Code of Federal Regulations, 2010 CFR
2010-10-01
... LIQUID HAZARDOUS MATERIAL CARGOES Temperature or Pressure Control Installations § 151.40-2 Materials. Materials used in the construction of temperature or pressure control systems shall be suitable for the...
Code of Federal Regulations, 2013 CFR
2013-10-01
... LIQUID HAZARDOUS MATERIAL CARGOES Temperature or Pressure Control Installations § 151.40-2 Materials. Materials used in the construction of temperature or pressure control systems shall be suitable for the...
Code of Federal Regulations, 2014 CFR
2014-10-01
... LIQUID HAZARDOUS MATERIAL CARGOES Temperature or Pressure Control Installations § 151.40-2 Materials. Materials used in the construction of temperature or pressure control systems shall be suitable for the...
Code of Federal Regulations, 2012 CFR
2012-10-01
... LIQUID HAZARDOUS MATERIAL CARGOES Temperature or Pressure Control Installations § 151.40-2 Materials. Materials used in the construction of temperature or pressure control systems shall be suitable for the...
Code of Federal Regulations, 2011 CFR
2011-10-01
... LIQUID HAZARDOUS MATERIAL CARGOES Temperature or Pressure Control Installations § 151.40-2 Materials. Materials used in the construction of temperature or pressure control systems shall be suitable for the...
49 CFR 173.224 - Packaging and control and emergency temperatures for self-reactive materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Packaging and control and emergency temperatures... temperatures for self-reactive materials. (a) General. When the § 172.101 table of this subchapter specifies... packagings meeting Packing Group I are not authorized. Self-reactive materials which require temperature...
49 CFR 173.224 - Packaging and control and emergency temperatures for self-reactive materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Packaging and control and emergency temperatures... temperatures for self-reactive materials. (a) General. When the § 172.101 table of this subchapter specifies... packagings meeting Packing Group I are not authorized. Self-reactive materials which require temperature...
49 CFR 173.224 - Packaging and control and emergency temperatures for self-reactive materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Packaging and control and emergency temperatures... temperatures for self-reactive materials. (a) General. When the § 172.101 table of this subchapter specifies... packagings meeting Packing Group I are not authorized. Self-reactive materials which require temperature...
49 CFR 173.224 - Packaging and control and emergency temperatures for self-reactive materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Packaging and control and emergency temperatures... temperatures for self-reactive materials. (a) General. When the § 172.101 table of this subchapter specifies... packagings meeting Packing Group I are not authorized. Self-reactive materials which require temperature...
49 CFR 173.224 - Packaging and control and emergency temperatures for self-reactive materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Packaging and control and emergency temperatures... temperatures for self-reactive materials. (a) General. When the § 172.101 table of this subchapter specifies... packagings meeting Packing Group I are not authorized. Self-reactive materials which require temperature...
De Saro, Robert; Bateman, Willis
2002-09-10
Apparatus for heat treating a heat treatable material including a housing having an upper opening for receiving a heat treatable material at a first temperature, a lower opening, and a chamber therebetween for heating the heat treatable material to a second temperature higher than the first temperature as the heat treatable material moves through the chamber from the upper to the lower opening. A gas supply assembly is operatively engaged to the housing at the lower opening, and includes a source of gas, a gas delivery assembly for delivering the gas through a plurality of pathways into the housing in countercurrent flow to movement of the heat treatable material, whereby the heat treatable material passes through the lower opening at the second temperature, and a control assembly for controlling conditions within the chamber to enable the heat treatable material to reach the second temperature and pass through the lower opening at the second temperature as a heated material.
NASA Astrophysics Data System (ADS)
Chen, Yingming; Zhang, Honghong; Gao, Weiting; Chen, Yingmin; Wang, Yifan
2018-04-01
For the problems that the phase change material apply to infrared stealth exists easy to broken, hard to control temperature, narrow infrared channel and based on the basic principles of infrared stealth technology, this paper proposed a scheme of thermal infrared composite invisibility multi-layer wrapping, which based on two sides, one is to control the material surface temperature, another is to reduce its infrared emissivity and combine with visible light pigment and electromagnetic wave absorbing material, to realize the materials' wide band compatible stealth. First, choose urea formaldehyde resin and paraffin to prepare multiphase-change microcapsules, and then combine it with the ferroferric oxide absorbing material, zinc oxide visible light pigment, to make the stealth material of wide band. The experimental results show that the new phase change capsule can realize the function of temperature control and infrared stealth in a special temperature range.
Temperature-dependent liquid metal flowrate control device
Carlson, Roger D.
1978-01-01
A temperature-dependent liquid metal flowrate control device includes a magnet and a ferromagnetic member defining therebetween a flow path for liquid metal, the ferromagnetic member being formed of a material having a curie temperature at which a change in the flow rate of the liquid metal is desired. According to the preferred embodiment the magnet is a cylindrical rod magnet axially disposed within a cylindrical member formed of a curie material and having iron pole pieces at the ends. A cylindrical iron shunt and a thin wall stainless steel barrier are disposed in the annulus between magnet and curie material. Below the curie temperature flow between steel barrier and curie material is impeded and above the curie temperature flow impedance is reduced.
Gas reservoir and a method to supply gas to plasma tubes
Stautner, Ernst Wolfgang; Michael, Joseph Darryl
2017-01-31
A reservoir for storing and supplying a portion of a reservoir gas into a gas-filled tube is presented. The reservoir includes a first vessel having a thermally conductive surface, a meshed vessel having a lid, and placed inside the first vessel to form a cavity between the meshed vessel and the first vessel, at least one tray placed inside the meshed vessel to divide an inner space of the meshed vessel into a plurality of compartments, a sorbent material placed inside the plurality of compartments in the meshed vessel, a temperature control device positioned such that a first portion of the temperature control device is in physical contact with at least a portion of the thermally conductive surface, and a change in the temperature of the temperature control device changes the temperature of the sorbent material, wherein the reservoir gas is retained by the sorbent material at the storage temperature.
A novel technique to control high temperature materials degradation in fossil plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez-Rodriguez, J.G.; Porcayo-Calderon, J.; Martinez-Villafane, A.
1995-11-01
High temperature corrosion of superheater (SH) and, specially, reheater (RH) is strongly dependent on metal temperature. In this work, a way to continuously monitor the metal temperature of SH or RH, elements developed by the Instituto de Investigaciones Electricas (IIE) is described and the effects of operating parameters on metal temperature are evaluated. Also, the effects the steam-generator design and metal temperature on the corrosion rates have been investigated. In some steam generators, corrosion rates were reduced from 0.7 to 0.2 mm/y by changing the tube material and reducing the metal temperature. Also, the effect of metal temperature on themore » residual life of a 347H tube in a 158MW steam generator is evaluated. It is concluded that metal temperature is the most important parameter in controlling the high-temperature materials behavior in boiler environments.« less
Research on precise control of 3D print nozzle temperature in PEEK material
NASA Astrophysics Data System (ADS)
Liu, Zhichao; Wang, Gong; Huo, Yu; Zhao, Wei
2017-10-01
3D printing technology has shown more and more applicability in medication, designing and other fields for its low cost and high timeliness. PEEK (poly-ether-ether-ketone), as a typical high-performance special engineering plastic, become one of the most excellent materials to be used in 3D printing technology because of its excellent mechanical property, good lubricity, chemical resistance, and other properties. But the nozzle of 3D printer for PEEK has also a series of very high requirements. In this paper, we mainly use the nozzle temperature control as the research object, combining with the advantages and disadvantages of PID control and fuzzy control. Finally realize a kind of fuzzy PID controller to solve the problem of the inertia of the temperature system and the seriousness of the temperature control hysteresis in the temperature control of the nozzle, and to meet the requirements of the accuracy of the nozzle temperature control and rapid reaction.
Compatibility of refractory materials for nuclear reactor poison control systems
NASA Technical Reports Server (NTRS)
Sinclair, J. H.
1974-01-01
Metal-clad poison rods have been considered for the control system of an advanced space power reactor concept studied at the NASA Lewis Research Center. Such control rods may be required to operate at temperatures of about 140O C. Selected poison materials (including boron carbide and the diborides of zirconium, hafnium, and tantalum) were subjected to 1000-hour screening tests in contact with candidate refractory metal cladding materials (including tungsten and alloys of tantalum, niobium, and molybdenum) to assess the compatibility of these materials combinations at the temperatures of interest. Zirconium and hafnium diborides were compatible with refractory metals at 1400 C, but boron carbide and tantalum diboride reacted with the refractory metals at this temperature. Zirconium diboride also showed promise as a reaction barrier between boron carbide and tungsten.
Apparatus and method for constant flow oxidizing of organic materials
Surma, Jeffrey E.; Nelson, Norvell; Steward, G. Anthony; Bryan, Garry H.
1999-01-01
The invention is a method and apparatus using high cerium concentration in the anolyte of an electrochemical cell to oxidize organic materials. The method and apparatus further use an ultrasonic mixer to enhance the oxidation rate of the organic material in the electrochemical cell. A reaction vessel provides an advantage of independent reaction temperature control and electrochemical cell temperature control. A separate or independent reaction vessel may be used without an ultrasonic mixer to oxidize gaseous phase organic materials.
Regulation of Silk Material Structure by Temperature-Controlled Water Vapor Annealing
Hu, Xiao; Shmelev, Karen; Sun, Lin; Gil, Eun-Seok; Park, Sang-Hyug; Cebe, Peggy; Kaplan, David L.
2011-01-01
We present a simple and effective method to obtain refined control of the molecular structure of silk biomaterials through physical temperature-controlled water vapor annealing (TCWVA). The silk materials can be prepared with control of crystallinity, from a low content using conditions at 4°C (alpha-helix dominated silk I structure), to highest content of ~60% crystallinity at 100°C (beta-sheet dominated silk II structure). This new physical approach covers the range of structures previously reported to govern crystallization during the fabrication of silk materials, yet offers a simpler, green chemistry, approach with tight control of reproducibility. The transition kinetics, thermal, mechanical, and biodegradation properties of the silk films prepared at different temperatures were investigated and compared by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), uniaxial tensile studies, and enzymatic degradation studies. The results revealed that this new physical processing method accurately controls structure, in turn providing control of mechanical properties, thermal stability, enzyme degradation rate, and human mesenchymal stem cell interactions. The mechanistic basis for the control is through the temperature controlled regulation of water vapor, to control crystallization. Control of silk structure via TCWVA represents a significant improvement in the fabrication of silk-based biomaterials, where control of structure-property relationships is key to regulating material properties. This new approach to control crystallization also provides an entirely new green approach, avoiding common methods which use organic solvents (methanol, ethanol) or organic acids. The method described here for silk proteins would also be universal for many other structural proteins (and likely other biopolymers), where water controls chain interactions related to material properties. PMID:21425769
Development of an analytical environmental TEM system and its application.
Kishita, Keisuke; Sakai, Hisashi; Tanaka, Hiromochi; Saka, Hiroyasu; Kuroda, Kotaro; Sakamoto, Masayuki; Watabe, Akira; Kamino, Takeo
2009-12-01
Many automotive materials, such as catalysts and fuel cell materials, undergo significant changes in structure or properties when subjected to temperature change or the addition of a gas. For this reason, in the development of these materials, it is important to study the behavior of the material under controlled temperatures and gaseous atmospheres. Recently, a new environmental transmission electron microscope (TEM) has been developed for observation with a high resolution at high temperatures and under gaseous atmospheres, thus making it possible to analyze reaction processes in details. Also, the new TEM provides a high degree of reproducibility of observation conditions, thus making it possible to compare and validate observation of various specimens under a given set of conditions. Furthermore, easiness of gas condition and temperature control can provide a powerful tool for the studying of the mechanism of material change, such as oxidation and reduction reactions.
A Microwave Thermostatic Reactor for Processing Liquid Materials Based on a Heat-Exchanger.
Zhou, Yongqiang; Zhang, Chun; Xie, Tian; Hong, Tao; Zhu, Huacheng; Yang, Yang; Liu, Changjun; Huang, Kama
2017-10-08
Microwaves have been widely used in the treatment of different materials. However, the existing adjustable power thermostatic reactors cannot be used to analyze materials characteristics under microwave effects. In this paper, a microwave thermostatic chemical reactor for processing liquid materials is proposed, by controlling the velocity of coolant based on PLC (programmable logic controller) in different liquid under different constant electric field intensity. A nonpolar coolant (Polydimethylsiloxane), which is completely microwave transparent, is employed to cool the liquid materials. Experiments are performed to measure the liquid temperature using optical fibers, the results show that the precision of temperature control is at the range of ±0.5 °C. Compared with the adjustable power thermostatic control system, the effect of electric field changes on material properties are avoided and it also can be used to detect the properties of liquid materials and special microwave effects.
A Microwave Thermostatic Reactor for Processing Liquid Materials Based on a Heat-Exchanger
Zhou, Yongqiang; Zhang, Chun; Xie, Tian; Hong, Tao; Yang, Yang; Liu, Changjun; Huang, Kama
2017-01-01
Microwaves have been widely used in the treatment of different materials. However, the existing adjustable power thermostatic reactors cannot be used to analyze materials characteristics under microwave effects. In this paper, a microwave thermostatic chemical reactor for processing liquid materials is proposed, by controlling the velocity of coolant based on PLC (programmable logic controller) in different liquid under different constant electric field intensity. A nonpolar coolant (Polydimethylsiloxane), which is completely microwave transparent, is employed to cool the liquid materials. Experiments are performed to measure the liquid temperature using optical fibers, the results show that the precision of temperature control is at the range of ±0.5 °C. Compared with the adjustable power thermostatic control system, the effect of electric field changes on material properties are avoided and it also can be used to detect the properties of liquid materials and special microwave effects. PMID:28991195
Phase change material for temperature control and material storage
NASA Technical Reports Server (NTRS)
Wessling, Jr., Francis C. (Inventor); Blackwood, James M. (Inventor)
2011-01-01
A phase change material comprising a mixture of water and deuterium oxide is described, wherein the mole fraction of deuterium oxide is selected so that the mixture has a selected phase change temperature within a range between 0.degree. C. and 4.degree. C. The mixture is placed in a container and used for passive storage and transport of biomaterials and other temperature sensitive materials. Gels, nucleating agents, freezing point depression materials and colorants may be added to enhance the characteristics of the mixture.
Impact of nesting material on mouse body temperature and physiology.
Gaskill, Brianna N; Gordon, Christopher J; Pajor, Edmond A; Lucas, Jeffrey R; Davis, Jerry K; Garner, Joseph P
2013-02-17
In laboratories, mice are housed at 20-24 °C, which is below their lower critical temperature (≈30 °C). Thus, mice are potentially cold stressed, which can alter metabolism, immune function, and reproduction. These physiological changes reflect impaired wellbeing, and affect scientific outcomes. We hypothesized that nesting material would allow mice to alleviate cold stress by controlling their thermal microenvironment, thus insulating them, reducing heat loss and thermogenic processes. Naïve C57BL/6, CD-1, and BALB/c mice (24 male and 24 female/strain in groups of 3) were housed in standard cages at 20 °C either with or without 8 g nesting material for 4 weeks. Core body temperature was followed using intraperitoneal radio telemetry. The thermal properties of the nests were assessed using a thermal imaging camera, and related to nest quality. Higher scoring nests were negatively correlated with the mean radiated temperature and were thus more insulating. No effects of nesting material on body temperature were found. CD-1 mice with nesting material had higher end body weights than controls. No effect was seen in the other two strains. Mice with the telemetry implant had larger spleens than controls, possibly indicating an immune response to the implant or low level infection from the surgery. BALB/c mice express less mRNA for the UCP1 protein than mice without nesting material. This indicates that BALB/c's with nesting material do not utilize their brown fat to create heat as readily as controls. Nests can alleviate thermal discomfort by decreasing the amount of radiated heat and reduce the need for non-shivering thermogenesis. However, different strains appear to use different behavioral (through different primary modes of behavioral thermoregulation) and physiological strategies (utilizing thermogenesis to different degrees) to maintain a constant body temperature under cool standard laboratory ambient temperatures. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Ives, R. E.
1982-01-01
A thermal monitoring and control concept is described for a volatile condensable materials (VCM) test apparatus where electric resistance heaters are employed. The technique is computer based, but requires only proportioning ON/OFF relay control signals supplied through a programmable scanner and simple quadrac power controllers. System uniqueness is derived from automatic temperature measurements and the averaging of these measurements in discrete overlapping temperature zones. Overall control tolerance proves to be better than + or - 0.5 C from room ambient temperature to 150 C. Using precisely calibrated thermocouples, the method provides excellent temperature control of a small copper VCM heating plate at 125 + or - 0.2 C over a 24 hr test period. For purposes of unattended operation, the programmable computer/controller provides a continual data printout of system operation. Real time operator command is also provided for, as is automatic shutdown of the system and operator alarm in the event of malfunction.
Parallel array of independent thermostats for column separations
Foret, Frantisek; Karger, Barry L.
2005-08-16
A thermostat array including an array of two or more capillary columns (10) or two or more channels in a microfabricated device is disclosed. A heat conductive material (12) surrounded each individual column or channel in array, each individual column or channel being thermally insulated from every other individual column or channel. One or more independently controlled heating or cooling elements (14) is positioned adjacent to individual columns or channels within the heat conductive material, each heating or cooling element being connected to a source of heating or cooling, and one or more independently controlled temperature sensing elements (16) is positioned adjacent to the individual columns or channels within the heat conductive material. Each temperature sensing element is connected to a temperature controller.
Programmable temperature control system for biological materials
NASA Technical Reports Server (NTRS)
Anselmo, V. J.; Harrison, R. G.; Rinfret, A. P.
1982-01-01
A system was constructed which allows programmable temperature-time control for a 5 cu cm sample volume of arbitrary biological material. The system also measures the parameters necessary for the determination of the sample volume specific heat and thermal conductivity as a function of temperature, and provides a detailed measurement of the temperature during phase change and a means of calculating the heat of the phase change. Steady-state and dynamic temperature control is obtained by supplying heat to the sample volume through resistive elements constructed as an integral part of the sample container. For cooling purposes, this container is totally immersed into a cold heat sink. Using a mixture of dry ice and alcohol at 79 C, the sample volume can be controlled from +40 to -60 C at rates from steady state to + or - 65 C/min. Steady-state temperature precision is better than 0.2 C, while the dynamic capability depends on the temperature rate of change as well as the mass of both the sample and the container.
Temperature dependence of nonlinear optical properties in Li doped nano-carbon bowl material
NASA Astrophysics Data System (ADS)
Li, Wei-qi; Zhou, Xin; Chang, Ying; Quan Tian, Wei; Sun, Xiu-Dong
2013-04-01
The mechanism for change of nonlinear optical (NLO) properties with temperature is proposed for a nonlinear optical material, Li doped curved nano-carbon bowl. Four stable conformations of Li doped corannulene were located and their electronic properties were investigated in detail. The NLO response of those Li doped conformations varies with relative position of doping agent on the curved carbon surface of corannulene. Conversion among those Li doped conformations, which could be controlled by temperature, changes the NLO response of bulk material. Thus, conformation change of alkali metal doped carbon nano-material with temperature rationalizes the variation of NLO properties of those materials.
NASA Technical Reports Server (NTRS)
Schwarze, Gene E.; Niedra, Janis M.; Frasca, Albert J.; Wieserman, William R.
1993-01-01
The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the Civilian Space Technology Initiative (CSTI) high capacity power project are presented: (1) neutron, gamma ray, and temperature effects on power semiconductor switches, (2) temperature and frequency effects on soft magnetic materials; and (3) temperature effects on rare earth permanent magnets.
NASA Technical Reports Server (NTRS)
Finstein, M. S.; Hogan, J. A.; Sager, J. C.; Cowan, R. M.; Strom, P. F.; Janes, H. W. (Principal Investigator)
1999-01-01
Whereas Earth-based composting reactors that effectively control the process are batch operations with bottom-to-top airflow, in extraterrestrial application both the fresh waste and the air need to be introduced from above. Stabilized compost and used air would exit below. This materials flow pattern permits the addition of waste whenever generated, obviating the need for multiple reactors, and the incorporation of a commode in the lid. Top loading in turn dictates top-down aeration, so that the most actively decomposing material (greatest need for heat removal and O2 replenishment) is first encountered. This novel material and aeration pattern was tested in conjunction with temperature feedback process control. Reactor characteristics were: working, volume, 0.15 m3; charge, 2 kg dry biomass per day (comparable to a 3-4 person self-sufficient bioregenerative habitat); retention time, 7 days. Judging from temperature profile, O2 level, air usage, pressure head loss, moisture, and odor, the system was effectively controlled over a 35-day period. Dry matter disappearance averaged 25% (10-42%). The compost product was substantially, though not completely, stabilized. This demonstrates the compatibility of top-wise introduction of waste and air with temperature feedback process control.
Finstein, M S; Hogan, J A; Sager, J C; Cowan, R M; Strom, P F
1999-01-01
Whereas Earth-based composting reactors that effectively control the process are batch operations with bottom-to-top airflow, in extraterrestrial application both the fresh waste and the air need to be introduced from above. Stabilized compost and used air would exit below. This materials flow pattern permits the addition of waste whenever generated, obviating the need for multiple reactors, and the incorporation of a commode in the lid. Top loading in turn dictates top-down aeration, so that the most actively decomposing material (greatest need for heat removal and O2 replenishment) is first encountered. This novel material and aeration pattern was tested in conjunction with temperature feedback process control. Reactor characteristics were: working, volume, 0.15 m3; charge, 2 kg dry biomass per day (comparable to a 3-4 person self-sufficient bioregenerative habitat); retention time, 7 days. Judging from temperature profile, O2 level, air usage, pressure head loss, moisture, and odor, the system was effectively controlled over a 35-day period. Dry matter disappearance averaged 25% (10-42%). The compost product was substantially, though not completely, stabilized. This demonstrates the compatibility of top-wise introduction of waste and air with temperature feedback process control.
Thermally driven piston assembly and position control therefor
NASA Technical Reports Server (NTRS)
Thomsen, III, Donald L. (Inventor); Bryant, Robert G. (Inventor)
2010-01-01
A thermally driven piston assembly's housing has (i) a first material slidingly fitted therein, and (ii) at least one plug of a second material slidingly fitted therein and abutting the first material. The first material is one (e.g., a liquid crystal elastomer) that undergoes a stiffness change and/or a dimensional change when subjected to a temperature change in the temperature range of interest. When subjected to the temperature change while in the housing, the first material is restricted to changing dimensionally along a single dimension. The second material retains its shape and size throughout the temperature range of interest. As a result, the plug moves in the housing in correspondence with the dimensional change of the first material or the plug's movement is damped by the stiffness change of the first material.
NASA Technical Reports Server (NTRS)
Garrett, J. W.; Glassford, A. P. M.; Steakley, J. M.
1994-01-01
The American Society for Testing and Materials has published a new standard test method for characterizing time and temperature-dependence of material outgassing kinetics and the deposition kinetics of outgassed species on surfaces at various temperatures. This new ASTM standard, E 1559(1), uses the quartz crystal microbalance (QCM) collection measurement approach. The test method was originally developed under a program sponsored by the United States Air Force Materials Laboratory (AFML) to create a standard test method for obtaining outgassing and deposition kinetics data for spacecraft materials. Standardization by ASTM recognizes that the method has applications beyond aerospace. In particular, the method will provide data of use to the electronics, semiconductor, and high vacuum industries. In ASTM E 1559 the material sample is held in vacuum in a temperature-controlled effusion cell, while its outgassing flux impinges on several QCM's which view the orifice of the effusion cell. Sample isothermal total mass loss (TML) is measured as a function of time from the mass collected on one of the QCM's which is cooled by liquid nitrogen, and the view factor from this QCM to the cell. The amount of outgassed volatile condensable material (VCM) on surfaces at higher temperatures is measured as a function of time during the isothermal outgassing test by controlling the temperatures of the remaining QCM's to selected values. The VCM on surfaces at temperatures in between those of the collector QCM's is determined at the end of the isothermal test by heating the QCM's at a controlled rate and measuring the mass loss from the end of the QCM's as a function of time and temperature. This reevaporation of the deposit collected on the QCM's is referred to as QCM thermogravimetric analysis. Isothermal outgassing and deposition rates can be determined by differentiating the isothermal TML and VCM data, respectively, while the evaporation rates of the species can be obtained as a function of temperature by differentiating the QCM thermogravimetric analysis data.
High-Temperature Modal Survey of a Hot-Structure Control Surface
NASA Technical Reports Server (NTRS)
Spivey, Natalie Dawn
2010-01-01
Ground vibration tests or modal surveys are routinely conducted for supporting flutter analysis for subsonic and supersonic vehicles; however, for hypersonic vehicle applications, thermoelastic vibration testing techniques are not well established and are not routinely performed for supporting hypersonic flutter analysis. New high-temperature material systems, fabrication technologies and high-temperature sensors expand the opportunities to develop advanced techniques for performing ground vibration tests at elevated temperatures. High-temperature materials have the unique property of increasing in stiffness when heated. When these materials are incorporated into a hot-structure, which includes metallic components that decrease in stiffness with increasing temperature, the interaction between the two materials systems needs to be understood because that interaction could ultimately affect the hypersonic flutter analysis. Performing a high-temperature modal survey will expand the research database for hypersonics and will help build upon the understanding of the dual material interaction. This paper will discuss the vibration testing of the Carbon-Silicon Carbide Ruddervator Subcomponent Test Article which is a truncated version of the full-scale X-37 hot-structure control surface. In order to define the modal characteristics of the test article during the elevated-temperature modal survey, two series of room-temperature modal test configurations had to be performed. The room-temperature test series included one with the test article suspended from a bungee cord (free-free) and the second with it mounted on the strongback (fixed boundary condition) in NASA Dryden's Flight Loads Lab large nitrogen test chamber.
Processing of Ni30Pt20Ti50 High-Temperature Shape-Memory Alloy Into Thin Rod Demonstrated
NASA Technical Reports Server (NTRS)
Noebe, Ronald D.; Draper, Susan L.; Biles, Tiffany A.; Leonhardt, Todd
2005-01-01
High-temperature shape-memory alloys (HTSMAs) based on nickel-titanium (NiTi) with significant ternary additions of palladium (Pd), platinum (Pt), gold (Au), or hafnium (Hf) have been identified as potential high-temperature actuator materials for use up to 500 C. These materials provide an enabling technology for the development of "smart structures" used to control the noise, emissions, or efficiency of gas turbine engines. The demand for these high-temperature versions of conventional shape-memory alloys also has been growing in the automotive, process control, and energy industries. However these materials, including the NiPtTi alloys being developed at the NASA Glenn Research Center, will never find widespread acceptance unless they can be readily processed into useable forms.
A proposed magnetic digital temperature transducer, volume 1
NASA Technical Reports Server (NTRS)
Collier, T. E.; Tchernev, D. I.; Hartwig, W. H.
1972-01-01
A study has been made of the feasibility of using the discontinuous permeability versus temperature characteristics of some magnetic materials for a digital temperature transducer and a thermally controlled ON-OFF switch. Simple logic converts the number of output pulse to a digital word recognizable by the system. Efforts have been concentrated on materials with Curie temperatures between 0 and 100 C. One compound has the composition Mn(5-x)Fe(x)Ge3 where the amount of iron determines the transition temperature. The other compound is Ni-Zn ferrite and has the compositon Ni(1-x)Zn(x)Fe(1.95)O4 where the nickel: zinc ratio determines the transition temperature. A detailed report of materials prepared is presented. Toroidal inductors of the material have been constructed and the change in inductance with temperature measured. In view of these initial measurements, it is felt that a transducer utilizing the permeability versus temperature characteristics of these materials has promise as a reliable and sensitive solid state digital temperature transducer.
Instrument for Measuring Thermal Conductivity of Materials at Low Temperatures
NASA Technical Reports Server (NTRS)
Fesmire, James; Sass, Jared; Johnson, Wesley
2010-01-01
With the advance of polymer and other non-metallic material sciences, whole new series of polymeric materials and composites are being created. These materials are being optimized for many different applications including cryogenic and low-temperature industrial processes. Engineers need these data to perform detailed system designs and enable new design possibilities for improved control, reliability, and efficiency in specific applications. One main area of interest is cryogenic structural elements and fluid handling components and other parts, films, and coatings for low-temperature application. An important thermal property of these new materials is the apparent thermal conductivity (k-value).
Photovoltaic Cell And Manufacturing Process
Albright, Scot P.; Chamberlin, Rhodes R.
1996-11-26
Provided is a method for controlling electrical properties and morphology of a p-type material of a photovoltaic device. The p-type material, such as p-type cadmium telluride, is first subjected to heat treatment in an oxidizing environment, followed by recrystallization in an environment substantially free of oxidants. In one embodiment, the heat treatment step comprises first subjecting the p-type material to an oxidizing atmosphere at a first temperature to getter impurities, followed by second subjecting the p-type material to an oxidizing atmosphere at a second temperature, higher than the first temperature, to develop a desired oxidation gradient through the p-type material.
Development of magnetostrictive active members for control of space structures
NASA Technical Reports Server (NTRS)
Johnson, Bruce G.; Avakian, Kevin M.; Fenn, Ralph C.; Gaffney, Monique S.; Gerver, Michael J.; Hawkey, Timothy J.; Boudreau, Donald J.
1992-01-01
The goal of this Phase 2 Small Business Innovative Research (SBIR) project was to determine the technical feasibility of developing magnetostrictive active members for use as truss elements in space structures. Active members control elastic vibrations of truss-based space structures and integrate the functions of truss structure element, actively controlled actuator, and sensor. The active members must control structural motion to the sub-micron level and, for many proposed space applications, work at cryogenic temperatures. Under this program both room temperature and cryogenic temperature magnetostrictive active members were designed, fabricated, and tested. The results of these performance tests indicated that room temperature magnetostrictive actuators feature higher strain, stiffness, and force capability with lower amplifier requirements than similarly sized piezoelectric or electrostrictive active members, at the cost of higher mass. Two different cryogenic temperature magnetostrictive materials were tested at liquid nitrogen temperatures, both with larger strain capability than the room temperature magnetostrictive materials. The cryogenic active member development included the design and fabrication of a cryostat that allows operation of the cryogenic active member in a space structure testbed.
Development of magnetostrictive active members for control of space structures
NASA Astrophysics Data System (ADS)
Johnson, Bruce G.; Avakian, Kevin M.; Fenn, Ralph C.; Gaffney, Monique S.; Gerver, Michael J.; Hawkey, Timothy J.; Boudreau, Donald J.
1992-08-01
The goal of this Phase 2 Small Business Innovative Research (SBIR) project was to determine the technical feasibility of developing magnetostrictive active members for use as truss elements in space structures. Active members control elastic vibrations of truss-based space structures and integrate the functions of truss structure element, actively controlled actuator, and sensor. The active members must control structural motion to the sub-micron level and, for many proposed space applications, work at cryogenic temperatures. Under this program both room temperature and cryogenic temperature magnetostrictive active members were designed, fabricated, and tested. The results of these performance tests indicated that room temperature magnetostrictive actuators feature higher strain, stiffness, and force capability with lower amplifier requirements than similarly sized piezoelectric or electrostrictive active members, at the cost of higher mass. Two different cryogenic temperature magnetostrictive materials were tested at liquid nitrogen temperatures, both with larger strain capability than the room temperature magnetostrictive materials. The cryogenic active member development included the design and fabrication of a cryostat that allows operation of the cryogenic active member in a space structure testbed.
Advanced Sensor and Packaging Technologies for Intelligent Adaptive Engine Controls (Preprint)
2013-05-01
combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high - temperature electronics, and advanced harsh...with simultaneous pressure measurements up to 1,000 psi. The combination of a high - temperature , high -pressure-ratio compressor system, and adaptive...combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high temperature electronics, and advanced harsh
NASA Technical Reports Server (NTRS)
Reilly, Thomas L. (Inventor); Jacobstein, A. Ronald (Inventor); Cramer, K. Elliott (Inventor)
2006-01-01
A method and apparatus for testing a material such as the water-wall tubes in boilers includes the use of a portable thermal line heater having radiation shields to control the amount of thermal radiation that reaches a thermal imager. A procedure corrects for variations in the initial temperature of the material being inspected. A method of calibrating the testing device to determine an equation relating thickness of the material to temperatures created by the thermal line heater uses empirical data derived from tests performed on test specimens for each material type, geometry, density, specific heat, speed at which the line heater is moved across the material and heat intensity.
High-Temperature Modal Survey of a Hot-Structure Control Surface
NASA Technical Reports Server (NTRS)
Spivey, Natalie D.
2011-01-01
Ground vibration tests are routinely conducted for supporting flutter analysis for subsonic and supersonic vehicles; however, for hypersonic vehicles, thermoelastic vibration testing techniques are neither well established nor routinely performed. New high-temperature material systems, fabrication technologies and high-temperature sensors expand the opportunities to develop advanced techniques for performing ground vibration tests at elevated temperatures. When high-temperature materials, which increase in stiffness when heated, are incorporated into a hot-structure that contains metallic components that decrease in stiffness when heated, the interaction between those materials can affect the hypersonic flutter analysis. A high-temperature modal survey will expand the research database for hypersonics and improve the understanding of this dual-material interaction. This report discusses the vibration testing of the carbon-silicon carbide Ruddervator Subcomponent Test Article, which is a truncated version of a full-scale hot-structure control surface. Two series of room-temperature modal test configurations were performed in order to define the modal characteristics of the test article during the elevated-temperature modal survey: one with the test article suspended from a bungee cord (free-free) and the second with it mounted on the strongback (fixed boundary). Testing was performed in the NASA Dryden Flight Research Center Flight Loads Laboratory Large Nitrogen Test Chamber.
Ultrasonic fluid densitometer for process control
Greenwood, Margaret S.
2000-01-01
The present invention is an ultrasonic fluid densitometer that uses at least one pair of transducers for transmitting and receiving ultrasonic signals internally reflected within a material wedge. A temperature sensor is provided to monitor the temperature of the wedge material. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface and comparing a transducer voltage and wedge material temperature to a tabulation as a function of density.
Thermionic converter temperature controller
Shaner, Benjamin J [McMurray, PA; Wolf, Joseph H [Pittsburgh, PA; Johnson, Robert G. R. [Trafford, PA
2001-04-24
A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.
Closed-form solution of temperature and heat flux in embedded cooling channels
NASA Astrophysics Data System (ADS)
Griggs, Steven Craig
1997-11-01
An analytical method is discussed for predicting temperature in a layered composite material with embedded cooling channels. The cooling channels are embedded in the material to maintain its temperature at acceptable levels. Problems of this type are encountered in the aerospace industry and include high-temperature or high-heat-flux protection for advanced composite-material skins of high-speed air vehicles; thermal boundary-layer flow control on supersonic transports; or infrared signature suppression on military vehicles. A Green's function solution of the diffusion equation is used to simultaneously predict the global and localized effects of temperature in the material and in the embedded cooling channels. The integral method is used to solve the energy equation with fluid flow to find the solution of temperature and heat flux in the cooling fluid and material simultaneously. This method of calculation preserves the three-dimensional nature of this problem.
Cha, Yung Sheng; Hull, John R.; Askew, Thomas R.
2006-07-11
A system and method of controlling movement of magnetic material with at least first and second high temperature superconductors at spaced locations. A plurality of solenoids are associated with the superconductors to induce a persistent currents in preselected high temperature superconductors establishing a plurality of magnetic fields in response to pulsed currents introduced to one or more of the solenoids. Control mechanism in communication with said solenoids and/or said high temperature superconductors are used to demagnetize selected ones of the high temperature superconductors to reduce the magnetic fields substantially to zero. Magnetic material is moved between magnetic fields by establishing the presence thereof and thereafter reducing magnetic fields substantially to zero and establishing magnetic fields in other superconductors arranged in a predetermined configuration.
A controlled rate freeze/thaw system for cryopreservation of biological materials
NASA Technical Reports Server (NTRS)
Anselmo, V. J.; Harrison, R. G.
1979-01-01
A system which allows programmable temperature-time control for a 5 cc sample volume of an arbitrary biological material was constructed. Steady state and dynamic temperature control was obtained by supplying heat to the sample volume through resistive elements constructed as an integral part of the sample container. For cooling purposes, this container was totally immersed into a cold heat sink. Sample volume thermodynamic property data were obtained by measurements of heater power and heat flux through the container walls. Using a mixture of dry ice and alcohol at -79 C, sample volume was controlled from +40 C to -60 C at rates from steady state to + or - 65 C/min. Steady state temperature precision was better than 0.2 C while the dynamic capability depends on the temperature rate of change as well as the thermal mass of the sample and the container.
Characterization Of Graphene-Ferroelectric Superlattice Hybrid Devices
NASA Astrophysics Data System (ADS)
Yusuf, Mohammed; Du, Xu; Dawber, Matthew
2013-03-01
Ferroelectric materials possess a spontaneous electrical polarization, which can be controlled by an electric field. A good interface between ferroelectric surface and graphene sheets can introduce a new generation of multifunctional devices, in which the ferroelectric material can be used to control the properties of graphene. In our approach, problems encountered in previous efforts to combine ferroelectric/carbon systems are overcome by the use of artificially layered superlattice materials grown in the form of epitaxial thin films. In these materials the phase transition temperature and dielectric response of the material can be tailored, allowing us to avoid polarization screening by surface absorbates, whilst maintaining an atomically smooth surface and optimal charge doping properties. Using ferroelectric PbTiO3/SrTiO3 superlattices, we have shown ultra-low-voltage operation of graphene field effect devices within +/- 1 V at room temperature. The switching of the graphene field effect transistors is characterized by pronounced resistance hysteresis, suitable for ultra-fast non-volatile electronics. Low temperature characterization confirmed that the coercive field required for the ferroelectric domain switching increases significantly with decreasing temperatures. National Science Foundation (NSF) (grant number 1105202)
NASA Astrophysics Data System (ADS)
Xia, X.; Zhang, H. Y.; Deng, Y. C.
2016-08-01
Solid-fluid phase change materials have been of increasing interest in various applications due to their high latent heat with minimum volume change. In this work, numerical analysis of phase change materials is carried out for the purpose of thermal control of the cylindrical power battery cells for applications in electric vehicles. Uniform heat density is applied at the battery cell, which is surrounded by phase change material (PCM) of paraffin wax type and contained in a metal housing. A two-dimensional geometry model is considered due to the model symmetry. The effects of power densities, heat transfer coefficients and onset melting temperatures are examined for the battery temperature evolution. Temperature plateaus can be observed from the present numerical analysis for the pure PCM cases, with the temperature level depending on the power densities, heat transfer coefficients, and melting temperatures. In addition, the copper foam of high thermal conductivity is inserted into the copper foam to enhance the heat transfer. In the modeling, the local thermal non-equilibrium between the metal foam and the PCM is taken into account and the temperatures for the metal foam and PCM are obtained respectively.
Magnetically Controlled Shape Memory Behaviour—Materials and Applications
NASA Astrophysics Data System (ADS)
Gandy, A. P.; Sheikh, A.; Neumann, K.; Neumann, K.-U.; Pooley, D.; Ziebeck, K. R. A.
2008-06-01
For most metals a microscopic change in shape occurs above the elastic limit by the irreversible creation and movement of dislocations. However a large number of metallic systems undergo structural, martensitic, phase transformations which are diffusionless, displacive first order transitions from a high-temperature phase to one of lower symmetry below a certain temperature TM. These transitions which have been studied for more than a century are of vital importance because of their key role in producing shape memory phenomena enabling the system to reverse large deformations in the martensitic phase by heating into the austenite phase. In addition to a change in shape (displacement) the effect can also produce a force or a combination of both. Materials having this unique property are increasing being used in medical applications—scoliosis correction, arterial clips, stents, orthodontic wire, orthopaedic implants etc. The structural phase transition essential for shape memory behaviour is usually activated by a change in temperature or applied stress. However for many applications such as for actuators the transformation is not sufficiently rapid. Poor energy conversion also limits the applicability of many shape memory alloys. In medicine a change of temperature or pressure is often inappropriate and new ferromagnetic materials are being considered in which the phenomena can be controlled by an applied magnetic field at constant temperature. In order to achieve this, it is important to optimise three fundamental parameters. These are the saturation magnetisation σs, the Curie temperature Tc and the martensitic temperature TM. Here, σs is important because the magnetic pressure driving the twin boundary motion is 2σsH. Furthermore the material must be in the martensitic state at the operating temperature which should be at or above room temperature. This may be achieved by alloying or controlling the stoichiometry. Recently new intermetallic compounds based on the ferromagnetic prototype Ni2MnGa have been discovered which offer the possibility of controlling the structural phase transition by a magnetic field, hence opening up new possible applications particularly in the field of medicine. The properties of these new materials will be presented and their suitability for applications discussed.
Containerless measurements on liquids at high temperatures
NASA Technical Reports Server (NTRS)
Weber, Richard
1993-01-01
The application of containerless techniques for measurements of the thermophysical properties of high temperature liquids is reviewed. Recent results obtained in the materials research laboratories at Intersonics are also presented. Work to measure high temperature liquid properties is motivated by both the need for reliable property data for modeling of industrial processes involving molten materials and generation of data form basic modeling of materials behavior. The motivation for this work and examples of variations in thermophysical property values from the literature are presented. The variations may be attributed to changes in the specimen properties caused by chemical changes in the specimen and/or to measurement errors. The two methods used to achieve containerless conditions were aeroacoustic levitation and electromagnetic levitation. Their qualities are presented. The accompanying slides show the layout of levitation equipment and present examples of levitated metallic and ceramic specimens. Containerless techniques provide a high degree of control over specimen chemistry, nucleation and allow precise control of liquid composition to be achieved. Effects of minor additions can thus be measured in a systematic way. Operation in reduced gravity enables enhanced control of liquid motion which can allow measurement of liquid transport properties. Examples of nucleation control, the thermodynamics of oxide contamination removal, and control of the chromium content of liquid aluminum oxide by high temperature containerless processes are presented. The feasibility of measuring temperature, emissivity, liquidus temperature, enthalpy, surface tension, density, viscosity, and thermal diffusivity are discussed in the final section of the paper.
Glasses and Liquids Low on the Energy Landscape Prepared by Physical Vapor Deposition
NASA Astrophysics Data System (ADS)
Dalal, Shakeel; Fakhraai, Zahra; Ediger, Mark
2014-03-01
The lower portions of the potential energy landscape for glass-forming materials such as polymers and small molecules were historically inaccessible by experiments. Physical vapor deposition is uniquely able to prepare materials in this portion of the energy landscape, with the properties of the deposited material primarily modulated by the substrate temperature. Here we report on high-throughput experiments which utilize a temperature gradient stage to enable rapid screening of vapor-deposited organic glasses. Using ellipsometry, we characterize a 100 K range of substrate temperatures in a single experiment, allowing us to rapidly determine the density, kinetic stability, fictive temperature and molecular orientation of these glasses. Their properties fall into three temperature regimes. At substrate temperatures as low as 0.97Tg, we prepare materials which are equivalent to the supercooled liquid produced by cooling the melt. Below 0.9Tg (1.16TK) the properties of materials are kinetically controlled and highly tunable. At intermediate substrate temperatures we are able to produce materials whose bulk properties match those expected for the equilibrium supercooled liquid, down to 1.16TK, but are structurally anisotropic.
Magnetic switch for reactor control rod. [LMFBR
Germer, J.H.
1982-09-30
A magnetic reed switch assembly is described for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electro-magnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.
Magnetic switch for reactor control rod
Germer, John H.
1986-01-01
A magnetic reed switch assembly for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electromagnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.
Plasma-assisted microwave processing of materials
NASA Technical Reports Server (NTRS)
Barmatz, Martin (Inventor); Jackson, Henry (Inventor); Ylin, Tzu-yuan (Inventor)
1998-01-01
A microwave plasma assisted method and system for heating and joining materials. The invention uses a microwave induced plasma to controllably preheat workpiece materials that are poorly microwave absorbing. The plasma preheats the workpiece to a temperature that improves the materials' ability to absorb microwave energy. The plasma is extinguished and microwave energy is able to volumetrically heat the workpiece. Localized heating of good microwave absorbing materials is done by shielding certain parts of the workpiece and igniting the plasma in the areas not shielded. Microwave induced plasma is also used to induce self-propagating high temperature synthesis (SHS) process for the joining of materials. Preferably, a microwave induced plasma preheats the material and then microwave energy ignites the center of the material, thereby causing a high temperature spherical wave front from the center outward.
Nanoscale Engineering in VO2 Nanowires via Direct Electron Writing Process.
Zhang, Zhenhua; Guo, Hua; Ding, Wenqiang; Zhang, Bin; Lu, Yue; Ke, Xiaoxing; Liu, Weiwei; Chen, Furong; Sui, Manling
2017-02-08
Controlling phase transition in functional materials at nanoscale is not only of broad scientific interest but also important for practical applications in the fields of renewable energy, information storage, transducer, sensor, and so forth. As a model functional material, vanadium dioxide (VO 2 ) has its metal-insulator transition (MIT) usually at a sharp temperature around 68 °C. Here, we report a focused electron beam can directly lower down the transition temperature of a nanoarea to room temperature without prepatterning the VO 2 . This novel process is called radiolysis-assisted MIT (R-MIT). The electron beam irradiation fabricates a unique gradual MIT zone to several times of the beam size in which the temperature-dependent phase transition is achieved in an extended temperature range. The gradual transformation zone offers to precisely control the ratio of metal/insulator phases. This direct electron writing technique can open up an opportunity to precisely engineer nanodomains of diversified electronic properties in functional material-based devices.
Fire retardancy using applied materials
NASA Technical Reports Server (NTRS)
Feldman, R.
1971-01-01
An example of advanced technology transfer from the Little Joe, Surveyor, Comsat, re-entry and Apollo age to everyday fire protection needs is presented. Utilizing the principle of sublimation cooling for thermostatic temperature control, the material meets a wide range of fire retardancy and heat transmission control requirements. Properties vary from flexible tape for conduits and electrical cables to rigid coatings for column protection, with a broad spectrum of sublimation temperatures available. The material can be applied in the field or in the factory, utilizing mass production techniques, yielding a product that is reliable, effective, widely available and low in cost.
Electron anions and the glass transition temperature.
Johnson, Lewis E; Sushko, Peter V; Tomota, Yudai; Hosono, Hideo
2016-09-06
Properties of glasses are typically controlled by judicious selection of the glass-forming and glass-modifying constituents. Through an experimental and computational study of the crystalline, molten, and amorphous [Ca12Al14O32](2+) ⋅ (e(-))2, we demonstrate that electron anions in this system behave as glass modifiers that strongly affect solidification dynamics, the glass transition temperature, and spectroscopic properties of the resultant amorphous material. The concentration of such electron anions is a consequential control parameter: It invokes materials evolution pathways and properties not available in conventional glasses, which opens a unique avenue in rational materials design.
Electron anions and the glass transition temperature
Johnson, Lewis E.; Sushko, Peter V.; Tomota, Yudai; ...
2016-08-24
Properties of glasses are typically controlled by judicious selection of the glass-forming and glass-modifying constituents. Through an experimental and computational study of the crystalline, molten, and amorphous [Ca 12Al 14O 32] 2+ ∙ (e –) 2, we demonstrate that electron anions in this system behave as glass-modifiers that strongly affect solidification dynamics, the glass transition temperature, and spectroscopic properties of the resultant amorphous material. Concentration of such electron anions is a consequential control parameter: it invokes materials evolution pathways and properties not available in conventional glasses, which opens a new avenue in rational materials design.
1980-03-01
applications from decorative to utilitarian over significant segments of the engineering, chemical, nuclear , microelectronics, and related Industries. PVD...Thermal-control coating. Boron 2430 Cermet component, nuclear shielding and controlrod material; Carbide wear- and temperature-resistant. Calcium...Zirconium Oxide (Hafnia-Pree Thermal-barrier coatings for nuclear applications. Lime Stabi!Aed) Zirconium 2563 Resistant to high-temperature
500 C Electronic Packaging and Dielectric Materials for High Temperature Applications
NASA Technical Reports Server (NTRS)
Chen, Liang-yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.
2016-01-01
High-temperature environment operable sensors and electronics are required for exploring the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high temperature electronics, and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by these high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed. High-temperature environment operable sensors and electronics are required for probing the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and eventual applications of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high electronics and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed.
Ultra-accelerated natural sunlight exposure testing
Jorgensen, Gary J.; Bingham, Carl; Goggin, Rita; Lewandowski, Allan A.; Netter, Judy C.
2000-06-13
Process and apparatus for providing ultra accelerated natural sunlight exposure testing of samples under controlled weathering without introducing unrealistic failure mechanisms in exposed materials and without breaking reciprocity relationships between flux exposure levels and cumulative dose that includes multiple concurrent levels of temperature and relative humidity at high levels of natural sunlight comprising: a) concentrating solar flux uniformly; b) directing the controlled uniform sunlight onto sample materials in a chamber enclosing multiple concurrent levels of temperature and relative humidity to allow the sample materials to be subjected to accelerated irradiance exposure factors for a sufficient period of time in days to provide a corresponding time of about at least a years worth of representative weathering of the sample materials.
Design principles for contamination abatement in scientific satellites.
NASA Technical Reports Server (NTRS)
Naumann, R. J.
1972-01-01
It is shown that deposition of contamination films on satellite optics can be controlled by the following means: isolating critical optical surfaces from the rest of the spacecraft; avoiding or minimizing the use of nonmetallic material, particularly near or in line of sight of optical surfaces; avoiding materials with high vapor pressures; subjecting materials to vacuum baking prior to use, to drive off the volatile outgassing products; keeping the critical surfaces at temperatures above the ambient; avoiding elevated operational temperatures for nonmetallic materials; paying special attention to optics exposed to intense UV-, X-ray, or particular radiation; avoiding water-vapor sources; and directing RCS plumes away from critical surfaces. Methods of controlling particulate contaminants are also proposed.
Novel biomaterials: plasma-enabled nanostructures and functions
NASA Astrophysics Data System (ADS)
Levchenko, Igor; Keidar, Michael; Cvelbar, Uroš; Mariotti, Davide; Mai-Prochnow, Anne; Fang, Jinghua; (Ken Ostrikov, Kostya
2016-07-01
Material processing techniques utilizing low-temperature plasmas as the main process tool feature many unique capabilities for the fabrication of various nanostructured materials. As compared with the neutral-gas based techniques and methods, the plasma-based approaches offer higher levels of energy and flux controllability, often leading to higher quality of the fabricated nanomaterials and sometimes to the synthesis of the hierarchical materials with interesting properties. Among others, nanoscale biomaterials attract significant attention due to their special properties towards the biological materials (proteins, enzymes), living cells and tissues. This review briefly examines various approaches based on the use of low-temperature plasma environments to fabricate nanoscale biomaterials exhibiting high biological activity, biological inertness for drug delivery system, and other features of the biomaterials make them highly attractive. In particular, we briefly discuss the plasma-assisted fabrication of gold and silicon nanoparticles for bio-applications; carbon nanoparticles for bioimaging and cancer therapy; carbon nanotube-based platforms for enzyme production and bacteria growth control, and other applications of low-temperature plasmas in the production of biologically-active materials.
Phase field modeling of rapid crystallization in the phase-change material AIST
NASA Astrophysics Data System (ADS)
Tabatabaei, Fatemeh; Boussinot, Guillaume; Spatschek, Robert; Brener, Efim A.; Apel, Markus
2017-07-01
We carry out phase field modeling as a continuum simulation technique in order to study rapid crystallization processes in the phase-change material AIST (Ag4In3Sb67Te26). In particular, we simulate the spatio-temporal evolution of the crystallization of a molten area of the phase-change material embedded in a layer stack. The simulation model is adapted to the experimental conditions used for recent measurements of crystallization rates by a laser pulse technique. Simulations are performed for substrate temperatures close to the melting temperature of AIST down to low temperatures when an amorphous state is involved. The design of the phase field model using the thin interface limit allows us to retrieve the two limiting regimes of interface controlled (low temperatures) and thermal transport controlled (high temperatures) dynamics. Our simulations show that, generically, the crystallization velocity presents a maximum in the intermediate regime where both the interface mobility and the thermal transport, through the molten area as well as through the layer stack, are important. Simulations reveal the complex interplay of all different contributions. This suggests that the maximum switching velocity depends not only on material properties but also on the precise design of the thin film structure into which the phase-change material is embedded.
Material Outgassing, Identification and Deposition, MOLIDEP System
NASA Technical Reports Server (NTRS)
Scialdone, John J.; Montoya, Alex F.
