption study was performed and an optimum temperature was proposed.

  8. Experimental investigation of piston heat transfer under conventional diesel and reactivity-controlled compression ignition combustion regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Splitter, Derek A; Hendricks, Terry Lee; Ghandhi, Jaal B

    2014-01-01

    The piston of a heavy-duty single-cylinder research engine was instrumented with 11 fast-response surface thermocouples, and a commercial wireless telemetry system was used to transmit the signals from the moving piston. The raw thermocouple data were processed using an inverse heat conduction method that included Tikhonov regularization to recover transient heat flux. By applying symmetry, the data were compiled to provide time-resolved spatial maps of the piston heat flux and surface temperature. A detailed comparison was made between conventional diesel combustion and reactivity-controlled compression ignition combustion operations at matched conditions of load, speed, boost pressure, and combustion phasing. The integratedmore » piston heat transfer was found to be 24% lower, and the mean surface temperature was 25 C lower for reactivity-controlled compression ignition operation as compared to conventional diesel combustion, in spite of the higher peak heat release rate. Lower integrated piston heat transfer for reactivity-controlled compression ignition was found over all the operating conditions tested. The results showed that increasing speed decreased the integrated heat transfer for conventional diesel combustion and reactivity-controlled compression ignition. The effect of the start of injection timing was found to strongly influence conventional diesel combustion heat flux, but had a negligible effect on reactivity-controlled compression ignition heat flux, even in the limit of near top dead center high-reactivity fuel injection timings. These results suggest that the role of the high-reactivity fuel injection does not significantly affect the thermal environment even though it is important for controlling the ignition timing and heat release rate shape. The integrated heat transfer and the dynamic surface heat flux were found to be insensitive to changes in boost pressure for both conventional diesel combustion and reactivity-controlled compression ignition. However, for reactivity-controlled compression ignition, the mean surface temperature increased with changes in boost suggesting that equivalence ratio affects steady-state heat transfer.« less

  9. Analysis of sintered polymer scaffolds using concomitant synchrotron computed tomography and in situ mechanical testing.

    PubMed

    Dhillon, A; Schneider, P; Kuhn, G; Reinwald, Y; White, L J; Levchuk, A; Rose, F R A J; Müller, R; Shakesheff, K M; Rahman, C V

    2011-12-01

    The mechanical behaviour of polymer scaffolds plays a vital role in their successful use in bone tissue engineering. The present study utilised novel sintered polymer scaffolds prepared using temperature-sensitive poly(DL-lactic acid-co-glycolic acid)/poly(ethylene glycol) particles. The microstructure of these scaffolds was monitored under compressive strain by image-guided failure assessment (IGFA), which combined synchrotron radiation computed tomography (SR CT) and in situ micro-compression. Three-dimensional CT data sets of scaffolds subjected to a strain rate of 0.01%/s illustrated particle movement within the scaffolds with no deformation or cracking. When compressed using a higher strain rate of 0.02%/s particle movement was more pronounced and cracks between sintered particles were observed. The results from this study demonstrate that IGFA based on simultaneous SR CT imaging and micro-compression testing is a useful tool for assessing structural and mechanical scaffold properties, leading to further insight into structure-function relationships in scaffolds for bone tissue engineering applications.

  10. Characterization of the Heat Extraction Capability of a Compliant, Sliding, Thermal Interface for Use in a High Temperature, Vacuum, Microgravity Furnace

    NASA Technical Reports Server (NTRS)

    Bellomy-Ezell, Jenny; Farmer, Jeff; Breeding, Shawn; Spivey, Reggie

    2001-01-01

    A compliant, thermal interface material is tested to evaluate its thermal behavior at elevated temperatures, in vacuum conditions, and under varying levels of compression. Preliminary results indicate that the thermal performance of this polymer fiber-based, felt-like material is sufficient to meet thermal extraction requirements for the Quench Module Insert, a Bridgman furnace for microgravity material science investigation. This paper discusses testing and modeling approaches employed, gives of a status of characterization activities and provides preliminary test results.

  11. Effect of warm compress application on tissue temperature in healthy dogs.

    PubMed

    Millard, Ralph P; Towle-Millard, Heather A; Rankin, David C; Roush, James K

    2013-03-01

    To measure the effect of warm compress application on tissue temperature in healthy dogs. 10 healthy mixed-breed dogs. Dogs were sedated with hydromorphone (0.1 mg/kg, IV) and diazepam (0.25 mg/kg, IV). Three 24-gauge thermocouple needles were inserted to a depth of 0.5 cm (superficial), 1.0 cm (middle), and 1.5 cm (deep) into a shaved, lumbar, epaxial region to measure tissue temperature. Warm (47°C) compresses were applied with gravity dependence for periods of 5, 10, and 20 minutes. Tissue temperature was recorded before compress application and at intervals for up to 80 minutes after application. Control data were collected while dogs received identical sedation but with no warm compress. Mean temperature associated with 5 minutes of heat application at the superficial, middle, and deep depths was significantly increased, compared with the control temperature. Application for 10 minutes significantly increased the temperature at all depths, compared with 5 minutes of application. Mean temperature associated with 20 minutes of application was not different at the superficial or middle depths, compared with 10 minutes of application. Temperature at the deep depth associated with 10 minutes of application was significantly higher, compared with 20 minutes of application, but all temperature increases at this depth were minimal. Results suggested that application of a warm compress should be performed for 10 minutes. Changes in temperature at a tissue depth of 1.5 cm were minimal or not detected. The optimal compress temperature to achieve therapeutic benefits was not determined.

  12. Shakedown and Preliminary Calibration Tests for the Fuel Engine Evaluation System Using the KM914A Sachs Rotary Combustion Engine.

    DTIC Science & Technology

    1981-12-01

    obtained recommendations are made to improve the system. FEES was designed to handle spark ignition and compression ignition research engines of...Thermometer T W OF Temperature Web Bulb Sling Psychrometer % Relative Humidity Psychrometric chart mm Hg Vapor Pressure Vapor Pressure chart - Correction...results obtained recommendations are made to improve the system. FEES was designed to handle spark ignition and compression ignition research engines of

  13. Compression Strength of Sulfur Concrete Subjected to Extreme Cold

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.

    2008-01-01

    Sulfur concrete cubes were cycled between liquid nitrogen and room temperature to simulate extreme exposure conditions. Subsequent compression testing showed the strength of cycled samples to be roughly five times less than those non-cycled. Fracture surface examination showed de-bonding of the sulfur from the aggregate material in the cycled samples but not in those non-cycled. The large discrepancy found, between the samples is attributed to the relative thermal properties of the materials constituting the concrete.

  14. A Method to Improve Post Impact Compressive Strength in Graphite/Epoxy Composite Materials After Low Temperature Impact

    DTIC Science & Technology

    1991-05-13

    Acknowledgments I would like to recognize and express my deepost appreciation to all the people who made this pI:oject possible. Prol’essor Dennis F...Hasson provided exceptional guidance, knowledge, and timely suggestions that otherwise would have made this project impcssible. Mr. Dave Boll of...project, and performed the compression after impact testing of the panels. The Office of Naval Research provided the funding that made this project

  15. Constitutive modeling of polycarbonate over a wide range of strain rates and temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Haitao; Zhou, Huamin; Huang, Zhigao; Zhang, Yun; Zhao, Xiaoxuan

    2017-02-01

    The mechanical behavior of polycarbonate was experimentally investigated over a wide range of strain rates (10^{-4} to 5× 103 s^{-1}) and temperatures (293 to 353 K). Compression tests under these conditions were performed using a SHIMADZU universal testing machine and a split Hopkinson pressure bar. Falling weight impact testing was carried out on an Instron Dynatup 9200 drop tower system. The rate- and temperature-dependent deformation behavior of polycarbonate was discussed in detail. Dynamic mechanical analysis (DMA) tests were utilized to observe the glass (α ) transition and the secondary (β ) transition of polycarbonate. The DMA results indicate that the α and β transitions have a dramatic influence on the mechanical behavior of polycarbonate. The decompose/shift/reconstruct (DSR) method was utilized to decompose the storage modulus into the α and β components and extrapolate the entire modulus, the α-component modulus and the β-component modulus. Based on three previous models, namely, Mulliken-Boyce, G'Sell-Jonas and DSGZ, an adiabatic model is proposed to predict the mechanical behavior of polycarbonate. The model considers the contributions of both the α and β transitions to the mechanical behavior, and it has been implemented in ABAQUS/Explicit through a user material subroutine VUMAT. The model predictions are proven to essentially coincide with the experimental results during compression testing and falling weight impact testing.

  16. Compressor ported shroud for foil bearing cooling

    DOEpatents

    Elpern, David G [Los Angeles, CA; McCabe, Niall [Torrance, CA; Gee, Mark [South Pasadena, CA

    2011-08-02

    A compressor ported shroud takes compressed air from the shroud of the compressor before it is completely compressed and delivers it to foil bearings. The compressed air has a lower pressure and temperature than compressed outlet air. The lower temperature of the air means that less air needs to be bled off from the compressor to cool the foil bearings. This increases the overall system efficiency due to the reduced mass flow requirements of the lower temperature air. By taking the air at a lower pressure, less work is lost compressing the bearing cooling air.

  17. PRELIMINARY RESULTS OF THE AGC-4 IRRADIATION IN THE ADVANCED TEST REACTOR AND DESIGN OF AGC-5 (HTR16-18469)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davenport, Michael; Petti, D. A.

    The United States Department of Energy’s Advanced Reactor Technologies (ART) Program will irradiate up to six nuclear graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The graphite experiments are being irradiated over an approximate eight year period to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Very High Temperature Gasmore » Reactor (VHTR), as well as other future gas reactors. The experiments each consist of a single capsule that contain six stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens are not be subjected to a compressive load during irradiation. The six stacks have differing compressive loads applied to the top half of diametrically opposite pairs of specimen stacks. A seventh specimen stack in the center of the capsule does not have a compressive load. The specimens are being irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There are also samples taken of the sweep gas effluent to measure any oxidation or off-gassing of the specimens that may occur during initial start-up of the experiment. The first experiment, AGC-1, started its irradiation in September 2009, and the irradiation was completed in January 2011. The second experiment, AGC-2, started its irradiation in April 2011 and completed its irradiation in May 2012. The third experiment, AGC-3, started its irradiation in late November 2012 and completed in the April of 2014. AGC-4 is currently being irradiated in the ATR. This paper will briefly discuss the preliminary irradiation results of the AGC-4 experiment, as well as the design of AGC-5.« less

  18. Development of heat resistant geopolymer-based materials from red mud and rice husk ash

    NASA Astrophysics Data System (ADS)

    Thang, Nguyen Hoc; Nhung, Le Thuy; Quyen, Pham Vo Thi Ha; Phong, Dang Thanh; Khe, Dao Thanh; Van Phuc, Nguyen

    2018-04-01

    Geopolymer is an inorganic polymer composite developed by Joseph Davidovits in 1970s. Such material has potentials to replace Ordinary Portland Cement (OPC)-based materials in the future because of its lower energy consumption, minimal CO2 emissions and lower production cost as it utilizes industrial waste resources. Hence, geopolymerization and the process to produce geopolymers for various applications like building materials can be considered as green industry. Moreover, in this study, red mud and rice husk ash were used as raw materials for geopolymeric production, which are aluminum industrial and agricultural wastes that need to be managed to reduce their negative impact to the environment. The red mud and rice husk ash were mixed with sodium silicate (water glass) solution to form geopolymer paste. The geopolymer paste was filled into 5-cm cube molds according to ASTM C109/C109M 99, and then cured at room temperature for 28 days. These products were then tested for compressive strength and volumetric weight. Results indicated that the material can be considered lightweight with a compressive strength at 28 days that are in the range of 6.8 to 15.5 MPa. Moreover, the geopolymer specimens were also tested for heat resistance at a temperature of 1000oC for 2 hours. Results suggest high heat resistance with an increase of compressive strength from 262% to 417% after exposed at high temperature.

  19. Vibrational Spectroscopic Studies of Reduced-Sensitivity RDX under Static Compression

    NASA Astrophysics Data System (ADS)

    Wong, Chak P.; Gump, Jared C.

    2006-07-01

    Explosive formulations with reduced-sensitivity RDX showed reduced shock sensitivity using Naval Ordnance Laboratory (NOL) Large Scale Gap Test, compared with similar formulations using standard RDX. Molecular processes responsible for the reduction of sensitivity are unknown and are crucial for formulation development. Vibrational spectroscopy at static high pressure may shed light on the mechanisms responsible for the reduced shock sensitivity as shown by the NOL Large Scale Gap Test. I-RDX®, a form of reduced- sensitivity RDX was subjected to static compression at ambient temperature in a Merrill-Bassett sapphire cell from ambient to about 6 GPa. The spectroscopic techniques used were Raman and Fourier-Transform IR (FTIR). The pressure dependence of the Raman mode frequencies of I-RDX® was determined and compared with that of standard RDX. The behavior of I-RDX® near the pressure at which standard RDX, at ambient temperature, undergoes a phase transition from the α to the γ polymorph is presented.

  20. Pulse compression favourable aperiodic infrared imaging approach for non-destructive testing and evaluation of bio-materials

    NASA Astrophysics Data System (ADS)

    Mulaveesala, Ravibabu; Dua, Geetika; Arora, Vanita; Siddiqui, Juned A.; Muniyappa, Amarnath

    2017-05-01

    In recent years, aperiodic, transient pulse compression favourable infrared imaging methodologies demonstrated as reliable, quantitative, remote characterization and evaluation techniques for testing and evaluation of various biomaterials. This present work demonstrates a pulse compression favourable aperiodic thermal wave imaging technique, frequency modulated thermal wave imaging technique for bone diagnostics, especially by considering the bone with tissue, skin and muscle over layers. In order to find the capabilities of the proposed frequency modulated thermal wave imaging technique to detect the density variations in a multi layered skin-fat-muscle-bone structure, finite element modeling and simulation studies have been carried out. Further, frequency and time domain post processing approaches have been adopted on the temporal temperature data in order to improve the detection capabilities of frequency modulated thermal wave imaging.

  1. Shock temperature measurement of transparent materials under shock compression

    NASA Astrophysics Data System (ADS)

    Hu, Jinbiao

    1999-06-01

    Under shock compression, some materials have very small absorptance. So it's emissivity is very small too. For this kinds of materials, although they stand in high temperature state under shock compression, the temperature can not be detected easily by using optical radiation technique because of the low emissivity. In this paper, an optical radiation temperature measurement technique of measuring temperature of very low emissive material under shock compression was proposed. For making sure this technique, temperature of crystal NaCl at shock pressure 41 GPa was measured. The result agrees with the results of Kormer et al and Ahrens et al very well. This shows that this technique is reliable and can be used to measuring low emissive shock temperature.

  2. Experimental analysis of volumetric wear behavioural and mechanical properties study of as cast and 1Hr homogenized Al-25Mg2Si2Cu4Ni alloy at constant load

    NASA Astrophysics Data System (ADS)

    Harlapur, M. D.; Mallapur, D. G.; Udupa, K. Rajendra

    2018-04-01

    In the current study, an experimental analysis of volumetric wear behaviour and mechanical properties of aluminium (Al-25Mg2Si2Cu4Ni) alloy in as cast and 1Hr homogenized with T6 heat treatment is carried out at constant load. Pin-on-disc apparatus was used to carry out sliding wear test. Mechanical properties such as tensile, hardness and compression test on as-cast and 1 hr homogenized samples are measured. Universal testing machine was used to conduct the tensile and compressive test at room temperature. Brinell hardness tester was used to conduct the hardness test. The scanning electron microscope was used to analyze the worn-out wear surfaces. Wear results and mechanical properties shows that 1Hr homogenized Al-25Mg2Si2Cu4Ni alloy samples with T6 treated had better volumetric wear resistance, hardness, tensile and compressive strength as compared to as cast samples.

  3. Modeling constitutive behavior of a 15Cr-15Ni-2.2Mo-Ti modified austenitic stainless steel under hot compression using artificial neural network

    NASA Astrophysics Data System (ADS)

    Mandal, Sumantra

    2006-11-01

    ABSTRACT In this paper, an artificial neural network (ANN) model has been suggested to predict the constitutive flow behavior of a 15Cr-15Ni-2.2Mo-Ti modified austenitic stainless steel under hot deformation. Hot compression tests in the temperature range 850°C- 1250°C and strain rate range 10-3-102 s-1 were carried out. These tests provided the required data for training the neural network and for subsequent testing. The inputs of the neural network are strain, log strain rate and temperature while flow stress is obtained as output. A three layer feed-forward network with ten neurons in a single hidden layer and back-propagation learning algorithm has been employed. A very good correlation between experimental and predicted result has been obtained. The effect of temperature and strain rate on flow behavior has been simulated employing the ANN model. The results have been found to be consistent with the metallurgical trend. Finally, a monte carlo analiysis has been carried out to find out the noise sensitivity of the developed model.

  4. Study for fabrication, evaluation, and testing of monolayer woven type materials for space suit insulation

    NASA Technical Reports Server (NTRS)

    Merrick, E. B.

    1979-01-01

    An alternative space suit insulation concept using a monolayer woven pile material is discussed. The material reduces cost and improves the durability of the overgarment, while providing protection similar to that provided by multilayer insulation (MLI). Twelve samples of different configurations were fabricated and tested for compressibility and thermal conductivity as a function of compression loading. Two samples which showed good results in the initial tests were further tested for thermal conductivity with respect to ambient pressure and temperature. Results of these tests were similar to results of the MLI tests, indicating the potential of the monolayer fabric to replace the present MLI. A seaming study illustrated that the fabric can be sewn in a structurally sound seam with minimal heat loss. It is recommended that a prototype thermal meteroid garment be fabricated.

  5. Evolution of interphase and intergranular strain in zirconium-niobium alloys during deformation at room temperature

    NASA Astrophysics Data System (ADS)

    Cai, Song

    Zr-2.5Nb is currently used for pressure tubes in the CANDU (CANada Deuterium Uranium) reactor. A complete understanding of the deformation mechanism of Zr-2.5Nb is important if we are to accurately predict the in-reactor performance of pressure tubes and guarantee normal operation of the reactors. This thesis is a first step in gaining such an understanding; the deformation mechanism of ZrNb alloys at room temperature has been evaluated through studying the effect of texture and microstructure on deformation. In-situ neutron diffraction was used to monitor the evolution of the lattice strain of individual grain families along both the loading and Poisson's directions and to track the development of interphase and intergranular strains during deformation. The following experiments were carried out with data interpreted using elasto-plastic modeling techniques: (1) Compression tests of a 100%betaZr material at room temperature. (2) Tension and compression tests of hot rolled Zr-2.5Nb plate material. (3) Compression of annealed Zr-2.5Nb. (4) Cyclic loading of the hot rolled Zr-2.5Nb. (5) Compression tests of ZrNb alloys with different Nb and oxygen contents. The experimental results were interpreted using a combination of finite element (FE) and elasto-plastic self-consistent (EPSC) models. The phase properties and phase interactions well represented by the FE model, the EPSC model successfully captured the evolution of intergranular constraint during deformation and provided reasonable estimates of the critical resolved shear stress and hardening parameters of different slip systems under different conditions. The consistency of the material parameters obtained by the EPSC model allows the deformation mechanism at room temperature and the effect of textures and microstructures of ZrNb alloys to be understood. This work provides useful information towards manufacturing of Zr-2.5Nb components and helps in producing ideal microstructures and material properties for pressure tubes. Also it is helpful in guiding the development of new materials for the next generation of nuclear reactors. Furthermore, the large data set obtained from this study can be used in evaluation and improving current and future polycrystalline deformation models.

  6. Structural characterization of high temperature composites

    NASA Technical Reports Server (NTRS)

    Mandell, J. F.; Grande, D. H.

    1991-01-01

    Glass, ceramic, and carbon matrix composite materials have emerged in recent years with potential properties and temperature resistance which make them attractive for high temperature applications such as gas turbine engines. At the outset of this study, only flexural tests were available to evaluate brittle matrix composites at temperatures in the 600 to 1000 C range. The results are described of an ongoing effort to develop appropriate tensile, compression, and shear test methods for high temperature use. A tensile test for unidirectional composites was developed and used to evaluate the properties and behavior of ceramic fiber reinforced glass and glass-ceramic matrix composites in air at temperatures up to 1000 C. The results indicate generally efficient fiber reinforcement and tolerance to matrix cracking similar to polymer matrix composites. Limiting properties in these materials may be an inherently very low transverse strain to failure, and high temperature embrittlement due to fiber/matrix interface oxidation.

  7. Effect of compression load and temperature on thermomechanical tests for gutta-percha and Resilon®.

    PubMed

    Tanomaru-Filho, M; Silveira, G F; Reis, J M S N; Bonetti-Filho, I; Guerreiro-Tanomaru, J M

    2011-11-01

    To analyse a method used to evaluate the thermomechanical properties of gutta-percha and Resilon(®) at different temperatures and compression loads. Two hundred and seventy specimens measuring 10 mm in diameter and 1.5 mm in height were made from the following materials: conventional gutta-percha (GCO), thermoplastic gutta-percha (GTP) and Resilon(®) cones (RE). After 24 h, the specimens were placed in water at 50 °C, 60 °C or 70 °C for 60 s. After that, specimens were placed between two glass slabs, and loads weighing 1.0, 3.0 or 5.0 kg were applied. Images of the specimens were digitized before and after the test and analysed using imaging software to determine their initial and final areas. The thermomechanical property of each material was determined by the difference between the initial and final areas of the specimens. Data were subjected to anova and SNK tests at 5% significance. To verify a possible correlation between the results of the materials, linear regression coefficients (r) were calculated. Data showed higher flow area values for RE under all compression loads at 70 °C and under the 5.0 kg load at 60 °C (P < 0.05). Regarding gutta-percha, GTP showed higher flow under loads weighing 3.0 and 5.0 kg, at 60 and 70 °C (P < 0.05). GCO presented higher flow at 70 °C with a load of 5.0 kg. Regression analyses showed a poor linear correlation amongst the results of the materials under the different experimental conditions. Gutta-percha and Resilon(®) cones require different compression loads and temperatures for evaluation of their thermomechanical properties. For all materials, the greatest flow occurred at 70 °C under a load of 5.0 kg; therefore, these parameters may be adopted when evaluating endodontic filling materials. © 2011 International Endodontic Journal.

  8. National Transonic Facility Fan Blade prepreg material characterization tests

    NASA Technical Reports Server (NTRS)

    Klich, P. J.; Richards, W. H.; Ahl, E. L., Jr.

    1981-01-01

    The test program for the basic prepreg materials used in process development work and planned fabrication of the national transonic facility fan blade is presented. The basic prepreg materials and the design laminate are characterized at 89 K, room temperature, and 366 K. Characterization tests, test equipment, and test data are discussed. Material tests results in the warp direction are given for tensile, compressive, fatigue (tension-tension), interlaminar shear and thermal expansion.

  9. Experiments on planetary ices at UCL

    NASA Astrophysics Data System (ADS)

    Grindrod, P. M.; Fortes, A. D.; Wood, I. G.; Dobson, D.; Sammonds, P. R.; Stone-Drake, L.; Vocadlo, L.

    2007-08-01

    Using a suite of techniques and equipment, we conduct several different types of experiments on planetary ices at UCL. Samples are prepared in the Ice Physics Laboratory, which consists of a 5 chamber complex of inter-connected cold rooms, controllable from +30 to -30 deg C. Within this laboratory we have a functioning triaxial deformation cell operating at low temperature (down to -90 deg C) and high pressures (300 MPa), an Automatic Ice Fabric Analyser (AIFA) and a low-temperature microscope with CCD output. Polycrystalline samples, 40mm diameter by 100mm long, are compressed in the triaxial rig with a confining pressure; single crystal specimens are compressed in a separate uniaxial creep rig which operates at zero confining pressure for surface studies. A cold stage is also available for study of ice microstructural studies on our new Jeol JSM-6480LV SEM, which also allows tensile, compression and/or bending tests, with load ranges from less than 2N to 5000N. Finally, we also use a cold stage on a new PANalytical, X'pert PRO MPD, high resolution powder diffractometer to study the structure and phase behaviour of icy materials. Recent highlights of our work include: (1) derivation of a manufacturing process for methane clathrate at low temperatures, analysed in the X-Ray Diffraction Laboratory, for future rheological experiments, (2) analysed the growth behaviour of MS11, (3) refurbished and commenced calibration tests on the triaxial deformation cell using ice Ih, and (4) performed creep tests on gypsum and epsomite using the single crystal deformation cell. Further experiments will build on these preliminary results.

  10. The Effects of Engine Speed and Mixture Temperature on the Knocking Characteristics of Several Fuels

    NASA Technical Reports Server (NTRS)

    Lee, Dana W

    1940-01-01

    Six 100-octane and two 87-octane aviation engine fuels were tested in a modified C.F.R. variable-compression engine at 1,500, 2,000 and 2,500 rpm. The mixture temperature was raised from 50 to 300 F in approximately 50 degree steps and, at each temperature, the compression ratio was adjusted to give incipient knock as shown by a cathode ray indicator. The results are presented in tabular form. The results are analyzed on the assumption that the conditions which determine whether a given fuel will knock are the maximum values of density and temperature reached by the burning gases. A maximum permissible density factor, proportional to the maximum density of the burning gases just prior to incipient knock, and the temperature of the burning gases at that time were computed for each of the test conditions. Values of the density factors were plotted against the corresponding end-gas temperatures for the three engine speeds and also against engine speed for several and end-gas temperatures. The maximum permissible density factor varied only slightly with engine speed but decreased rapidly with an increase in the end-gas temperature. The effect of changing the mixture temperature was different for fuels of different types. The results emphasize the desirability of determining the anti knock values of fuels over a wide range of engine and intake-air conditions rather that at a single set of conditions.

  11. Effects of Medium Temperature and Industrial By-Products on the Key Hardened Properties of High Performance Concrete.

    PubMed

    Safiuddin, Md; Raman, Sudharshan N; Zain, Muhammad Fauzi Mohd

    2015-12-10

    The aim of the work reported in this article was to investigate the effects of medium temperature and industrial by-products on the key hardened properties of high performance concrete. Four concrete mixes were prepared based on a water-to-binder ratio of 0.35. Two industrial by-products, silica fume and Class F fly ash, were used separately and together with normal portland cement to produce three concrete mixes in addition to the control mix. The properties of both fresh and hardened concretes were examined in the laboratory. The freshly mixed concrete mixes were tested for slump, slump flow, and V-funnel flow. The hardened concretes were tested for compressive strength and dynamic modulus of elasticity after exposing to 20, 35 and 50 °C. In addition, the initial surface absorption and the rate of moisture movement into the concretes were determined at 20 °C. The performance of the concretes in the fresh state was excellent due to their superior deformability and good segregation resistance. In their hardened state, the highest levels of compressive strength and dynamic modulus of elasticity were produced by silica fume concrete. In addition, silica fume concrete showed the lowest level of initial surface absorption and the lowest rate of moisture movement into the interior of concrete. In comparison, the compressive strength, dynamic modulus of elasticity, initial surface absorption, and moisture movement rate of silica fume-fly ash concrete were close to those of silica fume concrete. Moreover, all concretes provided relatively low compressive strength and dynamic modulus of elasticity when they were exposed to 50 °C. However, the effect of increased temperature was less detrimental for silica fume and silica fume-fly ash concretes in comparison with the control concrete.

  12. Effects of Medium Temperature and Industrial By-Products on the Key Hardened Properties of High Performance Concrete

    PubMed Central

    Safiuddin, Md.; Raman, Sudharshan N.; Zain, Muhammad Fauzi Mohd.

    2015-01-01

    The aim of the work reported in this article was to investigate the effects of medium temperature and industrial by-products on the key hardened properties of high performance concrete. Four concrete mixes were prepared based on a water-to-binder ratio of 0.35. Two industrial by-products, silica fume and Class F fly ash, were used separately and together with normal portland cement to produce three concrete mixes in addition to the control mix. The properties of both fresh and hardened concretes were examined in the laboratory. The freshly mixed concrete mixes were tested for slump, slump flow, and V-funnel flow. The hardened concretes were tested for compressive strength and dynamic modulus of elasticity after exposing to 20, 35 and 50 °C. In addition, the initial surface absorption and the rate of moisture movement into the concretes were determined at 20 °C. The performance of the concretes in the fresh state was excellent due to their superior deformability and good segregation resistance. In their hardened state, the highest levels of compressive strength and dynamic modulus of elasticity were produced by silica fume concrete. In addition, silica fume concrete showed the lowest level of initial surface absorption and the lowest rate of moisture movement into the interior of concrete. In comparison, the compressive strength, dynamic modulus of elasticity, initial surface absorption, and moisture movement rate of silica fume-fly ash concrete were close to those of silica fume concrete. Moreover, all concretes provided relatively low compressive strength and dynamic modulus of elasticity when they were exposed to 50 °C. However, the effect of increased temperature was less detrimental for silica fume and silica fume-fly ash concretes in comparison with the control concrete. PMID:28793732

  13. Is There Evidence that Runners can Benefit from Wearing Compression Clothing?

    PubMed

    Engel, Florian Azad; Holmberg, Hans-Christer; Sperlich, Billy

    2016-12-01

    Runners at various levels of performance and specializing in different events (from 800 m to marathons) wear compression socks, sleeves, shorts, and/or tights in attempt to improve their performance and facilitate recovery. Recently, a number of publications reporting contradictory results with regard to the influence of compression garments in this context have appeared. To assess original research on the effects of compression clothing (socks, calf sleeves, shorts, and tights) on running performance and recovery. A computerized research of the electronic databases PubMed, MEDLINE, SPORTDiscus, and Web of Science was performed in September of 2015, and the relevant articles published in peer-reviewed journals were thus identified rated using the Physiotherapy Evidence Database (PEDro) Scale. Studies examining effects on physiological, psychological, and/or biomechanical parameters during or after running were included, and means and measures of variability for the outcome employed to calculate Hedges'g effect size and associated 95 % confidence intervals for comparison of experimental (compression) and control (non-compression) trials. Compression garments exerted no statistically significant mean effects on running performance (times for a (half) marathon, 15-km trail running, 5- and 10-km runs, and 400-m sprint), maximal and submaximal oxygen uptake, blood lactate concentrations, blood gas kinetics, cardiac parameters (including heart rate, cardiac output, cardiac index, and stroke volume), body and perceived temperature, or the performance of strength-related tasks after running. Small positive effect sizes were calculated for the time to exhaustion (in incremental or step tests), running economy (including biomechanical variables), clearance of blood lactate, perceived exertion, maximal voluntary isometric contraction and peak leg muscle power immediately after running, and markers of muscle damage and inflammation. The body core temperature was moderately affected by compression, while the effect size values for post-exercise leg soreness and the delay in onset of muscle fatigue indicated large positive effects. Our present findings suggest that by wearing compression clothing, runners may improve variables related to endurance performance (i.e., time to exhaustion) slightly, due to improvements in running economy, biomechanical variables, perception, and muscle temperature. They should also benefit from reduced muscle pain, damage, and inflammation.

  14. NASA Tech Briefs, February 2010

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Topics covered include: Insulation-Testing Cryostat With Lifting Mechanism; Optical Testing of Retroreflectors for Cryogenic Applications; Measuring Cyclic Error in Laser Heterodyne Interferometers; Self-Referencing Hartmann Test for Large-Aperture Telescopes; Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser; Reconfigurable Hardware for Compressing Hyperspectral Image Data; Spatio-Temporal Equalizer for a Receiving-Antenna Feed Array; High-Speed Ring Bus; Nanoionics-Based Switches for Radio-Frequency Applications; Lunar Dust-Tolerant Electrical Connector; Compact, Reliable EEPROM Controller; Quad-Chip Double-Balanced Frequency Tripler; Ka-Band Waveguide Two-Way Hybrid Combiner for MMIC Amplifiers; Radiation-Hardened Solid-State Drive; Use of Nanofibers to Strengthen Hydrogels of Silica, Other Oxides, and Aerogels; Two Concepts for Deployable Trusses; Concentric Nested Toroidal Inflatable Structures; Investigating Dynamics of Eccentricity in Turbomachines; Improved Low-Temperature Performance of Li-Ion Cells Using New Electrolytes; Integrity Monitoring of Mercury Discharge Lamps; White-Light Phase-Conjugate Mirrors as Distortion Correctors; Biasable, Balanced, Fundamental Submillimeter Monolithic Membrane Mixer; ICER-3D Hyperspectral Image Compression Software; and Context Modeler for Wavelet Compression of Spectral Hyperspectral Images.

  15. Dynamic and Static High Temperature Resistant Ceramic Seals for X- 38 re-Entry Vehicle

    NASA Astrophysics Data System (ADS)

    Handrick, Karin E.; Curry, Donald M.

    2002-01-01

    In a highly successful partnership, NAS A, ESA, DLR (German Space Agency) and European industry are building the X-38, V201 re-entry spacecraft, the prototype of the International Space Station's Crew Return Vehicle (CRV). This vehicle would serve both as an ambulance for medical emergencies and as an evacuation vehicle for the Space Station. The development of essential systems and technologies for a reusable re-entry vehicle is a first for Europe, and sharing the development of an advanced re-entry spacecraft with foreign partners is a first for NASA. NASA, in addition to its subsystem responsibilities, is performing overall X-38 vehicle system engineering and integration, will launch V201 on the Space Shuttle, deliver flight data for post-flight analysis and assessment and is responsible for development and manufacture of structural vehicle components and thermal protection (TPS) tiles. The major European objective for cooperation with NASA on X-38 was to establish a clear path through which key technologies needed for future space transportation systems could be developed and validated at affordable cost and with controlled risk. Europe has taken the responsibility to design and manufacture hot control surfaces like metallic rudders and ceramic matrix composites (CMC) body flaps, thermal protection systems such as CMC leading edges, the CMC nose cap and -skirt, insulation, landing gears and elements of the V201 primary structure. Especially hot control surfaces require extremely high temperature resistant seals to limit hot gas ingestion and transfer of heat to underlying low-temperature structures to prevent overheating of these structures and possible loss of the vehicle. Complex seal interfaces, which have to fulfill various, tight mission- and vehicle-related requirements exist between the moveable ceramic body flaps and the bottom surface of the vehicle, between the rudder and fin structure and the ceramic leading edge panel and TPS tiles. While NASA concentrated on the development, qualification and manufacture of dynamic seals in the rudder area, the responsibility of MAN Technologie focused on the development, lay-out, qualification and flight hardware manufacture of static and dynamic seals in ceramic hot structures' associated gaps and interfaces, dealing with re-entry temperatures up to 1600°C. This paper presents results for temperature and mechanical stability, flow, scrub (up to 1000 cycles) and of arc jet tests under representative low boundary conditions and plasma step/gap tests, conducted during the development and qualification phases of these different kind of ceramic seals. Room temperature seal compression tests were performed at low compression levels to determine load versus linear compression, preload, contact area, stiffness and resiliency characteristics under low load conditions. Flow tests with thermally aged seals were conducted at ambient temperature to examine leakage at low compression levels and in as-manufactured conditions. Seal scrub tests were performed to examine durability and wear resistance and to recommend surface treatments required to maximize seal wear life. Results of arc jet/plasma tests under simulated re-entry conditions (pressure, temperature) verified seal temperature stability and function under representative assembly and interface conditions. Each of these specifically developed seals fulfilled the requirements and is qualified for flight on X-38, V201.

  16. Full-Scale System for Quantifying Loads and Leak Rates of Seals for Space Applications

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Daniels, Christopher C.; Wasowski, Janice L.; Robbie, Malcolm G.; Erker, Arthur H.; Drlik, Gary J.; Mayer, John J.

    2010-01-01

    NASA is developing advanced space-rated vacuum seals in support of future space exploration missions to low-Earth orbit and other destinations. These seals may be 50 to 60 in. (127 to 152 cm) in diameter and must exhibit extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions to the International Space Station or the Moon. Seal compression loads must be below prescribed limits so as not to overload the mechanisms that compress them during docking or mating, and seal adhesion forces must be low to allow two mated systems to separate when required. NASA Glenn Research Center has developed a new test apparatus to measure leak rates and compression and adhesion loads of candidate full-scale seals under simulated thermal, vacuum, and engagement conditions. Tests can be performed in seal-on-seal or seal-on-flange configurations at temperatures from -76 to 140 F (-60 to 60 C) under operational pressure gradients. Nominal and off-nominal mating conditions (e.g., incomplete seal compression) can also be simulated. This paper describes the main design features of the test apparatus as well as techniques used to overcome some of the design challenges.

  17. Method for compression molding of thermosetting plastics utilizing a temperature gradient across the plastic to cure the article

    NASA Technical Reports Server (NTRS)

    Heier, W. C. (Inventor)

    1974-01-01

    A method is described for compression molding of thermosetting plastics composition. Heat is applied to the compressed load in a mold cavity and adjusted to hold molding temperature at the interface of the cavity surface and the compressed compound to produce a thermal front. This thermal front advances into the evacuated compound at mean right angles to the compression load and toward a thermal fence formed at the opposite surface of the compressed compound.

  18. Strength and Permeability Evolution of Compressed Bentonite in Response to Salinity and Temperature Changes

    NASA Astrophysics Data System (ADS)

    Winnard, B. R.; Mitchell, T. M.; Browning, J.; Cuss, R. J.; Norris, S.; Meredith, P. G.

    2017-12-01

    Deep geological repositories are the preferred solution to dispose of radioactive waste; design concepts for these disposal facilities include compacted, saturated bentonite as a buffer between waste canister and host rock. Bentonite is favoured for its high swelling capacity, low permeability, and radionuclide retention properties. However, its thermo-hydro-mechanical tolerances must be thoroughly tested to ensure adequate long term performance. Climate variations are likely to induce periods of permafrost, and consequently, changes in groundwater salinity at depth. We performed laboratory experiments investigating effects of temperature and salinity change on uniaxial compressive strength (UCS), and permeability of compacted MX-80 bentonite cylinders. These specimens (moisture content = 22.9±0.1%, dry density = 1.66±0.02 g.cm-3) were compacted with deionised water, and a range of wt% NaCl, CaCl2, or KCl, to compare the effects of compaction fluid. Samples of compressed bentonite were cooled to -20 °C, and heated to 90 ºC, a possible temperature forecast for a repository dependent on factors such as geographical location, waste type, and facility design. Tests were all performed at room temperature, however in situ temperature tests are planned. The UCS of samples that experienced freeze thaw, and 40 ºC treatment failed at 6.5 MPa, with 4% strain, maintaining the same values as untreated bentonite compacted with deionised water. Samples compacted with saline solutions also yielded similar strengths, of 7 MPa, and failed at 4%. However, the 90 ºC, regardless of compaction fluid, failed at 15-18 MPa, at just 2% strain. In all experiments, the spread of strain accommodated varied inconsistently, however, peak stress was uniform. Further experiments into heterogeneity are needed to understand the responsible mechanisms. To obtain permeability, we utilised the pore pressure oscillation (PPO) technique with argon as the pore fluid. We also tested water as the pore fluid to assess the contribution of montmorillonite swelling and compare argon and water permeability. There is potential for salinity to markedly affect permeability, as electrolytes can initiate cation-exchange reactions. Permeability and strength are both key parameters to assess the long term safety of a geological disposal facility.

  19. Dynamic Uniaxial Compression of HSLA-65 Steel at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Dike, Shweta; Wang, Tianxue; Zuanetti, Bryan; Prakash, Vikas

    2017-12-01

    In the present study, the dynamic response of a high-strength, low alloy Grade 65 (HSLA-65) steel, used by the United States Navy for ship hull construction, is investigated under dynamic uniaxial compression at temperatures ranging from room temperature to 1000 °C using a novel elevated temperature split-Hopkinson pressure bar. These experiments are designed to probe the dynamic response of HSLA-65 steel in its single α-ferrite phase, mixed α + γ-austenite phase, and the single γ-austenite phase, as a function of temperature. The investigation is conducted at two different average strain rates—1450 and 2100/s. The experimental results indicate that at test temperatures in the range from room temperature to lower than 600 °C, i.e. prior to the development of the mixed α + γ phase, a net softening in flow strength is observed at all levels of plastic strain with increase in test temperatures. As the test temperatures are increased, the rate of this strain softening with temperature is observed to decrease, and at 600 °C the trend reverses itself resulting in an increase in flow stress at all strains tested. This increase in flow stress is understood be due to dynamic strain aging, where solute atoms play a distinctive role in hindering dislocation motion. At 800 °C, a (sharp) drop in the flow stress, equivalent to one-half of its value at room temperature, is observed. As the test temperature are increased to 900 and 1000 °C, further drop in flow stress are observed at all plastic strain levels. In addition, strain hardening in flow stress is observed at all test temperatures up to 600 °C; beyond 800 °C the rate of strain hardening is observed to decrease, with strain softening becoming dominant at temperatures of 900 °C and higher. Moreover, comparing the high strain rate stress versus strain data gathered on HSLA 65 in the current investigation with those available in the literature at quasi-static strain rates, strain-rate hardening can be inferred. The flow stress increases from 700 MPa at 8 × 10-4/s to 950 MPa at 1450/s and then to 1000 MPa at 2100/s at a strain of 0.1. Optical microscopy is used to understand evolution of microstructure in the post-test samples at the various test temperatures employed in the present study.

  20. ESP – Data from Restarted Life Tests of Various Silicon Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Jim

    2010-10-06

    Current funding has allowed the restart of testing of various silicone materials placed in Life Tests or Aging Studies from past efforts. Some of these materials have been in test since 1982, with no testing for approximately 10 years, until funding allowed the restart in FY97. Charts for the various materials at different thickness, compression, and temperature combinations illustrate trends for the load-bearing properties of the materials.

  1. Effect of Extrusion Temperature on the Plastic Deformation of an Mg-Y-Zn Alloy Containing LPSO Phase Using In Situ Neutron Diffraction

    NASA Astrophysics Data System (ADS)

    Garces, G.; Perez, P.; Cabeza, S.; Kabra, S.; Gan, W.; Adeva, P.

    2017-11-01

    The evolution of the internal strains during in situ tension and compression tests has been measured in an MgY2Zn1 alloy containing long-period stacking ordered (LPSO) phase using neutron diffraction. The alloy was extruded at two different temperatures to study the influence of the microstructure and texture of the magnesium and the LPSO phases on the deformation mechanisms. The alloy extruded at 623 K (350 °C) exhibits a strong fiber texture with the basal plane parallel to the extrusion direction due to the presence of areas of coarse non-recrystallised grains. However, at 723 K (450 °C), the magnesium phase is fully recrystallised with grains randomly oriented. On the other hand, at the two extrusion temperatures, the LPSO phase orients their basal plane parallel to the extrusion direction. Yield stress is always slightly higher in compression than in tension. Independently on the stress sign and the extrusion temperature, the beginning of plasticity is controlled by the activation of the basal slip system in the dynamic recrystallized grains. Therefore, the elongated fiber-shaped LPSO phase which behaves as the reinforcement in a metal matrix composite is responsible for this tension-compression asymmetry.

  2. Time-Temperature Dependent Response of Filament Wound Composites for Flywheel Rotors

    NASA Technical Reports Server (NTRS)

    Thesken, John C.; Bowman, Cheryl L.; Arnold, Steven M.; Thompson, Richard C.

    2004-01-01

    Flywheel energy storage offers an attractive alternative to battery systems used in space applications such as the International Space Station. Rotor designs capable of high specific energies benefit from the load carrying capacity of hoop wound carbon fibers but their long-term durability may be limited by time-temperature dependent radial deformations. This was investigated for the carbon/epoxy rotor material, IM7/8552. Coupon specimens were sectioned from filament wound panels. These were tested in compression and tension at room temperature (RT), 95 and 135 C for strain rates from 5x10(exp -6) per second to 5x10(exp -3) per second. Time, temperature and load sign dependent effects were significant transverse to the fiber. At -0.5 percent strain for 72 hr, compressive stresses relaxed 16.4 percent at 135 C and 13 percent at 95 C. Tensile stresses relaxed only 7 percent in 72 hr at 135 C for 0.5 percent strain. Using linear hereditary material response and Boltzmann s principle of superposition to describe this behavior is problematic if not intractable. Micromechanics analysis including the effects of processing residual stresses is needed to resolve the paradoxes. Uniaxial compressive stress relaxation data may be used to bound the loss of radial pre-load stresses in flywheel rotors.

  3. Planar temperature measurement in compressible flows using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1991-01-01

    A laser-induced iodine fluorescence technique that is suitable for the planar measurement of temperature in cold nonreacting compressible air flows is investigated analytically and demonstrated in a known flow field. The technique is based on the temperature dependence of the broadband fluorescence from iodine excited by the 514-nm line of an argon-ion laser. Temperatures ranging from 165 to 245 K were measured in the calibration flow field. This technique makes complete, spatially resolved surveys of temperature practical in highly three-dimensional, low-temperature compressible flows.

  4. Experimental studies on fatigue behavior of macro fiber composite (MFC) under mechanical loading

    NASA Astrophysics Data System (ADS)

    Pandey, Akash; Arockiarajan, A.

    2016-04-01

    Macro fiber Composite (MFC) finds its application in active control, vibration control and sensing elements. MFC can be laminated to surfaces or embedded in the structures to be used as an actuator and sensors. Due to its attractive properties and applications, it may be subjected to continuous loading, which leads to the deterioration of the properties. This study is focused on the fatigue lifetime of MFC under tensile and compressive loading at room temperature. Experiments were performed using 4 point bending setup, with MFC pasted at the center of the mild steel beam, to maintain constant bending stress along MFC. MFC is pasted using vacuum bagging technique. Sinusoidal loading is given to sample while maintaining R=0.13 (for tensile testing) and R=10 (for compressive testing). For d31 and d33 type of MFC, test was conducted for the strain values of 727 μ strain, 1400 μ strain, 1700 μ strain and 1900 μ strain for fatigue under tensile loading. For fatigue under compressive loading, both d33 and d31, was subjected to minimum strain of -2000 μ strain. Decrease in the slope of dielectric displacement vs. strain is the measure for the degradation. 10 percent decrease in the slope is set as the failure criteria. Experimental results show that MFC is very reliable below 1700 μ strain (R=0.13) at the room temperature.

  5. Thermomechanical Processing of Structural Steels with Dilute Niobium Additions

    NASA Astrophysics Data System (ADS)

    Cui, Z.; Patel, J.; Palmiere, E. J.

    The recrystallisation behaviour of medium carbon steels with dilute Nb addition was investigated by means of plane strain compression tests and the observation of prior austenite microstructures during different deformation conditions. It was found that complete suppression of recrystallisation did not occur in the deformation temperature range investigated. At lower deformation temperatures, partial recrystallisation occurred in the higher Nb sample. This gives the potential to obtain a full suppression of recrystallisation at lower deformation temperatures.

  6. An Overview of Advanced Elastomeric Seal Development and Testing Capabilities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.

    2014-01-01

    NASA is developing advanced space-rated elastomeric seals to support future space exploration missions to low Earth orbit, the Moon, near Earth asteroids, and other destinations. This includes seals for a new docking system and vehicle hatches. These seals must exhibit extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions. Seal compression loads must be below prescribed limits so as not to overload the mechanisms that compress them, and seal adhesion forces must be low to allow the sealed interface to be separated when required (e.g., during undocking or hatch opening). NASA Glenn Research Center has developed a number of unique test fixtures to measure the leak rates and compression and adhesion loads of candidate seal designs under simulated thermal, vacuum, and engagement conditions. Tests can be performed on fullscale seals with diameters on the order of 50 in., subscale seals that are about 12 in. in diameter, and smaller specimens such as O-rings. Test conditions include temperatures ranging from -238 to 662degF (-150 to 350degC), operational pressure gradients, and seal-on-seal or seal-on-flange mating configurations. Nominal and off-nominal conditions (e.g., incomplete seal compression) can also be simulated. This paper describes the main design features and capabilities of each type of test apparatus and provides an overview of advanced seal development activities at NASA Glenn.

  7. An Overview of Advanced Elastomeric Seal Development and Testing Capabilities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H.

    2014-01-01

    NASA is developing advanced space-rated elastomeric seals to support future space exploration missions to low Earth orbit, the Moon, near Earth asteroids, and other destinations. This includes seals for a new docking system and vehicle hatches. These seals must exhibit extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions. Seal compression loads must be below prescribed limits so as not to overload the mechanisms that compress them, and seal adhesion forces must be low to allow the sealed interface to be separated when required (e.g., during undocking or hatch opening). NASA Glenn Research Center has developed a number of unique test fixtures to measure the leak rates and compression and adhesion loads of candidate seal designs under simulated thermal, vacuum, and engagement conditions. Tests can be performed on full-scale seals with diameters on the order of 50 in., subscale seals that are about 12 in. in diameter, and smaller specimens such as O-rings. Test conditions include temperatures ranging from -238 to 662 F (-150 to 350 C), operational pressure gradients, and seal-on-seal or seal-on-flange mating configurations. Nominal and off-nominal conditions (e.g., incomplete seal compression) can also be simulated. This paper describes the main design features and capabilities of each type of test apparatus and provides an overview of advanced seal development activities at NASA Glenn.

  8. Temperature Effects on the Impact Behavior of Fiberglass and Fiberglass/Kevlar Sandwich Composites

    NASA Astrophysics Data System (ADS)

    Halvorsen, Aaron; Salehi-Khojn, Amin; Mahinfalah, Mohammad; Nakhaei-Jazar, Reza

    2006-11-01

    Impact tests were performed on sandwich composites with Fiberglass and Fiberglass/Kevlar face sheets subjected to varied temperatures. A number of specimens were tested at -50 to 120 °C temperature range and at 20, 30, and 45 J low velocity energy levels. Impact properties of the sandwich composites that were evaluated include maximum normal and shear stresses, maximum energy absorption, non-dimensional parameters (AEMP, PI, and RD), and compression after impact strength. Composite specimens tested have a urethane foam filled honeycomb center sandwiched between a variation of four layered Fiberglass and Kevlar/Fiberglass face sheets in a thermoset polymer epoxy matrix. Results showed that the impact performance of these sandwich composites changed over the range of temperature considered and with the addition of a Kevlar layer.

  9. Optical Radiation from Shock-Compressed Materials. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Svendsen, Robert F., Jr.

    1987-01-01

    Recent observations of shock-induced radiation from oxides, silicates, and metals of geophysical interest constrain the shock-compressed temperature of these materials. The relationships between the temperature inferred from the observed radiation and the temperature of the shock-compressed film or foil and/or window were investigated. Changes of the temperature field in each target component away from that of their respective shock-compressed states occur because of: shock-impedance mismatch between target components; thermal mismatch between target components; surface roughness at target interfaces; and conduction within and between target components. In particular, conduction may affect the temperature of the film/foil window interface on the time scale of the experiments, and so control the intensity and history of the dominant thermal radiation sources in the target. This type of model was used to interpret the radiation emitted by a variety of shock-compressed materials and interfaces.

  10. X-ray Diffraction Study of Aluminum Carbide Powder to 50 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, C.; Ma, Y; Chyu, M

    2009-01-01

    The crystal structure and equation of state (EOS) of aluminum carbide (Al{sub 4}C{sub 3}) have been determined directly up to 50.1 GPa at room temperature by the synchrotron x-ray diffraction techniques. The results indicate that Al{sub 4}C{sub 3} remained in rhombohedral structure under all tested pressure-temperature conditions and exhibited anisotropic compressibility, with the c-axis more compressible than the a-axis. Fitting the experimental data to third order Birch-Murnaghan EOS yields a bulk modulus of K{sub OT} = 233 {+-} 6 GPa with its pressure derivative K{sub OT}{prime} = 3.4 {+-} 0.4, while the second-order EOS yields K{sub OT} = 223 {+-}more » 2 GPa.« less

  11. Fuel Vaporization and Its Effect on Combustion in a High-Speed Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1933-01-01

    The tests discussed in this report were conducted to determine whether or not there is appreciable vaporization of the fuel injected into a high-speed compression-ignition engine during the time available for injection and combustion. The effects of injection advance angle and fuel boiling temperature were investigated. The results show that an appreciable amount of the fuel is vaporized during injection even though the temperature and pressure conditions in the engine are not sufficient to cause ignition either during or after injection, and that when the conditions are such as to cause ignition the vaporization process affects the combustion. The results are compared with those of several other investigators in the same field.

  12. Development of high-temperature Kolsky compression bar techniques for recrystallization investigation

    NASA Astrophysics Data System (ADS)

    Song, B.; Antoun, B. R.; Boston, M.

    2012-05-01

    We modified the design originally developed by Kuokkala's group to develop an automated high-temperature Kolsky compression bar for characterizing high-rate properties of 304L stainless steel at elevated temperatures. Additional features have been implemented to this high-temperature Kolsky compression bar for recrystallization investigation. The new features ensure a single loading on the specimen and precise time and temperature control for quenching to the specimen after dynamic loading. Dynamic compressive stress-strain curves of 304L stainless steel were obtained at 21, 204, 427, 649, and 871 °C (or 70, 400, 800, 1200, and 1600 °F) at the same constant strain rate of 332 s-1. The specimen subjected to specific time and temperature control for quenching after a single dynamic loading was preserved for investigating microstructure recrystallization.

  13. The Low Temperature Chamber Testing of the Compression Ignition Engine and System of the Armoured Personnel Carrier (APC) M113A1.

    DTIC Science & Technology

    1981-06-01

    shutdown. Before start up the hot oil would be pumped ( auxillary pump) back through the engine on the high pressure side of the engine’ s oil pump. This...insulation heating was applied. Temperature plots Figure 14* to Figure 16* show the battery cooling curves for auxillary heating when 37mm of medium

  14. Moisture and temperature influence on mechanical behavior of PPS/buckypapers carbon fiber laminates

    NASA Astrophysics Data System (ADS)

    Rojas, J. A.; Santos, L. F. P.; Costa, M. L.; Ribeiro, B.; Botelho, E. C.

    2017-07-01

    In this work, multiwall carbon nanotubes (MWCNT) were dispersed in water with the assistance of water based surfactant and then sonicated in order to obtain a very well dispersed solution. The suspension was filtrate under vaccum conditions, generating a thin film called buckypapers (BP). Poly (phenylene sulphide) (PPS) reinforced carbon fiber (CF) and PPS reinforced CF/BP composites were manufactured through hot compression molding technique. Subsequently the samples were exposed to extreme humidity (90% of moisture) combined with high temperature (80 °C). The mechanical properties of the laminates were evaluated by dynamic mechanical analysis, compression shear test, interlaminar shear strength and impulse excitation of vibration. Volume fraction of pores were 10.93% for PPS/CF and 16.18% for PPS/BP/CF, indicating that the hot compression molding parameters employed in this investigation (1.4 MPa, 5 min and 330 °C) affected both the consolidation quality of the composites and the mechanical properties of the final laminates.

  15. On the Lateral Compressive Behavior of Empty and Ex-Situ Aluminum Foam-Filled Tubes at High Temperature

    PubMed Central

    Movahedi, Nima; Marsavina, Liviu

    2018-01-01

    In this research work, the effect of lateral loading (LL) on the crushing performance of empty tubes (ETs) and ex situ aluminum foam-filled tubes (FFTs) was investigated at 300 °C. The cylindrical thin-walled steel tube was filled with the closed-cell aluminum alloy foam that compressed under quasi-static loading conditions. During the compression test, the main mechanical properties of the ETs improved due to the interaction effect between the cellular structure of the foam and the inner wall of the empty tube. In addition, the initial propagated cracks on the steel tubes reduced considerably as a result of such interaction. Furthermore, the obtained results of the LL loading were compared with the axial loading (AL) results for both ETs and FFTs at the same temperature. The findings indicated that the application of loading on the lateral surface of the composite causes the lower mechanical properties of both ETs and FFTs in comparison with the axial loading conditions. PMID:29617300

  16. Hot-compress: A new postdeposition treatment for ZnO-based flexible dye-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haque Choudhury, Mohammad Shamimul, E-mail: shamimul129@gmail.com; Department of Electrical and Electronic Engineering, International Islamic University Chittagong, b154/a, College Road, Chittagong 4203; Kishi, Naoki

    2016-08-15

    Highlights: • A new postdeposition treatment named hot-compress is introduced. • Hot-compression gives homogeneous compact layer ZnO photoanode. • I-V and EIS analysis data confirms the efficacy of this method. • Charge transport resistance was reduced by the application of hot-compression. - Abstract: This article introduces a new postdeposition treatment named hot-compress for flexible zinc oxide–base dye-sensitized solar cells. This postdeposition treatment includes the application of compression pressure at an elevated temperature. The optimum compression pressure of 130 Ma at an optimum compression temperature of 70 °C heating gives better photovoltaic performance compared to the conventional cells. The aptness ofmore » this method was confirmed by investigating scanning electron microscopy image, X-ray diffraction, current-voltage and electrochemical impedance spectroscopy analysis of the prepared cells. Proper heating during compression lowers the charge transport resistance, longer the electron lifetime of the device. As a result, the overall power conversion efficiency of the device was improved about 45% compared to the conventional room temperature compressed cell.« less

  17. Magnetized Target Fusion At General Fusion: An Overview

    NASA Astrophysics Data System (ADS)

    Laberge, Michel; O'Shea, Peter; Donaldson, Mike; Delage, Michael; Fusion Team, General

    2017-10-01

    Magnetized Target Fusion (MTF) involves compressing an initial magnetically confined plasma on a timescale faster than the thermal confinement time of the plasma. If near adiabatic compression is achieved, volumetric compression of 350X or more of a 500 eV target plasma would achieve a final plasma temperature exceeding 10 keV. Interesting fusion gains could be achieved provided the compressed plasma has sufficient density and dwell time. General Fusion (GF) is developing a compression system using pneumatic pistons to collapse a cavity formed in liquid metal containing a magnetized plasma target. Low cost driver, straightforward heat extraction, good tritium breeding ratio and excellent neutron protection could lead to a practical power plant. GF (65 employees) has an active plasma R&D program including both full scale and reduced scale plasma experiments and simulation of both. Although pneumatic driven compression of full scale plasmas is the end goal, present compression studies use reduced scale plasmas and chemically accelerated aluminum liners. We will review results from our plasma target development, motivate and review the results of dynamic compression field tests and briefly describe the work to date on the pneumatic driver front.

  18. Preliminary characterization of an expanding flow of siloxane vapor MDM

    NASA Astrophysics Data System (ADS)

    Spinelli, A.; Cozzi, F.; Cammi, G.; Zocca, M.; Gaetani, P.; Dossena, V.; Guardone, A.

    2017-03-01

    The early experimental results on the characterization of expanding flows of siloxane vapor MDM (C8H24O2Si3, octamethyltrisiloxane) are presented. The measurements were performed on the Test Rig for Organic VApors (TROVA) at the CREA Laboratory of Politecnico di Milano. The TROVA test-rig was built in order to investigate the non-ideal compressible-fluid behavior of typical expanding flows occurring within organic Rankine cycles (ORC) turbine passages. The test rig implements a batch Rankine cycle where a planar converging-diverging nozzle replaces the turbine and represents a test section. Investigations related to both fields of non-ideal compressible-fluid dynamics fundamentals and turbomachinery are allowed. The nozzle can be operated with different working fluids and operating conditions aiming at measuring independently the pressure, the temperature and the velocity field and thus providing data to verify the thermo-fluid dynamic models adopted to predict the behavior of these flows. The limiting values of pressure and temperature are 50 bar and 400 °C respectively. The early measurements are performed along the nozzle axis, where an isentropic process is expected to occur. In particular, the results reported here refer to the nozzle operated in adapted conditions using the siloxane vapor MDM as working fluid in thermodynamic regions where mild to medium non-ideal compressible-fluid effects are present. Both total temperature and total pressure of the nozzle are measured upstream of the test section, while static pressure are measured along the nozzle axis. Schlieren visualizations are also carried out in order to complement the pressure measurement with information about the 2D density gradient field. The Laser Doppler Velocimetry technique is planned to be used in the future for velocity measurements. The measured flow field has also been interpreted by resorting to the quasi-one-dimensional theory and two dimensional CFD viscous calculation. In both cases state-of-the-art thermodynamic models were applied.

  19. Experimental investigation of the ecological hybrid refrigeration cycle

    NASA Astrophysics Data System (ADS)

    Cyklis, Piotr; Kantor, Ryszard; Ryncarz, Tomasz; Górski, Bogusław; Duda, Roman

    2014-09-01

    The requirements for environmentally friendly refrigerants promote application of CO2 and water as working fluids. However there are two problems related to that, namely high temperature limit for CO2 in condenser due to the low critical temperature, and low temperature limit for water being the result of high triple point temperature. This can be avoided by application of the hybrid adsorption-compression system, where water is the working fluid in the adsorption high temperature cycle used to cool down the CO2 compression cycle condenser. The adsorption process is powered with a low temperature renewable heat source as solar collectors or other waste heat source. The refrigeration system integrating adsorption and compression system has been designed and constructed in the Laboratory of Thermodynamics and Thermal Machine Measurements of Cracow University of Technology. The heat source for adsorption system consists of 16 tube tulbular collectors. The CO2 compression low temperature cycle is based on two parallel compressors with frequency inverter. Energy efficiency and TEWI of this hybrid system is quite promising in comparison with the compression only systems.

  20. Aging and Curing Temperature Effects on Compressive Strength of Mortar Containing Lime Stone Quarry Dust and Industrial Granite Sludge.

    PubMed

    Amin, Muhammad Nasir; Khan, Kaffayatullah; Saleem, Muhammad Umair; Khurram, Nauman; Niazi, Muhammad Umar Khan

    2017-06-11

    In this study, the researchers investigated the potential use of locally available waste materials from the lime stone quarry and the granite industry as a partial replacement of cement. Quarry sites and granite industry in the eastern province of Saudi Arabia produces tons of powder wastes in the form of quarry dust (QD) and granite sludge (GS), respectively, causing serious environmental problems along with frequent dust storms in the area. According to ASTM C109, identical 50-mm3 specimens were cast throughout this study to evaluate the compressive strength development of mortars (7, 28 and 91 days) containing these waste materials. Experimental variables included different percentage replacement of cement with waste materials (GS, QD), fineness of GS, various curing temperatures (20, 40 and 60 °C as local normal and hot environmental temperatures) and curing moisture (continuously moist and partially moist followed by air curing). Finally, the results of mortar containing waste materials were compared to corresponding results of control mortar (CM) and mortar containing fly ash (FA). The test results indicated that under normal curing (20 °C, moist cured), the compressive strength of mortar containing the different percentage of waste materials (QD, GS, FA and their combinations) remained lower than that of CM at all ages. However, the compressive strength of mortar containing waste materials slightly increased with increased fineness of GS and significantly increased under high curing temperatures. It was recommended that more fineness of GS be achieved to use its high percentage replacement with cement (30% or more) incorporating local environmental conditions.

  1. Aging and Curing Temperature Effects on Compressive Strength of Mortar Containing Lime Stone Quarry Dust and Industrial Granite Sludge

    PubMed Central

    Amin, Muhammad Nasir; Khan, Kaffayatullah; Saleem, Muhammad Umair; Khurram, Nauman; Niazi, Muhammad Umar Khan

    2017-01-01

    In this study, the researchers investigated the potential use of locally available waste materials from the lime stone quarry and the granite industry as a partial replacement of cement. Quarry sites and granite industry in the eastern province of Saudi Arabia produces tons of powder wastes in the form of quarry dust (QD) and granite sludge (GS), respectively, causing serious environmental problems along with frequent dust storms in the area. According to ASTM C109, identical 50-mm3 specimens were cast throughout this study to evaluate the compressive strength development of mortars (7, 28 and 91 days) containing these waste materials. Experimental variables included different percentage replacement of cement with waste materials (GS, QD), fineness of GS, various curing temperatures (20, 40 and 60 °C as local normal and hot environmental temperatures) and curing moisture (continuously moist and partially moist followed by air curing). Finally, the results of mortar containing waste materials were compared to corresponding results of control mortar (CM) and mortar containing fly ash (FA). The test results indicated that under normal curing (20 °C, moist cured), the compressive strength of mortar containing the different percentage of waste materials (QD, GS, FA and their combinations) remained lower than that of CM at all ages. However, the compressive strength of mortar containing waste materials slightly increased with increased fineness of GS and significantly increased under high curing temperatures. It was recommended that more fineness of GS be achieved to use its high percentage replacement with cement (30% or more) incorporating local environmental conditions. PMID:28772999

  2. Evidence that Arrhenius high-temperature aging behavior for an EPDM o-ring does not extrapolate to lower temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillen, K.T.; Wise, J.; Celina, M.

    1997-09-01

    Because of the need to significantly extend the lifetimes of weapons, and because of potential implications of environmental O-ring failure on degradation of critical internal weapon components, the authors have been working on improved methods of predicting and verifying O-ring lifetimes. In this report, they highlight the successful testing of a new predictive method for deriving more confident lifetime extrapolations. This method involves ultrasensitive oxygen consumption measurements. The material studied is an EPDM formulation use for the environmental O-ring the W88. Conventional oven aging (155 C to 111 C) was done on compression molded sheet material; periodically, samples were removedmore » from the ovens and subjected to various measurements, including ultimate tensile elongation, density and modulus profiles. Compression stress relaxation (CSR) measurements were made at 125 C and 111 C on disc shaped samples (12.7 mm diameter by 6 mm thick) using a Shawbury Wallace Compression Stress Relaxometer MK 2. Oxygen consumption measurements were made versus time, at temperatures ranging from 160 C to 52 C, using chromatographic quantification of the change in oxygen content caused by reaction with the EPDM material in sealed containers.« less

  3. The effect of temperature and moisture on electrical resistance, strain sensitivity and crack sensitivity of steel fiber reinforced smart cement composite

    NASA Astrophysics Data System (ADS)

    Teomete, Egemen

    2016-07-01

    Earthquakes, material degradations and other environmental factors necessitate structural health monitoring (SHM). Metal foil strain gages used for SHM have low durability and low sensitivity. These factors motivated researchers to work on cement based strain sensors. In this study, the effects of temperature and moisture on electrical resistance, compressive and tensile strain gage factors (strain sensitivity) and crack sensitivity were determined for steel fiber reinforced cement based composite. A rapid increase of electrical resistance at 200 °C was observed due to damage occurring between cement paste, aggregates and steel fibers. The moisture—electrical resistance relationship was investigated. The specimens taken out of the cure were saturated with water and had a moisture content of 9.49%. The minimum electrical resistance was obtained at 9% moisture at which fiber-fiber and fiber-matrix contact was maximum and the water in micro voids was acting as an electrolyte, conducting electrons. The variation of compressive and tensile strain gage factors (strain sensitivities) and crack sensitivity were investigated by conducting compression, split tensile and notched bending tests with different moisture contents. The highest gage factor for the compression test was obtained at optimal moisture content, at which electrical resistance was minimum. The tensile strain gage factor for split tensile test and crack sensitivity increased by decreasing moisture content. The mechanisms between moisture content, electrical resistance, gage factors and crack sensitivity were elucidated. The relations of moisture content with electrical resistance, gage factors and crack sensitivities have been presented for the first time in this study for steel fiber reinforced cement based composites. The results are important for the development of self sensing cement based smart materials.

  4. Microstructure and mechanical properties of an ultrafine Ti–Si–Nb alloy

    DOE PAGES

    Cao, G. H.; Jian, G. Y.; Liu, N.; ...

    2015-08-19

    In this study, Nb-modified ultrafine Ti–Si eutectic alloy was made by cold crucible levitation melting, tested in compression at room temperature, and characterized by electron microscopy. Compression tests of (Ti 86.5Si 13.5) 97Nb 3 specimens measured an ultimate compressive strength of 1180 MPa and a compressive plastic strain of 12%, both of which are higher than in eutectic Ti 86.5Si 13.5 alloy. Electron microscopy showed that the Ti–Si–Nb alloy had a bimodal microstructure with micrometer-scale primary α-Ti dendrites distributed in an ultrafine eutectic (α-Ti + Ti 5Si 3) matrix. The enhanced ductility is attributed to the morphology of the phase constituents and to the larger lattice mismatches between α-Ti and Ti 5Si 3 phases caused by the Nb addition. The crystallographic orientation relationship of Ti 5Si 3 with α-Ti is (more » $$1\\bar{1}00$$)[$$\\overline{11}$$26]Ti 5Si 3∥($$01\\bar{1}1$$)[5$$\\overline{143}$$] α–Τi.« less

  5. Deformation behavior of HCP titanium alloy: Experiment and Crystal plasticity modeling

    DOE PAGES

    Wronski, M.; Arul Kumar, Mariyappan; Capolungo, Laurent; ...

    2018-03-02

    The deformation behavior of commercially pure titanium is studied using experiments and a crystal plasticity model. Compression tests along the rolling, transverse, and normal-directions, and tensile tests along the rolling and transverse directions are performed at room temperature to study the activation of slip and twinning in the hexagonal closed packed titanium. A detailed EBSD based statistical analysis of the microstructure is performed to develop statistics of both {10-12} tensile and {11-22} compression twins. A simple Monte Carlo (MC) twin variant selection criterion is proposed within the framework of the visco-plastic self-consistent (VPSC) model with a dislocation density (DD) basedmore » law used to describe dislocation hardening. In the model, plasticity is accommodated by prismatic, basal and pyramidal slip modes, and {10-12} tensile and {11-22} compression twinning modes. Thus, the VPSC-MC model successfully captures the experimentally observed activation of low Schmid factor twin variants for both tensile and compression twins modes. The model also predicts macroscopic stress-strain response, texture evolution and twin volume fraction that are in agreement with experimental observations.« less

  6. Deformation behavior of HCP titanium alloy: Experiment and Crystal plasticity modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wronski, M.; Arul Kumar, Mariyappan; Capolungo, Laurent

    The deformation behavior of commercially pure titanium is studied using experiments and a crystal plasticity model. Compression tests along the rolling, transverse, and normal-directions, and tensile tests along the rolling and transverse directions are performed at room temperature to study the activation of slip and twinning in the hexagonal closed packed titanium. A detailed EBSD based statistical analysis of the microstructure is performed to develop statistics of both {10-12} tensile and {11-22} compression twins. A simple Monte Carlo (MC) twin variant selection criterion is proposed within the framework of the visco-plastic self-consistent (VPSC) model with a dislocation density (DD) basedmore » law used to describe dislocation hardening. In the model, plasticity is accommodated by prismatic, basal and pyramidal slip modes, and {10-12} tensile and {11-22} compression twinning modes. Thus, the VPSC-MC model successfully captures the experimentally observed activation of low Schmid factor twin variants for both tensile and compression twins modes. The model also predicts macroscopic stress-strain response, texture evolution and twin volume fraction that are in agreement with experimental observations.« less

  7. Permanently densified SiO2 glasses: a structural approach.

    PubMed

    Martinet, C; Kassir-Bodon, A; Deschamps, T; Cornet, A; Le Floch, S; Martinez, V; Champagnon, B

    2015-08-19

    Densified silica can be obtained by different pressure and temperature paths and for different stress conditions, hydrostatic or including shear. The density is usually the macroscopic parameter used to characterize the different compressed silica samples. The aim of our present study is to compare structural modifications for silica glass, densified from several routes. For this, densified silica glasses are prepared from cold and high temperature (up to 1020 °C) compressions. The different densified glasses obtained in our study are characterized by micro-Raman spectroscopy. Intertetrahedral angles from the main band relative to the bending mode decrease and their values are larger for densified samples from high temperature compression than those samples from cold compression. The relative amount of 3-membered rings deduced from the D2 line area increases as a function of density for cold compression. The temperature increase during the compression process induces a decrease of the 3 fold ring population. Moreover, 3 fold rings are more deformed and stressed for densified samples at room temperature at the expense of those densified at high temperature. Temperature plays a main role in the reorganization structure during the densification and leads to obtaining a more relaxed structure with lower stresses than glasses densified from cold compression. The role of hydrostatic or non-hydrostatic applied stresses on the glass structure is discussed. From the Sen and Thorpe central force model, intertetrahedral angle average value and their distribution are estimated.

  8. Fabrication, microstructure, properties and deformation mechanisms of a nanocrystalline aluminum-iron-chromium-titanium alloy by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Luo, Hong

    A multi-phase nanocrystalline Al93Fe3Cr2Ti 2 alloy containing 30 vol.% intermetallic particles was prepared via mechanical alloying starting from elemental powders, followed by hot extrusion. The grain size of 6-45 nm can be achieved after 30-hours of milling. Thermal stability of nanostructured Al93Fe3Ti2Cr 2 alloys was investigated using a variety of analytical techniques including modulated differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, transmission electron microscopy. The MA-processed Al93Fe 3Ti2Cr2 alloy in the as-milled condition was composed of an Al-based supersaturated solid solution with high internal strains. Release of internal strains, intermetallic precipitation and grain growth occurred upon heating of the MA-processed Al alloy. Nevertheless, grain growth in the MA-processed Al alloy was very limited and fcc-Al grains with sizes in the range of 20 nm were still present in the alloys after exposure to 450°C (0.77 Tm). Systematic compressive tests and modulus measurements were performed as a function of temperature and strain rate to investigate the deformation behavior and mechanisms of the nc Al-Fe-Cr-Ti alloys. High strengths and moduli at both ambient and elevated temperatures have been demonstrated. The ductility of the nc Al93Fe3Cr2Ti2 alloy depends strongly on whether the oxide film at the prior powder particle boundary has been broken down or not. The MA-processed Al93Fe3Cr 2Ti2 alloy is brittle when the oxide film is continuous at PPB, and is ductile when the oxide film is broken down into discontinuous particles during extrusion. It is argued that the compressive strength at ambient temperature is controlled by propagation of dislocations into nc fcc-Al grains, whereas the compressive strength at elevated temperature is determined by dislocation propagation as well as dynamic recovery. Since the stress for dislocation propagation into nc fcc-Al grains increases with decreasing the grain size, the smaller the grain size, the higher the compressive strength. This new microstructural design approach could present opportunities for exploiting nc materials in structural applications at both ambient and elevated temperatures. The nanocrystalline Al-Fe-Cr-Ti alloy exhibited significant difference in deformation behavior between tension and compression at 25, 200 and 300°C. However, the strengths obtained in tension and compression were similar at 400°C. Systematic microstructure examinations and deformation mechanism analyses indicate that the asymmetry of this nc Al93Fe3Cr 2Ti2 alloy is related to its dislocation mediated plastic deformation mechanism, its nanoscale grain microstructure, and premature brittle failure in tension tests.

  9. Modeling turbulent energy behavior and sudden viscous dissipation in compressing plasma turbulence

    DOE PAGES

    Davidovits, Seth; Fisch, Nathaniel J.

    2017-12-21

    Here, we present a simple model for the turbulent kinetic energy behavior of subsonic plasma turbulence undergoing isotropic three-dimensional compression, which may exist in various inertial confinement fusion experiments or astrophysical settings. The plasma viscosity depends on both the temperature and the ionization state, for which many possible scalings with compression are possible. For example, in an adiabatic compression the temperature scales as 1/L 2, with L the linear compression ratio, but if thermal energy loss mechanisms are accounted for, the temperature scaling may be weaker. As such, the viscosity has a wide range of net dependencies on the compression.more » The model presented here, with no parameter changes, agrees well with numerical simulations for a range of these dependencies. This model permits the prediction of the partition of injected energy between thermal and turbulent energy in a compressing plasma.« less

  10. Modeling turbulent energy behavior and sudden viscous dissipation in compressing plasma turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidovits, Seth; Fisch, Nathaniel J.

    Here, we present a simple model for the turbulent kinetic energy behavior of subsonic plasma turbulence undergoing isotropic three-dimensional compression, which may exist in various inertial confinement fusion experiments or astrophysical settings. The plasma viscosity depends on both the temperature and the ionization state, for which many possible scalings with compression are possible. For example, in an adiabatic compression the temperature scales as 1/L 2, with L the linear compression ratio, but if thermal energy loss mechanisms are accounted for, the temperature scaling may be weaker. As such, the viscosity has a wide range of net dependencies on the compression.more » The model presented here, with no parameter changes, agrees well with numerical simulations for a range of these dependencies. This model permits the prediction of the partition of injected energy between thermal and turbulent energy in a compressing plasma.« less

  11. Proposal of a critical test of the Navier-Stokes-Fourier paradigm for compressible fluid continua.

    PubMed

    Brenner, Howard

    2013-01-01

    A critical, albeit simple experimental and/or molecular-dynamic (MD) simulation test is proposed whose outcome would, in principle, establish the viability of the Navier-Stokes-Fourier (NSF) equations for compressible fluid continua. The latter equation set, despite its longevity as constituting the fundamental paradigm of continuum fluid mechanics, has recently been criticized on the basis of its failure to properly incorporate volume transport phenomena-as embodied in the proposed bivelocity paradigm [H. Brenner, Int. J. Eng. Sci. 54, 67 (2012)]-into its formulation. Were the experimental or simulation results found to accord, even only qualitatively, with bivelocity predictions, the temperature distribution in a gas-filled, thermodynamically and mechanically isolated circular cylinder undergoing steady rigid-body rotation in an inertial reference frame would not be uniform; rather, the temperature would be higher at the cylinder wall than along the axis of rotation. This radial temperature nonuniformity contrasts with the uniformity of the temperature predicted by the NSF paradigm for these same circumstances. Easily attainable rates of rotation in centrifuges and readily available tools for measuring the expected temperature differences render experimental execution of the proposed scheme straightforward in principle. As such, measurement-via experiment or MD simulation-of, say, the temperature difference ΔT between the gas at the wall and along the axis of rotation would provide quantitative tests of both the NSF and bivelocity hydrodynamic models, whose respective solutions for the stated set of circumstances are derived in this paper. Independently of the correctness of the bivelocity model, any temperature difference observed during the proposed experiment or simulation, irrespective of magnitude, would preclude the possibility of the NSF paradigm being correct for fluid continua, except for incompressible flows.

  12. Challenges and Opportunities in Design, Fabrication, and Testing of High Temperature Joints in Ceramics and Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.; Levine, S. R. (Technical Monitor)

    2001-01-01

    Ceramic joining has been recognized as an enabling technology for successful utilization of advanced ceramics and composite materials. A number of joint design and testing issues have been discussed for ceramic joints in silicon carbide-based ceramics and fiber-reinforced composites. These joints have been fabricated using an affordable, robust ceramic joining technology (ARCJoinT). The microstructure and good high temperature mechanical capability (compressive and flexural strengths) of ceramic joints in silicon carbide-based ceramics and composite materials are reported.

  13. Long-term prediction test procedure for most ICs, based on linear response theory

    NASA Technical Reports Server (NTRS)

    Litovchenko, V.; Ivakhnenko, I.

    1991-01-01

    Experimentally, thermal annealing is known to be a factor which enables a number of different integrated circuits (IC's) to recover their operating characteristics after suffering radiation damage in the space radiation environment; thus, decreasing and limiting long term cumulative total-dose effects. This annealing is also known to be accelerated at elevated temperatures both during and after irradiation. Linear response theory (LRT) was applied, and a linear response function (LRF) to predict the radiation/annealing response of sensitive parameters of IC's for long term (several months or years) exposure to the space radiation environment were constructed. Compressing the annealing process from several years in orbit to just a few hours or days in the laboratory is achieved by subjecting the IC to elevated temperatures or by increasing the typical spaceflight dose rate by several orders of magnitude for simultaneous radiation/annealing only. The accomplishments are as follows: (1) the test procedure to make predictions of the radiation response was developed; (2) the calculation of the shift in the threshold potential due to the charge distribution in the oxide was written; (3) electron tunneling processes from the bulk Si to the oxide region in an MOS IC were estimated; (4) in order to connect the experimental annealing data to the theoretical model, constants of the model of the basic annealing process were established; (5) experimental data obtained at elevated temperatures were analyzed; (6) time compression and reliability of predictions for the long term region were shown; (7) a method to compress test time and to make predictions of response for the nonlinear region was proposed; and (8) nonlinearity of the LRF with respect to log(t) was calculated theoretically from a model.

  14. Boron/aluminum skins for the DC-10 aft pylon

    NASA Technical Reports Server (NTRS)

    Elliott, S. Y.

    1975-01-01

    Boron/aluminum pylon boat tail skins were designed and fabricated and installed on the DC-10 aircraft for a 5-year flight service demonstration test. Inspection and tests of the exposed skins will establish the ability of the boron/aluminum composite to withstand long time flight service conditions, which include exposure to high temperatures, sonic fatigue, and flutter. The results of a preliminary testing program yield room temperature and elevated temperature data on the tension, compression, in-plane shear, interlaminar shear, bolt bearing, and tension fatigue properties of the boron/aluminum laminates. Present technology was used in the fabrication of the skins. Although maximum weight saving was not sought, weight of the constant thickness boron/aluminum skin is 26% less than the chemically milled titanium skin.

  15. The magnitude of tissue cooling during cryotherapy with varied types of compression.

    PubMed

    Tomchuk, David; Rubley, Mack D; Holcomb, William R; Guadagnoli, Mark; Tarno, Jason M

    2010-01-01

    Certified athletic trainers can choose different types of external compression (none, Flex-i-Wrap, and elastic wrap) when applying an ice bag to the body. However, which type facilitates the greatest magnitude of tissue cooling is unclear. To compare the effects of 2 common types of external compression on the magnitude of surface and intramuscular cooling during an ice-bag treatment. Randomized controlled trial. University research laboratory. Fourteen college students (10 women, 4 men; age = 22.4 +/- 1.8 years, height = 169.1 +/- 8.2 cm, mass = 73.3 +/- 18.5 kg, skinfold = 13.14 +/- 1.61 mm) with previous cryotherapy experience and a posterior lower leg skinfold equal to or less than 15 mm. On 3 different days separated by 24 to 48 hours, an ice bag was applied to the posterior lower leg surface of each participant for 30 minutes with no compression, with elastic wrap, or with Flex-i-Wrap. Posterior lower leg surface and intramuscular (2 cm) temperatures were recorded for 95 minutes. At 15 minutes, the elastic wrap produced greater surface temperature reduction than no compression (P = .03); this difference remained throughout the protocol (P range, .03 to .04). At 30 minutes, surface temperatures were 14.95 degrees C, 11.55 degrees C, and 9.49 degrees C when an ice bag was applied with no external compression, Flex-i-Wrap, and elastic wrap, respectively. Surface temperatures between Flex-i-Wrap and elastic wrap and between Flex-i-Wrap and no compression were never different. At 10 minutes, Flex-i-Wrap (P = .006) and elastic wrap (P < .001) produced greater intramuscular temperature reduction than no compression produced; these differences remained throughout the protocol. At 10 minutes, no compression, Flex-i-Wrap, and elastic wrap decreased intramuscular temperature by 1.34 degrees C, 2.46 degrees C, and 2.73 degrees C, respectively. At 25 minutes, elastic wrap (8.03 degrees C) produced greater temperature reduction than Flex-i-Wrap (6.65 degrees C) (P = .03) or no compression (4.63 degrees C) (P < .001 ). These differences remained throughout ice application and until 50 minutes after ice-bag removal. During an ice-bag application, external compression with elastic wrap was more effective than Flex-i-Wrap at reducing intramuscular tissue temperature. Elastic wraps should be used for acute injury care.

  16. An Investigation of the Coefficient of Discharge of Liquids Through Small Round Orifices

    NASA Technical Reports Server (NTRS)

    Joachim, W F

    1926-01-01

    The work covered by this report was undertaken in connection with a general investigation of fuel injection engine principles as applied to engines for aircraft propulsion, the specific purpose being to obtain information on the coefficient of discharge of small round orifices suitable for use as fuel injection nozzles. Values for the coefficient were determined for the more important conditions of engine service such as discharge under pressures up to 8,000 pounds per square inch, at temperatures between 80 degrees and 180 degrees F. And into air compressed to pressures up to 1,000 pounds per square inch. The results show that the coefficient ranges between 0.62 and 0.88 for the different test conditions between 1,000 and 8,000 pounds per square inch hydraulic pressure. At lower pressures the coefficient increases materially. It is concluded that within the range of these tests and for hydraulic pressures above 1,000 pound per square inch the coefficient does not change materially with pressure or temperature; that it depends considerably upon the liquid, decreases with increase in orifice size, and increases in the case of discharge into compressed air until the compressed-air pressure equals approximately three-tenths of the hydraulic pressure, beyond which pressure ratio it remains practically constant.

  17. Study of Cu-Al-Ni-Ga as high-temperature shape memory alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Wang, Qian; Zhao, Xu; Wang, Fang; Liu, Qingsuo

    2018-03-01

    The effect of Ga element on the microstructure, mechanical properties and shape memory effect of Cu-13.0Al-4.0Ni- xGa (wt%) high-temperature shape memory alloy was investigated by optical microscopy, SEM, XRD and compression test. The microstructure observation results showed that the Cu-13.0Al-4.0Ni- xGa ( x = 0.5 and 1.0) alloys displayed dual-phase morphology which consisted of 18R martensite and (Al, Ga)Cu phase, and their grain size was about several hundred microns, smaller than that of Cu-13.0Al-4.0Ni alloy. The compression test results proved that the mechanical properties of Cu-13.0Al-4.0Ni- xGa alloys were improved by addition of Ga element owing to the grain refinement and solid solution strengthening, and the compressive fracture strains were 11.5% for x = 0.5 and 14.9% for x = 1.0, respectively. When the pre-strain was 8%, the shape memory effect of 4.2 and 4.6% were obtained for Cu-13.0Al-4.0Ni-0.5 Ga and Cu-13.0Al-4.0Ni-1.0 Ga alloys after being heated to 400 °C for 1 min.