2002-01-01
The outgassing tests are performed employing a modified vacuum operated Cahn analytical microbalance, identified as the MOLIDEP system. The test measures under high vacuum, the time varying Molecular mass loss of a material sample held at a chosen temperature; it Identifies the outgassing molecular components using an inline SRS 300 amu Residual Gas Analyzer (RGA) and employs a temperature controlled 10 MHz Quartz Crystal Microbalance (QCM) to measure the condensable DEPosits. Both the QCM and the RGA intercept within the conductive passage the outgassing products being evacuated by a turbomolecular pump. The continuous measurements of the mass loss, the rate of loss, the sample temperature, the rate of temperature change, the QCM temperature and the QCM recorded condensable deposits or rate of deposits are saved to an Excel spreadsheet. A separate computer controls the RGA.
A levitation instrument for containerless study of molten materials.
Nordine, Paul C; Merkley, Dennis; Sickel, Jeffrey; Finkelman, Steve; Telle, Rainer; Kaiser, Arno; Prieler, Robert
2012-12-01
A new aero-acoustic levitation instrument (AAL) has been installed at the Institute for Mineral Engineering at RWTH University in Aachen, Germany. The AAL employs acoustically stabilized gas jet levitation with laser-beam heating and melting to create a contact-free containerless environment for high temperature materials research. Contamination-free study of liquids is possible at temperatures in excess of 3000 °C and of undercooled liquids at temperatures far below the melting point. Digital control technology advances the art of containerless experiments to obtain long-term levitation stability, allowing new experiments in extreme temperature materials research and to study operation of the levitation instrument itself. Experiments with liquid Al(2)O(3) at temperatures more than 3200 °C, 1200 °C above the melting point, and with liquid Y(3)Al(5)O(12) far below the melting point are reported. Fast pyrometry and video recording instruments yield crystallization rates in undercooled liquid Al(2)O(3) as a function of temperature. Levitation of dense liquid HfO(2) at temperatures above 2900 °C is demonstrated. Capabilities are described for resonant frequency matching in the three-axis acoustic positioning system, acoustic control of sample spin, and position control of standing wave nodes to stabilize levitation under changing experimental conditions. Further development and application of the levitation technology is discussed based on the results of experiments and modeling of instrument operations.
A levitation instrument for containerless study of molten materials
NASA Astrophysics Data System (ADS)
Nordine, Paul C.; Merkley, Dennis; Sickel, Jeffrey; Finkelman, Steve; Telle, Rainer; Kaiser, Arno; Prieler, Robert
2012-12-01
A new aero-acoustic levitation instrument (AAL) has been installed at the Institute for Mineral Engineering at RWTH University in Aachen, Germany. The AAL employs acoustically stabilized gas jet levitation with laser-beam heating and melting to create a contact-free containerless environment for high temperature materials research. Contamination-free study of liquids is possible at temperatures in excess of 3000 °C and of undercooled liquids at temperatures far below the melting point. Digital control technology advances the art of containerless experiments to obtain long-term levitation stability, allowing new experiments in extreme temperature materials research and to study operation of the levitation instrument itself. Experiments with liquid Al2O3 at temperatures more than 3200 °C, 1200 °C above the melting point, and with liquid Y3Al5O12 far below the melting point are reported. Fast pyrometry and video recording instruments yield crystallization rates in undercooled liquid Al2O3 as a function of temperature. Levitation of dense liquid HfO2 at temperatures above 2900 °C is demonstrated. Capabilities are described for resonant frequency matching in the three-axis acoustic positioning system, acoustic control of sample spin, and position control of standing wave nodes to stabilize levitation under changing experimental conditions. Further development and application of the levitation technology is discussed based on the results of experiments and modeling of instrument operations.
Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems
Meisner, Gregory P
2013-10-08
Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.
NASA Astrophysics Data System (ADS)
Schweitzer, Susanne; Nemitz, Wolfgang; Sommer, Christian; Hartmann, Paul; Fulmek, Paul; Nicolics, Johann; Pachler, Peter; Hoschopf, Hans; Schrank, Franz; Langer, Gregor; Wenzl, Franz P.
2014-09-01
For a systematic approach to improve the white light quality of phosphor converted light-emitting diodes (LEDs) for general lighting applications it is imperative to get the individual sources of error for color temperature reproducibility under control. In this regard, it is imperative to understand how compositional, optical and materials properties of the color conversion element (CCE), which typically consists of phosphor particles embedded in a transparent matrix material, affect the constancy of a desired color temperature of a white LED source. In this contribution we use an LED assembly consisting of an LED die mounted on a printed circuit board (PCB) by chip-on-board technology and a CCE with a glob-top configuration as a model system and discuss the impact of potential sources for color temperature deviation among individual devices. Parameters that are investigated include imprecisions in the amount of materials deposition, deviations from the target value for the phosphor concentration in the matrix material, deviations from the target value for the particle sizes of the phosphor material, deviations from the target values for the refractive indexes of phosphor and matrix material as well as deviations from the reflectivity of the substrate surface. From these studies, some general conclusions can be drawn which of these parameters have the largest impact on color deviation and have to be controlled most precisely in a fabrication process in regard of color temperature reproducibility among individual white LED sources.
Passive temperature control based on a phase change metasurface.
Wu, Sheng-Rui; Lai, Kuan-Lin; Wang, Chih-Ming
2018-05-16
In this paper, a tunable mid-infrared metasurface based on VO 2 phase change material is proposed for temperature control. The proposed structure consisting of a VO 2 /SiO 2 /VO 2 cavity supports a thermally switchable Fabry-Perot-like resonance mode at the transparency window of the atmosphere. Theoretically, the radiative cooling power density of the proposed metasurface can be switched to four-fold as the device temperature is below/above the phase change temperature of VO 2 . Besides radiative cooling, a passive temperature control application based on this huge cooling power switching ability is theoretically demonstrated. We believe the proposed device can be applied for small radiative cooling and temperature control applications.
NASA Technical Reports Server (NTRS)
Rey, Charles A.
1991-01-01
The development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements are discussed. Efforts were directed towards the following task areas: design and development of a High Temperature Acoustic Levitator (HAL) for containerless processing and property measurements at high temperatures; testing of the HAL module to establish this technology for use as a positioning device for microgravity uses; construction and evaluation of a brassboard hot wall Acoustic Levitation Furnace; construction and evaluation of a noncontact temperature measurement (NCTM) system based on AGEMA thermal imaging camera; construction of a prototype Division of Amplitude Polarimetric Pyrometer for NCTM of levitated specimens; evaluation of and recommendations for techniques to control contamination in containerless materials processing chambers; and evaluation of techniques for heating specimens to high temperatures for containerless materials experimentation.
NASA Astrophysics Data System (ADS)
Rey, Charles A.
1991-03-01
The development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements are discussed. Efforts were directed towards the following task areas: design and development of a High Temperature Acoustic Levitator (HAL) for containerless processing and property measurements at high temperatures; testing of the HAL module to establish this technology for use as a positioning device for microgravity uses; construction and evaluation of a brassboard hot wall Acoustic Levitation Furnace; construction and evaluation of a noncontact temperature measurement (NCTM) system based on AGEMA thermal imaging camera; construction of a prototype Division of Amplitude Polarimetric Pyrometer for NCTM of levitated specimens; evaluation of and recommendations for techniques to control contamination in containerless materials processing chambers; and evaluation of techniques for heating specimens to high temperatures for containerless materials experimentation.
NASA's high-temperature engine materials program for civil aeronautics
NASA Technical Reports Server (NTRS)
Gray, Hugh R.; Ginty, Carol A.
1992-01-01
The Advanced High-Temperature Engine Materials Technology Program is described in terms of its research initiatives and its goal of developing propulsion systems for civil aeronautics with low levels of noise, pollution, and fuel consumption. The program emphasizes the analysis and implementation of structural materials such as polymer-matrix composites in fans, casings, and engine-control systems. Also investigated in the program are intermetallic- and metal-matrix composites for uses in compressors and turbine disks as well as ceramic-matrix composites for extremely high-temperature applications such as turbine vanes.
NASA Astrophysics Data System (ADS)
Singh, Bipin K.; Pandey, Praveen C.; Rastogi, Vipul
2018-05-01
Tunable temperature dependent terahertz photonic band gaps (PBGs) in one-dimensional (1-D) photonic crystal composed of alternating layers of graded index and semiconductor materials are demonstrated. Results show the influence of temperature, geometrical parameters, grading profile and material damping factor on the PBGs. Number of PBG increases with increasing the layer thickness and their bandwidth can be tuned with external temperature and grading parameters. Lower order band gap is more sensitive to the temperature which shows increasing trend with temperature, and higher order PBGs can also be tuned by controlling the external temperature. Band edges of PBGs are shifted toward higher frequency side with increasing the temperature. Results show that the operational frequencies of PBGs are unaffected when loss involved. This work enables to design tunable Temperature dependent terahertz photonic devices such as reflectors, sensors and filters etc.
NASA Technical Reports Server (NTRS)
1993-01-01
Small Business Innovation Research (SBIR) contracts led to two commercial instruments and a new subsidiary for Physical Sciences, Inc. (PSI). The FAST system, originally developed for testing the effect of space environment on materials, is now sold commercially for use in aging certification of materials intended for orbital operation. The Optical Temperature Monitor was designed for precise measurement of high temperatures on certain materials to be manufactured in space. The original research was extended to the development of a commercial instrument that measures and controls fuel gas temperatures in industrial boilers. PSI created PSI Environmental Instruments to market the system. The company also offers an Aerospace Measurement Service that has evolved from other SBIR contracts.
Requirements and test results for the qualification of thermal control coatings
NASA Technical Reports Server (NTRS)
Brzuskiewicz, J. E.; Zerlaut, G. A.; Lauder, K.; Miller, G. M.
1988-01-01
Paint type coatings are often used as engineering materials in critical satellite temperature control applications. The functional features of coatings used for temperature control purposes must remain stable throughout the satellite manufacturing process and the satellite mission. The selection of a particular coating depends on matching coating characteristics to mission requirements. The use of paint coatings on satellites, although having an extensive history, requires that the paint be qualified to each application on an individual basis. Thus, the qualification process through testing serves to ensure that paint coatings as engineering materials will fulfill design requirements.
NASA Technical Reports Server (NTRS)
Bartolotta, Paul A.
1991-01-01
Metal Matrix Composites (MMC) and Intermetallic Matrix Composites (IMC) were identified as potential material candidates for advanced aerospace applications. They are especially attractive for high temperature applications which require a low density material that maintains its structural integrity at elevated temperatures. High temperature fatigue resistance plays an important role in determining the structural integrity of the material. This study attempts to examine the relevance of test techniques, failure criterion, and life prediction as they pertain to an IMC material, specifically, unidirectional SiC fiber reinforced titanium aluminide. A series of strain and load controlled fatigue tests were conducted on unidirectional SiC/Ti-24Al-11Nb composite at 425 and 815 C. Several damage mechanism regimes were identified by using a strain-based representation of the data, Talreja's fatigue life diagram concept. Results of these tests were then used to address issues of test control modes, definition of failure, and testing techniques. Finally, a strain-based life prediction method was proposed for an IMC under tensile cyclic loadings at elevated temperatures.
Characterizing the temperature dependence of electronic packaging-material properties
NASA Astrophysics Data System (ADS)
Fu, Chia-Yu; Ume, Charles
1995-06-01
A computer-controlled, temperature-dependent material characterization system has been developed for thermal deformation analysis in electronic packaging applications, especially for printed wiring assembly warpage study. For fiberglass-reinforced epoxy (FR-4 type) material, the Young's moduli decrease to as low as 20-30% of the room-temperature values, while the shear moduli decrease to as low as 60-70% of the room-temperature values. The electrical resistance strain gage technique was used in this research. The test results produced overestimated values in property measurements, and this was shown in a case study. A noncontact strau]n measurement technique (laser extensometer) is now being used to measure these properties. Discrepancies of finite-element warpage predictions using different property values increase as the temperature increases from the stress-free temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrun`kin, S.P.; Garavina, E.V.; Trostin, V.N.
1995-02-01
A container (cell) and a temperature-control system have been designed enabling one to carry out x-ray diffraction study of liquid samples both at a fixed temperature and within a certain temperature range using a commercial DRON-UMl x-ray diffractometer. Special features of the cell and the materials used for it allow one to study both chemically inert and corrosive liquids.
Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes
Fei, Linfeng; Lei, Shuijin; Zhang, Wei-Bing; Lu, Wei; Lin, Ziyuan; Lam, Chi Hang; Chai, Yang; Wang, Yu
2016-01-01
A microscopic understanding of the growth mechanism of two-dimensional materials is of particular importance for controllable synthesis of functional nanostructures. Because of the lack of direct and insightful observations, how to control the orientation and the size of two-dimensional material grains is still under debate. Here we discern distinct formation stages for MoS2 flakes from the thermolysis of ammonium thiomolybdates using in situ transmission electron microscopy. In the initial stage (400 °C), vertically aligned MoS2 structures grow in a layer-by-layer mode. With the increasing temperature of up to 780 °C, the orientation of MoS2 structures becomes horizontal. When the growth temperature reaches 850 °C, the crystalline size of MoS2 increases by merging adjacent flakes. Our study shows direct observations of MoS2 growth as the temperature evolves, and sheds light on the controllable orientation and grain size of two-dimensional materials. PMID:27412892
NASA Astrophysics Data System (ADS)
Wang, Baoming; Haque, M. A.
2015-08-01
With atomic-scale imaging and analytical capabilities such as electron diffraction and energy-loss spectroscopy, the transmission electron microscope has allowed access to the internal microstructure of materials like no other microscopy. It has been mostly a passive or post-mortem analysis tool, but that trend is changing with in situ straining, heating and electrical biasing. In this study, we design and demonstrate a multi-functional microchip that integrates actuators, sensors, heaters and electrodes with freestanding electron transparent specimens. In addition to mechanical testing at elevated temperatures, the chip can actively control microstructures (grain growth and phase change) of the specimen material. Using nano-crystalline aluminum, nickel and zirconium as specimen materials, we demonstrate these novel capabilities inside the microscope. Our approach of active microstructural control and quantitative testing with real-time visualization can influence mechanistic modeling by providing direct and accurate evidence of the fundamental mechanisms behind materials behavior.
NASA Technical Reports Server (NTRS)
Taylor, Shawn C.; DeMange, Jeffrey J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.
2006-01-01
Knitted metallic spring tubes are the structural backbones that provide resiliency in control surface seals for use on current and future reusable space launch vehicles. Control surface seals fill the space between movable control surfaces such as body flaps, rudders and elevons, and the static body structures to which they are attached. These seals must remain in continuous contact with opposing surfaces to prevent the ingestion of damaging hot gases encountered during atmospheric re-entry. The Inconel X-750 (Special Metals Corporation) spring tube utilized in the baseline control surface seal shows significant resiliency loss when compressed at temperatures as low as 1200 F. High temperature compression testing and microstructural analysis show that creep is the dominant deformation mechanism leading to permanent set and resiliency loss in tested spring tube samples. Additional evaluation using a structured design of experiments approach shows that spring tube performance, primarily high temperature resiliency, can be enhanced through material substitution of Rene 41 (Allvac) alloy (for the baseline Inconel X-750 material) when coupled with specialized thermal processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Mohit Jain; Dr. Ganesh Skandan; Dr. Gordon E. Khose
Generation IV Very High Temperature power generating nuclear reactors will operate at temperatures greater than 900 oC. At these temperatures, the components operating in these reactors need to be fabricated from materials with excellent thermo-mechanical properties. Conventional pure or composite materials have fallen short in delivering the desired performance. New materials, or conventional materials with new microstructures, and associated processing technologies are needed to meet these materials challenges. Using the concept of functionally graded materials, we have fabricated a composite material which has taken advantages of the mechanical and thermal properties of ceramic and metals. Functionally-graded composite samples with variousmore » microstructures were fabricated. It was demonstrated that the composition and spatial variation in the composition of the composite can be controlled. Some of the samples were tested for irradiation resistance to neutrons. The samples did not degrade during initial neutron irradiation testing.« less
Advanced Electrical Materials and Components Being Developed
NASA Technical Reports Server (NTRS)
Schwarze, Gene E.
2004-01-01
All aerospace systems require power management and distribution (PMAD) between the energy and power source and the loads. The PMAD subsystem can be broadly described as the conditioning and control of unregulated power from the energy source and its transmission to a power bus for distribution to the intended loads. All power and control circuits for PMAD require electrical components for switching, energy storage, voltage-to-current transformation, filtering, regulation, protection, and isolation. Advanced electrical materials and component development technology is a key technology to increasing the power density, efficiency, reliability, and operating temperature of the PMAD. The primary means to develop advanced electrical components is to develop new and/or significantly improved electronic materials for capacitors, magnetic components, and semiconductor switches and diodes. The next important step is to develop the processing techniques to fabricate electrical and electronic components that exceed the specifications of presently available state-of-the-art components. The NASA Glenn Research Center's advanced electrical materials and component development technology task is focused on the following three areas: 1) New and/or improved dielectric materials for the development of power capacitors with increased capacitance volumetric efficiency, energy density, and operating temperature; 2) New and/or improved high-frequency, high-temperature soft magnetic materials for the development of transformers and inductors with increased power density, energy density, electrical efficiency, and operating temperature; 3) Packaged high-temperature, high-power density, high-voltage, and low-loss SiC diodes and switches.
Bioinspired large-scale aligned porous materials assembled with dual temperature gradients
Bai, Hao; Chen, Yuan; Delattre, Benjamin; Tomsia, Antoni P.; Ritchie, Robert O.
2015-01-01
Natural materials, such as bone, teeth, shells, and wood, exhibit outstanding properties despite being porous and made of weak constituents. Frequently, they represent a source of inspiration to design strong, tough, and lightweight materials. Although many techniques have been introduced to create such structures, a long-range order of the porosity as well as a precise control of the final architecture remain difficult to achieve. These limitations severely hinder the scale-up fabrication of layered structures aimed for larger applications. We report on a bidirectional freezing technique to successfully assemble ceramic particles into scaffolds with large-scale aligned, lamellar, porous, nacre-like structure and long-range order at the centimeter scale. This is achieved by modifying the cold finger with a polydimethylsiloxane (PDMS) wedge to control the nucleation and growth of ice crystals under dual temperature gradients. Our approach could provide an effective way of manufacturing novel bioinspired structural materials, in particular advanced materials such as composites, where a higher level of control over the structure is required. PMID:26824062
NDE standards for high temperature materials
NASA Technical Reports Server (NTRS)
Vary, Alex
1991-01-01
High temperature materials include monolithic ceramics for automotive gas turbine engines and also metallic/intermetallic and ceramic matrix composites for a range of aerospace applications. These are materials that can withstand extreme operating temperatures that will prevail in advanced high-efficiency gas turbine engines. High temperature engine components are very likely to consist of complex composite structures with three-dimensionality interwoven and various intermixed ceramic fibers. The thermomechanical properties of components made of these materials are actually created in-place during processing and fabrication stages. The complex nature of these new materials creates strong incentives for exact standards for unambiguous evaluations of defects and microstructural characteristics. NDE techniques and standards that will ultimately be applicable to production and quality control of high temperature materials and structures are still emerging. The needs range from flaw detection to below 100 micron levels in monolithic ceramics to global imaging of fiber architecture and matrix densification anomalies in composites. The needs are different depending on the processing stage, fabrication method, and nature of the finished product. The standards are discussed that must be developed in concert with advances in NDE technology, materials processing research, and fabrication development. High temperature materials and structures that fail to meet stringent specifications and standards are unlikely to compete successfully either technologically or in international markets.
Very high temperature chemistry: Science justification for containerless experimentation in space
NASA Technical Reports Server (NTRS)
Hofmeister, William H.; Nordine, Paul
1990-01-01
A summary is presented of the justification for application of containerless processing in space to high temperature science. Low earth orbit offers a gravitational environment that allows samples to be positioned in an experimental apparatus by very small forces. Well controlled experiments become possible on reactive materials at high temperatures in a reasonably quiescent state and without container contamination. This provides an opportunity to advance the science of high temperature chemistry that can only be realized with a commitment by NASA to provide advanced facilities for in-space containerless study of materials at very high temperature.
Supercooling Water in Cylindrical Capsules
NASA Astrophysics Data System (ADS)
Guzman, J. J. Milón; Braga, S. L.
2005-11-01
An experimental apparatus was developed to investigate the supercooling phenomenon of water inside cylindrical capsules used for a cold storage process. The coolant is a water-alcohol mixture controlled by a constant temperature bath (CTB). Temperatures varying with time are measured inside and outside the capsule. Cylinders with an internal diameter and thickness of 45 and 1.5 mm, respectively, were made from four different materials: acrylic, PVC, brass, and aluminum. The supercooling period of the water and the nucleation temperature were investigated for different coolant temperatures. The supercooling and nucleation probabilities are shown as a function of the coolant temperature for the four different materials.
Annual Fuze Conference and Munitions Technology Symposium VI (43rd)
1999-04-07
part manufacture and assembly and identify the parameters that we must control through production. Analyzing the coefficients of variation and the...processing energetic materials. The extruder is equipped with four independent temperature control zones, segmented screws, a jacketed die block capable of...and has vacuum capability. Data monitoring capabilities include melt temperature and pressure, torque, screw speed, and temperatures in all of the
Long-lived thermal control materials for high temperature and deep space applications
NASA Technical Reports Server (NTRS)
Whitt, Robin; O'Donnell, Tim
1988-01-01
Considerable effort has been put into developing thermal-control materials for the Galileo space-craft. This paper presents a summary of these findings to date with emphasis on requirements, testing and results for the post-Challenger Galileo mission. Polyimide film (Kapton), due to its inherent stability in vacuum, UV, and radiation environments, combined with good mechanical properties over a large temperature range, has been the preferred substrate for spacecraft thermal control materials. Composite outer layers, using Kapton substrates, can be fabricated to meet the requirements of severe space environments. Included in the processing of Kapton-based composite outer layers can be the deposition of metal oxide, metallic and/or polymeric thin-film coatings to provide desirable electrical, optical and thermo-optical properties. In addition, reinforcement of Kapton substrates with fabrics and films is done to improve mechanical properties. Also these substrates can be filled with varying amounts of carbon to achieve particular electrical properties. The investigation and material development reported on here has led to improved thermo-gravimetric stability, surface conductivity, RF transparency, radiation and UV stability, flammability and handle-ability of outer layer thermal control materials for deep space and near-sun spacecraft. Designing, testing, and qualifying composite thermal-control film materials to meet the requirements of the Galileo spacecraft is the scope of this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charbonneau, Mark William
Processes of controlling submerged combustion melters, and systems for carrying out the methods. One process includes feeding vitrifiable material into a melter vessel, the melter vessel including a fluid-cooled refractory panel in its floor, ceiling, and/or sidewall, and heating the vitrifiable material with a burner directing combustion products into the melting zone under a level of the molten material in the zone. Burners impart turbulence to the molten material in the melting zone. The fluid-cooled refractory panel is cooled, forming a modified panel having a frozen or highly viscous material layer on a surface of the panel facing the moltenmore » material, and a sensor senses temperature of the modified panel using a protected thermocouple positioned in the modified panel shielded from direct contact with turbulent molten material. Processes include controlling the melter using the temperature of the modified panel. Other processes and systems are presented.« less
Manabe, Kengo; Matsubayashi, Takeshi; Tenjimbayashi, Mizuki; Moriya, Takeo; Tsuge, Yosuke; Kyung, Kyu-Hong; Shiratori, Seimei
2016-09-29
Inspired by biointerfaces, such as the surfaces of lotus leaves and pitcher plants, researchers have developed innovative strategies for controlling surface wettability and transparency. In particular, great success has been achieved in obtaining low adhesion and high transmittance via the introduction of a liquid layer to form liquid-infused surfaces. Furthermore, smart surfaces that can change their surface properties according to external stimuli have recently attracted substantial interest. As some of the best-performing smart surface materials, slippery liquid-infused porous surfaces (SLIPSs), which are super-repellent, demonstrate the successful achievement of switchable adhesion and tunable transparency that can be controlled by a graded mechanical stimulus. However, despite considerable efforts, producing temperature-responsive, super-repellent surfaces at ambient temperature and pressure remains difficult because of the use of nonreactive lubricant oil as a building block in previously investigated repellent surfaces. Therefore, the present study focused on developing multifunctional materials that dynamically adapt to temperature changes. Here, we demonstrate temperature-activated solidifiable/liquid paraffin-infused porous surfaces (TA-SLIPSs) whose transparency and control of water droplet movement at room temperature can be simultaneously controlled. The solidification of the paraffin changes the surface morphology and the size of the light-transmission inhibitor in the lubricant layer; as a result, the control over the droplet movement and the light transmittance at different temperatures is dependent on the solidifiable/liquid paraffin mixing ratio. Further study of such temperature-responsive, multifunctional systems would be valuable for antifouling applications and the development of surfaces with tunable optical transparency for innovative medical applications, intelligent windows, and other devices.
Automated High-Temperature Hall-Effect Apparatus
NASA Technical Reports Server (NTRS)
Parker, James B.; Zoltan, Leslie D.
1992-01-01
Automated apparatus takes Hall-effect measurements of specimens of thermoelectric materials at temperatures from ambient to 1,200 K using computer control to obtain better resolution of data and more data points about three times as fast as before. Four-probe electrical-resistance measurements taken in 12 electrical and 2 magnetic orientations to characterize specimens at each temperature. Computer acquires data, and controls apparatus via three feedback loops: one for temperature, one for magnetic field, and one for electrical-potential data.
46 CFR 153.440 - Cargo temperature sensors.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo temperature sensors. 153.440 Section 153.440... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Temperature Control Systems § 153.440 Cargo temperature sensors. (a) Except as prescribed in paragraph (c) of...
46 CFR 153.440 - Cargo temperature sensors.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo temperature sensors. 153.440 Section 153.440... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Temperature Control Systems § 153.440 Cargo temperature sensors. (a) Except as prescribed in paragraph (c) of...
46 CFR 153.438 - Cargo pressure or temperature alarms required.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo pressure or temperature alarms required. 153.438... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Temperature Control Systems § 153.438 Cargo pressure or temperature alarms required. (a...
46 CFR 153.438 - Cargo pressure or temperature alarms required.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo pressure or temperature alarms required. 153.438... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Temperature Control Systems § 153.438 Cargo pressure or temperature alarms required. (a...
46 CFR 153.438 - Cargo pressure or temperature alarms required.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo pressure or temperature alarms required. 153.438... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Temperature Control Systems § 153.438 Cargo pressure or temperature alarms required. (a...
46 CFR 153.438 - Cargo pressure or temperature alarms required.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo pressure or temperature alarms required. 153.438... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Temperature Control Systems § 153.438 Cargo pressure or temperature alarms required. (a...
46 CFR 153.438 - Cargo pressure or temperature alarms required.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo pressure or temperature alarms required. 153.438... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Temperature Control Systems § 153.438 Cargo pressure or temperature alarms required. (a...
Salt flux synthesis of single and bimetallic carbide nanowires
NASA Astrophysics Data System (ADS)
Leonard, Brian M.; Waetzig, Gregory R.; Clouser, Dale A.; Schmuecker, Samantha M.; Harris, Daniel P.; Stacy, John M.; Duffee, Kyle D.; Wan, Cheng
2016-07-01
Metal carbide compounds have a broad range of interesting properties and are some of the hardest and highest melting point compounds known. However, their high melting points force very high reaction temperatures and thus limit the formation of high surface area nanomaterials. To avoid the extreme synthesis temperatures commonly associated with these materials, a new salt flux technique has been employed to reduce reaction temperatures and form these materials in the nanometer regime. Additionally, the use of multiwall carbon nanotubes as a reactant further reduces the diffusion distance and provides a template for the final carbide materials. The metal carbide compounds produced through this low temperature salt flux technique maintain the nanowire morphology of the carbon nanotubes but increase in size to ˜15-20 nm diameter due to the incorporation of metal in the carbon lattice. These nano-carbides not only have nanowire like shape but also have much higher surface areas than traditionally prepared metal carbides. Finally, bimetallic carbides with composition control can be produced with this method by simply using two metal precursors in the reaction. This method provides the ability to produce nano sized metal carbide materials with size, morphology, and composition control and will allow for these compounds to be synthesized and studied in a whole new size and temperature regime.
Richardson, John G.; Morrison, John L.; Hawkes, Grant L.
2006-07-04
An induction heating apparatus includes a measurement device for indicating an electrical resistance of a material to be heated. A controller is configured for energizing an inductor in response to the indicated resistance. An inductor may be energized with an alternating current, a characteristic of which may be selected in response to an indicated electrical resistance. Alternatively, a temperature of the material may be indicated via measuring the electrical resistance thereof and a characteristic of an alternating current for energizing the inductor may be selected in response to the temperature. Energizing the inductor may minimize the difference between a desired and indicated resistance or the difference between a desired and indicated temperature. A method of determining a temperature of at least one region of at least one material to be induction heated includes correlating a measured electrical resistance thereof to an average temperature thereof.
Containerless high temperature property measurements
NASA Technical Reports Server (NTRS)
Nordine, Paul C.; Weber, J. K. Richard; Krishnan, Shankar; Anderson, Collin D.
1991-01-01
Containerless processing in the low gravity environment of space provides the opportunity to increase the temperature at which well controlled processing of and property measurements on materials is possible. This project was directed towards advancing containerless processing and property measurement techniques for application to materials research at high temperatures in space. Containerless high temperature material property studies include measurements of the vapor pressure, melting temperature, optical properties, and spectral emissivities of solid boron. The reaction of boron with nitrogen was also studied by laser polarimetric measurement of boron nitride film growth. The optical properties and spectral emissivities were measured for solid and liquid silicon, niobium, and zirconium; liquid aluminum and titanium; and liquid Ti-Al alloys of 5 to 60 atomic pct. titanium. Alternative means for noncontact temperature measurement in the absence of material emissivity data were evaluated. Also, the application of laser induced fluorescence for component activity measurements in electromagnetic levitated liquids was studied, along with the feasibility of a hybrid aerodynamic electromagnetic levitation technique.
Gas-phase measurements of combustion interaction with materials for radiation-cooled chambers
NASA Technical Reports Server (NTRS)
Barlow, R. S.; Lucht, R. P.; Jassowski, D. M.; Rosenberg, S. D.
1991-01-01
Foil samples of Ir and Pt are exposed to combustion products in a controlled premixed environment at atmospheric pressure. Electrical heating of the foil samples is used to control the surface temperature and to elevate it above the radiative equilibrium temperature within the test apparatus. Profiles of temperature and OH concentration in the boundary layer adjacent to the specimen surface are measured by laser-induced fluorescence. Measured OH concentrations are significantly higher than equilibrium concentrations calculated for the known mixture ratio and the measured temperature profiles. This result indicates that superequilibrium concentrations of H-atoms and O-atoms are also present in the boundary layer, due to partial equilibrium of the rapid binary reactions of the H2/O2 chemical kinetic system. These experiments are conducted as part of a research program to investigate fundamental aspects of the interaction of combustion gases with advanced high-temperature materials for radiation-cooled thrusters.
Weld Nugget Temperature Control in Thermal Stir Welding
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey (Inventor)
2014-01-01
A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).
NASA Technical Reports Server (NTRS)
McDonald, Robert C.; VanBlarcom, Shelly L.; Kwasnik, Katherine E.
2013-01-01
A document discusses a thin layer of composite material, made from nano scale particles of nickel and Teflon, placed within a battery cell as a layer within the anode and/or the cathode. There it conducts electrons at room temperature, then switches to an insulator at an elevated temperature to prevent thermal runaway caused by internal short circuits. The material layer controls excess currents from metal-to-metal or metal-to-carbon shorts that might result from cell crush or a manufacturing defect
Spannagel, Ruven; Hamann, Ines; Sanjuan, Josep; Schuldt, Thilo; Gohlke, Martin; Johann, Ulrich; Weise, Dennis; Braxmaier, Claus
2016-10-01
Space applications demand light weight materials with excellent dimensional stability for telescopes, optical benches, optical resonators, etc. Glass-ceramics and composite materials can be tuned to reach very low coefficient of thermal expansion (CTE) at different temperatures. In order to determine such CTEs, very accurate setups are needed. Here we present a dilatometer that is able to measure the CTE of a large variety of materials in the temperature range of 140 K to 250 K. The dilatometer is based on a heterodyne interferometer with nanometer noise levels to measure the expansion of a sample when applying small amplitude controlled temperature signals. In this article, the CTE of a carbon fiber reinforced polymer sample has been determined with an accuracy in the 10 -8 K -1 range.
Controlled Atmosphere High Temperature SPM for electrochemical measurements
NASA Astrophysics Data System (ADS)
Vels Hansen, K.; Sander, C.; Koch, S.; Mogensen, M.
2007-03-01
A new controlled atmosphere high temperature SPM has been designed and build for the purpose of performing electrochemical measurements on solid oxide fuel cell materials. The first tests show that images can be obtained at a surface temperature of 465°C in air with a standard AFM AC probe. The aim is to produce images at a surface temperature of 800°C with electrically conducting ceramic probes as working electrodes that can be positioned at desired locations at the surface for electrochemical measurements.
Temperature Controller System for Gas Gun Targets
NASA Astrophysics Data System (ADS)
Bucholtz, S. M.; Gehr, R. J.; Rupp, T. D.; Sheffield, S. A.; Robbins, D. L.
2006-07-01
A temperature controller system capable of heating and cooling gas gun targets over the range -75°C to +120°C was designed and tested. The system uses cold nitrogen gas from a liquid nitrogen Dewar for cooling and compressed air for heating. Two gas flow heaters control the gas temperature for both heating and cooling. One heater controls the temperature of the target mounting plate and the other the temperature of a copper tubing coil surrounding the target. Each heater is separately adjustable, so the target material will achieve a uniform temperature throughout its volume. A magnetic gauge membrane with integrated thermocouples was developed to measure the internal temperature of the target. Using this system, multiple magnetic gauge shock experiments, including equation-of-state measurements and shock initiation of high explosives, can be performed over a range of initial temperatures. Successful heating and cooling tests were completed on Teflon samples.
Estimating Hardness from the USDC Tool-Bit Temperature Rise
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Sherrit, Stewart
2008-01-01
A method of real-time quantification of the hardness of a rock or similar material involves measurement of the temperature, as a function of time, of the tool bit of an ultrasonic/sonic drill corer (USDC) that is being used to drill into the material. The method is based on the idea that, other things being about equal, the rate of rise of temperature and the maximum temperature reached during drilling increase with the hardness of the drilled material. In this method, the temperature is measured by means of a thermocouple embedded in the USDC tool bit near the drilling tip. The hardness of the drilled material can then be determined through correlation of the temperature-rise-versus-time data with time-dependent temperature rises determined in finite-element simulations of, and/or experiments on, drilling at various known rates of advance or known power levels through materials of known hardness. The figure presents an example of empirical temperature-versus-time data for a particular 3.6-mm USDC bit, driven at an average power somewhat below 40 W, drilling through materials of various hardness levels. The temperature readings from within a USDC tool bit can also be used for purposes other than estimating the hardness of the drilled material. For example, they can be especially useful as feedback to control the driving power to prevent thermal damage to the drilled material, the drill bit, or both. In the case of drilling through ice, the temperature readings could be used as a guide to maintaining sufficient drive power to prevent jamming of the drill by preventing refreezing of melted ice in contact with the drill.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diefenbacher, Jason; McKelvy, Michael; Chizmeshya, Andrew V.G.
2005-01-01
A microreactor has been developed for in situ, spectroscopic investigations of materials and reaction processes with full external pressure and temperature control from ambient conditions to 400 deg. C and 310 bar. The sample chamber is in direct contact with an external manifold, whereby gases, liquids or fluids can be injected and their activities controlled prior to and under investigation conditions. The microreactor employs high strength, single crystal moissanite windows which allow direct probe beam interaction with a sample to investigate in situ reaction processes and other materials properties. The relatively large volume of the cell, along with full opticalmore » accessibility and external temperature and pressure control, make this reaction cell well suited for experimental investigations involving any combination of gas, fluid, and solid interactions. The microreactor's capabilities are demonstrated through an in situ x-ray diffraction study of the conversion of a meta-serpentine sample to magnesite under high pressure and temperature. Serpentine is one of the mineral candidates for the implementation of mineral carbonation, an intriguing carbon sequestration candidate technology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diefenbacher, J.; McKelvy, M.; Chizemeshya, A.V.
2010-07-13
A microreactor has been developed for in situ, spectroscopic investigations of materials and reaction processes with full external pressure and temperature control from ambient conditions to 400 C and 310 bar. The sample chamber is in direct contact with an external manifold, whereby gases, liquids or fluids can be injected and their activities controlled prior to and under investigation conditions. The microreactor employs high strength, single crystal moissanite windows which allow direct probe beam interaction with a sample to investigate in situ reaction processes and other materials properties. The relatively large volume of the cell, along with full optical accessibilitymore » and external temperature and pressure control, make this reaction cell well suited for experimental investigations involving any combination of gas, fluid, and solid interactions. The microreactor's capabilities are demonstrated through an in situ x-ray diffraction study of the conversion of a meta-serpentine sample to magnesite under high pressure and temperature. Serpentine is one of the mineral candidates for the implementation of mineral carbonation, an intriguing carbon sequestration candidate technology.« less
Rutherford, David W.; Wershaw, Robert L.; Reeves, James B.
2008-01-01
Black carbon (pyrogenic materials including chars) in soils has been recognized as a substantial portion of soil organic matter, and has been shown to play a vital role in nutrient cycling; however, little is known concerning the properties of this material. Previous studies have largely been concerned with the creation of high-surface-area materials for use as sorbents. These materials have been manufactured at high temperature and have often been activated. Chars occurring in the environment can be formed over a wide range of temperature. Because it is extremely difficult to isolate black carbon once it has been incorporated in soils, chars produced in the laboratory under controlled conditions can be used to investigate the range of properties possible for natural chars. This report shows that charring conditions (temperature and time) have substantial impact on the acid functional group and lactone content of chars. Low temperatures (250?C) and long charring times (greater than 72 hours) produce chars with the highest acid functional group and lactone content. The charring of cellulose appears to be responsible for the creation of the acid functional group and lactones. The significance of this study is that low-temperature chars can have acid functional group contents comparable to humic materials (as high as 8.8 milliequivalents per gram). Acid functional group and lactone content decreases as charring temperature increases. The variation in formation conditions expected under natural fire conditions will result in a wide range of sorption properties for natural chars which are an important component of soil organic matter. By controlling the temperature and duration of charring, it is possible to tailor the sorption properties of chars, which may be used as soil amendments.
Method for producing catalysis from coal
Farcasiu, Malvina; Derbyshire, Frank; Kaufman, Phillip B.; Jagtoyen, Marit
1998-01-01
A method for producing catalysts from coal is provided comprising mixing an aqueous alkali solution with the coal, heating the aqueous mixture to treat the coal, drying the now-heated aqueous mixture, reheating the mixture to form carbonized material, cooling the mixture, removing excess alkali from the carbonized material, and recovering the carbonized material, wherein the entire process is carried out in controlled atmospheres, and the carbonized material is a hydrocracking or hydrodehalogenation catalyst for liquid phase reactions. The invention also provides for a one-step method for producing catalysts from coal comprising mixing an aqueous alkali solution with the coal to create a mixture, heating the aqueous mixture from an ambient temperature to a predetermined temperature at a predetermined rate, cooling the mixture, and washing the mixture to remove excess alkali from the treated and carbonized material, wherein the entire process is carried out in a controlled atmosphere.
Method for producing catalysts from coal
Farcasiu, M.; Derbyshire, F.; Kaufman, P.B.; Jagtoyen, M.
1998-02-24
A method for producing catalysts from coal is provided comprising mixing an aqueous alkali solution with the coal, heating the aqueous mixture to treat the coal, drying the now-heated aqueous mixture, reheating the mixture to form carbonized material, cooling the mixture, removing excess alkali from the carbonized material, and recovering the carbonized material, wherein the entire process is carried out in controlled atmospheres, and the carbonized material is a hydrocracking or hydrodehalogenation catalyst for liquid phase reactions. The invention also provides for a one-step method for producing catalysts from coal comprising mixing an aqueous alkali solution with the coal to create a mixture, heating the aqueous mixture from an ambient temperature to a predetermined temperature at a predetermined rate, cooling the mixture, and washing the mixture to remove excess alkali from the treated and carbonized material, wherein the entire process is carried out in a controlled atmosphere. 1 fig.
NASA Astrophysics Data System (ADS)
Yu, Long; Xu, Juanjuan; Zhang, Lifang; Xu, Xiaogang
2018-03-01
Based on stress-strength interference theory to establish the reliability mathematical model for high temperature and high pressure multi-stage decompression control valve (HMDCV), and introduced to the temperature correction coefficient for revising material fatigue limit at high temperature. Reliability of key dangerous components and fatigue sensitivity curve of each component are calculated and analyzed by the means, which are analyzed the fatigue life of control valve and combined with reliability theory of control valve model. The impact proportion of each component on the control valve system fatigue failure was obtained. The results is shown that temperature correction factor makes the theoretical calculations of reliability more accurate, prediction life expectancy of main pressure parts accords with the technical requirements, and valve body and the sleeve have obvious influence on control system reliability, the stress concentration in key part of control valve can be reduced in the design process by improving structure.
Proppant flowback control additives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, P.D.; Weaver, J.D.; Parker, M.A.
1996-12-31
This paper describes the laboratory and field development of thermoplastic film materials used to reduce proppant flowback that can occur after fracturing treatments. The paper provides a summary of flowback mechanism theories and laboratory tests comparing flowback tendency for various types of treating procedures and materials. Some of these materials include angular proppant, proppant/fiber mixtures, and proppant with film strips tested over a wide range of temperature, closure stress, and flow-rate conditions. Field treatment procedures are discussed, and several case histories are presented. All of the methods evaluated were effective in reducing proppant flowback under certain conditions. Heat-shrink film cutmore » into thin slivers proved to provide flowback reduction over broad temperature and closure stress ranges and was found to cause little impairment to fracture conductivity with some dependency on use concentration, temperature, and closure stress. The film materials were more resistant to damage caused by blending and pumping than all other materials evaluated. In addition, proppant packs, including consolidated packs, were significantly more tolerant of large, repeated stress changes. Field results indicate that the use of the heat-shrink film material as a flowback control agent permits more aggressive bean-up procedures following conventional fracturing treatments. Conventional dry-additive metering systems were used to add the film material to the fracturing fluid proppant slurry.« less
A Simple Temperature Gradient Apparatus To Determine Thermal Preference in "Daphnia."
ERIC Educational Resources Information Center
Fenske, Christiane; McCauley, Robert
2002-01-01
Explores the dominant factor controlling the distribution of Daphnia. Describes components of a temperature gradient apparatus that can be assembled from materials readily obtainable in the laboratory and hardware stores. Investigates whether the mean depth of Daphnia is determined by temperature. (KHR)
NASA Astrophysics Data System (ADS)
Lone, Abdul Gaffar; Bhowmik, R. N.
2018-04-01
We have prepared α-Fe1.6Ga0.4O3 (Ga doped α-Fe2O3) system in rhombohedral phase. The material has shown room temperature ferroelectric and ferromagnetic properties. The existence of magneto-electric coupling at room temperature has been confirmed by the experimental observation of magnetic field controlled electric properties and electric field controlled magnetization. The current-voltage characteristics were controlled by external magnetic field. The magnetic state switching and exchange bias effect are highly sensitive to the polarity and ON and OFF modes of external electric field. Such materials can find novel applications in magneto-electronic devices, especially in the field of electric field controlled spintronics devices and energy storage devices which need low power consumption.
Phase Change Fabrics Control Temperature
NASA Technical Reports Server (NTRS)
2009-01-01
Originally featured in Spinoff in 1997, Outlast Technologies Inc. (formerly Gateway Technologies Inc.) has built its entire product line on microencapsulated phase change materials, developed in Small Business Innovation Research (SBIR) contracts with Johnson Space Center after initial development for the U.S. Air Force. The Boulder, Colorado-based company acquired the exclusive patent rights and now integrates these materials into textiles or onto finished apparel, providing temperature regulation in bedding materials and a full line of apparel for both ordinary and extreme conditions.
Microstructure of Matrix in UHTC Composites
NASA Technical Reports Server (NTRS)
Johnson, Sylvia; Stackpoole, Margaret; Gusman, Michael I.; Chavez-Garia Jose; Doxtad, Evan
2011-01-01
Approaches to controlling the microstructure of Ultra High Temperature Ceramics (UHTCs) are described.. One matrix material has been infiltrated into carbon weaves to make composite materials. The microstructure of these composites is described.
Application of the double paddle oscillator for quantifying environmental, surface mass variation
NASA Astrophysics Data System (ADS)
Wei, Haoyan; Pomeroy, Joshua
2016-04-01
Sub-monolayer sensitivity to controlled gas adsorption and desorption is demonstrated using a double paddle oscillator (DPO) installed within an ultra-high vacuum (UHV) environmental chamber equipped with in situ film deposition, (multi)gas admission and temperature control. This effort is intended to establish a robust framework for quantitatively comparing mass changes due to gas loading and unloading on different materials systems selected or considered for use as mass artefacts. Our apparatus is composed of a UHV chamber with gas introduction and temperature control and in situ materials deposition for future materials testing enabling in situ preparation of virgin surfaces that can be monitored during initial exposure to gasses of interest. These tools are designed to allow us to comparatively evaluate how different materials gain or lose mass due to precisely controlled environmental excursions, with a long term goal of measuring changes in absolute mass. Herein, we provide a detailed experimental description of the apparatus, an evaluation of the initial performance, and demonstration measurements using nitrogen adsorption and desorption directly on the DPO.
Application of the double paddle oscillator for quantifying environmental, surface mass variation
Wei, Haoyan; Pomeroy, Joshua
2016-01-01
Sub-monolayer sensitivity to controlled gas adsorption and desorption is demonstrated using a double paddle oscillator (DPO) installed within an UHV (ultra-high vacuum) environmental chamber equipped with in situ film deposition, (multi)gas admission and temperature control. This effort is intended to establish a robust framework for quantitatively comparing mass changes due to gas loading and unloading on different materials systems selected or considered for use as mass artifacts. Our apparatus is composed of a UHV chamber with gas introduction and temperature control and in-situ materials deposition for future materials testing enabling in situ preparation of virgin surfaces that can be monitored during initial exposure to gasses of interest. These tools are designed to allow us to comparatively evaluate how different materials gain or lose mass due to precisely controlled environmental excursions, with a long term goal of measuring changes in absolute mass. Herein, we provide a detailed experimental description of the apparatus, an evaluation of the initial performance, and demonstration measurements using nitrogen adsorption and desorption directly on the DPO. PMID:27212736
NASA Astrophysics Data System (ADS)
Araki, Kuninari; Kamoto, Daigorou; Matsuoka, Shin-Ichi
The utilization is expected from the high-insulated characteristic as a tool for energy saving also in the high temperature insulation fields as in vacuum insulation panels (VIP) in the future. For high temperature, the material composition and process of VIP were reviewed, the SUS foil was adopted as packaging material, and soluble polyimide was developed as the thermo compression bonding material for high temperature VIP at 150°C. To lower the glass-transition temperature (Tg) under 200°C, we elaborated the new soluble polyimide using aliphatic diamine copolymer, and controlled Tg to about 176°C. By making from trial VIP and evaluations, it was possible to be maintain high performance concerning the coefficient of thermal conductivity [λ<0.008 W/(m·K) at 150°C].
46 CFR 151.40-10 - Operational requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Temperature or Pressure Control Installations § 151.40-10... visual high cargo temperature or high cargo pressure alarm which is discernible at the towboat. The alarm shall operate when either the pressure or the temperature exceeds the operating limits of the system...
46 CFR 151.40-10 - Operational requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Temperature or Pressure Control Installations § 151.40-10... visual high cargo temperature or high cargo pressure alarm which is discernible at the towboat. The alarm shall operate when either the pressure or the temperature exceeds the operating limits of the system...
46 CFR 151.40-10 - Operational requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Temperature or Pressure Control Installations § 151.40-10... visual high cargo temperature or high cargo pressure alarm which is discernible at the towboat. The alarm shall operate when either the pressure or the temperature exceeds the operating limits of the system...
46 CFR 151.40-10 - Operational requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Temperature or Pressure Control Installations § 151.40-10... visual high cargo temperature or high cargo pressure alarm which is discernible at the towboat. The alarm shall operate when either the pressure or the temperature exceeds the operating limits of the system...
Piplani, Ankita; Suresh Sajjan, M C; Ramaraju, A V; Tanwani, Tushar; Sushma, G; Ganathipathi, G; Jagdish, K; Agrawal, Anil
2016-01-01
The provisional restorative materials in fixed prosthodontics are basically bis-GMA resins which releases exothermic temperature while polymerization which can damage the pulp. Intrapulpal temperature exceeding 42.5°C found to result in irreversible damage to the pulp. The remaining thickness of dentine after tooth preparation control the conduction of heat released by the resins. (1) To quantify the temperature changes in the pulp chamber using different provisional restorative materials. (2) To evaluate the peak temperature time of different materials used. (3) To compare the intrapulpal temperature changes with a variation in the width of the finish line. Two intact mandibular molars were selected and designated as Specimen A and B. Tooth preparation was done to prepare a finish line of 1.2 mm and 1 mm width, respectively. Three provisional restorative materials were considered and they were grouped as Group I-Cool temp, Group II-Protemp-4, Group III-Integrity. A J thermocouple probe was placed into the pulp chamber to determine the rise in temperature. The temperature was recorded during polymerization at 30-s intervals until the peak temperature was reached. The same procedure was repeated for fabricating remaining provisional crowns. A total of 45 provisional crowns were fabricated for each specimen. Kruskal-Wallis test revealed that there was a significant difference in the temperature changes associated with the provisional restorative materials used. All the three provisional restorative materials were compared for 1.2 mm and 1 mm wide finish line. Integrity produced the highest temperature rise and the maximum temperature recorded was 40.2°C in 1.2 mm wide finish line. However, for a 1 mm wide finish line, Protemp-4 produced the highest temperature rise and the maximum temperature recorded was 40.3°C. It was observed that peak temperatures with Specimen B were more when compared with Specimen A. Cool temp showed least temperature rise in the pulp chamber. The order of rise in intrapulpal temperature in tested provisional materials using direct technique would be Cool temp, Integrity, and Protemp-4.
Method of making thermally removable polyurethanes
Loy, Douglas A.; Wheeler, David R.; McElhanon, James R.; Saunders, Randall S.; Durbin-Voss, Marvie Lou
2002-01-01
A method of making a thermally-removable polyurethane material by heating a mixture of a maleimide compound and a furan compound, and introducing alcohol and isocyanate functional groups, where the alcohol group and the isocyanate group reacts to form the urethane linkages and the furan compound and the maleimide compound react to form the thermally weak Diels-Alder adducts that are incorporated into the backbone of the urethane linkages during the formation of the polyurethane material at temperatures from above room temperature to less than approximately 90.degree. C. The polyurethane material can be easily removed within approximately an hour by heating to temperatures greater than approximately 90.degree. C. in a polar solvent. The polyurethane material can be used in protecting electronic components that may require subsequent removal of the solid material for component repair, modification or quality control.
Jiang, Jing [Nanjing University; Walters, Diane M [University of Wisconsin-Madison; Zhou, Dongshan [Nanjing University; Ediger, Mark D [University of Wisconsin-Madison
2016-08-18
Data set for work presented in Jiang, J.; Walters, D. M.; Zhou, D.; Ediger, M. D. “Substrate Temperature Controls Molecular Orientation in Two -Component Vapor-deposited Glasses.” Soft Matt. 2016, 12, 3265. Includes all data presented in the manuscript as well as example raw data and analysis.
[Co-composting high moisture vegetable waste and flower waste in a sequential fed operation].
Zhang, Xiangfeng; Wang, Hongtao; Nie, Yongfeng
2003-11-01
Co-composting of high moisture vegetable wastes (celery and cabbage) and flower wastes (carnation) were studied in a sequential fed bed. The preliminary materials of composting were celery and carnation wastes. The sequential fed materials of composting were cabbage wastes and were fed every 4 days. Moisture content of mixture materials was between 60% and 70%. Composting was done in an aerobic static bed of composting based temperature feedback and control via aeration rate regulation. Aeration was ended when temperature of the pile was about 40 degrees C. Changes of composting of temperature, aeration rate, water content, organic matter, ash, pH, volume, NH4(+)-N, and NO3(-)-N were studied. Results show that co-composting of high moisture vegetable wastes and flower wastes, in a sequential fed aerobic static bed based temperature feedback and control via aeration rate regulation, can stabilize organic matter and removal water rapidly. The sequential fed operation are effective to overcome the difficult which traditional composting cannot applied successfully where high moisture vegetable wastes in more excess of flower wastes, such as Dianchi coastal.