  18. TOPSIS-based parametric optimization of compression ignition engine performance and emission behavior with bael oil blends for different EGR and charge inlet temperature.

    PubMed

    Muniappan, Krishnamoorthi; Rajalingam, Malayalamurthi

    2018-05-02

    The demand for higher fuel energy and lesser exhaust emissions of diesel engines can be achieved by fuel being used and engine operating parameters. In the present work, effects of engine speed (RPM), injection timing (IT), injection pressure (IP), and compression ratio (CR) on performance and emission characteristics of a compression ignition (CI) engine were investigated. The ternary test fuel of 65% diesel + 25% bael oil + 10% diethyl ether (DEE) was used in this work and test was conducted at different charge inlet temperature (CIT) and exhaust gas recirculation (EGR). All the experiments are conducted at the tradeoff engine load that is 75% engine load. When operating the diesel engine with 320 K CIT, brake thermal efficiency (BTE) is improved to 28.6%, and carbon monoxide (CO) and hydrocarbon (HC) emissions have been reduced to 0.025% and 12.5 ppm at 18 CR. The oxide of nitrogen (NOx) has been reduced to 240 ppm at 1500 rpm for 30% EGR mode. Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method is frequently used in multi-factor selection and gray correlation analysis method is used to study uncertain of the systems.

  19. Microstructure and hot compression deformation of the as-cast Mg-5.0Sn-1.5Y-0.1Zr alloy

    NASA Astrophysics Data System (ADS)

    Luo, Xiaoping; Kang, Li; Li, Qiushu; Chai, Yuesheng

    2015-08-01

    The hot compression deformation behavior and microstructure of as-cast Mg-5.0Sn-1.5Y-0.1Zr alloy were investigated by performing isothermal hot compression tests. The tests were conducted using a thermal mechanical simulator at 250-450 °C and strain rates ranging from 0.002 to 2 s-1, with a maximum deformation strain of 50 %. The effects of the deformation parameters on the microstructure evolution of the Mg-5.0Sn-1.5Y-0.1Zr alloy were discussed. The study revealed the flow behavior and the deformation mechanism of the Mg-5.0Sn-1.5Y-0.1Zr alloy. The dependence of flow stress on temperature and strain rate was described by a hyperbolic sine constitutive equation. Through regression analysis, the activation energy of 223.26 kJ mol-1 for plastic deformation was determined by considering flow stress at a strain rate of 0.2. Microstructure observation showed that dynamic recrystallization occurred extensively along grain boundaries at temperatures higher than 300 °C and strain rates lower than 0.02 s-1. This observation provides a theoretical basis for the manufacture and application of the Mg-5.0Sn-1.5Y-0.1Zr alloy.

  20. Orientation and temperature dependence of some mechanical properties of the single-crystal nickel-base superalloy Rene N4. II - Low cycle fatigue behavior

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Gayda, J.; Miner, R. V.

    1986-01-01

    The low cycle fatigue (LCF) properties of a single-crystal nickel-base superalloy Rene N4, have been examined at 760 and 980 C in air. Specimens having crystallographic orientations near the 001, 011, -111, 023, -236, and -145 lines were tested in fully reversed, total-strain-controlled LCF tests at a frequency of 0.1 Hz. At 760 C, this alloy exhibited orientation dependent tension-compression anisotropies of yielding which continued to failure. Also at 760 C, orientations exhibiting predominately single slip exhibited serrated yielding for many cycles. At 980 C, orientation dependencies of yielding behavior were smaller. In spite of the tension-compression anisotropies, cyclic stress range-strain range behavior was not strongly orientation dependent for either test temperature. Fatigue life on a total strain range basis was highly orientation dependent at 760 and 980 C and was related chiefly to elastic modulus, low modulus orientations having longer lives. Stage I crack growth on 111 planes was dominant at 760 C, while Stage II crack growth occurred at 980 C. Crack initiation generally occurred at near-surface micropores, but occasionally at oxidation spikes in the 980 C tests.

  1. Buckling behavior of composite cylinders subjected to compressive loading

    NASA Technical Reports Server (NTRS)

    Carri, R. L.

    1973-01-01

    Room temperature compressive buckling strengths of eight cylinders, four boron-epoxy and four boron-epoxy reinforced-titanium, with diameter to thickness ratios ranging between 40 and 67 are determined experimentally and compared with analytical predictions. Numerical buckling strengths are presented for Donnell's, Flugge's and Sanders' shell theories for anisotropic and orthotropic material cases. Comparison of analytical predictions with experimental results indicates good agreement and the recommended correlation factor suggested in the literature is applicable for design. For the cylinders tested, the correlation between experiment and theory ranged from 0.73 to 0.97.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Wei-Yang

    Foam materials are used to protect sensitive components from impact loading. In order to predict and simulate the foam performance under various loading conditions, a validated foam model is needed and the mechanical properties of foams need to be characterized. Uniaxial compression and tension tests were conducted for different densities of foams under various temperatures and loading rates. Crush stress, tensile strength, and elastic modulus were obtained. A newly developed confined compression experiment provided data for investigating the foam flow direction. A biaxial tension experiment was also developed to explore the damage surface of a rigid polyurethane foam.

  3. Temperature Controller System for Gas Gun Targets

    NASA Astrophysics Data System (ADS)

    Bucholtz, S. M.; Gehr, R. J.; Rupp, T. D.; Sheffield, S. A.; Robbins, D. L.

    2006-07-01

    A temperature controller system capable of heating and cooling gas gun targets over the range -75°C to +120°C was designed and tested. The system uses cold nitrogen gas from a liquid nitrogen Dewar for cooling and compressed air for heating. Two gas flow heaters control the gas temperature for both heating and cooling. One heater controls the temperature of the target mounting plate and the other the temperature of a copper tubing coil surrounding the target. Each heater is separately adjustable, so the target material will achieve a uniform temperature throughout its volume. A magnetic gauge membrane with integrated thermocouples was developed to measure the internal temperature of the target. Using this system, multiple magnetic gauge shock experiments, including equation-of-state measurements and shock initiation of high explosives, can be performed over a range of initial temperatures. Successful heating and cooling tests were completed on Teflon samples.

  4. Vibrational Spectroscopic Studies of Reduced-Sensitivity RDX under Static Compression

    NASA Astrophysics Data System (ADS)

    Wong, Chak

    2005-07-01

    Explosives formulations with Reduced- Sensitivity RDX showed reduced shock sensitivity using NOL Large Scale Gap Test, compared with similar formulations using normal RDX. Molecular processes responsible for the reduction of sensitivity are unknown and are crucial for formulation development. Vibrational spectroscopy at static high pressure may shed light to the mechanisms responsible for the reduced shock sensitivity as shown by the NOL Large Scale Gap Test. SIRDX, a form of Reduced- Sensitivity RDX, was subjected to static compression at ambient temperature in a Merrill-Bassett sapphire cell from ambient to about 6 GPa. The spectroscopic techniques used were Raman and Fourier-Transformed IR (FTIR). The pressure dependence of the Raman mode frequencies of SIRDX was determined and compared with that of normal RDX. The behavior of SIRDX near the pressure at which normal RDX, at ambient temperature, undergoes a phase transition from the α to the γ polymorph will be presented. Implications to the reduction in sensitivity will be discussed.

  5. Effects of Ti and TiB2 Nanoparticulates on Room Temperature Mechanical Properties and In Vitro Degradation of Pure Mg

    NASA Astrophysics Data System (ADS)

    Meenashisundaram, Ganesh Kumar; Nai, Mui Hoon; Gupta, Manoj

    Mg 1 vol.% Ti and Mg 1 vol.% TiB2 composites containing Ti (30-50 nm) and TiB2 ( 60 nm) nanoparticulates were successfully synthesized using disintegrated melt deposition technique followed by hot extrusion. In vitro degradation of synthesized pure magnesium and composites were assessed by immersion testing in Dulbecco's Modified Eagle's Medium (DMEM) + 10% Fetal Bovine Serum (FBS) solution for a maximum duration of 28 days. Determination of corrosion rates by weight loss technique reveals that after 28 days of immersion testing, Mg 1 vol.% Ti exhibited the best corrosion resistance followed by pure magnesium and finally by Mg 1 vol.% TiB2 composite. The room temperature mechanical properties of the synthesized composites were found to surpass those of pure magnesium. On tensile and compressive loading, substantial strengthening of pure magnesium was observed with 1 vol.% Ti addition whereas appreciable increase in tensile and compressive fracture strains of pure magnesium was observed with 1 vol.% TiB2 addition.

  6. Modeling Deformation Flow Curves and Dynamic Recrystallization of BA-160 Steel During Hot Compression

    NASA Astrophysics Data System (ADS)

    Shahriari, Babak; Vafaei, Reza; Mohammad Sharifi, Ehsan; Farmanesh, Khosro

    2018-03-01

    The hot deformation behavior of a high strength low carbon steel was investigated using hot compression test at the temperature range of 850-1100 °C and under strain rates varying from 0.001 to 1 s-1. It was found that the flow curves of the steel were typical of dynamic recrystallization at the temperature of 950 °C and above; at tested strain rates lower than 1 s-1. A very good correlation between the flow stress and Zener-Hollomon parameter was obtained using a hyperbolic sine function. The activation energy of deformation was found to be around 390 kJ mol-1. The kinetics of dynamic recrystallization of the steel was studied by comparing it with a hypothetical dynamic recovery curve, and the dynamically fraction recrystallized was modeled by the Kolmogorov-Johnson-Mehl-Avrami relation. The Avrami exponent was approximately constant around 1.8, which suggested that the type of nucleation was one of site saturation on grain boundaries and edges.

  7. Combined Loads Test Fixture for Thermal-Structural Testing Aerospace Vehicle Panel Concepts

    NASA Technical Reports Server (NTRS)

    Fields, Roger A.; Richards, W. Lance; DeAngelis, Michael V.

    2004-01-01

    A structural test requirement of the National Aero-Space Plane (NASP) program has resulted in the design, fabrication, and implementation of a combined loads test fixture. Principal requirements for the fixture are testing a 4- by 4-ft hat-stiffened panel with combined axial (either tension or compression) and shear load at temperatures ranging from room temperature to 915 F, keeping the test panel stresses caused by the mechanical loads uniform, and thermal stresses caused by non-uniform panel temperatures minimized. The panel represents the side fuselage skin of an experimental aerospace vehicle, and was produced for the NASP program. A comprehensive mechanical loads test program using the new test fixture has been conducted on this panel from room temperature to 500 F. Measured data have been compared with finite-element analyses predictions, verifying that uniform load distributions were achieved by the fixture. The overall correlation of test data with analysis is excellent. The panel stress distributions and temperature distributions are very uniform and fulfill program requirements. This report provides details of an analytical and experimental validation of the combined loads test fixture. Because of its simple design, this unique test fixture can accommodate panels from a variety of aerospace vehicle designs.

  8. The Effect of Alkaline Activator Ratio on the Compressive Strength of Fly Ash-Based Geopolymer Paste

    NASA Astrophysics Data System (ADS)

    Lăzărescu, A. V.; Szilagyi, H.; Baeră, C.; Ioani, A.

    2017-06-01

    Alkaline activation of fly ash is a particular procedure in which ash resulting from a power plant combined with a specific alkaline activator creates a solid material when dried at a certain temperature. In order to obtain desirable compressive strengths, the mix design of fly ash based geopolymer pastes should be explored comprehensively. To determine the preliminary compressive strength for fly ash based geopolymer paste using Romanian material source, various ratios of Na2SiO3 solution/ NaOH solution were produced, keeping the fly ash/alkaline activator ratio constant. All the mixes were then cured at 70 °C for 24 hours and tested at 2 and 7 days, respectively. The aim of this paper is to present the preliminary compressive strength results for producing fly ash based geopolymer paste using Romanian material sources, the effect of alkaline activators ratio on the compressive strength and studying the directions for future research.

  9. Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Hamilton, D. C.

    1993-01-01

    AMPTE/CCE magnetic field and particle data are used to test the suggestion that increased hot proton temperature anisotropy resulting from convection during magnetospheric compression is responsible for the enhancement in Pc 1 emission via generation of electromagnetic ion cyclotron (EMIC) waves in the dayside outer equatorial magnetosphere. The relative increase in magnetic field is used to gauge the strength of the compression, and an image dipole model is used to estimate the motion of the plasma during compression. Proton data are used to analyze the evolution of the proton distribution and the corresponding changes in EMIC wave activity expected during the compression. It is suggested that enhancements in dynamic pressure pump the energetic proton distributions in the outer magnetosphere, driving EMIC waves. Waves are expected to be generated most readily close to the magnetopause, and transient pressure pulses may be associated with bursts of EMIC waves, which would be observed on the ground in association with ionospheric transient signatures.

  10. Mechanical properties of a fiberglass prepreg system at cryogenic and other temperatures

    NASA Technical Reports Server (NTRS)

    Klich, P. J.; Cockrell, C. E.

    1982-01-01

    The compressor driving the flow in the National Transonic Facility, which is nearing completion at the Langley Research Center, has 25 fiberglass blades. E-glass cloth with a pre-impregnated epoxy resin has been selected as the material for the fan blades because of its low cost, high damping, and fatigue resistance. A complete characterization is presented of this fan blade fiberglass system at temperatures of 367 K, room temperature, and 89 K. The characterization test results suggest that the material follows the general trends of metals and other glass-reinforced plastics at cryogenic temperatures. A slight diminution in strength was observed at the elevated temperature. The tests included the following: tensile, compression, fatigue, inplane shear, interlaminar shear, thermal expansion, creep, and thermal cycle.

  11. Performance of "Waterless Concrete"

    NASA Technical Reports Server (NTRS)

    Toutanji, H. A.; Grugel, R. N.

    2009-01-01

    Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in a lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and, by oxidation of the soil, iron and sulfur can be produced. Sulfur concrete specimens were cycled between liquid nitrogen (approx.]91 C) and room temperature (^21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (^21 C) and ^-101 C. Test results showed that due to temperature cycling, the compressive strength of cycled specimens was 20% of those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibres. The lunar regolith simulant was melted in a 25 cc Pt- Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to i hour. Glass fibres and small rods were pulled from the melt. The glass fibres were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Beams strengthened with glass fibres showed to exhibit an increase in the flexural strength by as much as 45%.

  12. Manufacturing and test of 2G-HTS coils for rotating machines: Challenges, conductor requirements, realization

    NASA Astrophysics Data System (ADS)

    Oomen, Marijn; Herkert, Werner; Bayer, Dietmar; Kummeth, Peter; Nick, Wolfgang; Arndt, Tabea

    2012-11-01

    We investigate the use of 2nd-generation High-Temperature Superconductors (2G-HTSs) in the rotors of electrical motors and generators. For these devices the conductor must be wound into robust impregnated coils, which are operated in vacuum at temperatures around 30 K, in strong magnetic fields of about 2T. Differences in thermal contraction between the coil former, conductor constituents, impregnation resin, bandage and heat-sink materials (assembled at room temperature) cause mechanical stresses at operating temperature. Rotating-machine operation adds Lorentz forces and challenging centripetal accelerations up to thousands of g. Second generation-HTS conductors withstand large tensile stresses in axial direction and compression in normal direction. However, shear stresses, axial compression, and tension normal to the conductor can cause degradation in superconducting properties. Such stresses can be mitigated by correct choice of materials, coil lay-out and manufacturing process. A certain stress level will remain, which the conductor must withstand. We have manufactured many impregnated round and race-track coils, using different 2G-HTS conductors, and tested them at temperatures from 25 K to 77 K. Degradation of the superconductor in early coils was traced to the mentioned differences in thermal contraction, and was completely avoided in coils produced later. We will discuss appropriate coil-winding techniques to assure robust and reliable superconductor performance.

  13. Effect of creep in titanium alloy Ti-6Al-4V at elevated temperature on aircraft design and flight test

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.

    1984-01-01

    Short-term compressive creep tests were conducted on three titanium alloy Ti-6Al-4V coupons at three different stress levels at a temperature of 714 K (825 F). The test data were compared to several creep laws developed from tensile creep tests of available literature. The short-term creep test data did not correlate well with any of the creep laws obtained from available literature. The creep laws themselves did not correlate well with each other. Short-term creep does not appear to be very predictable for titanium alloy Ti-6Al-4V. Aircraft events that result in extreme, but short-term temperature and stress excursions for this alloy should be approached cautiously. Extrapolations of test data and creep laws suggest a convergence toward predictability in the longer-term situation.

  14. Evaluation of Early-Age Concrete Compressive Strength with Ultrasonic Sensors.

    PubMed

    Yoon, Hyejin; Kim, Young Jin; Kim, Hee Seok; Kang, Jun Won; Koh, Hyun-Moo

    2017-08-07

    Surface wave velocity measurement of concrete using ultrasonic sensors requires testing on only one side of a member. Thus, it is applicable to concrete cast inside a form and is often used to detect flaws and evaluate the compressive strength of hardened concrete. Predicting the in situ concrete strength at a very early stage inside the form helps with determining the appropriate form removal time and reducing construction time and costs. In this paper, the feasibility of using surface wave velocities to predict the strength of in situ concrete inside the form at a very early stage was evaluated. Ultrasonic sensors were used to measure a series of surface waves for concrete inside a form in the first 24 h after placement. A continuous wavelet transform was used to compute the travel time of the propagating surface waves. The cylindrical compressive strength and penetration resistance tests were also performed during the test period. Four mixtures and five curing temperatures were used for the specimens. The surface wave velocity was confirmed to be applicable to estimating the concrete strength at a very early age in wall-like elements. An empirical formula is proposed for evaluating the early-age compressive strength of concrete considering the 95% prediction intervals.

  15. Evaluation of Early-Age Concrete Compressive Strength with Ultrasonic Sensors

    PubMed Central

    Yoon, Hyejin; Kim, Young Jin; Kim, Hee Seok; Kang, Jun Won; Koh, Hyun-Moo

    2017-01-01

    Surface wave velocity measurement of concrete using ultrasonic sensors requires testing on only one side of a member. Thus, it is applicable to concrete cast inside a form and is often used to detect flaws and evaluate the compressive strength of hardened concrete. Predicting the in situ concrete strength at a very early stage inside the form helps with determining the appropriate form removal time and reducing construction time and costs. In this paper, the feasibility of using surface wave velocities to predict the strength of in situ concrete inside the form at a very early stage was evaluated. Ultrasonic sensors were used to measure a series of surface waves for concrete inside a form in the first 24 h after placement. A continuous wavelet transform was used to compute the travel time of the propagating surface waves. The cylindrical compressive strength and penetration resistance tests were also performed during the test period. Four mixtures and five curing temperatures were used for the specimens. The surface wave velocity was confirmed to be applicable to estimating the concrete strength at a very early age in wall-like elements. An empirical formula is proposed for evaluating the early-age compressive strength of concrete considering the 95% prediction intervals. PMID:28783128

  16. Operation characteristic of a heat pump of mechanical vapor recompression propelled by fans and its performance analysis applied to waste-water treatment

    NASA Astrophysics Data System (ADS)

    Weike, Pang; Wenju, Lin; Qilin, Pan; Wenye, Lin; Qunte, Dai; Luwei, Yang; Zhentao, Zhang

    2014-01-01

    In this paper, a set of heat pump (called as Mechanical Vapor Recompression, MVR) propelled by a centrifugal fan is tested and it shows some special characteristic when it works together with a falling film evaporator. Firstly, an analysis of the fan's suction and discharge parameters at stable state, such as its pressure and temperature, indicates that a phenomenon of wet compression is probably to appear during vapor compression. As a result, superheat after saturated vapor is compressed is eliminated, which reduces discharge temperature of the system. It is because drops boil away and absorb the super heat into their latent heat during vapor compression. Meanwhile, drops in the suction vapor add to the compressed vapor, which increase the given heat of the MVR heat pump. Next, assistant electric heat could adjust and keep steady of the operating pressure and temperature of an MVR heat pump. With the evaporation temperature up to be high, heat balance is broken and supplement heat needs to increase. Thirdly, the performance of an MVR heat pump is affect by the balance of falling film and evaporation that has an effect on heat transfer. Then, two parameters standing for the performance are measured as it runs in practical condition. The two important parameters are consumptive electricity power and productive water capacity. According to theoretical work in ideal condition by calculation and fan's input power by measure as running, adiabatic efficiency (ηad) of a centrifugal fan is calculated when it is applied in a heat pump of MVR. Following, based on ηad, practical SMER and COP of an MVR heat pump are discovered to be correlative with it. Finally, in dependence on productive water in theory and in practice, displacement efficiency (ηv) of centrifugal fans is obtained when compressing vapor, and so provide some references of matching a fan for an MVR heat pump. On the other hand, it is helpful to research and develop MVR heat pumps, and also to check electricity power consumption while operating practically in light of electric motor efficiency (ηe) and ηad.

  17. Mechanical property determination of high conductivity metals and alloys

    NASA Technical Reports Server (NTRS)

    Harrod, D. L.; Vandergrift, E.; France, L.

    1973-01-01

    Pertinent mechanical properties of three high conductivity metals and alloys; namely, vacuum hot pressed grade S-200E beryllium, OFHC copper and beryllium-copper alloy no. 10 were determined. These materials were selected based on their possible use in rocket thrust chamber and nozzle hardware. They were procured in a form and condition similar to that which might be ordered for actual hardware fabrication. The mechanical properties measured include (1) tension and compression stress strain curves at constant strain rate (2) tensile and compressive creep, (3) tensile and compressive stress-relaxation behavior and (4) elastic properties. Tests were conducted over the temperature range of from 75 F to 1600 F. The resulting data is presented in both graphical and tabular form.

  18. Turbulent reacting flow computations including turbulence-chemistry interactions

    NASA Technical Reports Server (NTRS)

    Narayan, J. R.; Girimaji, S. S.

    1992-01-01

    A two-equation (k-epsilon) turbulence model has been extended to be applicable for compressible reacting flows. A compressibility correction model based on modeling the dilatational terms in the Reynolds stress equations has been used. A turbulence-chemistry interaction model is outlined. In this model, the effects of temperature and species mass concentrations fluctuations on the species mass production rates are decoupled. The effect of temperature fluctuations is modeled via a moment model, and the effect of concentration fluctuations is included using an assumed beta-pdf model. Preliminary results obtained using this model are presented. A two-dimensional reacting mixing layer has been used as a test case. Computations are carried out using the Navier-Stokes solver SPARK using a finite rate chemistry model for hydrogen-air combustion.

  19. Multiple quarantine treatment using bale compression and a three-day fumigation to control Hessian fly (Diptera: Cecidomyiidae) in exported hay.

    PubMed

    Yokoyama, Victoria Y

    2014-06-01

    A multiple quarantine treatment was developed to control Hessian fly puparia, Mayetiola destructor (Say), the stage of regulatory concern in exported hay. In a commercial test using 51.589 puparia, no insects survived to the adult stage after exposure to bale compression at 137 kg/cm2 and fumigation with 61 g/28.3 m3 hydrogen phosphide for 3d. The puparia were fumigated in infested wheat seedlings in cloth bags inside compressed timothy bales placed in different locations in three replicate freight containers in a heated building. Fumigant concentrations were 345-522 ppm on day 1; 580-824 ppm on day 2; and 680-861 ppm on day 3. Monitored temperatures were < 20 degrees C in all locations allowing the fumigation temperature to be established at > or = 20 degrees C. Copper detection plate corrosion values were severe inside the freight container doors, and moderate in the middle of bales in all locations, providing visual confirmation of exposure to hydrogen phosphide. Hydrogen phosphide residues in exposed hay bales were found in trace amounts, below the U.S. Environmental Protection Agency tolerance of 0.1 ppm for animal feeds. Timothy hay used in the commercial test is the representative species for all previously exported hay and straw species. The new multiple quarantine treatment is proposed for use with all previously tested bale sizes and wrapper styles for which 3-d fumigation data has been reported, and for bales and wrappers derived from those tested.

  20. Novel concepts for the compression of large volumes of carbon dioxide-phase III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, J. Jeffrey; Allison, Timothy C.; Evans, Neal D.

    In the effort to reduce the release of CO 2 greenhouse gases to the atmosphere, sequestration of CO 2 from Integrated Gasification Combined Cycle (IGCC) and Oxy-Fuel power plants is being pursued. This approach, however, requires significant compression power to boost the pressure to typical pipeline levels. The penalty can be as high as 8-12% on a typical IGCC plant. The goal of this research is to reduce this penalty through novel compression concepts and integration with existing IGCC processes. The primary objective of the study of novel CO 2 compression concepts is to reliably boost the pressure of COmore » 2 to pipeline pressures with the minimal amount of energy required. Fundamental thermodynamics were studied to explore pressure rise in both liquid and gaseous states. For gaseous compression, the project investigated novel methods to compress CO 2 while removing the heat of compression internal to the compressor. The highpressure ratio, due to the delivery pressure of the CO 2 for enhanced oil recovery, results in significant heat of compression. Since less energy is required to boost the pressure of a cooler gas stream, both upstream and inter-stage cooling is desirable. While isothermal compression has been utilized in some services, it has not been optimized for the IGCC environment. Phase I of this project determined the optimum compressor configuration and developed technology concepts for internal heat removal. Other compression options using liquefied CO 2 and cryogenic pumping were explored as well. Preliminary analysis indicated up to a 35% reduction in power is possible with the new concepts being considered. In the Phase II program, two experimental test rigs were developed to investigate the two concepts further. A new pump loop facility was constructed to qualify a cryogenic turbopump for use on liquid CO 2 . Also, an internally cooled compressor diaphragm was developed and tested in a closed loop compressor facility using CO 2 . Both test programs successfully demonstrated good performance and mechanical behavior. In Phase III, a pilot compression plant consisting of a multi-stage centrifugal compressor with cooled diaphragm technology has been designed, constructed, and tested. Comparative testing of adiabatic and cooled tests at equivalent inlet conditions shows that the cooled diaphragms reduce power consumption by 3-8% when the compressor is operated as a back-to-back unit and by up to 9% when operated as a straight-though compressor with no intercooler. The power savings, heat exchanger effectiveness, and temperature drops for the cooled diaphragm were all slightly higher than predicted values but showed the same trends.« less

  1. Mechanical behaviour of Arabica coffee (Coffea arabica) beans under loading compression

    NASA Astrophysics Data System (ADS)

    Sigalingging, R.; Herak, D.; Kabutey, A.; Sigalingging, C.

    2018-02-01

    The uniformity of the product of the grinding process depends on various factors including the brittleness of the roasted coffee bean and it affects the extraction of soluble solids to obtain the coffee brew. Therefore, the reaching of a certain degree of brittleness is very important for the grinding to which coffee beans have to be subjected to before brewing. The aims of this study to show the mechanical behaviour of Arabica coffee beans from Tobasa (Indonesia) with roasted using different roasting time (40, 60 and 80 minutes at temperature 174 °C) under loading compression 225 kN. Universal compression testing machine was used with pressing vessel diameter 60 mm and compression speed 10 mm min-1 with different initial pressing height ranging from 20 to 60 mm. The results showed that significant correlation between roasting time and the brittleness.

  2. An experimental study of the autoignition characteristics of conventional jet fuel/oxidizer mixtures: Jet-A and JP-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Kamal; Sung, Chih-Jen

    2010-04-15

    Ignition delay times of Jet-A/oxidizer and JP-8/oxidizer mixtures are measured using a heated rapid compression machine at compressed charge pressures corresponding to 7, 15, and 30 bar, compressed temperatures ranging from 650 to 1100 K, and equivalence ratios varying from 0.42 to 2.26. When using air as the oxidant, two oxidizer-to-fuel mass ratios of 13 and 19 are investigated. To achieve higher compressed temperatures for fuel lean mixtures (equivalence ratio of {proportional_to}0.42), argon dilution is also used and the corresponding oxidizer-to-fuel mass ratio is 84.9. For the conditions studied, experimental results show two-stage ignition characteristics for both Jet-A and JP-8.more » Variations of both the first-stage and overall ignition delays with compressed temperature, compressed pressure, and equivalence ratio are reported and correlated. It is noted that the negative temperature coefficient phenomenon becomes more prominent at relatively lower pressures. Furthermore, the first-stage-ignition delay is found to be less sensitive to changes in equivalence ratio and primarily dependent on temperature. (author)« less

  3. Effect of cold compress application on tissue temperature in healthy dogs.

    PubMed

    Millard, Ralph P; Towle-Millard, Heather A; Rankin, David C; Roush, James K

    2013-03-01

    To measure the effect of cold compress application on tissue temperature in healthy dogs. 10 healthy mixed-breed dogs. Dogs were sedated with hydromorphone (0.1 mg/kg, IV) and diazepam (0.25 mg/kg, IV). Three 24-gauge thermocouple needles were inserted to a depth of 0.5 (superficial), 1.0 (middle), and 1.5 (deep) cm into a shaved, lumbar, epaxial region to measure tissue temperature. Cold (-16.8°C) compresses were applied with gravity dependence for periods of 5, 10, and 20 minutes. Tissue temperature was recorded before compress application and at intervals for up to 80 minutes after application. Control data were collected while dogs received identical sedation but with no cold compress. Mean temperature associated with 5 minutes of application at the superficial depth was significantly decreased, compared with control temperatures. Application for 10 and 20 minutes significantly reduced the temperature at all depths, compared with controls and 5 minutes of application. Twenty minutes of application significantly decreased temperature at only the middle depth, compared with 10 minutes of application. With this method of cold treatment, increasing application time from 10 to 20 minutes caused a further significant temperature change at only the middle tissue depth; however, for maximal cooling, the minimum time of application should be 20 minutes. Possible changes in tissue temperature and adverse effects of application > 20 minutes require further evaluation.

  4. Integrated analyses in plastics forming

    NASA Astrophysics Data System (ADS)

    Bo, Wang

    This is the thesis which explains the progress made in the analysis, simulation and testing of plastics forming. This progress can be applied to injection and compression mould design. Three activities of plastics forming have been investigated, namely filling analysis, cooling analysis and ejecting analysis. The filling section of plastics forming has been analysed and calculated by using MOLDFLOW and FILLCALC V. software. A comparing of high speed compression moulding and injection moulding has been made. The cooling section of plastics forming has been analysed by using MOLDFLOW software and a finite difference computer program. The latter program can be used as a sample program to calculate the feasibility of cooling different materials to required target temperatures under controlled cooling conditions. The application of thermal imaging has been also introduced to determine the actual process temperatures. Thermal imaging can be used as a powerful tool to analyse mould surface temperatures and to verify the mathematical model. A buckling problem for ejecting section has been modelled and calculated by PATRAN/ABAQUS finite element analysis software and tested. These calculations and analysis are applied to the special case but can be use as an example for general analysis and calculation in the ejection section of plastics forming.

  5. Long-Term Mechanical Behavior of Nano Silica Sol Grouting

    PubMed Central

    Zhang, Nong; Zhang, Chenghao; Qian, Deyu; Han, Changliang; Yang, Sen

    2018-01-01

    The longevity of grouting has a significant effect on the safe and sustainable operation of many engineering projects. A 500-day experiment was carried out to study the long-term mechanical behavior of nano silica sol grouting. The nano silica sol was activated with different proportions of a NaCl catalyst and cured under fluctuating temperature and humidity conditions. The mechanical parameters of the grout samples were tested using an electrohydraulic uniaxial compression tester and an improved Vicat instrument. Scanning electron microscope, X-ray diffraction, and ultrasonic velocity tests were carried out to analyze the strength change micro-mechanism. Tests showed that as the catalyst dosage in the grout mix is decreased, the curves on the graphs showing changes in the weight and geometric parameters of the samples over time could be divided into three stages, a shrinkage stage, a stable stage, and a second shrinkage stage. The catalyst improved the stability of the samples and reduced moisture loss. Temperature rise was also a driving force for moisture loss. Uniaxial compressive stress-strain curves for all of the samples were elastoplastic. The curves for uniaxial compression strength and secant modulus plotted against time could be divided into three stages. Sample brittleness increased with time and the brittleness index increased with higher catalyst dosages in the latter part of the curing time. Plastic strength-time curves exhibit allometric scaling. Curing conditions mainly affect the compactness, and then affect the strength. PMID:29337897

  6. Flow and fracture behavior of NiAl in relation to the brittle-to-ductile transition temperature

    NASA Technical Reports Server (NTRS)

    Noebe, R. D.; Bowman, R. R.; Cullers, C. L.; Raj, S. V.

    1991-01-01

    NiAl has only three independent slip systems operating at low and intermediate temperatures whereas five independent deformation mechanisms are required to satisfy the von Mises criterion for general plasticity in polycrystalline materials. Yet, it is generally recognized that polycrystalline NiAl can be deformed extensively in compression at room temperature and that limited tensile ductility can be obtained in extruded materials. In order to determine whether these results are in conflict with the von Mises criterion, tension and compression tests were conducted on powder-extruded, binary NiAl between 300 and 1300 K. The results indicate that below the brittle-to-ductile transition temperature (BDTT) the failure mechanism in NiAl involves the initiation and propagation of cracks at the grain boundaries which is consistent with the von Mises analysis. Furthermore, evaluation of the flow behavior of NiAl indicates that the transition from brittle to ductile behavior with increasing temperature coincides with the onset of recovery mechanisms such as dislocation climb. The increase in ductility above the BDTT is therefore attributed to the climb of the 001 line type dislocations which in combination with dislocation glide enable grain boundary compatibility to be maintained at the higher temperatures.

  7. Increasing the formability of ferritic stainless steel tube by granular medium-based hot forming

    NASA Astrophysics Data System (ADS)

    Chen, H.; Staupendahl, D.; Hiegemann, L.; Tekkaya, A. E.

    2017-09-01

    Ferritic stainless steel without the alloy constituent nickel is an economical substitution for austenitic stainless steel in the automotive industry. Its lower formability, however, oftentimes prevents the direct material substitution in forming processes such as hydroforming, necessitating new forming strategies. To extend the forming capacity of ferritic stainless steel tube, the approach of forming at elevated temperatures is proposed. Utilizing granular material as forming medium, high forming temperatures up to 900°C are realized. The forming process works by moving punches axially into the granular medium, thereby, compressing it and causing axial as well as radial pressure. In experimental and numerical investigations it is shown that interfacial friction between the granular medium and the tube inherently causes tube feed, resulting in stain states in the tension-compression region of the FLD. Formability data for this region are gained by notched tensile tests, which are performed at room temperature as well as at elevated temperatures. The measured data show that the formability is improved at forming temperatures higher than 700°C. This observed formability increase is experimentally validated using a demonstrator geometry, which reaches expansion ratios that show fracture in specimens formed at room temperature.

  8. The stress relaxation of cement clinkers under high temperature

    NASA Astrophysics Data System (ADS)

    Wang, Xiufang; Bao, Yiwang; Liu, Xiaogen; Qiu, Yan

    2015-12-01

    The energy consumption of crushing is directly affected by the mechanical properties of cement materials. This research provides a theoretical proof for the mechanism of the stress relaxation of cement clinkers under high temperature. Compression stress relaxation under various high temperatures is discussed using a specially developed load cell, which can measure stress and displacement under high temperatures inside an autoclave. The cell shows that stress relaxation dramatically increases and that the remaining stress rapidly decreases with an increase in temperature. Mechanical experiments are conducted under various temperatures during the cooling process to study the changes in the grinding resistance of the cement clinker with temperature. The effects of high temperature on the load-displacement curve, compressive strength, and elastic modulus of cement clinkers are systematically studied. Results show that the hardening phenomenon of the clinker becomes apparent with a decrease in temperature and that post-peak behaviors manifest characteristics of the transformation from plasticity to brittleness. The elastic modulus and compressive strength of cement clinkers increase with a decrease in temperature. The elastic modulus increases greatly when the temperature is lower than 1000 °C. The compressive strength of clinkers increases by 73.4% when the temperature drops from 1100 to 800 °C.

  9. High-Strain-Rate Compression Testing of Ice

    NASA Technical Reports Server (NTRS)

    Shazly, Mostafa; Prakash, Vikas; Lerch, Bradley A.

    2006-01-01

    In the present study a modified split Hopkinson pressure bar (SHPB) was employed to study the effect of strain rate on the dynamic material response of ice. Disk-shaped ice specimens with flat, parallel end faces were either provided by Dartmouth College (Hanover, NH) or grown at Case Western Reserve University (Cleveland, OH). The SHPB was adapted to perform tests at high strain rates in the range 60 to 1400/s at test temperatures of -10 and -30 C. Experimental results showed that the strength of ice increases with increasing strain rates and this occurs over a change in strain rate of five orders of magnitude. Under these strain rate conditions the ice microstructure has a slight influence on the strength, but it is much less than the influence it has under quasi-static loading conditions. End constraint and frictional effects do not influence the compression tests like they do at slower strain rates, and therefore the diameter/thickness ratio of the samples is not as critical. The strength of ice at high strain rates was found to increase with decreasing test temperatures. Ice has been identified as a potential source of debris to impact the shuttle; data presented in this report can be used to validate and/or develop material models for ice impact analyses for shuttle Return to Flight efforts.

  10. Temperature-dependent plastic hysteresis in highly confined polycrystalline Nb films

    NASA Astrophysics Data System (ADS)

    Waheed, S.; Hao, R.; Zheng, Z.; Wheeler, J. M.; Michler, J.; Balint, D. S.; Giuliani, F.

    2018-02-01

    In this study, the effect of temperature on the cyclic deformation behaviour of a confined polycrystalline Nb film is investigated. Micropillars encapsulating a thin niobium interlayer are deformed under cyclic axial compression at different test temperatures. A distinct plastic hysteresis is observed for samples tested at elevated temperatures, whereas negligible plastic hysteresis is observed for samples tested at room temperature. These results are interpreted using planar discrete dislocation plasticity incorporating slip transmission across grain boundaries. The effect of temperature-dependent grain boundary energy and dislocation mobility on dislocation penetration and, consequently, the size of plastic hysteresis is simulated to correlate with the experimental results. It is found that the decrease in grain boundary energy barrier caused by the increase in temperature does not lead to any appreciable change in the cyclic response. However, dislocation mobility significantly affects the size of plastic hysteresis, with high mobilities leading to a larger hysteresis. Therefore, it is postulated that the experimental observations are predominantly caused by an increase in dislocation mobility as the temperature is increased above the critical temperature of body-centred cubic niobium.

  11. SIXTH INTERIM STATUS REPORT: MODEL 9975 PCV O-RING FIXTURE LONG-TERM LEAK PERFORMANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daugherty, W.

    2011-08-31

    A series of experiments to monitor the aging performance of Viton{reg_sign} GLT O-rings used in the Model 9975 package has been ongoing for seven years at the Savannah River National Laboratory. Seventy tests using mock-ups of 9975 Primary Containment Vessels (PCVs) were assembled and heated to temperatures ranging from 200 to 450 F. They were leak-tested initially and have been tested periodically to determine if they meet the criterion of leak-tightness defined in ANSI standard N14.5-97. Fourteen additional tests were initiated in 2008 with GLT-S O-rings heated to temperatures ranging from 200 to 400 F. High temperature aging continues formore » 33 GLT O-ring fixtures at 200-300 F. Room temperature leak test failures have been experienced in all of the GLT O-ring fixtures aging at 350 F and higher temperatures, and in 7 fixtures aging at 300 F. No failures have yet been observed in GLT O-ring fixtures aging at 200 F for 41-60 months, which is still bounding to O-ring temperatures during storage in K-Area Complex (KAC). Based on expectations that the fixtures aging at 200 F will remain leak-tight for a significant period yet to come, 2 additional fixtures began aging within the past year at an intermediate temperature of 270 F, with hopes that they may leak before the 200 F fixtures. High temperature aging continues for 6 GLT-S O-ring fixtures at 200-300 F. Room temperature leak test failures have been experienced in all 8 of the GLT-S O-ring fixtures aging at 350 and 400 F. No failures have yet been observed in GLT-S O-ring fixtures aging at 200-300 F for up to 26 months. For O-ring fixtures that have failed the room temperature leak test and been disassembled, the Orings displayed a compression set ranging from 51-96%. This is greater than seen to date for packages inspected during KAC field surveillance (24% average). For GLT O-rings, separate service life estimates have been made based on the O-ring fixture leak test data and based on compression stress relaxation (CSR) data. These two predictive models show reasonable agreement at higher temperatures (350-400 F). However, at 300 F, the room temperature leak test failures to date experienced longer aging times than predicted by the CSR-based model. This suggests that extrapolations of the CSR model predictions to temperatures below 300 F will provide a conservative prediction of service life relative to the leak rate criterion. Leak test failure data at lower temperatures are needed to verify this apparent trend. Insufficient failure data exist currently to perform a similar comparison for GLT-S O-rings. Aging and periodic leak testing will continue for the remaining fixtures.« less

  12. Low-density, high-strength intermetallic matrix composites by XD (trademark) synthesis

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Dipietro, M. S.; Brown, S. A.; Whittenberger, J. D.

    1991-01-01

    A feasibility study was conducted to evaluate the potential of particulate composites based on low-density, L1(sub 2) trialuminide matrices for high-temperature applications. The compounds evaluated included Al22Fe3Ti8 (as a multiphase matrix), Al67Ti25Cr8, and Al66Ti25Mn9. The reinforcement consisted of TiB2 particulates. The TiB2 composites were processed by ingot and powder metallurgy techniques. Microstructural characterization and mechanical testing were performed in the hot-pressed and hot-isostatic-pressed condition. The casting were sectioned and isothermally forged into pancakes. All the materials were tested in compression as a function of temperature, and at high temperatures as a function of strain rate. The test results are discussed.

  13. Extended x-ray absorption fine structure measurements of quasi-isentropically compressed vanadium targets on the OMEGA laser

    NASA Astrophysics Data System (ADS)

    Yaakobi, B.; Boehly, T. R.; Sangster, T. C.; Meyerhofer, D. D.; Remington, B. A.; Allen, P. G.; Pollaine, S. M.; Lorenzana, H. E.; Lorenz, K. T.; Hawreliak, J. A.

    2008-06-01

    The use of in situ extended x-ray absorption fine structure (EXAFS) for characterizing nanosecond laser-shocked vanadium, titanium, and iron has recently been demonstrated. These measurements are extended to laser-driven, quasi-isentropic compression experiments (ICE). The radiation source (backlighter) for EXAFS in all of these experiments is obtained by imploding a spherical target on the OMEGA laser [T. R. Boehly et al., Rev. Sci. Instrum. 66, 508 (1995)]. Isentropic compression (where the entropy is kept constant) enables to reach high compressions at relatively low temperatures. The absorption spectra are used to determine the temperature and compression in a vanadium sample quasi-isentropically compressed to pressures of up to ˜0.75Mbar. The ability to measure the temperature and compression directly is unique to EXAFS. The drive pressure is calibrated by substituting aluminum for the vanadium and interferometrically measuring the velocity of the back target surface by the velocity interferometer system for any reflector (VISAR). The experimental results obtained by EXAFS and VISAR agree with each other and with the simulations of a hydrodynamic code. The role of a shield to protect the sample from impact heating is studied. It is shown that the shield produces an initial weak shock that is followed by a quasi-isentropic compression at a relatively low temperature. The role of radiation heating from the imploding target as well as from the laser-absorption region is studied. The results show that in laser-driven ICE, as compared with laser-driven shocks, comparable compressions can be achieved at lower temperatures. The EXAFS results show important details not seen in the VISAR results.

  14. Ultrafast Kα x-ray Thomson scattering from shock compressed lithium hydride

    DOE PAGES

    Kritcher, A. L.; Neumayer, P.; Castor, J.; ...

    2009-04-13

    Spectrally and temporally resolved x-ray Thomson scattering using ultrafast Ti Kα x rays has provided experimental validation for modeling of the compression and heating of shocked matter. The coalescence of two shocks launched into a solid density LiH target by a shaped 6 ns heater beam was observed from rapid heating to temperatures of 2.2 eV, enabling tests of shock timing models. Here, the temperature evolution of the target at various times during shock progression was characterized from the intensity of the elastic scattering component. The observation of scattering from plasmons, electron plasma oscillations, at shock coalescence indicates a transitionmore » to a dense metallic plasma state in LiH. From the frequency shift of the measured plasmon feature the electron density was directly determined with high accuracy, providing a material compression of a factor of 3 times solid density. The quality of data achieved in these experiments demonstrates the capability for single shot dynamic characterization of dense shock compressed matter. Here, the conditions probed in this experiment are relevant for the study of the physics of planetary formation and to characterize inertial confinement fusion targets for experiments such as on the National Ignition Facility, Lawrence Livermore National Laboratory.« less

  15. Deformation modeling and constitutive modeling for anisotropic superalloys

    NASA Technical Reports Server (NTRS)

    Milligan, Walter W.; Antolovich, Stephen D.

    1989-01-01

    A study of deformation mechanisms in the single crystal superalloy PWA 1480 was conducted. Monotonic and cyclic tests were conducted from 20 to 1093 C. Both (001) and near-(123) crystals were tested, at strain rates of 0.5 and 50 percent/minute. The deformation behavior could be grouped into two temperature regimes: low temperatures, below 760 C; and high temperatures, above 820 to 950 C depending on the strain rate. At low temperatures, the mechanical behavior was very anisotropic. An orientation dependent CRSS, a tension-compression asymmetry, and anisotropic strain hardening were all observed. The material was deformed by planar octahedral slip. The anisotropic properties were correlated with the ease of cube cross-slip, as well as the number of active slip systems. At high temperatures, the material was isotropic, and deformed by homogeneous gamma by-pass. It was found that the temperature dependence of the formation of superlattice-intrinsic stacking faults was responsible for the local minimum in the CRSS of this alloy at 400 C. It was proposed that the cube cross-slip process must be reversible. This was used to explain the reversible tension-compression asymmetry, and was used to study models of cross-slip. As a result, the cross-slip model proposed by Paidar, Pope and Vitek was found to be consistent with the proposed slip reversibility. The results were related to anisotropic viscoplastic constitutive models. The model proposed by Walter and Jordan was found to be capable of modeling all aspects of the material anisotropy. Temperature and strain rate boundaries for the model were proposed, and guidelines for numerical experiments were proposed.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehl, M; Kukkadapu, G; Kumar, K

    The use of gasoline in homogeneous charge compression ignition engines (HCCI) and in duel fuel diesel - gasoline engines, has increased the need to understand its compression ignition processes under engine-like conditions. These processes need to be studied under well-controlled conditions in order to quantify low temperature heat release and to provide fundamental validation data for chemical kinetic models. With this in mind, an experimental campaign has been undertaken in a rapid compression machine (RCM) to measure the ignition of gasoline mixtures over a wide range of compression temperatures and for different compression pressures. By measuring the pressure history duringmore » ignition, information on the first stage ignition (when observed) and second stage ignition are captured along with information on the phasing of the heat release. Heat release processes during ignition are important because gasoline is known to exhibit low temperature heat release, intermediate temperature heat release and high temperature heat release. In an HCCI engine, the occurrence of low-temperature and intermediate-temperature heat release can be exploited to obtain higher load operation and has become a topic of much interest for engine researchers. Consequently, it is important to understand these processes under well-controlled conditions. A four-component gasoline surrogate model (including n-heptane, iso-octane, toluene, and 2-pentene) has been developed to simulate real gasolines. An appropriate surrogate mixture of the four components has been developed to simulate the specific gasoline used in the RCM experiments. This chemical kinetic surrogate model was then used to simulate the RCM experimental results for real gasoline. The experimental and modeling results covered ultra-lean to stoichiometric mixtures, compressed temperatures of 640-950 K, and compression pressures of 20 and 40 bar. The agreement between the experiments and model is encouraging in terms of first-stage (when observed) and second-stage ignition delay times and of heat release rate. The experimental and computational results are used to gain insight into low and intermediate temperature processes during gasoline ignition.« less

  17. Review: Pressure-Induced Densification of Oxide Glasses at the Glass Transition

    NASA Astrophysics Data System (ADS)

    Kapoor, Saurabh; Wondraczek, Lothar; Smedskjaer, Morten M.

    2017-02-01

    Densification of oxide glasses at the glass transition offers a novel route to develop bulk glasses with tailored properties for emerging applications. Such densification can be achieved in the technologically relevant pressure regime of up to 1GPa. However, the present understanding of the composition-structure-property relationships governing these glasses is limited, with key questions, e.g., related to densification mechanism, remaining largely unanswered. Recent advances in structural characterization tools and high-pressure apparatuses have prompted new research efforts. Here, we review this recent progress and the insights gained in the understanding of the influence of isostatic compression at elevated temperature (so-called hot compression) on the composition-structure-property relationships of oxide glasses. We focus on compression at temperatures at or around the glass transition temperature (Tg), with relevant comparisons made to glasses prepared by pressure quenching and cold compression. We show that permanent densification at 1 GPa sets-in at temperatures above 0.7Tg and the degree of densification increases with increasing compression temperature and time, until attaining an approximately constant value for temperatures above Tg. For glasses compressed at the same temperature/pressure conditions, we demonstrate direct relations between the degree of volume densification and the pressure-induced change in micro-mechanical properties such as hardness, elastic moduli, and extent of the indentation size effect across a variety of glass families. Furthermore, we summarize the results on relaxation behavior of hot compressed glasses. All the pressure-induced changes in the structure and properties exhibit strong composition dependence. The experimental results highlight new opportunities for future investigation and identify research challenges that need to be overcome to advance the field.

  18. Fluorosilicone and silicone o-ring aging study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, Robert; Gillen, Kenneth T.

    2007-10-01

    Fluorosilicone o-ring aging studies were performed. These studies examined the compressive force loss of fluorosilicone o-rings at accelerated (elevated) temperatures and were then used to make predictions about force loss at room temperature. The results were non-Arrhenius with evidence for a lowering in Arrhenius activation energies as the aging temperature was reduced. The compression set of these fluorosilicone o-rings was found to have a reasonably linear correlation with the force loss. The aging predictions based on using the observed curvature of the Arrhenius aging plots were validated by field aged o-rings that yielded degradation values reasonably close to the predictions.more » Compression set studies of silicone o-rings from a previous study resulted in good correlation to the force loss predictions for the fluorosilicone o-rings from this study. This resulted in a preliminary conclusion that an approximately linear correlation exists between compression set and force decay values for typical fluorosilicone and silicone materials, and that the two materials age at similar rates at low temperatures. Interestingly, because of the observed curvature of the Arrhenius plots available from longer-term, lower temperature accelerated exposures, both materials had faster force decay curves (and correspondingly faster buildup of compression set) at room temperature than anticipated from typical high-temperature exposures. A brief study on heavily filled conducting silicone o-rings resulted in data that deviated from the linear relationship, implying that a degree of caution must be exercised about any general statement relating force decay and compression set.« less

  19. Enhancing the compressive strength of landfill soil using cement and bagasse ash

    NASA Astrophysics Data System (ADS)

    Azim, M. A. M.; Azhar, A. T. S.; Tarmizi, A. K. A.; Shahidan, S.; Nabila, A. T. A.

    2017-11-01

    The stabilisation of contaminated soil with cement and agricultural waste is a widely applied method which contributes to the sustainability of the environment. Soil may be stabilised to increase strength and durability or to prevent erosion and other geotechnical failure. This study was carried out to evaluate the compressive strength of ex-landfill soil when cement and bagasse ash (BA) are added to it. Different proportions of cement (5%, 10%, 15% and 20%) was added to sample weights without BA. On the other hand, the cement in a different batch of sample weights was replaced by 2.5%, 5%, 7.5% and 10% of BA. All samples were allowed to harden and were cured at room temperature for 7, 14 and 28 days respectively. The strength of the contaminated soil was assessed using an unconfined compressive strength test (UCS). The laboratory tests also included the index properties of soil, cement and bagasse ash in raw form. The results indicated that the samples with cement achieved the highest compressive strength measuring 4.39 MPa. However, this study revealed that the use of bagasse ash produced low quality products with a reduction in strength. For example, when 5% of cement was replaced with 5% ash, the compressive strength decreased by about 54% from 0.72 MPa to 0.33 MPa. Similarly, the compressive strength of each sample after a curing period of 28 days was higher compared to samples cured for 7 and 14 days respectively. This is proved that a longer curing period is needed to increase the compressive strength of the samples.

  20. Experimental characterization of nonlinear, rate-dependent behavior in advanced polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.

    1992-01-01

    In order to support materials selection for the next-generation supersonic civilian-passenger transport aircraft, a study has been undertaken to evaluate the material stress/strain relationships needed to describe advanced polymer matrix composites under conditions of high load and elevated temperature. As part of this effort, this paper describes the materials testing which was performed to investigate the viscoplastic behavior of graphite/thermoplastic and graphite/bismaleimide composites. Test procedures, results and data-reduction schemes which were developed for generating material constants for tension and compression loading, over a range of useful temperatures, are explained.

  1. Density and Adiabatic Compressibility of the Immiscible Molten AgBr+LiCl Mixture

    NASA Astrophysics Data System (ADS)

    Stepanov, Victor P.; Kulik, Nina P.

    2017-04-01

    The adiabatic compressibility, β, of the immiscible liquid mixture 0.52 LiCl+0.48 AgBr (the top of the miscibility gap) was experimentally investigated in the temperature range from the melting point to the critical mixing temperature using the sound velocity values, u, measured by the pulse method, and the density quantities, ρ, which were determined using the hydrostatic weight procedure based on the relationship β=u- 2ρ- 1. It is shown that the coefficients of the temperature dependencies for the compressibility and density of the upper and lower equilibrium phases have opposite signs because of the superposition of the intensity of the thermal motion of the ions and the change in the composition of the phases. The differences, ∆β and ∆ρ, in the magnitudes of the compressibility and density for the equilibrium phases decrease with temperature elevation. The temperature dependencies of the compressibility and density difference are described using the empirical equations ∆β≈(Tc-T)0.438 and ∆ρ≈(Tc-T)0.439.

  2. Development of a stress-mode sensitive viscoelastic constitutive relationship for asphalt concrete: experimental and numerical modeling

    NASA Astrophysics Data System (ADS)

    Karimi, Mohammad M.; Tabatabaee, Nader; Jahanbakhsh, H.; Jahangiri, Behnam

    2017-08-01

    Asphalt binder is responsible for the thermo-viscoelastic mechanical behavior of asphalt concrete. Upon application of pure compressive stress to an asphalt concrete specimen, the stress is transferred by mechanisms such as aggregate interlock and the adhesion/cohesion properties of asphalt mastic. In the pure tensile stress mode, aggregate interlock plays a limited role in stress transfer, and the mastic phase plays the dominant role through its adhesive/cohesive and viscoelastic properties. Under actual combined loading patterns, any coordinate direction may experience different stress modes; therefore, the mechanical behavior is not the same in the different directions and the asphalt specimen behaves as an anisotropic material. The present study developed an anisotropic nonlinear viscoelastic constitutive relationship that is sensitive to the tension/compression stress mode by extending Schapery's nonlinear viscoelastic model. The proposed constitutive relationship was implemented in Abaqus using a user material (UMAT) subroutine in an implicit scheme. Uniaxial compression and indirect tension (IDT) testing were used to characterize the viscoelastic properties of the bituminous materials and to calibrate and validate the proposed constitutive relationship. Compressive and tensile creep compliances were calculated using uniaxial compression, as well as IDT test results, for different creep-recovery loading patterns at intermediate temperature. The results showed that both tensile creep compliance and its rate were greater than those of compression. The calculated deflections based on these IDT test simulations were compared with experimental measurements and were deemed acceptable. This suggests that the proposed viscoelastic constitutive relationship correctly demonstrates the viscoelastic response and is more accurate for analysis of asphalt concrete in the laboratory or in situ.

  3. Microstructure and properties of cryomilled nickel aluminide extruded with chromium or molybdenum

    NASA Technical Reports Server (NTRS)

    Aikin, Beverly J. M.; Dickerson, Robert M.; Dickerson, Patricia O.

    1995-01-01

    Previous results from high energy, attrition milled NiAl in liquid nitrogen (cryomilled) indicate that this process can produce high temperature, creep resistant AlN particulate reinforced materials. However, the low temperature toughness of such materials is below that preferred for structural applications in aerospace engines. In order to improve the toughness of these materials, prealloyed nickel aluminide (Ni-53 atomic percent Al) powder was cryomilled and mixed with chromium or molybdenum powders. The resulting materials were hot extruded and tested for room temperature toughness and 1300 K compressive strength.

  4. Temperature and speed of testing influence on the densification and recovery of polyurethane foams

    NASA Astrophysics Data System (ADS)

    Apostol, Dragoş Alexandru; Constantinescu, Dan Mihai

    2013-02-01

    Polyurethane foams with densities of 35, 93, and 200 kg/m3 were tested in compression at three levels of temperatures as: -60 °C, 23 °C, and 80 °C. The influence of speed of testing from 2 mm/min up to 6 m/s (0.0014 to 545 s-1) on the response of the foams is analyzed. Testing is done separately on the rise direction and on the in-plane direction of the foams, and differences in their behavior are commented. With interpolation functions which approximate the plateau and densification region, the specific strain energy is calculated together with the energy efficiency and onset strain of densification. A Nagy-type phenomenological strain-rate-dependent model is proposed to generate engineering stress-strain curves and is validated through comparison with experimental stress-strain curves obtained at different speeds of testing. Starting from a reference experimental curve, two material parameters which are density and temperature dependent are established. Foam recovery for each density of the polyurethane foams is analyzed as a function of direction of testing, temperature, and speed of testing.

  5. Alumina as a filler for bone cement: a feasibility study.

    PubMed

    Ackley, M A; Monroe, E

    1980-10-01

    A composite bone cement of Alcoa A-10 Alumina and very finely ground poly(methyl methacrylate) beads (PMMA) was fabricated. It was tested in an attempt to improve on the conventionally used pure PMMA bone cement. By knowing the densities of the powders and their volumes, the mass of each was calculated for the most efficient packing of PMMA and Al2O3 powders and a 65% PMMA: 35% Al2O3 ratio by weight composition was determined. This was tested, as well as the pure cement so comparisons could be made. Cylinders for the strength tests were also made of silane treated Al2O3. The compositions were tested for compressive and tensile strengths. The pure PMMA, composite and silane treated composite had compressive strengths of 79.64 +/- 13.0, 83.17 +/- 4.8, and 71.52 +/- 8.6 MPa and the tensile strengths were 6.69 +/- 0.6, 5.12 +/- 0.3, and 7.12 +/- 0.5 MPa respectively. Also the 65%-35% PMMA-Al2O3 composite required 64% less monomer for mixing than did the pure cement which is thought to be better for tissue healing. The maximum temperature attained from room temperature was 110 degrees-115 degrees C for both cements. The composite took 6.5 min longer to reach its peak temperature than did the pure cement. The bone cements were implanted for one week in a rabbit and both compositions seemed acceptable by the tissue.

  6. Small angle neutron scattering analyses and high temperature mechanical properties of nano-structured oxide dispersion strengthened steels produced via cryomilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeoung Han; Byun, Thak Sang; Shin, Eunjoo

    2015-08-17

    Three oxide dispersion-strengthened (ODS) steels are produced in order to investigate the effect of the mechanical alloying (MA) temperature on the microstructural evolution and high temperature mechanical properties. The microstructural evolution with different MA conditions is examined using small angle neutron scattering. As the MA temperature decreases, the density of the nanoclusters below 10 nm increases and their mean diameter decreases. A low temperature during MA leads to a high strength in the compression tests performed at 500 *C; however, this effect disappears in testing at 900 *C. The milling process at *70 *C exhibits excellent high fracture toughness, whichmore » is better than the benchmark material 14YWT-SM10. However, the *150 *C milling process results in significantly worse fracture toughness properties. The reasons for this strong temperature dependency are discussed.« less

  7. The effect of slag addition on strength development of Class C fly ash geopolymer concrete at normal temperature

    NASA Astrophysics Data System (ADS)

    Wardhono, Arie; Law, David W.; Sutikno, Dani, Hasan

    2017-09-01

    This paper presents the effect of slag addition on strength development and workability of fly ash/slag based geopolymer (FASLG) concrete cured at normal temperature. Class C fly ash with high ferrite (Fe) content was used as the primary material. The proportions of fly ash (FA) to slag (SL) are: 1 FA : 0 SL, 0.9 FA : 0.1 SL, 0.7 FA : 0.3 SL, and 0.5 FA : 0.5 SL. The workability and strength properties were determined by slump, vikat, and compressive strength tests. The result shows that the highest compressive strength was achieved by FASLG-3 concrete with 30% slag addition and exhibited a comparable strength to that normal concrete at 28 days. The 30% slag addition also improve the workability and increase the setting time of FASLG concrete specimens. It can be concluded that the slag inclusion on fly ash will improve the performance of geopolymer concrete at normal temperature.

  8. Flow Stress and Processing Map of a PM 8009Al/SiC Particle Reinforced Composite During Hot Compression

    NASA Astrophysics Data System (ADS)

    Luo, Haibo; Teng, Jie; Chen, Shuang; Wang, Yu; Zhang, Hui

    2017-10-01

    Hot compression tests of 8009Al alloy reinforced with 15% SiC particles (8009Al/15%SiCp composites) prepared by powder metallurgy (direct hot extrusion methods) were performed on Gleeble-3500 system in the temperature range of 400-550 °C and strain rate range of 0.001-1 s-1. The processing map based on the dynamic material model was established to evaluate the flow instability regime and optimize processing parameters; the associated microstructural changes were studied by the observations of optical metallographic and scanning electron microscopy. The results showed that the flow stress increased initially and reached a plateau after peak stress value with increasing strain. The peak stress increased as the strain rate increased and deformation temperature decreased. The optimum parameters were identified to be deformation temperature range of 500-550 °C and strain rate range of 0.001-0.02 s-1 by combining the processing map with microstructural observation.

  9. A study of the crystallization, melting, and foaming behaviors of polylactic acid in compressed CO₂.

    PubMed

    Zhai, Wentao; Ko, Yoorim; Zhu, Wenli; Wong, Anson; Park, Chul B

    2009-12-16

    The crystallization and melting behaviors of linear polylactic acid (PLA) treated by compressed CO(2) was investigated. The isothermal crystallization test indicated that while PLA exhibited very low crystallization kinetics under atmospheric pressure, CO(2) exposure significantly increased PLA's crystallization rate; a high crystallinity of 16.5% was achieved after CO(2) treatment for only 1 min at 100 degrees C and 6.89 MPa. One melting peak could be found in the DSC curve, and this exhibited a slight dependency on treatment times, temperatures, and pressures. PLA samples tended to foam during the gas release process, and a foaming window as a function of time and temperature was established. Based on the foaming window, crystallinity, and cell morphology, it was found that foaming clearly reduced the needed time for PLA's crystallization equilibrium.

  10. Quasi-adiabatic compression heating of selected foods

    NASA Astrophysics Data System (ADS)

    Landfeld, Ales; Strohalm, Jan; Halama, Radek; Houska, Milan

    2011-03-01

    The quasi-adiabatic temperature increase due to compression heating, during high-pressure (HP) processing (HPP), was studied using specially designed equipment. The temperature increase was evaluated as the difference in temperature, during compression, between atmospheric pressure and nominal pressure. The temperature was measured using a thermocouple in the center of a polyoxymethylene cup, which contained the sample. Fresh meat balls, pork meat pate, and tomato purée temperature increases were measured at three initial temperature levels between 40 and 80 °C. Nominal pressure was either 400 or 500 MPa. Results showed that the fat content had a positive effect on temperature increases. Empirical equations were developed to calculate the temperature increase during HPP at different initial temperatures for pressures of 400 and 500 MPa. This thermal effect data can be used for numerical modeling of temperature histories of foods during HP-assisted pasteurization or sterilization processes.

  11. Detection of Small Stress Relaxation in Tightened Metallic Structures by Ultrasounds

    NASA Astrophysics Data System (ADS)

    Augereau, F.; Portal, A.

    Experimental data are presented here to highlight the performances of ultrasounds for the control or the better understanding of the quality of the mechanical contact between tightened plates. Thus, variations of the mechanical load as small as those induced by creep or stress relaxation are potentially detectable by simply monitoring the amplitude of the reflected acoustic plane wave reflected at this interface. To illustrate this, two 3 cm thick aluminium plates are firstly tightened with a given torque and next, the amplitude of the acoustic wave is monitored for several days. All long this test, the temperature of the sample is controlled as well as the compression load applied to the plates using a thermocouple and a bolt gauge sensor. The reflected amplitude decreases quickly during first hours and then stabilises after a week approximately. The total variation reaches -28% of the initial value of the reflected amplitude. During this test, temperature is remained almost constant and its fluctuation around the ambient temperature is not correlated with the reflected amplitude. As expected from classic stress relaxation tests, the compression load has slowly decreased by an amount of only -1% but this should have logically increased the reflected amplitude. Further investigations have shown that instrumentation drift were negligible. Consequently, this large decrease of the reflected amplitude has been interpreted as the indication of the increase of the contact area between the two tightened plates. This test attests the high sensitivity of ultrasonic reflection measurement to investigate quality of mechanical contacts for non destructive testing.

  12. SEVENTH INTERIM STATUS REPORT: MODEL 9975 PCV O-RING FIXTURE LONG-TERM LEAK PERFORMANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daugherty, W.

    2012-08-30

    A series of experiments to monitor the aging performance of Viton® GLT O-rings used in the Model 9975 package has been ongoing since 2004 at the Savannah River National Laboratory. Seventy tests using mock-ups of 9975 Primary Containment Vessels (PCVs) were assembled and heated to temperatures ranging from 200 to 450 ºF. They were leak-tested initially and have been tested periodically to determine if they meet the criterion of leak-tightness defined in ANSI standard N14.5-97. Fourteen additional tests were initiated in 2008 with GLT-S O-rings heated to temperatures ranging from 200 to 400 ºF. High temperature aging continues for 23more » GLT O-ring fixtures at 200 – 270 ºF. Room temperature leak test failures have been experienced in all of the GLT O-ring fixtures aging at 350 ºF and higher temperatures, and in 8 fixtures aging at 300 ºF. The remaining GLT O-ring fixtures aging at 300 ºF have been retired from testing following more than 5 years at temperature without failure. No failures have yet been observed in GLT O-ring fixtures aging at 200 ºF for 54-72 months, which is still bounding to O-ring temperatures during storage in K-Area Complex (KAC). Based on expectations that the fixtures aging at 200 ºF will remain leak-tight for a significant period yet to come, 2 additional fixtures began aging in 2011 at an intermediate temperature of 270 ºF, with hopes that they may reach a failure condition before the 200 ºF fixtures. High temperature aging continues for 6 GLT-S O-ring fixtures at 200 – 300 ºF. Room temperature leak test failures have been experienced in all 8 of the GLT-S O-ring fixtures aging at 350 and 400 ºF. No failures have yet been observed in GLT-S O-ring fixtures aging at 200 - 300 ºF for 30 - 36 months. For O-ring fixtures that have failed the room temperature leak test and been disassembled, the O-rings displayed a compression set ranging from 51 – 96%. This is greater than seen to date for any packages inspected during KAC field surveillance (24% average). For GLT O-rings, separate service life estimates have been made based on the O-ring fixture leak test data and based on compression stress relaxation (CSR) data. These two predictive models show reasonable agreement at higher temperatures (350 – 400 ºF). However, at 300 ºF, the room temperature leak test failures to date experienced longer aging times than predicted by the CSRbased model. This suggests that extrapolations of the CSR model predictions to temperatures below 300 ºF will provide a conservative prediction of service life relative to the leak rate criterion. Leak test failure data at lower temperatures are needed to verify this apparent trend. Insufficient failure data exist currently to perform a similar comparison for GLT-S O-rings. Aging and periodic leak testing will continue for the remaining PCV O-ring fixtures.« less

  13. Highly Porous NiTi with Isotropic Pore Morphology Fabricated by Self-Propagated High-Temperature Synthesis

    NASA Astrophysics Data System (ADS)

    Hosseini, S. A.; Alizadeh, M.; Ghasemi, A.; Meshkot, M. A.

    2013-02-01

    Highly porous NiTi with isotropic pore morphology has been successfully produced by self-propagating high-temperature synthesis of elemental Ni/Ti metallic powders. The effects of adding urea and NaCl as temporary pore fillers were investigated on pore morphology, microstructure, chemical composition, and the phase transformation temperatures of specimens. These parameters were studied by optical microscopy, scanning electron microscopy, x-ray diffraction, and differential scanning calorimetry (DSC). Highly porous specimens were obtained with up to 83% total porosity and pore sizes between 300 and 500 μm in diameter. Results show pore characteristics were improved from anisotropic to isotropic and pore morphology was changed from channel-like to irregular by adding pore filler powders. Furthermore, the highly porous specimens produced when using urea as a space holder, were of more uniform composition in comparison to NaCl. DSC results showed that a two-step martensitic phase transformation takes place during the cooling cycles and the austenite finish temperature ( A f) is close to human body temperature. Compression test results reveal that the compressive strength of highly porous NiTi is about 155 MPa and recoverable strain about 6% in superelasticity regime.

  14. Characterization of the mechanical and physical properties of TD-NiCr (Ni-20Cr-2ThO2) alloy sheet

    NASA Technical Reports Server (NTRS)

    Fritz, L. J.; Koster, W. P.; Taylor, R. E.

    1973-01-01

    Sheets of TD-NiCr processed using techniques developed to produce uniform material were tested to supply mechanical and physical property data. Two heats each of 0.025 and 0.051 cm thick sheet were tested. Mechanical properties evaluated included tensile, modulus of elasticity, Poisson's Ratio, compression, creep-rupture, creep strength, bearing strength, shear strength, sharp notch and fatigue strength. Test temperatures covered the range from ambient to 1589K. Physical properties were also studied as a function of temperature. The physical properties measured were thermal conductivity, linear thermal expansion, specific heat, total hemispherical emittance, thermal diffusivity, and electrical conductivity.

  15. Low-Power Baseline Test Results for the GPU 3 Stirling Engine

    NASA Technical Reports Server (NTRS)

    Thieme, L. G.

    1979-01-01

    A 7.5 kW (10 hp) Stirling engine was converted to a research configuration in order to obtain data for validating Stirling-cycle computer simulations. Test results for a range of heater-tube gas temperatures, mean compression-space pressures, and engine speeds with both helium and hydrogen as the working fluid are summarized. An instrumentation system to determine indicated work is described and preliminary results are presented.

  16. Acoustic Emission Monitoring of the DC-XA Composite Liquid Hydrogen Tank During Structural Testing

    NASA Technical Reports Server (NTRS)

    Wilkerson, C.

    1996-01-01

    The results of acoustic emission (AE) monitoring of the DC-XA composite liquid hydrogen tank are presented in this report. The tank was subjected to pressurization, tensile, and compressive loads at ambient temperatures and also while full of liquid nitrogen. The tank was also pressurized with liquid hydrogen. AE was used to monitor the tank for signs of structural defects developing during the test.

  17. Dynamic Recrystallization Behavior and Corrosion Resistance of a Dual-Phase Mg-Li Alloy

    PubMed Central

    Liu, Gang; Xie, Wen; Wei, Guobing; Yang, Yan; Liu, Junwei; Xu, Tiancai; Xie, Weidong; Peng, Xiaodong

    2018-01-01

    The hot deformation and dynamic recrystallization behavior of the dual-phase Mg-9Li-3Al-2Sr-2Y alloy had been investigated using a compression test. The typical dual-phase structure was observed, and average of grain size of as-homogenized alloy is about 110 µm. It mainly contains β-Li, α-Mg, Al4Sr and Al2Y phases. The dynamic recrystallization (DRX) kinetic was established based on an Avrami type equation. The onset of the DRX process occurred before the peak of the stress–strain flow curves. It shows that the DRX volume fraction increases with increasing deformation temperature or decreasing strain rate. The microstructure evolution during the hot compression at various temperatures and strain rates had been investigated. The DRX grain size became larger with the increasing testing temperature or decreasing strain rate because the higher temperature or lower strain rate can improve the migration of DRX grain boundaries. The fully recrystallized microstructure can be achieved in a small strain due to the dispersed island-shape α-Mg phases, continuous the Al4Sr phases and spheroidal Al2Y particles, which can accelerate the nucleation. The continuous Al4Sr phases along the grain boundaries are very helpful for enhancing the corrosion resistance of the duplex structured Mg-Li alloy, which can prevent the pitting corrosion and filiform corrosion. PMID:29522473

  18. Dynamic Recrystallization Behavior and Corrosion Resistance of a Dual-Phase Mg-Li Alloy.

    PubMed

    Liu, Gang; Xie, Wen; Wei, Guobing; Yang, Yan; Liu, Junwei; Xu, Tiancai; Xie, Weidong; Peng, Xiaodong

    2018-03-09

    The hot deformation and dynamic recrystallization behavior of the dual-phase Mg-9Li-3Al-2Sr-2Y alloy had been investigated using a compression test. The typical dual-phase structure was observed, and average of grain size of as-homogenized alloy is about 110 µm. It mainly contains β-Li, α-Mg, Al₄Sr and Al₂Y phases. The dynamic recrystallization (DRX) kinetic was established based on an Avrami type equation. The onset of the DRX process occurred before the peak of the stress-strain flow curves. It shows that the DRX volume fraction increases with increasing deformation temperature or decreasing strain rate. The microstructure evolution during the hot compression at various temperatures and strain rates had been investigated. The DRX grain size became larger with the increasing testing temperature or decreasing strain rate because the higher temperature or lower strain rate can improve the migration of DRX grain boundaries. The fully recrystallized microstructure can be achieved in a small strain due to the dispersed island-shape α-Mg phases, continuous the Al₄Sr phases and spheroidal Al₂Y particles, which can accelerate the nucleation. The continuous Al₄Sr phases along the grain boundaries are very helpful for enhancing the corrosion resistance of the duplex structured Mg-Li alloy, which can prevent the pitting corrosion and filiform corrosion.

  19. Adiabatic Compression in a Fire Syringe.

    ERIC Educational Resources Information Center

    Hayn, Carl H.; Baird, Scott C.

    1985-01-01

    Suggests using better materials in fire syringes to obtain more effective results during demonstrations which show the elevation in temperature upon a very rapid (adiabatic) compression of air. Also describes an experiment (using ignition temperatures) which introduces students to the use of thermocouples for high temperature measurements. (DH)

  20. Shape memory characteristics and mechanical properties of powder metallurgy processed Ti50Ni40Cu10 alloy.

    PubMed

    Kim, Yeon-Wook

    2014-10-01

    Ti-Ni-Cu alloy powders were prepared by gas atomization and porous bulk specimens were fabricated by spark plasma sintering (SPS). The microstructure of as-solidified powders exhibited a cellular structure and they contained a high density of nano-sized porosities which were located in the intercellular regions. XRD analysis showed that one-step martensitic transformation of B2-B19 occurred in all alloy powders and SPS specimens. When the martensitic transformation start temperature (M(s)) and austenite transformation finish temperature (A(f)) were determined in order to analyze the dependence of powder size on transformation temperatures, the M(s) increased slightly from -17.5 degrees C to - 14.6 degrees C as increasing the powder size ranging from between 25 and 50 μm to ranging between 100 and 150 μm. However, the M(s) and A(f) of the as-atomized powders is much smaller than those of SPS specimens and the M(s) of porous specimen was about 10.9 degrees C. Loading-unloading compressive tests were carried out to investigate the mechanical properties of porous Ti-Ni-Cu specimen. The specimen was compressed to the strain of 6% at a temperature higher than A,. After unloading, the residual strain was 2.1%. After the compressed specimen was heated to 60 degrees C and held for 30 minutes and then cooled to room temperature, the changes in the length of the specimens were measured. Then it was found that the recovered strain ascribed to shape memory effect was 1.5%.

  1. Lunar Base Heat Pump

    NASA Technical Reports Server (NTRS)

    Walker, D.; Fischbach, D.; Tetreault, R.

    1996-01-01

    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  2. Development of a Biodegradable Bone Cement for Craniofacial Applications

    PubMed Central

    Henslee, Allan M.; Gwak, Dong-Ho; Mikos, Antonios G.; Kasper, F. Kurtis

    2015-01-01

    This study investigated the formulation of a two-component biodegradable bone cement comprising the unsaturated linear polyester macromer poly(propylene fumarate) (PPF) and crosslinked PPF microparticles for use in craniofacial bone repair applications. A full factorial design was employed to evaluate the effects of formulation parameters such as particle weight percentage, particle size, and accelerator concentration on the setting and mechanical properties of crosslinked composites. It was found that the addition of crosslinked microparticles to PPF macromer significantly reduced the temperature rise upon crosslinking from 100.3 ± 21.6 to 102.7 ± 49.3 °C for formulations without microparticles to 28.0 ± 2.0 to 65.3 ± 17.5 °C for formulations with microparticles. The main effects of increasing the particle weight percentage from 25 to 50% were to significantly increase the compressive modulus by 37.7 ± 16.3 MPa, increase the compressive strength by 2.2 ± 0.5 MPa, decrease the maximum temperature by 9.5 ± 3.7 °C, and increase the setting time by 0.7 ± 0.3 min. Additionally, the main effects of increasing the particle size range from 0–150 μm to 150–300 μm were to significantly increase the compressive modulus by 31.2 ± 16.3 MPa and the compressive strength by 1.3 ± 0.5 MPa. However, the particle size range did not have a significant effect on the maximum temperature and setting time. Overall, the composites tested in this study were found to have properties suitable for further consideration in craniofacial bone repair applications. PMID:22499285

  3. Thermodynamics of the relativistic Fermi gas in D dimensions

    NASA Astrophysics Data System (ADS)

    Sevilla, Francisco J.; Piña, Omar

    2017-09-01

    The influence of spatial dimensionality and particle-antiparticle pair production on the thermodynamic properties of the relativistic Fermi gas, at finite chemical potential, is studied. Resembling a "phase transition", qualitatively different behaviors of the thermodynamic susceptibilities, namely the isothermal compressibility and the specific heat, are markedly observed at different temperature regimes as function of the system dimensionality and of the rest mass of the particles. A minimum in the temperature dependence of the isothermal compressibility marks a characteristic temperature, in the range of tenths of the Fermi temperature, at which the system transit from a "normal" phase, to a phase where the gas compressibility grows as a power law of the temperature.

  4. Fractal Loop Heat Pipe Performance Comparisons of a Soda Lime Glass and Compressed Carbon Foam Wick

    NASA Technical Reports Server (NTRS)

    Myre, David; Silk, Eric A.

    2014-01-01

    This study compares heat flux performance of a Loop Heat Pipe (LHP) wick structure fabricated from compressed carbon foam with that of a wick structure fabricated from sintered soda lime glass. Each wick was used in an LHP containing a fractal based evaporator. The Fractal Loop Heat Pipe (FLHP) was designed and manufactured by Mikros Manufacturing Inc. The compressed carbon foam wick structure was manufactured by ERG Aerospace Inc., and machined to specifications comparable to that of the initial soda lime glass wick structure. Machining of the compressed foam as well as performance testing was conducted at the United States Naval Academy. Performance testing with the sintered soda lime glass wick structures was conducted at NASA Goddard Space Flight Center. Heat input for both wick structures was supplied via cartridge heaters mounted in a copper block. The copper heater block was placed in contact with the FLHP evaporator which had a circular cross-sectional area of 0.88 cm(sup 2). Twice distilled, deionized water was used as the working fluid in both sets of experiments. Thermal performance data was obtained for three different Condenser/Subcooler temperatures under degassed conditions. Both wicks demonstrated comparable heat flux performance with a maximum of 75 W/cm observed for the soda lime glass wick and 70 W /cm(sup 2) for the compressed carbon foam wick.

  5. Elevated-Temperature Deformation Properties of a HfC Modified Ti-48Al-2Mn-2Nb Matrix Particulate Composite

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Farmer, S. C.; Bors, D. A.; Ray, R.; Lee, D. S.

    1994-01-01

    Rapid solidification techniques in combination with HIPing have been used to produce Ti-48Al-2Mn-2Nb and a Ti-48Al-2Mn-2Nb+15 wt% HfC composite. While the composite does contain several second phases within the gamma + alpha(sub 2) matrix, none was identified to be HfC. The elevated-temperature properties were determined by constant velocity compression and constant load tensile testing in air between 1000 and 1173 K. Such testing indicated that the elevated temperature strengths of the HfC-modified aluminide was superior to those of the unreinforced matrix with the best 1100 K temperature slow strain rate properties for both materials being achieved after high-temperature annealing prior to testing. Examination of the microstructures after deformation in combination with the measured stress exponents and activation energies suggest that creep resistance of the HfC-modified form is due to solid-solution strengthening from carbon and hafnium rather than the presence of second phases.

  6. Measurement of mechanical and thermophysical properties of dimensionally stable materials for space applications

    NASA Technical Reports Server (NTRS)

    Rawal, Suraj P.; Misra, Mohan S.

    1992-01-01

    Mechanical, thermal, and physical property test data was generated for as-fabricated advanced composite materials at room temperature (RT), -150 and 250 F. The results are documented of mechanical and thermophysical property tests of IM7/PEEK and discontinuous SiC/Al (particulate (p) and whisker (w) reinforced) composites which were tested at three different temperatures to determine the effect of temperature on material properties. The specific material systems tested were IM7/PEEK (0)8, (0, + or - 45, 90)s, (+ or - 30, 04)s, 25 vol. pct. (v/o) SiCp/Al, and 25 v/o SiCw/Al. RT material property results of IM7/PEEK were in good agreement with the predicted values, providing a measure of consolidation integrity attained during fabrication. Results of mechanical property tests indicated that modulus values at each test temperature were identical, whereas the strength (e.g., tensile, compressive, flexural, and shear) values were the same at -150 F, and RT, and gradually decreased as the test temperature was increased to 250 F. Similar trends in the strength values was also observed in discontinuous SiC/Al composites. These results indicate that the effect of temperature was more pronounced on the strength values than modulus values.

  7. Hot Ductility and Compression Deformation Behavior of TRIP980 at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Zhang, Mei; Li, Haiyang; Gan, Bin; Zhao, Xue; Yao, Yi; Wang, Li

    2018-02-01

    The hot ductility tests of a kind of 980 MPa class Fe-0.31C (wt pct) TRIP steel (TRIP980) with the addition of Ti/V/Nb were conducted on a Gleeble-3500 thermomechanical simulator in the temperatures ranging from 873 K to 1573 K (600 °C to 1300 °C) at a constant strain rate of 0.001 s-1. It is found that the hot ductility trough ranges from 873 K to 1123 K (600 °C to 850 °C). The recommended straightening temperatures are from 1173 K to 1523 K (900 °C to 1250 °C). The isothermal hot compression deformation behavior was also studied by means of Gleeble-3500 in the temperatures ranging from 1173 K to 1373 K (900 °C to 1100 °C) at strain rates ranging from 0.01 s-1 to 10 s-1. The results show that the peak stress decreases with the increasing temperature and the decreasing strain rate. The deformation activation energy of the test steel is 436.7 kJ/mol. The hot deformation equation of the steel has been established, and the processing maps have been developed on the basis of experimental data and the principle of dynamic materials model (DMM). By analyzing the processing maps of strains of 0.5, 0.7, and 0.9, it is found that dynamic recrystallization occurs in the peak power dissipation efficiency domain, which is the optimal area of hot working. Finally, the factors influencing hot ductility and thermal activation energy of the test steel were investigated by means of microscopic analysis. It indicates that the additional microalloying elements play important roles both in the loss of hot ductility and in the enormous increase of deformation activation energy for the TRIP980 steel.

  8. Magnetic-Flux-Compression Cooling Using Superconductors

    NASA Technical Reports Server (NTRS)

    Strayer, Donald M.; Israelsson, Ulf E.; Elleman, Daniel D.

    1989-01-01

    Proposed magnetic-flux-compression refrigeration system produces final-stage temperatures below 4.2 K. More efficient than mechanical and sorption refrigerators at temperatures in this range. Weighs less than comparable liquid-helium-cooled superconducting magnetic refrigeration systems operating below 4.2 K. Magnetic-flux-compression cooling stage combines advantages of newly discovered superconductors with those of cooling by magnetization and demagnetization of paramagnetic salts.

  9. Effects of number of ply, compression temperature, pressure and time on mechanical properties of prepreg kenaf-polypropilene composites

    NASA Astrophysics Data System (ADS)

    Tomo, H. S. S.; Ujianto, O.; Rizal, R.; Pratama, Y.