Development of a low-pressure materials pre-treatment process for improved energy efficiency
NASA Astrophysics Data System (ADS)
Lee, Kwanghee; You, Byung Don
2017-09-01
Low pressure materials pre-treatment process has been developed as an alternative to the existing high-temperature sludge drying, limestone calcination, and limonite dehydroxylation. Using the thermodynamic equilibrium relationship between temperature and pressure represented by the Clausius-Clapeyron equation, the operational temperature of these reactions could be lowered at reduced pressure for increased energy efficiency. For industrial sludge drying, the evaporation rate was controlled by interfacial kinetics showing a constant rate with time and significant acceleration in the reaction could be observed with reduced pressure. At this modified reaction rate under low pressure, the rate was also partially controlled by mass transfer. Temperature of limestone calcination was lowered, but the reaction was limited at the calculated equilibrium temperature of the Clausius-Clapeyron equation and slightly higher temperatures were required. The energy consumption during limestone calcination and limonite dehydroxylation were evaluated, where lower processing pressures could enhance the energy efficiency for limestone calcination, but limonite dehydroxylation could not achieve energy-savings due to the greater power consumption of the vacuum pump under lower pressure and reduced temperatures.
Temperature-regulated guest admission and release in microporous materials
Li, Gang; Shang, Jin; Gu, Qinfen; ...
2017-06-09
While it has long been known that some highly adsorbing microporous materials suddenly become inaccessible to guest molecules below certain temperatures, previous attempts to explain this phenomenon have failed. Here we show that this anomalous sorption behaviour is a temperature-regulated guest admission process, where the pore-keeping group’s thermal fluctuations are influenced by interactions with guest molecules. A physical model is presented to explain the atomic-level chemistry and structure of these thermally regulated micropores, which is crucial to systematic engineering of new functional materials such as tunable molecular sieves, gated membranes and controlled-release nanocontainers. The model was validated experimentally with Hmore » 2, N 2, Ar and CH 4 on three classes of microporous materials: trapdoor zeolites, supramolecular host calixarenes and metal-organic frameworks. We also demonstrate how temperature can be exploited to achieve appreciable hydrogen and methane storage in such materials without sustained pressure. Our findings also open new avenues for gas sensing and isotope separation.« less
Method And Apparatus For Evaluatin Of High Temperature Superconductors
Fishman, Ilya M.; Kino, Gordon S.
1996-11-12
A technique for evaluation of high-T.sub.c superconducting films and single crystals is based on measurement of temperature dependence of differential optical reflectivity of high-T.sub.c materials. In the claimed method, specific parameters of the superconducting transition such as the critical temperature, anisotropy of the differential optical reflectivity response, and the part of the optical losses related to sample quality are measured. The apparatus for performing this technique includes pump and probe sources, cooling means for sweeping sample temperature across the critical temperature and polarization controller for controlling a state of polarization of a probe light beam.
Materials and processing science: Limits for microelectronics
NASA Astrophysics Data System (ADS)
Rosenberg, R.
1988-09-01
The theme of this talk will be to illustrate examples of technologies that will drive materials and processing sciences to the limit and to describe some of the research being pursued to understand materials interactions which are pervasive to projected structure fabrication. It is to be expected that the future will see a progression to nanostructures where scaling laws will be tested and quantum transport will become more in evidence, to low temperature operation for tighter control and improved performance, to complex vertical profiles where 3D stacking and superlattices will produce denser packing and device flexibility, to faster communication links with optoelectronics, and to compatible packaging technologies. New low temperature processing techniques, such as epitaxy of silicon, PECVD of dielectrics, low temperature high pressure oxidation, silicon-germanium heterostructures, etc., must be combined with shallow metallurgies, new lithographic technologies, maskless patterning, rapid thermal processing (RTP) to produce needed profile control, reduce process incompatibilities and develop new device geometries. Materials interactions are of special consequence for chip substrates and illustrations of work in metal-ceramic and metal-polymer adhesion will be offered.
Crystal Lattice Controlled SiGe Thermoelectric Materials with High Figure of Merit
NASA Technical Reports Server (NTRS)
Kim, Hyun-Jung; Park, Yeonjoon; King, Glen C.; Lee, Kunik; Choi, Sang H.
2010-01-01
Direct energy conversion between thermal and electrical energy, based on thermoelectric (TE) effect, has the potential to recover waste heat and convert it to provide clean electric power. The energy conversion efficiency is related to the thermoelectric figure of merit ZT expressed as ZT=S(exp 2)(sigma)T/Kappa, T is temperature, S is the Seebeck coefficient, sigma is conductance and Kappa is thermal conductivity. For a lower thermal conductivity Kappa and high power factor (S(exp 2)(sigma)), our current strategy is the development of rhombohedrally strained single crystalline SiGe materials that are highly [111]-oriented twinned. The development of a SiGe "twin lattice structure (TLS)" plays a key role in phonon scattering. The TLS increases the electrical conductivity and decreases thermal conductivity due to phonon scattering at stacking faults generated from the 60 X rotated primary twin structure. To develop high performance materials, the substrate temperature, chamber working pressure, and DC sputtering power are controlled for the aligned growth production of SiGe layer and TLS on a c-plane sapphire. Additionally, a new elevated temperature thermoelectric characterization system, that measures the thermal diffusivity and Seebeck effect nondestructively, was developed. The material properties were characterized at various temperatures and optimized process conditions were experimentally determined. The present paper encompasses the technical discussions toward the development of thermoelectric materials and the measurement techniques.
Room temperature organic magnets derived from sp3 functionalized graphene.
Tuček, Jiří; Holá, Kateřina; Bourlinos, Athanasios B; Błoński, Piotr; Bakandritsos, Aristides; Ugolotti, Juri; Dubecký, Matúš; Karlický, František; Ranc, Václav; Čépe, Klára; Otyepka, Michal; Zbořil, Radek
2017-02-20
Materials based on metallic elements that have d orbitals and exhibit room temperature magnetism have been known for centuries and applied in a huge range of technologies. Development of room temperature carbon magnets containing exclusively sp orbitals is viewed as great challenge in chemistry, physics, spintronics and materials science. Here we describe a series of room temperature organic magnets prepared by a simple and controllable route based on the substitution of fluorine atoms in fluorographene with hydroxyl groups. Depending on the chemical composition (an F/OH ratio) and sp 3 coverage, these new graphene derivatives show room temperature antiferromagnetic ordering, which has never been observed for any sp-based materials. Such 2D magnets undergo a transition to a ferromagnetic state at low temperatures, showing an extraordinarily high magnetic moment. The developed theoretical model addresses the origin of the room temperature magnetism in terms of sp 2 -conjugated diradical motifs embedded in an sp 3 matrix and superexchange interactions via -OH functionalization.
Room temperature organic magnets derived from sp3 functionalized graphene
Tuček, Jiří; Holá, Kateřina; Bourlinos, Athanasios B.; Błoński, Piotr; Bakandritsos, Aristides; Ugolotti, Juri; Dubecký, Matúš; Karlický, František; Ranc, Václav; Čépe, Klára; Otyepka, Michal; Zbořil, Radek
2017-01-01
Materials based on metallic elements that have d orbitals and exhibit room temperature magnetism have been known for centuries and applied in a huge range of technologies. Development of room temperature carbon magnets containing exclusively sp orbitals is viewed as great challenge in chemistry, physics, spintronics and materials science. Here we describe a series of room temperature organic magnets prepared by a simple and controllable route based on the substitution of fluorine atoms in fluorographene with hydroxyl groups. Depending on the chemical composition (an F/OH ratio) and sp3 coverage, these new graphene derivatives show room temperature antiferromagnetic ordering, which has never been observed for any sp-based materials. Such 2D magnets undergo a transition to a ferromagnetic state at low temperatures, showing an extraordinarily high magnetic moment. The developed theoretical model addresses the origin of the room temperature magnetism in terms of sp2-conjugated diradical motifs embedded in an sp3 matrix and superexchange interactions via –OH functionalization. PMID:28216636
Mo-Si-B alloys for ultrahigh-temperature structural applications.
Lemberg, J A; Ritchie, R O
2012-07-10
A continuing quest in science is the development of materials capable of operating structurally at ever-increasing temperatures. Indeed, the development of gas-turbine engines for aircraft/aerospace, which has had a seminal impact on our ability to travel, has been controlled by the availability of materials capable of withstanding the higher-temperature hostile environments encountered in these engines. Nickel-base superalloys, particularly as single crystals, represent a crowning achievement here as they can operate in the combustors at ~1100 °C, with hot spots of ~1200 °C. As this represents ~90% of their melting temperature, if higher-temperature engines are ever to be a reality, alternative materials must be utilized. One such class of materials is Mo-Si-B alloys; they have higher density but could operate several hundred degrees hotter. Here we describe the processing and structure versus mechanical properties of Mo-Si-B alloys and further document ways to optimize their nano/microstructures to achieve an appropriate balance of properties to realistically compete with Ni-alloys for elevated-temperature structural applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Liu, Yu-fang; Han, Xin; Shi, De-heng
2008-03-01
Based on the Kirchhoff's Law, a practical dual-wavelength fiber-optic colorimeter, with the optimal work wavelength centered at 2.1 μm and 2.3 μm is presented. The effect of the emissivity on the precision of the measured temperature has been explored under various circumstances (i.e. temperature, wavelength) and for different materials. In addition, by fitting several typical material emissivity-temperature dependencies curves, the influence of the irradiation (radiant flux originating from the surroundings) and the surface reflected radiation on the temperature accuracy is studied. The results show that the calibration of the measured temperature for reflected radiant energy is necessary especially in low target temperature or low target emissivity, and the temperature accuracy is suitable for requirements in the range of 400-1200K.
Sievers, Robert K.; Cooper, Martin H.; Tupper, Robert B.
1987-01-01
A self-actuated shutdown system incorporated into a reactivity control assembly in a nuclear reactor includes pumping means for creating an auxiliary downward flow of a portion of the heated coolant exiting from the fuel assemblies disposed adjacent to the control assembly. The shutdown system includes a hollow tubular member which extends through the outlet of the control assembly top nozzle so as to define an outer annular flow channel through the top nozzle outlet separate from an inner flow channel for primary coolant flow through the control assembly. Also, a latching mechanism is disposed in an inner duct of the control assembly and is operable for holding absorber bundles in a raised position in the control assembly and for releasing them to drop them into the core of the reactor for shutdown purposes. The latching mechanism has an inner flow passage extending between and in flow communication with the absorber bundles and the inner flow channel of the top nozzle for accommodating primary coolant flow upwardly through the control assembly. Also, an outer flow passage separate from the inner flow passage extends through the latching mechanism between and in flow communication with the inner duct and the outer flow channel of the top nozzle for accommodating inflow of a portion of the heated coolant from the adjacent fuel assemblies. The latching mechanism contains a magnetic material sensitive to temperature and operable to cause mating or latching together of the components of the latching mechanism when the temperature sensed is below a known temperature and unmating or unlatching thereof when the temperature sensed is above a given temperature. The temperature sensitive magnetic material is positioned in communication with the heated coolant flow through the outer flow passage for directly sensing the temperature thereof. Finally, the pumping means includes a jet induction pump nozzle and diffuser disposed adjacent the bottom nozzle of the control assembly and in flow communication with the inlet thereof. The pump nozzle is operable to create an upward driving flow of primary coolant through the pump diffuser and then to the absorber bundles. The upward driving flow of primary coolant, in turn, creates a suction head within the outer flow channel of the top nozzle and thereby an auxiliary downward flow of the heated coolant portion exiting from the upper end of the adjacent fuel assemblies through the outer flow channel to the pump nozzle via the outer flow passage of the latching mechanism and an annular space between the outer and inner spaced ducts of the control assembly housing. The temperature of the heated coolant exiting from the adjacent fuel assemblies can thereby be sensed directly by the temperature sensitive magnetic material in the latching mechanism.
Controlled-Temperature Hot-Air Gun
NASA Technical Reports Server (NTRS)
Munoz, M. C.
1986-01-01
Materials that find applications in wind tunnels first tested in laboratory. Hot-Air Gun differs from commercial units in that flow rate and temperature monitored and controlled. With typical compressed-airsupply pressure of 25 to 38 psi (170 to 260 kPa), flow rate and maximum temperature are 34 stdft3/min (0.96 stdm3/min) and 1,090 degrees F (590 degrees C), respectively. Resembling elaborate but carefully regulated hot-air gun, setup used to apply blasts of air temperatures above 1,500 degrees F (815 degrees C) to test specimens.
Advanced High Temperature Structural Seals
NASA Astrophysics Data System (ADS)
Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark
2002-10-01
This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.
Advanced High Temperature Structural Seals
NASA Technical Reports Server (NTRS)
Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark
2002-01-01
This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.
Liquefaction of sub-bituminous coal
Schindler, Harvey D.; Chen, James M.
1986-01-01
Sub-bituminous coal is directly liquefied in two stages by use of a liquefaction solvent containing insoluble material as well as 850.degree. F.+ material and 850.degree. F.- material derived from the second stage, and controlled temperature and conversion in the second stage. The process is in hydrogen balance.
Few-layer graphene growth from polystyrene as solid carbon source utilizing simple APCVD method
NASA Astrophysics Data System (ADS)
Ahmadi, Shahrokh; Afzalzadeh, Reza
2016-07-01
This research article presents development of an economical, simple, immune and environment friendly process to grow few-layer graphene by controlling evaporation rate of polystyrene on copper foil as catalyst and substrate utilizing atmospheric pressure chemical vapor deposition (APCVD) method. Evaporation rate of polystyrene depends on molecular structure, amount of used material and temperature. We have found controlling rate of evaporation of polystyrene by controlling the source temperature is easier than controlling the material weight. Atomic force microscopy (AFM) as well as Raman Spectroscopy has been used for characterization of the layers. The frequency of G‧ to G band ratio intensity in some samples varied between 0.8 and 1.6 corresponding to few-layer graphene. Topography characterization by atomic force microscopy confirmed Raman results.
Programmable thermal emissivity structures based on bioinspired self-shape materials
NASA Astrophysics Data System (ADS)
Athanasopoulos, N.; Siakavellas, N. J.
2015-12-01
Programmable thermal emissivity structures based on the bioinspired self-shape anisotropic materials were developed at macro-scale, and further studied theoretically at smaller scale. We study a novel concept, incorporating materials that are capable of transforming their shape via microstructural rearrangements under temperature stimuli, while avoiding the use of exotic shape memory materials or complex micro-mechanisms. Thus, programmed thermal emissivity behaviour of a surface is achievable. The self-shape structure reacts according to the temperature of the surrounding environment or the radiative heat flux. A surface which incorporates self-shape structures can be designed to quickly absorb radiative heat energy at low temperature levels, but is simultaneously capable of passively controlling its maximum temperature in order to prevent overheating. It resembles a “game” of colours, where two or more materials coexist with different values of thermal emissivity/ absorptivity/ reflectivity. The transformation of the structure conceals or reveals one of the materials, creating a surface with programmable - and therefore, variable- effective thermal emissivity. Variable thermal emissivity surfaces may be developed with a total hemispherical emissivity ratio (ɛEff_H/ɛEff_L) equal to 28.
Programmable thermal emissivity structures based on bioinspired self-shape materials
Athanasopoulos, N.; Siakavellas, N. J.
2015-01-01
Programmable thermal emissivity structures based on the bioinspired self-shape anisotropic materials were developed at macro-scale, and further studied theoretically at smaller scale. We study a novel concept, incorporating materials that are capable of transforming their shape via microstructural rearrangements under temperature stimuli, while avoiding the use of exotic shape memory materials or complex micro-mechanisms. Thus, programmed thermal emissivity behaviour of a surface is achievable. The self-shape structure reacts according to the temperature of the surrounding environment or the radiative heat flux. A surface which incorporates self-shape structures can be designed to quickly absorb radiative heat energy at low temperature levels, but is simultaneously capable of passively controlling its maximum temperature in order to prevent overheating. It resembles a “game” of colours, where two or more materials coexist with different values of thermal emissivity/ absorptivity/ reflectivity. The transformation of the structure conceals or reveals one of the materials, creating a surface with programmable – and therefore, variable- effective thermal emissivity. Variable thermal emissivity surfaces may be developed with a total hemispherical emissivity ratio (εEff_H/εEff_L) equal to 28. PMID:26635316
NASA Astrophysics Data System (ADS)
Singleton, Jered; Zentner, Chris; Buser, Josh; Yager, Paul; LaBarre, Paul; Weigl, Bernhard H.
2013-03-01
Many infectious diseases, as well as some cancers, that affect global health are most accurately diagnosed through nucleic acid amplification and detection. There is a great need to simplify nucleic acid-based assay systems for use in global health in low-resource settings as well as in settings that do not have convenient access to laboratory staff and equipment such as doctors' offices and home care settings. In developing countries, unreliable electric power, inadequate supply chains, and lack of maintenance for complex diagnostic instruments are all common infrastructure shortfalls. Many elements of instrument-free, disposable, nucleic acid amplification assays have been demonstrated in recent years. However, the problem of instrument-free,1 low-cost, temperature-controlled chemical heating remains unsolved. In this paper we present the current status and results of work towards developing disposable, low-cost, temperature-controlled heaters designed to support isothermal nucleic acid amplification assays that are integrated with a two-dimensional paper network. Our approach utilizes the heat generated through exothermic chemical reactions and controls the heat through use of engineered phase change materials to enable sustained temperatures required for nucleic acid amplification. By selecting appropriate exothermic and phase change materials, temperatures can be controlled over a wide range, suitable for various isothermal amplification methods, and maintained for over an hour at an accuracy of +/- 1°C.
Singleton, Jered; Zentner, Chris; Buser, Josh; Yager, Paul; LaBarre, Paul; Weigl, Bernhard H
2013-03-09
Many infectious diseases, as well as some cancers, that affect global health are most accurately diagnosed through nucleic acid amplification and detection. There is a great need to simplify nucleic acid-based assay systems for use in global health in low-resource settings as well as in settings that do not have convenient access to laboratory staff and equipment such as doctors' offices and home care settings. In developing countries, unreliable electric power, inadequate supply chains, and lack of maintenance for complex diagnostic instruments are all common infrastructure shortfalls. Many elements of instrument-free, disposable, nucleic acid amplification assays have been demonstrated in recent years. However, the problem of instrument-free, low-cost, temperature-controlled chemical heating remains unsolved. In this paper we present the current status and results of work towards developing disposable, low-cost, temperature-controlled heaters designed to support isothermal nucleic acid amplification assays that are integrated with a two-dimensional paper network. Our approach utilizes the heat generated through exothermic chemical reactions and controls the heat through use of engineered phase change materials to enable sustained temperatures required for nucleic acid amplification. By selecting appropriate exothermic and phase change materials, temperatures can be controlled over a wide range, suitable for various isothermal amplification methods, and maintained for over an hour at an accuracy of +/- 1°C.
Singleton, Jered; Zentner, Chris; Buser, Josh; Yager, Paul; LaBarre, Paul; Weigl, Bernhard H.
2014-01-01
Many infectious diseases, as well as some cancers, that affect global health are most accurately diagnosed through nucleic acid amplification and detection. There is a great need to simplify nucleic acid-based assay systems for use in global health in low-resource settings as well as in settings that do not have convenient access to laboratory staff and equipment such as doctors' offices and home care settings. In developing countries, unreliable electric power, inadequate supply chains, and lack of maintenance for complex diagnostic instruments are all common infrastructure shortfalls. Many elements of instrument-free, disposable, nucleic acid amplification assays have been demonstrated in recent years. However, the problem of instrument-free,1 low-cost, temperature-controlled chemical heating remains unsolved. In this paper we present the current status and results of work towards developing disposable, low-cost, temperature-controlled heaters designed to support isothermal nucleic acid amplification assays that are integrated with a two-dimensional paper network. Our approach utilizes the heat generated through exothermic chemical reactions and controls the heat through use of engineered phase change materials to enable sustained temperatures required for nucleic acid amplification. By selecting appropriate exothermic and phase change materials, temperatures can be controlled over a wide range, suitable for various isothermal amplification methods, and maintained for over an hour at an accuracy of +/- 1°C. PMID:25426269
Design and Applications of a Climatic Chamber for in-situ Neutron Imaging Experiments
NASA Astrophysics Data System (ADS)
Mannes, David; Schmid, Florian; Wehmann, Timon; Lehmann, Eberhard
Due to the high sensitivity for hydrogen, the detection and quantification of moisture and moisture transport processes are some of the key topics in neutron imaging. Especially when dealing with hygroscopic material, such as wood and other porous media, it is crucial for quantitative analyses to know and control the ambient conditions of the sample precisely. In this work, a neutron transparent climatic chamber is presented, which was designed and built for the imaging facilities at the Paul Scherrer Institut (PSI), Villigen (CH). The air-conditioned measuring system consists of the actual sample chamber and a moisture generator providing air with adjustable temperature and relative humidity (%RH) (up to a dew point temperature of 70 °C). The two components are connected with a flexible tube, which features insulation, a heating system and temperature sensors to prevent condensation within the tube. The sample chamber itself is equipped with neutron transparent windows, insulating double walls with three feed-through openings for the rotation stage, sensors for humidity and temperature. Thermoelectric modules allow to control the chamber temperature in the range of -20 °C to 100 °C. The chamber allows to control the climatic conditions either in a static mode (stable temperature and %RH) or in dynamic mode (humidity or temperature cycles). The envisaged areas of application are neutron radiography and tomography investigations of dynamic processes in building materials (e.g. wood, concrete), food science and any other application necessitating the control of the climatic conditions.
Optical Radiation from Shock-Compressed Materials. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Svendsen, Robert F., Jr.
1987-01-01
Recent observations of shock-induced radiation from oxides, silicates, and metals of geophysical interest constrain the shock-compressed temperature of these materials. The relationships between the temperature inferred from the observed radiation and the temperature of the shock-compressed film or foil and/or window were investigated. Changes of the temperature field in each target component away from that of their respective shock-compressed states occur because of: shock-impedance mismatch between target components; thermal mismatch between target components; surface roughness at target interfaces; and conduction within and between target components. In particular, conduction may affect the temperature of the film/foil window interface on the time scale of the experiments, and so control the intensity and history of the dominant thermal radiation sources in the target. This type of model was used to interpret the radiation emitted by a variety of shock-compressed materials and interfaces.
Lévesque, Luc; Noël, Jean-Marc; Scott, Calum
2015-12-01
Temperature of porcine bone specimens are investigated by aiming a pulsed CO2 laser beam at the bone-air surface. This method of controlling temperature is believed to be flexible in medical applications as it avoids the uses of thermal devices, which are often cumbersome and generate rather larger temperature variations with time. The control of temperature using this method is modeled by the heat-conduction equation. In this investigation, it is assumed that the energy delivered by the CO2 laser is confined within a very thin surface layer of roughly 9 μm. It is shown that temperature can be maintained at a steady temperature using a CO2 laser and we demonstrate that the method can be adapted to be used in tandem with another laser beam. This method to control the temperature is believed to be useful in de-contamination of bone during the implantation treatment, in bone augmentation when using natural or synthetic materials and in low-level laser therapy.
Temperature Controller System for Gas Gun Targets
NASA Astrophysics Data System (ADS)
Bucholtz, Scott; Sheffield, Stephen
2005-07-01
A temperature controller system capable of heating and cooling gas gun targets over the range -75 C to +200 C was designed and tested. The system uses cold nitrogen gas from a liquid nitrogen Dewar for cooling and compressed air for heating. Two gas flow heaters control the gas temperature for both heating and cooling. One heater controls the temperature of the target mounting plate and the other the temperature of a copper tubing coil surrounding the target. Each heater is separately adjustable, so the target material will achieve a uniform temperature throughout its volume. A magnetic gauge with integrated thermocouples was developed to measure the internal temperature of the target. Using this system shock experiments, including equation-of-state measurements and shock initiation of high explosives, can be performed over a range of initial temperatures. Successful tests were completed on Teflon samples. This work was supported by the NNSA Enhanced Surveillance Campaign through contract DE-ACO4-01AL66850.
Methods of synthesizing thermoelectric materials
Ren, Zhifeng; Chen, Shuo; Liu, Wei-Shu; Wang, Hengzhi; Wang, Hui; Yu, Bo; Chen, Gang
2016-04-05
Methods for synthesis of thermoelectric materials are disclosed. In some embodiments, a method of fabricating a thermoelectric material includes generating a plurality of nanoparticles from a starting material comprising one or more chalcogens and one or more transition metals; and consolidating the nanoparticles under elevated pressure and temperature, wherein the nanoparticles are heated and cooled at a controlled rate.
1976-07-01
FOR MEDICAL MATERIAL REQUIRING CONTROLLED TEMPERATURE RANGES 258 PPP-C-1683(1) 8135 69 10 Oct 73 CUSHIONING MATERIAL, EXPANDED POLYSTYRENE LOOSE FILL...Liquid immersion effect on properties of elastoaeric vulcanizates - 45 Lead deflection characteristics - 264 Loose-fill expanded polystyrene - 25f
Nano-ceramics and method thereof
Satcher, Jr., Joe H.; Gash, Alex [Livermore, CA; Simpson, Randall [Livermore, CA; Landingham, Richard [Livermore, CA; Reibold, Robert A [Salida, CA
2006-08-08
Disclosed herein is a method to produce ceramic materials utilizing the sol-gel process. The methods enable the preparation of intimate homogeneous dispersions of materials while offering the ability to control the size of one component within another. The method also enables the preparation of materials that will densify at reduced temperature.
Process for stabilizing dimensions of duplex stainless steels for service at elevated temperatures
Hull, Frederick C.; Tobin, John C.
1981-01-01
Duplex stainless steel materials containing austenite plus delta ferrite, are dimensionally stabilized by heating the material to a reaction temperature between about 1050.degree.-1450.degree. F. (566.degree.-788.degree. C.), holding it at this temperature during transformation of delta ferrite to austenite plus sigma phase, and subsequently heating to a reversion temperature between about 1625.degree.-1750.degree. F. (885.degree.-954.degree. C.), whereby the sigma phase transforms back to ferrite, but the austenite remains dispersed in the ferrite phase. Final controlled cooling permits transformation of ferrite to austenite plus sigma and, later, precipitation of carbides.
Sealing Materials for Use in Vacuum at High Temperatures
NASA Technical Reports Server (NTRS)
Pettit, Donald R.; Camarda, Charles J.; Lee Vaughn, Wallace
2012-01-01
Sealing materials that can be applied and left in place in vacuum over a wide range of temperatures (especially temperatures of a few thousand degrees Celsius) have been conceived and investigated for potential utility in repairing thermal-protection tiles on the space shuttles in orbit before returning to Earth. These materials are also adaptable to numerous terrestrial applications that involve vacuum processing and/or repair of structures that must withstand high temperatures. These materials can be formulated to have mechanical handling characteristics ranging from almost freely flowing liquid-like consistency through paste-like consistency to stiff puttylike consistency, and to retain these characteristics in vacuum until heated to high curing temperatures. A sealing material of this type can be formulated to be used in any of several different ways for example, to be impregnated into a high-temperature-fabric patch, impregnated into a high-temperature-fabric gasket for sealing a patch, applied under a patch, or applied alone in the manner of putty or wallboard compound. The sealing material must be formulated to be compatible with, and adhere to, the structural material(s) to be repaired. In general, the material consists of a vacuum-compatible liquid containing one or more dissolved compound(s) and/or mixed with suspended solid particles. Depending on the intended application, the liquid can be chosen to be of a compound that can remain in place in vacuum for a time long enough to be useful, and/or to evaporate or decompose in a controlled way to leave a useful solid residue behind. The evaporation rate is determined by proper choice of vapor pressure, application of heat, and/or application of ultraviolet light or other optical radiation. The liquid chosen for the original space shuttle application is a commercial silicone vacuum-pump oil.
Programmable light-controlled shape changes in layered polymer nanocomposites.
Zhu, Zhichen; Senses, Erkan; Akcora, Pinar; Sukhishvili, Svetlana A
2012-04-24
We present soft, layered nanocomposites that exhibit controlled swelling anisotropy and spatially specific shape reconfigurations in response to light irradiation. The use of gold nanoparticles grafted with a temperature-responsive polymer (poly(N-isopropylacrylamide), PNIPAM) with layer-by-layer (LbL) assembly allowed placement of plasmonic structures within specific regions in the film, while exposure to light caused localized material deswelling by a photothermal mechanism. By layering PNIPAM-grafted gold nanoparticles in between nonresponsive polymer stacks, we have achieved zero Poisson's ratio materials that exhibit reversible, light-induced unidirectional shape changes. In addition, we report rheological properties of these LbL assemblies in their equilibrium swollen states. Moreover, incorporation of dissimilar plasmonic nanostructures (solid gold nanoparticles and nanoshells) within different material strata enabled controlled shrinkage of specific regions of hydrogels at specific excitation wavelengths. The approach is applicable to a wide range of metal nanoparticles and temperature-responsive polymers and affords many advanced build-in options useful in optically manipulated functional devices, including precise control of plasmonic layer thickness, tunability of shape variations to the excitation wavelength, and programmable spatial control of optical response.
High Temperature Materials for Chemical Propulsion Applications
NASA Technical Reports Server (NTRS)
Elam, Sandra; Hickman, Robert; O'Dell, Scott
2007-01-01
Radiation or passively cooled thrust chambers are used for a variety of chemical propulsion functions including apogee insertion, reaction control for launch vehicles, and primary propulsion for planetary spacecraft. The performance of these thrust chambers is limited by the operating temperature of available materials. Improved oxidation resistance and increased operating temperatures can be achieved with the use of thermal barrier coatings such as zirconium oxide (ZrO2) and hafnium oxide (HfO2). However, previous attempts to include these materials showed cracking and spalling of the oxide layer due to poor bonding. Current research at NASA's Marshall Space Flight Center (MSFC) has generated unique, high temperature material options for in-space thruster designs that are capable of up to 2500 C operating temperatures. The research is focused on fabrication technologies to form low cost Iridium,qF_.henium (Ir/Re) components with a ceramic hot wall created as an integral, functionally graded material (FGM). The goal of this effort is to further de?celop proven technologies for embedding a protective ceramic coating within the Ir/Re liner to form a robust functional gradient material. Current work includes the fabrication and testing of subscale samples to evaluate tensile, creep, thermal cyclic/oxidation, and thermophysical material properties. Larger test articles have also being fabricated and hot-fire tested to demonstrate the materials in prototype thrusters at 1O0 lbf thrust levels.
Metal Catalyst for Low-Temperature Growth of Controlled Zinc Oxide Nanowires on Arbitrary Substrates
Kim, Baek Hyun; Kwon, Jae W.
2014-01-01
Zinc oxide nanowires generated by hydrothermal method present superior physical and chemical characteristics. Quality control of the growth has been very challenging and controlled growth is only achievable under very limited conditions using homogeneous seed layers with high temperature processes. Here we show the controlled ZnO nanowire growth on various organic and inorganic materials without the requirement of a homogeneous seed layer and a high temperature process. We also report the discovery of an important role of the electronegativity in the nanowire growth on arbitrary substrates. Using heterogeneous metal oxide interlayers with low-temperature hydrothermal methods, we demonstrate well-controlled ZnO nanowire arrays and single nanowires on flat or curved surfaces. A metal catalyst and heterogeneous metal oxide interlayers are found to determine lattice-match with ZnO and to largely influence the controlled alignment. These findings will contribute to the development of novel nanodevices using controlled nanowires. PMID:24625584
Seal material development test program
NASA Technical Reports Server (NTRS)
1971-01-01
A program designed to characterize an experimental fluoroelastomer material designated AF-E-124D, is examined. Tests conducted include liquid nitrogen load compression tests, flexure tests and valve seal tests, ambient and elevated temperature compression set tests, and cleaning and flushing fluid exposure tests. The results of these tests indicate the AF-E-124D is a good choice for a cryogenic seal, since it exhibits good low temperature sealing characteristics and resistance to permanent set. The status of this material as an experimental fluorelastomer is stressed and recommended. Activity includes definition and control of critical processing to ensure consistent material properties. Design, fabrication and test of this and other materials is recommended in valve and static seal applications.
Stimuli-Responsive Polymer Brushes for Flow Control through Nanopores
Adiga, Shashishekar P.; Brenner, Donald W.
2012-01-01
Responsive polymers attached to the inside of nano/micro-pores have attracted great interest owing to the prospect of designing flow-control devices and signal responsive delivery systems. An intriguing possibility involves functionalizing nanoporous materials with smart polymers to modulate biomolecular transport in response to pH, temperature, ionic concentration, light or electric field. These efforts open up avenues to develop smart medical devices that respond to specific physiological conditions. In this work, an overview of nanoporous materials functionalized with responsive polymers is given. Various examples of pH, temperature and solvent responsive polymers are discussed. A theoretical treatment that accounts for polymer conformational change in response to a stimulus and the associated flow-control effect is presented. PMID:24955529
The rotating heat pipe - Implementation as a uniform-temperature heat source
NASA Astrophysics Data System (ADS)
Limoges, R. F.
1981-11-01
A wickless rotating heat pipe, if properly controlled, is a uniform heat source. The data presented are based on work done with 12.7 cm diameter x 76 cm long rotating heat pipes operating between 120 and 140 C. The major areas reviewed are: materials of fabrication, working fluids, sealing, temperature control, heaters, and safety. The optimum rotating heat pipe defined by these studies is fabricated of type 304 stainless steel, uses water as the working fluid, is sealed with welded joints, and utilizes a pressure switch and a fast-response quartz lamp for temperature control. Surface-temperature control of + or - 0.15 C and temperature uniformity within 0.8 C are obtained. Results of experiments designed to study the effects of hydrogen in the enclosed volume of the heat pipe are presented.
NASA Astrophysics Data System (ADS)
Kato, Y.; Takenaka, T.; Yano, K.; Kiriyama, R.; Kurisu, Y.; Nozaki, D.; Muramatsu, M.; Kitagawa, A.; Uchida, T.; Yoshida, Y.; Sato, F.; Iida, T.
2012-11-01
Multiply charged ions to be used prospectively are produced from solid pure material in an electron cyclotron resonance ion source (ECRIS). Recently a pure iron source is also required for the production of caged iron ions in the fullerene in order to control cells in vivo in bio-nano science and technology. We adopt directly heating iron rod by induction heating (IH) because it has non-contact with insulated materials which are impurity gas sources. We choose molybdenum wire for the IH coils because it doesn't need water cooling. To improve power efficiency and temperature control, we propose to the new circuit without previously using the serial and parallel dummy coils (SPD) for matching and safety. We made the circuit consisted of inductively coupled coils which are thin-flat and helix shape, and which insulates the IH power source from the evaporator. This coupling coils circuit, i.e. insulated induction heating coil transformer (IHCT), can be move mechanically. The secondary current can be adjusted precisely and continuously. Heating efficiency by using the IHCT is much higher than those of previous experiments by using the SPD, because leakage flux is decreased and matching is improved simultaneously. We are able to adjust the temperature in heating the vapor source around melting point. And then the vapor pressure can be controlled precisely by using the IHCT. We can control ±10K around 1500°C by this method, and also recognize to controlling iron vapor flux experimentally in the extreme low pressures. Now we come into next stage of developing induction heating vapor source for materials with furthermore high temperature melting points above 2000K with the IHCT, and then apply it in our ECRIS.
NASA Technical Reports Server (NTRS)
Batur, Celal
1991-01-01
The objective of this research is to control the dynamics of multizone programmable crystal growth furnaces. Due to the inevitable heat exchange among different heating zones and the transient nature of the process, the dynamics of multizone furnaces is time varying, distributed, and therefore complex in nature. Electrical power to heating zones and the translational speed of the ampoule are employed as inputs to control the dynamics. Structural properties of the crystal is the ultimate aim of this adaptive control system. These properties can be monitored in different ways. Following an order of complexity, these may include: (1) on line measurement of the material optical properties such as the refractive index of crystal; (2) on line x-ray imaging of the interface topology; (3) on line optical quantification of the interface profile such as the determination of concavity or convexity of the interface shape; and (4) on line temperature measurement at points closest to the material such as measurements of the ampoule's outside and inside surface temperatures. The research performed makes use of the temperature and optical measurements, specified in (3) and (4) as the outputs of furnace dynamics. However, if the instrumentation is available, the proposed control methodology can be extended to the measurements listed in (1) and (2).
Research on the technologies of cracking-resistance of mass concrete in subway station
NASA Astrophysics Data System (ADS)
Sheng, Yanmin; Li, Shujin; Jiang, Guoquan; Shi, Xiaoqing; Yang, Zhu; Zhu, Zhihang
2018-03-01
This paper takes the theory of multi-field coupling and the model of hydration-temperature-humidity-constraint to assess the effect of cracking-resistance on structural concrete and optimize the controlling index of crack resistance. The effect is caused by structure, material and construction, etc. The preparation technology of high cracking-resistance concrete is formed through the researching on the temperature rising and deformation over the controlling influence of new anti-cracking materials and technologies. A series of technologies on anti-cracking and waterproof in underground structural concrete of urban rail transit are formed based on the above study. The technologies include design, construction, materials and monitoring. Those technologies are used in actual engineering to improve the quality of urban rail transit and this brings significant economic and social benefits.
NASA Technical Reports Server (NTRS)
Grodzka, P. G.; Picklesimer, E. A.
1978-01-01
The general scope of study on thermal energy storage development includes: (1) survey and review possible concepts for storing thermal energy; (2) evaluate the potentials of the surveyed concepts for practical applications in the low and high temperature ranges for thermal control and storage, with particular emphasis on the low temperature range, and designate the most promising concepts; and (3) determine the nature of further studies required to expeditiously convert the most promising concept(s) to practical applications. Cryogenic temperature control by means of energy storage materials was also included.
Oil production by entrained pyrolysis of biomass and processing of oil and char
Knight, James A.; Gorton, Charles W.
1990-01-02
Entrained pyrolysis of lignocellulosic material proceeds from a controlled pyrolysis-initiating temperature to completion of an oxygen free environment at atmospheric pressure and controlled residence time to provide a high yield recovery of pyrolysis oil together with char and non-condensable, combustible gases. The residence time is a function of gas flow rate and the initiating temperature is likewise a function of the gas flow rate, varying therewith. A controlled initiating temperature range of about 400.degree. C. to 550.degree. C. with corresponding gas flow rates to maximize oil yield is disclosed.
Investigation of the Environmental Durability of a Powder Metallurgy Material
NASA Technical Reports Server (NTRS)
Ward, LaNita D.
2004-01-01
PM304 is a NASA-developed composite powder metallurgy material that is being developed for high temperature applications such as bushings in high temperature industrial furnace conveyor systems. My goal this summer was to analyze and evaluate the effects that heat exposure had on the PM304 material at 500 C and 650 C. The material is composed of Ni-Cr, Ag, Cr2O3, and eutectic BaF2-CaF2. PM304 is designed to eliminate the need for oil based lubricants in high temperature applications, while reducing friction and wear. However, further investigation was needed to thoroughly examine the properties of PM304. The effects of heat exposure on PM304 bushings were investigated. This investigation was necessary due to the high temperatures that the material would be exposed to in a typical application. Each bushing was cut into eight sections. The specimens were heated to 500 C or 650 C for time intervals from 1 hr to 5,000 hrs. Control specimens were kept at room temperature. Weight and thickness measurements were taken before and after the bushing sections were exposed to heat. Then the heat treated specimens were mounted and polished side by side with the control specimens. This enabled optical examination of the material's microstructure using a metallograph. The specimens were also examined with a scanning electron microscope (SEM). The microstructures were compared to observe the effects of the heat exposure. Chemical analysis was done to investigate the interactions between Ni-Cr and BaF2-CaF2 and between Cr2O3 and BaF2-CaF2 at high temperature. To observe this, the two compounds that were being analyzed were mixed in a crucible in varied weight percentages and heated to 1100 C in a furnace for approximately two hours. Then the product was allowed to cool and was then analyzed by X-ray diffraction. Interpretation of the results is in progress.
Materials testing of the IUS techroll seal material
NASA Technical Reports Server (NTRS)
Nichols, R. L.; Hall, W. B.
1984-01-01
As a part of the investigation of the control system failure Inertial Upper Stage on IUS-1 flight to position a Tracking and Data Relay Satellite (TDRS) in geosynchronous orbit, the materials utilized in the techroll seal are evaluated for possible failure models. Studies undertaken included effect of temperature on the strength of the system, effect of fatigue on the strength of the system, thermogravimetric analysis, thermomechanical analysis, differential scanning calorimeter analysis, dynamic mechanical analysis, and peel test. The most likely failure mode is excessive temperature in the seal. In addition, the seal material is susceptible to fatigue damage which could be a contributing factor.
NASA Astrophysics Data System (ADS)
Kelly, James P.
Ultra-high temperature ceramics (UHTCs) are a unique class of materials with the potential to withstand harsh environments due to covalent bonding, which gives these materials high melting temperatures, although decomposition temperatures should also be considered. For example, the melting temperature of TaC is near 4000 K, but may vaporize at lower temperatures. The high melting temperatures also make them difficult to process without high pressures and temperatures and to achieve dense ceramics with a nanostructure. Such materials however are appealing for aerospace technologies. The ability to generate high density compacts and maintain a nanostructure could allow for unprecedented control and improvement to the mechanical properties. The goal of this work is to develop processes for the synthesis and consolidation of nanostructured UHTCs. A self-propagating solvothermal synthesis technique for making UHTC nanopowders is presented. The technique is fast, scalable, and requires minimal external energy input. Synthesis of transition metal boride, carbide, and nitride powders is demonstrated. TaC is synthesized using a range of synthesis conditions and characterized to determine the fundamental mechanisms controlling the nanopowder characteristics. Discussion on purification of the powders is also presented. The sintering of TaC nanopowders produced by the solvothermal synthesis method is performed by resistance sintering. The effects of temperature, heating rate, and dwell time on densification and grain growth is presented. Adequate powder processing, carbon content, volatilization, and additives are found to be critical factors affecting the densification, microstructure, and grain growth. The optimal range of carbon addition for minimizing oxygen content is determined. WC and ZrC are evaluated as additives for reducing grain growth of TaC. Secondary phases and/or solid solutions are capable of suppressing grain growth. A unified approach to solid solution chemistries to control the densification, microstructure, and properties of UHTCs in general is presented. This work has important consequences on advancing the properties of UHTCs.
Structural active cooling applications for the Space Shuttle.
NASA Technical Reports Server (NTRS)
Masek, R. V.; Niblock, G. A.; Huneidi, F.
1972-01-01
Analytic and experimental studies have been conducted to evaluate a number of active cooling approaches to structural thermal protection for the Space Shuttle. The primary emphasis was directed toward the thermal protection system. Trade study results are presented for various heat shield material and TPS arrangements. Both metallic and reusable surface insulation (RSI) concepts were considered. Active systems heat sinks consisted of hydrogen, phase change materials, and expendable water. If consideration is given only to controlling the surface temperature, passive TPS was found to provide the most efficient system. Use of active cooling which incorporates some interior temperature control made the thermally less efficient RSI system more attractive.
Nakasaki, Kiyohiko; Hirai, Hidehira
2017-07-01
The effects of inoculating the mesophilic yeast Pichia kudriavzevii RB1, which is able to degrade organic acids, on organic matter degradation in composting were elucidated. When model food waste with high carbohydrate content (C/N=22.3) was used, fluctuation in the inoculated yeast cell density was observed, as well as fluctuation in the composting temperature until day 5 when the temperature rose to 60°C, which is lethal for the yeast. After the decrease in yeast, acetic acid accumulated to levels as high as 20mg/g-ds in the composting material and vigorous organic matter degradation was inhibited. However, by maintaining the temperature at 40°C for 2days during the heating phase in the early stage of composting, both the organic acids originally contained in the raw material and acetic acid produced during the heating phase were degraded by the yeast. The concentration of acetic acid was kept at a relatively low level (10.1mg/g-ds at the highest), thereby promoting the degradation of organic matter by other microorganisms and accelerating the composting process. These results indicate that temperature control enhances the effects of microbial inoculation into composts. Copyright © 2017 Elsevier Ltd. All rights reserved.
Investigations of Heat Transfer in Vacuum between Room Temperature and 80 K
NASA Astrophysics Data System (ADS)
Hooks, J.; Demko, J. A.; E Fesmire, J.; Matsumoto, T.
2017-12-01
The heat transfer between room temperature and 80 K is controlled using various insulating material combinations. The modes of heat transfer are well established to be conduction and thermal radiation when in a vacuum. Multi-Layer Insulation (MLI) in a vacuum has long been the best approach. Typically this layered system is applied to the cold surface. This paper investigates the application of MLI to both the cold and warm surface to see whether there is a significant difference. In addition if MLI is on the warm surface, the cold side of the MLI may be below the critical temperature of some high temperature superconducting (HTS) materials. It has been proposed that HTS materials can serve to block thermal radiation. An experiment is conducted to measure this effect. Boil-off calorimetry is the method of measuring the heat transfer.
Preparation of a Phosphor, ZnS:Cupric.
ERIC Educational Resources Information Center
Suib, Steven L.; Tanaka, John
1984-01-01
Background information (including optical properties of inorganic materials) and procedures are provided for an experiment which introduces students to preparation of a doped semiconductor; phosphorescence; gettering procedures; reducing atmospheres; and use of a high-temperature furnace with associated thermocouples, temperature controllers, and…
Ag-doped manganite nanoparticles: new materials for temperature-controlled medical hyperthermia.
Melnikov, O V; Gorbenko, O Yu; Markelova, M N; Kaul, A R; Atsarkin, V A; Demidov, V V; Soto, C; Roy, E J; Odintsov, B M
2009-12-15
The purpose of this study was to introduce newly synthesized nanomaterials as an alternative to superparamagnetic ironoxide based particles (SPIO) and thus to launch a new platform for highly controllable hyperthermia cancer therapy and imaging. The new material that forms the basis for this article is lanthanum manganite particles with silver ions inserted into the perovskite lattice: La(1-x)Ag(x)MnO(3+delta). Adjusting the silver doping level, it is possible to control the Curie temperature (T(c)) in the hyperthermia range of interest (41-44 degrees C). A new class of nanoparticles based on silver-doped manganites La(1-x)Ag(x)MnO(3+delta) is suggested. New nanoparticles are stable, and their properties were not affected by the typical ambient conditions in the living tissue. It is possible to monitor the particle uptake and retention by MRI. When these particles are placed into an alternating magnetic field, their temperature increases to the definite value near T(c) and then remains constant if the magnetic field is maintained. During the hyperthermia procedure, the temperature can be restricted, thereby preventing the necrosis of normal tissue. A new class of nanoparticles based on silver-doped manganites La(1-x)Ag(x)MnO(3+delta) was suggested. Ag-doped perovskite manganites particles clearly demonstrated the effect of adjustable Curie temperature necessary for highly controllable cellular hyperthermia. The magnetic relaxation properties of the particles are comparable with that of SPIO, and so we were able to monitor the particle movement and retention by MRI. Thus, the new material combines the MRI contrast enhancement capability with targeted hyperthermia treatment.
Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850 C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiang; Yang, Zhiqing; Sokolov, Mikhail A
Strain-controlled low cycle fatigue (LCF) and creep-fatigue testing of Ni-based alloy 230 were carried out at 850 C. The material creep-fatigue life decreased compared with its low cycle fatigue life at the same total strain range. Longer hold time at peak tensile strain further reduced the material creep-fatigue life. Based on the electron backscatter diffraction, a novel material deformation characterization method was applied, which revealed that in low cycle fatigue testing as the total strain range increased, the deformation was segregated to grain boundaries since the test temperature was higher than the material equicohesive temperature and grain boundaries became weakermore » regions compared with grains. Creep-fatigue tests enhanced the localized deformation, resulting in material interior intergranular cracking, and accelerated material damage. Precipitation in alloy 230 helped slip dispersion, favorable for fatigue property, but grain boundary cellular precipitates formed after material exposure to the elevated temperature had a deleterious effect on the material low cycle fatigue and creep-fatigue property.« less
Peacock, Harold B [Evans, GA; Imrich, Kenneth J [Grovetown, GA
2009-03-17
A sealing device that may expand more planar dimensions due to internal thermal expansion of a filler material. The sealing material is of a composition such that when desired environment temperatures and internal actuating pressures are reached, the sealing materials undergoes a permanent deformation. For metallic compounds, this permanent deformation occurs when the material enters the plastic deformation phase. Polymers, and other materials, may be using a sealing mechanism depending on the temperatures and corrosivity of the use. Internal pressures are generated by either rapid thermal expansion or material phase change and may include either liquid or solid to gas phase change, or in the gaseous state with significant pressure generation in accordance with the gas laws. Sealing material thickness and material composition may be used to selectively control geometric expansion of the seal such that expansion is limited to a specific facing and or geometric plane.
Automation software for a materials testing laboratory
NASA Technical Reports Server (NTRS)
Mcgaw, Michael A.; Bonacuse, Peter J.
1990-01-01
The software environment in use at the NASA-Lewis Research Center's High Temperature Fatigue and Structures Laboratory is reviewed. This software environment is aimed at supporting the tasks involved in performing materials behavior research. The features and capabilities of the approach to specifying a materials test include static and dynamic control mode switching, enabling multimode test control; dynamic alteration of the control waveform based upon events occurring in the response variables; precise control over the nature of both command waveform generation and data acquisition; and the nesting of waveform/data acquisition strategies so that material history dependencies may be explored. To eliminate repetitive tasks in the coventional research process, a communications network software system is established which provides file interchange and remote console capabilities.
NASA Technical Reports Server (NTRS)
Jansen, Mark; Montague, Gerald; Provenza, Andrew; Palazzolo, Alan
2004-01-01
Closed loop operation of a single, high temperature magnetic radial bearing to 30,000 RPM (2.25 million DN) and 540 C (1000 F) is discussed. Also, high temperature, fault tolerant operation for the three axis system is examined. A novel, hydrostatic backup bearing system was employed to attain high speed, high temperature, lubrication free support of the entire rotor system. The hydrostatic bearings were made of a high lubricity material and acted as journal-type backup bearings. New, high temperature displacement sensors were successfully employed to monitor shaft position throughout the entire temperature range and are described in this paper. Control of the system was accomplished through a stand alone, high speed computer controller and it was used to run both the fault-tolerant PID and active vibration control algorithms.
NASA Astrophysics Data System (ADS)
Ghasemi-Nejhad, Mehrdad N.; Pourjalali, Saeid
2003-08-01
This work presents manufacturing and testing of active composite panels (ACPs) with embedded piezoelectric sensors and actuators. The composite material employed here is a plain weave carbon epoxy prepreg fabric with about 0.33 mm ply thickness. The piezoelectric patches employed here are Continuum Control Corporation, CCC, (recently Continuum Photonics, Inc) active fiber composite patches with 0.33 mm thickness, i.e. close to the composite ply thickness. Composite cut-out layers are used to fill the space around the embedded piezoelectric patches to minimize the problems associated with ply drops in composites. The piezoelectric patches were embedded inside the composite laminate. High-temperature wires were soldered to the piezoelectric leads, insulated from the carbon substructure by high-temperature materials, and were taken out of the composite laminates employing a molded-in hole technique that reduces the stress concentration as opposed to a drilled hole, and thereby enhancing the performance of the composite structure. The laminated ACP"s were co-cured inside an autoclave employing the cure cycle recommended by the composite material supplier. The curie temperature of the embedded piezoelectric patches should be well above the curing temperature of the composite materials as was the case here. The manufactured ACP beams and plates were trimmed and then tested for their functionality. Vibration suppression as well as simultaneous vibration suppression and precision positioning tests, using PID control as well as Hybrid Adaptive Control techniques were successfully conducted on the manufactured ACP beams and their functionality were demonstrated. Recommendations on the use of this embedding technique for ACPs are provided.
NASA Astrophysics Data System (ADS)
Ridha, Syahrir; Ibrahim, Arif; Shahari, Radzi; Fonna, Syarizal
2018-05-01
The main objective of this work is to evaluate the effectiveness of graphene nanoplatelets (GNP) as filtration control materials in water based drilling fluids. Three (3) general samples of water based drilling fluids were prepared including basic potassium chloride (KCl) drilling fluids, nanosilica (NS) drilling fluids and GNP drilling fluids. Several concentrations of NS and GNP were dispersed in controlled formulations of water based drilling fluids. Standard API filtration tests were carried out for comparison purposes as well as High Temperature High Pressure (HTHP) filtration tests at 150 °F (∼66 °C), 250 °F (∼121 °C) and 350 °F (∼177 °C) at a fixed 500 (∼3.45MPa) psi to study the filtration trend as a function of temperature. Mud cake samples from several tests were selectively chosen and analyzed under Field Emission Scanning Electron Microscope (FESEM) for its morphology. Results from this work show that nanoparticle concentrations play a factor in filtration ability of colloid materials in water based drilling fluids when studied at elevated temperature. Low temperature filtration, however, shows only small differences in volume in all the drilling fluid samples. 0.1 ppb concentrations of GNP reduced the fluid loss of 350 °F by 4.6 mL as compared to the similar concentration of NS drilling fluids.
NASA Astrophysics Data System (ADS)
Christen, Hans M.; Ohkubo, Isao; Rouleau, Christopher M.; Jellison, Gerald E., Jr.; Puretzky, Alex A.; Geohegan, David B.; Lowndes, Douglas H.
2005-01-01
Parallel (multi-sample) approaches, such as discrete combinatorial synthesis or continuous compositional-spread (CCS), can significantly increase the rate of materials discovery and process optimization. Here we review our generalized CCS method, based on pulsed-laser deposition, in which the synchronization between laser firing and substrate translation (behind a fixed slit aperture) yields the desired variations of composition and thickness. In situ alloying makes this approach applicable to the non-equilibrium synthesis of metastable phases. Deposition on a heater plate with a controlled spatial temperature variation can additionally be used for growth-temperature-dependence studies. Composition and temperature variations are controlled on length scales large enough to yield sample sizes sufficient for conventional characterization techniques (such as temperature-dependent measurements of resistivity or magnetic properties). This technique has been applied to various experimental studies, and we present here the results for the growth of electro-optic materials (SrxBa1-xNb2O6) and magnetic perovskites (Sr1-xCaxRuO3), and discuss the application to the understanding and optimization of catalysts used in the synthesis of dense forests of carbon nanotubes.
Method and apparatus for maximizing throughput of indirectly heated rotary kilns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coates, Ralph L; Smoot, Douglas L.; Hatfield, Kent E
An apparatus and method for achieving improved throughput capacity of indirectly heated rotary kilns used to produce pyrolysis products such as shale oils or coal oils that are susceptible to decomposition by high kiln wall temperatures is disclosed. High throughput is achieved by firing the kiln such that optimum wall temperatures are maintained beginning at the point where the materials enter the heating section of the kiln and extending to the point where the materials leave the heated section. Multiple high velocity burners are arranged such that combustion products directly impact on the area of the kiln wall covered internallymore » by the solid material being heated. Firing rates for the burners are controlled to maintain optimum wall temperatures.« less
Method and apparatus for maximizing throughput of indirectly heated rotary kilns
Coates, Ralph L; Smoot, L. Douglas; Hatfield, Kent E
2012-10-30
An apparatus and method for achieving improved throughput capacity of indirectly heated rotary kilns used to produce pyrolysis products such as shale oils or coal oils that are susceptible to decomposition by high kiln wall temperatures is disclosed. High throughput is achieved by firing the kiln such that optimum wall temperatures are maintained beginning at the point where the materials enter the heating section of the kiln and extending to the point where the materials leave the heated section. Multiple high velocity burners are arranged such that combustion products directly impact on the area of the kiln wall covered internally by the solid material being heated. Firing rates for the burners are controlled to maintain optimum wall temperatures.
Atmospheric Plasma Spraying Low-Temperature Cathode Materials for Solid Oxide Fuel Cells
NASA Astrophysics Data System (ADS)
Harris, J.; Kesler, O.
2010-01-01
Atmospheric plasma spraying (APS) is attractive for manufacturing solid oxide fuel cells (SOFCs) because it allows functional layers to be built rapidly with controlled microstructures. The technique allows SOFCs that operate at low temperatures (500-700 °C) to be fabricated by spraying directly onto robust and inexpensive metallic supports. However, standard cathode materials used in commercial SOFCs exhibit high polarization resistances at low operating temperatures. Therefore, alternative cathode materials with high performance at low temperatures are essential to facilitate the use of metallic supports. Coatings of lanthanum strontium cobalt ferrite (LSCF) were fabricated on steel substrates using axial-injection APS. The thickness and microstructure of the coating layers were evaluated, and x-ray diffraction analysis was performed on the coatings to detect material decomposition and the formation of undesired phases in the plasma. These results determined the envelope of plasma spray parameters in which coatings of LSCF can be manufactured, and the range of conditions in which composite cathode coatings could potentially be manufactured.
Turbine gas temperature measurement and control system
NASA Technical Reports Server (NTRS)
Webb, W. L.
1973-01-01
A fluidic Turbine Inlet Gas Temperature (TIGIT) Measurement and Control System was developed for use on a Pratt and Whitney Aircraft J58 engine. Based on engine operating requirements, criteria for high temperature materials selection, system design, and system performance were established. To minimize development and operational risk, the TIGT control system was designed to interface with an existing Exhaust Gas Temperature (EGT) Trim System and thereby modulate steady-state fuel flow to maintain a desired TIGT level. Extensive component and system testing was conducted including heated (2300F) vibration tests for the fluidic sensor and gas sampling probe, temperature and vibration tests on the system electronics, burner rig testing of the TIGT measurement system, and in excess of 100 hours of system testing on a J58 engine. (Modified author abstract)
Advanced High Temperature Structural Seals
NASA Technical Reports Server (NTRS)
Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Shorey, Mark W.; Steinetz, Bruce (Technical Monitor)
2000-01-01
This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 lb payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs. During the first phase of this program the existing launch vehicle control surface sealing concepts were reviewed, the aerothermal environment for a high temperature seal design was analyzed and a mock up of an arc-jet test fixture for evaluating seal concepts was fabricated.
NASA Astrophysics Data System (ADS)
Yang, Yue
The proposed research mainly focuses on employing tunable materials to achieve dynamic control of radiative heat transfer in both far and near fields for thermal management. Vanadium dioxide (VO2), which undergoes a phase transition from insulator to metal at the temperature of 341 K, is one tunable material being applied. The other one is graphene, whose optical properties can be tuned by chemical potential through external bias or chemical doping. (Abstract shortened by ProQuest.).
Studies on the Processing Methods for Extraterrestrial Materials
NASA Technical Reports Server (NTRS)
Grimley, R. T.; Lipschutz, M. E.
1984-01-01
The literature was surveyed for high temperature mass spectrometric research on single oxides, complex oxides, and minerals in an effort to develop a means of separating elements and compounds from lunar and other extraterrestrial materials. A data acquisition system for determining vaporization rates as a function of time and temperature and software for the IEEE-488 Apple-ORTEC interface are discussed. Experimental design information from a 1000 C furnace were used with heat transfer calculations to develop the basic design for a 1600 C furnace. A controller was built for the higher temperature furnace and drawings are being made for the furnace.
Effects of radiation and creep on viscoelastic damping materials
NASA Astrophysics Data System (ADS)
Henderson, John P.; Lewis, Tom M.; Murrell, Fred H.; Mangra, Danny
1995-05-01
The Advanced Photon Source (APS), under construction at Argonne National Laboratory (ANL), requires precise alignment of several large magnets. Submicron vibratory displacements of the magnets can degrade the performance of this important facility. Viscoelastic materials (VEM) have been shown to be effective in the control of the vibration of these magnets. Damping pads, placed under the magnet support structures in the APS storage ring, use thin layers of VEM. These soft VEM layers are subject to both high-energy radiation environment and continuous through-the-thickness compressive loads. Material experiments were conducted to answer concerns over the long term effects of the radiation environment and creep in the viscoelastic damping layers. The effects of exposure to radiation as high as 108 rad on the complex modulus were measured. Through-the-thickness creep displacements of VEM thin layers subjected to static loads of 50 psi were measured. Creep tests were conducted at elevated temperatures. Time-temperature equivalence principles were used to project creep displacements at room temperatures over several years. These damping material measurements should be of interest to vibration control engineers working with a variety of applications of fields ranging from aerospace to industrial machinery.
Materials Control for Aerospace Applications
NASA Technical Reports Server (NTRS)
Ferguson, Michael
2005-01-01
The distant future of mankind and the ultimate survivability of the human race, as it is known today, will depend on mans' ability to break earthly bonds and establish new territorial positions throughout the universe. Man must therefore be positioned to not only travel to, but also, to readily adapt to numerous and varying environments. For this mass migration across the galaxies nothing is as import to the human race as is NASA's future missions into Low Earth Orbit (LEO), to the moon, and/or Mars. These missions will form the building blocks to eternity for mankind. From these missions, NASA will develop the foundations for these building blocks based on sound engineering and scientific principles, both known and yet to be discovered. The integrity of the program will lead to development, tracking and control of the most basic elements of hardware production: That being development and control of applications of space flight materials. Choosing the right material for design purposes involves many considerations, such as governmental regulations associated with manufacturing operations, both safety of usage and of manufacturing, general material usage requirements, material longevity and performance requirements, material interfacing compatibility and material usage environments. Material performance is subject to environmental considerations in as much as a given material may perform exceptionally well at standard temperatures and pressures while performing poorly under non-standard conditions. These concerns may be found true for materials relative to the extreme temperatures and vacuum gradients of high altitude usage. The only way to assure that flight worthy materials are used in design is through testing. However, as with all testing, it requires both time on schedule and cost to the operation. One alternative to this high cost testing approach is to rely on a materials control system established by NASA. The NASA community relies on the MAPTIS materials control system founded at MSFC and supported by the other NASA Centers. This system is a data bank of all materials used in space flight operations. These materials are rated for several characteristics that are common concerns in high altitude or deep space usage: Odor, off gassing, material fluid compatibility, toxicity, corrosion susceptibility, stress corrosion susceptibility, etc.
Magnetic induction of hyperthermia by a modified self-learning fuzzy temperature controller
NASA Astrophysics Data System (ADS)
Wang, Wei-Cheng; Tai, Cheng-Chi
2017-07-01
The aim of this study involved developing a temperature controller for magnetic induction hyperthermia (MIH). A closed-loop controller was applied to track a reference model to guarantee a desired temperature response. The MIH system generated an alternating magnetic field to heat a high magnetic permeability material. This wireless induction heating had few side effects when it was extensively applied to cancer treatment. The effects of hyperthermia strongly depend on the precise control of temperature. However, during the treatment process, the control performance is degraded due to severe perturbations and parameter variations. In this study, a modified self-learning fuzzy logic controller (SLFLC) with a gain tuning mechanism was implemented to obtain high control performance in a wide range of treatment situations. This implementation was performed by appropriately altering the output scaling factor of a fuzzy inverse model to adjust the control rules. In this study, the proposed SLFLC was compared to the classical self-tuning fuzzy logic controller and fuzzy model reference learning control. Additionally, the proposed SLFLC was verified by conducting in vitro experiments with porcine liver. The experimental results indicated that the proposed controller showed greater robustness and excellent adaptability with respect to the temperature control of the MIH system.
Combustion synthesis of ceramic-metal composite materials in microgravity
NASA Technical Reports Server (NTRS)
Moore, John
1995-01-01
Combustion synthesis, self-propagating high temperature synthesis (SHS) or reactive synthesis provides an attractive alternative to conventional methods of producing advanced materials since this technology is based on the ability of highly exothermic reactions to be self sustaining and, therefore, energetically efficient. The exothermic SHS reaction is initiated at the ignition temperature, T(sub ig), and generates heat which is manifested in a maximum or combustion temperature, T(sub c), which can exceed 3000 K . Such high combustion temperatures are capable of melting and/or volatilizing reactant and product species and, therefore, present an opportunity for producing structure and property modification and control through liquid-solid, vapor-liquid-solid, and vapor-solid transformations.
NASA Technical Reports Server (NTRS)
Vandersande, Ian W. (Inventor); Ewell, Richard (Inventor); Fleurial, Jean-Pierre (Inventor); Lyon, Hylan B. (Inventor)
1998-01-01
A cooling device for lowering the temperature of a heat-dissipating device. The cooling device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with the heat-dissipating device. During operation, heat flows from the heat-dissipating device into the heat-conducting substrate, where it is spread out over a relatively large area. A thermoelectric cooling material (e.g., a Bi.sub.2 Te.sub.3 -based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. Application of electrical power to the thermoelectric material drives the thermoelectric material to pump heat into a second heat-conducting substrate which, in turn, is attached to a heat sink.
Ammonia formation caused by the presence of water in the wet grinding of silicon nitride powder
NASA Technical Reports Server (NTRS)
Kanno, Y.; Suzuki, K.; Kuwahara, Y.
1984-01-01
Si3 N4 powder (amorphous, alpha-, and beta-Si3 N4) was mixed with MeOH containing 8.87 mol. % H2O and ground. The NH3 generation rapidly increased after a grinding time of 100 hours. Silicon nitride sintered material was chosen as one of the high temperature, high strength structural materials and studies of the control of the raw material powder, preparation of the sintered body (finding the right assistant, hot press, high pressure sintering, fracture toughness and oxidation at high temperature were performed.
A low temperature furnace for solution crystal growth on the International Space Station
NASA Astrophysics Data System (ADS)
Baç, Nurcan; Harpster, Joseph; Maston, Robert A.; Sacco, Albert
2000-01-01
The Zeolite Crystal Growth Furnace Unit (ZCG-FU) is the first module in an integrated payload designed for low temperature crystal growth in solutions on the International Space Station (ISS). This payload is scheduled to fly on the ISS flight 7A.1 in an EXPRESS rack. Its name originated from early shuttle flight experiments limited to the growth of zeolite crystals but has since grown to include other materials of significant commercial interest using the solution method of crystal growth. Zeolites, ferroelectrics, piezeoelectrics and silver halides are some of the materials considered. The ZCG-FU experiment consists of a furnace unit and its electronic control system, and mechanically complex, crystal growth autoclaves suitable for use with a particular furnace and solution. The ZCG facility is being designed to grow into four independent furnaces controlled by IZECS (Improved Zeolite Electronic Control System). IZECS provides monitoring of critical parameters, data logging, safety monitoring, air-to-ground control and operator interfacing. It is suitable for controlling the four furnaces either individually or all at one time. It also contains the power management solid-state drivers and switches for the ZCG-FU furnace. The furnace contains 19 tubes operating at three different temperature zones. .
Advanced in-situ control for III-nitride RF power device epitaxy
NASA Astrophysics Data System (ADS)
Brunner, F.; Zettler, J.-T.; Weyers, M.
2018-04-01
In this contribution, the latest improvements regarding wafer temperature measurement on 4H-SiC substrates and, based on this, of film thickness and composition control of GaN and AlGaN layers in power electronic device structures are presented. Simultaneous pyrometry at different wavelengths (950 nm and 405 nm) reveal the advantages and limits of the different temperature measurement approaches. Near-UV pyrometry gives a very stable wafer temperature signal without oscillations during GaN growth since the semi-insulating 4H-SiC substrate material becomes opaque at temperatures above 550 °C at the wavelength of 405 nm. A flat wafer temperature profile across the 100 mm substrate diameter is demonstrated despite a convex wafer shape at AlGaN growth conditions. Based on the precise assignment of wafer temperature during MOVPE we were able to improve the accuracy of the high-temperature n-k database for the materials involved. Consequently, the measurement accuracy of all film thicknesses grown under fixed temperature conditions improved. Comparison of in situ and ex situ determined layer thicknessess indicate an unintended etching of the topmost layer during cool-down. The details and limitations of real-time composition analysis for lower Al-content AlGaN barrier layers during transistor device epitaxy are shown.
NASA Technical Reports Server (NTRS)
Kruger, R.; Triolo, J.; Mcintosh, R.
1983-01-01
A 20-cm high, 18-cm wide, and 30-cm long (8x7x12 inch) box weighing about 7 kg (15 lbs) and consuming about 7 watts of power was carried on the OSS-1 pallet to monitor the mass build-up or accretion of condensible, volatile materials on surfaces in the shuttle bay during all phases of ascent, on-orbit, and descent. Passively thermally controlled, the box holds two witness samples and four actively temperature controlled quartz crystal microbalances (TQCM) whose temperature can vary from -60 C to +80 C. Graphs show the accretion indicated by the TQCM during the launch and early orbital phase. Conditions during tail to the Sun, nose to the Sun, and bay to the Sun attitudes of the shuttle during STS-3 are reflected in temperatures indicated by the OSS-1 thermistor. These temperatures influence outgassing rates of various materials as well as measurements made by the contamination monitor package. The parameters that bear on TQCM measurements data are shown in graphs and discussed.
Tuning magnetic spirals beyond room temperature with chemical disorder
NASA Astrophysics Data System (ADS)
Morin, Mickaël; Canévet, Emmanuel; Raynaud, Adrien; Bartkowiak, Marek; Sheptyakov, Denis; Ban, Voraksmy; Kenzelmann, Michel; Pomjakushina, Ekaterina; Conder, Kazimierz; Medarde, Marisa
2016-12-01
In the past years, magnetism-driven ferroelectricity and gigantic magnetoelectric effects have been reported for a number of frustrated magnets featuring ordered spiral magnetic phases. Such materials are of high-current interest due to their potential for spintronics and low-power magnetoelectric devices. However, their low-magnetic ordering temperatures (typically <100 K) greatly restrict their fields of application. Here we demonstrate that the onset temperature of the spiral phase in the perovskite YBaCuFeO5 can be increased by more than 150 K through a controlled manipulation of the Fe/Cu chemical disorder. Moreover, we show that this novel mechanism can stabilize the magnetic spiral state of YBaCuFeO5 above the symbolic value of 25 °C at zero magnetic field. Our findings demonstrate that the properties of magnetic spirals, including its wavelength and stability range, can be engineered through the control of chemical disorder, offering a great potential for the design of materials with magnetoelectric properties beyond room temperature.
Tuning magnetic spirals beyond room temperature with chemical disorder
Morin, Mickaël; Canévet, Emmanuel; Raynaud, Adrien; Bartkowiak, Marek; Sheptyakov, Denis; Ban, Voraksmy; Kenzelmann, Michel; Pomjakushina, Ekaterina; Conder, Kazimierz; Medarde, Marisa
2016-01-01
In the past years, magnetism-driven ferroelectricity and gigantic magnetoelectric effects have been reported for a number of frustrated magnets featuring ordered spiral magnetic phases. Such materials are of high-current interest due to their potential for spintronics and low-power magnetoelectric devices. However, their low-magnetic ordering temperatures (typically <100 K) greatly restrict their fields of application. Here we demonstrate that the onset temperature of the spiral phase in the perovskite YBaCuFeO5 can be increased by more than 150 K through a controlled manipulation of the Fe/Cu chemical disorder. Moreover, we show that this novel mechanism can stabilize the magnetic spiral state of YBaCuFeO5 above the symbolic value of 25 °C at zero magnetic field. Our findings demonstrate that the properties of magnetic spirals, including its wavelength and stability range, can be engineered through the control of chemical disorder, offering a great potential for the design of materials with magnetoelectric properties beyond room temperature. PMID:27982127
Thermal Effects Modeling Developed for Smart Structures
NASA Technical Reports Server (NTRS)
Lee, Ho-Jun
1998-01-01
Applying smart materials in aeropropulsion systems may improve the performance of aircraft engines through a variety of vibration, noise, and shape-control applications. To facilitate the experimental characterization of these smart structures, researchers have been focusing on developing analytical models to account for the coupled mechanical, electrical, and thermal response of these materials. One focus of current research efforts has been directed toward incorporating a comprehensive thermal analysis modeling capability. Typically, temperature affects the behavior of smart materials by three distinct mechanisms: Induction of thermal strains because of coefficient of thermal expansion mismatch 1. Pyroelectric effects on the piezoelectric elements; 2. Temperature-dependent changes in material properties; and 3. Previous analytical models only investigated the first two thermal effects mechanisms. However, since the material properties of piezoelectric materials generally vary greatly with temperature (see the graph), incorporating temperature-dependent material properties will significantly affect the structural deflections, sensory voltages, and stresses. Thus, the current analytical model captures thermal effects arising from all three mechanisms through thermopiezoelectric constitutive equations. These constitutive equations were incorporated into a layerwise laminate theory with the inherent capability to model both the active and sensory response of smart structures in thermal environments. Corresponding finite element equations were formulated and implemented for both the beam and plate elements to provide a comprehensive thermal effects modeling capability.
Disentangling controls on mineral-stabilized soil organic matter using a slurry incubation
NASA Astrophysics Data System (ADS)
Lavallee, J. M.; Cotrufo, M. F.; Paul, E. A.; Conant, R. T.
2014-12-01
Mineral-stabilized organic matter (OM) is the largest and oldest pool of soil carbon and nitrogen. Mineral stabilization limits OM availability to soil microbes, preventing its decomposition and prolonging its turnover. Thus, understanding controls on the decomposition of mineral-stabilized OM is key to understanding soil carbon and nitrogen dynamics. The very slow turnover of mineral-stabilized OM makes it challenging to study in a typical incubation, and as a result, many potential controls (temperature, OM chemistry, and mineralogy) on its turnover remain unclear. We aimed to better understand controls on decomposition of mineral-stabilized OM by employing a slurry incubation technique, which speeds up microbial processing of OM by maximizing OM accessibility to microbes. In a slurry incubation, we expect that any OM that is not stabilized on mineral surfaces will be available for decomposition and will be converted to CO2. Using this technique, we studied the interactive effects of incubation temperature, plant material type (aboveground vs. belowground), and soil fraction (silt vs. clay) on CO2 efflux and OM stabilization. We separated silt-sized and clay-sized fractions from an agricultural soil, added aboveground or belowground plant material to each, and incubated them at 15°C, 25°C and 35°C. The added plant material was isotopically labeled (13C and 15N), which allowed us to trace it through the system and distinguish between the responses of the new (derived from the plant material) and old (derived from what was already present in the silt and clay) OM to warming. We measured CO2 efflux and 13CO2 efflux throughout the incubation. We performed one short-term harvest at day 6 and one final harvest at day 60. Initial results show higher cumulative CO2 efflux at warmer temperatures regardless of plant material type or soil fraction. A larger fraction of that CO2 came from OM that was initially present in the silt and clay, rather than from the plant material that we added, which suggests faster turnover of that "old" OM at warmer temperatures. We will present CO2 efflux data in addition to total [C] and [N] and the isotopic ratios of 13C and 15N in the silt and clay at each harvest to explain how the interactions between warming, plant material type and soil fraction affect turnover of mineral stabilized OM.
JOYO-1 Irradiation Test Campaign Technical Close-out, For Information
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. Borges
2006-01-31
The JOYO-1 irradiation testing was designed to screen the irradiation performance of candidate cladding, structural and reflector materials in support of space reactor development. The JOYO-1 designation refers to the first of four planned irradiation tests in the JOYO reactor. Limited irradiated material performance data for the candidate materials exists for the expected Prometheus-1 duration, fluences and temperatures. Materials of interest include fuel element cladding and core materials (refractory metal alloys and silicon carbide (Sic)), vessel and plant structural materials (refractory metal alloys and nickel-base superalloys), and control and reflector materials (BeO). Key issues to be evaluated were long termmore » microstructure and material property stability. The JOYO-1 test campaign was initiated to irradiate a matrix of specimens at prototypical temperatures and fluences anticipated for the Prometheus-1 reactor [Reference (1)]. Enclosures 1 through 9 describe the specimen and temperature monitors/dosimetry fabrication efforts, capsule design, disposition of structural material irradiation rigs, and plans for post-irradiation examination. These enclosures provide a detailed overview of Naval Reactors Prime Contractor Team (NRPCT) progress in specific areas; however, efforts were in various states of completion at the termination of NRPCT involvement with and restructuring of Project Prometheus.« less
Elevated temperature deformation of thoria dispersed nickel-chromium
NASA Technical Reports Server (NTRS)
Kane, R. D.; Ebert, L. J.
1974-01-01
The deformation behavior of thoria nickel-chromium (TD-NiCr) was examined over the temperature range 593 C (1100 F) to 1260 C (2300 F) in tension and compression and at 1093 C (2000 F) in creep. Major emphasis was placed on: (1) the effects of the material and test related variables (grain size, temperature, stress and strain rate) on the deformation process; and (2) the evaluation of single crystal TD-NiCr material produced by a directional recrystallization process. Elevated temperature yield strength levels and creep activation enthalpies were found to increase with increasing grain size reaching maximum values for the single crystal TD-NiCr. Stress exponent of the steady state creep rate was also significantly higher for the single crystal TD-NiCr as compared to that determined for the polycrystalline materials. The elevated temperature deformation of TD-NiCr was analyzed in terms of two concurrent, parallel processes: diffusion controlled grain boundary sliding, and dislocation motion.
Review of specimen heating in mechanical tests at cryogenic temperatures
NASA Astrophysics Data System (ADS)
Ogata, T.; Yuri, T.; Ono, Y.
2014-01-01
At cryogenic temperatures near 4 K, a discontinuous deformation produces a large amount of specimen temperature rise that might bring significant changes in mechanical properties. The authors measured the specimen heating in tensile tests, fatigue test, and other tests in liquid helium for stainless steels and other materials. In this paper, we have measured the specimen temperature in high-cycle and low-cycle fatigue tests for stainless steels at various frequencies and stress levels and evaluated the testing conditions to keep the specimen at a specified temperature. We proposed maximum frequency in load-controlled fatigue tests for specified loading variables and a maximum strain rate in strain-controlled fatigue tests.
Organic thermoelectric materials for energy harvesting and temperature control
NASA Astrophysics Data System (ADS)
Russ, Boris; Glaudell, Anne; Urban, Jeffrey J.; Chabinyc, Michael L.; Segalman, Rachel A.
2016-10-01
Conjugated polymers and related processing techniques have been developed for organic electronic devices ranging from lightweight photovoltaics to flexible displays. These breakthroughs have recently been used to create organic thermoelectric materials, which have potential for wearable heating and cooling devices, and near-room-temperature energy generation. So far, the best thermoelectric materials have been inorganic compounds (such as Bi2Te3) that have relatively low Earth abundance and are fabricated through highly complex vacuum processing routes. Molecular materials and hybrid organic-inorganic materials now demonstrate figures of merit approaching those of these inorganic materials, while also exhibiting unique transport behaviours that are suggestive of optimization pathways and device geometries that were not previously possible. In this Review, we discuss recent breakthroughs for organic materials with high thermoelectric figures of merit and indicate how these materials may be incorporated into new module designs that take advantage of their mechanical and thermoelectric properties.
Temperature control transport system
Schabron, John F; Sorini-Wong, Susan S
2014-12-09
Embodiments of the inventive technology may involve the use of layered, insulated PCM assemblage that itself comprises: modular insulating foam material 8 that, upon establishment as part of the assemblage, defines inner foam material sides 9 and outer foam material sides 10; thin reflective material 11 established against (whether directly in contact with or not) at least either the inner foam material sides or the outer foam materials sides, and modular, enclosed PCM sections 12 established between the modular insulating foam material and the interior center.
Tamasi, Alison L.; Boland, Kevin S.; Czerwinski, Kenneth; ...
2015-03-18
Chemical signatures correlated with uranium oxide processing are of interest to forensic science for inferring sample provenance. Identification of temporal changes in chemical structures of process uranium materials as a function of controlled temperatures and relative humidities may provide additional information regarding sample history. In our study, a high-purity α-U 3O 8 sample and three other uranium oxide samples synthesized from reaction routes used in nuclear conversion processes were stored under controlled conditions over 2–3.5 years, and powder X-ray diffraction analysis and X-ray absorption spectroscopy were employed to characterize chemical speciation. We measured signatures from the α-U 3O 8 samplemore » indicated that the material oxidized and hydrated after storage under high humidity conditions over time. Impurities, such as uranyl fluoride or schoepites, were initially detectable in the other uranium oxide samples. After storage under controlled conditions, the analyses of the samples revealed oxidation over time, although the signature of the uranyl fluoride impurity diminished. The presence of schoepite phases in older uranium oxide material is likely indicative of storage under high humidity and should be taken into account for assessing sample history. Finally, the absence of a signature from a chemical impurity, such as uranyl fluoride hydrate, in an older material may not preclude its presence at the initial time of production.« less
Tamasi, Alison L.; Boland, Kevin S.; Czerwinski, Kenneth; ...
2015-03-18
Chemical signatures correlated with uranium oxide processing are of interest to forensic science for inferring sample provenance. Identification of temporal changes in chemical structures of process uranium materials as a function of controlled temperatures and relative humidities may provide additional information regarding sample history. In our study, a high-purity α-U 3O 8 sample and three other uranium oxide samples synthesized from reaction routes used in nuclear conversion processes were stored under controlled conditions over 2–3.5 years, and powder X-ray diffraction analysis and X-ray absorption spectroscopy were employed to characterize chemical speciation. We measured signatures from the α-U 3O 8 samplemore » indicated that the material oxidized and hydrated after storage under high humidity conditions over time. Impurities, such as uranyl fluoride or schoepites, were initially detectable in the other uranium oxide samples. After storage under controlled conditions, the analyses of the samples revealed oxidation over time, although the signature of the uranyl fluoride impurity diminished. The presence of schoepite phases in older uranium oxide material is likely indicative of storage under high humidity and should be taken into account for assessing sample history. Finally, the absence of a signature from a chemical impurity, such as uranyl fluoride hydrate, in an older material may not preclude its presence at the initial time of production. LA-UR-15-21495.« less
Digital Transfer Growth of Patterned 2D Metal Chalcogenides by Confined Nanoparticle Evaporation
Mahjouri-Samani, Masoud; Tian, Mengkun; Wang, Kai; ...
2014-10-19
Developing methods for the facile synthesis of two-dimensional (2D) metal chalcogenides and other layered materials is crucial for emerging applications in functional devices. Controlling the stoichiometry, number of the layers, crystallite size, growth location, and areal uniformity is challenging in conventional vapor phase synthesis. Here, we demonstrate a new route to control these parameters in the growth of metal chalcogenide (GaSe) and dichalcogenide (MoSe 2) 2D crystals by precisely defining the mass and location of the source materials in a confined transfer growth system. A uniform and precise amount of stoichiometric nanoparticles are first synthesized and deposited onto a substratemore » by pulsed laser deposition (PLD) at room temperature. This source substrate is then covered with a receiver substrate to form a confined vapor transport growth (VTG) system. By simply heating the source substrate in an inert background gas, a natural temperature gradient is formed that evaporates the confined nanoparticles to grow large, crystalline 2D nanosheets on the cooler receiver substrate, the temperature of which is controlled by the background gas pressure. Large monolayer crystalline domains (~ 100 m lateral sizes) of GaSe and MoSe 2 are demonstrated, as well as continuous monolayer films through the deposition of additional precursor materials. This novel PLD-VTG synthesis and processing method offers a unique approach for the controlled growth of large-area, metal chalcogenides with a controlled number of layers in patterned growth locations for optoelectronics and energy related applications.« less
NASA Technical Reports Server (NTRS)
Opila, Elizabeth
2005-01-01
The chemical stability of high temperature materials must be known for use in the extreme environments of combustion applications. The characterization techniques available at NASA Glenn Research Center vary from fundamental thermodynamic property determination to material durability testing in actual engine environments. In this paper some of the unique techniques and facilities available at NASA Glenn will be reviewed. Multiple cell Knudsen effusion mass spectrometry is used to determine thermodynamic data by sampling gas species formed by reaction or equilibration in a Knudsen cell held in a vacuum. The transpiration technique can also be used to determine thermodynamic data of volatile species but at atmospheric pressures. Thermodynamic data in the Si-O-H(g) system were determined with this technique. Free Jet Sampling Mass Spectrometry can be used to study gas-solid interactions at a pressure of one atmosphere. Volatile Si(OH)4(g) was identified by this mass spectrometry technique. A High Pressure Burner Rig is used to expose high temperature materials in hydrocarbon-fueled combustion environments. Silicon carbide (SiC) volatility rates were measured in the burner rig as a function of total pressure, gas velocity and temperature. Finally, the Research Combustion Lab Rocket Test Cell is used to expose high temperature materials in hydrogen/oxygen rocket engine environments to assess material durability. SiC recession due to rocket engine exposures was measured as a function of oxidant/fuel ratio, temperature, and total pressure. The emphasis of the discussion for all techniques will be placed on experimental factors that must be controlled for accurate acquisition of results and reliable prediction of high temperature material chemical stability.
Zhang, Yifan; Dai, Yifan; Tie, Guipeng; Hu, Hao
2016-10-10
As a kind of important nonlinear optical element, KDP crystal has great demand in the inertial confinement fusion system. Based on the dissolution mechanism of solid materials, the factors that affect the material removal rate of KDP crystal in magnetorheological (MR) water-dissolution polishing are investigated to improve the machining efficiency. It is found that the material removal rate is proportional to the product of the saturation concentration and diffusion coefficient, and the relationship between the removal efficiency and the temperature meets the unilateral Gaussian function. Polishing experiments are carried out on a magnetorheological finishing (MRF) machine with self-designed MRF fluid heating devices. The experimental results show that practical efficiency-temperature curve is consistent with the theoretical curve, and the maximum machining efficiency increases by about 50% with the rise of temperature from 294 to 302 K. Meanwhile, when the MR fluid temperature is lower than 308 K, the crystal surface quality and surface roughness in different processing temperatures have no remarkable difference with constant crystal temperature (294 K). This research indicates that it is feasible to drastically improve KDP crystal MRF efficiency by controlling the processing temperature.
Phase Change Material for Temperature Control of Imager or Sounder on GOES Type Satellites in GEO
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2014-01-01
This paper uses phase change material (PCM) in the scan cavity of an imager or sounder on satellites in geostationary orbit (GEO) to maintain the telescope temperature stable. When sunlight enters the scan aperture, solar heating causes the PCM to melt. When sunlight stops entering the scan aperture, the PCM releases the thermal energy stored to keep the components in the telescope warm. It has no moving parts or bimetallic springs. It reduces heater power required to make up the heat lost by radiation to space through the aperture. It is an attractive thermal control option to a radiator with a louver and a sunshade.
Voltage tunability of thermal conductivity in ferroelectric materials
Ihlefeld, Jon; Hopkins, Patrick Edward
2016-02-09
A method to control thermal energy transport uses mobile coherent interfaces in nanoscale ferroelectric films to scatter phonons. The thermal conductivity can be actively tuned, simply by applying an electrical potential across the ferroelectric material and thereby altering the density of these coherent boundaries to directly impact thermal transport at room temperature and above. The invention eliminates the necessity of using moving components or poor efficiency methods to control heat transfer, enabling a means of thermal energy control at the micro- and nano-scales.
High-Temperature Piezoelectric Ceramic Developed
NASA Technical Reports Server (NTRS)
Sayir, Ali; Farmer, Serene C.; Dynys, Frederick W.
2005-01-01
Active combustion control of spatial and temporal variations in the local fuel-to-air ratio is of considerable interest for suppressing combustion instabilities in lean gas turbine combustors and, thereby, achieving lower NOx levels. The actuator for fuel modulation in gas turbine combustors must meet several requirements: (1) bandwidth capability of 1000 Hz, (2) operating temperature compatible with the fuel temperature, which is in the vicinity of 400 F, (3) stroke of approximately 4 mils (100 m), and (4) force of 300 lb-force. Piezoelectric actuators offer the fastest response time (microsecond time constants) and can generate forces in excess of 2000 lb-force. The state-of-the-art piezoceramic material in industry today is Pb(Zr,Ti)O3, called PZT. This class of piezoelectric ceramic is currently used in diesel fuel injectors and in the development of high-response fuel modulation valves. PZT materials are generally limited to operating temperatures of 250 F, which is 150 F lower than the desired operating temperature for gas turbine combustor fuel-modulation injection valves. Thus, there is a clear need to increase the operating temperature range of piezoceramic devices for active combustion control in gas turbine engines.
NASA Astrophysics Data System (ADS)
Yuan, Jikang
Direct architecture of complex nanostructures is desirable and still remains a challenge in areas of materials science. Due to their size-, shape-dependent electronic and optical properties, much effort has been made to control morphologies of transition metal oxide nanoparticles and to organize them into complicated 3D structures using templates. In particular, manganese oxides have attracted much attention because they have extensive applications in many chemical processes due to their porous structures, acidity, ionexchange, separation, catalysis, and energy storage in secondary batteries. Using organic templates such as trimethylamine (TMA), manganese oxides have been successfully organized into macroscopic rings and helices via sol-gel processes. However, the methods mentioned above all need further purification, so impurities will be avoided. Subsequent procedures are needed to obtain pure products. Thus facile and template-free methods are highly desired for synthesis of manganese oxide nanaoparticles with complex 3D structures. Manganese oxide octahedral molecular sieves (OMS) are a class of microporous transition metallic oxides with various kinds of tunnel structures that can be synthesized via controlling synthetic conditions such as temperature, concentration, pH, and cations. Manganese oxide molecular sieves are semiconducting mixed-valence catalysts that utilize electron transport to catalyze reactions such as selective oxidation of alcohols. OMS has distinct advantages over aluminosilicate molecular sieve materials for applications in catalysis due to the mixed valence character. The synthesis of manganese oxide OMS materials will be much more complicated than those of main group metallic oxides because of different coordination numbers and oxidation states. OMS-type materials with desirable morphologies formed under mild synthetic conditions are highly desirable. Herein, we report a template-free, low temperature preparation of porous cryptomelane-type manganese oxide (OMS-2) 3D nanostructures. The objectives of this research include exploration of new methods to oxidize Mn2+ in aqueous solution either under low-temperature reflux or hydrothermal conditions. Various oxidants were used with precisely controlled synthetic parameters such as temperature, concentrations of starting materials, pH, and kinds of templates. A variety of techniques including powder X-ray diffraction and transmission electron microscopy (TEM) scanning electron microscopy are used to investigate the structures of synthesized materials. Atomic force microscopy (AFM) and scanning electron microscopy are utilized to studying the morphology and topography. The surface areas of the materials is measured by the BET method. Inductively coupled argon plasma atomic emission spectrometer (ICP-AES) are utilized to investigate the chemical composition of the materials. Thermal-stability of the materials is investigated by thermal gravimetric analysis (TGA). The objectives of this research includes exploring new synthetic approach such as oxidation of Mn2+ in aqueous solution by selecting suitable oxidants so as to control redox potential, varying pH of reaction systems, and controlling tunnel structures using hard templates (cations) under hydrothermal conditions.
NASA Technical Reports Server (NTRS)
Banas, R. P.; Elgin, D. R.; Cordia, E. R.; Nickel, K. N.; Gzowski, E. R.; Aguiler, L.
1983-01-01
Three ceramic, reusable surface insulation materials and two borosilicate glass coatings were used in the fabrication of tiles for the Space Shuttle orbiters. Approximately 77,000 tiles were made from these materials for the first three orbiters, Columbia, Challenger, and Discovery. Lessons learned in the development, scale up to production and manufacturing phases of these materials will benefit future production of ceramic reusable surface insulation materials. Processing of raw materials into tile blanks and coating slurries; programming and machining of tiles using numerical controlled milling machines; preparing and spraying tiles with the two coatings; and controlling material shrinkage during the high temperature (2100-2275 F) coating glazing cycles are among the topics discussed.
Kuhn, Pierre; Forget, Aurélien; Su, Dangsheng; Thomas, Arne; Antonietti, Markus
2008-10-08
High surface area organic materials featuring both micro- and mesopores were synthesized under ionothermal conditions via the formation of polyaryltriazine networks. While the polytrimerization of nitriles in zinc chloride at 400 degrees C produces microporous polymers, higher reaction temperatures induce the formation of additional spherical mesopores with a narrow dispersity. The nitrogen-rich carbonaceous polymer materials thus obtained present surface areas and porosities up to 3300 m(2) g(-1) and 2.4 cm(3) g(-1), respectively. The key point of this synthesis relies on the occurrence of several high temperature polymerization reactions, where irreversible carbonization reactions coupled with the reversible trimerization of nitriles allow the reorganization of the dynamic triazine network. The ZnCl2 molten salt fulfills the requirement of a high temperature solvent, but is also required as catalyst. Thus, this dynamic polymerization system provides not only highly micro- and mesoporous materials, but also allows controlling the pore structure in amorphous organic materials.
Kim, Jinseon; Kwon, Sanghyuk; Cho, Dae-Hyun; Kang, Byunggil; Kwon, Hyukjoon; Kim, Youngchan; Park, Sung O; Jung, Gwan Yeong; Shin, Eunhye; Kim, Wan-Gu; Lee, Hyungdong; Ryu, Gyeong Hee; Choi, Minseok; Kim, Tae Hyeong; Oh, Junghoon; Park, Sungjin; Kwak, Sang Kyu; Yoon, Suk Wang; Byun, Doyoung; Lee, Zonghoon; Lee, Changgu
2015-09-15
The high-volume synthesis of two-dimensional (2D) materials in the form of platelets is desirable for various applications. While water is considered an ideal dispersion medium, due to its abundance and low cost, the hydrophobicity of platelet surfaces has prohibited its widespread use. Here we exfoliate 2D materials directly in pure water without using any chemicals or surfactants. In order to exfoliate and disperse the materials in water, we elevate the temperature of the sonication bath, and introduce energy via the dissipation of sonic waves. Storage stability greater than one month is achieved through the maintenance of high temperatures, and through atomic and molecular level simulations, we further discover that good solubility in water is maintained due to the presence of platelet surface charges as a result of edge functionalization or intrinsic polarity. Finally, we demonstrate inkjet printing on hard and flexible substrates as a potential application of water-dispersed 2D materials.
Silicon Carbide Solar Cells Investigated
NASA Technical Reports Server (NTRS)
Bailey, Sheila G.; Raffaelle, Ryne P.
2001-01-01
The semiconductor silicon carbide (SiC) has long been known for its outstanding resistance to harsh environments (e.g., thermal stability, radiation resistance, and dielectric strength). However, the ability to produce device-quality material is severely limited by the inherent crystalline defects associated with this material and their associated electronic effects. Much progress has been made recently in the understanding and control of these defects and in the improved processing of this material. Because of this work, it may be possible to produce SiC-based solar cells for environments with high temperatures, light intensities, and radiation, such as those experienced by solar probes. Electronics and sensors based on SiC can operate in hostile environments where conventional silicon-based electronics (limited to 350 C) cannot function. Development of this material will enable large performance enhancements and size reductions for a wide variety of systems--such as high-frequency devices, high-power devices, microwave switching devices, and high-temperature electronics. These applications would supply more energy-efficient public electric power distribution and electric vehicles, more powerful microwave electronics for radar and communications, and better sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. The 6H-SiC polytype is a promising wide-bandgap (Eg = 3.0 eV) semiconductor for photovoltaic applications in harsh solar environments that involve high-temperature and high-radiation conditions. The advantages of this material for this application lie in its extremely large breakdown field strength, high thermal conductivity, good electron saturation drift velocity, and stable electrical performance at temperatures as high as 600 C. This behavior makes it an attractive photovoltaic solar cell material for devices that can operate within three solar radii of the Sun.
Silicon carbide, an emerging high temperature semiconductor
NASA Technical Reports Server (NTRS)
Matus, Lawrence G.; Powell, J. Anthony
1991-01-01
In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.
Researcher and Mechanic with Solar Collector in Solar Simulator Cell
1976-08-21
Researcher Susan Johnson and a mechanic examine a flat-plate solar collector in the Solar Simulator Cell in the High Temperature Composites Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Solar Simulator Cell allowed the researchers to control the radiation levels, air temperature, airflow, and fluid flow. The flat-plate collector, seen in a horizontal position here, was directed at the solar simulator, seen above Johnson, during the tests. Lewis researchers were studying the efficiency of various flat- plate solar collector designs in the 1970s for temperature control systems in buildings. The collectors consisted of a cover material, absorber plate, and parallel flow configuration. The collector’s absorber material and coating, covers, honeycomb material, mirrors, vacuum, and tube attachment could all be modified. Johnson’s study analyzed 35 collectors. Johnson, a lifelong pilot, joined NASA Lewis in 1974. The flat-plate solar collectors, seen here, were her first research project. Johnson also investigated advanced heat engines for general aviation and evaluated variable geometry combustors and liners. Johnson earned the Cleveland Technical Society’s Technical Achievement Award in 1984.
Factors contributing to the temperature beneath plaster or fiberglass cast material
Hutchinson, Michael J; Hutchinson, Mark R
2008-01-01
Background Most cast materials mature and harden via an exothermic reaction. Although rare, thermal injuries secondary to casting can occur. The purpose of this study was to evaluate factors that contribute to the elevated temperature beneath a cast and, more specifically, evaluate the differences of modern casting materials including fiberglass and prefabricated splints. Methods The temperature beneath various types (plaster, fiberglass, and fiberglass splints), brands, and thickness of cast material were measured after they were applied over thermometer which was on the surface of a single diameter and thickness PVC tube. A single layer of cotton stockinette with variable layers and types of cast padding were placed prior to application of the cast. Serial temperature measurements were made as the cast matured and reached peak temperature. Time to peak, duration of peak, and peak temperature were noted. Additional tests included varying the dip water temperature and assessing external insulating factors. Ambient temperature, ambient humidity and dip water freshness were controlled. Results Outcomes revealed that material type, cast thickness, and dip water temperature played key roles regarding the temperature beneath the cast. Faster setting plasters achieved peak temperature quicker and at a higher level than slower setting plasters. Thicker fiberglass and plaster casts led to greater peak temperature levels. Likewise increasing dip-water temperature led to elevated temperatures. The thickness and type of cast padding had less of an effect for all materials. With a definition of thermal injury risk of skin injury being greater than 49 degrees Celsius, we found that thick casts of extra fast setting plaster consistently approached dangerous levels (greater than 49 degrees for an extended period). Indeed a cast of extra-fast setting plaster, 20 layers thick, placed on a pillow during maturation maintained temperatures over 50 degrees of Celsius for over 20 minutes. Conclusion Clinicians should be cautious when applying thick casts with warm dip water. Fast setting plasters have increased risk of thermal injury while brand does not appear to play a significant role. Prefabricated fiberglass splints appear to be safer than circumferential casts. The greatest risk of thermal injury occurs when thick casts are allowed to mature while resting on pillow. PMID:18298851
NASA Technical Reports Server (NTRS)
Padula, Santo, II; Bigelow, Glen; Noebe, Ronald; Gaydosh, Darrell; Garg, Anita
2006-01-01
Interest in high-temperature shape memory alloys (HTSMA) has been growing in the aerospace, automotive, process control, and energy industries. However, actual materials development has seriously lagged component design, with current commercial NiTi alloys severely limited in their temperature capability. Additions of Pd, Pt, Au, Hf, and Zr at levels greater than 10 at.% have been shown to increase the transformation temperature of NiTi alloys, but with few exceptions, the shape memory behavior (strain recovery) of these NiTiX systems has been determined only under stress free conditions. Given the limited amount of basic mechanical test data and general lack of information regarding the work attributes of these materials, a program to investigate the mechanical behavior of potential HTSMAs, with transformation temperatures between 100 and 500 C, was initiated. This paper summarizes the results of studies, focusing on both the practical temperature limitations for ternary TiNiPd and TiNiPt systems based on the work output of these alloys and the ability of these alloys to undergo repeated thermal cycling under load without significant permanent deformation or "walking". These issues are ultimately controlled by the detwinning stress of the martensite and resistance to dislocation slip of the individual martensite and austenite phases. Finally, general rules that govern the development of useful, high work output, next-generation HTSMA materials, based on the lessons learned in this work, will be provided
Electrodrift purification of materials for room temperature radiation detectors
James, R.B.; Van Scyoc, J.M. III; Schlesinger, T.E.
1997-06-24
A method of purifying nonmetallic, crystalline semiconducting materials useful for room temperature radiation detecting devices by applying an electric field across the material is disclosed. The present invention discloses a simple technology for producing purified ionic semiconducting materials, in particular PbI{sub 2} and preferably HgI{sub 2}, which produces high yields of purified product, requires minimal handling of the material thereby reducing the possibility of introducing or reintroducing impurities into the material, is easy to control, is highly selective for impurities, retains the stoichiometry of the material and employs neither high temperatures nor hazardous materials such as solvents or liquid metals. An electric field is applied to a bulk sample of the material causing impurities present in the sample to drift in a preferred direction. After all of the impurities have been transported to the ends of the sample the current flowing through the sample, a measure of the rate of transport of mobile impurities, falls to a low, steady state value, at which time the end sections of the sample where the impurities have concentrated are removed leaving a bulk sample of higher purity material. Because the method disclosed here only acts on the electrically active impurities, the stoichiometry of the host material remains substantially unaffected. 4 figs.
Electrodrift purification of materials for room temperature radiation detectors
James, Ralph B.; Van Scyoc, III, John M.; Schlesinger, Tuviah E.
1997-06-24
A method of purifying nonmetallic, crystalline semiconducting materials useful for room temperature radiation detecting devices by applying an electric field across the material. The present invention discloses a simple technology for producing purified ionic semiconducting materials, in particular PbI.sub.2 and preferably HgI.sub.2, which produces high yields of purified product, requires minimal handling of the material thereby reducing the possibility of introducing or reintroducing impurities into the material, is easy to control, is highly selective for impurities, retains the stoichiometry of the material and employs neither high temperatures nor hazardous materials such as solvents or liquid metals. An electric field is applied to a bulk sample of the material causing impurities present in the sample to drift in a preferred direction. After all of the impurities have been transported to the ends of the sample the current flowing through the sample, a measure of the rate of transport of mobile impurities, falls to a low, steady state value, at which time the end sections of the sample where the impurities have concentrated are removed leaving a bulk sample of higher purity material. Because the method disclosed here only acts on the electrically active impurities, the stoichiometry of the host material remains substantially unaffected.
Feedback enhanced plasma spray tool
Gevelber, Michael Alan; Wroblewski, Donald Edward; Fincke, James Russell; Swank, William David; Haggard, Delon C.; Bewley, Randy Lee
2005-11-22
An improved automatic feedback control scheme enhances plasma spraying of powdered material through reduction of process variability and providing better ability to engineer coating structure. The present inventors discovered that controlling centroid position of the spatial distribution along with other output parameters, such as particle temperature, particle velocity, and molten mass flux rate, vastly increases control over the sprayed coating structure, including vertical and horizontal cracks, voids, and porosity. It also allows improved control over graded layers or compositionally varying layers of material, reduces variations, including variation in coating thickness, and allows increasing deposition rate. Various measurement and system control schemes are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.
In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition,more » examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.« less
Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.; ...
2015-12-17
In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition,more » examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.« less
Novel protein crystal growth technology: Proof of concept
NASA Technical Reports Server (NTRS)
Nyce, Thomas A.; Rosenberger, Franz
1989-01-01
A technology for crystal growth, which overcomes certain shortcomings of other techniques, is developed and its applicability to proteins is examined. There were several unknowns to be determined: the design of the apparatus for suspension of crystals of varying (growing) diameter, control of the temperature and supersaturation, the methods for seeding and/or controlling nucleation, the effect on protein solutions of the temperature oscillations arising from the circulation, and the effect of the fluid shear on the suspended crystals. Extensive effort was put forth to grow lysozyme crystals. Under conditions favorable to the growth of tetragonal lysozyme, spontaneous nucleation could be produced but the number of nuclei could not be controlled. Seed transfer techniques were developed and implemented. When conditions for the orthorhombic form were tried, a single crystal 1.5 x 0.5 x 0.2 mm was grown (after in situ nucleation) and successfully extracted. A mathematical model was developed to predict the flow velocity as a function of the geometry and the operating temperatures. The model can also be used to scaleup the apparatus for growing larger crystals of other materials such as water soluble non-linear optical materials. This crystal suspension technology also shows promise for high quality solution growth of optical materials such as TGS and KDP.
NASA Technical Reports Server (NTRS)
Clements, L. L.; Lee, P. R.
1980-01-01
Tension tests on graphite/epoxy composites were performed to determine the influence of various quality control variables on failure strength as a function of moisture and moderate temperatures. The extremely high and low moisture contents investigated were found to have less effect upon properties than did temperature or the quality control variables of specimen flaws and prepreg batch to batch variations. In particular, specimen flaws were found to drastically reduce the predicted strength of the composite, whereas specimens from different batches of prepreg displayed differences in strength as a function of temperature and extreme moisture exposure. The findings illustrate the need for careful specimen preparation, studies of flaw sensitivity, and careful quality control in any study of composite materials.