    2017-07-01

    Composite material thermoplastic was prepared from polypropilen granule as matrix, kenaf fiber as reinforcement and grafted polypropylene copolymer maleic anhydride as coupling agent. Composite products were produced as sandwich structures using compression molding. This research aimed to observe the influence of number of ply, temperature, pressure, and compression time using factorial design. Effects of variables on tensile and flexural strength were analyzed. Experimental results showed that tensile and flexural strength were influenced by degradation, fiber compaction, and matrix - fiber interaction mechanisms. Flexural strength was significantly affected by number of ply and its interaction to another process parameters (temperature, pressure, and compression time), but no significant effect of process parameters on tensile strength. The highest tensile strength (62.0 MPa) was produced at 3 ply, 210 °C, 50 Bar, and 3 min compression time (low, high, high, low), while the highest flexural strength (80.3 MPa) was produced at 3 ply, 190 °C, 50 Bar, and 3 min compression time (low, low, high, low).

  10. Temperature Controller System for Gas Gun Targets

    NASA Astrophysics Data System (ADS)

    Bucholtz, Scott; Sheffield, Stephen

    2005-07-01

    A temperature controller system capable of heating and cooling gas gun targets over the range -75 C to +200 C was designed and tested. The system uses cold nitrogen gas from a liquid nitrogen Dewar for cooling and compressed air for heating. Two gas flow heaters control the gas temperature for both heating and cooling. One heater controls the temperature of the target mounting plate and the other the temperature of a copper tubing coil surrounding the target. Each heater is separately adjustable, so the target material will achieve a uniform temperature throughout its volume. A magnetic gauge with integrated thermocouples was developed to measure the internal temperature of the target. Using this system shock experiments, including equation-of-state measurements and shock initiation of high explosives, can be performed over a range of initial temperatures. Successful tests were completed on Teflon samples. This work was supported by the NNSA Enhanced Surveillance Campaign through contract DE-ACO4-01AL66850.

  11. Fine characterization rock thermal damage by acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Kong, Biao; Li, Zenghua; Wang, Enyuan

    2018-02-01

    This paper examines the differences in the thermal mechanical properties and acoustic emission (AE) characteristics during the deformation and fracture of rock under the action of continuous heating and after high-temperature treatment. Using AE 3D positioning technology, the development and evolution of the internal thermal cracks and the time domain of AE signals in rock were analyzed. High-temperature treatment causes thermal damage to rock. Under the action of continuous heating, the phase characteristics of AE time series correspond to the five stages of rock thermal deformation and fracture, respectively: the micro-defect development stage, the threshold interval of rock micro-cracks, the crack initiation stage, the crack propagation stage, and the crack multistage propagation evolution. When the initial crack propagates, the crack initiation of the rock causes the AE signal to produce a sudden mutation change. Mechanical fraction characteristics during rock uniaxial compression after temperature treatment indicated that the decrease rate of the rock compressive strength, wave velocity, and elastic modulus are relatively large during uniaxial compression tests after high-temperature treatment. During the deformation and fracture of rock under loading, there is faster growth of AE counts and AE events, indicating an increase in the speed of rock deformation and fracture under loading. AE counts show obvious changes during the latter loading stages, whereas AE events show obvious changes during the loading process. The results obtained are valuable for rock thermal stability detection and evaluation in actual underground engineering.

  12. Effects of temperature and humidity cycling on the strengths of textile reinforced carbon/epoxy composite materials

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Furrow, Keith W.

    1993-01-01

    Results are presented from an experimental evaluation of the combined effects of temperature and humidity cycling on AS4/3501-6 composites (unstitched, Kevlar 29 stitched, and S-2 glass stitched uniweave fabric) and AS4/E905L composites (2-D, S-2 glass stitched 2-D, and 3-D braided fabric). The AS4/3501-6 uniweave material had a quasi-isotropic layup, whereas the AS4/E905L materials were braided in a (+/-30 deg/0 deg)(sub s) orientation. Data presented include compression strengths and compression-compression fatigue results for uncycled composites and cycled composites (160, 480, 720, and 1280 cycles from 140 deg F at 95 percent relative humidity to -67 deg F). To observe the presence of microcracking within the laminates, photomicrographs were taken of each material type at the end of each cycling period. Microcracks were found to be more prevalent within stitched laminates, predominantly around individual stitches. The glass stitched laminates showed significant microcracking even before cycling. Less microcracking was evident in the Kevlar stitched materials, whereas the unstitched uniweave material developed microcracks only after cycling. The 3-D braid did not develop microcracks. The static compression strengths of the unstitched and Kevlar stitched uniweave materials were degraded by about 10 percent after 1280 temperature/humidity cycles, whereas the reduction in compression strength for the glass stitched uniweave was less than 3 percent. The reduction in compression strength for the glass stitched 2-D braid was less than 8 percent. The unstitched 2-D and 3-D braids did not lose strength from temperature/humidity cycling. The compression-compression fatigue properties of all six material types were not affected by temperature/humidity cycling.

  13. Effect of grain orientation on aluminum relocation at incipient melt conditions

    DOE PAGES

    Yilmaz, Nadir; Vigil, Francisco M.; Vigil, Miquela S.; ...

    2015-09-01

    Aluminum is commonly used for structural applications in the aerospace industry because of its high strength in relation to its weight. It is necessary to understand the mechanical response of aluminum structures at elevated temperatures such as those experienced in a fire. Additionally, aluminum alloys exhibit many complicated behaviors that require further research and understanding, such as aluminum combustion, oxide skin formation and creep behavior. This paper discusses the effect of grain orientation on aluminum deformation subjected to heating at incipient melt conditions. Experiments were conducted by applying a vertical compressive force to aluminum alloy 7075 block test specimens. Furthermore,more » compression testing was done on test specimens with the applied load on the long transverse and short transverse orientations. Our results showed that the grain orientation significantly influences aluminum’s strength and mode of failure.« less

  14. Phase Transformation and Creep Behavior in Ti50Pd30Ni20 High Temperature Shape Memory Alloy in Compression

    NASA Technical Reports Server (NTRS)

    Kumar, Parikshith K.; Desai, Uri; Monroe, James; Lagoudas, Dimitris C.; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glenn

    2010-01-01

    The creep behavior and the phase transformation of Ti50Pd30Ni20 High Temperature Shape Memory Alloy (HTSMA) is investigated by standard creep tests and thermomechanical tests. Ingots of the alloy are induction melted, extruded at high temperature, from which cylindrical specimens are cut and surface polished. A custom high temperature test setup is assembled to conduct the thermomechanical tests. Following preliminary monotonic tests, standard creep tests and thermally induced phase transformation tests are conducted on the specimen. The creep test results suggest that over the operating temperatures and stresses of this alloy, the microstructural mechanisms responsible for creep change. At lower stresses and temperatures, the primary creep mechanism is a mixture of dislocation glide and dislocation creep. As the stress and temperature increase, the mechanism shifts to predominantly dislocation creep. If the operational stress or temperature is raised even further, the mechanism shifts to diffusion creep. The thermally induced phase transformation tests show that actuator performance can be affected by rate independent irrecoverable strain (transformation induced plasticity + retained martensite) as well as creep. The rate of heating and cooling can adversely impact the actuators performance. While the rate independent irrecoverable strain is readily apparent early in the actuators life, viscoplastic strain continues to accumulate over the lifespan of the HTSMA. Thus, in order to get full actuation out of the HTSMA, the heating and cooling rates must be sufficiently high enough to avoid creep.

  15. Multilayer compressive seal for sealing in high temperature devices

    DOEpatents

    Chou, Yeong-Shyung [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2007-08-21

    A mica based compressive seal has been developed exhibiting superior thermal cycle stability when compared to other compressive seals known in the art. The seal is composed of compliant glass or metal interlayers and a sealing (gasket) member layer composed of mica that is infiltrated with a glass forming material, which effectively reduces leaks within the seal. The compressive seal shows approximately a 100-fold reduction in leak rates compared with previously developed hybrid seals after from 10 to about 40 thermal cycles under a compressive stress of from 50 psi to 100 psi at temperatures in the range from 600.degree. C. to about 850.degree. C.

  16. Lifetime Extension Report: Progress on the SAVY-4000 Lifetime Extension Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, Cynthia F.; Smith, Paul Herrick; Weis, Eric M.

    The 3-year accelerated aging study of the SAVY-4000 O-ring shows very little evidence of significant degradation to samples subjected to aggressive elevated temperature and radiation conditions. Whole container thermal aging studies followed by helium leakage testing and compression set measurements were used to establish an estimate for a failure criterion for O-ring compression set of ≥65 %. The whole container aging studies further show that the air flow and efficiency functions of the filter do not degrade significantly after thermal aging. However, the degradation of the water-resistant function leads to water penetration failure after four months at 210°C, but doesmore » not cause failure after 10 months at 120°C (130°C is the maximum operating temperature for the PTFE membrane). The thermal aging data for O-ring compression set do not meet the assumptions of standard time-temperature superposition analysis for accelerated aging studies. Instead, the data suggest that multiple degradation mechanisms are operative, with a reversible mechanism operative at low aging temperatures and an irreversible mechanism dominating at high aging temperatures. To distinguish between these mechanisms, we have measured compression set after allowing the sample to physically relax, thereby minimizing the effect of the reversible mechanism. The resulting data were analyzed using two distinct mathematical methods to obtain a lifetime estimate based on chemical degradation alone. Both methods support a lifetime estimate of greater than 150 years at 80°C. Although the role of the reversible mechanism is not fully understood, it is clear that the contribution to the total compression set is small in comparison to that due to the chemical degradation mechanism. To better understand the chemical degradation mechanism, thermally aged O-ring samples have been characterized by Fourier Transform Infrared (FTIR), Electron Paramagnetic Resonance (EPR), Gel Permeation Chromatography (GPC), and Differential Scanning Calorimetry (DSC). These experiments detect no significant O-ring degradation below 80°C. Furthermore, durometer measurements indicate that there is no significant change in O-ring hardness at all aging conditions examined. Therefore, our current conservative lifetime estimate for the O-ring and the filter is 10 years at 80°C. In FY17, we will continue to probe the chemical degradation mechanism using oxygen consumption measurements under accelerated aging conditions to reveal temperatures at which oxidation occurs, along with any differences in oxidation rate at the low vs. high aging temperatures. We will also refine the failure criteria and finalize the radiation/thermal synergistic studies to determine a final design lifetime.« less

  17. A numerical and experimental study of temperature effects on deformation behavior of carbon steels at high strain rates

    NASA Astrophysics Data System (ADS)

    Pouya, M.; Winter, S.; Fritsch, S.; F-X Wagner, M.

    2017-03-01

    Both in research and in the light of industrial applications, there is a growing interest in methods to characterize the mechanical behavior of materials at high strain rates. This is particularly true for steels (the most important structural materials), where often the strain rate-dependent material behavior also needs to be characterized in a wide temperature range. In this study, we use the Finite Element Method (FEM), first, to model the compressive deformation behavior of carbon steels under quasi-static loading conditions. The results are then compared to experimental data (for a simple C75 steel) at room temperature, and up to testing temperatures of 1000 °C. Second, an explicit FEM model that captures wave propagation phenomena during dynamic loading is developed to closely reflect the complex loading conditions in a Split-Hopkinson Pressure Bar (SHPB) - an experimental setup that allows loading of compression samples with strain rates up to 104 s-1 The dynamic simulations provide a useful basis for an accurate analysis of dynamically measured experimental data, which considers reflected elastic waves. By combining numerical and experimental investigations, we derive material parameters that capture the strain rate- and temperature-dependent behavior of the C75 steel from room temperature to 1000 °C, and from quasi-static to dynamic loading.

  18. Microstructure and strain-stress analysis of the dynamic strain aging in inconel 625 at high temperature

    NASA Astrophysics Data System (ADS)

    Maj, P.; Zdunek, J.; Mizera, J.; Kurzydlowski, K. J.; Sakowicz, B.; Kaminski, M.

    2017-01-01

    Serrated flow is a result of unstable plastic flow, which occurs during tensile and compression tests on some dilute alloys. This phenomenon is referred as the Portevin Le-Chatelier effect (PLC effect). The aim of this research was to investigate and analyze this phenomenon in Inconel 625 solution strengthened superalloy. The tested material was subjected to tensile tests carried out within the temperature range 200-700 °C, with three different strain rates: 0.002 1/s, 0.01/s, and 0.05 1/s and additional compression tests with high deformation speeds of 0.1, 1, and 10 1/s. The tensile strain curves were analyzed in terms of intensity and the observed patterns of serrations Using a modified stress drop method proposed by the authors, the activation energy was calculated with the assumption that the stress drops' distribution is a direct representation of an average solute atom's interaction with dislocations. Subsequently, two models, the standard vacancy diffusion Bilby-Cottrell model and the realistic cross-core diffusion mechanism proposed by Zhang and Curtin, were compared. The results obtained show that the second one agrees with the experimental data. Additional microstructure analysis was performed to identify microstructure elements that may be responsible for the PLC effect. Based on the results, the relationship between the intensity of the phenomenon and the conditions of the tests were determined.

  19. Effects of compressibility on the temperature jump at the interface of layered, spherical-shell convection

    NASA Technical Reports Server (NTRS)

    Yen, David A.; Zhang, Shuxia; Langenberger, Sherri E.

    1988-01-01

    Large temperature jumps at the interface of layered convection are important to the argument used against the likelihood of separate circulations in the upper and lower mantles. This problem was studied within the framework of a compressible, constant viscosity spherical-shell model. Both mechanical and thermal coupling configurations are considered. Although the temperature jumps are reduced by compressibility, their magnitudes remain quite large, in the case of mechanical coupling. For thermal coupling, the temperature jumps become smaller but still are substantial, between 500 to 1000 C. In layered spherical-shell convection, flows in the lower mantle are several times greater than the surface velocities.

  20. Shock-adiabatic to quasi-isentropic compression of warm dense helium up to 150 GPa

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Chen, Q. F.; Gu, Y. J.; Li, J. T.; Li, Z. G.; Li, C. J.; Chen, Z. Y.

    2017-06-01

    Multiple reverberation compression can achieve higher pressure, higher temperature, but lower entropy. It is available to provide an important validation for the elaborate and wider planetary models and simulate the inertial confinement fusion capsule implosion process. In the work, we have developed the thermodynamic and optical properties of helium from shock-adiabatic to quasi-isentropic compression by means of a multiple reverberation technique. By this technique, the initial dense gaseous helium was compressed to high pressure and high temperature and entered the warm dense matter (WDM) region. The experimental equation of state (EOS) of WDM helium in the pressure-density-temperature (P-ρ -T) range of 1 -150 GPa , 0.1 -1.1 g c m-3 , and 4600-24 000 K were measured. The optical radiations emanating from the WDM helium were recorded, and the particle velocity profiles detecting from the sample/window interface were obtained successfully up to 10 times compression. The optical radiation results imply that dense He has become rather opaque after the 2nd compression with a density of about 0.3 g c m-3 and a temperature of about 1 eV. The opaque states of helium under multiple compression were analyzed by the particle velocity measurements. The multiple compression technique could efficiently enhanced the density and the compressibility, and our multiple compression ratios (ηi=ρi/ρ0,i =1 -10 ) of helium are greatly improved from 3.5 to 43 based on initial precompressed density (ρ0) . For the relative compression ratio (ηi'=ρi/ρi -1) , it increases with pressure in the lower density regime and reversely decreases in the higher density regime, and a turning point occurs at the 3rd and 4th compression states under the different loading conditions. This nonmonotonic evolution of the compression is controlled by two factors, where the excitation of internal degrees of freedom results in the increasing compressibility and the repulsive interactions between the particles results in the decreasing compressibility at the onset of electron excitation and ionization. In the P-ρ -T contour with the experiments and the calculations, our multiple compression states from insulating to semiconducting fluid (from transparent to opaque fluid) are illustrated. Our results give an elaborate validation of EOS models and have applications for planetary and stellar opaque atmospheres.

  1. Evaluation of Varying Ductile Fracture Criteria for 42CrMo Steel by Compressions at Different Temperatures and Strain Rates

    PubMed Central

    Quan, Guo-zheng; Luo, Gui-chang; Mao, An; Liang, Jian-ting; Wu, Dong-sen

    2014-01-01

    Fracturing by ductile damage occurs quite naturally in metal forming processes, and ductile fracture of strain-softening alloy, here 42CrMo steel, cannot be evaluated through simple procedures such as tension testing. Under these circumstances, it is very significant and economical to find a way to evaluate the ductile fracture criteria (DFC) and identify the relationships between damage evolution and deformation conditions. Under the guidance of the Cockcroft-Latham fracture criteria, an innovative approach involving hot compression tests, numerical simulations, and mathematic computations provides mutual support to evaluate ductile damage cumulating process and DFC diagram along with deformation conditions, which has not been expounded by Cockcroft and Latham. The results show that the maximum damage value appears in the region of upsetting drum, while the minimal value appears in the middle region. Furthermore, DFC of 42CrMo steel at temperature range of 1123~1348 K and strain rate of 0.01~10 s−1 are not constant but change in a range of 0.160~0.226; thus, they have been defined as varying ductile fracture criteria (VDFC) and characterized by a function of temperature and strain rate. In bulk forming operations, VDFC help technicians to choose suitable process parameters and avoid the occurrence of fracture. PMID:24592175

  2. Evaluation of varying ductile fracture criteria for 42CrMo steel by compressions at different temperatures and strain rates.

    PubMed

    Quan, Guo-zheng; Luo, Gui-chang; Mao, An; Liang, Jian-ting; Wu, Dong-sen

    2014-01-01

    Fracturing by ductile damage occurs quite naturally in metal forming processes, and ductile fracture of strain-softening alloy, here 42CrMo steel, cannot be evaluated through simple procedures such as tension testing. Under these circumstances, it is very significant and economical to find a way to evaluate the ductile fracture criteria (DFC) and identify the relationships between damage evolution and deformation conditions. Under the guidance of the Cockcroft-Latham fracture criteria, an innovative approach involving hot compression tests, numerical simulations, and mathematic computations provides mutual support to evaluate ductile damage cumulating process and DFC diagram along with deformation conditions, which has not been expounded by Cockcroft and Latham. The results show that the maximum damage value appears in the region of upsetting drum, while the minimal value appears in the middle region. Furthermore, DFC of 42CrMo steel at temperature range of 1123~1348 K and strain rate of 0.01~10 s(-1) are not constant but change in a range of 0.160~0.226; thus, they have been defined as varying ductile fracture criteria (VDFC) and characterized by a function of temperature and strain rate. In bulk forming operations, VDFC help technicians to choose suitable process parameters and avoid the occurrence of fracture.

  3. Compression of helium to high pressures and temperatures using a ballistic piston apparatus

    NASA Technical Reports Server (NTRS)

    Roman, B. P.; Rovel, G. P.; Lewis, M. J.

    1971-01-01

    Some preliminary experiments are described which were carried out in a high enthalpy laboratory to investigate the compression of helium, a typical shock-tube driver gas, to very high pressures and temperatures by means of a ballistic piston. The purpose of these measurements was to identify any problem areas in the compression process, to determine the importance of real gas effects duDC 47355s process, and to establish the feasibility of using a ballistic piston apparatus to achieve temperatures in helium in excess of 10,000 K.

  4. Development and comparison of processing maps of Mg-3Sn-1Ca alloy from data obtained in tension versus compression

    NASA Astrophysics Data System (ADS)

    Rao, K. P.; Suresh, K.; Prasad, Y. V. R. K.; Hort, N.

    2018-01-01

    The hot workability of extruded Mg-3Sn-1Ca alloy has been evaluated by developing processing maps with flow stress data from compression and tensile tests with a view to find the effect of the applied state-of-stress. The processing maps developed at a strain of 0.2 are essentially similar irrespective of the mode of deformation - compression or tension, and exhibit three domains in the temperature ranges: (1) 350 - 425 °C, and (2) 450 - 550 °C and (3) 400 - 500 °C, the first two occurring at lower strain rates and the third occurring at higher strain rates. In all the three domains, dynamic recrystallization occurs and is caused by non-basal slip and controlled by lattice self-diffusion in the first and second domains and grain boundary self-diffusion in the third domain. The state-of-stress imposed on the specimen (compression or tension) does not have any significant effect on the processing maps.

  5. Evaluation of a Conductive Elastomer Seal for Spacecraft

    NASA Technical Reports Server (NTRS)

    Daniels, C. C.; Mather, J. L.; Oravec, H. A.; Dunlap, P. H., Jr.

    2016-01-01

    An electrically conductive elastomer was evaluated as a material candidate for a spacecraft seal. The elastomer used electrically conductive constituents as a means to reduce the resistance between mating interfaces of a sealed joint to meet spacecraft electrical bonding requirements. The compound's outgassing levels were compared against published NASA requirements. The compound was formed into a hollow O-ring seal and its compression set was measured. The O-ring seal was placed into an interface and the electrical resistance and leak rate were quantified. The amount of force required to fully compress the test article in the sealing interface and the force needed to separate the joint were also measured. The outgassing and resistance measurements were below the maximum allowable levels. The room temperature compression set and leak rates were fairly high when compared against other typical spacecraft seal materials, but were not excessive. The compression and adhesion forces were desirably low. Overall, the performance of the elastomer compound was sufficient to be considered for future spacecraft seal applications.

  6. Study of the structure of turbulent shear flows at supersonic speeds and high Reynolds number

    NASA Technical Reports Server (NTRS)

    Smits, A. J.; Bogdonoff, S. M.

    1984-01-01

    A major effort to improve the accuracies of turbulence measurement techniques is described including the development and testing of constant temperature hot-wire anemometers which automatically compensate for frequency responses. Calibration and data acquisition techniques for normal and inclined wires operated in the constant temperature mode, flow geometries, and physical models to explain the observed behavior of flows are discussed, as well as cooperation with computational groups in the calculation of compression corner flows.

  7. Diurnal temperature range compression hastens berry development and modifies flavonoid partitioning in grapes

    USDA-ARS?s Scientific Manuscript database

    Temperatures during the day and night are known to influence grape berry metabolism and resulting composition. In this study, the flavonoid composition of field-grown Vitis vinifera L. cv. Merlot berries was investigated as a function of diurnal temperature range (DTR). The DTR was compressed by c...

  8. Effects of elevated temperature on the viscoplastic modeling of graphite/polymeric composites

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.

    1991-01-01

    To support the development of new materials for the design of next generation supersonic transports, a research program is underway at NASA to assess the long term durability of advanced polymer matrix composites (PMC's). One of main objectives of the program was to explore the effects of elevated temperature (23 to 200 C) on the constitutive model's material parameters. To achieve this goal, test data on the observed nonlinear, stress-strain behavior of IM7/5260 and IM7/8320 composites under tension and compression loading were collected and correlated against temperature. These tests, conducted under isothermal conditions using variable strain rates, included such phenomena as stress relaxation and short term creep. The second major goal was the verification of the model by comparison of analytical predictions and test results for off axis and angle ply laminates. Correlation between test and predicted behavior was performed for specimens of both material systems over a range of temperatures. Results indicated that the model provided reasonable predictions of material behavior in load or strain controlled tests. Periods of loading, unloading, stress relaxation, and creep were accounted for.

  9. Toward measurements of volatile behavior at realistic pressure and temperature conditions in planetary deep interiors. (Invited)

    NASA Astrophysics Data System (ADS)

    McWilliams, R. S.

    2013-12-01

    Laboratory studies of volatiles at high pressure are constantly challenged to achieve conditions directly relevant to planets. While dynamic compression experiments are confined to adiabatic pathways that frequently exceed relevant temperatures due to the low densities and bulk moduli of volatile samples, static compression experiments are often complicated by sample reactivity and mobility before reaching relevant temperatures. By combining the speed of dynamic compression with the flexibility of experimental path afforded by static compression, optical spectroscopy measurements in volatiles such as H, N, and Ar have been demonstrated at previously-unexplored planetary temperature (up to 11,000 K) and pressure (up to 150 GPa). These optical data characterize the electronic properties of extreme states and have implications for bonding, transport, and mixing behavior in volatiles within planets. This work was conducted in collaboration with D.A. Dalton and A.F. Goncharov (Carnegie Institution of Washington) and M.F. Mahmood (Howard University).

  10. X-ray scattering measurements on imploding CH spheres at the National Ignition Facility

    DOE PAGES

    Kraus, D.; Chapman, D. A.; Kritcher, A. L.; ...

    2016-07-21

    In this study, we have performed spectrally resolved x-ray scattering measurements on highly compressed polystyrene at pressures of several tens of TPa (100 Mbar) created by spherically convergent shocks at the National Ignition Facility. Scattering data of line radiation at 9.0 keV were recorded from the dense plasma shortly after shock coalescence. Accounting for spatial gradients, opacity effects, and source broadening, we demonstrate the sensitivity of the elastic scattering component to carbon K -shell ionization while at the same time constraining the temperature of the dense plasma. Finally, for six times compressed polystyrene, we find an average temperature of 86more » eV and carbon ionization state of 4.9, indicating that widely used ionization models need revision in order to be suitable for the extreme states of matter tested in our experiment.« less

  11. A Study of the Crystallization, Melting, and Foaming Behaviors of Polylactic Acid in Compressed CO2

    PubMed Central

    Zhai, Wentao; Ko, Yoorim; Zhu, Wenli; Wong, Anson; Park, Chul B.

    2009-01-01

    The crystallization and melting behaviors of linear polylactic acid (PLA) treated by compressed CO2 was investigated. The isothermal crystallization test indicated that while PLA exhibited very low crystallization kinetics under atmospheric pressure, CO2 exposure significantly increased PLA’s crystallization rate; a high crystallinity of 16.5% was achieved after CO2 treatment for only 1 min at 100 °C and 6.89 MPa. One melting peak could be found in the DSC curve, and this exhibited a slight dependency on treatment times, temperatures, and pressures. PLA samples tended to foam during the gas release process, and a foaming window as a function of time and temperature was established. Based on the foaming window, crystallinity, and cell morphology, it was found that foaming clearly reduced the needed time for PLA’s crystallization equilibrium. PMID:20054476

  12. Quenchable compressed graphite synthesized from neutron-irradiated highly oriented pyrolytic graphite in high pressure treatment at 1500 °C

    NASA Astrophysics Data System (ADS)

    Niwase, Keisuke; Terasawa, Mititaka; Honda, Shin-ichi; Niibe, Masahito; Hisakuni, Tomohiko; Iwata, Tadao; Higo, Yuji; Hirai, Takeshi; Shinmei, Toru; Ohfuji, Hiroaki; Irifune, Tetsuo

    2018-04-01

    The super hard material of "compressed graphite" (CG) has been reported to be formed under compression of graphite at room temperature. However, it returns to graphite under decompression. Neutron-irradiated graphite, on the other hand, is a unique material for the synthesis of a new carbon phase, as reported by the formation of an amorphous diamond by shock compression. Here, we investigate the change of structure of highly oriented pyrolytic graphite (HOPG) irradiated with neutrons to a fluence of 1.4 × 1024 n/m2 under static pressure. The neutron-irradiated HOPG sample was compressed to 15 GPa at room temperature and then the temperature was increased up to 1500 °C. X-ray diffraction, high-resolution transmission electron microscopy on the recovered sample clearly showed the formation of a significant amount of quenchable-CG with ordinary graphite. Formation of hexagonal and cubic diamonds was also confirmed. The effect of irradiation-induced defects on the synthesis of quenchable-CG under high pressure and high temperature treatment was discussed.

  13. Influence of compression parameters on mechanical behavior of mozzarella cheese.

    PubMed

    Fogaça, Davi Novaes Ladeia; da Silva, William Soares; Rodrigues, Luciano Brito

    2017-10-01

    Studies on the interaction between direction and degree of compression in the Texture Profile Analysis (TPA) of cheeses are limited. For this reason the present study aimed to evaluate the mechanical properties of Mozzarella cheese by TPA at different compression degrees (65, 75, and 85%) and directions (axes X, Y, and Z). Data obtained were compared in order to identify possible interaction between both factors. Compression direction did not affect any mechanical variable, or rather, the cheese had an isotropic behavior for TPA. Compression degree had a significant influence (p < 0.05) on TPA responses, excepting for chewiness TPA (N), which remained constant. Data from texture profile were adjusted to models to explain the mechanical behavior according to the compression degree used in the test. The isotropic behavior observed may be result of differences in production method of Mozzarella cheese especially on stretching of cheese mass. Texture Profile Analysis (TPA) is a technique largely used to assess the mechanical properties of food, particularly cheese. The precise choice of the instrumental test configuration is essential for achieving results that represent the material analyzed. The method of manufacturing is another factor that may directly influence the mechanical properties of food. This can be seen, for instance, in stretched curd cheese, such as Mozzarella. Knowledge on such mechanical properties is highly relevant for food industries due to the mechanical resistance in piling, pressing, manufacture of packages, and food transport, or to melting features presented by the food at high temperatures in preparation of several foods, such as pizzas, snacks, sandwiches, and appetizers. © 2016 Wiley Periodicals, Inc.

  14. Origin of texture development in orthorhombic uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zecevic, Miroslav; Knezevic, Marko; Beyerlein, Irene Jane

    We study texture evolution of alpha-uranium (α-U) during plane strain compression and uniaxial compression to high strains at different temperatures. We combine a multiscale polycrystal constitutive model and detailed analysis of texture data to uncover the slip and twinning modes responsible for the formation of individual texture components. The analysis indicates that during plane strain compression, floor slip (001)[100] results in the formation of two pronounced {001}{001} texture peaks tilted 10–15° away from the normal toward the rolling direction. During both high-temperature (573 K) through-thickness compression and plane strain compression, the active slip modes are floor slip (001)[100] and chimneymore » slip 1/2{110} <11¯0> with slightly different ratios. {130} <31¯0> deformation twinning is profuse during rolling and in-plane compression and decreases with increasing temperature, but is not as active for through-thickness compression. Lastly, we comment on some similarities between rolling textures of α-U, which has a c/a ratio of 1.734, and those that develop in hexagonal close packed metals with similarly high c/a ratios like Zn (1.856) and Cd (1.885) and are dominated by basal slip.« less

  15. Origin of texture development in orthorhombic uranium

    DOE PAGES

    Zecevic, Miroslav; Knezevic, Marko; Beyerlein, Irene Jane; ...

    2016-04-09

    We study texture evolution of alpha-uranium (α-U) during plane strain compression and uniaxial compression to high strains at different temperatures. We combine a multiscale polycrystal constitutive model and detailed analysis of texture data to uncover the slip and twinning modes responsible for the formation of individual texture components. The analysis indicates that during plane strain compression, floor slip (001)[100] results in the formation of two pronounced {001}{001} texture peaks tilted 10–15° away from the normal toward the rolling direction. During both high-temperature (573 K) through-thickness compression and plane strain compression, the active slip modes are floor slip (001)[100] and chimneymore » slip 1/2{110} <11¯0> with slightly different ratios. {130} <31¯0> deformation twinning is profuse during rolling and in-plane compression and decreases with increasing temperature, but is not as active for through-thickness compression. Lastly, we comment on some similarities between rolling textures of α-U, which has a c/a ratio of 1.734, and those that develop in hexagonal close packed metals with similarly high c/a ratios like Zn (1.856) and Cd (1.885) and are dominated by basal slip.« less

  16. Mechanical Properties and Durability of "Waterless Concrete"

    NASA Technical Reports Server (NTRS)

    Toutanji, Houssam; Grugel, Richard N.

    2008-01-01

    Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and by oxidation soil iron and sulfur can be produced. Iron can be used to reinforce the sulfur concrete. Sulfur concrete specimens were cycled between liquid nitrogen (approximately 191 C) and room temperature (approximately 21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (approximately 21 C) and approximately 101 C. Test results showed that due to temperature cycling, compressive strength of cycled specimens was 20% of those non-cycled. Microscopic examination of the fracture surfaces from the cycled samples showed clear de-bonding of the sulfur from the aggregate material whereas it was seen well bonded in those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibers. The glass fibers from lunar regolith simulant was melted in a 25 cc Pt-Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to 1 hour. Glass fibers were cast from the melt into graphite crucibles and were annealed for a couple of hours at 600 C. Glass fibers and small rods were pulled from the melt. The glass melt wets the ceramic rod and long continuous glass fibers were easily hand drawn. The glass fibers were immediately coated with a protective polymer to maintain the mechanical strength. The glass fibers were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Prisms beams strengthened with glass fibers were tested in 4-point bending test. Beams strengthened with glass fiber showed to exhibit an increase in the flexura strength by as much as 45%.

  17. Experimental analysis and constitutive modelling of steel of A-IIIN strength class

    NASA Astrophysics Data System (ADS)

    Kruszka, Leopold; Janiszewski, Jacek

    2015-09-01

    Fundamentally important is the better understanding of behaviour of new building steels under impact loadings, including plastic deformations. Results of the experimental analysis in wide range of strain rates in compression at room temperature, as well as constitutive modelling for and B500SP structural steels of new A-IIIN Polish strength class, examined dynamically by split Hopkinson pressure bar technique at high strain rates, are presented in table and graphic forms. Dynamic mechanical characteristics of compressive strength for tested building structural steel are determined as well as dynamic mechanical properties of this material are compared with 18G2-b steel of A-II strength class, including effects of the shape of tested specimens, i.e. their slenderness. The paper focuses the attention on those experimental tests, their interpretation, and constitutive semi-empirical modelling of the behaviour of tested steels based on Johnson-Cook's model. Obtained results of analyses presented here are used for designing and numerical simulations of reinforced concrete protective structures.

  18. Eleventh interim status report: Model 9975 O-Ring fixture long-term leak performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daugherty, W.

    2016-08-01

    A series of experiments to monitor the aging performance of Viton® GLT O-rings used in the Model 9975 package has been ongoing since 2004 at the Savannah River National Laboratory. One approach has been to periodically evaluate the leak performance of O-rings being aged in mock-up 9975 Primary Containment Vessels (PCVs) at elevated temperature. Other methods such as compression-stress relaxation (CSR) tests and field surveillance are also on-going to evaluate O-ring behavior. Seventy tests using PCV mock-ups were assembled and heated to temperatures ranging from 200 to 450 ºF. They were leak-tested initially and have been tested periodically to determinemore » if they continue to meet the leak-tightness criterion defined in ANSI standard N14.5-97. Due to material substitution, fourteen additional tests were initiated in 2008 with GLT-S O-rings heated to temperatures ranging from 200 to 400 ºF.« less

  19. Tenth interim status report: Model 9975 O-ring fixture long-term leak performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daugherty, W. L.

    2015-08-26

    A series of experiments to monitor the aging performance of Viton ® GLT O-rings used in the Model 9975 package has been ongoing since 2004 at the Savannah River National Laboratory. One approach has been to periodically evaluate the leak performance of O-rings being aged in mock-up 9975 Primary Containment Vessels (PCVs) at elevated temperatures. Other methods such as compression-stress relaxation (CSR) tests and field surveillance are also on-going to evaluate O-ring behavior. Seventy tests using PCV mock-ups were assembled and heated to temperatures ranging from 200 to 450 °F. They were leak-tested initially and have been tested periodically tomore » determine if they continue to meet the leak-tightness criterion defined in ANSI standard N14.5-97. Due to material substitution, fourteen additional tests were initiated in 2008 with GLT-S O-rings heated to temperatures ranging from 200 to 400 °F.« less

  20. Environmental effects on the compressive properties - Thermosetting vs. thermoplastic composites

    NASA Technical Reports Server (NTRS)

    Haque, A.; Jeelani, S.

    1992-01-01

    The influence of moisture and temperature on the compressive properties of graphite/epoxy and APC-2 materials systems was investigated to assess the viability of using APC-2 instead of graphite/epoxy. Data obtained indicate that the moisture absorption rate of T-300/epoxy is higher than that of APC-2. Thick plate with smaller surface area absorbs less moisture than thin plate with larger surface area. The compressive strength and modulus of APC-2 are higher than those of T-300/epoxy composite, and APC-2 sustains higher compressive strength in the presence of moisture. The compressive strength and modulus decrease with the increase of temperature in the range of 23-100 C. The compression failure was in the form of delamination, interlaminar shear, and end brooming.

  1. Resistance of fly ash-Portland cement blends to thermal shock

    DOE PAGES

    Pyatina, Tatiana; Sugama, Toshifumi

    2015-09-11

    Thermal-shock resistance of high-content fly ash-Portland cement blends was tested in the following ways. Activated and non-activated blends with 80-90 % fly ash F (FAF) were left to set at room temperature, then hydrated for 24 hours at 85°C and 24-more hours at 300°C and tested in five thermal-shock cycles (600°C heat - 25°C water quenching). XRD, and thermal gravimetric analyses, along with calorimetric measurements and SEM-EDX tests demonstrated that the activated blends form more hydrates after 24 hours at 300°C, and achieve a higher short-term compressive strength than do non-activated ones. Sodium meta-silicate and sodaash engendered the concomitant hydrationmore » of OPC and FAF, with the formation of mixed crystalline FAF-OPC hydrates and FAF hydrates, such as garranite, analcime, and wairakite, along with the amorphous FAF hydration products. In SS-activated and non-activated blends separate OPC (tobermorite) and FAF (amorphous gel) hydrates with no mixed crystalline products formed. The compressive strength of all tested blends decreased by nearly 50% after 5 thermal-shock test cycles. These changes in the compressive strength were accompanied by a marked decrease in the intensities of XRD patterns of the crystalline hydrates after the thermalshock. As a result, there was no significant difference in the performance of the blends with different activators« less

  2. Effect of different sintering temperature on fly ash based geopolymer artificial aggregate

    NASA Astrophysics Data System (ADS)

    Abdullah, Alida; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Tahir, Muhammad Faheem Mohd

    2017-04-01

    This research was conducted to study the mechanical and morphology of fly ash based geopolymer as artificial aggregate at different sintering temperature. The raw material that are used is fly ash, sodium hydroxide, sodium silicate, geopolymer artificial aggregate, Ordinary Portland Cement (OPC), coarse aggregate and fine aggregate. The research starts with the preparation of geopolymer artificial aggregate. Then, geopolymer artificial aggregate will be sintered at six difference temperature that is 400°C, 500°C, 600°C, 700°C, 800°C and 900°C to known at which temperature the geopolymer artificial aggregate will become a lightweight aggregate. In order to characterize the geopolymer artificial aggregate the X-ray Diffraction (XRD) and X-Ray Fluorescence (XRF) was done. The testing and analyses involve for the artificial aggregate is aggregate impact test, specific gravity test and Scanning Electron Microscopy (SEM). After that the process will proceed to produce concrete with two type of different aggregate that is course aggregate and geopolymer artificial aggregate. The testing for concrete is compressive strength test, water absorption test and density test. The result obtained will be compared and analyse.

  3. The behavior of compression and degradation for municipal solid waste and combined settlement calculation method.

    PubMed

    Shi, Jianyong; Qian, Xuede; Liu, Xiaodong; Sun, Long; Liao, Zhiqiang

    2016-09-01

    The total compression of municipal solid waste (MSW) consists of primary, secondary, and decomposition compressions. It is usually difficult to distinguish between the three parts of compressions. In this study, the odeometer test was used to distinguish between the primary and secondary compressions to determine the primary and secondary compression coefficient. In addition, the ending time of the primary compressions were proposed based on municipal solid waste compression tests in a degradation-inhibited condition by adding vinegar. The amount of the secondary compression occurring in the primary compression stage has a relatively high percentage to either the total compression or the total secondary compression. The relationship between the degradation ratio and time was obtained from the tests independently. Furthermore, a combined compression calculation method of municipal solid waste for all three parts of compressions including considering organics degradation is proposed based on a one-dimensional compression method. The relationship between the methane generation potential L0 of LandGEM model and degradation compression index was also discussed in the paper. A special column compression apparatus system, which can be used to simulate the whole compression process of municipal solid waste in China, was designed. According to the results obtained from 197-day column compression test, the new combined calculation method for municipal solid waste compression was analyzed. The degradation compression is the main part of the compression of MSW in the medium test period. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A TEM quantitative evaluation of strengthening in an Mg-RE alloy reinforced with SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabibbo, Marcello, E-mail: m.cabibbo@univpm.it; Spigarelli, Stefano

    2011-10-15

    Magnesium alloys containing rare earth elements are known to have high specific strength, good creep and corrosion resistance up to 523 K. The addition of SiC ceramic particles strengthens the metal matrix composite resulting in better wear and creep resistance while maintaining good machinability. The role of the reinforcement particles in enhancing strength can be quantitatively evaluated using transmission electron microscopy (TEM). This paper presents a quantitative evaluation of the different strengthening contributions, determined through TEM inspections, in an SiC Mg-RE composite alloy containing yttrium, neodymium, gadolinium and dysprosium. Compression tests at temperatures ranging between 290 and 573 K weremore » carried out. The microstructure strengthening mechanism was studied for all the compression conditions. Strengthening was compared to the mechanical results and the way the different contributions were combined is also discussed and justified. - Research Highlights: {yields} TEM yield strengthening terms evaluation on a Mg-RE SiC alloy. {yields} The evaluation has been extended to different compression temperature conditions. {yields} Linear and Quadratic sum has been proposed and validated. {yields} Hall-Petch was found to be the most prominent strengthening contributions.« less

  5. Fatigue Life Estimation under Cumulative Cyclic Loading Conditions

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; McGaw, Michael A; Halford, Gary R.

    1999-01-01

    The cumulative fatigue behavior of a cobalt-base superalloy, Haynes 188 was investigated at 760 C in air. Initially strain-controlled tests were conducted on solid cylindrical gauge section specimens of Haynes 188 under fully-reversed, tensile and compressive mean strain-controlled fatigue tests. Fatigue data from these tests were used to establish the baseline fatigue behavior of the alloy with 1) a total strain range type fatigue life relation and 2) the Smith-Wastson-Topper (SWT) parameter. Subsequently, two load-level multi-block fatigue tests were conducted on similar specimens of Haynes 188 at the same temperature. Fatigue lives of the multi-block tests were estimated with 1) the Linear Damage Rule (LDR) and 2) the nonlinear Damage Curve Approach (DCA) both with and without the consideration of mean stresses generated during the cumulative fatigue tests. Fatigue life predictions by the nonlinear DCA were much closer to the experimentally observed lives than those obtained by the LDR. In the presence of mean stresses, the SWT parameter estimated the fatigue lives more accurately under tensile conditions than under compressive conditions.

  6. Flow Curve Analysis of 17-4 PH Stainless Steel under Hot Compression Test

    NASA Astrophysics Data System (ADS)

    Mirzadeh, Hamed; Najafizadeh, Abbas; Moazeny, Mohammad

    2009-12-01

    The hot compression behavior of a 17-4 PH stainless steel (AISI 630) has been investigated at temperatures of 950 °C to 1150 °C and strain rates of 10-3 to 10 s-1. Glass powder in the Rastegaev reservoirs of the specimen was used as a lubricant material. A step-by-step procedure for data analysis in the hot compression test was given. The work hardening rate analysis was performed to reveal if dynamic recrystallization (DRX) occurred. Many samples exhibited typical DRX stress-strain curves with a single peak stress followed by a gradual fall toward the steady-state stress. At low Zener-Hollomon ( Z) parameter, this material showed a new DRX flow behavior, which was called multiple transient steady state (MTSS). At high Z, as a result of adiabatic deformation heating, a drop in flow stress was observed. The general constitutive equations were used to determine the hot working constants of this material. Moreover, after a critical discussion, the deformation activation energy of 17-4 PH stainless steel was determined as 337 kJ/mol.

  7. Coupled aging effects in nanofiber-reinforced siloxane foams

    DOE PAGES

    Labouriau, Andrea; Robison, Tom; Geller, Drew Adam; ...

    2018-01-11

    Here, this study investigates the combined effects of ionizing radiation and thermal treatments on the aging of siloxane foams containing small amounts of carbon nanofibers. Our siloxane foams were exposed to accelerated aging conditions for more than two years, resulting in very low dose rates. In addition, foams were aged under compressive load to evaluate the strength of the porous microstructure. Samples were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), Mössbauer, mass spectroscopy, electron paramagnetic resonance spectroscopy (EPR), solvent swelling, imaging techniques, uniaxial compressive load testing and tearmore » testing. No significant changes in thermal stability or chemistry of the accelerated aged foam were observed, although gas evolution was detected. Changes in crystallization levels at low temperatures, microstructure, and mechanical properties were observed for foams with and without carbon nanofibers. In particular, foams aged under compressive load showed irreversible deformation of the porous microstructure. This study demonstrates that aging effects were enhanced when thermal and radiolysis were coupled together and that the addition of carbon nanofibers did not improve aging effects.« less

  8. Experimental investigation of graphite/polyimide sandwich panels in edgewise compression. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Camarda, C. J.

    1980-01-01

    The local and general buckling of graphite/polyimide sandwich panels simply supported along all four edges and loaded in uniaxial edgewise compression is investigated. Material properties of sandwich panel constituents (adhesive and facings) were determined from flatwise tension and sandwich beam flexure tests. An adhesive bond study resulted in the selection of a suitable cure cycle for FM 34 polyimide film adhesive and, a bonding technique using a liquid cell edge version of that adhesive resulted in considerable mass savings. Tensile and compressive material properties of the facings, quasiisotropic, symmetric, laminates (0, +45,90,-45)s of Celion/PMR-15, were determined at 116, R.T., and 589 K (-250, R.T., and 600 F) usng the sandwich beam flexure test method. Results indicate the Gr/PI is a usable structural material for short term use at temperatures as high as 589 K (600 F). Buckling specimens were 1006.5 sq cm. 156 sq in., had quasiisotropic symmetric facings (0, + or - 45,90)s and a glass/polyimide honeycomb core (HRH-327-3/8-4).

  9. Coupled aging effects in nanofiber-reinforced siloxane foams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labouriau, Andrea; Robison, Tom; Geller, Drew Adam

    Here, this study investigates the combined effects of ionizing radiation and thermal treatments on the aging of siloxane foams containing small amounts of carbon nanofibers. Our siloxane foams were exposed to accelerated aging conditions for more than two years, resulting in very low dose rates. In addition, foams were aged under compressive load to evaluate the strength of the porous microstructure. Samples were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), Mössbauer, mass spectroscopy, electron paramagnetic resonance spectroscopy (EPR), solvent swelling, imaging techniques, uniaxial compressive load testing and tearmore » testing. No significant changes in thermal stability or chemistry of the accelerated aged foam were observed, although gas evolution was detected. Changes in crystallization levels at low temperatures, microstructure, and mechanical properties were observed for foams with and without carbon nanofibers. In particular, foams aged under compressive load showed irreversible deformation of the porous microstructure. This study demonstrates that aging effects were enhanced when thermal and radiolysis were coupled together and that the addition of carbon nanofibers did not improve aging effects.« less

  10. Cyclic tests of P-bulb end-seal designs for a shuttle-type wing-elevon cove membrane seal

    NASA Technical Reports Server (NTRS)

    Hunt, L. R.

    1979-01-01

    Four P-bulb end seal designs were tested at room temperature in a cyclic seal test apparatus. Test results show that all the P-bulb end seals have the durability required for a 100 mission life (neglecting possible elevated-temperature effects) and three of the four P-bulbs provide an adequate seal against a 7.0-kPa air pressure differential. Antifriction material attached to the P-bulb rub surface reduced friction slightly but could degrade the sealing effectiveness. A flat rub surface molded into the P-bulb discouraged wrinkling and rolling and thereby reduced leakage. However, the P-bulbs lacked resilience, as indicated by increased leakage when P-bulb compression was reduced. The best P-bulb design tested included an antifriction interface bonded to a flat surface molded into the P-bulb.

  11. Adiabatic compressibility of an immiscible molten NaCl-AgI salt mixture

    NASA Astrophysics Data System (ADS)

    Stepanov, V. P.; Tkachev, N. K.; Kulik, N. P.; Peshkina, K. G.

    2016-08-01

    Adiabatic compressibility β of an immiscible 0.5NaCl + 0.5AgI liquid mixture in the immiscibility range is studied experimentally and theoretically using the model of charged hard spheres. The compressibility is calculated by the relationship β = 1/ u 2ρ studied using sound velocity u measured by a pulse method and density ρ determined by hydrostatic weighing. It is shown that the compressibility of the upper phase decreases and that of the lower phase increases when the temperature increases because of the superposition of the effects of the thermal motion of ions and the phase compositions. The temperature dependence of the difference between the compressibilities of the equilibrium phases is described using the empirical equation Δβ = ( T c- T)0.442, which is close to the mean-field theory description. The results of the model calculations adequately reproduce the experimentally observed temperature dependence of the compressibility of the coexisting phases. However, the theoretically predicted critical exponent (1/2) differs from the experimentally determined exponent by 13%. These results are discussed in terms of the nature of chemical bond in silver iodide.

  12. Hypersonic Wind Tunnel Nozzle Survivability for T&E

    DTIC Science & Technology

    2007-03-01

    Room-Temperature Compression Tests ..............................................................43 10. Strength of Hot-Rolled Inconel 600 (Ni-16Cr...6Fe, wt %) ...................................................45 11. Physical Properties of Inconel 600...Table 10. Strength of Hot-Rolled Inconel 600 (Ni-16Cr-6Fe, wt%) T, °C 0.2% Yield Stress (MPa) Ultimate Tensile Stress (MPa) 20 250 590 400 185 560

  13. High Temperature Propulsion System Structural Seals for Future Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.

    2003-01-01

    Durable, flexible sliding seals are required in advanced hypersonic engines to seal the perimeters of movable engine ramps for efficient, safe operation in high heat flux environments at temperatures of 2000 to 2500 F. Current seal designs do not meet the demanding requirements for future engines, so NASA's Glenn Research Center is developing advanced seals and preloading devices to overcome these shortfalls. An advanced ceramic wafer seal design and two types of seal preloading devices were evaluated in a series of compression, scrub, and flow tests. Silicon nitride wafer seals survived 2000 in. (1000 cycles) of scrubbing at room temperature against an Inconel 625 rub surface with no chips or signs of damage. Flow rates measured for the wafers before and after scrubbing were almost identical and were much lower than those recorded for the best braided rope seal flow blockers. Canted coil springs and silicon nitride compression springs showed promise conceptually as potential seal preloading devices to help maintain seal resiliency. A finite element model of the canted coil spring revealed that it should be possible to produce a spring out of high temperature materials for applications at 2000+ F.

  14. Apparatus for Testing Flat Specimens of Thermal Insulation

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, Stanislaw D.

    2005-01-01

    An apparatus has been developed to implement an improved method of testing flat-plate specimens of thermal-insulation materials for cryogenic application. The method includes testing under realistic use conditions that could include vacuum and mechanical loading at a pressure up to 70 psi (=0.48 MPa). The apparatus can accommodate a rigid or flexible specimen having thickness up to 1.25 in. (=3.2 cm) and diameters between 6 and 10 in. (about 15.2 and 25.4 cm, respectively). Typical test conditions include boundary temperatures between 77 K and 373 K and vacuum/interstitial gas filling at a pressure between 10(exp -6) torr (=1.3 x 10(exp -4) Pa) and 760 torr (atmospheric pressure =0.1 MPa). The interstitial gas could be N2, He, CO2, or any other suitable gas to which the insulation is expected to be exposed in use. Relative to prior apparatuses and testing methods, this apparatus and the testing method that it implements offer advantages of relative simplicity and ease of use. The basic principle of operation of the apparatus is that of boil-off calorimetry, using liquid nitrogen or any other suitable liquid that boils at a desired temperature below ambient temperature. Comparative rates of flow of heat through the thicknesses of the specimens (heat-leak rates) and apparent-thermal-conductivity values are obtained from tests of specimens. Absolute values of heat-leak rates and apparent thermal conductivities are computed from a combination of (1) the aforementioned comparative values and (2) calibration factors obtained by testing reference specimens of materials that have known thermal-insulation properties. The apparatus includes a full complement of temperature sensors, a vacuum pump and chamber, a monitoring and control system, and tools and fixtures that enable rapid and reliable installation and removal of specimens. A specimen is installed at the bottom of the vacuum chamber, and a cold-mass assembly that includes a tank is lowered into position above and around the specimen (see figure). A spring-based compensating fixture helps to ensure adequate thermal contact with possibly irregular specimen surfaces. For a high-compression test, the springs can be replaced with spacers. A flat circular load cell at the bottom of the chamber measures the compressive load on the specimen. Once the desired compressive-load, temperature, and vacuum/gas-filling conditions are established, testing begins. During a test, all measurements are recorded by use of a portable data-acquisition system and a computer. The total heat-leak rate is measured and calculated as the boil-off flow rate multiplied by the latent heat of vaporization. The parasitic heat leak (to the side of the specimen and to the top and side of the cold-mass tank) is reduced to a small fraction of the total heat leak by use of a combination of multilayer-insulation (MLI) shield rings, reflective film, a fiberglass/epoxy centering ring, and a bulk fill of aerogel beads. This combination eliminates the need for a cryogenic guard chamber used in a typical prior apparatus to reduce the parasitic heat leak.

  15. The effects of compression garments on intermittent exercise performance and recovery on consecutive days.

    PubMed

    Duffield, Rob; Edge, Johann; Merrells, Robert; Hawke, Emma; Barnes, Matt; Simcock, David; Gill, Nicholas

    2008-12-01

    The aim of this study was to determine whether compression garments improve intermittent-sprint performance and aid performance or self-reported recovery from high-intensity efforts on consecutive days. Following familiarization, 14 male rugby players performed two randomized testing conditions (with or without garments) involving consecutive days of a simulated team sport exercise protocol, separated by 24 h of recovery within each condition and 2 weeks between conditions. Each day involved an 80-min high-intensity exercise circuit, with exercise performance determined by repeated 20-m sprints and peak power on a cart dynamometer (single-man scrum machine). Measures of nude mass, heart rate, skin and tympanic temperature, and blood lactate (La-) were recorded throughout each day; also, creatine kinase (CK) and muscle soreness were recorded each day and 48 h following exercise. No differences (P=.20 to 0.40) were present between conditions on either day of the exercise protocol for repeated 20-m sprint efforts or peak power on a cart dynamometer. Heart rate, tympanic temperature, and body mass did not significantly differ between conditions; however, skin temperature was higher under the compression garments. Although no differences (P=.50) in La- or CK were present, participants felt reduced levels of perceived muscle soreness in the ensuing 48 h postexercise when wearing the garments (2.5+/-1.7 vs 3.5+/-2.1 for garment and control; P=.01). The use of compression garments did not improve or hamper simulated team-sport activity on consecutive days. Despite benefits of reduced self-reported muscle soreness when wearing garments during and following exercise each day, no improvements in performance or recovery were apparent.

  16. Ultrafast eclogite formation via melting-induced overpressure

    NASA Astrophysics Data System (ADS)

    Chu, Xu; Ague, Jay J.; Podladchikov, Yury Y.; Tian, Meng

    2017-12-01

    The conventional wisdom holds that metamorphic reactions take place at pressures near-lithostatic so that the thermodynamic pressure, reflected by the mineral assemblage, is directly correlated with depth. On the other hand, recent field-based observations and geodynamic simulations suggest that heterogeneous stress and significant pressure deviations above lithostatic (overpressure) can occur in Earth's crust. Here we show that eclogite, normally interpreted to form at great depths in subduction zones and Earth's mantle, may form at much shallower depths via local overpressure generated in crustal shear zones. The eclogites studied crop out as lenses hosted by felsic paragneiss in a sheared thrust slice and represent a local pressure and temperature anomaly in the Taconic orogenic belt, southern New England. Sharply-defined chemical zones in garnet, which record ∼5 kbar pressure rise and fall accompanied by a temperature increase of 150-200 °C, demonstrate extremely short timescales of diffusion. This requires anomalously fast compression (∼500 yrs) and decompression. We use coupled phase equilibria and garnet diffusion forward modeling to fit the observed garnet profiles and test the likely P- T- t paths using a Monte Carlo-type approach, accounting for off-center sectioning of garnet. The simulation shows that a ∼5 kbar pressure increase after the temperature peak is necessary to reproduce the garnet zoning. Remarkably, this post-peak-T compression (from 9 kbar to 14 kbar) lasted only ∼500 yrs. If the compression was due to burial along a lithostatic pressure gradient, the descent speed would exceed 30 m yr-1, defying any observed or modeled subduction rates. Local overpressure in response to partial melting in a confined volume (Vrijmoed et al., 2009) caused by transient shear heating can explain the ultra-fast compression without necessitating burial to great depth.

  17. High-Cycle Fatigue Resistance of Si-Mo Ductile Cast Iron as Affected by Temperature and Strain Rate

    NASA Astrophysics Data System (ADS)

    Matteis, Paolo; Scavino, Giorgio; Castello, Alessandro; Firrao, Donato

    2015-09-01

    Silicon-molybdenum ductile cast irons are used to fabricate exhaust manifolds of internal combustion engines of large series cars, where the maximum pointwise temperature at full engine load may be higher than 973 K (700 °C). In this application, high-temperature oxidation and thermo-mechanical fatigue (the latter being caused by the engine start and stop and by the variation of its power output) have been the subject of several studies and are well known, whereas little attention has been devoted to the high-cycle fatigue, arising from the engine vibration. Therefore, the mechanical behavior of Si-Mo cast iron is studied here by means of stress-life fatigue tests up to 10 million cycles, at temperatures gradually increasing up to 973 K (700 °C). The mechanical characterization is completed by tensile and compressive tests and ensuing fractographic examinations; the mechanical test results are correlated with the cast iron microstructure and heat treatment.

  18. Multivariable control of vapor compression systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, X.D.; Liu, S.; Asada, H.H.

    1999-07-01

    This paper presents the results of a study of multi-input multi-output (MIMO) control of vapor compression cycles that have multiple actuators and sensors for regulating multiple outputs, e.g., superheat and evaporating temperature. The conventional single-input single-output (SISO) control was shown to have very limited performance. A low order lumped-parameter model was developed to describe the significant dynamics of vapor compression cycles. Dynamic modes were analyzed based on the low order model to provide physical insight of system dynamic behavior. To synthesize a MIMO control system, the Linear-Quadratic Gaussian (LQG) technique was applied to coordinate compressor speed and expansion valve openingmore » with guaranteed stability robustness in the design. Furthermore, to control a vapor compression cycle over a wide range of operating conditions where system nonlinearities become evident, a gain scheduling scheme was used so that the MIMO controller could adapt to changing operating conditions. Both analytical studies and experimental tests showed that the MIMO control could significantly improve the transient behavior of vapor compression cycles compared to the conventional SISO control scheme. The MIMO control proposed in this paper could be extended to the control of vapor compression cycles in a variety of HVAC and refrigeration applications to improve system performance and energy efficiency.« less

  19. Materials research for high-speed civil transport and generic hypersonics: Composites durability

    NASA Technical Reports Server (NTRS)

    Allen-Lilly, Heather; Cregger, Eric; Hoffman, Daniel; Mccool, Jim

    1995-01-01

    This report covers a portion of an ongoing investigation of the durability of composites for the High Speed Civil Transport (HSCT) program. Candidate HSCT composites need to possess the high-temperature capability required for supersonic flight. This program was designed to initiate the design, analysis, fabrication, and testing of equipment intended for use in validating the long-term durability of materials for the HSCT. This equipment includes thermally actuated compression and tension fixtures, hydraulic-actuated reversible load fixtures, and thermal chambers. This equipment can be used for the durability evaluation of both composite and adhesive materials. Thermally actuated fixtures are recommended for fatigue cycling when long-term thermomechanical fatigue (TMF) data are required on coupon-sized tension or compression specimens. Long term durability testing plans for polymer matrix composite specimens are included.

  20. Long-term ageing and materials degradation of hybrid mica compressive seals for solid oxide fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Y. S.; Stevenson, Jeffry W.

    2009-06-15

    Hybrid phlogopite mica seals with silver interlayers were evaluated in long term isothermal ageing tests in a dual environment consisting of dilute hydrogen vs. air at 800 degrees C. High-temperature leak tests with helium showed very stable leakage of 0.01-0.02 sccm/cm for 28366 hrs under a low applied compressive stress of 82 kPa (12 psi). Post-mortem SEM and EDS analyses of the mica showed minimum degradation in terms of changes in microstructure and chemical composition, although there appeared to be some Ag migration and segregation at interstices between mica flakes. Fluorine was also found to be released from mica. Overall,more » the low, constant leakage through the hybrid mica/Ag seals clearly demonstrated a very promising candidate for SOFC sealing.« less

  1. Elasticity and expansion test performance of geopolymer as oil well cement

    NASA Astrophysics Data System (ADS)

    Ridha, S.; Hamid, A. I. Abd; Halim, A. H. Abdul; Zamzuri, N. A.

    2018-04-01

    History has shown that geopolymer cement provides high compressive strength as compared to Class G cement. However, the research had been done at ambient temperature, not at elevated condition which is the common oil well situation. In this research, the physical and mechanical properties performance of the oil well cement were investigated by laboratory work for two types of cement that are geopolymer and Class G cement. The cement samples were produced by mixing the cement according to the API standards. Class C fly ash was used in this study. The alkaline solution was prepared by mixing sodium silicate with NaOH solution. The NaOH solution was prepared by diluting NaOH pellets with distilled water to 8M. The cement samples were cured at a pressure of 3000 psi and a temperature of 130 °C to simulate the downhole condition. After curing, the physical properties of the cement samples were investigated using OYO Sonic Viewer to determine their elastic properties. Autoclave expansion test and compressive strength tests were conducted to determine the expansion value and the strength of the cement samples, respectively. The results showed that the geopolymer cement has a better physical and mechanical properties as compared with Class G cement at elevated condition.

  2. Stability of compressible Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Chow, Chuen-Yen

    1991-01-01

    Compressible stability equations are solved using the spectral collocation method in an attempt to study the effects of temperature difference and compressibility on the stability of Taylor-Couette flow. It is found that the Chebyshev collocation spectral method yields highly accurate results using fewer grid points for solving stability problems. Comparisons are made between the result obtained by assuming small Mach number with a uniform temperature distribution and that based on fully incompressible analysis.

  3. Local Limit Phenomena, Flow Compression, and Fuel Cracking Effects in High-Speed Turbulent Flames

    DTIC Science & Technology

    2015-06-01

    e.g. local extinction and re- ignition , interactions between flow compression and fast-reaction induced dilatation (reaction compression ), and to...time as a function of initial temperature in constant-pressure auto - ignition , and (b) the S-curves of perfectly stirred reactors (PSRs), for n...mechanism. The reduction covered auto - ignition and perfectly stirred reactors for equivalence ratio range of 0.5~1.5, initial temperature higher than

  4. Evaluation of RTM370 Polyimide Composites by Resin Film Infusion (RFI)

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Yip, Thomas A.; Kollmansberger, Ronald B.; Tsotsis, Thomas K.

    2014-01-01

    RTM370 imide oligomer based on 2,3,3',4'-biphenyl dianhydride (a-BPDA), 3,4'-oxydianiline (3,4'-ODA) and terminated with the 4-phenylethynylphthalic (PEPA) endcap has been shown to exhibit a low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h and a high cured glass-transition temperature (Tg) of 370 C. RTM370 resin has been successfully infused into fiberglass-stitched T650-35 carbon-fabric preforms (ranged from 3- to 6-mm thick) by resin film infusion (RFI). The resulting composite panels were inspected by ultrasonic C-scan and by photomicrographs before and after post-curing as a quality control. Mechanical tests such as unnotched compression (UNC), open-hole compression (OHC), and short-beam shear strength (SBS) at ambient and elevated temperatures were performed before and after isothermal aging at 288 C for 1000 h to assess high-temperature performance. Thermal cycling of RTM370 stitched composites was also conducted from -54 C to 288 C for up to 1600 cycles to evaluate the microcrack resistance of RTM370 polyimide composites fabricated by RFI.

  5. Some Effects of Injection Advance Angle, Engine-Jacket Temperature, and Speed on Combustion in a Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1936-01-01

    An optical indicator and a high-speed motion-picture camera capable of operating at the rate of 2,000 frames per second were used to record simultaneously the pressure development and the flame formation in the combustion chamber of the NACA combustion apparatus. Tests were made at engine speeds of 570 and 1,500 r.p.m. The engine-jacket temperature was varied from 100 degrees to 300 degrees F. And the injection advance angle from 13 degrees after top center to 120 degrees before top center. The results show that the course of the combustion is largely controlled by the temperature and pressure of the air in the chamber from the time the fuel is injected until the time at which combustion starts and by the ignition lag. The conclusion is presented that in a compression-ignition engine with a quiescent combustion chamber the ignition lag should be the longest that can be used without excessive rates of pressure rise; any further shortening of the ignition lag decreased the effective combustion of the engine.

  6. Modeling the Flow Behavior, Recrystallization, and Crystallographic Texture in Hot-Deformed Fe-30 Wt Pct Ni Austenite

    NASA Astrophysics Data System (ADS)

    Abbod, M. F.; Sellars, C. M.; Cizek, P.; Linkens, D. A.; Mahfouf, M.

    2007-10-01

    The present work describes a hybrid modeling approach developed for predicting the flow behavior, recrystallization characteristics, and crystallographic texture evolution in a Fe-30 wt pct Ni austenitic model alloy subjected to hot plane strain compression. A series of compression tests were performed at temperatures between 850 °C and 1050 °C and strain rates between 0.1 and 10 s-1. The evolution of grain structure, crystallographic texture, and dislocation substructure was characterized in detail for a deformation temperature of 950 °C and strain rates of 0.1 and 10 s-1, using electron backscatter diffraction and transmission electron microscopy. The hybrid modeling method utilizes a combination of empirical, physically-based, and neuro-fuzzy models. The flow stress is described as a function of the applied variables of strain rate and temperature using an empirical model. The recrystallization behavior is predicted from the measured microstructural state variables of internal dislocation density, subgrain size, and misorientation between subgrains using a physically-based model. The texture evolution is modeled using artificial neural networks.

  7. Bringing light into the dark: effects of compression clothing on performance and recovery.

    PubMed

    Born, Dennis-Peter; Sperlich, Billy; Holmberg, Hans-Christer

    2013-01-01

    To assess original research addressing the effect of the application of compression clothing on sport performance and recovery after exercise, a computer-based literature research was performed in July 2011 using the electronic databases PubMed, MEDLINE, SPORTDiscus, and Web of Science. Studies examining the effect of compression clothing on endurance, strength and power, motor control, and physiological, psychological, and biomechanical parameters during or after exercise were included, and means and measures of variability of the outcome measures were recorded to estimate the effect size (Hedges g) and associated 95% confidence intervals for comparisons of experimental (compression) and control trials (noncompression). The characteristics of the compression clothing, participants, and study design were also extracted. The original research from peer-reviewed journals was examined using the Physiotherapy Evidence Database (PEDro) Scale. Results indicated small effect sizes for the application of compression clothing during exercise for short-duration sprints (10-60 m), vertical-jump height, extending time to exhaustion (such as running at VO2max or during incremental tests), and time-trial performance (3-60 min). When compression clothing was applied for recovery purposes after exercise, small to moderate effect sizes were observed in recovery of maximal strength and power, especially vertical-jump exercise; reductions in muscle swelling and perceived muscle pain; blood lactate removal; and increases in body temperature. These results suggest that the application of compression clothing may assist athletic performance and recovery in given situations with consideration of the effects magnitude and practical relevance.

  8. Initial Mechanical Testing of Superalloy Lattice Block Structures Conducted

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Whittenberger, J. Daniel

    2002-01-01

    The first mechanical tests of superalloy lattice block structures produced promising results for this exciting new lightweight material system. The testing was performed in-house at NASA Glenn Research Center's Structural Benchmark Test Facility, where small subelement-sized compression and beam specimens were loaded to observe elastic and plastic behavior, component strength levels, and fatigue resistance for hundreds of thousands of load cycles. Current lattice block construction produces a flat panel composed of thin ligaments arranged in a three-dimensional triangulated trusslike structure. Investment casting of lattice block panels has been developed and greatly expands opportunities for using this unique architecture in today's high-performance structures. In addition, advances made in NASA's Ultra-Efficient Engine Technology Program have extended the lattice block concept to superalloy materials. After a series of casting iterations, the nickel-based superalloy Inconel 718 (IN 718, Inco Alloys International, Inc., Huntington, WV) was successfully cast into lattice block panels; this combination offers light weight combined with high strength, high stiffness, and elevated-temperature durability. For tests to evaluate casting quality and configuration merit, small structural compression and bend test specimens were machined from the 5- by 12- by 0.5-in. panels. Linear elastic finite element analyses were completed for several specimen layouts to predict material stresses and deflections under proposed test conditions. The structural specimens were then subjected to room-temperature static and cyclic loads in Glenn's Life Prediction Branch's material test machine. Surprisingly, the test results exceeded analytical predictions: plastic strains greater than 5 percent were obtained, and fatigue lives did not depreciate relative to the base material. These assets were due to the formation of plastic hinges and the redundancies inherent in lattice block construction, which were not considered in the simplified computer models. The fatigue testing proved the value of redundancies since specimen strength was maintained even after the fracture of one or two ligaments. This ongoing test program is planned to continue through high-temperature testing. Also scheduled for testing are IN 718 lattice block panels with integral face sheets, as well as specimens cast from a higher temperature alloy. The initial testing suggests the value of this technology for large panels under low and moderate pressure loadings and for high-risk, damage-tolerant structures. Potential aeropropulsion uses for lattice blocks include turbine-engine actuated panels, exhaust nozzle flaps, and side panel structures.

  9. Environmental effects on the compressive properties - Thermosetting vs. thermoplastic composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haque, A.; Jeelani, S.

    1992-02-01

    The influence of moisture and temperature on the compressive properties of graphite/epoxy and APC-2 materials systems was investigated to assess the viability of using APC-2 instead of graphite/epoxy. Data obtained indicate that the moisture absorption rate of T-300/epoxy is higher than that of APC-2. Thick plate with smaller surface area absorbs less moisture than thin plate with larger surface area. The compressive strength and modulus of APC-2 are higher than those of T-300/epoxy composite, and APC-2 sustains higher compressive strength in the presence of moisture. The compressive strength and modulus decrease with the increase of temperature in the range ofmore » 23-100 C. The compression failure was in the form of delamination, interlaminar shear, and end brooming. 9 refs.« less

  10. Temperature-sensitive release of prostaglandin E₂ and diminished energy requirements in synovial tissue with postoperative cryotherapy: a prospective randomized study after knee arthroscopy.

    PubMed

    Stålman, Anders; Berglund, Lukas; Dungnerc, Elisabeth; Arner, Peter; Felländer-Tsai, Li

    2011-11-02

    Local external cooling of the surgical field after joint surgery is intended to enhance recovery and to facilitate the use of outpatient surgery by reducing pain and improving mobility. We hypothesized that the effects of postoperative cooling and compression after knee arthroscopy would be reflected in changes in the concentrations of metabolic and inflammatory markers in the synovial membrane. Forty otherwise healthy patients who were to undergo knee arthroscopy were included in the study, and half were randomized to receive postoperative cooling and compression. Microdialysis of the synovial membrane was performed postoperatively, and the concentrations of prostaglandin E₂ (PGE₂), glucose, lactate, glycerol, and glutamate as well as the ethanol exchange ratio (which indicates blood flow) were measured. The temperature of the knee was monitored, and postoperative pain was assessed by the patient with use of a visual analog scale, a numeric rating scale, and the need for rescue medication. Application of the cooling and compression device after knee arthroscopy significantly lowered the temperature in the operatively treated knee (as measured on the skin, within the joint capsule, and intra-articularly). The cooling and compression appeared to decrease inflammation, as indicated by a temperature-sensitive decrease in the PGE₂ concentration. The hypothermia also decreased the metabolic rate of the synovial tissue and thus decreased energy requirements, as shown by the stability of the lactate concentration over time despite the decreased blood flow that was indicated by the increasing ethanol exchange ratio. No effect of the compression and cooling on postoperative pain was detected. Local cryotherapy and compression after knee arthroscopy significantly lowered the temperature in the knee postoperatively, and the synovial PGE₂ concentration was correlated with the temperature. Since PGE₂ is a marker of pain and inflammation, the postoperative local cooling and compression appeared to have a positive anti-inflammatory effect.

  11. Viscoelastic behavior of basaltic ash from Stromboli volcano inferred from intermittent compression experiments

    NASA Astrophysics Data System (ADS)

    Kurokawa, A. K.; Miwa, T.; Okumura, S.; Uesugi, K.

    2017-12-01

    After ash-dominated Strombolian eruption, considerable amount of ash falls back to the volcanic conduit forming a dense near-surface region compacted by weights of its own and other fallback clasts (Patrick et al., 2007). Gas accumulation below this dense cap causes a substantial increase in pressure within the conduit, causing the volcanic activity to shift to the preliminary stages of a forthcoming eruption (Del Bello et al., 2015). Under such conditions, rheology of the fallback ash plays an important role because it controls whether the fallback ash can be the cap. However, little attention has been given to the point. We examined the rheology of ash collected at Stromboli volcano via intermittent compression experiments changing temperature and compression time/rate. The ash deformed at a constant rate during compression process, and then it was compressed without any deformation during rest process. The compression and rest processes repeated during each experiment to see rheological variations with progression of compaction. Viscoelastic changes during the experiment were estimated by Maxwell model. The results show that both elasticity and viscosity increases with decreasing porosity. On the other hand, the elasticity shows strong rate-dependence in the both compression and rest processes while the viscosity dominantly depends on the temperature, although the compression rate also affects the viscosity in the case of the compression process. Thus, the ash behaves either elastically or viscously depending on experimental process, temperature, and compression rate/time. The viscoelastic characteristics can be explained by magnitude relationships between the characteristic relaxation times and times for compression and rest processes. This indicates that the balance of the time scales is key to determining the rheological characteristics and whether the ash behaves elastically or viscously may control cyclic Strombolian eruptions.

  12. Study of factors influencing the mechanical properties of polyurethane foams under dynamic compression

    NASA Astrophysics Data System (ADS)

    Linul, E.; Marsavina, L.; Voiconi, T.; Sadowski, T.

    2013-07-01

    Effect of density, loading rate, material orientation and temperature on dynamic compression behavior of rigid polyurethane foams are investigated in this paper. These parameters have a very important role, taking into account that foams are used as packing materials or dampers which require high energy impact absorption. The experimental study was carried out on closed-cell rigid polyurethane (PUR) foam specimens of different densities (100, 160 respectively 300 kg/m3), having a cubic shape. The specimens were subjected to uniaxial dynamic compression with loading rate in range of 1.37-3.25 m/s, using four different temperatures (20, 60, 90, 110°C) and two loading planes (direction (3) - rise direction and direction (2) - in plane). Experimental results show that Young's modulus, yield stress and plateau stress values increases with increasing density. One of the most significant effects of mechanical properties in dynamic compression of rigid PUR foams is the density, but also the loading speed, material orientation and temperature influences the behavior in compression

  13. Effect of Thermomechanical Processing on the Microstructure and Mechanical Properties of Nb-Ti-V Microalloyed Steel

    NASA Astrophysics Data System (ADS)

    Opiela, M.

    2014-09-01

    The paper presents the results of thermomechanical treatment via forging on the microstructure and mechanical properties of newly obtained microalloyed steel containing 0.28% C, 1.41% Mn, 0.027% Nb, 0.028% Ti, and 0.019% V. The investigated steel is assigned to the production of forged elements for the automotive industry. Conditions of forging using the thermomechanical processing method were developed based on plastometric tests. Continuous and double-hit compression tests were conducted using the Gleeble 3800 thermomechanical simulator. The samples were investigated in a temperature range from 900 to 1100 °C and a strain rate of 1 and 10 s-1. To determine the recrystallization kinetics of plastically deformed austenite, discontinuous compression tests of samples using the applied deformation were conducted in a temperature range from 900 to 1100 °C with isothermal holding of the specimens between successive deformations for 2-100 s. Observations of the microstructures of thin foils were conducted using a TITAN80-300 FEI transmission electron microscope. The applied thermomechanical treatment allows to obtain a fine-grained microstructure of the austenite during hot-working and production of forged parts. These acquire advantageous mechanical properties and guaranteed crack resistance after controlled cooling from the end plastic deformation temperature and successive tempering. Forgings produced using the thermomechanical treatment method, consecutively subjected to tempering in a temperature range from 550 to 650 °C, reveal values of YS0.2 which equal from 994 to 892 MPa, UTS from 1084 to 958 MPa, KV from 69 to 109 J, KV-40 from 55 to 83 J, and a hardness ranging from 360 to 300 HBW.

  14. Particulate Titanium Matrix Composites Tested--Show Promise for Space Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Ellis, J. Rodney; Arnold. Steven M.

    2004-01-01

    Uniformly distributed particle-strengthened titanium matrix composites (TMCs) can be manufactured at lower cost than many types of continuous-fiber composites. The innovative manufacturing technology combines cold and hot isostatic pressing procedures to produce near-final-shape components. Material stiffness is increased up to 26-percent greater than that of components made with conventional titanium materials at no significant increase in the weight. The improved mechanical performance and low-cost manufacturing capability motivated an independent review to assess the improved properties of ceramic titanium carbide (TiC) particulate-reinforced titanium at elevated temperature. Researchers at the NASA Glenn Research Center creatively designed and executed deformation and durability tests to reveal operating regimes where these materials could lower the cost and weight of space propulsion systems. The program compares the elevated-temperature performance of titanium alloy Ti-6Al-4V matrix material to an alloy containing 10 wt% of TiC particles. Initial experiments showed that at these relatively low particle concentrations the material stiffness of the TMC was improved 20 percent over that of the plain Ti-6Al-4V alloy when tested at 427 C. The proportional limit and ultimate strength of the composite in tension are 21- and 14-percent greater than those of the plain alloy. Compression tests showed that the proportional limit is about 30 percent greater for TMC than for the plain alloy. The enhanced deformation resistance of the TMC was also evident in a series of tensile and compressive stress relaxation tests that were made. Specimens were subjected to tensile or compressive strain amplitudes of 0.75 percent for 24 hr followed by a return to zero strain imposed for 24 hr. The stress relaxation data were normalized with respect to the maximum stress for each case and plotted as a function of time in the following graph. Tensile stresses relaxed 19 percent for the TMC and 25 percent for the plain Ti-6Al-4V alloy. Compressive stresses relaxed 25 percent for the TMC and 39 percent for the plain Ti-6Al-4V alloy. The superior deformation resistance of the TMC extends to a creep rate that is 28-percent slower for the TMC when it is loaded to stress levels that are 26-percent higher than for the plain Ti-6Al-4V alloy.

  15. Construction of an ultra low temperature cryostat and transverse acoustic spectroscopy in superfluid helium-3 in compressed aerogels

    NASA Astrophysics Data System (ADS)

    Bhupathi, Pradeep

    An ultra low temperature cryostat is designed and implemented in this work to perform experiments at sub-millikelvin temperatures, specifically aimed at understanding the superfluid phases of 3He in various scenarios. The cryostat is a combination of a dilution refrigerator (Oxford Kelvinox 400) with a base temperature of 5.2 mK and a 48 mole copper block as the adiabatic nuclear demagnetization stage with a lowest temperature of ≈ 200 muK. With the various techniques implemented for limiting the ambient heat leak to the cryostat, we were able to stay below 1 mK for longer than 5 weeks. The details of design, construction and performance of the cryostat are presented. We measured high frequency shear acoustic impedance in superfluid 3He in 98% porosity aerogel at pressures of 29 bar and 32 bar in magnetic fields upto 3 kG with the aerogel cylinder compressed along the symmetry axis to generate global anisotropy. With 5% compression, there is an indication of a supercooled A-like to B-like transition in aerogel in a wider temperature width than the A phase in the bulk, while at 10% axial compression, the A-like to B-like transition is absent on cooling down to ≈ 300 muK in zero magnetic field and in magnetic fields up to 3 kG. This behavior is in contrast to that in 3He in uncompressed aerogels, in which the supercooled A-like to B-like transitions have been identified by various experimental techniques. Our result is consistent with theoretical predictions. To characterize the anisotropy in compressed aerogels, optical birefringence is measured in 98% porosity silica aerogel samples subjected to various degrees of uniaxial compression up to 15% strain, with wavelengths between 200 to 800 nm. Uncompressed aerogels exhibit no or a minimal degree of birefringence, indicating the isotropic nature of the material over the length scale of the wavelength. Uniaxial compression of aerogel introduces global anisotropy, which produces birefringence in the material. We observed a quasi-linear strain dependence in Deltan = ne -- no in compressed aerogels, where n e(o) is the index of refraction for the extraordinary (ordinary) ray of light that has its polarization parallel to the compression axis. Incidentally, this effect has potential applications for aerogels as tunable waveplates operating in a broad spectral range.

  16. Fabrication and evaluation of enhanced diffusion bonded titanium honeycomb core sandwich panels with titanium aluminide face sheets

    NASA Technical Reports Server (NTRS)

    Hoffmann, E. K.; Bird, R. K.; Bales, T. T.

    1989-01-01

    A joining process was developed for fabricating lightweight, high temperature sandwich panels for aerospace applications using Ti-14Al-21Nb face sheets and Ti-3Al-2.5V honeycomb core. The process, termed Enhanced Diffusion Bonding (EDB), relies on the formation of a eutectic liquid through solid-state diffusion at elevated temperatures and isothermal solidification to produce joints in thin-gage titanium and titanium aluminide structural components. A technique employing a maskant on the honeycomb core was developed which permitted electroplating a controlled amount of EDB material only on the edges of the honeycomb core in order to minimize the structural weight and metallurgical interaction effects. Metallurgical analyses were conducted to determine the interaction effects between the EDB materials and the constituents of the sandwich structure following EDB processing. The initial mechanical evaluation was conducted with butt joint specimens tested at temperatures from 1400 - 1700 F. Further mechanical evaluation was conducted with EDB sandwich specimens using flatwise tension tests at temperatures from 70 - 1100 F and edgewise compression tests at ambient temperature.

  17. Evolution of twinning in extruded AZ31 alloy with bimodal grain structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcés, G., E-mail: ggarces@cenim.csic.es

    2017-04-15

    Twinning in extruded AZ31 alloy with a bimodal grain structure is studied under compression along the extrusion direction. This study has combined in-situ measurements during the compression tests by Synchrotron Radiation Diffraction and Acoustic Emission techniques and the evaluation of the microstructure and texture in post-mortem compression samples deformed at different strains. The microstructure of the alloy is characterized by the coexistence of large areas of fine dynamic recrystallized grains and coarse non-recrystallized grains elongated along extrusion direction. Twinning occurs initially in large elongated grains before the macroscopic yield stress which is controlled by the twinning in equiaxed dynamically recrystallizedmore » grains. - Highlights: • The AZ31 extruded at low temperature exhibits a bimodal grains structure. • Twinning takes place before macroscopic yielding in coarse non-DRXed grains. • DRXed grains controls the beginning of plasticity in magnesium alloys with bimodal grain structure.« less

  18. Time-Dependent Material Data Essential for the Durability Analysis of Composite Flywheels Provided by Compressive Experiments

    NASA Technical Reports Server (NTRS)

    Thesken, John C.; Bowman, Cheryl L.; Arnold, Steven M.

    2003-01-01

    Successful spaceflight operations require onboard power management systems that reliably achieve mission objectives for a minimal launch weight. Because of their high specific energies and potential for reduced maintenance and logistics, composite flywheels are an attractive alternative to electrochemical batteries. The Rotor Durability Team, which comprises members from the Ohio Aerospace Institute (OAI) and the NASA Glenn Research Center, completed a program of elevated temperature testing at Glenn' s Life Prediction Branch's Fatigue Laboratory. The experiments provided unique design data essential to the safety and durability of flywheel energy storage systems for the International Space Station and other manned spaceflight applications. Analysis of the experimental data (ref. 1) demonstrated that the compressive stress relaxation of composite flywheel rotor material is significantly greater than the commonly available tensile stress relaxation data. Durability analysis of compression preloaded flywheel rotors is required for accurate safe-life predictions for use in the International Space Station.

  19. A Hermite-based lattice Boltzmann model with artificial viscosity for compressible viscous flows

    NASA Astrophysics Data System (ADS)

    Qiu, Ruofan; Chen, Rongqian; Zhu, Chenxiang; You, Yancheng

    2018-05-01

    A lattice Boltzmann model on Hermite basis for compressible viscous flows is presented in this paper. The model is developed in the framework of double-distribution-function approach, which has adjustable specific-heat ratio and Prandtl number. It contains a density distribution function for the flow field and a total energy distribution function for the temperature field. The equilibrium distribution function is determined by Hermite expansion, and the D3Q27 and D3Q39 three-dimensional (3D) discrete velocity models are used, in which the discrete velocity model can be replaced easily. Moreover, an artificial viscosity is introduced to enhance the model for capturing shock waves. The model is tested through several cases of compressible flows, including 3D supersonic viscous flows with boundary layer. The effect of artificial viscosity is estimated. Besides, D3Q27 and D3Q39 models are further compared in the present platform.