Advanced materials for radiation-cooled rockets
NASA Technical Reports Server (NTRS)
Reed, Brian; Biaglow, James; Schneider, Steven
1993-01-01
The most common material system currently used for low thrust, radiation-cooled rockets is a niobium alloy (C-103) with a fused silica coating (R-512A or R-512E) for oxidation protection. However, significant amounts of fuel film cooling are usually required to keep the material below its maximum operating temperature of 1370 C, degrading engine performance. Also the R-512 coating is subject to cracking and eventual spalling after repeated thermal cycling. A new class of high-temperature, oxidation-resistant materials are being developed for radiation-cooled rockets, with the thermal margin to reduce or eliminate fuel film cooling, while still exceeding the life of silicide-coated niobium. Rhenium coated with iridium is the most developed of these high-temperature materials. Efforts are on-going to develop 22 N, 62 N, and 440 N engines composed of these materials for apogee insertion, attitude control, and other functions. There is also a complimentary NASA and industry effort to determine the life limiting mechanisms and characterize the thermomechanical properties of these materials. Other material systems are also being studied which may offer more thermal margin and/or oxidation resistance, such as hafnium carbide/tantalum carbide matrix composites and ceramic oxide-coated iridium/rhenium chambers.
Configuration and Calibration of High Temperature Furnaces for Testing Ceramic Matrix Composites
2014-10-01
Actual Furnace Cavity Stainless Steel Mesh Cage For Electrical Connections (both sides) High Temperature Power Lead Clamp Furnace Control TC’s Power... tests generate the basic properties such as modulus (E), ultimate tensile strength (UTS), proportional limit (PL), strain at failure (f), as well as...stress- strain behavior. Each material was tested at room temperature, at the maximum use temperature for the CMC system (as determined by the CMC
Mechanical Behavior of Glidcop Al-15 at High Temperature and Strain Rate
NASA Astrophysics Data System (ADS)
Scapin, M.; Peroni, L.; Fichera, C.
2014-05-01
Strain rate and temperature are variables of fundamental importance for the definition of the mechanical behavior of materials. In some elastic-plastic models, the effects, coming from these two quantities, are considered to act independently. This approach should, in some cases, allow to greatly simplify the experimental phase correlated to the parameter identification of the material model. Nevertheless, in several applications, the material is subjected to dynamic load at very high temperature, as, for example, in case of machining operation or high energy deposition on metals. In these cases, to consider the effect of strain rate and temperature decoupled could not be acceptable. In this perspective, in this work, a methodology for testing materials varying both strain rate and temperature was described and applied for the mechanical characterization of Glidcop Al-15, a copper-based composite reinforced with alumina dispersion, often used in nuclear applications. The tests at high strain rate were performed using the Hopkinson Bar setup for the direct tensile tests. The heating of the specimen was performed using an induction coil system and the temperature was controlled on the basis of signals from thermocouples directly welded on the specimen surface. Varying the strain rate, Glidcop Al-15 shows a moderate strain-rate sensitivity at room temperature, while it considerably increases at high temperature: material thermal softening and strain-rate hardening are strongly coupled. The experimental data were fitted using a modified formulation of the Zerilli-Armstrong model able to reproduce this kind of behavior with a good level of accuracy.
Mach 0.3 Burner Rig Facility at the NASA Glenn Materials Research Laboratory
NASA Technical Reports Server (NTRS)
Fox, Dennis S.; Miller, Robert A.; Zhu, Dongming; Perez, Michael; Cuy, Michael D.; Robinson, R. Craig
2011-01-01
This Technical Memorandum presents the current capabilities of the state-of-the-art Mach 0.3 Burner Rig Facility. It is used for materials research including oxidation, corrosion, erosion and impact. Consisting of seven computer controlled jet-fueled combustors in individual test cells, these relatively small rigs burn just 2 to 3 gal of jet fuel per hour. The rigs are used as an efficient means of subjecting potential aircraft engine/airframe advanced materials to the high temperatures, high velocities and thermal cycling closely approximating actual operating environments. Materials of various geometries and compositions can be evaluated at temperatures from 700 to 2400 F. Tests are conducted not only on bare superalloys and ceramics, but also to study the behavior and durability of protective coatings applied to those materials.
Method for the rapid synthesis of large quantities of metal oxide nanowires at low temperatures
Sunkara, Mahendra Kumar [Louisville, KY; Vaddiraju, Sreeram [Mountain View, CA; Mozetic, Miran [Ljubljan, SI; Cvelbar, Uros [Idrija, SI
2009-09-22
A process for the rapid synthesis of metal oxide nanoparticles at low temperatures and methods which facilitate the fabrication of long metal oxide nanowires. The method is based on treatment of metals with oxygen plasma. Using oxygen plasma at low temperatures allows for rapid growth unlike other synthesis methods where nanomaterials take a long time to grow. Density of neutral oxygen atoms in plasma is a controlling factor for the yield of nanowires. The oxygen atom density window differs for different materials. By selecting the optimal oxygen atom density for various materials the yield can be maximized for nanowire synthesis of the metal.
Ultra low friction carbon/carbon composites for extreme temperature applications
Erdemir, Ali; Busch, Donald E.; Fenske, George R.; Lee, Sam; Shepherd, Gary; Pruett, Gary J.
2001-01-01
A carbon/carbon composite in which a carbon matrix containing a controlled amount of boron or a boron compound is reinforced with carbon fiber exhibits a low coefficient of friction, i.e., on the order of 0.04 to 0.1 at temperatures up to 600.degree. C., which is one of the lowest frictional coefficients for any type of carbonaceous material, including graphite, glassy carbon, diamond, diamond-like carbon and other forms of carbon material. The high degree of slipperiness of the carbon composite renders it particularly adapted for limiting friction and wear at elevated temperatures such as in seals, bearings, shafts, and flexible joints
A polytetrafluorethylene insulated cable for high temperature oxygen aerospace applications
NASA Technical Reports Server (NTRS)
Sheppard, A. T.; Webber, R. G.
1983-01-01
For electrical cables to function and survive in the severe high temperature oxygen environment that will be experienced in the external tanks of the space shuttle, extreme cleanliness and material purity is required. A flexible light weight cable has been developed for use in pure oxygen at worst case temperatures of -190 to +260 degrees Centigrade and pressures as high as 44 pounds per square inch absolute. A comprehensive series of tests were performed on cables manufactured to the best commercial practices in order to establish the basic guidelines for control of build configuration as well as each material used in construction of the cable.
Method of making thermally removable epoxies
Loy, Douglas A.; Wheeler, David R.; Russick, Edward M.; McElhanon, James R.; Saunders, Randall S.
2002-01-01
A method of making a thermally-removable epoxy by mixing a bis(maleimide) compound to a monomeric furan compound containing an oxirane group to form a di-epoxy mixture and then adding a curing agent at temperatures from approximately room temperature to less than approximately 90.degree. C. to form a thermally-removable epoxy. The thermally-removable epoxy can be easily removed within approximately an hour by heating to temperatures greater than approximately 90.degree. C. in a polar solvent. The epoxy material can be used in protecting electronic components that may require subsequent removal of the solid material for component repair, modification or quality control.
A polytetrafluorethylene insulated cable for high temperature oxygen aerospace applications
NASA Astrophysics Data System (ADS)
Sheppard, A. T.; Webber, R. G.
For electrical cables to function and survive in the severe high temperature oxygen environment that will be experienced in the external tanks of the space shuttle, extreme cleanliness and material purity is required. A flexible light weight cable has been developed for use in pure oxygen at worst case temperatures of -190 to +260 degrees Centigrade and pressures as high as 44 pounds per square inch absolute. A comprehensive series of tests were performed on cables manufactured to the best commercial practices in order to establish the basic guidelines for control of build configuration as well as each material used in construction of the cable.
NASA Astrophysics Data System (ADS)
Yeager, C. J.; Courts, S. S.; Chapin, L.
2004-06-01
The electrical properties of a novel cryogenic heater are presented. A new ceramic-metal composition (cermet) has been developed that can be sputter deposited. This material has a very low temperature coefficient of resistivity. Resistivity measurements as a function of temperature are presented. The cermet has a constant resistance to within 0.1% between 77 K and 50 mK. At 4.2 K the d(logR)/d(logT) value is approximately -0.0005. The resistance change between room temperature and 4.2 K is 2.5%. The cermet heater will be compared to other low temperature coefficient of resistivity alloys (Evanohm, phosphor-bronze, nichrome and platinum-tungsten wire) that are used for cryogenic heaters and fixed resistors. Unlike the wire alloys, this material can be sputter deposited. This allows various die designs (meander patterns) to control the final resistance. The die can be mounted into standard commercial cryogenic sensor packages. Compared to other wire alloys, this allows for a simpler implementation for a cryogenic heater and fixed resistance standards. The material can also be deposited onto existing structures such as MEMS based heat capacity chip under development.
Development of experimental systems for material sciences under microgravity
NASA Technical Reports Server (NTRS)
Tanii, Jun; Obi, Shinzo; Kamimiyata, Yotsuo; Ajimine, Akio
1988-01-01
As part of the Space Experiment Program of the Society of Japanese Aerospace Companies, three experimental systems (G452, G453, G454) have been developed for materials science studies under microgravity by the NEC Corporation. These systems are to be flown as Get Away Special payloads for studying the feasibility of producing new materials. Together with the experimental modules carrying the hardware specific to the experiment, the three systems all comprise standard subsystems consisting of a power supply, sequence controller, temperature controller, data recorder, and video recorder.
Yu, Jia; Yu, Zhichao; Tang, Chenlong
2016-07-04
The hot work environment of electronic components in the instrument cabin of spacecraft was researched, and a new thermal protection structure, namely graphite carbon foam, which is an impregnated phase-transition material, was adopted to implement the thermal control on the electronic components. We used the optimized parameters obtained from ANSYS to conduct 2D optimization, 3-D modeling and simulation, as well as the strength check. Finally, the optimization results were verified by experiments. The results showed that after optimization, the structured carbon-based energy-storing composite material could reduce the mass and realize the thermal control over electronic components. This phase-transition composite material still possesses excellent temperature control performance after its repeated melting and solidifying.
Temperature Mapping of 3D Printed Polymer Plates: Experimental and Numerical Study
Kousiatza, Charoula; Chatzidai, Nikoleta; Karalekas, Dimitris
2017-01-01
In Fused Deposition Modeling (FDM), which is a common thermoplastic Additive Manufacturing (AM) method, the polymer model material that is in the form of a flexible filament is heated above its glass transition temperature (Tg) to a semi-molten state in the head’s liquefier. The heated material is extruded in a rastering configuration onto the building platform where it rapidly cools and solidifies with the adjoining material. The heating and rapid cooling cycles of the work materials exhibited during the FDM process provoke non-uniform thermal gradients and cause stress build-up that consequently result in part distortions, dimensional inaccuracy and even possible part fabrication failure. Within the purpose of optimizing the FDM technique by eliminating the presence of such undesirable effects, real-time monitoring is essential for the evaluation and control of the final parts’ quality. The present work investigates the temperature distributions developed during the FDM building process of multilayered thin plates and on this basis a numerical study is also presented. The recordings of temperature changes were achieved by embedding temperature measuring sensors at various locations into the middle-plane of the printed structures. The experimental results, mapping the temperature variations within the samples, were compared to the corresponding ones obtained by finite element modeling, exhibiting good correlation. PMID:28245557
Mechanism-Based Modeling for Low Cycle Fatigue of Cast Austenitic Steel
NASA Astrophysics Data System (ADS)
Wu, Xijia; Quan, Guangchun; Sloss, Clayton
2017-09-01
A mechanism-based approach—the integrated creep-fatigue theory (ICFT)—is used to model low cycle fatigue behavior of 1.4848 cast austenitic steel over the temperature range from room temperature (RT) to 1173 K (900 °C) and the strain rate range from of 2 × 10-4 to 2 × 10-2 s-1. The ICFT formulates the material's constitutive equation based on the physical strain decomposition into mechanism strains, and the associated damage accumulation consisting of crack nucleation and propagation in coalescence with internally distributed damage. At room temperature, the material behavior is controlled by plasticity, resulting in a rate-independent and cyclically stable behavior. The material exhibits significant cyclic hardening at intermediate temperatures, 673 K to 873 K (400 °C to 600 °C), with negative strain rate sensitivity, due to dynamic strain aging. At high temperatures >1073 K (800 °C), time-dependent deformation is manifested with positive rate sensitivity as commonly seen in metallic materials at high temperature. The ICFT quantitatively delineates the contribution of each mechanism in damage accumulation, and predicts the fatigue life as a result of synergistic interaction of the above identified mechanisms. The model descriptions agree well with the experimental and fractographic observations.
ERIC Educational Resources Information Center
Milson, James L.
1979-01-01
Investigated how the use of laboratory-oriented science curriculum materials affected the attitudes of students with reading difficulties. Both the ninth grade experimental and control classes used a six-week instructional unit on heat and temperature. (HM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguiar, Jeffery A.; Wozny, Sarah; Alkurd, Nooraldeen R.
Perovskite-based solar cells are one of the emerging candidates for radically lower cost photovoltaics. Herein, we report on the synthesis and crystallization of organic-inorganic formamidinium lead triiodide perovskite films under controlled atmospheric and environmental conditions. Using in situ (scanning) transmission electron microscopy, we make observations of the crystallization process of these materials in nitrogen and oxygen gas with and without the presence of water vapor. Complementary planar samples were also fabricated in the presence of water vapor and characterized by in situ X-ray diffraction. Direct observations of the material structure and final morphology indicate that the exposure to water vapormore » results in a porous film that is metastable, regardless of the presence of argon, nitrogen, or oxygen. However, the optimal crystallization temperature of 175 degrees C is unperturbed across conditions. Rapid modulation about the annealing temperature of 175 degrees C in +/-25 degrees C steps (150-200 degrees C) promotes crystallization and significantly improves the film morphology by overcoming the presence of impregnated water trapped in the material. Following this processing protocol, we demonstrate substantial growth to micron-size grains via observation inside of an environmentally controlled transmission electron microscope. Adapting this insight from our in situ microscopy, we are able to provide an informed materials protocol to control the structure and morphology of these organic-inorganic semiconductors, which is readily applicable to benchtop device growth strategies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguiar, Jeffery A.; Wozny, Sarah; Alkurd, Nooraldeen R.
Perovskite-based solar cells are one of the emerging candidates for radically lower cost photovoltaics. Herein, we report on the synthesis and crystallization of organic-inorganic formamidinium lead triiodide perovskite films under controlled atmospheric and environmental conditions. Using in situ (scanning) transmission electron microscopy, we make observations of the crystallization process of these materials in nitrogen and oxygen gas with and without the presence of water vapor. Complementary planar samples were also fabricated in the presence of water vapor and characterized by in situ X-ray diffraction. Direct observations of the material structure and final morphology indicate that the exposure to water vapormore » results in a porous film that is metastable, regardless of the presence of argon, nitrogen, or oxygen. However, the optimal crystallization temperature of 175 °C is unperturbed across conditions. Rapid modulation about the annealing temperature of 175 °C in ±25 °C steps (150-200 °C) promotes crystallization and significantly improves the film morphology by overcoming the presence of impregnated water trapped in the material. Following this processing protocol, we demonstrate substantial growth to micron-size grains via observation inside of an environmentally controlled transmission electron microscope. Adapting this insight from our in situ microscopy, we are able to provide an informed materials protocol to control the structure and morphology of these organic-inorganic semiconductors, which is readily applicable to benchtop device growth strategies.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... different goals or approaches for different subareas in the service area, and may include no materials....52b(c). Maximum demonstrated particulate matter control device temperature means the highest 4-hour.... Combustion takes place both in suspension and on the grate. Standard conditions means a temperature of 20 °C...
Code of Federal Regulations, 2011 CFR
2011-07-01
... different goals or approaches for different subareas in the service area, and may include no materials....52b(c). Maximum demonstrated particulate matter control device temperature means the highest 4-hour.... Combustion takes place both in suspension and on the grate. Standard conditions means a temperature of 20 °C...
Kwon, Soon Gu; Hyeon, Taeghwan
2008-12-01
Nanocrystals exhibit interesting electrical, optical, magnetic, and chemical properties not achieved by their bulk counterparts. Consequently, to fully exploit the potential of nanocrystals, the synthesis of nanocrystals must focus on producing materials with uniform size and shape. Top-down physical processes can produce large quantities of nanocrystals, but controlling the size is difficult with these methods. On the other hand, colloidal chemical synthetic methods can produce uniform nanocrystals with a controlled particle size. In this Account, we present our synthesis of uniform nanocrystals of various shapes and materials, and we discuss the kinetics of nanocrystal formation. We employed four different synthetic approaches including thermal decomposition, nonhydrolytic sol-gel reactions, thermal reduction, and use of reactive chalcogen reagents. We synthesized uniform oxide nanocrystals via heat-up methods. This method involved slowly heat-up reaction mixtures composed of metal precursors, surfactants, and solvents from room temperature to high temperature. We then held reaction mixtures at an aging temperature for a few minutes to a few hours. Kinetics studies revealed a three-step mechanism for the synthesis of nanocrystals through the heat-up method with size distribution control. First, as metal precursors thermally decompose, monomers accumulate. At the aging temperature, burst nucleation occurs rapidly; at the end of this second phase, nucleation stops, but continued diffusion-controlled growth leads to size focusing to produce uniform nanocrystals. We used nonhydrolytic sol-gel reactions to synthesize various transition metal oxide nanocrystals. We employed ester elimination reactions for the synthesis of ZnO and TiO(2) nanocrystals. Uniform Pd nanoparticles were synthesized via a thermal reduction reaction induced by heating up a mixture of Pd(acac)(2), tri-n-octylphosphine, and oleylamine to the aging temperature. Similarly, we synthesized nanoparticles of copper and nickel using metal(II) acetylacetonates. Ni/Pd core/shell nanoparticles were synthesized by simply heating the reaction mixture composed of acetylacetonates of nickel and palladium. Using alternative chalcogen reagents, we synthesized uniform nanocrystals of various metal chalcogenides. Uniform nanocrystals of PbS, ZnS, CdS, and MnS were obtained by heating reaction mixtures composed of metal chlorides and sulfur dissolved in oleylamine. In the future, a detailed understanding of nanocrystal formation kinetics and synthetic chemistry will lead to the synthesis of uniform nanocrystals with controlled size, shape, and composition. In particular, the synthesis of uniform nanocrystals of doped materials, core/shell materials, and multicomponent materials is still a challenge. We expect that these uniformly sized nanocrystals will find important applications in areas including information technology, biomedicine, and energy/environmental technology.
NASA Technical Reports Server (NTRS)
Stoltzfus, Joel M.; Benz, Frank J.
1986-01-01
Data is presented from frictional heating tests on pairs of different materials. Materials tested include: Hastelloy X, Inconel 600, Invar 36, Monel K-500, Monel 400, nickel 200, silicon carbide, stainless steels 316, and zirconium copper. In tests where pairs of different materials were rubbed together, the material rated less resistant to ignition in previous tests appeared to control the resistance to ignition of the pair.
NASA Astrophysics Data System (ADS)
Hussain, Maruff; Nageswara rao, P.; Singh, Dharmendra; Jayaganthan, R.
2018-04-01
The precipitation hardenable aluminium alloy (Al-Mg-Si) plates were solutionized and subjected to rolling at room temperature and liquid nitrogen temperature (RTR, CR) up to a true strain of ∼2.7. The rolled sheets were uniformly aged at room temperature and above room temperature (125 °C) to induce precipitation. The rolled and aged samples were analysed using differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), hardness and tensile tests. The strength and ductility were simultaneously improved after controlled ageing of the cryorolled (CR) and room temperature rolled (RTR) samples. However, the increment in strength is more in RTR material than CR material with same ductility. Transmission electron microscopy analysis revealed the formation of ultrafine grains (UFG) filled with dislocations and nanosized precipitates in the CR and RTR conditions after ageing treatment. The behaviour of CR and RTR alloy is same under natural ageing conditions.
Study on cord/rubber interface at elevated temperatures by H-pull test method
NASA Astrophysics Data System (ADS)
Jamshidi, M.; Afshar, F.; Mohammadi, N.; Pourmahdian, S.
2005-08-01
Cords are used as reinforcing materials in rubber compounds. To increase cord/rubber interfacial adhesion, they are coated by an adhesive (usually based on resorcinol-formaldehyde-latex). These composites are used in many sectors such as tire and belt industries. Cord/rubber adhesion strength is an important aspect to determine the durability of system. Due to temperature increase during running tires, the adhesion energy becomes different from initial one. To study cord/rubber interface at elevated temperatures, H-adhesion test method was used. H-pull test is a simple method for adhesion evaluation at ambient temperature, so it is usually used for material quality control. In this research, cord/rubber systems were vulcanized at different temperatures and H-adhesion of samples were evaluated at elevated temperatures. Also cord/rubber interface was studied by ATR analyze to determine interfacial interactions kind.
Two Decades of Negative Thermal Expansion Research: Where Do We Stand?
Lind, Cora
2012-01-01
Negative thermal expansion (NTE) materials have become a rapidly growing area of research over the past two decades. The initial discovery of materials displaying NTE over a large temperature range, combined with elucidation of the mechanism behind this unusual property, was followed by predictions that these materials will find use in various applications through controlled thermal expansion composites. While some patents have been filed and devices built, a number of obstacles have prevented the widespread implementation of NTE materials to date. This paper reviews NTE materials that contract due to transverse atomic vibrations, their potential for use in controlled thermal expansion composites, and known problems that could interfere with such applications. PMID:28817027
Effects of elevated temperature on the viscoplastic modeling of graphite/polymeric composites
NASA Technical Reports Server (NTRS)
Gates, Thomas S.
1991-01-01
To support the development of new materials for the design of next generation supersonic transports, a research program is underway at NASA to assess the long term durability of advanced polymer matrix composites (PMC's). One of main objectives of the program was to explore the effects of elevated temperature (23 to 200 C) on the constitutive model's material parameters. To achieve this goal, test data on the observed nonlinear, stress-strain behavior of IM7/5260 and IM7/8320 composites under tension and compression loading were collected and correlated against temperature. These tests, conducted under isothermal conditions using variable strain rates, included such phenomena as stress relaxation and short term creep. The second major goal was the verification of the model by comparison of analytical predictions and test results for off axis and angle ply laminates. Correlation between test and predicted behavior was performed for specimens of both material systems over a range of temperatures. Results indicated that the model provided reasonable predictions of material behavior in load or strain controlled tests. Periods of loading, unloading, stress relaxation, and creep were accounted for.
Evaluation of Finite-Rate Gas/Surface Interaction Models for a Carbon Based Ablator
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq; Goekcen, Tahir
2015-01-01
Two sets of finite-rate gas-surface interaction model between air and the carbon surface are studied. The first set is an engineering model with one-way chemical reactions, and the second set is a more detailed model with two-way chemical reactions. These two proposed models intend to cover the carbon surface ablation conditions including the low temperature rate-controlled oxidation, the mid-temperature diffusion-controlled oxidation, and the high temperature sublimation. The prediction of carbon surface recession is achieved by coupling a material thermal response code and a Navier-Stokes flow code. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and Ablation Program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting full Navier-Stokes equations using Data Parallel Line Relaxation method. Recession analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities with heat fluxes ranging from 45 to 1100 wcm2 are performed and compared with data for model validation. The ablating material used in these arc-jet tests is Phenolic Impregnated Carbon Ablator. Additionally, computational predictions of surface recession and shape change are in good agreement with measurement for arc-jet conditions of Small Probe Reentry Investigation for Thermal Protection System Engineering.
Physical and mechanical metallurgy of NiAl
NASA Technical Reports Server (NTRS)
Noebe, Ronald D.; Bowman, Randy R.; Nathal, Michael V.
1994-01-01
Considerable research has been performed on NiAl over the last decade, with an exponential increase in effort occurring over the last few years. This is due to interest in this material for electronic, catalytic, coating and especially high-temperature structural applications. This report uses this wealth of new information to develop a complete description of the properties and processing of NiAl and NiAl-based materials. Emphasis is placed on the controlling fracture and deformation mechanisms of single and polycrystalline NiAl and its alloys over the entire range of temperatures for which data are available. Creep, fatigue, and environmental resistance of this material are discussed. In addition, issues surrounding alloy design, development of NiAl-based composites, and materials processing are addressed.
Temperature prediction of space flight experiments by computer thermal analysis
NASA Technical Reports Server (NTRS)
Birdsong, M. B.; Luttges, M. W.
1994-01-01
Life sciences experiments are especially sensitive to temperature. A small temperature difference between otherwise identical samples can cause various differences in biological reaction rates. Knowledge of experimental temperatures and temperature histories help to distinguish the effects of microgravity and temperature on spaceflight experiments compared to ground based studies, and allow appropriate controls and sensitivity tests. Up to the present time, the Orbiter (Space Shuttle) has not generally provided temperature measurement instrumentation inside ambient lockers located in the Mid-deck of the Orbiter, or inside similar facilities such as Spacehab and Spacelab, but many pieces of hardware do have temperature recording capability. Most of these temperatures, however, have only been roughly measured or estimated. Such reported experimental temperatures, while accurate within a range of several degrees Celsius, are of limited utility to biological researchers. The temperature controlled lockers used in spaceflight, such as Commerical-Refrigeration Incubation Modules (C-R/IMs), severely reduce the mass and volume available for test samples and do not necessarily provide uniform thermal environments. While these test carriers avoid some of the experimental temperature variations of the ambient lockers, the number of samples which can be accommodated in these temperature controlled units is limited. In the present work, improved models of thermal prediction and control were sought. Temperatures are predicted by thermal analysis software using empirical temperatures recorded during STS-57. These temperatures are compared to data recorded throughout the mission using Ambient Temperature Recorders (ATRs) located within several payload lockers. Additional test cases are undertaken using controlled ground experiments to more precisely determine the reliability of the thermal model. The approach presented should increase the utility of various spaceflight carriers in the support of biological and material science research and ground control studies done in preparation for flight.
Temperature prediction of space flight experiments by computer thermal analysis.
Birdsong, M B; Luttges, M W
1995-02-01
Life sciences experiments are especially sensitive to temperature. A small temperature difference between otherwise identical samples can cause various differences in biological reaction rates. Knowledge of experimental temperatures and temperature histories help to distinguish the effects of microgravity and temperature on spaceflight experiments compared to ground based studies, and allow appropriate controls and sensitivity tests. Up to the present time, the Orbiter (Space Shuttle) has not generally provided temperature measurement instrumentation inside ambient lockers located in the Mid-deck of the Orbiter, or inside similar facilities such as Spacehab and Spacelab, but many pieces of hardware do have temperature recording capability. Most of these temperatures, however, have only been roughly measured or estimated. Such reported experimental temperatures, while accurate within a range of several degrees Celsius, are of limited utility to biological researchers. The temperature controlled lockers used in spaceflight, such as Commercial-Refrigeration Incubation Modules (C-R/IMs), severely reduce the mass and volume available for test samples and do not necessarily provide uniform thermal environments. While these test carriers avoid some of the experimental temperature variations of the ambient lockers, the number of samples which can be accommodated in these temperature controlled units is limited. In the present work, improved models of thermal prediction and control were sought. Temperatures are predicted by thermal analysis software using empirical temperatures recorded during STS-57. These temperatures are compared to data recorded throughout the mission using Ambient Temperature Recorders (ATRs) located within several payload lockers. Additional test cases are undertaken using controlled ground experiments to more precisely determine the reliability of the thermal model. The approach presented should increase the utility of various spaceflight carriers in the support of biological and material science research and ground control studies done in preparation for flight.
Hayes, Tyler R; Bang, Jae Jin; Davis, Tyson C; Peterson, Caroline F; McMillan, David G; Claridge, Shelley A
2017-10-18
As functionalized 2D materials are incorporated into hybrid materials, ensuring large-area structural control in noncovalently adsorbed films becomes increasingly important. Noncovalent functionalization avoids disrupting electronic structure in 2D materials; however, relatively weak molecular interactions in such monolayers typically reduce stability toward solution processing and other common material handling conditions. Here, we find that controlling substrate temperature during Langmuir-Schaefer conversion of a standing phase monolayer of diynoic amphiphiles on water to a horizontally oriented monolayer on a 2D substrate routinely produces multimicrometer domains, at least an order of magnitude larger than those typically achieved through drop-casting. Following polymerization, these highly ordered monolayers retain their structures during vigorous washing with solvents including water, ethanol, tetrahydrofuran, and toluene. These findings point to a convenient and broadly applicable strategy for noncovalent functionalization of 2D materials in applications that require large-area structural control, for instance, to minimize desorption at defects during subsequent solution processing.
Containerless automated processing of intermetallic compounds and composites
NASA Technical Reports Server (NTRS)
Johnson, D. R.; Joslin, S. M.; Reviere, R. D.; Oliver, B. F.; Noebe, R. D.
1993-01-01
An automated containerless processing system has been developed to directionally solidify high temperature materials, intermetallic compounds, and intermetallic/metallic composites. The system incorporates a wide range of ultra-high purity chemical processing conditions. The utilization of image processing for automated control negates the need for temperature measurements for process control. The list of recent systems that have been processed includes Cr, Mo, Mn, Nb, Ni, Ti, V, and Zr containing aluminides. Possible uses of the system, process control approaches, and properties and structures of recently processed intermetallics are reviewed.
Chemical approach for controlling nadimide cure temperature and rate
NASA Technical Reports Server (NTRS)
Lauver, R. W. (Inventor)
1985-01-01
Polyimide resins suitable for use as composite matrix materials are formed by copolymerization of maleic and norbornenyl end-capped monomers and oligomers. The copolymers can be cured at temperatures under about 300 C. by controlling the available concentration of the maleic end-capped reactant. This control can be achieved by adding sufficient amounts of said maleic reactant, or by chemical modification of either copolymer, to increase Diels-Alder retrogression of the norbornenyl-capped reactant and/or holding initiation and polymerization to a rate compatible with the availability of the maleic-capped reactant.
Chemical approach for controlling nadimide cure temperature and rate
NASA Technical Reports Server (NTRS)
Lauver, R. W. (Inventor)
1984-01-01
Polyimide resins suitable for use as composite matrix materials are formed by copolymerization of maleic and norbornenyl endcapped monomers and oligomers. The copolymers can be cured at temperatures under about 300 C by controlling the available concentration of the maleic capped reactant. This control can be achieved by adding sufficient amounts of said maleic reactant, or by chemical modification of either copolymer, so as to either increase Diels-Alder retrogression of the norbornenyl capped reactant and/or holding initiation and polymerization to a rate compatible with the availability of the maleic capped reactant.
Chemical approach for controlling nadimide cure temperature and rate
NASA Technical Reports Server (NTRS)
Lauver, R. W. (Inventor)
1985-01-01
Polyimide resins suitable for use as composite matrix materials are formed by copolymerization of maleic and norbornenyl endcapped monomers and oligomers. The copolymers can be cured at temperatures under about 300 C by controlling the available concentration of the maleic endcapped reactant. This control is achieved by adding sufficient amounts of said maleic reactant or by chemical modification of either copolymer, to either increase Diels-Alder retrogression of the norbornenyl capped reactant and/or hold initiation and polymerization to a rate compatible with the availability of the maleic capped reactant.
Size effects in olivine control strength in low-temperature plasticity regime
NASA Astrophysics Data System (ADS)
Kumamoto, K. M.; Thom, C.; Wallis, D.; Hansen, L. N.; Armstrong, D. E. J.; Goldsby, D. L.; Warren, J. M.; Wilkinson, A. J.
2017-12-01
The strength of the lithospheric mantle during deformation by low-temperature plasticity controls a range of geological phenomena, including lithospheric-scale strain localization, the evolution of friction on deep seismogenic faults, and the flexure of tectonic plates. However, constraints on the strength of olivine in this deformation regime are difficult to obtain from conventional rock-deformation experiments, and previous results vary considerably. We demonstrate via nanoindentation that the strength of olivine in the low-temperature plasticity regime is dependent on the length-scale of the test, with experiments on smaller volumes of material exhibiting larger yield stresses. This "size effect" has previously been explained in engineering materials as a result of the role of strain gradients and associated geometrically necessary dislocations in modifying plastic behavior. The Hall-Petch effect, in which a material with a small grain size exhibits a higher strength than one with a large grain size, is thought to arise from the same mechanism. The presence of a size effect resolves discrepancies among previous experimental measurements of olivine, which were either conducted using indentation methods or were conducted on polycrystalline samples with small grain sizes. An analysis of different low-temperature plasticity flow laws extrapolated to room temperature reveals a power-law relationship between length-scale (grain size for polycrystalline deformation and contact radius for indentation tests) and yield strength. This suggests that data from samples with large inherent length scales best represent the plastic strength of the coarse-grained lithospheric mantle. Additionally, the plastic deformation of nanometer- to micrometer-sized asperities on fault surfaces may control the evolution of fault roughness due to their size-dependent strength.
Nelson, J. Stuart; Anvari, Bahman; Tanenbaum, B. Samuel; Milner, Thomas E.
1999-01-01
Cryogen spray cooling of skin surface with millisecond cryogen spurts is an effective method for establishing a controlled temperature distribution in tissue and protecting the epidermis from nonspecific thermal injury during laser mediated dermatological procedures. Control of humidity level, spraying distance and cryogen boiling point is material to the resulting surface temperature. Decreasing the ambient humidity level results in less ice formation on the skin surface without altering the surface temperature during the cryogen spurt. For a particular delivery nozzle, increasing the spraying distance to 85 millimeters lowers the surface temperature. The methodology comprises establishing a controlled humidity level in the theater of operation of the irradiation site of the biological tissues before and/or during the cryogenic spray cooling of the biological tissue. At cold temperatures calibration was achieved by mounting a thermistor on a thermoelectric cooler. The thermal electric cooler was cooled from from 20.degree. C. to about -20.degree. C. while measuring its infrared emission.
Ionized cluster beam deposition
NASA Technical Reports Server (NTRS)
Kirkpatrick, A. R.
1983-01-01
Ionized Cluster Beam (ICB) deposition, a new technique originated by Takagi of Kyoto University in Japan, offers a number of unique capabilities for thin film metallization as well as for deposition of active semiconductor materials. ICB allows average energy per deposited atom to be controlled and involves impact kinetics which result in high diffusion energies of atoms on the growth surface. To a greater degree than in other techniques, ICB involves quantitative process parameters which can be utilized to strongly control the characteristics of films being deposited. In the ICB deposition process, material to be deposited is vaporized into a vacuum chamber from a confinement crucible at high temperature. Crucible nozzle configuration and operating temperature are such that emerging vapor undergoes supercondensation following adiabatic expansion through the nozzle.
Analysis of thermoelastic characteristics in a thick walled FGM cylinder
NASA Astrophysics Data System (ADS)
Tanvir, A. N. M.; Islam, Md. Didarul; Ahmed, Faisal
2017-12-01
This study is concerned with the behavior of stress and strain in a thick walled functionally graded material (FGM) cylinder under internal pressure. The incompatible eigenstrain and equivalent eigenstrain developed in the cylinder, are taken into account. As a demonstration, a TiC/Al2O3 FGM cylinder is considered and different components of stress and strain are presented in order to study the effects of internal pressure, temperature difference (between room and sintering temperature), cylinder wall thickness and material distribution. The numerical result presented here shows that the thermoelastic characteristic like stress and strain of an FGM cylinder is significantly influenced by some of the above-mentioned parameters and can be controlled by properly controlling these parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, J. K. R.; Alderman, O. L. G.; Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439
2016-07-15
An aerodynamic levitator with carbon dioxide laser beam heating was integrated with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. The chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The sample environment wasmore » integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. The system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.« less
Smart Crack Control in Concrete through Use of Phase Change Materials (PCMs): A Review
2018-01-01
Cracks in concrete structures present a threat to their durability. Therefore, numerous research studies have been devoted to reducing concrete cracking. In recent years, a new approach has been proposed for controlling temperature related cracking—utilization of phase change materials (PCMs) in concrete. Through their ability to capture heat, PCMs can offset temperature changes and reduce gradients in concrete structures. Nevertheless, they can also influence concrete properties. This paper presents a comprehensive overview of the literature devoted to using PCMs to control temperature related cracking in concrete. First, types of PCMs and ways of incorporation in concrete are discussed. Then, possible uses of PCMs in concrete technology are discussed. Further, the influences of PCMs on concrete properties (fresh, hardened, durability) are discussed in detail. This is followed by a discussion of modelling techniques for PCM-concrete composites and their performance. Finally, a summary and the possible research directions for future work are given. This overview aims to assure the researchers and asset owners of the potential of this maturing technology and bring it one step closer to practical application. PMID:29695076
Smart Crack Control in Concrete through Use of Phase Change Materials (PCMs): A Review.
Šavija, Branko
2018-04-24
Cracks in concrete structures present a threat to their durability. Therefore, numerous research studies have been devoted to reducing concrete cracking. In recent years, a new approach has been proposed for controlling temperature related cracking—utilization of phase change materials (PCMs) in concrete. Through their ability to capture heat, PCMs can offset temperature changes and reduce gradients in concrete structures. Nevertheless, they can also influence concrete properties. This paper presents a comprehensive overview of the literature devoted to using PCMs to control temperature related cracking in concrete. First, types of PCMs and ways of incorporation in concrete are discussed. Then, possible uses of PCMs in concrete technology are discussed. Further, the influences of PCMs on concrete properties (fresh, hardened, durability) are discussed in detail. This is followed by a discussion of modelling techniques for PCM-concrete composites and their performance. Finally, a summary and the possible research directions for future work are given. This overview aims to assure the researchers and asset owners of the potential of this maturing technology and bring it one step closer to practical application.
Weber, J. K. R.; Tamalonis, A.; Benmore, C. J.; ...
2016-07-01
We integrated an aerodynamic levitator with carbon dioxide laser beam heating with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. Furthermore, the chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The samplemore » environment was integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. Our system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.« less
Magnetic nuclear core restraint and control
Cooper, Martin H.
1979-01-01
A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.
Magnetic nuclear core restraint and control
Cooper, Martin H.
1978-01-01
A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.
Screening and transport in 2D semiconductor systems at low temperatures
Das Sarma, S.; Hwang, E. H.
2015-01-01
Low temperature carrier transport properties in 2D semiconductor systems can be theoretically well-understood within RPA-Boltzmann theory as being limited by scattering from screened Coulomb disorder arising from random quenched charged impurities in the environment. In this work, we derive a number of analytical formula, supported by realistic numerical calculations, for the relevant density, mobility, and temperature range where 2D transport should manifest strong intrinsic (i.e., arising purely from electronic effects) metallic temperature dependence in different semiconductor materials arising entirely from the 2D screening properties, thus providing an explanation for why the strong temperature dependence of the 2D resistivity can only be observed in high-quality and low-disorder 2D samples and also why some high-quality 2D materials manifest much weaker metallicity than other materials. We also discuss effects of interaction and disorder on the 2D screening properties in this context as well as compare 2D and 3D screening functions to comment why such a strong intrinsic temperature dependence arising from screening cannot occur in 3D metallic carrier transport. Experimentally verifiable predictions are made about the quantitative magnitude of the maximum possible low-temperature metallicity in 2D systems and the scaling behavior of the temperature scale controlling the quantum to classical crossover. PMID:26572738
Bisphenol A polycarbonate as a reference material
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Cumming, H. J.; Williams, J. B.
1977-01-01
Test methods require reference materials to standardize and maintain quality control. Various materials have been evaluated as possible reference materials, including a sample of bisphenol A polycarbonate without additives. Screening tests for relative toxicity under various experimental conditions were performed using male mice exposed to pyrolysis effluents over a 200-800 C temperature range. It was found that the bisphenol A polycarbonate served as a suitable reference material as it is available in large quantities, and does not significantly change with time.
Solar absorptance and thermal emittance of some common spacecraft thermal-control coatings
NASA Technical Reports Server (NTRS)
Henninger, J. H.
1984-01-01
Solar absorptance and thermal emittance of spacecraft materials are critical parameters in determining spacecraft temperature control. Because thickness, surface preparation, coatings formulation, manufacturing techniques, etc. affect these parameters, it is usually necessary to measure the absorptance and emittance of materials before they are used. Absorptance and emittance data for many common types of thermal control coatings, are together with some sample spectral data curves of absorptance. In some cases for which ultraviolet and particle radiation data are available, the degraded absorptance and emittance values are also listed.
Traiphol, Nisanart; Faisadcha, Kunruethai; Potai, Ruttayapon; Traiphol, Rakchart
2015-02-01
An ability to control the thermochromic behaviors of polydiacetylene (PDA)-based materials is very important for their utilization. Recently, our group has developed the PDA/zinc oxide (ZnO) nanocomposites, which exhibit reversible thermochromism (Traiphol et al., 2011). In this study, we present our continuation work demonstrating a rather simple method for fine tuning their color-transition temperature. The PDA/ZnO nanocomposites are prepared by varying photopolymerization time, which in turn affects the length of PDA conjugated backbone. We have found that the increase of photopolymerization time from 1 to 120min results in systematically decrease of the color-transition temperature from about 85 to 40°C. These PDA/ZnO nanocomposites still exhibit reversible thermochromism. The PDA/ZnO nanocomposites embedded in polyvinyl alcohol films show two-step color-transition processes, the reversible blue to purple and then irreversible purple to orange. Interestingly, the increase of photopolymerization time causes an increase of the irreversible color-transition temperature. Our method is quite simple and cheap, which can provide a library of PDA-based materials with controllable color-transition temperature. Copyright © 2014 Elsevier Inc. All rights reserved.
Dinunzio, James C; Brough, Chris; Hughey, Justin R; Miller, Dave A; Williams, Robert O; McGinity, James W
2010-02-01
Many techniques for the production of solid dispersions rely on elevated temperatures and prolonged material residence times, which can result in decomposition of temperature-sensitive components. In this study, hydrocortisone was used as a model temperature-sensitive active ingredient to study the effect of formulation and processing techniques as well as to characterize the benefits of KinetiSol Dispersing for the production of solid dispersions. Preformulation studies were conducted using differential scanning calorimetry and hot stage microscopy to identify optimum carriers for the production of amorphous solid dispersions. After identification, solid dispersions were prepared by hot melt extrusion and KinetiSol Dispersing, with material characterized by X-ray diffraction, dissolution and potency testing to evaluate physicochemical properties. Results from the preformulation studies showed that vinylacetate:vinylpyrrolidone (PVPVA) copolymer allowed for hydrocortisone dissolution within the carrier at temperatures as low as 160 degrees C, while hydroxypropyl methylcellulose required temperatures upward of 180 degrees C to facilitate solubilization. Low substituted hydroxypropyl cellulose, a high glass transition temperature control, showed that the material was unable to solubilize hydrocortisone. Manufacturing process control studies using hot melt extruded compositions of hydrocortisone and PVPVA showed that increased temperatures and residence times negatively impacted product potency due to decomposition. Using KinetiSol Dispersing to reduce residence time and to facilitate lower temperature processing, it was possible to produce solid dispersions with improved product potency. This study clearly demonstrated the importance of carrier selection to facilitate lower temperature processing, as well as the effect of residence time on product potency. Furthermore, KinetiSol Dispersing provided significant advantages over hot melt extrusion due to the reduced residence times and lower required processing temperatures. This allowed for the production of solid dispersions with enhanced product potency. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic
NASA Astrophysics Data System (ADS)
Mundy, Julia A.; Brooks, Charles M.; Holtz, Megan E.; Moyer, Jarrett A.; Das, Hena; Rébola, Alejandro F.; Heron, John T.; Clarkson, James D.; Disseler, Steven M.; Liu, Zhiqi; Farhan, Alan; Held, Rainer; Hovden, Robert; Padgett, Elliot; Mao, Qingyun; Paik, Hanjong; Misra, Rajiv; Kourkoutis, Lena F.; Arenholz, Elke; Scholl, Andreas; Borchers, Julie A.; Ratcliff, William D.; Ramesh, Ramamoorthy; Fennie, Craig J.; Schiffer, Peter; Muller, David A.; Schlom, Darrell G.
2016-09-01
Materials that exhibit simultaneous order in their electric and magnetic ground states hold promise for use in next-generation memory devices in which electric fields control magnetism. Such materials are exceedingly rare, however, owing to competing requirements for displacive ferroelectricity and magnetism. Despite the recent identification of several new multiferroic materials and magnetoelectric coupling mechanisms, known single-phase multiferroics remain limited by antiferromagnetic or weak ferromagnetic alignments, by a lack of coupling between the order parameters, or by having properties that emerge only well below room temperature, precluding device applications. Here we present a methodology for constructing single-phase multiferroic materials in which ferroelectricity and strong magnetic ordering are coupled near room temperature. Starting with hexagonal LuFeO3—the geometric ferroelectric with the greatest known planar rumpling—we introduce individual monolayers of FeO during growth to construct formula-unit-thick syntactic layers of ferrimagnetic LuFe2O4 (refs 17, 18) within the LuFeO3 matrix, that is, (LuFeO3)m/(LuFe2O4)1 superlattices. The severe rumpling imposed by the neighbouring LuFeO3 drives the ferrimagnetic LuFe2O4 into a simultaneously ferroelectric state, while also reducing the LuFe2O4 spin frustration. This increases the magnetic transition temperature substantially—from 240 kelvin for LuFe2O4 (ref. 18) to 281 kelvin for (LuFeO3)9/(LuFe2O4)1. Moreover, the ferroelectric order couples to the ferrimagnetism, enabling direct electric-field control of magnetism at 200 kelvin. Our results demonstrate a design methodology for creating higher-temperature magnetoelectric multiferroics by exploiting a combination of geometric frustration, lattice distortions and epitaxial engineering.
Microstructural Control and Characterization of Bi2V0.9Cu0.1O5.35 (BICUVOX) Ceramics
NASA Astrophysics Data System (ADS)
Razmyar, Soheil
2011-12-01
The widespread commercialization of solid-oxide fuel cells (SOFCs) and solid-oxide electrolyte cells (SOECs) is primarily limited by material degradation issues related to the required high temperature operation (>800°C). Applications of stabilized zirconia based electrolytes, which are the most commonly used oxide ion conductors, have been limited to this high temperature regime due to its low oxygen ion conductivity below 800°C. Solid electrolytes made of the BIMEVOX compositional family of materials (Bi2MexV 1-xO5.5-delta where Me=Cu, Co, Mg, Ni, Fe...) exhibit high oxide ionic conductivity similar to YSZ at a low temperature (300--600°C). Among these materials copper-substituted bismuth vanadate (Bi2V0.9Cu0.1O5.35, BICUVOX), was reported to have the highest ionic conductivity at 400°C (0.02 S/cm). It's one of the most important drawbacks of using BICUVOX, as a SOFC electrolyte is the low mechanical strength, which makes it unusable for most electrolyte supported applications. This research aims at improving mechanical strength by careful control of synthesis processing and sintering processes, thus making BICUVOX a viable material option for intermediate temperature SOFC. A co-precipitation method was used to synthesize submicron BICUVOX powder. The powder was utilized to fabricate a thin (< 250 microm) BICUVOX electrolyte membrane, with 2.5 cm2 active area and high mechanical strength. The fabricated BICUVOX membranes were densified to 97% theoretical density at lower sintering temperature and shorter time (675°C/1 h), and shows fine grain size (<1.5microm) and high mechanical strength (159 MPa).
NASA Technical Reports Server (NTRS)
Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.
1998-01-01
Numerical simulation of the HgCdTe growth by the vertical Bridgman method was performed using FIDAP finite element code. Double-diffusive melt convection is analyzed, as the primary factor at controls inhomogeneity of the solidified material. Temperature and concentration fields in the model are also coupled via material properties, such as thermal and solutal expansion coefficients with the dependence on both temperature and concentration, and melting temperature evaluation from pseudobinary CdTe-HgTe phase diagram. Experimental measurements were used to obtain temperature boundary conditions. Parametric study of the melt convection dependence on the gravity conditions was undertaken. It was found, that the maximum convection velocity in the melt can be reduced under certain conditions. Optimal conditions to obtain a near flat solidified interface are discussed. The predicted interface shape is in agreement with one obtained experimentally by quenching. The results of 3-D calculations are compared with previous 2- D findings. A video film featuring 3-D melt convection will be presented.
Multifunctional Lattices with Low Thermal Expansion and Low Thermal Conductivity
NASA Astrophysics Data System (ADS)
Xu, Hang; Liu, Lu; Pasini, Damiano
Systems in space are vulnerable to large temperature changes when travelling into and out of the Earth's shadow. Variations in temperature can lead to undesired geometric changes in susceptible applications requiring very fine precision. In addition, temperature-sensitive electronic equipment hosted in a satellite needs adequate thermal-control to guarantee a moderate ambient temperature. To address these specifications, materials with low coefficient of thermal expansion (CTE) and low coefficient of thermal conductivity (CTC) over a wide range of temperatures are often sought, especially for bearing components in satellites. Besides low CTE and low CTC, these materials should also provide desirable stiffness, strength and extraordinarily low mass. This work presents ultralightweight bi-material lattices with tunable CTE and CTC, besides high stiffness and strength. We show that the compensation of the thermal expansion and joint rotation at the lattice joints can be used as an effective strategy to tailor thermomechanical performance. Proof-of-concept lattices are fabricated from Al and Ti alloy sheets via a simple snap-fit technique and vacuum brazing, and their CTE and CTC are assessed via a combination of experiments and theory. Corresponding Author.
Self-Developed Testing System for Determining the Temperature Behavior of Concrete.
Zhu, He; Li, Qingbin; Hu, Yu
2017-04-16
Cracking due to temperature and restraint in mass concrete is an important issue. A temperature stress testing machine (TSTM) is an effective test method to study the mechanism of temperature cracking. A synchronous closed loop federated control TSTM system has been developed by adopting the design concepts of a closed loop federated control, a detachable mold design, a direct measuring deformation method, and a temperature deformation compensation method. The results show that the self-developed system has the comprehensive ability of simulating different restraint degrees, multiple temperature and humidity modes, and closed-loop control of multi-TSTMs during one test period. Additionally, the direct measuring deformation method can obtain a more accurate deformation and restraint degree result with little local damage. The external temperature deformation affecting the concrete specimen can be eliminated by adopting the temperature deformation compensation method with different considerations of steel materials. The concrete quality of different TSTMs can be guaranteed by being vibrated on the vibrating stand synchronously. The detachable mold design and assembled method has greatly overcome the difficulty of eccentric force and deformation.
Self-Developed Testing System for Determining the Temperature Behavior of Concrete
Zhu, He; Li, Qingbin; Hu, Yu
2017-01-01
Cracking due to temperature and restraint in mass concrete is an important issue. A temperature stress testing machine (TSTM) is an effective test method to study the mechanism of temperature cracking. A synchronous closed loop federated control TSTM system has been developed by adopting the design concepts of a closed loop federated control, a detachable mold design, a direct measuring deformation method, and a temperature deformation compensation method. The results show that the self-developed system has the comprehensive ability of simulating different restraint degrees, multiple temperature and humidity modes, and closed-loop control of multi-TSTMs during one test period. Additionally, the direct measuring deformation method can obtain a more accurate deformation and restraint degree result with little local damage. The external temperature deformation affecting the concrete specimen can be eliminated by adopting the temperature deformation compensation method with different considerations of steel materials. The concrete quality of different TSTMs can be guaranteed by being vibrated on the vibrating stand synchronously. The detachable mold design and assembled method has greatly overcome the difficulty of eccentric force and deformation. PMID:28772778
Thin-film fiber optic hydrogen and temperature sensor system
Nave, Stanley E.
1998-01-01
The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiberoptic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences.
Thin-film fiber optic hydrogen and temperature sensor system
Nave, S.E.
1998-07-21
The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiber optic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences. 3 figs.
Optimized Characterization of Thermoelectric Generators for Automotive Application
NASA Astrophysics Data System (ADS)
Tatarinov, Dimitri; Wallig, Daniel; Bastian, Georg
2012-06-01
New developments in the field of thermoelectric materials bring the prospect of consumer devices for recovery of some of the waste heat from internal combustion engines closer to reality. Efficiency improvements are expected due to the development of high-temperature thermoelectric generators (TEG). In contrast to already established radioisotope thermoelectric generators, the temperature difference in automotive systems is not constant, and this imposes a set of specific requirements on the TEG system components. In particular, the behavior of the TEGs and interface materials used to link the heat flow from the heat source through the TEG to the heat sink must be examined. Due to the usage patterns of automobiles, the TEG will be subject to cyclic thermal loads, which leads to module degradation. Additionally, the automotive TEG will be exposed to an inhomogeneous temperature distribution, leading to inhomogeneous mechanical loads and reduced system efficiency. Therefore, a characterization rig is required to allow determination of the electrical, thermal, and mechanical properties of such high-temperature TEG systems. This paper describes a measurement setup using controlled adjustment of cold-side and warm-side temperatures as well as controlled feed-in of electrical power for evaluation of TEGs for application in vehicles with combustion engines. The temperature profile in the setup can be varied to simulate any vehicle usage pattern, such as the European standard driving cycle, allowing the power yield of the TEGs to be evaluated for the chosen cycle. The spatially resolved temperature distribution of a TEG system can be examined by thermal imaging. Hotspots or cracks on thermocouples of the TEGs and the thermal resistance of thermal interface materials can also be examined using this technology. The construction of the setup is briefly explained, followed by detailed discussion of the experimental results.