  20. All-Printed Differential Temperature Sensor for the Compensation of Bending Effects.

    PubMed

    Ali, Shawkat; Hassan, Arshad; Bae, Jinho; Lee, Chong Hyun; Kim, Juho

    2016-11-08

    Because printed resistance temperature detectors (RTDs) are affected by tension and compression of metallic patterns on flexible or curved surfaces, a significant temperature-sensing error occurs in general. Hence, we propose a differential temperature sensor (DTS) to compensate the bending effect of the printed RTDs, which is composed of two serially connected similar meander patterns fabricated back-to-back on a polyimide polyethylene terephthalate substrate through a Dimatix DMP-3000 inkjet printer using silver nanoparticles. Under mechanical deformation, the resistance of the proposed DTS is not varied significantly under the same temperature environment because its patterns vary differentially as one side experiences tension while the opposite side experiences compression. A single meander pattern of the proposed DTS has a total length of 75 mm and device dimensions of 7 × 7 mm 2 . The total resistance variation is observed to be 15.5 Ω against the temperature variation from 0 to 100 °C, and the temperature coefficient of resistance is 1.076 × 10 -3 °C -1 . The proposed DTS exhibits no significant resistance change on bendability testing down to 2 mm diameter because of mechanical deformation. In addition, it is also used to detect the curvature of a body shape down to 2 mm diameter because its resistance changes by ±8.22% using a single meander pattern of DTS. The proposed sensor can be applied on a curved or flexible surface to measure relatively accurate temperature when compared to a single meander pattern.

  1. Degradation in PV Encapsulant Strength of Attachment: An Interlaboratory Study Towards a Climate-Specific Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, David C.; Annigoni, Eleonora; Ballion, Amal

    Reduced strength of attachment of the encapsulant resulting from the outdoor environment, including ultraviolet (UV) radiation, may decrease photovoltaic (PV) module lifetime by enabling widespread corrosion of internal components. To date, few studies exist showing how the adhesion of PV components varies with environmental stress. We have conducted an interlaboratory experiment to provide an understanding that will be used to develop climatic specific module tests. Factors examined in the study included the UV light source (lamp type), temperature, and humidity to be proposed for use in accelerated aging tests. A poly (ethylene-co-vinyl acetate) (EVA) formulation often used in veteran PVmore » installations was studied using a compressive shear test - to quantify the strength of attachment at the EVA/glass interface. Replicate laminated glass/polymer/glass coupon specimens were weathered at 12 institutions using a variety of indoor chambers or field aging. Shear strength, shear strain, and toughness were measured using a mechanical load-frame for the compressive shear test, with subsequent optical imaging and electron microscopy of the separated surfaces.« less

  2. Degradation in PV Encapsulation Strength of Attachment: An Interlaboratory Study Towards a Climate-Specific Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, David; Annigoni, Eleonora; Ballion, Amal

    Reduced strength of attachment of the encapsulant resulting from the outdoor environment, including ultraviolet (UV) radiation, may decrease photovoltaic (PV) module lifetime by enabling widespread corrosion of internal components. To date, few studies exist showing how the adhesion of PV components varies with environmental stress. We have conducted an interlaboratory experiment to provide an understanding that will be used to develop climatic specific module tests. Factors examined in the study included the UV light source (lamp type), temperature, and humidity to be proposed for use in accelerated aging tests. A poly (ethylene-co-vinyl acetate) (EVA) formulation often used in veteran PVmore » installations was studied using a compressive shear test - to quantify the strength of attachment at the EVA/glass interface. Replicate laminated glass/polymer/glass coupon specimens were weathered at 12 institutions using a variety of indoor chambers or field aging. Shear strength, shear strain, and toughness were measured using a mechanical load-frame for the compressive shear test, with subsequent optical imaging and electron microscopy of the separated surfaces.« less

  3. Degradation in PV Encapsulant Strength of Attachment: An Interlaboratory Study Towards a Climate-Specific Test: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, David C.; Annigoni, Eleonora; Ballion, Amal

    Reduced strength of attachment of the encapsulant resulting from outdoor environment, including ultraviolet (UV) radiation, may decrease photovoltaic (PV) module lifetime by enabling widespread corrosion of internal components. To date, few studies exist showing how the adhesion of PV components varies with environmental stress. We have conducted an interlaboratory experiment to provide an understanding that will be used to develop climatic specific module tests. Factors examined in the study included the UV light source (lamp type), temperature, and humidity to be proposed for use in accelerated aging tests. A poly (ethylene-co-vinyl acetate) (EVA) formulation often used in veteran PV installationsmore » was studied using a compressive shear test - to quantify the strength of attachment at the EVA/glass interface. Replicate laminated glass/polymer/glass coupon specimens were weathered at 12 institutions using a variety of indoor chambers or field aging. Shear strength, shear strain, and toughness were measured using a mechanical load-frame for the compressive shear test, with subsequent optical imaging and electron microscopy of the separated surfaces.« less

  4. Development of an Input Suite for an Orthotropic Composite Material Model

    NASA Technical Reports Server (NTRS)

    Hoffarth, Canio; Shyamsunder, Loukham; Khaled, Bilal; Rajan, Subramaniam; Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Blankenhorn, Gunther

    2017-01-01

    An orthotropic three-dimensional material model suitable for use in modeling impact tests has been developed that has three major components elastic and inelastic deformations, damage and failure. The material model has been implemented as MAT213 into a special version of LS-DYNA and uses tabulated data obtained from experiments. The prominent features of the constitutive model are illustrated using a widely-used aerospace composite the T800S3900-2B[P2352W-19] BMS8-276 Rev-H-Unitape fiber resin unidirectional composite. The input for the deformation model consists of experimental data from 12 distinct experiments at a known temperature and strain rate: tension and compression along all three principal directions, shear in all three principal planes, and off axis tension or compression tests in all three principal planes, along with other material constants. There are additional input associated with the damage and failure models. The steps in using this model are illustrated composite characterization tests, verification tests and a validation test. The results show that the developed and implemented model is stable and yields acceptably accurate results.

  5. Effects of Texture and Grain Size on the Yield Strength of ZK61 Alloy Rods Processed by Cyclic Extrusion and Compression

    PubMed Central

    Zhang, Lixin; Zhang, Wencong; Cao, Biao; Chen, Wenzhen; Duan, Junpeng; Cui, Guorong

    2017-01-01

    The ZK61 alloy rods with different grain sizes and crystallographic texture were successfully fabricated by cyclic extrusion and compression (CEC). Their room-temperature tension & compression yield strength displayed a significant dependence on grain size and texture, essentially attributed to {10-12} twinning. The texture variations were characterized by the angle θ between the c-axis of the grain and the extrusion direction (ED) during the process. The contour map of room-temperature yield strength as a function of grain size and the angle θ was obtained. It showed that both the tension yield strength and the compression yield strength of ZK61 alloy were fully consistent with the Hall-Patch relationship at a certain texture, but the change trends of the tension yield strength and the compression yield strength were completely opposite at the same grain size while texture altered. The friction stresses of different deformation modes calculated based on the texture confirmed the tension yield strength of the CECed ZK61 alloy rods, which was determined by both the basal slip and the tension twinning slip during the tension deformation at room temperature, while the compression yield strength was mainly determined by the basal slip during the compression deformation. PMID:29072616

  6. Time-Dependent Testing Evaluation and Modeling for Rubber Stopper Seal Performance.

    PubMed

    Zeng, Qingyu; Zhao, Xia

    2018-01-01

    Sufficient rubber stopper sealing performance throughout the entire sealed product life cycle is essential for maintaining container closure integrity in the parenteral packaging industry. However, prior publications have lacked systematic considerations for the time-dependent influence on sealing performance that results from the viscoelastic characteristics of the rubber stoppers. In this paper, we report results of an effort to study these effects by applying both compression stress relaxation testing and residual seal force testing for time-dependent experimental data collection. These experiments were followed by modeling fit calculations based on the Maxwell-Wiechert theory modified with the Kohlrausch-Williams-Watts stretched exponential function, resulting in a nonlinear, time-dependent sealing force model. By employing both testing evaluations and modeling calculations, an in-depth understanding of the time-dependent effects on rubber stopper sealing force was developed. Both testing and modeling data show good consistency, demonstrating that the sealing force decays exponentially over time and eventually levels off because of the viscoelastic nature of the rubber stoppers. The nonlinearity of stress relaxation derives from the viscoelastic characteristics of the rubber stoppers coupled with the large stopper compression deformation into restrained geometry conditions. The modeling fit with capability to handle actual testing data can be employed as a tool to calculate the compression stress relaxation and residual seal force throughout the entire sealed product life cycle. In addition to being time-dependent, stress relaxation is also experimentally shown to be temperature-dependent. The present work provides a new, integrated methodology framework and some fresh insights to the parenteral packaging industry for practically and proactively considering, designing, setting up, controlling, and managing stopper sealing performance throughout the entire sealed product life cycle. LAY ABSTRACT: Historical publications in the parenteral packaging industry have lacked systematic considerations for the time-dependent influence on the sealing performance that results from effects of viscoelastic characteristic of the rubber stoppers. This study applied compression stress relaxation testing and residual seal force testing for time-dependent experimental data collection. These experiments were followed by modeling fit calculations based on the Maxwell-Wiechert theory modified with the Kohlrausch-Williams-Watts stretched exponential function, resulting in a nonlinear, time-dependent sealing force model. Experimental and modeling data show good consistency, demonstrating that sealing force decays exponentially over time and eventually levels off. The nonlinearity of stress relaxation derives from the viscoelastic characteristics of the rubber stoppers coupled with the large stopper compression deformation into restrained geometry conditions. In addition to being time-dependent stress relaxation, it is also experimentally shown to be temperature-dependent. The present work provides a new, integrated methodology framework and some fresh insights to the industry for practically and proactively considering, designing, setting up, controlling, and managing of the stopper sealing performance throughout the entire sealed product life cycle. © PDA, Inc. 2018.

  7. Effect of temperature on composite sandwich structures subjected to low velocity impact. [aircraft construction materials

    NASA Technical Reports Server (NTRS)

    Sharma, A. V.

    1980-01-01

    The effect of low velocity projectile impact on sandwich-type structural components was investigated. The materials used in the fabrication of the impact surface were graphite-, Kevlar-, and boron-fibers with appropriate epoxy matrices. The testing of the specimens was performed at moderately low- and high-temperatures as well as at room temperature to assess the impact-initiated strength degradation of the laminates. Eleven laminates with different stacking sequences, orientations, and thicknesses were tested. The low energy projectile impact is considered to simulate the damage caused by runway debris, the dropping of the hand tools during servicing, etc., on the secondary aircraft structures fabricated with the composite materials. The results show the preload and the impact energy combinations necessary to cause catastrophic failure in the laminates tested. A set of faired curves indicating the failure thresholds is shown separately for the tension-and compression-loaded laminates. The specific-strengths and -modulii for the various laminates tested are also given.

  8. An experimental investigation of temperature rise during compaction of pharmaceutical powders.

    PubMed

    Krok, Alexander; Mirtic, Andreja; Reynolds, Gavin K; Schiano, Serena; Roberts, Ron; Wu, Chuan-Yu

    2016-11-20

    During pharmaceutical powder compaction, temperature rise in the compressed powder can affect physiochemical properties of the powder, such as thermal degradation and change in crystallinity. Thus, it is of practical importance to understand the effect of process conditions and material properties on the thermal response of pharmaceutical formulations during compaction. The aim of this study was to examine the temperature rise of pharmaceutical powders during tableting, in particular, to explore how the temperature rise depends on material properties, compression speed and tablet shape. Three grades of microcrystalline cellulose (MCC) were considered: MCC Avicel pH 101, MCC Avicel pH 102 and MCC DG. These powders were compressed using a compaction simulator at various compaction speeds (10-500mm/s). Flat faced, shallow convex and normal convex tablets were produced and temperature distributions on the surface of theses tablets upon ejection were examined using an infrared thermoviewer. It was found that an increase in the compaction speed led to an increase in the average surface temperature. A higher surface temperature was induced when the powder was compressed into a tablet with larger surface curvature. This was primarily due to the increasing degree of powder deformation (i.e. the volume reduction) and the effect of interparticule/wall friction. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Effects of heating durations on normal concrete residual properties: compressive strength and mass loss

    NASA Astrophysics Data System (ADS)

    Nazri, Fadzli Mohamed; Shahidan, Shahiron; Khaida Baharuddin, Nur; Beddu, Salmia; Hisyam Abu Bakar, Badorul

    2017-11-01

    This study investigates the effects of high temperature with five different heating durations on residual properties of 30 MPa normal concrete. Concrete cubes were being heated up to 600°C for 30, 60, 90, 120 and 150 minutes. The temperature will keep constant for 30, 60, 90, 120 and 150 minutes. The standard temperature-time curve ISO 834 is referred to. After heating the specimen were left to cool in the furnace and removed. After cooling down to ambient temperature, the residual mass and residual compressive strength were observed. The obtained result shows that, the compressive strength of concrete decrease as the heating duration increases. This heating duration influence, might affects the loss of free water present and decomposition of hydration products in concrete. As the heating duration increases, the amount of water evaporated also increases led to loss in concrete mass. Conclusively, the percentage of mass and compressive strength loss increased as the heating duration increased.

  10. Temperature control of the ultra-short laser pulse compression in a one-dimensional photonic band gap structure with nematic liquid crystal as a defect layer

    NASA Astrophysics Data System (ADS)

    Shiri, Ramin; Safari, Ebrahim; Bananej, Alireza

    2018-04-01

    We investigate numerically the controllable chirped pulse compression in a one-dimensional photonic structure containing a nematic liquid crystal defect layer using the temperature dependent refractive index of the liquid crystal. We consider the structure under irradiation by near-infrared ultra-short laser pulses polarized parallel to the liquid crystal director at a normal angle of incidence. It is found that the dispersion behaviour and consequently the compression ability of the system can be changed in a controlled manner due to the variation in the defect temperature. When the temperature increased from 290 to 305 K, the transmitted pulse duration decreased from 75 to 42 fs in the middle of the structure, correspondingly. As a result, a novel low-loss tunable pulse compressor with a really compact size and high compression factor is achieved. The so-called transfer matrix method is utilized for numerical simulations of the band structure and reflection/transmission spectra of the structure under investigation.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantero, Sara; Longo, Iginio; Fiore, Gianfranco Beniamino

    Purpose: The aim of this study was to create, perfect and test a hyperthermia balloon catheter for local treatment of cholangiocarcinoma. The device should induce hyperthermia in tumor tissue by acting locally in the bile duct lumen in contact with the tumor-infiltrated duct wall. In addition, it should exert tissue compression to cause an appreciable reduction in tumor microvasculature flow, thus improving thermal performance. Methods: According to the design specifications, the working temperature range should allow the device to be used for hyperthermia therapy either in combination with radiation and/or chemotherapy(radio/chemo-sensitizing effect at 42-45 deg. C) or alone (induction ofmore » coagulation necrosis above 65 deg. C). The balloon serves as an anchoring system during treatment and as a functional element to induce tissue compression. In vitro mechanical evaluation of the pressure/volume relationship, with the balloon inside rigid walled conduits, was performed. The heating shape around the catheter tip was determined by egg-white heating tests (coagulation at about 65 deg. C). Moreover,heating tests were carried out with explanted pig liver parenchyma. The temperature profile over time at different depths from the catheter axis was traced. Results: Three prototypes were manufactured. Mechanical functional tests showed that a 14 Fr deflated diameter balloon was suitable for bile duct diameters up to 11 mm.Thermal egg-white tests produced 4 cm long, 3 cm in diameter ellipsoidal heating figures in 30 min. In the biological tissue tests a coagulated area of similar geometry and comparable volume was produced. Conclusion: The results of tests confirm the device's usefulness and versatility.« less

  12. The effect of temperature on the average volume of Barkhausen jump on Q235 carbon steel

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Shu, Di; Yin, Liang; Chen, Juan; Qi, Xin

    2016-06-01

    On the basis of the average volume of Barkhausen jump (AVBJ) vbar generated by irreversible displacement of magnetic domain wall under the effect of the incentive magnetic field on ferromagnetic materials, the functional relationship between saturation magnetization Ms and temperature T is employed in this paper to deduce the explicit mathematical expression among AVBJ vbar, stress σ, incentive magnetic field H and temperature T. Then the change law between AVBJ vbar and temperature T is researched according to the mathematical expression. Moreover, the tensile and compressive stress experiments are carried out on Q235 carbon steel specimens at different temperature to verify our theories. This paper offers a series of theoretical bases to solve the temperature compensation problem of Barkhausen testing method.

  13. Study on Thermal Deformation Behavior of TC4 – ELI Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Song, Y.; Zhang, F. S.; Huang, T.; Song, K. X.

    2018-05-01

    The TC4-ELI titanium alloy was subjected to hot compression deformation test by the Gleeble-1500D thermal simulation test machine. The thermal deformation behavior of the TC4-ELI titanium alloy was studied under the condition of 850°C-1050°C, 0.001s-1-10s-1 strain rate and 50% deformation. The constitutive equation of TC4-ELI titanium alloy was established based on the hyperbolic sine model of Arrhenius equation. The results show that the flow stress of TC4-ELI titanium alloy decreases with the increase of temperature at high temperature. The calculated heat activation energy of TC4-ELI titanium alloy is 300367.5807J / mol.

  14. Characterization of Adhesives for Attaching Reusable Surface Insulation on Space Shuttle Vehicles

    NASA Technical Reports Server (NTRS)

    Owen, H. P.; Carroll, M. T.

    1973-01-01

    An extensive development and testing program on adhesive systems shows that: (1) A closed cell silicone rubber sponge bonded to substrates with thin bond lines of glass filled adhesive exhibits density and modulus values approximately one third that of solid silicone adhesives; (2) utilization of glass or phenolic microballoons as fillers in silicone adhesives reduces density but increases moduli of the vulcanized materials; (3) the silicone elastomer based adhesives appear to be complex systems rather than homogeneous, isotropic materials. Tensile, shear, and compression properties plotted versus temperature verify this conjecture; and (4) constant strain-stress relaxation tests on glass-filled adhesive show that stress relaxation is most pronounced near the glass transition temperature.

  15. Response of a small-turboshaft-engine compression system to inlet temperature distortion

    NASA Technical Reports Server (NTRS)

    Biesiadny, T. J.; Klann, G. A.; Little, J. K.

    1984-01-01

    An experimental investigation was conducted into the response of a small-turboshaft-engine compression system to steady-state and transient inlet temperature distortions. Transient temperature ramps range from less than 100 K/sec to above 610 K/sec and generated instantaneous temperatures to 420 K above ambient. Steady-state temperature distortion levels were limited by the engine hardware temperature list. Simple analysis of the steady-state distortion data indicated that a particle separator at the engine inlet permitted higher levels of temperature distortion before onset of compressor surge than would be expected without the separator.

  16. Selection of NIR H2O absorption transitions for in-cylinder measurement of temperature in IC engines

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Liu, Xiang; Jeffries, Jay B.; Hanson, Ronald K.

    2005-12-01

    The water vapour spectrum in the 1.25-1.65 µm region is systematically analysed to find the best absorption transitions for sensitive measurement of in-cylinder gas temperature over short paths in an internal combustion engine. The strategy to select the optimum wavelength regions and absorption line combinations is developed for the time-varying pressures and temperatures expected during the compression portion of an engine cycle. We have identified 14 transitions of water vapour in this spectral region as promising for this application. From these transitions, 16 potential line pairs were considered for a wavelength-modulated absorption sensor for in-cylinder gas temperature during the compression stroke. Expected performance is modelled for the intake portion of two engine cycles that produce extreme temperature and pressure variations during compression.

  17. Cast Stone Formulation At Higher Sodium Concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K. M.; Roberts, K. A.; Edwards, T. B.

    2013-09-17

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, includingmore » production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium concentration in the salt solution reduced the time to peak heat flow, and reducing the amount of slag in the premix increased the time to peak heat flow. These observations may help to describe some of the cured properties of the samples, in particular the differences in compressive strength observed after 28 and 90 days of curing. Samples were cured for at least 28 days at ambient temperature in the laboratory prior to cured properties analyses. The low activity waste form for disposal at the Hanford Site is required to have a compressive strength of at least 500 psi. After 28 days of curing, several of the test mixes had mean compressive strengths that were below the 500 psi requirement. Higher sodium concentrations and higher water to premix ratios led to reduced compressive strength. Higher fly ash concentrations decreased the compressive strength after 28 days of curing. This may be explained in that the cementitious phases matured more quickly in the mixes with higher concentrations of slag, as evidenced by the data for the time to peak heat generation. All of the test mixes exhibited higher mean compressive strengths after 90 days of curing, with only one composition having a mean compressive strength of less than 500 psi. Leach indices were determined for the test mixes for contaminants of interest. The leaching performance of the mixes evaluated in this study was not particularly sensitive to the factors used in the experimental design. This may be beneficial in demonstrating that the performance of the waste form is robust with respect to changes in the mix composition. The results of this study demonstrate the potential to achieve significantly higher waste loadings in Cast Stone and other low temperature, cementitious waste forms. Additional work is needed to elucidate the hydration mechanisms occurring in Cast Stone formulated with highly concentrated salt solutions since these reactions are responsible for determining the performance of the cured waste form. The thermal analyses completed in this study provide some preliminary insight, although the limited range of the factors in the test matrix hindered the identification of individual component effects. Future work should involve broader factor ranges to identify the roles played by each of the components in the mix via thermal analyses, analytical microscopy, and characterization of phase formation.« less

  18. Cast Stone Formulation At Higher Sodium Concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K. M.; Edwards, T. A.; Roberts, K. B.

    2013-10-02

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, includingmore » production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium concentration in the salt solution reduced the time to peak heat flow, and reducing the amount of slag in the premix increased the time to peak heat flow. These observations may help to describe some of the cured properties of the samples, in particular the differences in compressive strength observed after 28 and 90 days of curing. Samples were cured for at least 28 days at ambient temperature in the laboratory prior to cured properties analyses. The low activity waste form for disposal at the Hanford Site is required to have a compressive strength of at least 500 psi. After 28 days of curing, several of the test mixes had mean compressive strengths that were below the 500 psi requirement. Higher sodium concentrations and higher water to premix ratios led to reduced compressive strength. Higher fly ash concentrations decreased the compressive strength after 28 days of curing. This may be explained in that the cementitious phases matured more quickly in the mixes with higher concentrations of slag, as evidenced by the data for the time to peak heat generation. All of the test mixes exhibited higher mean compressive strengths after 90 days of curing, with only one composition having a mean compressive strength of less than 500 psi. Leach indices were determined for the test mixes for contaminants of interest. The leaching performance of the mixes evaluated in this study was not particularly sensitive to the factors used in the experimental design. This may be beneficial in demonstrating that the performance of the waste form is robust with respect to changes in the mix composition. The results of this study demonstrate the potential to achieve significantly higher waste loadings in Cast Stone and other low temperature, cementitious waste forms. Additional work is needed to elucidate the hydration mechanisms occurring in Cast Stone formulated with highly concentrated salt solutions since these reactions are responsible for determining the performance of the cured waste form. The thermal analyses completed in this study provide some preliminary insight, although the limited range of the factors in the test matrix hindered the identification of individual component effects. Future work should involve broader factor ranges to identify the roles played by each of the components in the mix via thermal analyses, analytical microscopy, and characterization of phase formation.« less

  19. Cast Stone Formulation At Higher Sodium Concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K. M.; Roberts, K. A.; Edwards, T. B.

    2014-02-28

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, includingmore » production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium concentration in the salt solution reduced the time to peak heat flow, and reducing the amount of slag in the premix increased the time to peak heat flow. These observations may help to describe some of the cured properties of the samples, in particular the differences in compressive strength observed after 28 and 90 days of curing. Samples were cured for at least 28 days at ambient temperature in the laboratory prior to cured properties analyses. The low activity waste form for disposal at the Hanford Site is required to have a compressive strength of at least 500 psi. After 28 days of curing, several of the test mixes had mean compressive strengths that were below the 500 psi requirement. Higher sodium concentrations and higher water to premix ratios led to reduced compressive strength. Higher fly ash concentrations decreased the compressive strength after 28 days of curing. This may be explained in that the cementitious phases matured more quickly in the mixes with higher concentrations of slag, as evidenced by the data for the time to peak heat generation. All of the test mixes exhibited higher mean compressive strengths after 90 days of curing, with only one composition having a mean compressive strength of less than 500 psi. Leachability indices were determined for the test mixes for contaminants of interest. The leaching performance of the mixes evaluated in this study was not particularly sensitive to the factors used in the experimental design. This may be beneficial in demonstrating that the performance of the waste form is robust with respect to changes in the mix composition. The results of this study demonstrate the potential to achieve significantly higher waste loadings in Cast Stone and other low temperature, cementitious waste forms. Additional work is needed to elucidate the hydration mechanisms occurring in Cast Stone formulated with highly concentrated salt solutions since these reactions are responsible for determining the performance of the cured waste form. The thermal analyses completed in this study provide some preliminary insight, although the limited range of the factors in the test matrix hindered the identification of individual component effects. Future work should involve broader factor ranges to identify the roles played by each of the components in the mix via thermal analyses, analytical microscopy, and characterization of phase formation.« less

  20. The function profile of compressed-air and ultrasonic nebulizers.

    PubMed

    Wu, Hsin-Lin; Lin, Yung-Zen; Wu, Wei-Fong; Huang, Fu-Yuan

    2003-01-01

    In order to study the detailed function of two kinds of nebulizers commonly used in clinical asthma treatment, compressed-air and ultrasonic, this study was conducted. At the beginning, various flow rates were adjusted, paired with different volumes of solutions in the container. The changes of temperature, pH, and osmolality during the course of nebulization were examined. Normal saline, terbutaline, and fenoterol solutions were used as the nebulized solutions. The study was performed in an environment in ambient temperature around 20 degrees C and relative humidity around 70%. The results showed a minimal 6 L/min flow rate was required to nebulize the solution when using the compressed-air nebulizer. The dead volume was about 0.8 ml for compressed-air and 8.5 ml for the ultrasonic nebulizer. When using the compressed-air nebulizer, the temperature, both in the solution and at the mouthpiece site, dropped gradually. On the contrary, the temperatures at both sites increased a little bit when using the ultrasonic nebulizer. The pH values of pure terbutaline and fenoterol nebulized solutions were acidic (3.58 and 3.00 respectively). The osmolality of terbutaline and fenoterol nebulized solutions were isotonic. The osmolality increased gradually during the course of nebulization, to a greater extent in the compressed-air nebulizer. In conclusion, both types of nebulizers have their special features. The ultrasonic nebulizer displays less extent in change of temperature and osmolality during nebulization and is expected to be a better device in treating asthmatic patients in terms of lesser effect on cooling and changing the osmolality of airway mucosa.

  1. Effect of waste banner as fiber on mechanical properties of concrete

    NASA Astrophysics Data System (ADS)

    Rahmawati, Anis; Saputro, Ida Nugroho

    2017-06-01

    Banner is broadly used as advertisement media and event backdrop that is usually only used at one moment, resulting to a lot of waste banners. Banner made from nylon fiber is covered by polyvinyl. Nylon is well known as a material with high tensile strength. This research was done as a preliminary investigation on the opportunity of using the waste banner as fiber material of concrete by evaluating its mechanical properties, namely compressive and flexural strength. Research conducted by making cylinder shape specimens of 15 mm in diameter and 300 mm in height for the compressive strength test. While the specimen shape for flexural strength test was a rectangular prism with dimension of 150 mm in height, 150 mm in width, and 600 mm in length. Fiber generated from waste banner was added in concrete mixtures with percentage of 0.00%, 0.20%, 0.40%, 0.60%, 0.80%, and 1.00% by weight of concrete. The concrete strength was tested at 28 days after standard moisture and temperature curing. Experimental results indicated that the addition of 0.20% of waste banner obtained the highest compressive strength that was 21.967 Mpa, while 0.40% of waste banner obtained the highest flexural strength of 4.663 Mpa.

  2. High-rate/high-temperature capability of a single-layer zicar-separator nickel-hydrogen cell

    NASA Technical Reports Server (NTRS)

    Wheeler, James R.

    1995-01-01

    A 50 Ampere-hour nickel-hydrogen cell with a single-layer Zircar separator stack design was fully charged and then discharged at a 2C current rate to an end voltage of 1 volt. This extreme test resulted in high temperatures which were recorded at three locations on the cell, i.e., the cell wall, the boss (barrel of the compression seal), and a terminal. The results provide new information about the high-temperature and high-discharge-rate capabilities of nickel-hydrogen cells. This information also adds to the growing data base for single-layer zirconium-oxide-cloth (Zircar) separator cell designs.

  3. In-situ X-ray CT results of damage evolution in L6 ordinary chondrite meteorites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuadra, Jefferson A.; Hazeli, Kavan; Ramesh, K. T.

    2016-06-17

    These are slides about in-situ X-ray CT results of damage evolution in L6 ordinary chondrite meteorites. The following topics are covered: mechanical and thermal damage characterization, list of Grosvenor Mountain (GRO) meteorite samples, in-situ x-ray compression test setup, GRO-chipped reference at 0 N - existing cracks, GRO-chipped loaded at 1580 N, in-situ x-ray thermal fatigue test setup, GRO-B14 room temperature reference, GRO-B14 Cycle 47 at 200°C, GRO-B14 Cycle 47 at room temperature, conclusions from qualitative analysis, future work and next steps. Conclusions are the following: Both GRO-Chipped and GRO-B14 had existing voids and cracks within the volume. These sites withmore » existing damage were selected for CT images from mechanically and thermally loaded scans since they are prone to damage initiation. The GRO-Chipped sample was loaded to 1580 N which resulted in a 14% compressive engineering strain, calculated using LVDT. Based on the CT cross sectional images, the GRO-B14 sample at 200°C has a thermal expansion of approximately 96 μm in height (i.e. ~1.6% engineering strain).« less

  4. High precision Hugoniot measurements on statically pre-compressed fluid helium

    NASA Astrophysics Data System (ADS)

    Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.; Hickman, Randy J.; Thornhill, Tom F.

    2016-09-01

    The capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modest (0.27-0.38 GPa) initial pressures. The dynamic response of pre-compressed helium in the initial density range of 0.21-0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (up) relationship: us = C0 + sup, with C0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.

  5. Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy

    PubMed Central

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m−2 and 7.61 kg m−2 day−1 at the generation temperature of 140°C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker. PMID:25202735

  6. Heavy flavours production in quark-gluon plasma formed in high energy nuclear reactions

    NASA Technical Reports Server (NTRS)

    Kloskinski, J.

    1985-01-01

    Results on compression and temperatures of nuclear fireballs and on relative yield of strange and charmed hadrons are given . The results show that temperatures above 300 MeV and large compressions are unlikely achieved in average heavy ion collision. In consequence, thermal production of charm is low. Strange particle production is, however, substantial and indicates clear temperature - threshold behavior.

  7. Compressive Properties of PTFE/Al/Ni Composite Under Uniaxial Loading

    NASA Astrophysics Data System (ADS)

    Wang, Huai-xi; Li, Yu-chun; Feng, Bin; Huang, Jun-yi; Zhang, Sheng; Fang, Xiang

    2017-05-01

    To investigate the mechanical properties of pressed and sintered PTFE/Al/Ni (polytetrafluoroethylene/aluminum/nickel) composite, uniaxial quasi-static and dynamic compression experiments were conducted at strain rates from 10-2 to 3 × 103/s. The prepared samples were tested by an electrohydraulic press with 300 kN loading capacity and a split Hopkinson pressure bar (SHPB) device at room temperature. Experimental results show that PTFE/Al/Ni composite exhibits evident strain hardening and strain rate hardening. Additionally, a bilinear relationship between stress and {{log(}}\\dot{ɛ} ) is observed. The experimental data were fit to Johnson-Cook constitutive model, and the results are in well agreement with measured data.

  8. Development of a Low Strain-Rate Gun Propellant Bed Compression Test and its Use in Evaluating Mechanical Response

    DTIC Science & Technology

    2016-09-01

    heuristics, die and propellant geometries from similar facilities reported in the literature [2,3] and the DST Group design .  bed* (mm) φbed...compliance curves from the experimental data. In UNCLASSIFIED DST- Group -TR-3291 UNCLASSIFIED 18 Figure 13, the red axial compliance traces were...UNCLASSIFIED DST- Group -TR-3291 UNCLASSIFIED 46 At a test temperature of -60˚C, the equivalent strain rates are within the 10 to 500 s-1 given in

  9. Physically-based strength model of tantalum incorporating effects of temperature, strain rate and pressure

    DOE PAGES

    Lim, Hojun; Battaile, Corbett C.; Brown, Justin L.; ...

    2016-06-14

    In this work, we develop a tantalum strength model that incorporates e ects of temperature, strain rate and pressure. Dislocation kink-pair theory is used to incorporate temperature and strain rate e ects while the pressure dependent yield is obtained through the pressure dependent shear modulus. Material constants used in the model are parameterized from tantalum single crystal tests and polycrystalline ramp compression experiments. It is shown that the proposed strength model agrees well with the temperature and strain rate dependent yield obtained from polycrystalline tantalum experiments. Furthermore, the model accurately reproduces the pressure dependent yield stresses up to 250 GPa.more » The proposed strength model is then used to conduct simulations of a Taylor cylinder impact test and validated with experiments. This approach provides a physically-based multi-scale strength model that is able to predict the plastic deformation of polycrystalline tantalum through a wide range of temperature, strain and pressure regimes.« less

  10. Improvement in Fatigue Performance of Aluminium Alloy Welded Joints by Laser Shock Peening in a Dynamic Strain Aging Temperature Regime.

    PubMed

    Su, Chun; Zhou, Jianzhong; Meng, Xiankai; Huang, Shu

    2016-09-26

    As a new treatment process after welding, the process parameters of laser shock peening (LSP) in dynamic strain aging (DSA) temperature regimes can be precisely controlled, and the process is a non-contact one. The effects of LSP at elevated temperatures on the distribution of the surface residual stress of AA6061-T6 welded joints were investigated by using X-ray diffraction technology with the sin² ϕ method and Abaqus software. The fatigue life of the welded joints was estimated by performing tensile fatigue tests. The microstructural evolution in surface and fatigue fractures of the welded joints was presented by means of surface integrity and fracture surface testing. In the DSA temperature regime of AA6061-T6 welded joints, the residual compressive stress was distributed more stably than that of LSP at room temperature. The thermal corrosion resistance and fatigue properties of the welded joints were also improved. The experimental results and numerical analysis were in mutual agreement.

  11. Improvement in Fatigue Performance of Aluminium Alloy Welded Joints by Laser Shock Peening in a Dynamic Strain Aging Temperature Regime

    PubMed Central

    Su, Chun; Zhou, Jianzhong; Meng, Xiankai; Huang, Shu

    2016-01-01

    As a new treatment process after welding, the process parameters of laser shock peening (LSP) in dynamic strain aging (DSA) temperature regimes can be precisely controlled, and the process is a non-contact one. The effects of LSP at elevated temperatures on the distribution of the surface residual stress of AA6061-T6 welded joints were investigated by using X-ray diffraction technology with the sin2ϕ method and Abaqus software. The fatigue life of the welded joints was estimated by performing tensile fatigue tests. The microstructural evolution in surface and fatigue fractures of the welded joints was presented by means of surface integrity and fracture surface testing. In the DSA temperature regime of AA6061-T6 welded joints, the residual compressive stress was distributed more stably than that of LSP at room temperature. The thermal corrosion resistance and fatigue properties of the welded joints were also improved. The experimental results and numerical analysis were in mutual agreement. PMID:28773920

  12. A Study of the Efficiency of High-strength, Steel, Cellular-core Sandwich Plates in Compression

    NASA Technical Reports Server (NTRS)

    Johnson, Aldie E , Jr; Semonian, Joseph W

    1956-01-01

    Structural efficiency curves are presented for high-strength, stainless-steel, cellular-core sandwich plates of various proportions subjected to compressive end loads for temperatures of 80 F and 600 F. Optimum proportions of sandwich plates for any value of the compressive loading intensity can be determined from the curves. The efficiency of steel sandwich plates of optimum proportions is compared with the efficiency of solid plates of high-strength steel and aluminum and titanium alloys at the two temperatures.

  13. On heat transfer in squish gaps

    NASA Astrophysics Data System (ADS)

    Spurk, J. H.

    1986-06-01

    Attention is given to the heat transfer characteristics of a squish gap in an internal combustion engine cylinder, when the piston is nearing top dead center (TDC) on the compression stroke. If the lateral extent of the gap is much larger than its height, the inviscid flow is similar to the stagnation point flow. Surface temperature and pressure histories during compression and expansion are studied. Surface temperature has a maximum near TDC, then drops and rises again during expansion; higher values are actually achieved during expansion than during compression.

  14. Comparison of hecter fuel with export aviation gasoline

    NASA Technical Reports Server (NTRS)

    Dickinson, H C; Gage, V R; Sparrow, S W

    1921-01-01

    Among the fuels which will operate at compression ratios up to at least 8.0 without preignition or "pinking" is hecter fuel, whence a careful determination of its performance is of importance. For the test data presented in this report the hecter fuel used was a mixture of 30 per cent benzol and 70 per cent cyclohexane, having a low freezing point, and distilling from first drop to 90 per cent at nearly a constant temperature, about 20 degrees c. below the average distillation temperature ("mean volatility") of the x gasoline (export grade). The results of these experiments show that the power developed by hecter fuel is the same as that developed by export aviation gasoline at about 1,800 r.p.m. at all altitudes. At lower speeds differences in the power developed by the fuels become evident. Comparisons at ground level were omitted to avoid any possibility of damaging the engine by operating with open throttle on gasoline at so high a compression. The fuel consumption per unit power based on weight, not volume, averaged more than 10 per cent greater with hecter than with x gasoline. The thermal efficiency of the engine when using hecter is less than when using gasoline, particularly at higher speeds. A generalization of the difference for all altitudes and speeds being 8 per cent. A general deduction from these facts is that more hecter is exhausted unburnt. Hecter can withstand high compression pressures and temperature without preignition. (author)

  15. Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression

    PubMed Central

    Qian, Suxin; Wang, Yi; Pillsbury, Thomas E.; Hada, Yoshiharu; Yamaguchi, Yuki; Fujimoto, Kenjiro; Hwang, Yunho; Radermacher, Reinhard; Cui, Jun; Yuki, Yoji; Toyotake, Koutaro; Takeuchi, Ichiro

    2016-01-01

    This paper reports the elastocaloric effect of two Cu-based shape memory alloys: Cu68Al16Zn16 (CuAlZn) and Cu73Al15Mn12 (CuAlMn), under compression at ambient temperature. The compression tests were conducted at two different rates to approach isothermal and adiabatic conditions. Upon unloading at a strain rate of 0.1 s−1 (adiabatic condition) from 4% strain, the highest adiabatic temperature changes (ΔTad) of 4.0 K for CuAlZn and 3.9 K for CuAlMn were obtained. The maximum stress and hysteresis at each strain were compared. The stress at the maximum recoverable strain of 4.0% for CuAlMn was 120 MPa, which is 70% smaller than that of CuAlZn. A smaller hysteresis for the CuAlMn alloy was also obtained, about 70% less compared with the CuAlZn alloy. The latent heat, determined by differential scanning calorimetry, was 4.3 J g−1 for the CuAlZn alloy and 5.0 J g−1 for the CuAlMn alloy. Potential coefficients of performance (COPmat) for these two alloys were calculated based on their physical properties of measured latent heat and hysteresis, and a COPmat of approximately 13.3 for CuAlMn was obtained. This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’. PMID:27402936

  16. Mechanical Properties of Aerogels

    NASA Technical Reports Server (NTRS)

    Parmenter, Kelly E.; Milstein, Frederick

    1995-01-01

    Aerogels are extremely low density solids that are characterized by a high porosity and pore sizes on the order of nanometers. Their low thermal conductivity and sometimes transparent appearance make them desirable for applications such as insulation in cryogenic vessels and between double paned glass in solar architecture. An understanding of the mechanical properties of aerogels is necessary before aerogels can be used in load bearing applications. In the present study, the mechanical behavior of various types of fiber-reinforced silica aerogels was investigated with hardness, compression, tension and shear tests. Particular attention was paid to the effects of processing parameters, testing conditions, storage environment, and age on the aerogels' mechanical response. The results indicate that the addition of fibers to the aerogel matrix generally resulted in softer, weaker materials with smaller elastic moduli. Furthermore, the testing environment significantly affected compression results. Tests in ethanol show an appreciable amount of scatter, and are not consistent with results for tests in air. In fact, the compression specimens appeared to crack and begin to dissolve upon exposure to the ethanol solution. This is consistent with the inherent hydrophobic nature of these aerogels. In addition, the aging process affected the aerogels' mechanical behavior by increasing their compressive strength and elastic moduli while decreasing their strain at fracture. However, desiccation of the specimens did not appreciably affect the mechanical properties, even though it reduced the aerogel density by removing trapped moisture. Finally, tension and shear test results indicate that the shear strength of the aerogels exceeds the tensile strength. This is consistent with the response of brittle materials. Future work should concentrate on mechanical testing at cryogenic temperatures, and should involve more extensive tensile tests. Moreover, before the mechanical response of reinforced aerogels can be fully understood, more tests of unreinforced aerogels are necessary. Unreinforced aerogels are of particular use because their birefringent nature allows for visual determination of stress fields during mechanical testing. The success of any future tests depends on the availability of a large supply of quality specimens with well-documented preparation and storage histories.

  17. Slow plastic strain rate compressive flow in binary CoAl intermetallics

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1985-01-01

    Constant-velocity elevated temperature compression tests have been conducted on a series of binary CoAl intermetallics produced by hot extrusion of blended prealloyed powders. The as-extruded materials were polycrystalline, and they retained their nominal 10-micron grain size after being tested between 1100 and 1400 K at strain rates ranging from 2 x 10 to the -4th to 2 x 10 to the -7th per sec. Significant plastic flow was obtained in all cases; while cracking was observed, much of this could be due to failure at matrix-oxide interfaces along extrusion stringers rather than to solely intergranular fracture. A maximum in flow strength occurs at an aluminum-to-cobalt ratio of 0.975, and the stress exponent appears to be constant for aluminum-to-cobalt ratios of 0.85 or more. It is likely that very aluminum-deficient materials deform by a different mechanism than do other compositions.

  18. Effect of fiber orientation on tensile and impact properties of Zalacca Midrib fiber-HDPE composites by compression molding

    NASA Astrophysics Data System (ADS)

    Lasikun, Ariawan, Dody; Surojo, Eko; Triyono, Joko

    2018-02-01

    The research aims to investigate the fiber orientation effect on the tensile and impact properties of zalacca midrib fiber /HDPE composites. The composites were produced by compression molding with pressing temperature at 150°C, pressing pressure at 50 bar, and holding time of 25 minutes. The fiber orientations applied in composites were 0°, 15°, 30°, 45°, 60°, 75°, and 90°, at 10% fiber volume fraction. The samples were evaluated by using: Tensile test and Izod impact test according to ASTM D638 and ASTM D5941, respectively. The result of experiments indicate that the orientation of zalacca midrib fiber influences the characteristics of HDPE composite-zalacca midrib fiber. The composite mechanical strength decline with the increase of orientation fibers from 0° to 90°. The composite failure mode of composites are observed by Scanning Electron Microscope (SEM).