Method of constructing a microwave antenna
NASA Technical Reports Server (NTRS)
Ngo, Phong (Inventor); Arndt, G. Dickey (Inventor); Carl, James (Inventor)
2003-01-01
A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.
Method of Constructing a Microwave Antenna
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Carl, James (Inventor); Ngo, Phong (Inventor)
2003-01-01
A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.
Method for selective thermal ablation
NASA Technical Reports Server (NTRS)
Ngo, Phong (Inventor); Arndt, G. Dickey (Inventor); Raffoul, George W. (Inventor); Carl, James (Inventor)
2003-01-01
A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.
Method for Selective Thermal Ablation
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Carl, James (Inventor); Ngo, Phong (Inventor); Raffoul, George W. (Inventor)
2003-01-01
A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.
Molecular Beam Epitaxy of lithium niobium oxide multifunctional materials
NASA Astrophysics Data System (ADS)
Tellekamp, M. Brooks; Shank, Joshua C.; Doolittle, W. Alan
2017-04-01
The role of stoichiometry and growth temperature in the preferential nucleation of material phases in the Li-Nb-O family are explored yielding an empirical growth phase diagram. It is shown that while single parameter variation often produces multi-phase films, combining substrate temperature control with the previously published lithium flux limited growth allows the repeatable growth of high quality single crystalline films of many different oxide phases. Higher temperatures (800-1050 °C) than normally used in MBE were necessary to achieve high quality materials. At these temperatures the desorption of surface species is shown to play an important role in film composition. Using this method single phase films of NbO, NbO2, LiNbO2, Li3NbO4, LiNbO3, and LiNb3O8 have been achieved in the same growth system, all on c-plane sapphire. Finally, the future of these films in functional oxide heterostructures is briefly discussed.
NASA Astrophysics Data System (ADS)
Hübert, T.; Lang, C.
2012-09-01
An online monitoring of environmental and inherent product parameters is required during transportation and storage of fruit and vegetables to avoid quality degradation and spoilage. The control of transpiration losses is suggested as an indicator for fruit freshness by humidity measurements. For that purpose, an electronic sensor is surrounded by a wet porous fiber material which is in contact with the outer atmosphere. Transpiration reduces the water content of the porous material and thus also the internal water activity. The sensor system, known as "artificial fruit," measures the relative humidity and temperature inside the wet material. Humidity and temperature data are collected and transmitted on demand by a miniaturized radio communication unit. The decrease in the measured relative humidity has been calibrated against the mass loss of tomatoes under different external influencing parameters such as temperature, humidity, and air flow. Current battery life allows the sensor system, embedded in a fruit crate, to transmit data on transpiration losses via radio transmission for up to two weeks.
Transcatheter Microwave Antenna
NASA Technical Reports Server (NTRS)
Arndt, Dickey G. (Inventor); Carl, James R. (Inventor); Ngo, Phong (Inventor); Raffoul, George W. (Inventor)
2001-01-01
A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.
A neutron spectrometer based on temperature variations in superheated drop compositions
NASA Astrophysics Data System (ADS)
Apfel, Robert E.; d'Errico, Francesco
2002-01-01
The response of superheated drop detectors (SDDs) to neutron radiation varies in a self-consistent manner with variations in temperature and pressure, making such compositions suitable for neutron spectrometry. The advantage of this approach is that the response functions of candidate materials versus energy as the temperature or pressure is varied are nested and have distinct thresholds, with no thermal neutron response. These characteristics permit unfolding without the uncertainties associated with other spectrometry techniques, where multiple solutions are possible, thus requiring an initial guess of the spectrum. A spectrometer was developed based on the well-established technology for acoustic sensing of bubble events interfaced with a proportional-integral-derivative temperature controller. The active monitor for neutrons, called REMbrandt™, was used as the platform for controlling temperature on a SDD probe and for data acquisition, thereby automating the process of measuring the neutron energy spectrum. The new instrument, called REM-SPEC™, implements and automates the original BINS approach: it adjusts the temperature of the SDD vial in increasing steps and measures the bubble event rate at each step. By using two distinct SDD materials with overlapping responses, the 0.1-20 MeV range of energies relevant to practical spectrometry is readily covered. Initial experiments with an Am-Be source validate the operational protocols of this device.
Cryogenic temperature control by means of energy storage materials. [for long space voyages
NASA Technical Reports Server (NTRS)
Grodzka, P. G.; Picklesimer, E. A.; Connor, L. E.
1977-01-01
An investigation was conducted to study the concept of thermal control by means of physical or chemical reaction heats for applications involving the storage of cryogens during long-term space voyages. The investigation included some preliminary experimental tests of energy storage material (ESM) effectiveness. The materials considered can store and liberate large amounts of thermal energy by means of mechanisms such as sensible heat, heat of fusion, and physical or chemical reaction heat. A differential thermal analysis was utilized in the laboratory tests. Attention is given to the evaluation of cryogenic ESM thermal control concepts, the experimental determination of phase change materials characteristics, and adsorption ESMs. It is found that an ESM shield surrounded by multiple layer insulation provides the best protection for a cryogen store.
Three-Dimensional Printable High-Temperature and High-Rate Heaters.
Yao, Yonggang; Fu, Kun Kelvin; Yan, Chaoyi; Dai, Jiaqi; Chen, Yanan; Wang, Yibo; Zhang, Bilun; Hitz, Emily; Hu, Liangbing
2016-05-24
High temperature heaters are ubiquitously used in materials synthesis and device processing. In this work, we developed three-dimensional (3D) printed reduced graphene oxide (RGO)-based heaters to function as high-performance thermal supply with high temperature and ultrafast heating rate. Compared with other heating sources, such as furnace, laser, and infrared radiation, the 3D printed heaters demonstrated in this work have the following distinct advantages: (1) the RGO based heater can operate at high temperature up to 3000 K because of using the high temperature-sustainable carbon material; (2) the heater temperature can be ramped up and down with extremely fast rates, up to ∼20 000 K/second; (3) heaters with different shapes can be directly printed with small sizes and onto different substrates to enable heating anywhere. The 3D printable RGO heaters can be applied to a wide range of nanomanufacturing when precise temperature control in time, placement, and the ramping rate are important.
NCTM of liquids at high temperatures using polarization techniques
NASA Technical Reports Server (NTRS)
Krishnan, Shankar; Weber, J. K. Richard; Nordine, Paul C.; Schiffman, Robert A.
1990-01-01
Temperature measurement and control is extremely important in any materials processing application. However, conventional techniques for non-contact temperature measurement (mainly optical pyrometry) are very uncertain because of unknown or varying surface emittance. Optical properties like other properties change during processing. A dynamic, in-situ measurement of optical properties including the emittance is required. Intersonics is developing new technologies using polarized laser light scattering to determine surface emittance of freely radiating bodies concurrent with conventional optical pyrometry. These are sufficient to determine the true surface temperature of the target. Intersonics is currently developing a system called DAPP, the Division of Amplitude Polarimetric Pyrometer, that uses polarization information to measure the true thermodynamic temperature of freely radiating objects. This instrument has potential use in materials processing applications in ground and space based equipment. Results of thermophysical and thermodynamic measurements using laser reflection as a temperature measuring tool are presented. The impact of these techniques on thermophysical property measurements at high temperature is discussed.
Transparent multi-zone crystal growth furnace and method for controlling the same
NASA Technical Reports Server (NTRS)
Batur, Celal (Inventor); Bennett, Robert J. (Inventor); Duval, Walter (Inventor)
2000-01-01
A crystal growth system, comprising: a furnace; a plurality of heating elements coupled to said furnace, each said plurality of heating elements defining a heat zone, each said heating element set to a desired temperature value; a plurality of thermocouples associated with respective heat zones to detect a temperature value; a translation system for passing an ampoule containing crystal growth material through said furnace into said heat zones and providing a positional location of said ampoule and; a multi-variable self-tuning temperature controller connected to said plurality of heating elements, said plurality of thermocouples and said translation system, said controller monitoring each said zone temperature value and upon considering the thermal interaction of heating zones and the moving thermal inertia of the ampoule, adjusting voltage input to said heat zones to obtain optimal crystal growth within said ampoule.
Transparent multi-zone crystal growth furnace and method for controlling the same
NASA Technical Reports Server (NTRS)
Batur, Celal (Inventor); Duval, Walter (Inventor); Bennett, Robert J. (Inventor)
2001-01-01
A crystal growth system, comprising: a furnace; a plurality of heating elements coupled to said furnace, each said plurality of heating elements defining a heat zone, each said heating element set to a desired temperature value; a plurality of thermocouples associated with respective heat zones to detect a temperature value; a translation system for passing an ampoule containing crystal growth material through said furnace into said heat zones and providing a positional location of said ampoule and; a multi-variable self-tuning temperature controller connected to said plurality of heating elements, said plurality of thermocouples and said translation system, said controller monitoring each said zone temperature value and upon considering the thermal interaction of heating zones and the moving thermal inertia of the ampoule, adjusting voltage input to said heat zones to obtain optimal crystal growth within said ampoule.
NASA Astrophysics Data System (ADS)
Li, W. Q.; Qu, Z. G.; He, Y. L.; Tao, Y. B.
2014-06-01
A highly efficient thermal strategy to manage a high-powered Li-ion battery package within the required safe temperature range is of great demand for electric vehicles (EVs) applications. A sandwiched cooling structure using copper metal foam saturated with phase change materials was designed. The thermal efficiency of the system was experimentally evaluated and compared with two control cases: a cooling mode with pure phase change materials and an air-cooling mode. The results showed that the thermal management with air natural convection cannot fulfill the safety demand of the Li-ion battery. The use of pure PCM can dramatically reduce the surface temperature and maintain the temperature within an allowable range due to the latent heat absorption and the natural convection of the melted PCM during the melting process. The foam-paraffin composite further reduced the battery's surface temperature and improved the uniformity of the temperature distribution caused by the improvement of the effective thermal conductivity. Additionally, the battery surface temperature increased with an increase in the porosity and the pore density of the metal foam.
Mechanical characterization of injection-molded macro porous bioceramic bone scaffolds.
Vivanco, Juan; Aiyangar, Ameet; Araneda, Aldo; Ploeg, Heidi-Lynn
2012-05-01
Bioactive ceramic materials like tricalcium phosphate (TCP) have been emerging as viable material alternatives to the current therapies of bone scaffolding to target fracture healing and osteoporosis. Both material and architectural characteristics play a critical role in the osteoconductive capacity and strength of bone scaffolds. Thus, the objective of this research was to investigate the sintering temperature effect of a cost-effective manufacturing process on the architecture and mechanical properties of a controlled macro porous bioceramic bone scaffold. In this study the physical and mechanical properties of β-TCP bioceramic scaffolds were investigated as a function of the sintering temperature in the range of 950-1150 °C. Physical properties investigated included bulk dimensions, pore size, and strut thickness; and, compressive mechanical properties were evaluated in air at room temperature and in saline solution at body temperature. Statistically significant increases in apparent elastic modulus were measured for scaffolds sintered at higher temperatures. Structural stiffness for all the specimens was significantly reduced when tested at body temperature in saline solution. These findings support the development of clinically successful bioceramic scaffolds that may stimulate bone regeneration and scaffold integration while providing structural integrity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Surface compositional variations of Mo-47Re alloy as a function of temperature
NASA Technical Reports Server (NTRS)
Hoekje, S. J.; Outlaw, R. A.; Sankaran, S. N.
1993-01-01
Molybdenum-rhenium alloys are candidate materials for the National Aero-Space Plane (NASP) as well as for other applications in generic hypersonics. These materials are expected to be subjected to high-temperature (above 1200 C) casual hydrogen (below 50 torr), which could potentially degrade the material strength. Since the uptake of hydrogen may be controlled by the contaminant surface barriers, a study of Mo-47Re was conducted to examine the variations in surface composition as a function of temperature from 25 C to 1000 C. Pure molybdenum and rhenium were also examined and the results compared with those for the alloy. The analytical techniques employed were Auger electron spectroscopy, electron energy loss spectroscopy, ion scattering spectroscopy, and x ray photoelectron spectroscopy. The native surface was rich in metallic oxides that disappeared at elevated temperatures. As the temperature increased, the carbon and oxygen disappeared by 800 C and the surface was subsequently populated by the segregation of silicon, presumably from the grain boundaries. The alloy readily chemisorbed oxygen, which disappeared with heating. The disappearance temperature progressively increased for successive dosings. When the alloy was exposed to 800 torr of hydrogen at 900 C for 1 hour, no hydrogen interaction was observed.
Fernández-Sanjuan, María; Lacorte, Silvia; Rigol, Anna; Sahuquillo, Angels
2012-11-01
The determination of alkylphenols in sewage sludge is still hindered by the complexity of the matrix and of the analytes, some of which are a mixture of isomers. Most of the methods published in the literature have not been validated, due to the lack of reference materials for the determination of alkylphenols in sludge. Given this situation, the objectives of the present study were to develop a new quality-control material for determining octylphenol, nonylphenol and nonylphenol monoethoxylate in sludge. The material was prepared from an anaerobically digested sewage sludge, which was thermally dried, sieved, homogenized and bottled after checking for the bulk homogeneity of the processed material. Together with the sewage sludge, an extract was also prepared, in order to provide a quality-control material for allowing laboratories to test the measuring step. The homogeneity and 1-year stability of the two materials were evaluated. Statistical analysis proved that the materials were homogeneous and stable for at least 1 year stored at different temperatures. These materials are intended to assist in the quality control of the determination of alkylphenols and alkylphenol ethoxylates in sewage sludge.
Long-term stability and properties of zirconia ceramics for heavy duty diesel engine components
NASA Technical Reports Server (NTRS)
Larsen, D. C.; Adams, J. W.
1985-01-01
Physical, mechanical, and thermal properties of commercially available transformation-toughened zirconia are measured. Behavior is related to the material microstructure and phase assemblage. The stability of the materials is assessed after long-term exposure appropriate for diesel engine application. Properties measured included flexure strength, elastic modulus, fracture toughness, creep, thermal shock, thermal expansion, internal friction, and thermal diffusivity. Stability is assessed by measuring the residual property after 1000 hr/1000C static exposure. Additionally static fatigue and thermal fatigue testing is performed. Both yttria-stabilized and magnesia-stabilized materials are compared and contrasted. The major limitations of these materials are short term loss of properties with increasing temperature as the metastable tetragonal phase becomes more stable. Fine grain yttria-stabilized material (TZP) is higher strength and has a more stable microstructure with respect to overaging phenomena. The long-term limitation of Y-TZP is excessive creep deformation. Magnesia-stabilized PSZ has relatively poor stability at elevated temperature. Overaging, decomposition, and/or destabilization effects are observed. The major limitation of Mg-PSZ is controlling unwanted phase changes at elevated temperature.
Testing fireproof materials in a combustion chamber
NASA Astrophysics Data System (ADS)
Kulhavy, Petr; Martinec, Tomas; Novak, Ondrej; Petru, Michal; Srb, Pavel
This article deals with a prototype concept, real experiment and numerical simulation of a combustion chamber, designed for testing fire resistance some new insulating composite materials. This concept of a device used for testing various materials, providing possibility of monitoring temperatures during controlled gas combustion. As a fuel for the combustion process propane butane mixture has been used and also several kinds of burners with various conditions of inlet air (forced, free) and fuel flows were tested. The tested samples were layered sandwich materials based on various materials or foams, used as fillers in fire shutters. The temperature distribution was measured by using thermocouples. A simulation of whole concept of experimental chamber has been carried out as the non-premixed combustion process in the commercial final volume sw Pyrosim. The result was to design chamber with a construction suitable, according to the international standards, achieve the required values (temperature in time). Model of the combustion based on a stoichiometric defined mixture of gas and the tested layered samples showed good conformity with experimental results - i.e. thermal distribution inside and heat release rate that has gone through the sample.
High temperature deformation of NiAl and CoAl
NASA Technical Reports Server (NTRS)
Nix, W. D.
1982-01-01
The high temperature mechanical properties of the aluminides are reviewed with respect to their potential as high temperature structural materials. It is shown that NiAl and CoAl are substantially stronger than the pure metals Ni and Co at high temperatures and approach the strength of some superalloys, particularly when those superalloys are tested in "weak" directions. The factors that limit and control the high temperature strengths of NiAl and CoAl are examined to provide a basis for the development of intermetallic alloys of this type.
NASA Astrophysics Data System (ADS)
Rao, K. Bhanu Sankara; Valsan, M.; Sandhya, R.; Mannan, S. L.; Rodriguez, P.
1993-04-01
The influence of prior cold work (PCW) on low-cycle fatigue (LCF) behavior of type 304 stainless steel has been studied at 300, 823, 923, and 1023 K by conducting total axial strain-controlled tests in solution annealed (SA, 0 pct PCW) condition and on specimens having three levels of PCW, namely, 10, 20, and 30 pct. A triangular waveform with a constant frequency of 0.1 Hz was employed for all of the tests performed over strain amplitudes in the range of ±0.25 to ± 1.25 pct. These studies have revealed that fatigue life is strongly dependent on PCW, temperature, and strain amplitude employed in testing. The SA material generally displayed better endurance in terms of total and plastic strain amplitudes than the material in 10, 20, and 30 pct PCW conditions at all of the temperatures. However, at 300 K at very low strain amplitudes, PCW material exhibited better total strain fatigue resistance. At 823 K, LCF life decreased with increasing PCW, whereas at 923 K, 10 pct PCW displayed the lowest life. An improvement in life occurred for prior deformations exceeding 10 pct at all strain amplitudes at 923 K. Fatigue life showed a noticeable decrease with increasing temperature up to 1023 K in PCW state. On the other hand, SA material displayed a minimum in fatigue life at 923 K. The fatigue life results of SA as well as all of the PCW conditions obeyed the Basquin and Coffin-Manson relationships at 300, 823, and 923 K. The constants and exponents in these equations were found to depend on the test temperature and prior metallurgical state of the material. A study is made of cyclic stress-strain behavior in SA and PCW states and the relationship between the cyclic strain-hardening exponent and fatigue behavior at different temperatures has been explored. The influence of environment on fatigue crack initiation and propagation behavior has been examined.
Graeber, Kai; Linkies, Ada; Steinbrecher, Tina; Mummenhoff, Klaus; Tarkowská, Danuše; Turečková, Veronika; Ignatz, Michael; Sperber, Katja; Voegele, Antje; de Jong, Hans; Urbanová, Terezie; Strnad, Miroslav; Leubner-Metzger, Gerhard
2014-08-26
Seed germination is an important life-cycle transition because it determines subsequent plant survival and reproductive success. To detect optimal spatiotemporal conditions for germination, seeds act as sophisticated environmental sensors integrating information such as ambient temperature. Here we show that the delay of germination 1 (DOG1) gene, known for providing dormancy adaptation to distinct environments, determines the optimal temperature for seed germination. By reciprocal gene-swapping experiments between Brassicaceae species we show that the DOG1-mediated dormancy mechanism is conserved. Biomechanical analyses show that this mechanism regulates the material properties of the endosperm, a seed tissue layer acting as germination barrier to control coat dormancy. We found that DOG1 inhibits the expression of gibberellin (GA)-regulated genes encoding cell-wall remodeling proteins in a temperature-dependent manner. Furthermore we demonstrate that DOG1 causes temperature-dependent alterations in the seed GA metabolism. These alterations in hormone metabolism are brought about by the temperature-dependent differential expression of genes encoding key enzymes of the GA biosynthetic pathway. These effects of DOG1 lead to a temperature-dependent control of endosperm weakening and determine the optimal temperature for germination. The conserved DOG1-mediated coat-dormancy mechanism provides a highly adaptable temperature-sensing mechanism to control the timing of germination.
Ripley, Edward B.; Hallman, Russell L.
2015-11-10
Disclosed are methods and systems for controlling of the microstructures of a soldered, brazed, welded, plated, cast, or vapor deposited manufactured component. The systems typically use relatively weak magnetic fields of either constant or varying flux to affect material properties within a manufactured component, typically without modifying the alloy, or changing the chemical composition of materials or altering the time, temperature, or transformation parameters of a manufacturing process. Such systems and processes may be used with components consisting of only materials that are conventionally characterized as be uninfluenced by magnetic forces.
Thermotropic and Thermochromic Polymer Based Materials for Adaptive Solar Control
Seeboth, Arno; Ruhmann, Ralf; Mühling, Olaf
2010-01-01
The aim of this review is to present the actual status of development in adaptive solar control by use of thermotropic and organic thermochromic materials. Such materials are suitable for application in smart windows. In detail polymer blends, hydrogels, resins, and thermoplastic films with a reversible temperature-dependent switching behavior are described. A comparative evaluation of the concepts for these energy efficient materials is given as well. Furthermore, the change of strategy from ordinary shadow systems to intrinsic solar energy reflection materials based on phase transition components and a first remark about their realization is reported. Own current results concerning extruded films and high thermally stable casting resins with thermotropic properties make a significant contribution to this field. PMID:28883374
Nanomodified heat-accumulating materials controlled by a magnetic field
NASA Astrophysics Data System (ADS)
Shchegolkov, Alexander; Shchegolkov, Alexey; Dyachkova, Tatyana; Bodin, Nikolay; Semenov, Alexander
2017-11-01
The paper presents studies of nanomodified heat-accumulating materials controlled by a magnetic field. In order to obtain controlled heat-accumulating materials, synthetic motor oil CASTROL 0W30, ferromagnetic particles, CNTs and paraffin were used. Mechanically activated carbon nanotubes with ferromagnetic particles were used for the nanomodification of paraffin. Mechanoactivation ensured the production of ferromagnetic particles with an average particle size of 5 µm. Using an extrusion plant, a mixture of CNTs and ferromagnetic particles was introduced into the paraffin. Further, the nanomodified paraffin in a granular form was introduced into synthetic oil. To conduct experimental studies, a contactless method for measuring temperature was used. The thermal contact control with the help of the obtained nanomodified material is possible with a magnetic induction of 1250 mT, and a heat flux of about 74 kW/m2 is provided at the same time.
NASA Technical Reports Server (NTRS)
Morris, J. F.
1981-01-01
Thermionic energy converters and metallic-fluid heat pipes are well suited to serve together synergistically. The two operating cycles appear as simple and isolated as their material problems seem forebodingly deceptive and complicated. Simplified equations verify material properties and interactions as primary influences on the operational effectiveness of both. Each experiences flow limitations in thermal emission and vaporization because of temperature restrictions redounding from thermophysicochemical stability considerations. Topics discussed include: (1) successful limitation of alkali-metal corrosion; (2) protection against external hot corrosive gases; (3) coping with external and internal vaporization; (4) controlling interfacial reactions and diffusion; and (5) meeting other thermophysical challenges; expansion matches and creep.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanrikulu, Mahmud Yusuf, E-mail: mytanrikulu@adanabtu.edu.tr; Rasouli, Hamid Reza; Ghaffari, Mohammad
2016-05-15
This paper demonstrates the possible usage of TiO{sub x} thin films synthesized by atomic layer deposition as a microbolometer active material. Thin film electrical resistance is investigated as a function of thermal annealing. It is found that the temperature coefficient of resistance values can be controlled by coating/annealing processes, and the value as high as −9%/K near room temperature is obtained. The noise properties of TiO{sub x} films are characterized. It is shown that TiO{sub x} films grown by atomic layer deposition technique could have a significant potential to be used as a new active material for microbolometer-based applications.
Thermomagnetic burn control for magnetic fusion reactor
Rawls, J.M.; Peuron, A.U.
1980-07-01
Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma and a toroidal field coil. A mechanism for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.
NASA Astrophysics Data System (ADS)
Sakthiraj, K.; Hema, M.; Balachandra Kumar, K.
2018-06-01
In the present study, nanocrystalline tin oxide materials were prepared using sol-gel method with different reaction temperatures (25 °C, 50 °C, 75 °C & 90 °C) and the relation between the room temperature ferromagnetic property of the sample with processing temperature has been analysed. The X-ray diffraction pattern and infrared absorption spectra of the as-prepared samples confirm the purity of the samples. Transmission electron microscopy images visualize the particle size variation with respect to reaction temperature. The photoluminescence spectra of the samples demonstrate that luminescence process in materials is originated due to the electron transition mediated by defect centres. The room temperature ferromagnetic property is observed in all the samples with different amount, which was confirmed using vibrating sample magnetometer measurements. The saturation magnetization value of the as-prepared samples is increased with increasing the reaction temperature. From the photoluminescence & magnetic measurements we accomplished that, more amount of surface defects like oxygen vacancy and tin interstitial are created due to the increase in reaction temperature and it controls the ferromagnetic property of the samples.
The effect of forging history on the strength and microstructure of TDNiCr /Ni-20Cr-2ThO2/
NASA Technical Reports Server (NTRS)
Filippi, A. M.
1975-01-01
Forging variables were evaluated to determine their influence on the elevated temperature strength and microstructure of TDNiCr. Grain size was the principal microstructural feature related to elevated temperature strength and was controlled primarily by the thermomechanical variables of forging temperature and final annealing condition. Tests at 1366 K revealed a factor of eight increase in tensile strength as grain size increased from 1 to 150 microns, while stress-rupture strength improved by three to five times as grain size increased from 15 to 150 microns. Forged material of grain size greater than or equal to about 150 microns displayed a level of elevated temperature strength comparable to that of optimized TDNiCr sheet. The presence of a preponderance of small twins and a strong preferred orientation may have also been factors contributing to the excellent high temperature strength of large grain forged material.
Imade, Keisuke; Kageyama, Takashi; Koyama, Daisuke; Watanabe, Yoshiaki; Nakamura, Kentaro; Akiyama, Iwaki
2016-10-01
The experimental investigation of an optical fiber Bragg grating (FBG) sensor for biomedical application is described. The FBG sensor can be used to measure sound pressure and temperature rise simultaneously in biological tissues exposed to ultrasound. The theoretical maximum values that can be measured with the FBG sensor are 73.0 MPa and 30 °C. In this study, measurement of sound pressure up to 5 MPa was performed at an ultrasound frequency of 2 MHz. A maximum temperature change of 6 °C was measured in a tissue-mimicking material. Values yielded by the FBG sensor agreed with those measured using a thermocouple and a hydrophone. Since this sensor is used to monitor the sound pressure and temperature simultaneously, it can also be used for industrial applications, such as ultrasonic cleaning of semiconductors under controlled temperatures.
Chemical vapor deposition modeling for high temperature materials
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.
1992-01-01
The formalism for the accurate modeling of chemical vapor deposition (CVD) processes has matured based on the well established principles of transport phenomena and chemical kinetics in the gas phase and on surfaces. The utility and limitations of such models are discussed in practical applications for high temperature structural materials. Attention is drawn to the complexities and uncertainties in chemical kinetics. Traditional approaches based on only equilibrium thermochemistry and/or transport phenomena are defended as useful tools, within their validity, for engineering purposes. The role of modeling is discussed within the context of establishing the link between CVD process parameters and material microstructures/properties. It is argued that CVD modeling is an essential part of designing CVD equipment and controlling/optimizing CVD processes for the production and/or coating of high performance structural materials.
Cruz, C.; Soares-Pinto, D. O.; Brandão, P.; ...
2016-03-07
The control of quantum correlations in solid-state systems by means of material engineering is a broad avenue to be explored, since it makes possible steps toward the limits of quantum mechanics and the design of novel materials with applications on emerging quantum technologies. This letter explores the potential of molecular magnets to be prototypes of materials for quantum information technology in this context. More precisely, we engineered a material and from its geometric quantum discord we found significant quantum correlations up to 9540 K (even without entanglement); and, a pure singlet state occupied up to around 80 K (above liquidmore » nitrogen temperature), additionally. Our results could only be achieved due to the carboxylate group promoting a metal-to-metal huge magnetic interaction.« less
Welding Wires To Thin Thermocouple Films
NASA Technical Reports Server (NTRS)
Holanda, Raymond; Kim, Walter S.; Danzey, Gerald A.; Pencil, Eric; Wadel, Mary
1993-01-01
Parallel-gap resistance welding yields joints surviving temperatures of about 1,000 degrees C. Much faster than thermocompression bonding. Also exceeds conductive-paste bonding and sputtering thin films through porous flame-sprayed insulation on prewelded lead wires. Introduces no foreign material into thermocouple circuit and does not require careful control of thickness of flame-sprayed material.
1975-05-01
Waste-to-energy systems Recycling of materials from refuse Desulfurization of flue gases from electric power plants Sattelle Specialists...High-Temperature Gas -Turbine Engines for Automotive Applications Initiation of Task II and Task III (Task II: Description of Technologies and...3 - • Mining and Minerals Processing • Ocean Engineering • Transportation • Waste Treatment and Environmental Control The technologies
Steam Reformer With Fibrous Catalytic Combustor
NASA Technical Reports Server (NTRS)
Voecks, Gerald E.
1987-01-01
Proposed steam-reforming reactor derives heat from internal combustion on fibrous catalyst. Supplies of fuel and air to combustor controlled to meet demand for heat for steam-reforming reaction. Enables use of less expensive reactor-tube material by limiting temperature to value safe for material yet not so low as to reduce reactor efficiency.
On-Board Hydrogen Gas Production System For Stirling Engines
Johansson, Lennart N.
2004-06-29
A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.
Proctor, Caitlin R; Dai, Dongjuan; Edwards, Marc A; Pruden, Amy
2017-10-04
Several biotic and abiotic factors have been reported to influence the proliferation of microbes, including Legionella pneumophila, in hot water premise plumbing systems, but their combined effects have not been systematically evaluated. Here, we utilize simulated household water heaters to examine the effects of stepwise increases in temperature (32-53 °C), pipe material (copper vs. cross-linked polyethylene (PEX)), and influent assimilable organic carbon (0-700 μg/L) on opportunistic pathogen gene copy numbers and the microbiota composition, as determined by quantitative polymerase chain reaction and 16S rRNA gene amplicon sequencing. Temperature had an overarching influence on both the microbiota composition and L. pneumophila numbers. L. pneumophila peaked at 41 °C in the presence of PEX (1.58 × 10 5 gene copies/mL). At 53 °C, L. pneumophila was not detected. Several operational taxonomic units (OTUs) persisted across all conditions, accounting for 50% of the microbiota composition from 32 to 49 °C and 20% at 53 °C. Pipe material most strongly influenced microbiota composition at lower temperatures, driven by five to six OTUs enriched with each material. Copper pipes supported less L. pneumophila than PEX pipes (mean 2.5 log 10 lower) at temperatures ≤ 41 °C, but showed no difference in total bacterial numbers. Differences between pipe materials diminished with elevated temperature, probably resulting from decreased release of copper ions. At temperatures ≤ 45 °C, influent assimilable organic carbon correlated well with total bacterial numbers, but not with L. pneumophila numbers. At 53 °C, PEX pipes leached organic carbon, reducing the importance of dosed organic carbon. L. pneumophila numbers correlated with a Legionella OTU and a Methylophilus OTU identified by amplicon sequencing. Temperature was the most effective factor for the control of L. pneumophila, while microbiota composition shifted with each stepwise temperature increase. While copper pipe may also help shape the microbiota composition and limit L. pneumophila proliferation, its benefits might be constrained at higher temperatures. Influent assimilable organic carbon affected total bacterial numbers, but had minimal influence on opportunistic pathogen gene numbers or microbiota composition. These findings provide guidance among multiple control measures for the growth of opportunistic pathogens in hot water plumbing and insight into the mediating role of microbial ecological factors.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Jacobson, Nathan S.; Miller, Robert A.
1999-01-01
Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium aluminum garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) are candidate refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermo-mechanical reliability of these components in severe thermal environments during the space mission sun/shade transition is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions, and thus provide vital information for the component design. In this paper, a controlled heat flux thermal shock test approach is established for the single crystal oxide materials using a 3.0 kW continuous wave CO2 laser, with a wavelength 10.6 micron. Thermal fracture behavior and failure mechanisms of these oxide materials are investigated and critical temperature gradients are determined under various temperature and heating conditions. The test results show that single crystal sapphire is able to sustain the highest temperature gradient and heating-cooling rate, and thus exhibit the best thermal shock resistance, as compared to the yttria-stabilized zirconia, yttrium aluminum garnet and magnesium oxide.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Jacobson, Nathan S.; Miller, Robert A.
1999-01-01
Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium aluminum garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) are candidate refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermo-mechanical reliability of these components in severe thermal environments during the space mission sun/shade transition is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions, and thus provide vital information for the component design. In this paper, a controlled heat flux thermal shock test approach is established for the single crystal oxide materials using a 3.0 kW continuous wave CO2 laser, with a wavelength 10.6 micron. Thermal fracture behavior and failure mechanisms of these oxide materials are investigated and critical temperature gradients are determined under various temperature and heating conditions. The test results show that single crystal sapphire is able to sustain the highest temperature gradient and heating-cooling rate, and thus exhibit the best thermal shock resistance, as compared to the yttria-stabilized zirconia, yttrium aluminum garnet, and magnesium oxide.
A Precise Calibration Technique for Measuring High Gas Temperatures
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.; Schultz, Donald F.
2000-01-01
A technique was developed for direct measurement of gas temperatures in the range of 2050 K 2700 K with improved accuracy and reproducibility. The technique utilized the low-emittance of certain fibrous materials, and the uncertainty of the technique was United by the uncertainty in the melting points of the materials, i.e., +/-15 K. The materials were pure, thin, metal-oxide fibers whose diameters varied from 60 microns to 400 microns in the experiments. The sharp increase in the emittance of the fibers upon melting was utilized as indication of reaching a known gas temperature. The accuracy of the technique was confirmed by both calculated low emittance values of transparent fibers, of order 0.01, up to a few degrees below their melting point and by the fiber-diameter independence of the results. This melting-point temperature was approached by increments not larger than 4 K, which was accomplished by controlled increases of reactant flow rates in hydrogen-air and/or hydrogen-oxygen flames. As examples of the applications of the technique, the gas-temperature measurements were used: (a) for assessing the uncertainty in inferring gas temperatures from thermocouple measurements, and (b) for calibrating an IR camera to measure gas temperatures. The technique offers an excellent calibration reference for other gas-temperature measurement methods to improve their accuracy and reliably extending their temperature range of applicability.
A Precise Calibration Technique for Measuring High Gas Temperatures
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.; Schultz, Donald F.
1999-01-01
A technique was developed for direct measurement of gas temperatures in the range of 2050 K - 2700 K with improved accuracy and reproducibility. The technique utilized the low-emittance of certain fibrous Materials, and the uncertainty of the technique was limited by the uncertainty in the melting points of the materials, i.e., +/- 15 K. The materials were pure, thin, metal-oxide fibers whose diameters varied from 60 mm to 400 mm in the experiments. The sharp increase in the emittance of the fibers upon melting was utilized as indication of reaching a known gas temperature. The accuracy of the technique was confirmed by both calculated low emittance values of transparent fibers, of order 0.01, up to a few degrees below their melting point and by the fiber-diameter independence of the results. This melting-point temperature was approached by increments not larger than 4 K, which was accomplished by controlled increases of reactant flow rates in hydrogen-air and/or hydrogen- oxygen flames. As examples of the applications of the technique, the gas-temperature measurements were used (a) for assessing the uncertainty in infering gas temperatures from thermocouple measurements, and (b) for calibrating an IR camera to measure gas temperatures. The technique offers an excellent calibration reference for other gas-temperature measurement methods to improve their accuracy and reliably extending their temperature range of applicability.
Takenaka, T; Kiriyama, R; Muramatsu, M; Kitagawa, A; Uchida, T; Kurisu, Y; Nozaki, D; Yano, K; Yoshida, Y; Sato, F; Kato, Y; Iida, T
2012-02-01
An electron cyclotron resonance ion source (ECRIS) is used to generate multicharged ions for many kinds of the fields. We have developed an evaporator by using induction heating method that can generate pure vapor from solid state materials in ECRIS. We develop the new matching and protecting circuit by which we can precisely control the temperature of the induction heating evaporator. We can control the temperature within ±15 °C around 1400 °C under the operation pressure about 10(-4) Pa. We are able to use this evaporator for experiment of synthesizing process to need pure vapor under enough low pressure, e.g., experiment of generation of endohedral Fe-fullerene at the ECRIS.
Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael
Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One systemmore » operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.« less
Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials
Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael
2015-07-14
Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.
Thermal properties of capacitively coupled electrodes in interstitial hyperthermia.
van der Koijk, J F; Crezee, J; Lagendijk, J J
1998-01-01
The multi-electrode current source (MECS) interstitial hyperthermia system which is used for treatment of cancer, employs segmented electrodes inserted in plastic tubes implanted in the treatment volume. The mean power deposition of the individual electrodes is controlled by varying the duty cycle of the RF signal applied to the electrodes, using thermocouples inside the electrodes for thermometry. A non-zero loss angle results in self-heating of the catheter. The thermal influence of self-heating was investigated and an analysis of the measurement of temperatures inside the catheter during and after heating is presented. Analytical models and a high-resolution numerical model were used for the calculation of steady state and transient distributions, respectively. The model results are compared with experimental data obtained in a muscle equivalent phantom. Results indicate that there is no difference between temperature inside and outside the catheter when using lossless catheter materials (e.g. PE and PTFE). Self-heating in the catheter wall has an adverse effect on the uniformity of the stationary temperature distribution and the reliability of temperature measurement with internal thermometry. These problems remain within acceptable limits for mildly lossy materials; the difference between the temperature inside and outside is only 6% when using low-loss Nylon. Analysis of the thermal decay after power-off shows that low-loss materials allow more time to obtain an accurate estimate of the tissue temperature at the catheter wall during power-on. This effect is enhanced by the presence of minute air layers in the applicator. Distortion of temperature gradients along the catheter was also investigated. Key factors are the thermal conduction across the catheter wall, and especially the presence of minute layers of air between consecutive layers of the probe. The distortion extends less than two millimetres, which is acceptable. The simulation results are compatible with measurements in phantoms and show that, if the proper choice of materials is made, the MECS applicator answers our expectations and that the temperature measurement inside the catheter can be used for direct feedback treatment control.
NASA Astrophysics Data System (ADS)
Khantikomol, P.; Polsongkram, M.; Apisitpinyo, W.; Poowadin, T.
2018-01-01
The present research article aims to propose the heat transfer enhancement of the flow insulator using combined fibrous and wire net stainless steel porous material. The stainless fibrous plate with porosity of 0.9292 was combined to the stainless steel wire net having pore per inch (PPI) of 16 and total thickness of 30 mm. Two models of the arranging porous plates were prepared, which were model BA and model AB. Each porous plate segment had the same thickness. The examined porous plate model have porosities of 0.8452. The porous plate was placed normal to the flow direction. The air was used as working fluid heated by 5 kW electric heater, which was controlled by the automatic temperature control. Type-K thermocouples were employed to measure the air temperatures. The temperature at front of the porous plate was varied to be 350, 450, and 550°C. The air flow rate was varied in the range of 4-12 m3/hr. The experimental result showed that the temperature drop across the porous plate and the thermal efficiency increase with the inlet temperature. The air velocity slightly affects the temperature profile inside the test section at the upstream side of the porous plate but greatly affects temperature inside the porous plate. In consideration of the arranging porous plate, placing of the stainless steel wire net at the upstream side and placing the stainless steel fibrous at downstream side (model BA) results in the highest temperature drop and the highest thermal efficiency. At Re 733 and inlet temperature 550°C for model BA at 30 mm thickness, the thermal efficiency was 50%. It was shown that the combined stainless steel fibrous and stainless steel wire net porous material could be a good flow insulator.
Thin-film thermoelectric devices with high room-temperature figures of merit.
Venkatasubramanian, R; Siivola, E; Colpitts, T; O'Quinn, B
2001-10-11
Thermoelectric materials are of interest for applications as heat pumps and power generators. The performance of thermoelectric devices is quantified by a figure of merit, ZT, where Z is a measure of a material's thermoelectric properties and T is the absolute temperature. A material with a figure of merit of around unity was first reported over four decades ago, but since then-despite investigation of various approaches-there has been only modest progress in finding materials with enhanced ZT values at room temperature. Here we report thin-film thermoelectric materials that demonstrate a significant enhancement in ZT at 300 K, compared to state-of-the-art bulk Bi2Te3 alloys. This amounts to a maximum observed factor of approximately 2.4 for our p-type Bi2Te3/Sb2Te3 superlattice devices. The enhancement is achieved by controlling the transport of phonons and electrons in the superlattices. Preliminary devices exhibit significant cooling (32 K at around room temperature) and the potential to pump a heat flux of up to 700 W cm-2; the localized cooling and heating occurs some 23,000 times faster than in bulk devices. We anticipate that the combination of performance, power density and speed achieved in these materials will lead to diverse technological applications: for example, in thermochemistry-on-a-chip, DNA microarrays, fibre-optic switches and microelectrothermal systems.
Magnetic and electrical control of engineered materials
Schuller, Ivan K.; de La Venta Granda, Jose; Wang, Siming; Ramirez, Gabriel; Erekhinskiy, Mikhail; Sharoni, Amos
2016-08-16
Methods, systems, and devices are disclosed for controlling the magnetic and electrical properties of materials. In one aspect, a multi-layer structure includes a first layer comprising a ferromagnetic or ferrimagnetic material, and a second layer positioned within the multi-layer structure such that a first surface of the first layer is in direct physical contact with a second surface of the second layer. The second layer includes a material that undergoes structural phase transitions and metal-insulator transitions upon experiencing a change in temperature. One or both of the first and second layers are structured to allow a structural phase change associated with the second layer cause a change magnetic properties of the first layer.
Namnabat, Soha; Kim, Kyung-Jo; Jones, Adam; Himmelhuber, Roland; DeRose, Christopher T; Trotter, Douglas C; Starbuck, Andrew L; Pomerene, Andrew; Lentine, Anthony L; Norwood, Robert A
2017-09-04
Silicon photonics has gained interest for its potential to provide higher efficiency, bandwidth and reduced power consumption compared to electrical interconnects in datacenters and high performance computing environments. However, it is well known that silicon photonic devices suffer from temperature fluctuations due to silicon's high thermo-optic coefficient and therefore, temperature control in many applications is required. Here we present an athermal optical add-drop multiplexer fabricated from ring resonators. We used a sol-gel inorganic-organic hybrid material as an alternative to previously used materials such as polymers and titanium dioxide. In this work we studied the thermal curing parameters of the sol-gel and their effect on thermal wavelength shift of the rings. With this method, we were able to demonstrate a thermal shift down to -6.8 pm/°C for transverse electric (TE) polarization in ring resonators with waveguide widths of 325 nm when the sol-gel was cured at 130°C for 10.5 hours. We also achieved thermal shifts below 1 pm/°C for transverse magnetic (TM) polarization in the C band under different curing conditions. Curing time compared to curing temperature shows to be the most important factor to control sol-gel's thermo-optic value in order to obtain an athermal device in a wide temperature range.
Instrumentation enabling study of plant physiological response to elevated night temperature
Mohammed, Abdul R; Tarpley, Lee
2009-01-01
Background Global climate warming can affect functioning of crops and plants in the natural environment. In order to study the effects of global warming, a method for applying a controlled heating treatment to plant canopies in the open field or in the greenhouse is needed that can accept either square wave application of elevated temperature or a complex prescribed diurnal or seasonal temperature regime. The current options are limited in their accuracy, precision, reliability, mobility or cost and scalability. Results The described system uses overhead infrared heaters that are relatively inexpensive and are accurate and precise in rapidly controlling the temperature. Remote computer-based data acquisition and control via the internet provides the ability to use complex temperature regimes and real-time monitoring. Due to its easy mobility, the heating system can randomly be allotted in the open field or in the greenhouse within the experimental setup. The apparatus has been successfully applied to study the response of rice to high night temperatures. Air temperatures were maintained within the set points ± 0.5°C. The incorporation of the combination of air-situated thermocouples, autotuned proportional integrative derivative temperature controllers and phase angled fired silicon controlled rectifier power controllers provides very fast proportional heating action (i.e. 9 ms time base), which avoids prolonged or intense heating of the plant material. Conclusion The described infrared heating system meets the utilitarian requirements of a heating system for plant physiology studies in that the elevated temperature can be accurately, precisely, and reliably controlled with minimal perturbation of other environmental factors. PMID:19519906
3D Printed Reversible Shape Changing Components with Stimuli Responsive Materials
Mao, Yiqi; Ding, Zhen; Yuan, Chao; Ai, Shigang; Isakov, Michael; Wu, Jiangtao; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry
2016-01-01
The creation of reversibly-actuating components that alter their shapes in a controllable manner in response to environmental stimuli is a grand challenge in active materials, structures, and robotics. Here we demonstrate a new reversible shape-changing component design concept enabled by 3D printing two stimuli responsive polymers—shape memory polymers and hydrogels—in prescribed 3D architectures. This approach uses the swelling of a hydrogel as the driving force for the shape change, and the temperature-dependent modulus of a shape memory polymer to regulate the time of such shape change. Controlling the temperature and aqueous environment allows switching between two stable configurations – the structures are relatively stiff and can carry load in each – without any mechanical loading and unloading. Specific shape changing scenarios, e.g., based on bending, or twisting in prescribed directions, are enabled via the controlled interplay between the active materials and the 3D printed architectures. The physical phenomena are complex and nonintuitive, and so to help understand the interplay of geometric, material, and environmental stimuli parameters we develop 3D nonlinear finite element models. Finally, we create several 2D and 3D shape changing components that demonstrate the role of key parameters and illustrate the broad application potential of the proposed approach. PMID:27109063
Manjula, P; Boppella, Ramireddy; Manorama, Sunkara V
2012-11-01
A facile and elegant methodology invoking the principles of Green Chemistry for the synthesis of porous tin dioxide nanospheres has been described. The low-temperature (∼50 °C) synthesis of SnO₂ nanoparticles and their self-assembly into organized, uniform, and monodispersed porous nanospheres with high surface area is facilitated by controlling the concentration of glucose, which acts as a stabilizing as well as structure-directing agent. A systematic control on the stannate to glucose molar concentration ratio determines the exact conditions to obtain monodispersed nanospheres, preferentially over random aggregation. Detailed characterization of the structure, morphology, and chemical composition reveals that the synthesized material, 50 nm SnO₂ porous nanospheres possess BET surface area of about 160 m²/g. Each porous nanosphere consists of a few hundred nanoparticles ∼2-3 nm in diameter with tetragonal cassiterite crystal structure. The SnO₂ nanospheres exhibit elevated photocatalytic activity toward methyl orange with good recyclability. Because of the high activity and stability of this photocatalyst, the material is ideal for applications in environmental remediation. Moreover, SnO₂ nanospheres display excellent gas sensing capabilities toward hydrogen. Surface modification of the nanospheres with Pd transforms this sensing material into a highly sensitive and selective room-temperature hydrogen sensor.
3D Printed Reversible Shape Changing Components with Stimuli Responsive Materials
NASA Astrophysics Data System (ADS)
Mao, Yiqi; Ding, Zhen; Yuan, Chao; Ai, Shigang; Isakov, Michael; Wu, Jiangtao; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry
2016-04-01
The creation of reversibly-actuating components that alter their shapes in a controllable manner in response to environmental stimuli is a grand challenge in active materials, structures, and robotics. Here we demonstrate a new reversible shape-changing component design concept enabled by 3D printing two stimuli responsive polymers—shape memory polymers and hydrogels—in prescribed 3D architectures. This approach uses the swelling of a hydrogel as the driving force for the shape change, and the temperature-dependent modulus of a shape memory polymer to regulate the time of such shape change. Controlling the temperature and aqueous environment allows switching between two stable configurations - the structures are relatively stiff and can carry load in each - without any mechanical loading and unloading. Specific shape changing scenarios, e.g., based on bending, or twisting in prescribed directions, are enabled via the controlled interplay between the active materials and the 3D printed architectures. The physical phenomena are complex and nonintuitive, and so to help understand the interplay of geometric, material, and environmental stimuli parameters we develop 3D nonlinear finite element models. Finally, we create several 2D and 3D shape changing components that demonstrate the role of key parameters and illustrate the broad application potential of the proposed approach.
Environmental Control for Regional Library Facilities. RR-80-3.
ERIC Educational Resources Information Center
King, Richard G., Jr.
This report presents an overview of the damage to library materials caused by uncontrollable environmental variables. The control of atmospheric pollutants, temperature, and humidity are discussed with regard to damage, standards, and the costs of deterioration due to these factors. Twelve references are listed. (FM)
Ihlefeld, Jon F.; Brown-Shaklee, Harlan James; Sharma, Peter Anand
2015-04-28
The transport properties of ceramic materials strongly depend on oxygen activity, which is tuned by changing the partial oxygen pressure (pO 2) prior to and during measurement. Within, we describe an instrument for highly stable measurements of Seebeck coefficient and electrical resistivity at temperatures up to 1300 K with controlled oxygen partial pressure. An all platinum construction is used to avoid potential materials instabilities that can cause measurement drift. Two independent heaters are employed to establish a small temperature gradient for Seebeck measurements, while keeping the average temperature constant and avoiding errors associated with pO 2-induced drifts in thermocouple readings.more » Oxygen equilibrium is monitored using both an O 2 sensor and the transient behavior of the resistance as a proxy. A pO 2 range of 10 -25–10 0 atm can be established with appropriate gas mixtures. Seebeck measurements were calibrated against a high purity platinum wire, Pt/Pt–Rh thermocouple wire, and a Bi 2Te3 Seebeck coefficient Standard Reference Material. To demonstrate the utility of this instrument for oxide materials we present measurements as a function of pO 2 on a 1 % Nb-doped SrTiO 3 single crystal, and show systematic changes in properties consistent with oxygen vacancy defect chemistry. Thus, an approximately 11% increase in power factor over a pO 2 range of 10 -19–10 -8 atm at 973 K for the donor-doped single crystals is observed.« less
Non-hydrolytic Sol-gel Synthesis of Tin Sulfides
NASA Astrophysics Data System (ADS)
Kaur, Rajvinder
The non-hydrolytic sol-gel (NHSG) process is an effective low temperature route well known for preparing homogeneous metal oxides. Thermodynamically as well as kinetically favored products, which cannot be prepared with the traditional solid-state routes, can be produced using NHSG. This project is focused on the exploration of NHSG synthesis of binary tin sulfides. In the past few years, metal sulfides have been the subject of significant interest. Much effort has been devoted to understand these materials because of their potential applications in electronic, optical, and superconductor devices.4 Among these materials, tin sulfides are materials of technological importance, which are being explored as semiconductors, anode materials for Li ion batteries, photoconductors, photocatalysts and absorber layer materials in photovoltaic solar cell devices. All of these applications depend upon features like homogeneity, oxidation state, high surface area and purity of the materials. These properties can be difficult to achieve by employing traditional synthetic routes, which require high temperatures due to slow diffusion, limiting the products to thermodynamically stable phases and prohibiting control over properties like particle size and surface area. A variety of low temperature methods are being explored due to the increased demand for such advanced materials. This project is focused on exploring the NHSG approach to synthesize binary tin sulfides, with the main goal of establishing conditions for the targeted synthesis of different tin sulfide polymorphs with controlled particle size. Being non-oxide materials, tin sulfides can be air sensitive, which requires special attention in handling. All reactions were carried out in absence of oxygen. This project explores the reaction of tin halides with thioethers in a dry solvent medium, leading to the formation of tin sulfides. There are a number of synthetic parameters that can be varied for the NHSG approach. A systematic study was carried out to understand the influence of all reaction variables, which include tin halides, thioethers, solvents, time, temperature, stoichiometry and concentration. Fine tuning of all reaction variables was carried out. The crystallization and phase stability of the as-recovered products was further studied by heat treatments of the samples. A detailed investigation of synthetic variables during NHSG reactions resulted in controlled synthesis of two crystalline tin sulfide polymorphs, SnS and SnS2. A third polymorph, Sn2S3, could be obtained after heat treatments in the temperature range of 400 to 500 °C. Conditions for the targeted synthesis of particles with various sizes and morphologies were established. Samples were characterized by powder X-ray diffraction, electron microscopy in combination with EDS, CHNS analysis and thermo gravimetric/differential thermal analysis.
Room temperature triplet state spectroscopy of organic semiconductors.
Reineke, Sebastian; Baldo, Marc A
2014-01-21
Organic light-emitting devices and solar cells are devices that create, manipulate, and convert excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is 'dark' with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usually be performed at cryogenic temperatures to reduce competition from non-radiative rates. Here, we control non-radiative rates by engineering a solid-state host matrix containing the target molecule, allowing the observation of phosphorescence at room temperature and alleviating constraints of cryogenic experiments. We test these techniques on a wide range of materials with functionalities spanning multi-exciton generation (singlet exciton fission), organic light emitting device host materials, and thermally activated delayed fluorescence type emitters. Control of non-radiative modes in the matrix surrounding a target molecule may also have broader applications in light-emitting and photovoltaic devices.
Investigation of phase-change coatings for variable thermal control of spacecraft
NASA Technical Reports Server (NTRS)
Kelliher, W. C.; Young, P. R.
1972-01-01
An investigation was conducted to determine the feasibility of producing a spacecraft coating system that could vary the ratio of its solar absorptance to thermal emittance to adjust automatically for changes in the thermal balance of a spacecraft. This study resulted in a new concept called the phase-change effect which uses the change that occurs in the optical properties of many materials during the phase transition from a crystalline solid to an amorphous material. A series of two-component model coatings was developed which, when placed on a highly reflecting substrate, exhibited a sharp decrease in solar absorptance within a narrow temperature range. A variable thermal control coating can have a significant amount of temperature regulation with the phase-change effect. Data are presented on several crystallite-polymer formulations, their physical and optical properties, and associated phase-change temperatures. Aspects pertaining to their use in a space environment and an example of the degree of thermal regulation attainable with these coatings is also given.
Influence of the baking process for chemically amplified resist on CD performance
NASA Astrophysics Data System (ADS)
Sasaki, Shiho; Ohfuji, Takeshi; Kurihara, Masa-aki; Inomata, Hiroyuki; Jackson, Curt A.; Murata, Yoshio; Totsukawa, Daisuke; Tsugama, Naoko; Kitano, Naoki; Hayashi, Naoya; Hwang, David H.
2002-12-01
CD uniformity and MTT (Mean to Target) control are very important in mask production for the 90nm node and beyond. Although it is well known that baking temperatures influence CD control in the CAR (chemically amplified resist) process for mask patterning, we found that 2 other process factors, which are related to acid diffusion and CA- reaction, greatly affect CD performance. We used a commercially available, negative CAR material and a 50kV exposure tool. We focused on the baking process for both PB (Pre Baking) and PEB (Post Exposure Bake). Film densification strength was evaluated from film thickness loss during PB. Plate temperature distribution was monitored with a thermocouple plate and IR camera. CA-reactions were also monitored with in-situ FTIR during PEB. CD uniformity was used to define the process influence. In conclusion, we found that airflow control and ramping temperature control in the baking process are very important factors to control CD in addition to conventional temperature control. These improvements contributed to a 30 % of reduction in CD variation.
Wang, Y; Yin, D C; Liu, Y M; Shi, J Z; Lu, H M; Shi, Z H; Qian, A R; Shang, P
2011-03-01
A high-field superconducting magnet can provide both high-magnetic fields and large-field gradients, which can be used as a special environment for research or practical applications in materials processing, life science studies, physical and chemical reactions, etc. To make full use of a superconducting magnet, shared instruments (the operating platform, sample holders, temperature controller, and observation system) must be prepared as prerequisites. This paper introduces the design of a set of sample holders and a temperature controller in detail with an emphasis on validating the performance of the force and temperature sensors in the high-magnetic field.
NASA Astrophysics Data System (ADS)
Wang, Y.; Yin, D. C.; Liu, Y. M.; Shi, J. Z.; Lu, H. M.; Shi, Z. H.; Qian, A. R.; Shang, P.
2011-03-01
A high-field superconducting magnet can provide both high-magnetic fields and large-field gradients, which can be used as a special environment for research or practical applications in materials processing, life science studies, physical and chemical reactions, etc. To make full use of a superconducting magnet, shared instruments (the operating platform, sample holders, temperature controller, and observation system) must be prepared as prerequisites. This paper introduces the design of a set of sample holders and a temperature controller in detail with an emphasis on validating the performance of the force and temperature sensors in the high-magnetic field.
NASA Astrophysics Data System (ADS)
Miyazaki, Narumasa; Sato, Kazunori; Shibutani, Yoji
Dual-phase (DP) transformation, which is composed of felite- and/or martensite- multicomponent microstructural phases, is one of the most effective tools to product functional alloys. To obtain this DP structure such as DP steels and other materials, we usually apply thermal processes such as quenching, tempering and annealing. As the transformation dynamics of DP microstructure depends on conditions of temperature, annealing time, and quenching rate, physical properties of materials are able to be tuned by controlling microstructure type, size, their interfaces and so on. In this study, to understand the behavior of DP transformation and to control physical properties of materials by tuning DP microstructures, we analyze the atomistic dynamics of DP transformation during the quenching process and the detail of DP microstructures by using the molecular dynamics simulations. As target metals of DP transformation, we focus on group 4 transition metals, such as Ti and Zr described by EAM interatomic potentials. For Ti and Zr models we perform molecular dynamics simulations by assuming melt-quenching process from 3000 K to 0 K under the isothermal-isobaric ensemble. During the process for each material, we observe liquid to HCP like transition around the melting temperature, and continuously HCP-BCC like transition around martensitic transformation temperature. Furthermore, we clearly distinguish DP microstructure for each quenched model.
Betts, Robert E.; Crawford, John F.
1989-04-04
An aging gauge comprising a container having a fixed or a variable sized t opening with a cap which can be opened to control the sublimation rate of a thermally sublimational material contained within the container. In use, the aging gauge is stored with an item to determine total heat the item is subjected to and also the maximum temperature to which the item has been exposed. The aging gauge container contains a thermally sublimational material such as naphthalene or similar material which has a low sublimation rate over the temperature range from about 70.degree. F. to about 160.degree. F. The aging products determined by analyses of a like item aged along with the aging gauge for which the sublimation amount is determined is employed to establish a calibration curve for future aging evaluation. The aging gauge is provided with a means for determining the maximum temperature exposure (i.e., a thermally indicating material which gives an irreversible color change, Thermocolor pigment). Because of the relationship of doubling reaction rates for increases of 10.degree. C., equivalency of item used in accelerated aging evaluation can be obtained by referring to a calibration curve depicting storage temperature on the abscissa scale and multiplier on the ordinate scale.
Betts, Robert E.; Crawford, John F.
1989-01-01
An aging gauge comprising a container having a fixed or a variable sized t opening with a cap which can be opened to control the sublimation rate of a thermally sublimational material contained within the container. In use, the aging gauge is stored with an item to determine total heat the item is subjected to and also the maximum temperature to which the item has been exposed. The aging gauge container contains a thermally sublimational material such as naphthalene or similar material which has a low sublimation rate over the temperature range from about 70.degree. F. to about 160.degree. F. The aging products determined by analyses of a like item aged along with the aging gauge for which the sublimation amount is determined is employed to establish a calibration curve for future aging evaluation. The aging gauge is provided with a means for determining the maximum temperature exposure (i.e., a thermally indicating material which gives an irreversible color change, Thermocolor pigment). Because of the relationship of doubling reaction rates for increases of 10.degree. C., equivalency of item used in accelerated aging evaluation can be obtained by referring to a calibration curve depicting storage temperature on the abscissa scale and multiplier on the ordinate scale.
A materials test system for static compression at elevated temperatures
NASA Astrophysics Data System (ADS)
Korellis, J. S.; Steinhaus, C. A.; Totten, J. J.
1992-06-01
This report documents modifications to our existing computer-controlled compression testing system to allow elevated temperature testing in an evacuated environment. We have adopted an 'inverse' design configuration where the evacuated test volume is located within the induction heating coil, eliminating the expense and minimizing the evacuation time of a much larger traditional vacuum chamber.
Industrial Applications of Low Temperature Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bardsley, J N
2001-03-15
The use of low temperature plasmas in industry is illustrated by the discussion of four applications, to lighting, displays, semiconductor manufacturing and pollution control. The type of plasma required for each application is described and typical materials are identified. The need to understand radical formation, ionization and metastable excitation within the discharge and the importance of surface reactions are stressed.
A high-temperature shape memory alloy sensor for combustion monitoring and control
NASA Astrophysics Data System (ADS)
Shaw, Greg S.; Snyder, Joseph T.; Prince, Troy S.; Willett, Michael C.
2005-05-01
Innovations in the use of thin film SMA materials have enabled the development of a harsh environment pressure sensor useful for combustion monitoring and control. Development of such active combustion control has been driven by rising fuel costs and environmental pressures. Active combustion control, whether in diesel, spark ignited or turbine engines requires feedback to the engine control system in order to adjust the quantity, timing, and placement of fuel charges. To be fully effective, sensors must be integrated into each engine in a manner that will allow continuous combustion monitoring (turbine engines) or monitoring of each discrete combustion event (diesel and SI engines). To date, the sensors available for detection of combustion events and processes have suffered from one or more of three problems: 1) Low sensitivity: The sensors are unable to provide and adequate signal-to-noise ratio in the high temperature and electrically noisy environment of the engine compartment. Attempts to overcome this difficulty have focused on heat removal and/or temperature compensation or more challenging high temperature electronics. 2) Low reliability: Sensors and/or sensor packages have been unable to withstand the engine environment for extended periods of time. Issues have included gross degradation and more subtle issues such as migration of dopants in semiconductor sensor materials. 3) High cost: The materials that have been used, the package concepts employed, and the required support electronics have all contributed to the high cost of the few sensor systems available. Prices have remained high due to the limited demand associated with the poor reliability and the high price itself. Ternary titanium nickel alloys, with platinum group metal substitution for the nickel, are deposited as thin films on MEMS-based diaphragms and patterned to form strain gages of a standard metal film configuration. The strain induced phase transformation of the SMA is used as a natural signal enhancement. These sensors are maintained at a temperature just in excess of the austenite finish temperature (Af). When the diaphragm is deformed by an applied pressure, the film undergoes the reversible martensite phase transformation. The fraction of the austenite transformed to martensite is a fraction of the applied pressure. The large difference in the resistivity of the two phases results in a very sensitive strain gage, and hence a pressure sensor with a very high gage factor. The combination of the thin film and the fact that the transformation is strain induced (rather than thermally induced) results in a sensor with very high response rate. In fact, the response rate of the sensor has been shown to be strictly a function of the mechanical response of the diaphragm. Unlike other sensor systems, the temperature of the SMA sensor is controlled above the temperature of the local environment. By controlling above the temperature of the environment, the sensor is largely immune to temperature fluctuations that can affect the response of other sensors. This technology has been demonstrated for a variety of target temperature regimes and a variety of pressure regimes. Sensor design and testing to date has ranged from 180C to >500C and design pressures of 50 to 3500 psi, with higher pressures achievable. Characterization has included analysis of the response rate, the temperature sensitivity, reliability, and the effect of gross alloy changes. Sensor performance has also been evaluated in a diesel engine test cell. Ongoing work includes the sensitivity to minor composition changes, sensitivity to film thickness, and extended reliability and engine testing.
NASA Astrophysics Data System (ADS)
Pimentel, B.; Caraballo-Vivas, R. J.; Checca, N. R.; Zverev, V. I.; Salakhova, R. T.; Makarova, L. A.; Pyatakov, A. P.; Perov, N. S.; Tishin, A. M.; Shtil, A. A.; Rossi, A. L.; Reis, M. S.
2018-04-01
La0.75Sr0.25MnO3 nanoparticles with average diameter close to 20.9 nm were synthesized using a sol-gel method. Measurements showed that the heating process stops at the blocking temperaturesignificantly below the Curie temperature. Measurements of Specific Absorption Rate (SAR) as a function of AC magnetic field revealed a superquadratic power law, indicating that, in addition to usual Néel and Brown relaxation, the hysteresis also plays an important role in the mechanism of heating. The ability to control the threshold heating temperature, a low remanent magnetization and a low field needed to achieve the magnetic saturation are the advantages of this material for therapeutic magnetic hyperthermia.
System and method for manipulating domain pinning and reversal in ferromagnetic materials
Silevitch, Daniel M.; Rosenbaum, Thomas F.; Aeppli, Gabriel
2013-10-15
A method for manipulating domain pinning and reversal in a ferromagnetic material comprises applying an external magnetic field to a uniaxial ferromagnetic material comprising a plurality of magnetic domains, where each domain has an easy axis oriented along a predetermined direction. The external magnetic field is applied transverse to the predetermined direction and at a predetermined temperature. The strength of the magnetic field is varied at the predetermined temperature, thereby isothermally regulating pinning of the domains. A magnetic storage device for controlling domain dynamics includes a magnetic hard disk comprising a uniaxial ferromagnetic material, a magnetic recording head including a first magnet, and a second magnet. The ferromagnetic material includes a plurality of magnetic domains each having an easy axis oriented along a predetermined direction. The second magnet is positioned adjacent to the magnetic hard disk and is configured to apply a magnetic field transverse to the predetermined direction.
Reversible Rigidity Control Using Low Melting Temperature Alloys
NASA Astrophysics Data System (ADS)
Shan, Wanliang; Lu, Tong; Majidi, Carmel
2013-03-01
Inspired by nature, materials able to achieve rapid rigidity changes have important applications for human body protection in military and many other areas. This talk presents the fabrication and design of soft-matter technologies that exhibit rapid reversible rigidity control. Fabricated with a masked deposition technique, the soft-matter composite contains liquid-phase and phase-changing metal alloys embedded in a soft and highly stretchable elastomer. The composite material can reversibly change its rigidity by three orders of magnitude and sustain large deformation.
Study of the sodium phenytoin effect on the formation of sol-gel SiO 2 nanotubes by TEM
NASA Astrophysics Data System (ADS)
López, T.; Asomoza, M.; Picquart, M.; Castillo-Ocampo, P.; Manjarrez, J.; Vázquez, A.; Ascencio, J. A.
2005-04-01
Microencapsulation is a versatile technology that allows controlling the release of different active molecules. Recently the sol-gel process has emerged like a promising method to immobilization and stabilization of biologically active compounds like enzymes, antigens, microorganisms and drugs. Porous silica and titanium dioxide materials made by low temperature sol-gel processes are promising host matrixes for encapsulation of biological molecules. The preparation of a low-temperature silica sol followed by gelation to neutral pH with water for injection containing the antiepileptic drug is reported here. The structure is very important so the analysis of the new developed material is also reported. Particularly interesting is the presence of nanotubes and microtubes, produced in the inorganic matrix in the presence of the sodium phenytoin. The use of transmission electron microscopy and quantum mechanics molecular simulation allows determining a micelle-like effect during the synthesis of these materials, which controls the size, structure and stability of them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grosso, Gabriele; Moon, Hyowon; Lienhard, Benjamin
Two-dimensional van der Waals materials have emerged as promising platforms for solid-state quantum information processing devices with unusual potential for heterogeneous assembly. Recently, bright and photostable single photon emitters were reported from atomic defects in layered hexagonal boron nitride (hBN), but controlling inhomogeneous spectral distribution and reducing multi-photon emission presented open challenges. Here, we demonstrate that strain control allows spectral tunability of hBN single photon emitters over 6 meV, and material processing sharply improves the single photon purity. We observe high single photon count rates exceeding 7 × 10 6 counts per second at saturation, after correcting for uncorrelated photonmore » background. Furthermore, these emitters are stable to material transfer to other substrates. High-purity and photostable single photon emission at room temperature, together with spectral tunability and transferability, opens the door to scalable integration of high-quality quantum emitters in photonic quantum technologies.« less
Grosso, Gabriele; Moon, Hyowon; Lienhard, Benjamin; ...
2017-09-26
Two-dimensional van der Waals materials have emerged as promising platforms for solid-state quantum information processing devices with unusual potential for heterogeneous assembly. Recently, bright and photostable single photon emitters were reported from atomic defects in layered hexagonal boron nitride (hBN), but controlling inhomogeneous spectral distribution and reducing multi-photon emission presented open challenges. Here, we demonstrate that strain control allows spectral tunability of hBN single photon emitters over 6 meV, and material processing sharply improves the single photon purity. We observe high single photon count rates exceeding 7 × 10 6 counts per second at saturation, after correcting for uncorrelated photonmore » background. Furthermore, these emitters are stable to material transfer to other substrates. High-purity and photostable single photon emission at room temperature, together with spectral tunability and transferability, opens the door to scalable integration of high-quality quantum emitters in photonic quantum technologies.« less
Molten salt synthesis of La0.8Sr0.2MnO3 powders for SOFC cathode electrode
NASA Astrophysics Data System (ADS)
Gu, Sin-il; Shin, Hyo-soon; Hong, Youn-woo; Yeo, Dong-hun; Kim, Jong-hee; Nahm, Sahn; Yoon, Sang-ok
2012-08-01
For La0.8Sr0.2MnO3 (LSM) perovskite, used as the cathode material for solid oxide fuel cells (SOFC), it is known that the formation of a triple-phase-boundary is restrained due to the formation of a second phase at the YSZ/electrode interface at high temperature. To decrease the 2nd phase, lowering the sintering temperature has been used. LSM powder was synthesized by molten salt synthesis method to control its particle size, shape, and agglomeration. We have characterized the phase formation, particle size, shape, and sintering behavior of LSM in the synthesis using the variation of KCl, LiCl, KF and its mixed salts as raw materials. In the case of KCl and KCl-KF salts, the particle size and shape of the LSM was well controlled and synthesized. However, in the case of LiCl and KCl-LiCl salts, LiMnOx as 2nd phase and LSM were synthesized simultaneously. In the case of the mixed salt of KCl-KF, the growth mechanism of the LSM particle was changed from `diffusion-controlled' to `reaction-controlled' according to the amount of mixed salt. The sintering temperature can be decreased below 1000 °C by using the synthesized LSM powder.
NASA Astrophysics Data System (ADS)
Knopp, Jonathan
Temperature evolution of metallic materials during the additive manufacturing process has direct influence in determining the materials microstructure and resultant characteristics. Through the power of Infrared (IR) thermography it is now possible to monitor thermal trends in a build structure, giving the power to adjust building parameters in real time. The IR camera views radiation in the IR wavelengths and determines temperature of an object by the amount of radiation emitted from the object in those wavelengths. Determining the amount of radiation emitted from the material, known as a materials emissivity, can be difficult in that emissivity is affected by both temperature and surface finish. It has been shown that the use of a micro-blackbody cavity can be used as an accurate reference temperature when the sample is held at thermal equilibrium. A micro-blackbody cavity was created in a sample of 316L Stainless Steel after being fabricated during using the Laser Engineered Net Shaping (LENS) process. Holding the sample at thermal equilibrium and using the micro-blackbody cavity as a reference and thermocouple as a second reference emissivity values were able to be obtained. IR thermography was also used to observe the manufacturing of these samples. When observing the IR thermography, patterns in the thermal history of the build were shown to be present as well as distinct cooling rates of the material. This information can be used to find true temperatures of 316L Stainless Steel during the LENS process for better control of desired material properties as well as future work in determining complete energy balance.
Polymeric materials science in the microgravity environment
NASA Technical Reports Server (NTRS)
Coulter, Daniel R.
1989-01-01
The microgravity environment presents some interesting possibilities for the study of polymer science. Properties of polymeric materials depend heavily on their processing history and environment. Thus, there seem to be some potentially interesting and useful new materials that could be developed. The requirements for studying polymeric materials are in general much less rigorous than those developed for studying metals, for example. Many of the techniques developed for working with other materials, including heat sources, thermal control hardware and noncontact temperature measurement schemes should meet the needs of the polymer scientist.
NASA Astrophysics Data System (ADS)
Kosasih, E. A.; Warjito, H., Imansyah I.; Ruhyat, N.
2017-06-01
Spray dryers are commonly operated at a high temperature (>100 °C), which becomes an obstacle for heat-sensitive materials. In this study, a refrigeration system that uses evaporator as dehumidifier and that recovers the heat released from the first condenser to preheat the drying air was utilised to reduce the drying temperature. Results showed that the degradation of vitamin A (measured with the high performance liquid chromatography method) in tomato increased significantly when the drying air temperature increased from 90 °C to 120 °C, and it cannot be controlled at a temperature higher than 120 °C. At an air flow rate of 450 lpm, the drying capacity at a drying air temperature of 60 °C (with refrigeration, humidity ratio of 0.005 [kg H2O / kg dry air]) is equal to the drying capacity at a drying air temperature of 120 °C (without refrigeration, humidity ratio of 0.021 [kg H2O / kg dry air]). The drying capacity at a drying air temperature of 90 °C (with refrigeration) even becomes 1.5 times the drying capacity at a drying air temperature of 120 °C (without refrigeration). The combination of a spray dryer system with a refrigeration system (double condenser) is therefore beneficial for drying heat-sensitive materials, such as vitamin A.
Morphology Controlled Fabrication of InN Nanowires on Brass Substrates
Li, Huijie; Zhao, Guijuan; Wang, Lianshan; Chen, Zhen; Yang, Shaoyan
2016-01-01
Growth of semiconductor nanowires on cheap metal substrates could pave the way to the large-scale manufacture of low-cost nanowire-based devices. In this work, we demonstrated that high density InN nanowires can be directly grown on brass substrates by metal-organic chemical vapor deposition. It was found that Zn from the brass substrates is the key factor in the formation of nanowires by restricting the lateral growth of InN. The nanowire morphology is highly dependent on the growth temperature. While at a lower growth temperature, the nanowires and the In droplets have large diameters. At the elevated growth temperature, the lateral sizes of the nanowires and the In droplets are much smaller. Moreover, the nanowire diameter can be controlled in situ by varying the temperature in the growth process. This method is very instructive to the diameter-controlled growth of nanowires of other materials. PMID:28335323
Packaging Technology for SiC High Temperature Circuits Operable up to 500 Degrees Centigrade
NASA Technical Reports Server (NTRS)
Chen, Lian-Yu
2002-01-01
New high temperature low power 8-pin packages have been fabricated using commercial fabrication service. These packages are made of aluminum nitride and 96 percent alumina with Au metallization. The new design of these packages provides the chips inside with EM shielding. Wirebond geometry control has been achieved for precise mechanical tests. Au wirebond samples with 45 degree heel-angle have been tested using wireloop test module. The geometry control improves the consistency of measurement of the wireloop breaking point.Also reported on is a parametric study of the thermomechanical reliability of a Au thick-film based SiC die-attach assembly using nonlinear finite element analysis (FEA) was conducted to optimize the die-attach thermo-mechanical performance for operation at temperatures from room temperature to 500 degrees Centigrade. This parametric study centered on material selection, structure design and process control.
Nickel-Graphite Composite Compliant Interface and/or Hot Shoe Material
NASA Technical Reports Server (NTRS)
Firdosy, Samad A.; Chun-Yip Li, Billy; Ravi, Vilupanur A.; Fleurial, Jean-Pierre; Caillat, Thierry; Anjunyan, Harut
2013-01-01
Next-generation high-temperature thermoelectric-power-generating devices will employ segmented architectures and will have to reliably withstand thermally induced mechanical stresses produced during component fabrication, device assembly, and operation. Thermoelectric materials have typically poor mechanical strength, exhibit brittle behavior, and possess a wide range of coefficient of thermal expansion (CTE) values. As a result, the direct bonding at elevated temperatures of these materials to each other to produce segmented leg components is difficult, and often results in localized microcracking at interfaces and mec hanical failure due to the stresses that arise from the CTE mismatch between the various materials. Even in the absence of full mechanical failure, degraded interfaces can lead to increased electrical and thermal resistances, which adversely impact conversion efficiency and power output. The proposed solution is the insertion of a mechanically compliant layer, with high electrical and thermal conductivity, between the low- and high-temperature segments to relieve thermomechanical stresses during device fabrication and operation. This composite material can be used as a stress-relieving layer between the thermoelectric segments and/or between a thermoelectric segment and a hot- or cold-side interconnect material. The material also can be used as a compliant hot shoe. Nickel-coated graphite powders were hot-pressed to form a nickel-graphite composite material. A freestanding thermoelectric segmented leg was fabricated by brazing the compliant pad layer between the high-temperature p- Zintl and low-temperature p-SKD TE segments using Cu-Ag braze foils. The segmented leg stack was heated in vacuum under a compressive load to achieve bonding. The novelty of the innovation is the use of composite material that re duces the thermomechanical stresses en - countered in the construction of high-efficiency, high-temperature therm - o-electric devices. The compliant pad enables the bonding of dissimilar thermoelectric materials while maintaining the desired electrical and thermal properties essential for efficient device operation. The modulus, CTE, electrical, and thermal conductances of the composite can be controlled by varying the ratio of nickel to graphite.
NASA Astrophysics Data System (ADS)
Zia, Shahneel; Banerjee, Anirudh
2016-05-01
This paper demonstrates a way to control spectrum tuning capability in one-dimensional (1D) ternary photonic band gap (PBG) material nano-layered structures electro-optically. It is shown that not only tuning range, but also tuning speed of tunable optical filters based on 1D ternary PBG structures can be controlled Electro-optically. This approach finds application in tuning range enhancement of 1D Ternary PBG structures and compensating temperature sensitive transmission spectrum shift in 1D Ternary PBG structures.
Control and design heat flux bending in thermal devices with transformation optics.
Xu, Guoqiang; Zhang, Haochun; Jin, Yan; Li, Sen; Li, Yao
2017-04-17
We propose a fundamental latent function of control heat transfer and heat flux density vectors at random positions on thermal materials by applying transformation optics. The expressions for heat flux bending are obtained, and the factors influencing them are investigated in both 2D and 3D cloaking schemes. Under certain conditions, more than one degree of freedom of heat flux bending exists corresponding to the temperature gradients of the 3D domain. The heat flux path can be controlled in random space based on the geometrical azimuths, radial positions, and thermal conductivity ratios of the selected materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zia, Shahneel, E-mail: shahneelzia@gmail.com; Banerjee, Anirudh, E-mail: abanerjee@amity.edu
2016-05-06
This paper demonstrates a way to control spectrum tuning capability in one-dimensional (1D) ternary photonic band gap (PBG) material nano-layered structures electro-optically. It is shown that not only tuning range, but also tuning speed of tunable optical filters based on 1D ternary PBG structures can be controlled Electro-optically. This approach finds application in tuning range enhancement of 1D Ternary PBG structures and compensating temperature sensitive transmission spectrum shift in 1D Ternary PBG structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ou-Yang, Wei, E-mail: OUYANG.Wei@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Kizu, Takio
2014-10-20
To avoid the problem of air sensitive and wet-etched Zn and/or Ga contained amorphous oxide transistors, we propose an alternative amorphous semiconductor of indium silicon tungsten oxide as the channel material for thin film transistors. In this study, we employ the material to reveal the relation between the active thin film and the transistor performance with aid of x-ray reflectivity study. By adjusting the pre-annealing temperature, we find that the film densification and interface flatness between the film and gate insulator are crucial for achieving controllable high-performance transistors. The material and findings in the study are believed helpful for realizingmore » controllable high-performance stable transistors.« less
Liu, Guanxiong; Debnath, Bishwajit; Pope, Timothy R; Salguero, Tina T; Lake, Roger K; Balandin, Alexander A
2016-10-01
The charge-density-wave (CDW) phase is a macroscopic quantum state consisting of a periodic modulation of the electronic charge density accompanied by a periodic distortion of the atomic lattice in quasi-1D or layered 2D metallic crystals. Several layered transition metal dichalcogenides, including 1T-TaSe 2 , 1T-TaS 2 and 1T-TiSe 2 exhibit unusually high transition temperatures to different CDW symmetry-reducing phases. These transitions can be affected by the environmental conditions, film thickness and applied electric bias. However, device applications of these intriguing systems at room temperature or their integration with other 2D materials have not been explored. Here, we demonstrate room-temperature current switching driven by a voltage-controlled phase transition between CDW states in films of 1T-TaS 2 less than 10 nm thick. We exploit the transition between the nearly commensurate and the incommensurate CDW phases, which has a transition temperature of 350 K and gives an abrupt change in current accompanied by hysteresis. An integrated graphene transistor provides a voltage-tunable, matched, low-resistance load enabling precise voltage control of the circuit. The 1T-TaS 2 film is capped with hexagonal boron nitride to provide protection from oxidation. The integration of these three disparate 2D materials in a way that exploits the unique properties of each yields a simple, miniaturized, voltage-controlled oscillator suitable for a variety of practical applications.
Environmental effects on passive thermal control materials of the space station freedom
NASA Astrophysics Data System (ADS)
Jones, C. A.; David, K. E.; LeVesque, R. J.; Babel, H. W.
The long-life Space Station Freedom (SSF) has power and weight requirements that are not to be exceeded during the detailed design development. There are requirements for both minimum and maximum temperatures associated with allowable fluid temperature ranges as well as prevention of astronaut injury during extravehicular activity, such as frozen or burned skin. In selected areas, temperature gradients must be controlled to prevent distortion of the primary structure. SSF will fly in low Earth orbit, in which atomic oxygen, ultraviolet radiation, meteoroid/orbital debris impacts, and plasma coupling are considered some of the most damaging constituents. These, in conjunction with hardware-induced contamination, required McDonnell Douglas Aerospace to focus on thermal control coatings based on the more durable metals, oxides, and fluorinated polymers. This paper describes the approach and rationale that McDonnell Douglas Aerospace employed for SSF Work Package 2 to provide the required thermal control coatings and insulation to ensure that the operational temperatures remain within acceptable limits.
High-Precision Temperature Control of a Crystal Growth Furnace at 1,500 C
NASA Technical Reports Server (NTRS)
Stenzel, Ch.; Hess, A.; Croell, A.; Breuer, D.; Sauermann, H.
2012-01-01
For crystal growth of semiconductor materials a short-term temperature stability of 0.1 C at 1500 C is one of the essential parameters to be addressed for achieving high-quality crystals. Hence, for temperature monitoring and control with high precision in a floating zone furnace two sets of thermo-sensors, type B thermocouples and optical fibre thermometers, have been implemented and successfully operated in the furnace for more than 2000 h. The optical fibre thermometers consist of an optical system made of sapphire (two fibres plus a prism in between for deflection) and transmit the infra-red radiation of the heater to the outside of the hot core of the furnace for pyrometric temperature measurement. A dedicated control algorithm has been set up which controlled the power settings to the individual heaters. Both sensor types showed no degradation after this period and yielded a short-term stability at 1200 C of 0.05 C (optical fibre thermometers), respectively 0.08 C (thermocouples).
Mechanical degradation temperature of waste storage materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fink, M.C.; Meyer, M.L.
1993-05-13
Heat loading analysis of the Solid Waste Disposal Facility (SWDF) waste storage configurations show the containers may exceed 90{degrees}C without any radioactive decay heat contribution. Contamination containment is primarily controlled in TRU waste packaging by using multiple bag layers of polyvinyl chloride and polyethylene. Since literature values indicate that these thermoplastic materials can begin mechanical degradation at 66{degrees}C, there was concern that the containment layers could be breached by heating. To better define the mechanical degradation temperature limits for the materials, a series of heating tests were conducted over a fifteen and thirty minute time interval. Samples of a low-densitymore » polyethylene (LDPE) bag, a high-density polyethylene (HDPE) high efficiency particulate air filter (HEPA) container, PVC bag and sealing tape were heated in a convection oven to temperatures ranging from 90 to 185{degrees}C. The following temperature limits are recommended for each of the tested materials: (1) low-density polyethylene -- 110{degrees}C; (2) polyvinyl chloride -- 130{degrees}C; (3) high-density polyethylene -- 140{degrees}C; (4) sealing tape -- 140{degrees}C. Testing with LDPE and PVC at temperatures ranging from 110 to 130{degrees}C for 60 and 120 minutes also showed no observable differences between the samples exposed at 15 and 30 minute intervals. Although these observed temperature limits differ from the literature values, the trend of HDPE having a higher temperature than LDPE is consistent with the reference literature. Experimental observations indicate that the HDPE softens at elevated temperatures, but will retain its shape upon cooling. In SWDF storage practices, this might indicate some distortion of the waste container, but catastrophic failure of the liner due to elevated temperatures (<185{degrees}C) is not anticipated.« less
33 CFR 154.2108 - Vapor-moving devices.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Marine Vapor Control Systems Transfer... vibration; (4) Low lube oil level; (5) Low lube oil pressure; and (6) Excessive shaft bearing temperature...
33 CFR 154.826 - Vapor compressors and blowers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Vapor Control Systems § 154... chamber or cylinder; (2) Excessive cooling water temperature; (3) Excessive vibration; (4) Low lube oil...
33 CFR 154.826 - Vapor compressors and blowers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Vapor Control Systems § 154... chamber or cylinder; (2) Excessive cooling water temperature; (3) Excessive vibration; (4) Low lube oil...
33 CFR 154.826 - Vapor compressors and blowers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Vapor Control Systems § 154... chamber or cylinder; (2) Excessive cooling water temperature; (3) Excessive vibration; (4) Low lube oil...
Multi-color pyrometer for materials processing in space
NASA Technical Reports Server (NTRS)
Frish, Michael B.; Spencer, Mark N.; Wolk, Nancy E.; Werner, Jennifer S.; Miranda, Henry A., Jr.
1988-01-01
The design, construction and calibration of a computer-linked multicolor pyrometer is described. The device was constructed for ready adaptation to a spacecraft and for use in the control of thermal processes for manufacturing materials in space. The pyrometer actually uses only one color at a time, and is relatively insensitive to uncertainties in the heated object's emissivity because the product of the color and the temperature has been selected to be within a regime where the radiant energy emitted from the body increases very rapidly with temperature. The instrument was calibrated and shown to exceed its design goal of temperature measurements between 300 and 2000 C, and its accuracy in the face of imprecise knowledge of the hot object's emissivity was demonstrated.
Cryogenic High-Sensitivity Magnetometer
NASA Technical Reports Server (NTRS)
Day, Peter; Chui, Talso; Goodstein, David
2005-01-01
A proposed magnetometer for use in a cryogenic environment would be sensitive enough to measure a magnetic-flux density as small as a picogauss (10(exp -16) Tesla). In contrast, a typical conventional flux-gate magnetometer cannot measure a magnetic-flux density smaller that about 1 microgauss (10(exp -10) Tesla). One version of this device, for operation near the low end of the cryogenic temperature range, would include a piece of a paramagnetic material on a platform, the temperature of which would be controlled with a periodic variation. The variation in temperature would be measured by use of a conventional germanium resistance thermometer. A superconducting coil would be wound around the paramagnetic material and coupled to a superconducting quantum interference device (SQUID) magnetometer.
A Reliable Homemade Electrode Based on Glassy Polymeric Carbon
ERIC Educational Resources Information Center
Santos, Andre L.; Takeuchi, Regina M.; Oliviero, Herilton P.; Rodriguez, Marcello G.; Zimmerman, Robert L.
2004-01-01
The production of a GPC-based material by submitting a cross-linked resin precursor to control thermal conditions is discussed. The precursor material is prepolymerized at 60-degree Celsius in a mold and is carbonized in inert atmosphere by slowly raising the temperature, the rise is performed to avoid change in the shape of the carbonization…
Controlling temperature dependence of silicon waveguide using slot structure.
Lee, Jong-Moo; Kim, Duk-Jun; Kim, Gwan-Ha; Kwon, O-Kyun; Kim, Kap-Joong; Kim, Gyungock
2008-02-04
We show that the temperature dependence of a silicon waveguide can be controlled well by using a slot waveguide structure filled with a polymer material. Without a slot, the amount of temperature-dependent wavelength shift for TE mode of a silicon waveguide ring resonator is very slightly reduced from 77 pm/ degrees C to 66 pm/ degrees C by using a polymer (WIR30-490) upper cladding instead of air upper cladding. With a slot filled with the same polymer, however, the reduction of the temperature dependence is improved by a pronounced amount and can be controlled down to -2 pm/ degrees C by adjusting several variables of the slot structure, such as the width of the slot between the pair of silicon wires, the width of the silicon wire pair, and the height of the silicon slab in our experiment. This measurement proves that a reduction in temperature dependence can be improved about 8 times more by using the slot structure.
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)
2012-01-01
Growth conditions are developed, based on a temperature-dependent alignment model, to enable formation of cubic group IV, group II-V and group II-VI crystals in the [111] orientation on the basal (0001) plane of trigonal crystal substrates, controlled such that the volume percentage of primary twin crystal is reduced from about 40% to about 0.3%, compared to the majority single crystal. The control of stacking faults in this and other embodiments can yield single crystalline semiconductors based on these materials that are substantially without defects, or improved thermoelectric materials with twinned crystals for phonon scattering while maintaining electrical integrity. These methods can selectively yield a cubic-on-trigonal epitaxial semiconductor material in which the cubic layer is substantially either directly aligned, or 60 degrees-rotated from, the underlying trigonal material.
Helle, J; Barr, J; Ng, S Y; Shen, H R; Schwach-Abdellaoui, K; Gurny, R; Vivien-Castioni, N; Loup, P J; Baehni, P; Mombelli, A
2002-11-01
Poly(ortho esters) with a low glass transition temperature are semi-solid materials so that therapeutic agents can be incorporated at room temperature, without the use of solvents, by a simple mixing procedure. When molecular weights are limited to < 5 kDa, such materials are directly injectable using a needle size no larger than 22 gauge. Somewhat hydrophilic polymers can be produced by using the diketene acetal 3,9-diethylidene-2,4,8,10-tetraoxaspiro[5.5]undecane and triethylene glycol (TEG), while hydrophobic materials can be produced by using the diketene acetal and 1,10-decanediol. Molecular weight can be reproducibly controlled by using an excess of the diol, or by use of an alcohol that acts as a chain-stopper. Erosion rates can be controlled by varying the amount of latent acid incorporated into the polymer backbone. Toxicology studies using the TEG polymer have been completed and have shown that the polymer is non-toxic. Toxicology studies using the decanediol polymer are underway. Development studies using the TEG polymer aimed at providing a sustained delivery of an analgesic agent to control post-surgical pain are under development and human clinical trials using the decanediol polymer for the treatment of periodontitis are also underway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, R.J.; Halasyamani, P.S.; Bee, J.S.
Recently, low temperature (T < 300 C) hydrothermal reactions of inorganic precursors in the presence of organic cations have proven highly productive for the synthesis of novel solid-state materials. Interest in these materials is driven by the astonishingly diverse range of structures produced, as well as by their many potential materials chemistry applications. This report describes the high yield, phase pure hydrothermal syntheses of three new uranium fluoride phases with unprecedented structure types. Through the systematic control of the synthesis conditions the authors have successfully controlled the architecture and dimensionality of the phase formed and selectively synthesized novel zero-, one-,more » and two-dimensional materials.« less
Laser-Material Interactions for Flexible Applications.
Joe, Daniel J; Kim, Seungjun; Park, Jung Hwan; Park, Dae Yong; Lee, Han Eol; Im, Tae Hong; Choi, Insung; Ruoff, Rodney S; Lee, Keon Jae
2017-07-01
The use of lasers for industrial, scientific, and medical applications has received an enormous amount of attention due to the advantageous ability of precise parameter control for heat transfer. Laser-beam-induced photothermal heating and reactions can modify nanomaterials such as nanoparticles, nanowires, and two-dimensional materials including graphene, in a controlled manner. There have been numerous efforts to incorporate lasers into advanced electronic processing, especially for inorganic-based flexible electronics. In order to resolve temperature issues with plastic substrates, laser-material processing has been adopted for various applications in flexible electronics including energy devices, processors, displays, and other peripheral electronic components. Here, recent advances in laser-material interactions for inorganic-based flexible applications with regard to both materials and processes are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Controlling the Degradation of Bioresorbable Polymers
NASA Astrophysics Data System (ADS)
Moritz, Istvan; Crowley, Brian; Brundage, Elizabeth; Rende, Deniz; Ozisik, Rahmi
Bioresorbable polymers play a vital role in the development of implantable materials that are used in surgical procedures, controlled drug delivery systems; and tissue engineering scaffolds. The half-life of common bioresorbable polymers ranges from 3 to over 12 months and slow bioresorption rates of these polymers restrict their use to a limited set of applications. The use of embedded enzymes was previously proposed to control the degradation rate of bioresorbable polymers, and was shown to decrease average degradation time to about 0.5 months. In this study, electromagnetic actuation of iron oxide magnetic nanoparticles embedded in an encapsulant polymer, poly(ethyleneoxide), PEO, was employed to initiate enzyme assisted degradation of bioresorbable polymer poly(caprolactone), PCL. Results indicate that the internal temperature of iron oxide magnetic nanoparticle doped PEO samples can be increased via an alternating magnetic field, and temperature increase depends strongly on nanoparticle concentration and magnetic field parameters. The temperature achieved is sufficient to relax the PEO matrix and to enable the diffusion of enzymes from PEO to a surrounding PCL matrix. Current studies are directed at measuring the degradation rate of PCL due to the diffused enzyme. This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1538730.
A Study of Production of Miscibility Gap Alloys with Controlled Structures
NASA Technical Reports Server (NTRS)
Parr, R. A.; Johnston, M. H.; Burka, J. A.; Davis, J. H.; Lee, J. A.
1983-01-01
Composite materials were directionally solidified using a new technique to align the constituents longitudinally along the length of the specimen. In some instances a tin coating was applied and diffused into the sample to form a high transition temperature superconducting phase. The superconducting properties were measured and compared with the properties obtained for powder composites and re-directionally solidified powder compacts. The samples which were compacted and redirectionally solidified showed the highest transition temperature and wildest transition range. This indicates that both steps, powder compaction and resolidification, determine the final superconducting properties of the material.
Thermally programmable gas storage and release in single crystals of an organic van der Waals host.
Enright, Gary D; Udachin, Konstantin A; Moudrakovski, Igor L; Ripmeester, John A
2003-08-20
A single crystal of a low density form of guest-free p-tert-butylcalix[4]arene can take up and release small guest molecules by controlling the temperature and pressure without changing the structure. Using NMR spectroscopy with flowing hyperpolarized xenon, we have shown that at room temperature access of xenon to the pore system is difficult, whereas it is relatively easy at 100 degrees C. There are good prospects for simple van der Waals materials such as the title material to be used as programmable zeolite mimics.
NASA Astrophysics Data System (ADS)
Sylla, Lamine; Duffar, Thierry
2007-05-01
A global thermal modelling of a cadmium telluride (CdTe) space experiment has been performed to determine the temperature field within the sample cartridge assembly of the Material Science Laboratory-low gradient furnace (MSL-LGF) apparatus. Heat transfer and phase change have been treated with a commercial CFD software based on a control volume technique. This work underlines the difficult compromise between enhancing the crystal quality and the occurrence of the dewetting phenomenon when using a Cd overpressure or inert gas in the ampoule.
Xu, Biao; Agne, Matthias T; Feng, Tianli; Chasapis, Thomas C; Ruan, Xiulin; Zhou, Yilong; Zheng, Haimei; Bahk, Je-Hyeong; Kanatzidis, Mercouri G; Snyder, Gerald Jeffrey; Wu, Yue
2017-03-01
A scalable, low-temperature solution process is used to synthesize precursor material for Pb-doped Bi 0.7 Sb 1.3 Te 3 thermoelectric nanocomposites. The controllable Pb-doping leads to the increase in the optical bandgap, thus delaying the onset of bipolar conduction. Furthermore, the solution synthesis enables nanostructuring, which greatly reduces thermal conductivity. As a result, this material exhibits a zT = 1 over the 513-613 K range. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermomagnetic burn control for magnetic fusion reactor
Rawls, John M.; Peuron, Unto A.
1982-01-01
Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors (30a, 30b, etc.) formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma (12) and a toroidal field coil (18). A mechanism (60) for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.
Causes and Control of Corrosion in Buried-Conduit Heat Distribution Systems
1991-07-01
rubber , and foamed plastics such as polyurethanic anld phenolic) nominally contain 10 to 500 ppmn soluble chloide.’ Further, insulation can also become...pressure ratings. A maximum P X T limitation exists for all gasket materials. For example, the maximum temperature and pressure ratings for an EPDM ...ethylene propylene diene monomer) rubber material are, respectively, 3() ’F and 150 psi. The material, however, cannot be expected to perform
NASA Astrophysics Data System (ADS)
Zhang, Haiquan; Yuan, Yanping; Zhang, Nan; Sun, Qingrong; Cao, Xiaoling
2016-11-01
The adjustment of temperature and humidity is of great importance in a variety of fields. Composites that can perform both functions are prepared by mixing phase change materials (PCMs) with hygroscopic materials. However, the contact area between the adsorbent and humid air is inevitably decreased in such structures, which reduces the number of mass transfer channels for water vapor. An approach entailing the increase in the mass ratio of the adsorbent is presented here to improve the adsorption capacity. A core-shell CuSO4/polyethylene glycol (PEG) nanomaterial was developed to satisfy the conflicting requirements of temperature control and dehumidification. The results show that the equilibrium adsorption capacity of the PEG coating layer was enhanced by a factor of 188 compared with that of the pure PEG powder. The coating layer easily concentrates vapor, providing better adsorption properties for the composite. Furthermore, the volume modification of the CuSO4 matrix was reduced by 80% by the PEG coated layer, a factor that increases the stability of the composite. For the phase change process, the crystallization temperature of the coating layer was adjusted between 37.2 and 46.3 °C by interfacial tension. The core-shell CuSO4/PEG composite reported here provides a new general approach for the simultaneous control of temperature and humidity.
al-Wahish, Amal; Armitage, D; al-Binni, U; Hill, B; Mills, R; Jalarvo, N; Santodonato, L; Herwig, K W; Mandrus, D
2015-09-01
A design for a sample cell system suitable for high temperature Quasi-Elastic Neutron Scattering (QENS) experiments is presented. The apparatus was developed at the Spallation Neutron Source in Oak Ridge National Lab where it is currently in use. The design provides a special sample cell environment under controlled humid or dry gas flow over a wide range of temperature up to 950 °C. Using such a cell, chemical, dynamical, and physical changes can be studied in situ under various operating conditions. While the cell combined with portable automated gas environment system is especially useful for in situ studies of microscopic dynamics under operational conditions that are similar to those of solid oxide fuel cells, it can additionally be used to study a wide variety of materials, such as high temperature proton conductors. The cell can also be used in many different neutron experiments when a suitable sample holder material is selected. The sample cell system has recently been used to reveal fast dynamic processes in quasi-elastic neutron scattering experiments, which standard probes (such as electrochemical impedance spectroscopy) could not detect. In this work, we outline the design of the sample cell system and present results demonstrating its abilities in high temperature QENS experiments.
High temperature oxidation behavior of ODS steels
NASA Astrophysics Data System (ADS)
Kaito, T.; Narita, T.; Ukai, S.; Matsuda, Y.
2004-08-01
Oxide dispersion strengthened (ODS) steels are being developing for application as advanced fast reactor cladding and fusion blanket materials, in order to allow increased operation temperature. Oxidation testing of ODS steel was conducted under a controlled dry air atmosphere to evaluate the high temperature oxidation behavior. This showed that 9Cr-ODS martensitic steels and 12Cr-ODS ferritic steels have superior high temperature oxidation resistance compared to 11 mass% Cr PNC-FMS and 17 mass% Cr ferritic stainless steel. This high temperature resistance is attributed to earlier formation of the protective α-Cr 2O 3 on the outer surface of ODS steels.
Surface texturing of superconductors by controlled oxygen pressure
Chen, N.; Goretta, K.C.; Dorris, S.E.
1999-01-05
A method of manufacture of a textured layer of a high temperature superconductor on a substrate is disclosed. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO{sub 2} atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO{sub 2} atmosphere to cause solidification of the molten superconductor in a textured surface layer. 8 figs.
Surface texturing of superconductors by controlled oxygen pressure
Chen, Nan; Goretta, Kenneth C.; Dorris, Stephen E.
1999-01-01
A method of manufacture of a textured layer of a high temperature superconductor on a substrate. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO.sub.2 atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO.sub.2 atmosphere to cause solidification of the molten superconductor in a textured surface layer.
Direct synthesis of BiCuChO-type oxychalcogenides by mechanical alloying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pele, Vincent; Barreteau, Celine; CNRS, Orsay F-91405
2013-07-15
We report on the direct synthesis of BiCuChO based materials by mechanical alloying (Ch=Se, Te). We show that contrary to the synthesis paths used in the previous reports dealing with this family of materials, which use costly annealings in closed silica tubes under controlled atmosphere, this new synthesis route enables the synthesis of pure phase materials at room temperature under air, with reasonable milling time. This synthesis procedure is easily scalable for large scale applications. - Highlights: • Phase pure BiCuSeO doped and undoped prepared by mechanical alloying. • Synthesis performed under air at room temperature. • Electrical properties similarmore » to that of samples synthesized by a classical path.« less
Low-Temperature Solution Processable Electrodes for Piezoelectric Sensors Applications
NASA Astrophysics Data System (ADS)
Tuukkanen, Sampo; Julin, Tuomas; Rantanen, Ville; Zakrzewski, Mari; Moilanen, Pasi; Lupo, Donald
2013-05-01
Piezoelectric thin-film sensors are suitable for a wide range of applications from physiological measurements to industrial monitoring systems. The use of flexible materials in combination with high-throughput printing technologies enables cost-effective manufacturing of custom-designed, highly integratable piezoelectric sensors. This type of sensor can, for instance, improve industrial process control or enable the embedding of ubiquitous sensors in our living environment to improve quality of life. Here, we discuss the benefits, challenges and potential applications of piezoelectric thin-film sensors. The piezoelectric sensor elements are fabricated by printing electrodes on both sides of unmetallized poly(vinylidene fluoride) film. We show that materials which are solution processable in low temperatures, biocompatible and environmental friendly are suitable for use as electrode materials in piezoelectric sensors.
Spark plasma sintering of pure and doped tungsten as plasma facing material
NASA Astrophysics Data System (ADS)
Autissier, E.; Richou, M.; Minier, L.; Naimi, F.; Pintsuk, G.; Bernard, F.
2014-04-01
In the current water cooled divertor concept, tungsten is an armour material and CuCrZr is a structural material. In this work, a fabrication route via a powder metallurgy process such as spark plasma sintering is proposed to fully control the microstructure of W and W composites. The effect of chemical composition (additives) and the powder grain size was investigated. To reduce the sintering temperature, W powders doped with a nano-oxide dispersion of Y2O3 are used. Consequently, the sintering temperature for W-oxide dispersed strengthened (1800 °C) is lower than for pure W powder. Edge localized mode tests were performed on pure W and compared to other preparation techniques and showed promising results.
Driess, Matthias; Panda, Chakadola; Menezes, Prashanth Wilfried
2018-05-07
The low-temperature synthesis of inorganic materials and their interfaces at the atomic and molecular level provides numerous opportunities for the design and improvement of inorganic materials in heterogeneous catalysis for sustainable chemical energy conversion or other energy-saving areas. Using suitable molecular precursors for functional inorganic nanomaterial synthesis allows for facile control over uniform particle size distribution, stoichiometry, and leads to desired chemical and physical properties. This minireview outlines some advantages of the molecular precursor approach in light of selected recent developments of molecule-to-nanomaterials synthesis for renewable energy applications, relevant for the oxygen evolution reaction (OER), hydrogen evolution reaction (HER) and overall water-splitting. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Review of Phase Change Materials Based on Energy Storage System with Applications
NASA Astrophysics Data System (ADS)
Thamaraikannn, R.; Kanimozhi, B.; Anish, M.; Jayaprabakar, J.; Saravanan, P.; Rohan Nicholas, A.
2017-05-01
The use of Different types of storage system using phase change materials (PCMs) is an effective way of storing energy and also to make advantages of heating and cooling systems are installed to maintain temperatures within the well-being zone. PCMs have been extensively used in various storage systems for heat pumps, solar engineering, and thermal control applications. The use of PCM’s for heating and cooling applications have been investigated during the past decade. There are large numbers of PCM’s, which melt and solidify at a wide range of temperatures, making them attractive in a number of applications. This paper also outline the investigation and analysis of Phase Change materials used in Different Types of storage systems with different applications.
NASA Astrophysics Data System (ADS)
Ivanov, A. A.; Tuev, V. I.; Nisan, A. V.; Potapov, G. N.