  19. Sound velocities in shocked liquid D2 to 28 GPa

    NASA Astrophysics Data System (ADS)

    Holmes, N. C.; Ross, M.; Nellis, W. J.

    1999-06-01

    Recent measurements of shock temperatures(N. C. Holmes, W. J. Nellis, and M. Ross, Phys. Rev.) B52, 15835 (1995). and laser-driven Hugoniot measurements(L. B. Da Silva, et al.), Phys. Rev. Lett. 78, 483 (1997). of shocked liquid deuterium strongly indicate that molecular dissociation is important above 20 GPa. Since the amount of expected dissociation is small on the Hugoniot at the 30 GPa limit of conventional impact experiments, other methods must be used to test our understanding of the physics of highly compressed deuterium in this regime. We have recently performed experiments to measure the sound velocity of deuterium which test the isentropic compressibility, c^2 = (partial P/partial ρ)_S. We used the shock overtake method to measure sound velocities at several shock pressures between 10--28 GPa. These data provide support for recently developed molecular dissociation models.

  20. Elucidating the effects of solar panel waste glass substitution on the physical and mechanical characteristics of clay bricks.

    PubMed

    Lin, Kae-Long; Huang, Long-Sheng; Shie, Je-Lueng; Cheng, Ching-Jung; Lee, Ching-Hwa; Chang, Tien-Chin

    2013-01-01

    This study deals with the effect of solar panel waste glass on fired clay bricks. Brick samples were heated to temperatures which varied from 700-1000 degrees C for 6 h, with a heating rate of 10 degrees C min(-1). The material properties of the resultant material were then determined, including speciation variation, loss on ignition, shrinkage, bulk density, 24-h absorption rate, compressive strength and salt crystallization. The results indicate that increasing the amount of solar panel waste glass resulted in a decrease in the water absorption rate and an increase in the compressive strength of the solar panel waste glass bricks. The 24-h absorption rate and compressive strength of the solar panel waste glass brick made from samples containing 30% solar panel waste glass sintered at 1000 degrees C all met the Chinese National Standard (CNS) building requirements for first-class brick (compressive strengths and water absorption of the bricks were 300 kg cm(-2) and 10% of the brick, respectively). The addition of solar panel waste glass to the mixture reduced the degree of firing shrinkage. The salt crystallization test and wet-dry tests showed that the addition of solar panel waste glass had highly beneficial effects in that it increased the durability of the bricks. This indicates that solar panel waste glass is indeed suitable for the partial replacement of clay in bricks.

  1. PRELIMINARY REPORT: EFFECTS OF IRRADIATION AND THERMAL EXPOSURE ON ELASTOMERIC SEALS FOR CASK TRANSPORTATION AND STORAGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verst, C.; Skidmore, E.; Daugherty, W.

    2014-05-30

    A testing and analysis approach to predict the sealing behavior of elastomeric seal materials in dry storage casks and evaluate their ability to maintain a seal under thermal and radiation exposure conditions of extended storage and beyond was developed, and initial tests have been conducted. The initial tests evaluate the aging response of EPDM elastomer O-ring seals. The thermal and radiation exposure conditions of the CASTOR® V/21 casks were selected for testing as this cask design is of interest due to its widespread use, and close proximity of the seals to the fuel compared to other cask designs leading tomore » a relatively high temperature and dose under storage conditions. A novel test fixture was developed to enable compression stress relaxation measurements for the seal material at the thermal and radiation exposure conditions. A loss of compression stress of 90% is suggested as the threshold at which sealing ability of an elastomeric seal would be lost. Previous studies have shown this value to be conservative to actual leakage failure for most aging conditions. These initial results indicate that the seal would be expected to retain sealing ability throughout extended storage at the cask design conditions, though longer exposure times are needed to validate this assumption. The high constant dose rate used in the testing is not prototypic of the decreasingly low dose rate that would occur under extended storage. The primary degradation mechanism of oxidation of polymeric compounds is highly dependent on temperature and time of exposure, and with radiation expected to exacerbate the oxidation.« less

  2. Hydrostatic, uniaxial, and triaxial compression tests on unpoled "Chem-prep" PZT 95/5-2Nb ceramic within temperature range of -55 to 75 degrees C.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeuch, David Henry; Montgomery, Stephen Tedford; Lee, Moo Yul

    Sandia is currently developing a lead-zirconate-titanate ceramic 95/5-2Nb (or PNZT) from chemically prepared ('chem-prep') precursor powders. Previous PNZT ceramic was fabricated from the powders prepared using a 'mixed-oxide' process. The specimens of unpoled PNZT ceramic from batch HF803 were tested under hydrostatic, uniaxial, and constant stress difference loading conditions within the temperature range of -55 to 75 C and pressures to 500 MPa. The objective of this experimental study was to obtain mechanical properties and phase relationships so that the grain-scale modeling effort can develop and test its models and codes using realistic parameters. The stress-strain behavior of 'chem-prep' PNZTmore » under different loading paths was found to be similar to that of 'mixed-oxide' PNZT. The phase transformation from ferroelectric to antiferroelectric occurs in unpoled ceramic with abrupt increase in volumetric strain of about 0.7 % when the maximum compressive stress, regardless of loading paths, equals the hydrostatic pressure at which the transformation otherwise takes place. The stress-volumetric strain relationship of the ceramic undergoing a phase transformation was analyzed quantitatively using a linear regression analysis. The pressure (P{sub T1}{sup H}) required for the onset of phase transformation with respect to temperature is represented by the best-fit line, P{sub T1}{sup H} (MPa) = 227 + 0.76 T (C). We also confirmed that increasing shear stress lowers the mean stress and the volumetric strain required to trigger phase transformation. At the lower bound (-55 C) of the tested temperature range, the phase transformation is permanent and irreversible. However, at the upper bound (75 C), the phase transformation is completely reversible as the stress causing phase transformation is removed.« less

  3. Some optical and electron microscope comparative studies of excimer laser-assisted and nonassisted molecular-beam epitaxically grown thin GaAs films on Si

    NASA Technical Reports Server (NTRS)

    Lao, Pudong; Tang, Wade C.; Rajkumar, K. C.; Guha, S.; Madhukar, A.; Liu, J. K.; Grunthaner, F. J.

    1990-01-01

    The quality of GaAs thin films grown via MBE under pulsed excimer laser irradiation on Si substrates is examined in both laser-irradiated and nonirradiated areas using Raman scattering, Rayleigh scattering, and by photoluminescence (PL), as a function of temperature, and by TEM. The temperature dependence of the PL and Raman peak positions indicates the presence of compressive stress in the thin GaAs films in both laser-irradiated and nonirradiated areas. This indicates incomplete homogeneous strain relaxation by dislocations at the growth temperature. The residual compressive strain at the growth temperature is large enough such that even with the introduction of tensile strain arising from the difference in thermal expansion coefficients of GaAs and Si, a compressive strain is still present at room temperature for these thin GaAs/Si films.

  4. Parametric study on the compressive strength geopolymer paving block

    NASA Astrophysics Data System (ADS)

    Aman; Awaluddin, A.; Ahmad, A.; Olivia, M.

    2018-04-01

    This paper reported about the investigated of sodium hidroxida concentration, effect of ratio liquid to solid (L/S), temperature and time on the compressive strength of geopolymer paving block using fly ash and fine aggregate as base material and combination of sodium hidroxida and sodium silicate as alkaline activator and the ratio of Na2SiO3/NaOH was 2 and fly ash to aggregate of 1: 3. The experiments were conducted with variation of the sodium hidroxida concentration of (10-16 M) liquid to solid (L/S) 0.1- 0.7 ratio, curing temperature 30-100 °C and curing time (7-28 day). The main evaluation techniques in this experimental were Compressive strength, X-ray diffraction (XRD),and Scaning Electron Microscope (SEM). The result showed that the compressive strength of Geopolymer Paving block has increased with an increasing of concentration, liquid to solid ratio, curing temperature and curing time.

  5. Compressive Strength Evaluation in Brazed ZrO2/Ti6Al4V Joints Using Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Kee, Se Ho; Jung, Flora; Heo, Yongku; Jung, Jae Pil

    2016-05-01

    This study aims to synthesize and evaluate the compressive strength of the ZrO2/Ti-6Al-4V joint brazed using an active metal filler Ag-Cu-Sn-Ti, and its application to dental implants assuring its reliability to resist the compressive failure in the actual oral environment. The brazing was performed at a temperature of 750 °C for 30 min in a vacuum furnace under 5 × 10-6 Torr atmosphere. The microstructure of the brazed joint showed the presence of an Ag-rich matrix and a Cu-rich phase, and Cu-Ti intermetallic compounds were observed along the Ti-6Al-4V bonded interface. The compressive strength of the brazed ZrO2/Ti-6Al-4V joint was measured by EN ISO 14801 standard test method. The measured compressive strength of the joint was ~1477 MPa—a value almost five times that of existing dental cements. Finite element analysis also confirmed the high von Mises stress values. The compressive strains in the samples were found concentrated near the Ti-6Al-4V position, matching with the position of the real fractured sample. These results suggest extremely significant compressive strength in ZrO2/Ti-6Al-4V joints using the Ag-Cu-Sn-Ti filler. It is believed that a highly reliable dental implant can be processed and designed using the results of this study.

  6. Temperature measurement in a compressible flow field using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Fletcher, D. G.; Mcdaniel, J. C.

    1987-01-01

    The thermometric capability of a two-line fluorescence technique using iodine seed molecules in air is investigated analytically and verified experimentally in a known steady compressible flow field. Temperatures ranging from 165 to 295 K were measured in the flowfield using two iodine transitions accessed with a 30-GHz dye-laser scan near 543 nm. The effect of pressure broadening on temperature measurement is evaluated.

  7. Shock initiation of explosives: High temperature hot spots explained

    NASA Astrophysics Data System (ADS)

    Bassett, Will P.; Johnson, Belinda P.; Neelakantan, Nitin K.; Suslick, Kenneth S.; Dlott, Dana D.

    2017-08-01

    We investigated the shock initiation of energetic materials with a tabletop apparatus that uses km s-1 laser-driven flyer plates to initiate tiny explosive charges and obtains complete temperature histories with a high dynamic range. By comparing various microstructured formulations, including a pentaerythritol tetranitrate (PETN) based plastic explosive (PBX) denoted XTX-8003, we determined that micron-scale pores were needed to create high hot spot temperatures. In charges where micropores (i.e., micron-sized pores) were present, a hot spot temperature of 6000 K was observed; when the micropores were pre-compressed to nm scale, however, the hot spot temperature dropped to ˜4000 K. By comparing XTX-8003 with an analog that replaced PETN by nonvolatile silica, we showed that the high temperatures require gas in the pores, that the high temperatures were created by adiabatic gas compression, and that the temperatures observed can be controlled by the choice of ambient gases. The hot spots persist in shock-compressed PBXs even in vacuum because the initially empty pores became filled with gas created in-situ by shock-induced chemical decomposition.

  8. Compressive Properties and Anti-Erosion Characteristics of Foam Concrete in Road Engineering

    NASA Astrophysics Data System (ADS)

    Li, Jinzhu; Huang, Hongxiang; Wang, Wenjun; Ding, Yifan

    2018-01-01

    To analyse the compression properties and anti-erosion characteristics of foam concrete, one dimensional compression tests were carried out using ring specimens of foam concrete, and unconfined compression tests were carried out using foam concrete specimens cured in different conditions. The results of one dimensional compression tests show that the compression curve of foam concrete has two critical points and three stages, which has significant difference with ordinary geotechnical materials such as soil. Based on the compression curve the compression modulus of each stage were determined. The results of erosion tests show that sea water has a slight influence on the long-term strength of foam concrete, while the sulphate solution has a significant influence on the long-term strength of foam concrete, which needs to pay more attention.

  9. Structural health monitoring of compression connectors for overhead transmission lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hong; Wang, Jy-An John; Swindeman, Joseph P

    Two-stage aluminum conductor steel-reinforced (ACSR) compression connectors are extensively used in US overhead transmission lines. The connectors are made by crimping a steel sleeve onto a steel core and an aluminum sleeve over aluminum conductive strands. The connectors are designed to operate at temperatures up to 125 C, but their performance is increasingly degrading because of overloading of lines. Currently, electric utilities conduct routine line inspections using thermal and electrical measurements. However, information about the structural integrity of connectors cannot be obtained. In this work, structural health monitoring (SHM) of compression connectors was studied using electromechanical impedance (EMI) analysis. Leadmore » zirconate titanate (PZT)-5A was identified as a smart material for SHM. A flexible high-temperature bonding layer was used to address challenges in PZT integration due to a significant difference in the coefficients of thermal expansion of PZT and the aluminum substrate. The steel joint on the steel core was investigated because it is responsible for the ultimate tensile strength of the connector. Tensile testing was used to create structural damage to the joint, or steel core pullout, and thermal cycling introduced additional structural perturbations. EMI measurements were conducted between the tests. The root mean square deviation (RMSD) of EMI was identified as a damage index. The use of steel joints has been shown to enable SHM under simulated conditions. The EMI signature is sensitive to variations in structural conditions. RMSD can be correlated to the structural health of a connector and has potential for use in the SHM and structural integrity evaluation.« less

  10. Structural health monitoring of compression connectors for overhead transmission lines

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Wang, Jy-An John; Swindeman, Joseph P.; Ren, Fei; Chan, John

    2017-04-01

    Two-stage aluminum conductor steel-reinforced (ACSR) compression connectors are extensively used in US overhead transmission lines. The connectors are made by crimping a steel sleeve onto a steel core and an aluminum sleeve over electrical conducting aluminum strands. The connectors are designed to operate at temperatures up to 125°C, but their performance is increasingly degrading because of overloading of lines. Currently, electric utilities conduct routine line inspections using thermal and electrical measurements, but these methods do not provide information about the structural integrity of connectors. In this work, structural health monitoring (SHM) of compression connectors was studied using electromechanical impedance (EMI) analysis. Lead zirconate titanate (PZT)-5A was identified as a smart material for SHM. A flexible high-temperature bonding layer was used to address challenges in PZT integration due to a significant difference in the coefficients of thermal expansion of PZT and the aluminum substrate. The steel joint on the steel core was investigated because it is responsible for the ultimate tensile strength of the connector. Tensile testing was used to induce structural damage to the joint, or steel core pullout, and thermal cycling introduced additional structural perturbations. EMI measurements were conducted between the tests. The root mean square deviation (RMSD) of EMI was identified as a damage index. The use of steel joints has been shown to enable SHM under simulated conditions. The EMI signature is sensitive to variations in structural conditions. RMSD can be correlated to the structural health of a connector and has potential for use in the SHM and structural integrity evaluation.

  11. Complex-Difference Constrained Compressed Sensing Reconstruction for Accelerated PRF Thermometry with Application to MRI Induced RF Heating

    PubMed Central

    Cao, Zhipeng; Oh, Sukhoon; Otazo, Ricardo; Sica, Christopher T.; Griswold, Mark A.; Collins, Christopher M.

    2014-01-01

    Purpose Introduce a novel compressed sensing reconstruction method to accelerate proton resonance frequency (PRF) shift temperature imaging for MRI induced radiofrequency (RF) heating evaluation. Methods A compressed sensing approach that exploits sparsity of the complex difference between post-heating and baseline images is proposed to accelerate PRF temperature mapping. The method exploits the intra- and inter-image correlations to promote sparsity and remove shared aliasing artifacts. Validations were performed on simulations and retrospectively undersampled data acquired in ex-vivo and in-vivo studies by comparing performance with previously proposed techniques. Results The proposed complex difference constrained compressed sensing reconstruction method improved the reconstruction of smooth and local PRF temperature change images compared to various available reconstruction methods in a simulation study, a retrospective study with heating of a human forearm in vivo, and a retrospective study with heating of a sample of beef ex vivo . Conclusion Complex difference based compressed sensing with utilization of a fully-sampled baseline image improves the reconstruction accuracy for accelerated PRF thermometry. It can be used to improve the volumetric coverage and temporal resolution in evaluation of RF heating due to MRI, and may help facilitate and validate temperature-based methods for safety assurance. PMID:24753099

  12. Modeling the mechanical response of PBX 9501

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ragaswamy, Partha; Lewis, Matthew W; Liu, Cheng

    2010-01-01

    An engineering overview of the mechanical response of Plastic-Bonded eXplosives (PBXs), specifically PBX 9501, will be provided with emphasis on observed mechanisms associated with different types of mechanical testing. Mechanical tests in the form of uniaxial tension, compression, cyclic loading, creep (compression and tension), and Hopkinson bar show strain rate and temperature dependence. A range of mechanical behavior is observed which includes small strain recoverable response in the form of viscoelasticity; change in stiffness and softening beyond peak strength due to damage in the form microcracks, debonding, void formation and the growth of existing voids; inelastic response in the formmore » of irrecoverable strain as shown in cyclic tests, and viscoelastic creep combined with plastic response as demonstrated in creep and recovery tests. The main focus of this paper is to elucidate the challenges and issues involved in modeling the mechanical behavior of PBXs for simulating thermo-mechanical responses in engineering components. Examples of validation of a constitutive material model based on a few of the observed mechanisms will be demonstrated against three point bending, split Hopkinson pressure bar and Brazilian disk geometry.« less

  13. Merging-compression formation of high temperature tokamak plasma

    NASA Astrophysics Data System (ADS)

    Gryaznevich, M. P.; Sykes, A.

    2017-07-01

    Merging-compression is a solenoid-free plasma formation method used in spherical tokamaks (STs). Two plasma rings are formed and merged via magnetic reconnection into one plasma ring that then is radially compressed to form the ST configuration. Plasma currents of several hundred kA and plasma temperatures in the keV-range have been produced using this method, however until recently there was no full understanding of the merging-compression formation physics. In this paper we explain in detail, for the first time, all stages of the merging-compression plasma formation. This method will be used to create ST plasmas in the compact (R ~ 0.4-0.6 m) high field, high current (3 T/2 MA) ST40 tokamak. Moderate extrapolation from the available experimental data suggests the possibility of achieving plasma current ~2 MA, and 10 keV range temperatures at densities ~1-5  ×  1020 m-3, bringing ST40 plasmas into a burning plasma (alpha particle heating) relevant conditions directly from the plasma formation. Issues connected with this approach for ST40 and future ST reactors are discussed

  14. SEM and TEM characterization of the microstructure of post-compressed TiB2/2024Al composite.

    PubMed

    Guo, Q; Jiang, L T; Chen, G Q; Feng, D; Sun, D L; Wu, G H

    2012-02-01

    In the present work, 55 vol.% TiB(2)/2024Al composites were obtained by pressure infiltration method. Compressive properties of 55 vol.% TiB(2)/2024Al composite under the strain rates of 10(-3) and 1S(-1) at different temperature were measured and microstructure of post-compressed TiB(2)/2024Al composite was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). No trace of Al(3)Ti compound flake was found. TiB(2)-Al interface was smooth without significant reaction products, and orientation relationships ( [Formula: see text] and [Formula: see text] ) were revealed by HRTEM. Compressive strength of TiB(2)/2024Al composites decreased with temperature regardless of strain rates. The strain-rate-sensitivity of TiB(2)/2024Al composites increased with the increasing temperature. Fracture surface of specimens compressed at 25 and 250°C under 10(-3)S(-1) were characterized by furrow. Under 10(-3)S(-1), high density dislocations were formed in Al matrix when compressed at 25°C and dynamic recrystallization occurred at 250°C. Segregation of Mg and Cu on the subgrain boundary was also revealed at 550°C. Dislocations, whose density increased with temperature, were formed in TiB(2) particles under 1S(-1). Deformation of composites is affected by matrix, reinforcement and strain rate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Review of vortex tube expansion in vapour compression refrigeration system

    NASA Astrophysics Data System (ADS)

    Liu, Yefeng; Yu, Jun

    2018-05-01

    A vortex tube expansion device replacing the throttle valve is proposed to improve the efficiency of vapour compression refrigeration cycle by reducing the loss of irreversibility in expansion process. The vortex tube is well-suited for these applications because it is simple, compact, light, quiet. Thus, this paper presents an overview of the thermodynamic analysis of vapour compression refrigeration cycle with vortex tube expansion device using different refrigerants. The paper also reviews the experiments and the calculations presented in previous studies on temperature separation in the vortex tube. The temperature separation mechanism and the flow-field inside the vortex tubes is explored by measuring the pressure, velocity, and temperature fields.

  16. Analysis of the compressive behaviour of the three-dimensional printed porous titanium for dental implants using a modified cellular solid model.

    PubMed

    Gagg, Graham; Ghassemieh, Elaheh; Wiria, Florencia E

    2013-09-01

    A set of cylindrical porous titanium test samples were produced using the three-dimensional printing and sintering method with samples sintered at 900 °C, 1000 °C, 1100 °C, 1200 °C or 1300 °C. Following compression testing, it was apparent that the stress-strain curves were similar in shape to the curves that represent cellular solids. This is despite a relative density twice as high as what is considered the threshold for defining a cellular solid. As final sintering temperature increased, the compressive behaviour developed from being elastic-brittle to elastic-plastic and while Young's modulus remained fairly constant in the region of 1.5 GPa, there was a corresponding increase in 0.2% proof stress of approximately 40-80 MPa. The cellular solid model consists of two equations that predict Young's modulus and yield or proof stress. By fitting to experimental data and consideration of porous morphology, appropriate changes to the geometry constants allow modification of the current models to predict with better accuracy the behaviour of porous materials with higher relative densities (lower porosity).

  17. [Utility of nickel-titanium shape memory alloys of vertebral body reduction fixator with assisted distraction bar].

    PubMed

    Man, Yi; Zheng, Yue-huan; Cao, Peng; Chen, Bo; Zheng, Tao; Sun, Chang-hui; Lu, Jiong

    2011-06-07

    To test the nickel-titanium (Ni-Ti) shape memory alloys of vertebral body reduction fixator with assisted distraction bar for the treatment of traumatic and osteoporotic vertebral body fracture. A Ni-Ti shape memory alloys of vertebral body reduction fixator with assisted distraction bar was implanted into the compressed fracture specimens through vertebral pedicle with the radiographic monitoring to reduce the collapsed endplate as well as distract the compressed vertebral fracture. Radiographic film and computed tomographic reconstruction technique were employed to evaluate the effects of reduction and distraction. A biomechanic test machine was used to measure the fatigue and the stability of deformation of fixation segments. Relying on the effect of temperature shape memory, such an assembly could basically reduce the collapsed endplate as well as distract the compressed vertebral fracture. And when unsatisfied results of reduction and distraction occurred, its super flexibility could provide additional distraction strength. A Ni-Ti shape memory alloys of vertebral body reduction fixator with assisted distraction bar may provide effective endplate reduction, restore the vertebral height and the immediate biomechanic spinal stability. So the above assembly is indicated for the treatment of traumatic and osteoporotic vertebral body fracture.

  18. The Microstructural Evolution and Mechanical Properties of Zr-Based Metallic Glass under Different Strain Rate Compressions

    PubMed Central

    Chen, Tao-Hsing; Tsai, Chih-Kai

    2015-01-01

    In this study, the high strain rate deformation behavior and the microstructure evolution of Zr-Cu-Al-Ni metallic glasses under various strain rates were investigated. The influence of strain and strain rate on the mechanical properties and fracture behavior, as well as microstructural properties was also investigated. Before mechanical testing, the structure and thermal stability of the Zr-Cu-Al-Ni metallic glasses were studied with X-ray diffraction (XRD) and differential scanning calorimeter. The mechanical property experiments and microstructural observations of Zr-Cu-Al-Ni metallic glasses under different strain rates ranging from 10−3 to 5.1 × 103 s−1 and at temperatures of 25 °C were investigated using compressive split-Hopkinson bar (SHPB) and an MTS tester. An in situ transmission electron microscope (TEM) nanoindenter was used to carry out compression tests and investigate the deformation behavior arising at nanopillars of the Zr-based metallic glass. The formation and interaction of shear band during the plastic deformation were investigated. Moreover, it was clearly apparent that the mechanical strength and ductility could be enhanced by impeding the penetration of shear bands with reinforced particles. PMID:28788034

  19. Apparatus for measuring tensile and compressive properties of solid materials at cryogenic temperatures

    DOEpatents

    Gonczy, John D.; Markley, Finley W.; McCaw, William R.; Niemann, Ralph C.

    1992-01-01

    An apparatus for evaluating the tensile and compressive properties of material samples at very low or cryogenic temperatures employs a stationary frame and a dewar mounted below the frame. A pair of coaxial cylindrical tubes extend downward towards the bottom of the dewar. A compressive or tensile load is generated hydraulically and is transmitted by the inner tube to the material sample. The material sample is located near the bottom of the dewar in a liquid refrigerant bath. The apparatus employs a displacement measuring device, such as a linear variable differential transformer, to measure the deformation of the material sample relative to the amount of compressive or tensile force applied to the sample.

  20. Shock Compression Induced Hot Spots in Energetic Material Detected by Thermal Imaging Microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Wei; Dlott, Dana

    2014-06-01

    The chemical reaction of powder energetic material is of great interest in energy and pyrotechnic applications since the high reaction temperature. Under the shock compression, the chemical reaction appears in the sub-microsecond to microsecond time scale, and releases a large amount of energy. Experimental and theoretical research progresses have been made in the past decade, in order to characterize the process under the shock compression. However, the knowledge of energy release and temperature change of this procedure is still limited, due to the difficulties of detecting technologies. We have constructed a thermal imaging microscopy apparatus, and studied the temperature change in energetic materials under the long-wavelength infrared (LWIR) and ultrasound exposure. Additionally, the real-time detection of the localized heating and energy concentration in composite material is capable with our thermal imaging microscopy apparatus. Recently, this apparatus is combined with our laser driven flyer plate system to provide a lab-scale source of shock compression to energetic material. A fast temperature increase of thermite particulars induced by the shock compression is directly observed by thermal imaging with 15-20 μm spatial resolution. Temperature change during the shock loading is evaluated to be at the order of 10^9K/s, through the direct measurement of mid-wavelength infrared (MWIR) emission intensity change. We observe preliminary results to confirm the hot spots appear with shock compression on energetic crystals, and will discuss the data and analysis in further detail. M.-W. Chen, S. You, K. S. Suslick, and D. D. Dlott, {Rev. Sci. Instr., 85, 023705 (2014) M.-W. Chen, S. You, K. S. Suslick, and D. D. Dlott, {Appl. Phys. Lett., 104, 061907 (2014)} K. E. Brown, W. L. Shaw, X. Zheng, and D. D. Dlott, {Rev. Sci. Instr., 83, 103901 (2012)}

  1. Investigation of Hot Deformation Behavior of Duplex Stainless Steel Grade 2507

    NASA Astrophysics Data System (ADS)

    Kingklang, Saranya; Uthaisangsuk, Vitoon

    2017-01-01

    Recently, duplex stainless steels (DSSs) are being increasingly employed in chemical, petro-chemical, nuclear, and energy industries due to the excellent combination of high strength and corrosion resistance. Better understanding of deformation behavior and microstructure evolution of the material under hot working process is significant for achieving desired mechanical properties. In this work, plastic flow curves and microstructure development of the DSS grade 2507 were investigated. Cylindrical specimens were subjected to hot compression tests for different elevated temperatures and strain rates by a deformation dilatometer. It was found that stress-strain responses of the examined steel strongly depended on the forming rate and temperature. The flow stresses increased with higher strain rates and lower temperatures. Subsequently, predictions of the obtained stress-strain curves were done according to the Zener-Hollomon equation. Determination of material parameters for the constitutive model was presented. It was shown that the calculated flow curves agreed well with the experimental results. Additionally, metallographic examinations of hot compressed samples were performed by optical microscope using color tint etching. Area based phase fractions of the existing phases were determined for each forming condition. Hardness of the specimens was measured and discussed with the resulted microstructures. The proposed flow stress model can be used to design and optimize manufacturing process at elevated temperatures for the DSS.

  2. Wearing graduated compression stockings augments cutaneous vasodilation in heat-stressed resting humans.

    PubMed

    Fujii, Naoto; Nikawa, Toshiya; Tsuji, Bun; Kondo, Narihiko; Kenny, Glen P; Nishiyasu, Takeshi

    2017-05-01

    We investigated whether graduated compression induced by stockings enhances cutaneous vasodilation in passively heated resting humans. Nine habitually active young men were heated at rest using water-perfusable suits, resulting in a 1.0 °C increase in body core temperature. Heating was repeated twice on separate occasions while wearing either (1) stockings that cause graduated compression (pressures of 26.4 ± 5.3, 17.5 ± 4.4, and 6.1 ± 2.0 mmHg at the ankle, calf, and thigh, respectively), or (2) loose-fitting stockings without causing compression (Control). Forearm vascular conductance during heating was evaluated by forearm blood flow (venous occlusion plethysmography) divided by mean arterial pressure to estimate heat-induced cutaneous vasodilation. Body core (esophageal), skin, and mean body temperatures were measured continuously. Compared to the Control, forearm vascular conductance during heating was higher with graduated compression stockings (e.g., 23.2 ± 5.5 vs. 28.6 ± 5.8 units at 45 min into heating, P = 0.001). In line with this, graduated compression stockings resulted in a greater sensitivity (27.5 ± 8.3 vs. 34.0 ± 9.4 units °C -1 , P = 0.02) and peak level (25.5 ± 5.8 vs. 29.7 ± 5.8 units, P = 0.004) of cutaneous vasodilation as evaluated from the relationship between forearm vascular conductance with mean body temperature. In contrast, the mean body temperature threshold for increases in forearm vascular conductance did not differ between the Control and graduated compression stockings (36.5 ± 0.1 vs. 36.5 ± 0.2 °C, P = 0.85). Our results show that graduated compression associated with the use of stockings augments cutaneous vasodilation by modulating sensitivity and peak level of cutaneous vasodilation in relation to mean body temperature. However, the effect of these changes on whole-body heat loss remains unclear.

  3. Design, Fabrication, and Testing of Ceramic Joints for High Temperature SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Lara-Curzio, Edgar

    2000-01-01

    Various issues associated with the design and mechanical evaluation of joints of ceramic matrix composites are discussed. The specific case of an affordable, robust ceramic joining technology (ARCJoinT) to join silicon carbide (CG-Nicalon(sup TM)) fiber-reinforced-chemically vapor infiltrated (CVI) silicon carbide matrix composites is addressed. Experimental results are presented for the time and temperature dependence of the shear strength of these joints in air up to 1200 C. From compression testing of double-notched joint specimens with a notch separation of 4 mm, it was found that the apparent shear strength of the joints decreased from 92 MPa at room temperature to 71 MPa at 1200 C. From shear stress-rupture testing in air at 1200 C it was found that the shear strength of the joints decreased rapidly with time from an initial shear strength of 71 to 17.5 MPa after 14.3 hr. The implications of these results in relation to the expected long-term service life of these joints in applications at elevated temperatures are discussed.

  4. Application of CCG Sensors to a High-Temperature Structure Subjected to Thermo-Mechanical Load.

    PubMed

    Xie, Weihua; Meng, Songhe; Jin, Hua; Du, Chong; Wang, Libin; Peng, Tao; Scarpa, Fabrizio; Xu, Chenghai

    2016-10-13

    This paper presents a simple methodology to perform a high temperature coupled thermo-mechanical test using ultra-high temperature ceramic material specimens (UHTCs), which are equipped with chemical composition gratings sensors (CCGs). The methodology also considers the presence of coupled loading within the response provided by the CCG sensors. The theoretical strain of the UHTCs specimens calculated with this technique shows a maximum relative error of 2.15% between the analytical and experimental data. To further verify the validity of the results from the tests, a Finite Element (FE) model has been developed to simulate the temperature, stress and strain fields within the UHTC structure equipped with the CCG. The results show that the compressive stress exceeds the material strength at the bonding area, and this originates a failure by fracture of the supporting structure in the hot environment. The results related to the strain fields show that the relative error with the experimental data decrease with an increase of temperature. The relative error is less than 15% when the temperature is higher than 200 °C, and only 6.71% at 695 °C.

  5. High precision Hugoniot measurements on statically pre-compressed fluid helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.

    Here we describe how the capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modestmore » (0.27–0.38 GPa) initial pressures. Lastly, the dynamic response of pre-compressed helium in the initial density range of 0.21–0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (u p) relationship: u s = C 0 + su p, with C 0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.« less

  6. High precision Hugoniot measurements on statically pre-compressed fluid helium

    DOE PAGES

    Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.; ...

    2016-09-27

    Here we describe how the capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modestmore » (0.27–0.38 GPa) initial pressures. Lastly, the dynamic response of pre-compressed helium in the initial density range of 0.21–0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (u p) relationship: u s = C 0 + su p, with C 0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.« less

  7. Magnetic refrigeration using flux compression in superconductors

    NASA Technical Reports Server (NTRS)

    Israelsson, U. E.; Strayer, D. M.; Jackson, H. W.; Petrac, D.

    1990-01-01

    The feasibility of using flux compression in high-temperature superconductors to produce the large time-varying magnetic fields required in a field cycled magnetic refrigerator operating between 20 K and 4 K is presently investigated. This paper describes the refrigerator concept and lists limitations and advantages in comparison with conventional refrigeration techniques. The maximum fields obtainable by flux compression in high-temperature supercoductor materials, as presently prepared, are too low to serve in such a refrigerator. However, reports exist of critical current values that are near usable levels for flux pumps in refrigerator applications.

  8. The Effect of Fuel Composition, Compression Pressure, and Fuel-Air Ratio on the Compression-Ignition Characteristics of Several Fuels

    DTIC Science & Technology

    1948-03-01

    to this arbitrary value as ntandard. The compression time was maintained unifcum by uElng a ccnstent . driving ~ essure of 500 pounds per squ=e inch...ir ratio,0.066 (chemlo~ correct); initial~ essure , 14.7 lb/sq in. abs.; intt Ml temperature, 609° F abs~ Ignitiondelay Compres- Compres- sion...chemically correct); initial ~ essure , 14.7 lb/sq in. abso; fimal pressures 379 lb/sq in. abs.; initial temperatume~ 6090 F abs.; final temperature, 1340° F abs

  9. Energy efficient solvent regeneration process for carbon dioxide capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Shaojun; Meyer, Howard S.; Li, Shiguang

    A process for removing carbon dioxide from a carbon dioxide-loaded solvent uses two stages of flash apparatus. Carbon dioxide is flashed from the solvent at a higher temperature and pressure in the first stage, and a lower temperature and pressure in the second stage, and is fed to a multi-stage compression train for high pressure liquefaction. Because some of the carbon dioxide fed to the compression train is already under pressure, less energy is required to further compress the carbon dioxide to a liquid state, compared to conventional processes.

  10. Buckling characteristics of hypersonic aircraft wing tubular panels

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Shideler, John L.; Fields, Roger A.

    1986-01-01

    The buckling characteristics of Rene 41 tubular panels installed as wing panels on a hypersonic wing test structure (HWTS) were determined nondestructively through use of a force/stiffness technique. The nondestructive buckling tests were carried out under different combined load conditions and different temperature environments. Two panels were subsequently tested to buckling failure in a universal tension compression testing machine. In spite of some data scattering because of large extrapolations of data points resulting from termination of the test at a somewhat low applied load, the overall test data correlated fairly well with theoretically predicted buckling interaction curves. The structural efficiency of the tubular panels was slightly higher than that of the beaded panels which they replaced.

  11. Summer Work Experience: Determining Methane Combustion Mechanisms and Sub-Scale Diffuser Properties for Space Transporation System Engine Testing

    NASA Technical Reports Server (NTRS)

    Williams, Powtawche N.

    1998-01-01

    To assess engine performance during the testing of Space Shuttle Main Engines (SSMEs), the design of an optimal altitude diffuser is studied for future Space Transportation Systems (STS). For other Space Transportation Systems, rocket propellant using kerosene is also studied. Methane and dodecane have similar reaction schemes as kerosene, and are used to simulate kerosene combustion processes at various temperatures. The equations for the methane combustion mechanism at high temperature are given, and engine combustion is simulated on the General Aerodynamic Simulation Program (GASP). The successful design of an altitude diffuser depends on the study of a sub-scaled diffuser model tested through two-dimensional (2-D) flow-techniques. Subroutines given calculate the static temperature and pressure at each Mach number within the diffuser flow. Implementing these subroutines into program code for the properties of 2-D compressible fluid flow determines all fluid characteristics, and will be used in the development of an optimal diffuser design.

  12. Knock-Limited Performance of Triptane and 28-R Fuel Blends as Affected by Changes in Compression Ratio and in Engine Operating Variables

    NASA Technical Reports Server (NTRS)

    Brun, Rinaldo J.; Feder, Melvin S.; Fisher, William F.

    1947-01-01

    A knock-limited performance investigation was conducted on blends of triptane and 28-P fuel with a 12-cylinder, V-type, liquid-cooled aircraft engine of 1710-cubic-inch displacement at three compression ratios: 6.65, 7.93, and 9.68. At each compression ratio, the effect of changes in temperature of the inlet air to the auxiliary-stage supercharger and in fuel-air ratio were investigated at engine speeds of 2280 and. 3000 rpm. The results show that knock-limited engine performance, as improved by the use of triptane, allowed operation at both take-off and cruising power at a compression ratio of 9.68. At an inlet-air temperature of 60 deg F, an engine speed of 3000 rpm ; and a fuel-air ratio of 0,095 (approximately take-off conditions), a knock-limited engine output of 1500 brake horsepower was possible with 100-percent 28-R fuel at a compression ratio of 6.65; 20-percent triptane was required for the same power output at a compression ratio of 7.93, and 75 percent at a compression ratio of 9.68 allowed an output of 1480 brake horsepower. Knock-limited power output was more sensitive to changes in fuel-air ratio as the engine speed was increased from 2280 to 3000 rpm, as the compression ratio is raised from 6.65 to 9.68, or as the inlet-air temperature is raised from 0 deg to 120 deg F.

  13. High temperature behaviour of self-consolidating concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fares, Hanaa, E-mail: hanaafares@yahoo.f; Remond, Sebastien; Noumowe, Albert

    2010-03-15

    This paper presents an experimental study on the properties of self-compacting concrete (SCC) subjected to high temperature. Two SCC mixtures and one vibrated concrete mixture were tested. These concrete mixtures come from the French National Project B-P. The specimens of each concrete mixture were heated at a rate of 1 deg. C/min up to different temperatures (150, 300, 450 and 600 deg. C). In order to ensure a uniform temperature throughout the specimens, the temperature was held constant at the maximum temperature for 1 h before cooling. Mechanical properties at ambient temperature and residual mechanical properties after heating have alreadymore » been determined. In this paper, the physicochemical properties and the microstuctural characteristics are presented. Thermogravimetric analysis, thermodifferential analysis, X-ray diffraction and SEM observations were used. The aim of these studies was in particular to explain the observed residual compressive strength increase between 150 and 300 deg. C.« less

  14. Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.

    Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearlymore » establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. As a result, this nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.« less

  15. Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power

    DOE PAGES

    Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.; ...

    2017-03-16

    Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearlymore » establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. As a result, this nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.« less

  16. Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power

    NASA Astrophysics Data System (ADS)

    Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.; Salerno, K. Michael; Grest, Gary S.; Ao, Tommy; Hickman, Randy; Wise, Jack; Wang, Zhongwu; Fan, Hongyou

    2017-03-01

    Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearly establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. This nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.

  17. Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power.

    PubMed

    Li, Binsong; Bian, Kaifu; Lane, J Matthew D; Salerno, K Michael; Grest, Gary S; Ao, Tommy; Hickman, Randy; Wise, Jack; Wang, Zhongwu; Fan, Hongyou

    2017-03-16

    Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearly establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. This nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.

  18. Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power

    PubMed Central

    Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.; Salerno, K. Michael; Grest, Gary S.; Ao, Tommy; Hickman, Randy; Wise, Jack; Wang, Zhongwu; Fan, Hongyou

    2017-01-01

    Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearly establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. This nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales. PMID:28300067

  19. High Temperature Propulsion System Structural Seals for Future Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.

    2004-01-01

    Durable, flexible sliding seals are required in advanced hypersonic engines to seal the perimeters of movable engine ramps for efficient, safe operation in high heat flux environments at temperatures of 2000 to 2500 F. Current seal designs do not meet the demanding requirements for future engines, so NASA s Glenn Research Center is developing advanced seals and preloading devices to overcome these shortfalls. An advanced ceramic wafer seal design and two types of seal preloading devices were evaluated in a series of compression, scrub, and flow tests. Silicon nitride wafer seals survived 2000 in. 1000 cycles) of scrubbing at 1600 F against an Inconel 625 rub surface with no chips or signs of damage. Flow rates measured for the wafers before and after scrubbing were almost identical and were up to 32 times lower than those recorded for the best braided rope seal flow blockers. Canted coil springs and silicon nitride compression springs showed promise conceptually as potential seal preloading devices to help maintain seal resiliency. A finite element model of the canted coil spring revealed that it should be possible to produce a spring out of high temperature materials for applications at 2000+ F.

  20. A novel highly porous ceramic foam with efficient thermal insulation and high temperature resistance properties fabricated by gel-casting process

    NASA Astrophysics Data System (ADS)

    Yu, Jiahong; Wang, Guixiang; Tang, Di; Qiu, Ya; Sun, Nali; Liu, Wenqiao

    2018-01-01

    The design of super thermal insulation and high-temperature resistant materials for high temperature furnaces is crucial due to the energy crisis and the huge wasting. Although it is told that numerous studies have been reported about various of thermal insulation materials prepared by different methods, the applications of yttria-stabilized zirconia (YSZ) ceramic foams fabricated through tert-butyl alcohol (TBA)-based gel-casting process in bulk thermal isolators were barely to seen. In this paper, highly porous yttria-stabilized zirconia (YSZ) ceramic foams were fabricated by a novel gel-casting method using tert-butyl alcohol (TBA) as solvent and pore-forming agent. Different raw material ratio, sintering temperature and soaking time were all investigated to achieve optimal thermal insulation and mechanical properties. We can conclude that porosity drops gradually while compressive strength increases significantly with the rising temperature from 1000-1500°C. With prolonged soaking time, there is no obvious change in porosity but compressive strength increases gradually. All specimens have uniformly distributed pores with average size of 0.5-2μm and show good structural stability at high temperature. The final obtained ceramic foams displayed an outstanding ultra-low thermal conductivity property with only 200.6 °C in cold surface while the hot side was 1000 °C (hold 60 min to keep thermal balance before testing) at the thickness of 10 mm.

Top