2016-11-01
A synthesis technique of low-temperature ceramic material based on aluminosilicates of dendrimer morphology capable to contain up to 80 wt % of nitrides and oxides of high-melting compounds as filler has been developed. The synthesis is based on a sol-gel method followed by mechanochemical treatment and ultrasonic dispersing. Dielectric ceramic layers with the layer thickness in the nanometer range and high thermal conductivity have been obtained for the first time by 3D aerosol printing of the synthesized material. The study of the obtained ceramic coating on the metal surface (Al) has proved its use prospects in microelectronics, light engineering, and devices for special purposes.
Dynamic crystallization of silicate melts
NASA Technical Reports Server (NTRS)
Russell, W. J.
1984-01-01
Two types of furnaces with differing temperature range capabilities were used to provide variations in melt temperatures and cooling rates in a study of the effects of heterogeneous nucleation on crystallization. Materials of chondrule composition were used to further understanding of how the disequilibrium features displayed by minerals in rocks are formed. Results show that the textures of natural chondrules were duplicated. It is concluded that the melt history is dominant over cooling rate and composition in controlling texture. The importance of nuclei, which are most readily derived from preexisting crystalline material, support an origin for natural chondrules based on remelting of crystalline material. This would be compatible with a simple, uniform chondrule forming process having only slight variations in thermal histories resulting in the wide range of textures.
NASA Technical Reports Server (NTRS)
Working, Dennis C.
1991-01-01
Method developed to provide uniform impregnation of bundles of carbon-fiber tow with low-solubility, high-melt-flow polymer powder materials to produce composite prepregs. Vacuum powder injector expands bundle of fiber tow, applies polymer to it, then compresses bundle to hold powder. System provides for control of amount of polymer on bundle. Crystallinity of polymer maintained by controlled melt on takeup system. All powder entrapped, and most collected for reuse. Process provides inexpensive and efficient method for making composite materials. Allows for coating of any bundle of fine fibers with powders. Shows high potential for making prepregs of improved materials and for preparation of high-temperature, high-modulus, reinforced thermoplastics.
NASA Astrophysics Data System (ADS)
Basu, A.; Das, B.; Middya, T. R.; Bhattacharya, D. P.
2018-03-01
Compound semiconductors being piezoelectric in nature, the intrinsic thermal vibration of the lattice atoms at any temperature gives rise to an additional potential field that perturbs the periodic potential field of the atoms. This is over and above the intrinsic deformation acoustic potential field which is always produced in every material. The scattering of the electrons through the piezoelectric perturbing potential is important in all compound semiconductors, particularly at the low lattice temperatures. Thus, the electrical transport in such materials is principally controlled by the combined interaction of the electrons with the deformation potential acoustic and piezoelectric phonons at low lattice temperatures. The study here, deals with the problem of phonon growth characteristics, considering the combined scattering of the non-equilibrium electrons in compound semiconductors, at low lattice temperatures. Beside degeneracy, other low temperature features, like the inelasticity of the electron-phonon collisions, and the full form of the phonon distribution have been duly considered. The distribution function of the degenerate ensemble of carriers, as given by the heated Fermi-Dirac function, has been approximated by a simplified, well-tested model. The model which has been proposed earlier, makes it much easier to carry out analytically the integrations without usual oversimplified approximations.
Yang, Se-fei; Wang, You-xu; Guo, Tian-wen; Liu, Hong-chen
2011-11-01
To determine the optimal composition of a self-developing investment material by measuring physical and mechanical properties of mould. L(9) (3(4)) orthogonal design was adopted. One hundred and fifty specimens with the size of 80 mm × 20 mm × 20 mm were prepared to measure the atmospheric temperature bending strength, high temperature bending strength and residual bending strength. Nine specimens with the size of 5 mm diameter 25 mm heigh were prepared to survey the thermal expansion curve from ambient temperature to 1150°C. Strengths were greatly affected by fine powder proportion in refractory and water/powder ratio. When the content of fine powder was 35% and water/powder ratio was 1:7.5, adequate atmospheric temperature strength and high temperature strength could be achieved. Moreover, the residual strength was moderate. The thermal extension curves of specimens in experiment group were almost similar. And the average linear expansion coefficient was (4 ∼ 5) × 10(-6)/°C. The three kinds of bending strength of self-developing investment material are compared with commercialized investment material for titanium casting when water/powder ratio and the content of fine powder are carefully controlled.
Graeber, Kai; Linkies, Ada; Steinbrecher, Tina; Mummenhoff, Klaus; Tarkowská, Danuše; Turečková, Veronika; Ignatz, Michael; Sperber, Katja; Voegele, Antje; de Jong, Hans; Urbanová, Terezie; Strnad, Miroslav; Leubner-Metzger, Gerhard
2014-01-01
Seed germination is an important life-cycle transition because it determines subsequent plant survival and reproductive success. To detect optimal spatiotemporal conditions for germination, seeds act as sophisticated environmental sensors integrating information such as ambient temperature. Here we show that the DELAY OF GERMINATION 1 (DOG1) gene, known for providing dormancy adaptation to distinct environments, determines the optimal temperature for seed germination. By reciprocal gene-swapping experiments between Brassicaceae species we show that the DOG1-mediated dormancy mechanism is conserved. Biomechanical analyses show that this mechanism regulates the material properties of the endosperm, a seed tissue layer acting as germination barrier to control coat dormancy. We found that DOG1 inhibits the expression of gibberellin (GA)-regulated genes encoding cell-wall remodeling proteins in a temperature-dependent manner. Furthermore we demonstrate that DOG1 causes temperature-dependent alterations in the seed GA metabolism. These alterations in hormone metabolism are brought about by the temperature-dependent differential expression of genes encoding key enzymes of the GA biosynthetic pathway. These effects of DOG1 lead to a temperature-dependent control of endosperm weakening and determine the optimal temperature for germination. The conserved DOG1-mediated coat-dormancy mechanism provides a highly adaptable temperature-sensing mechanism to control the timing of germination. PMID:25114251
Impact and Collisional Processes in the Solar System
NASA Technical Reports Server (NTRS)
Ahrens, Thomas J.
2001-01-01
In the past year, we have successfully developed the techniques necessary to conduct impact experiments on ice at very low temperatures. We employ the method of embedding gauges within a target to measure the shock wave and material properties. This means that our data are not model dependent; we directly measure the essential parameters needed for numerical simulations of impact cratering. Since then we have developed a new method for temperature control of icy targets that ensures temperature equilibrium throughout a porous target. Graduate student, Sarah Stewart-Mukhopadhyay, is leading the work on ices and porous materials as the main thrust of her thesis research. Our previous work has focused on icy materials with no porosity, and we propose to extend our research to include porous ice and porous ice-silicate mixtures. There is little shockwave data for porous ice, and none of the data was acquired under conditions applicable to the outer solar system. The solid ice Hugoniot is only defined for initial temperatures above -20 C. Our program uniquely measures the properties of ice at temperatures directly applicable to the solar system. Previous experiments were conducted at ambient temperatures soon after removing the target from a cold environment, usually just below freezing, or in a room just below freezing. Since ice has an extremely complicated phase diagram, it is important to conduct experiments at lower temperatures to determine the true outcome of impacts in the outer solar system. This research is complementary to other programs on icy materials. Our work focuses on the inherent material properties by measuring the shock wave directly; this complements the macroscopic observations and immediately provides the parameters necessary to extend this research to the gravity regime. Our numerical simulations of impacts in porous ice under very low gravity conditions, such as found on comets, show that the final crater size and shape is very dependent on the dynamic strength of the material.
Fabrication of functional nanomaterials using flame assisted spray pyrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purwanto, Agus, E-mail: aguspur@uns.ac.id
2014-02-24
Flame assisted spray pyrolysis (FASP) is a class of synthesis method for nanomaterials fabrication. The ability to control nanomaterials characteristics and easy to be-scaled up are the main features of FASP. The crystallinity and particles size of the prepared nanomaterials can be easily controlled by variation of fuel flow rate. The precursor concentration, carrier gas flow rate, and carrier gas can be also used to control the prepared nanomaterials. Energy related nanomaterials preparation uses as the example case in FASP application. These material are yttrium aluminum garnet (YAG:Ce) and tungsten oxide (WO{sub 3}). It needs strategies to produce these materialsmore » into nano-sized order. YAG:Ce nanoparticles only can be synthesized by FASP using the urea addition. The decomposition of urea under high temperature of flame promotes the breakage of YAG:Ce particles into nanoparticles. In the preparation of WO{sub 3}, the high temperature flame can be used to gasify WO{sub 3} solid material. As a result, WO{sub 3} nanoparticles can be prepared easily. Generally, to produce nanoparticles via FASP method, the boiling point of the material is important to determine the strategy which will be used.« less
Study of the possibility of growing germanium single crystals under low temperature gradients
NASA Astrophysics Data System (ADS)
Moskovskih, V. A.; Kasimkin, P. V.; Shlegel, V. N.; Vasiliev, Y. V.; Gridchin, V. A.; Podkopaev, O. I.; Zhdankov, V. N.
2014-03-01
The possibility of growing germanium single crystals under low temperature gradients in order to produce a dislocation-free material has been studied. Germanium crystals with a dislocation density of about 100-200 cm-2 have been grown in a system with a weight control of crystal growth at maximum axial gradients of about 1.5 K/cm.
Controllable Thermal Rectification Realized in Binary Phase Change Composites
Chen, Renjie; Cui, Yalong; Tian, He; Yao, Ruimin; Liu, Zhenpu; Shu, Yi; Li, Cheng; Yang, Yi; Ren, Tianling; Zhang, Gang; Zou, Ruqiang
2015-01-01
Phase transition is a natural phenomenon happened around our daily life, represented by the process from ice to water. While melting and solidifying at a certain temperature, a high heat of fusion is accompanied, classified as the latent heat. Phase change material (PCM) has been widely applied to store and release large amount of energy attributed to the distinctive thermal behavior. Here, with the help of nanoporous materials, we introduce a general strategy to achieve the binary eicosane/PEG4000 stuffed reduced graphene oxide aerogels, which has two ends with different melting points. It's successfully demonstrated this binary PCM composites exhibits thermal rectification characteristic. Partial phase transitions within porous networks instantaneously result in one end of the thermal conductivity saltation at a critical temperature, and therefore switch on or off the thermal rectification with the coefficient up to 1.23. This value can be further raised by adjusting the loading content of PCM. The uniqueness of this device lies in its performance as a normal thermal conductor at low temperature, only exhibiting rectification phenomenon when temperature is higher than a critical value. The stated technology has broad applications for thermal energy control in macroscopic scale such as energy-efficiency building or nanodevice thermal management. PMID:25748640
[Thermal energy utilization analysis and energy conservation measures of fluidized bed dryer].
Xing, Liming; Zhao, Zhengsheng
2012-07-01
To propose measures for enhancing thermal energy utilization by analyzing drying process and operation principle of fluidized bed dryers,in order to guide optimization and upgrade of fluidized bed drying equipment. Through a systematic analysis on drying process and operation principle of fluidized beds,the energy conservation law was adopted to calculate thermal energy of dryers. The thermal energy of fluidized bed dryers is mainly used to make up for thermal consumption of water evaporation (Qw), hot air from outlet equipment (Qe), thermal consumption for heating and drying wet materials (Qm) and heat dissipation to surroundings through hot air pipelines and cyclone separators. Effective measures and major approaches to enhance thermal energy utilization of fluidized bed dryers were to reduce exhaust gas out by the loss of heat Qe, recycle dryer export air quantity of heat, preserve heat for dry towers, hot air pipes and cyclone separators, dehumidify clean air in inlets and reasonably control drying time and air temperature. Such technical parameters such air supply rate, air inlet temperature and humidity, material temperature and outlet temperature and humidity are set and controlled to effectively save energy during the drying process and reduce the production cost.
Cryostatless high temperature supercurrent bearings for rocket engine turbopumps
NASA Technical Reports Server (NTRS)
Rao, Dantam K.; Dill, James F.
1989-01-01
The rocket engine systems examined include SSME, ALS, and CTV systems. The liquid hydrogen turbopumps in the SSME and ALS vehicle systems are identified as potentially attractive candidates for development of Supercurrent Bearings since the temperatures around the bearings is about 30 K, which is considerably lower than the 95 K transition temperatures of HTS materials. At these temperatures, the current HTS materials are shown to be capable of developing significantly higher current densities. This higher current density capability makes the development of supercurrent bearings for rocket engines an attractive proposition. These supercurrent bearings are also shown to offer significant advantages over conventional bearings used in rocket engines. They can increase the life and reliability over rolling element bearings because of noncontact operation. They offer lower power loss over conventional fluid film bearings. Compared to conventional magnetic bearings, they can reduce the weight of controllers significantly, and require lower power because of the use of persistent currents. In addition, four technology areas that require further attention have been identified. These are: Supercurrent Bearing Conceptual Design Verification; HTS Magnet Fabrication and Testing; Cryosensors and Controller Development; and Rocket Engine Environmental Compatibility Testing.
Controllable Thermal Rectification Realized in Binary Phase Change Composites
NASA Astrophysics Data System (ADS)
Chen, Renjie; Cui, Yalong; Tian, He; Yao, Ruimin; Liu, Zhenpu; Shu, Yi; Li, Cheng; Yang, Yi; Ren, Tianling; Zhang, Gang; Zou, Ruqiang
2015-03-01
Phase transition is a natural phenomenon happened around our daily life, represented by the process from ice to water. While melting and solidifying at a certain temperature, a high heat of fusion is accompanied, classified as the latent heat. Phase change material (PCM) has been widely applied to store and release large amount of energy attributed to the distinctive thermal behavior. Here, with the help of nanoporous materials, we introduce a general strategy to achieve the binary eicosane/PEG4000 stuffed reduced graphene oxide aerogels, which has two ends with different melting points. It's successfully demonstrated this binary PCM composites exhibits thermal rectification characteristic. Partial phase transitions within porous networks instantaneously result in one end of the thermal conductivity saltation at a critical temperature, and therefore switch on or off the thermal rectification with the coefficient up to 1.23. This value can be further raised by adjusting the loading content of PCM. The uniqueness of this device lies in its performance as a normal thermal conductor at low temperature, only exhibiting rectification phenomenon when temperature is higher than a critical value. The stated technology has broad applications for thermal energy control in macroscopic scale such as energy-efficiency building or nanodevice thermal management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Guoqiang; Upadhyaya, Pramey; Li, Xiang
2016-03-09
Magnetic skyrmions, which are topologically protected spin textures, are promising candidates for ultralow-energy and ultrahigh-density magnetic data storage and computing applications. To date, most experiments on skyrmions have been carried out at low temperatures. The choice of available materials is limited, and there is a lack of electrical means to control skyrmions in devices. In this work, we demonstrate a new method for creating a stable skyrmion bubble phase in the CoFeB–MgO material system at room temperature, by engineering the interfacial perpendicular magnetic anisotropy of the ferromagnetic layer. Importantly, we also demonstrate that artificially engineered symmetry breaking gives rise tomore » a force acting on the skyrmions, in addition to the current-induced spin–orbit torque, which can be used to drive their motion. This room-temperature creation and manipulation of skyrmions offers new possibilities to engineer skyrmionic devices. The results bring skyrmionic memory and logic concepts closer to realization in industrially relevant and manufacturable thin film material systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Guoqiang; Upadhyaya, Pramey; Li, Xiang
2016-02-10
Magnetic skyrmions, which are topologically protected spin textures, are promising candidates for ultralow-energy and ultrahigh-density magnetic data storage and computing applications. To date, most experiments on skyrmions have been carried out at low temperatures. The choice of available materials is limited, and there is a lack of electrical means to control skyrmions in devices. In this work, we demonstrate a new method for creating a stable skyrmion bubble phase in the CoFeB–MgO material system at room temperature, by engineering the interfacial perpendicular magnetic anisotropy of the ferromagnetic layer. Importantly, we also demonstrate that artificially engineered symmetry breaking gives rise tomore » a force acting on the skyrmions, in addition to the current-induced spin–orbit torque, which can be used to drive their motion. This room-temperature creation and manipulation of skyrmions offers new possibilities to engineer skyrmionic devices. The results bring skyrmionic memory and logic concepts closer to realization in industrially relevant and manufacturable thin film material systems.« less
NASA Astrophysics Data System (ADS)
Deng, Y. C.; Zhang, H. Y.; Xia, X.
2016-08-01
Phase change materials are of great interest in energy storage and energy management applications due to their high latent heat and excellent cycling stability. In this paper, the thermal characteristics of phase change materials (PCM) for thermal management of cylindrical 18650 lithium-ion battery (LIB) were experimentally investigated. A commercial paraffin wax with a melting temperaturerange between 47 - 53.8oC was used in this study. A metal cylinder with a heater was used to emulate the heat generation from a battery, which was surrounded with the paraffin PCM and containted in a metal housing. The experiment was conducted in an environmental test chamber with controlled ambient temperatures and power inputs. Both the battery temperature and the housing wall temperature were measured during steady-state heating and cyclic heating conditions. Since PCM has low thermal conductivity, thermal enhancement techniques were investigated by adding metal foams (MFs) or combining metallic foam and fins into the PCM to enhance the thermal conductivity. The battery temperatures were measured for all the cases and the results were analyzed and discussed.
Unidirectional THz radiation propagation in BiFeO3
NASA Astrophysics Data System (ADS)
Room, Toomas
The mutual coupling between magnetism and electricity present in many multiferroic materials permit the magnetic control of the electric polarization and the electric control of the magnetization. These static magnetoelectric (ME) effects are of enormous interest: The ability to write a magnetic state current-free by an electric voltage would provide a huge technological advantage. However, ME coupling changes the low energy electrodynamics of these materials in unprecedented way - optical ME effects give rise to unidirectional light propagation as recently observed in low-temperature multiferroics. The transparent direction can be switched with dc magnetic or electric field, thus opening up new possibilities to manipulate the propagation of electromagnetic waves in multiferroic materials. We studied the unidirectional transmission of THz radiation in BiFeO3 crystals, the unique multiferroic compound offering a real potential for room temperature applications. The electrodynamics of BiFeO3 at 1THz and below is dominated by the spin wave modes of cycloidal spin order. We found that the optical magnetoelectric effect generated by spin waves in BiFeO3 is robust enough to cause considerable nonreciprocal directional dichroism in the GHz-THz range even at room temperature. The supporting theory attributes the observed unidirectional transmission to the spin-current-driven dynamic ME effect. Our work demonstrates that the nonreciprocal directional dichroism spectra of low energy excitations and their theoretical analysis provide microscopic model of ME couplings in multiferroic materials. Recent THz spectroscopy studies of multiferroic materials are an important step toward the realization of optical diodes, devices which transmit light in one but not in the opposite direction.
Resistance to infection of five different materials in a rat body wall model.
Medberry, Christopher J; Tottey, Stephen; Jiang, Hongbin; Johnson, Scott A; Badylak, Stephen F
2012-03-01
Infection occurs after approximately 1% of hernia repair procedures. The resistance to infection of the repair materials is therefore an important consideration. We evaluated the infection resistance of five different materials in a rat model of body wall repair, two of which, urinary bladder matrix (UBM-ECM) and Revive, were not previously evaluated in a controlled model of infection. An inoculum of 1 × 10(8) colony forming units of Staphylococcus aureus was delivered to the wound site following implantation of an autograft, UBM-ECM, Proceed, Prolene, or Revive. Infection was monitored by white blood cell counts, body temperature, bacterial culture, and histomorphologic analysis of the implant site. Infection was shown in all groups through increased white blood cell count and body temperature. Animals with UBM-ECM returned to pre-surgery body temperature before all other groups. Substantial bacterial clearance was found in the autograft, UBM-ECM, and Prolene. Histomorphologic analysis showed evidence for persistent bacterial infection in Prolene, Proceed, and Revive 28 d after implantation, whereas the autograft and UBM-ECM appeared free of infection. The autograft showed a pyogranulomatous inflammatory reaction at 28 d while UBM-ECM was similar to uninfected controls. Superior infection resistance was shown by UBM-ECM compared with the other materials, which were substantially equivalent. Histomorphologic analysis clearly showed an increased ability to resist persistent bacterial infection for UBM-ECM. Our results suggest UBM-ECM may be useful as a repair material in areas of high risk for infection. Copyright © 2012 Elsevier Inc. All rights reserved.
Evaluation of materials and design modifications for aircraft brakes
NASA Technical Reports Server (NTRS)
Ho, T. L.; Kennedy, F. E.; Peterson, M. B.
1975-01-01
A test program is described which was carried out to evaluate several proposed design modifications and several high-temperature friction materials for use in aircraft disk brakes. The evaluation program was carried out on a specially built test apparatus utilizing a disk brake and wheel half from a small het aircraft. The apparatus enabled control of brake pressure, velocity, and braking time. Tests were run under both constant and variable velocity conditions and covered a kinetic energy range similar to that encountered in aircraft brake service. The results of the design evaluation program showed that some improvement in brake performance can be realized by making design changes in the components of the brake containing friction material. The materials evaluation showed that two friction materials show potential for use in aircraft disk brakes. One of the materials is a nickel-based sintered composite, while the other is a molybdenum-based material. Both materials show much lower wear rates than conventional copper-based materials and are better able to withstand the high temperatures encountered during braking. Additional materials improvement is necessary since both materials show a significant negative slope of the friction-velocity curve at low velocities.
NASA Astrophysics Data System (ADS)
Vecchio, Kenneth S.; Fitzpatrick, Michael D.; Klarstrom, Dwaine
1995-03-01
Strain-controlled low-cycle fatigue tests have been conducted in air at elevated temperature to determine the influence of subsolvus thermomechanical processing on the low-cycle fatigue (LCF) behavior of HAYNES 230 alloy. A series of tests at various strain ranges was conducted on material experimentally processed at 1121 °C, which is below the M23C6 carbide solvus temperature, and on material fully solution annealed at 1232 °C. A comparative strain-life analysis was performed on the LCF results, and the cyclic hardening/softening characteristics were examined. At 760 °C and 871 °C, the fatigue life of the experimental 230/1121 material was improved relative to the standard 230/1232 material up to a factor of 3. The fatigue life advantage of the experimental material was related primarily to a lower plastic (inelastic) strain amplitude response for a given imposed total strain range. It appears the increase in monotonic flow stress exhibited by the finer grain size experimental material has been translated into an increase in cyclic flow stress at the 760 °C and 871 °C test temperatures. Both materials exhibited entirely transgranular fatigue crack initiation and propagation modes at these temperatures. The LCF performance of the experimental material in tests performed at 982 °C was improved relative to the standard material up to a factor as high as 2. The life advantage of the 230/1121 material occurred despite having a larger plastic strain amplitude than the standard 230/1232 material for a given total strain range. Though not fully understood at present, it is suspected that this behavior is related to the deleterious influence of grain boundaries in the fatigue crack initiations of the standard processed material relative to the experimental material, and ultimately to differences in carbide morphology as a result of thermomechanical processing.
Fluidic-thermochromic display device
NASA Technical Reports Server (NTRS)
Grafstein, D.; Hilborn, E. H.
1968-01-01
Fluidic decoder and display device has low-power requirements for temperature control of thermochromic materials. An electro-to-fluid converter translates incoming electrical signals into pneumatics signal of sufficient power to operate the fluidic logic elements.
Hot-blade stripper for polyester insulation on FCC
NASA Technical Reports Server (NTRS)
Angele, W.; Chambers, C. M.
1971-01-01
Stripper incorporates a blade which is electrically heated to a controlled temperature. Heated blade softens and strips insulation from cable while paper ribbon removes insulation material and keeps blade clean for next operation.
Particulate Air Pollution Control for Army Coal-Fired Boiler Plants.
1983-03-01
Army flue gas . The condensed material usually is sticky and emissions control . Of the current new technologies. traps the flyash on the bag, where it... control device is made a matter of convenience. The location Flue gas temperature control is an important factor of other components is given the prime...consideration. *in the application of baghouses to flue gas particulate This often results in the particle-laden gas being forced control . Bag
Magnetic Stirling cycles - A new application for magnetic materials
NASA Technical Reports Server (NTRS)
Brown, G. V.
1977-01-01
There is the prospect of a fundamental new application for magnetic materials as the working substance in thermodynamic cycles. Recuperative cycles which use a rare-earth ferromagnetic material near its Curie point in the field of a superconducting magnet appear feasible for applications from below 20 K to above room temperature. The elements of the cycle, advanced in an earlier paper, are summarized. The basic advantages include high entropy density in the magnetic material, completely reversible processes, convenient control of the entropy by the applied field, the feature that heat transfer is possible during all processes, and the ability of the ideal cycle to attain Carnot efficiency. The mean field theory is used to predict the entropy of a ferromagnet in an applied field and also the isothermal entropy change and isentropic temperature change caused by applying a field. Results are presented for J = 7/2 and g = 2. The results for isentropic temperature change are compared with experimental data on Gd. Coarse mixtures of ferromagnetic materials with different Curie points are proposed to modify the path of the cycle in the T-S diagram in order to improve the efficiency or to increase the specific power.
NASA Technical Reports Server (NTRS)
Silberman, E.
1975-01-01
The composition and evaporation rate of the outgassing of a space vehicle thermal control paint as a function of temperature were studied. A contamination chamber was designed, constructed, and tested. Samples of thermal control paint were tested to determine if heating to moderate temperatures causes them to release outgassing products which can be collected on a cooled cesium iodide window for identification by IR analysis. Results showed that outgassing of surfaces other than the sample was a problem. Spectral bands of the deposits collected were compared.
Griffiths-like phase in high TC perovskite La2FeReO6 prepared in a controlled reducing atmosphere
NASA Astrophysics Data System (ADS)
Kaipamagalath, Aswathi; Palakkal, Jasnamol P.; Varma, Manoj R.
2018-05-01
The perovskite La2FeReO6 is prepared by solid-state reaction method. Calcination was done in a controlled reducing atmosphere. The structure of the compound is found to be orthorhombic with Pbnm space group. From the DC magnetic studies, the transition temperature (TC) of La2FeReO6 is found to be at 729 K. A Griffiths-like phase is present in the material with ferromagnetic short-range correlations above TC up to the Griffiths temperature TG = 863 K.
Energy saving incineration of waste
NASA Astrophysics Data System (ADS)
Meierzukoecker, H.; Voegtli, R.
1982-11-01
The machanism and the dimension of the preoxidation of the pollutants in the heat exchanger were investigated. A temperature control system was developed and tested. It is found that the preoxidation in the heat exchanger depends on the peculiarity of the pollutants and is inhibited by inactive walls with increasing of the specific surface. Active materials like copper only promote the oxidation of all pollutants in the low temperature region. Savings of supplemental energy about 25% are possible using process controlled auxiliary firing and combustion enthalpy of pollutants as a substitute for the supplemental energy.
Thermographic Assessment of the HAZ Properties and Structure of Thermomechanically Treated Steel
NASA Astrophysics Data System (ADS)
Górka, Jacek; Janicki, Damian; Fidali, Marek; Jamrozik, Wojciech
2017-12-01
Thermomechanically processed steels are materials of great mechanical properties connected with more than good weldability. This mixture makes them interesting for different types of industrial applications. When creating welded joints, a specified amount of heat is introduced into the welding area and a so called heat-affected zone (HAZ) is formed. The key issue is to reduce the width of the HAZ, because properties of the material in the HAZ are worse than in the base material. In the paper, thermographic measurements of HAZ temperatures were presented as a potential tool for quality assuring the welding process in terms of monitoring and control. The main issue solved was the precise temperature measurement in terms of varying emissivity during a welding thermal cycle. A model of emissivity changes was elaborated and successfully applied. Additionally, material in the HAZ was tested to reveal its properties and connect changes of those properties with heating parameters. The obtained results prove that correctly modeled emissivity allows measurement of temperature, which is a valuable tool for welding process monitoring.
Controlling Gas-Flow Mass Ratios
NASA Technical Reports Server (NTRS)
Morris, Brian G.
1990-01-01
Proposed system automatically controls proportions of gases flowing in supply lines. Conceived for control of oxidizer-to-fuel ratio in new gaseous-propellant rocket engines. Gas-flow control system measures temperatures and pressures at various points. From data, calculates control voltages for electronic pressure regulators for oxygen and hydrogen. System includes commercially available components. Applicable to control of mass ratios in such gaseous industrial processes as chemical-vapor depostion of semiconductor materials and in automotive engines operating on compressed natural gas.
NASA Astrophysics Data System (ADS)
Abney, R.; Berhe, A. A.
2016-12-01
Pyrogenic organic matter (PyOM) is the material left behind after incomplete combustion, which includes a spectrum of materials ranging from ash to charred biomass. Early research on PyOM assumed that it served as an inert carbon (C) pool within the soil. However, recent research has demonstrated that the decomposition of PyOM occurs on much shorter time scales. Even so, PyOM can serve as a C sink within the soil, and it can alter many soil properties. This study investigates the roles of both combustion temperature and landform position on decomposition of PyOM. Bark from Pinus jeffreyi was charred at three temperatures (200ºC, 350ºC, and 500ºC) to create PyOM, and this PyOM was incorporated into soil from two landform positions (eroding hillslope and deposition). Many recent studies on the decomposition of PyOM have utilized wood or agricultural byproducts as source material for PyOM, however bark experiences much of the effects of combustion, and it has received little to no research attention. Decomposition was measured via CO2 production from the soil and bark PyOM mixtures over an incubation period of six months. Microbial biomass was also measured throughout the incubation. The soil and PyOM mixtures were analyzed for elemental C and nitrogen, along with their stable isotopes, immediately after each gas measurement. We expect that the bark charred at higher temperatures will decompose slower than the bark charred at lower temperatures. We also expect that the bark incorporated into the depositional soil will decompose faster than the bark incorporated into the eroding soil. Several studies have already illustrated that landform position plays a critical role in controlling C storage and organic matter breakdown, however this has yet to be investigated with PyOM. Understanding the controls on PyOM breakdown is critical for better managing soils and the global C cycle.
NASA Astrophysics Data System (ADS)
Panda, Satyajit; Ray, M. C.
2008-04-01
In this paper, a geometrically nonlinear dynamic analysis has been presented for functionally graded (FG) plates integrated with a patch of active constrained layer damping (ACLD) treatment and subjected to a temperature field. The constraining layer of the ACLD treatment is considered to be made of the piezoelectric fiber-reinforced composite (PFRC) material. The temperature field is assumed to be spatially uniform over the substrate plate surfaces and varied through the thickness of the host FG plates. The temperature-dependent material properties of the FG substrate plates are assumed to be graded in the thickness direction of the plates according to a power-law distribution while the Poisson's ratio is assumed to be a constant over the domain of the plate. The constrained viscoelastic layer of the ACLD treatment is modeled using the Golla-Hughes-McTavish (GHM) method. Based on the first-order shear deformation theory, a three-dimensional finite element model has been developed to model the open-loop and closed-loop nonlinear dynamics of the overall FG substrate plates under the thermal environment. The analysis suggests the potential use of the ACLD treatment with its constraining layer made of the PFRC material for active control of geometrically nonlinear vibrations of FG plates in the absence or the presence of the temperature gradient across the thickness of the plates. It is found that the ACLD treatment is more effective in controlling the geometrically nonlinear vibrations of FG plates than in controlling their linear vibrations. The analysis also reveals that the ACLD patch is more effective for controlling the nonlinear vibrations of FG plates when it is attached to the softest surface of the FG plates than when it is bonded to the stiffest surface of the plates. The effect of piezoelectric fiber orientation in the active constraining PFRC layer on the damping characteristics of the overall FG plates is also discussed.
Study on VCSEL laser heating chip in nuclear magnetic resonance gyroscope
NASA Astrophysics Data System (ADS)
Liang, Xiaoyang; Zhou, Binquan; Wu, Wenfeng; Jia, Yuchen; Wang, Jing
2017-10-01
In recent years, atomic gyroscope has become an important direction of inertial navigation. Nuclear magnetic resonance gyroscope has a stronger advantage in the miniaturization of the size. In atomic gyroscope, the lasers are indispensable devices which has an important effect on the improvement of the gyroscope performance. The frequency stability of the VCSEL lasers requires high precision control of temperature. However, the heating current of the laser will definitely bring in the magnetic field, and the sensitive device, alkali vapor cell, is very sensitive to the magnetic field, so that the metal pattern of the heating chip should be designed ingeniously to eliminate the magnetic field introduced by the heating current. In this paper, a heating chip was fabricated by MEMS process, i.e. depositing platinum on semiconductor substrates. Platinum has long been considered as a good resistance material used for measuring temperature The VCSEL laser chip is fixed in the center of the heating chip. The thermometer resistor measures the temperature of the heating chip, which can be considered as the same temperature of the VCSEL laser chip, by turning the temperature signal into voltage signal. The FPGA chip is used as a micro controller, and combined with PID control algorithm constitute a closed loop control circuit. The voltage applied to the heating resistor wire is modified to achieve the temperature control of the VCSEL laser. In this way, the laser frequency can be controlled stably and easily. Ultimately, the temperature stability can be achieved better than 100mK.
NASA Astrophysics Data System (ADS)
Au, Peter
A process for fabricating advanced aerospace titanium aluminide alloys starting from metal powders (the hot isostatically consolidated P/M process) is presented in this thesis. This process does not suffer the difficulties of chemical inhomogeneities and coarse grain structure of castings. In addition heat treatments which take advantage of the refined structure of HIP processed materials are developed to achieve microstructure control and subsequent mechanical property control. It is shown that a better "property balance" is possible after the heat treatment of HIP consolidated materials than it is with alternative processing. It is well understood that the standard microstructures (near-gamma, duplex, nearly lamellar, and fully lamellar) do not have the balanced mechanical properties (tensile, yield, creep and fatigue strength, ductility and fracture toughness) necessary for optimal performance in aero engine and automotive applications. In this work a fine-grained fully lamellar (FGFL) microstructure is developed for property control and in particular for achieving a much improved property balance. A heat treatment procedure for this purpose which consists of cyclic processing in the alpha transus temperature region to achieve an FGFL structure with grain sizes in the range of 50 mum to 150 mum is presented. Compared with conventional duplex structured materials, the minimum creep rate is an order of magnitude lower with only a 10% loss in tensile yield strength. Moreover, a three-fold increase in tensile elongation is possible by converting to an FGFL structure with only a 30% loss in minimum creep rate. These are attractive trade-offs when considering the use of these alloys for aerospace purposes. A thorough literature review of the mechanisms of formation of standard microstructures and their deformation under mechanical loading is contained in the thesis. In addition, conventional techniques to produce FGFL microstructures in wrought and cast materials are discussed in detail. Beyond the review, the results of experiments are described for determining the alpha transus temperature, the phase transformation kinetics in this region and the effects of heat treatment time and cooling rate on microstructure. Based on this preliminary work, a heat treatment to achieve a FGFL microstructure with grain sizes in the range of 50 mum to 150 mum is proposed and confirmed. The room temperature and high temperature mechanical properties of these materials are compared with those of conventional duplex and fully lamellar structures. The results of this experimentation are discussed in terms of the fundamental mechanisms for controlling microstructure and mechanical properties in these materials. The potential for applying cyclic heat treatments to cast and wrought materials to improve the mechanical property balance in engineering practice is discussed.
NASA Astrophysics Data System (ADS)
Lu, Teng; Studer, Andrew J.; Yu, Dehong; Withers, Ray L.; Feng, Yujun; Chen, Hua; Islam, S. S.; Xu, Zhuo; Liu, Yun
2017-12-01
This in situ neutron-diffraction study on antiferroelectric (AFE) P b0.99(N b0.02Z r0.65S n0.28T i0.05 ) O3 polycrystalline materials describes systematic structural and associated preferred orientation changes as a function of applied electric field and temperature. It is found that the pristine AFE phase can be poled into the metastable ferroelectric (FE) phase at room temperature. At this stage, both AFE and FE phases consist of modes associated with octahedral rotation and A -site ionic displacements. The temperature-induced phase transition indicates that the octahedral rotation and ionic displacements are weakly coupled in the room-temperature FE phase and decoupled in the high-temperature FE phase. However, both temperature and E -field-induced phase transitions between the AFE and high-temperature FE phase demonstrate the critical role of coupling between octahedral rotation and A -site ionic displacements in stabilizing the AFE structure, which provides not only experimental evidence to support previous theoretical calculations, but also an insight into the design and development of AFE materials. Moreover, the associated preferred orientation evolution in both AFE and FE phases is studied during the phase transitions. It is found that the formation of the preferred orientation can be controlled to tune the samples' FE and AFE properties.
Zhang, Rui; Zhou, Tingting; Wang, Lili; Zhang, Tong
2018-03-21
Highly sensitive and stable gas sensors have attracted much attention because they are the key to innovations in the fields of environment, health, energy savings and security, etc. Sensing materials, which influence the practical sensing performance, are the crucial parts for gas sensors. Metal-organic frameworks (MOFs) are considered as alluring sensing materials for gas sensors because of the possession of high specific surface area, unique morphology, abundant metal sites, and functional linkers. Herein, four kinds of porous hierarchical Co 3 O 4 structures have been selectively controlled by optimizing the thermal decomposition (temperature, rate, and atmosphere) using ZIF-67 as precursor that was obtained from coprecipitation method with the co-assistance of cobalt salt and 2-methylimidazole in the solution of methanol. These hierarchical Co 3 O 4 structures, with controllable cross-linked channels, meso-/micropores, and adjustable surface area, are efficient catalytic materials for gas sensing. Benefits from structural advantages, core-shell, and porous core-shell Co 3 O 4 exhibit enhanced sensing performance compared to those of porous popcorn and nanoparticle Co 3 O 4 to acetone gas. These novel MOF-templated Co 3 O 4 hierarchical structures are so fantastic that they can be expected to be efficient sensing materials for development of low-temperature operating gas sensors.
Thermal control design of the Lightning Mapper Sensor narrow-band spectral filter
NASA Technical Reports Server (NTRS)
Flannery, Martin R.; Potter, John; Raab, Jeff R.; Manlief, Scott K.
1992-01-01
The performance of the Lightning Mapper Sensor is dependent on the temperature shifts of its narrowband spectral filter. To perform over a 10 degree FOV with an 0.8 nm bandwidth, the filter must be 15 cm in diameter and mounted externally to the telescope optics. The filter thermal control required a filter design optimized for minimum bandpass shift with temperature, a thermal analysis of substrate materials for maximum temperature uniformity, and a thermal radiation analysis to determine the parameter sensitivity of the radiation shield for the filter, the filter thermal recovery time after occultation, and heater power to maintain filter performance in the earth-staring geosynchronous environment.
Controlling the selective formation of calcium sulfate polymorphs at room temperature.
Tritschler, Ulrich; Van Driessche, Alexander E S; Kempter, Andreas; Kellermeier, Matthias; Cölfen, Helmut
2015-03-23
Calcium sulfate is a naturally abundant and technologically important mineral with a broad scope of applications. However, controlling CaSO4 polymorphism and, with it, its final material properties still represents a major challenge, and to date there is no universal method for the selective production of the different hydrated and anhydrous forms under mild conditions. Herein we report the first successful synthesis of pure anhydrite from solution at room temperature. We precipitated calcium sulfate in alcoholic media at low water contents. Moreover, by adjusting the amount of water in the syntheses, we can switch between the distinct polymorphs and fine-tune the outcome of the reaction, yielding either any desired CaSO4 phase in pure state or binary mixtures with predefined compositions. This concept provides full control over phase selection in CaSO4 mineralization and may allow for the targeted fabrication of corresponding materials for use in various areas. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carolan, Michael Francis [Allentown, PA; Bernhart, John Charles [Fleetwood, PA
2012-08-21
Method for processing an article comprising mixed conducting metal oxide material. The method comprises contacting the article with an oxygen-containing gas and either reducing the temperature of the oxygen-containing gas during a cooling period or increasing the temperature of the oxygen-containing gas during a heating period; during the cooling period, reducing the oxygen activity in the oxygen-containing gas during at least a portion of the cooling period and increasing the rate at which the temperature of the oxygen-containing gas is reduced during at least a portion of the cooling period; and during the heating period, increasing the oxygen activity in the oxygen-containing gas during at least a portion of the heating period and decreasing the rate at which the temperature of the oxygen-containing gas is increased during at least a portion of the heating period.
Zebarjadi, Mona; Esfarjani, Keivan; Bian, Zhixi; Shakouri, Ali
2011-01-12
Coherent potential approximation is used to study the effect of adding doped spherical nanoparticles inside a host matrix on the thermoelectric properties. This takes into account electron multiple scatterings that are important in samples with relatively high volume fraction of nanoparticles (>1%). We show that with large fraction of uniform small size nanoparticles (∼1 nm), the power factor can be enhanced significantly. The improvement could be large (up to 450% for GaAs) especially at low temperatures when the mobility is limited by impurity or nanoparticle scattering. The advantage of doping via embedded nanoparticles compared to the conventional shallow impurities is quantified. At the optimum thermoelectric power factor, the electrical conductivity of the nanoparticle-doped material is larger than that of impurity-doped one at the studied temperature range (50-500 K) whereas the Seebeck coefficient of the nanoparticle doped material is enhanced only at low temperatures (∼50 K).
Tuning piezoelectric properties through epitaxy of La2Ti2O7 and related thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaspar, Tiffany C.; Hong, Seungbum; Bowden, Mark E.
2018-02-14
Current piezoelectric sensors and actuators are limited to operating temperatures less than ~200°C due to the low Curie temperature of the piezoelectric material. High temperature piezoelectric materials such as La2Ti2O7 (LTO) would facilitate the development of high-temperature sensors if the piezoelectric coupling coefficient could be maximized. We have deposited epitaxial LTO films on SrTiO3(001), SrTiO3(110), and rutile TiO2(110) substrates by pulsed laser deposition, and show that the crystalline orientation of the LTO film, and thus its piezoelectric coupling direction, can be controlled by epitaxial matching to the substrate. The structure and phase purity of the films were investigated by x-raymore » diffraction and scanning transmission electron microscopy. To characterize the piezoelectric properties, piezoresponse force microscopy was used to measure the in-plane and out-of-plane piezoelectric coupling in the films. We find that the strength of the out-of-plane piezoelectric coupling can be increased when the piezoelectric crystalline direction is rotated partially out-of-plane via epitaxy. The strongest out-of-plane coupling is observed for LTO/STO(001). Deposition on TiO2(110) results in epitaxial La2/3TiO3, an orthorhombic perovskite of interest as a microwave dielectric material. La2/3TiO3 can be difficult to stabilize in bulk form, and epitaxial deposition has not been previously reported. These results confirm that control of the crystalline orientation of LTO-based materials can increase the out-of-plane strength of its piezoelectric coupling, which can be exploited in piezoelectric devices.« less
Uninterrupted and reusable source for the controlled growth of nanowires
Sugavaneshwar, R. P.; Nanda, Karuna Kar
2013-01-01
Generally, the length of the oxide nanowires grown by vapor phase transport is limited by the degradation of the source materials. Furthermore, the source material is used once for the nanowires growth. By exploiting the Si-Zn phase diagram, we have developed a simple methodology for the non-catalytic growth of ultralong ZnO nanowires in large area with controllable aspect ratio and branched structures. The insolubility of Zn in Si and the use of a Si cap on the Zn source to prevent local source oxidation of Zn (i. e. prevents the degradation of the source) are the keys to grow longer nanowires without limitations. It has been shown that the aspect ratio can be controlled by thermodynamically (temperature) and more importantly by kinetically (vapor flux). One of the interesting findings is that the same source material can be used for several depositions of oxide nanostructured materials. PMID:23412010
Kim, Young Baek; Choi, Bum Ho; Lim, Yong Hwan; Yoo, Ha Na; Lee, Jong Ho; Kim, Jin Hyeok
2011-02-01
In this study, pentacene organic thin film was prepared using newly developed organic material auto-feeding system integrated with linear cell and characterized. The newly developed organic material auto-feeding system consists of 4 major parts: reservoir, micro auto-feeder, vaporizer, and linear cell. The deposition of organic thin film could be precisely controlled by adjusting feeding rate, main tube size, position and size of nozzle. 10 nm thick pentacene thin film prepared on glass substrate exhibited high uniformity of 3.46% which is higher than that of conventional evaporation method using point cell. The continuous deposition without replenishment of organic material can be performed over 144 hours with regulated deposition control. The grain size of pentacene film which affect to mobility of OTFT, was controlled as a function of the temperature.
NASA Astrophysics Data System (ADS)
Bright, Robin Michael
The ability to adequately cool internal gas-turbine engine components in next-generation commercial and military aircraft is of extreme importance to the aerospace industry as the demand for high-efficiency engines continues to push operating temperatures higher. Pulsed laser-drilling is rapidly becoming the preferred method of creating cooling holes in high temperature components due a variety of manufacturing advantages of laser-drilling over conventional hole-drilling techniques. As cooling requirements become more demanding, the impact of drilling conditions on material removal behavior and subsequent effects on hole quality becomes critical. In this work, the development of emission spectroscopy as a method to probe the laser-drilling process is presented and subsequently applied to the study of material behavior of various structural aerospace materials during drilling. Specifically, emitted photons associated with energy level transitions within excited neutral atoms in material ejected during drilling were detected and analyzed. Systematic spectroscopic studies indicated that electron energy level populations and calculated electron temperatures within ejected material are dependent on both laser pulse energy and duration. Local thermal conditions detected by the developed method were related to the characteristics of ejected material during drilling and to final hole quality. Finally, methods of utilizing the observed relationships for spectroscopic process monitoring and control were demonstrated.
Control system for thermoelectric refrigerator
NASA Technical Reports Server (NTRS)
Nelson, John L. (Inventor); Criscuolo, Lance (Inventor); Gilley, Michael D. (Inventor); Park, Brian V. (Inventor)
1996-01-01
Apparatus including a power supply (202) and control system is provided for maintaining the temperature within an enclosed structure (40) using thermoelectric devices (92). The apparatus may be particularly beneficial for use with a refrigerator (20) having superinsulation materials (46) and phase change materials (112) which cooperate with the thermoelectric device (92) to substantially enhance the overall operating efficiency of the refrigerator (20). The electrical power supply (202) and control system allows increasing the maximum power capability of the thermoelectric device (92) in response to increased heat loads within the refrigerator (20). The electrical power supply (202) and control system may also be used to monitor the performance of the cooling system (70) associated with the refrigerator (20).
Iridium-Coated Rhenium Radiation-Cooled Rockets
NASA Technical Reports Server (NTRS)
Reed, Brian D.; Biaglow, James A.; Schneider, Steven J.
1997-01-01
Radiation-cooled rockets are used for a range of low-thrust propulsion functions, including apogee insertion, attitude control, and repositioning of satellites, reaction control of launch vehicles, and primary propulsion for planetary space- craft. The key to high performance and long lifetimes for radiation-cooled rockets is the chamber temperature capability. The material system that is currently used for radiation-cooled rockets, a niobium alloy (C103) with a fused silica coating, has a maximum operating temperature of 1370 C. Temperature limitations of C103 rockets force the use of fuel film cooling, which degrades rocket performance and, in some cases, imposes a plume contamination issue from unburned fuel. A material system composed of a rhenium (Re) substrate and an iridium (Ir) coating has demonstrated operation at high temperatures (2200 C) and for long lifetimes (hours). The added thermal margin afforded by iridium-coated rhenium (Ir/Re) allows reduction or elimination of fuel film cooling. This, in turn, leads to higher performance and cleaner spacecraft environments. There are ongoing government- and industry-sponsored efforts to develop flight Ir/ Re engines, with the primary focus on 440-N, apogee insertion engines. Complementing these Ir/Re engine development efforts is a program to address specific concerns and fundamental characterization of the Ir/Re material system, including (1) development of Ir/Re rocket fabrication methods, (2) establishment of critical Re mechanical properly data, (3) development of reliable joining methods, and (4) characterization of Ir/Re life-limiting mechanisms.
Thermal Materials Drive Professional Apparel Line
NASA Technical Reports Server (NTRS)
2014-01-01
Johnson Space Center investigated phase change materials (PCMs) to use in spacesuit gloves to help maintain comfortable temperatures. Years later, Boston-based Ministry of Supply developed a dress shirt that incorporated the NASA-derived PCMs, could wick away moisture, and also control odors and bacterial growth. Deemed Apollo, the shirt performs like active wear and is available in white and oxford blue.
TOPAZ2D heat transfer code users manual and thermal property data base
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapiro, A.B.; Edwards, A.L.
1990-05-01
TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependentmore » boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.« less
Maxwell, James L; Rose, Chris R; Black, Marcie R; Springer, Robert W
2014-03-11
Microelectronic structures and devices, and method of fabricating a three-dimensional microelectronic structure is provided, comprising passing a first precursor material for a selected three-dimensional microelectronic structure into a reaction chamber at temperatures sufficient to maintain said precursor material in a predominantly gaseous state; maintaining said reaction chamber under sufficient pressures to enhance formation of a first portion of said three-dimensional microelectronic structure; applying an electric field between an electrode and said microelectronic structure at a desired point under conditions whereat said first portion of a selected three-dimensional microelectronic structure is formed from said first precursor material; positionally adjusting either said formed three-dimensional microelectronic structure or said electrode whereby further controlled growth of said three-dimensional microelectronic structure occurs; passing a second precursor material for a selected three-dimensional microelectronic structure into a reaction chamber at temperatures sufficient to maintain said precursor material in a predominantly gaseous state; maintaining said reaction chamber under sufficient pressures whereby a second portion of said three-dimensional microelectronic structure formation is enhanced; applying an electric field between an electrode and said microelectronic structure at a desired point under conditions whereat said second portion of a selected three-dimensional microelectronic structure is formed from said second precursor material; and, positionally adjusting either said formed three-dimensional microelectronic structure or said electrode whereby further controlled growth of said three-dimensional microelectronic structure occurs.
NASA Technical Reports Server (NTRS)
Deadmore, D. L.
1985-01-01
Hardware and software were developed to implement the hybrid digital control of two Jet A-1 fueled Mach 0.3 burners from startup to completion of a preset number of hot corrosion flame durability cycle tests of materials at 1652 F. This was accomplished by use of a basic language programmable microcomputer and data aquisition and control unit connected together by the IEEE-488 Bus. The absolute specimen temperature was controlled to + or - 3 F by use of digital adjustment of the fuel flow using a P-I-D (Proportional-Integral-Derivative) control algorithm. The specimen temperature was within + or - 2 F of the set point more than 90 percent of the time. Pressure control was achieved by digital adjustment of the combustion air flow using a proportional control algorithm. The burner pressure was controlled at 1.0 + or - 0.02 psig. Logic schemes were incorporated into the system to protect the test specimen from abnormal test conditions in the event of a hardware of software malfunction.
Simulation of solidification in a Bridgman cell
NASA Technical Reports Server (NTRS)
Dakhoul, Y. M.; Farmer, R. C.
1984-01-01
Bridgman-type crystal growth techniques are attractive methods for producing homogeneous, high-quality infrared detector and junction device materials. However, crystal imperfections and interface shapes still must be controlled through modification of the temperature and concentration gradients created during solidification. The objective of this investigation was to study the temperature fields generated by various cell and heatpipe configurations and operating conditions. Continuum's numerical model of the temperature, species concentrations, and velocity fields was used to describe the thermal characteristics of Bridgman cell operation.
Development of SiAlON materials
NASA Technical Reports Server (NTRS)
Layden, G. K.
1977-01-01
Cold pressing and sintering techniques were used to produce ceramic bodies in which the major phase was beta prime Si3-Al-O-N4 solid solution. A variety of foreign oxides were used to promote liquid phase sintering, and this resulted in the incorporation of additional solid phases in the ceramic bodies which controlled elevated temperature properties. None of the bodies studied to date exhibited both adequate high temperature mechanical properties and oxidation resistance. Criteria are suggested to guide the formulation of bodies with improved high temperature properties.
Parkinson, William J.
1987-01-01
A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.
NASA Technical Reports Server (NTRS)
Seng, Gary T.
1987-01-01
In recent years, there was a growing need for electronics capable of sustained high-temperature operation for aerospace propulsion system instrumentation, control and condition monitoring, and integrated sensors. The desired operating temperature in some applications exceeds 600 C, which is well beyond the capability of currently available semiconductor devices. Silicon carbide displays a number of properties which make it very attractive as a semiconductor material, one of which is the ability to retain its electronic integrity at temperatures well above 600 C. An IR-100 award was presented to NASA Lewis in 1983 for developing a chemical vapor deposition process to grow single crystals of this material on standard silicon wafers. Silicon carbide devices were demonstrated above 400 C, but much work remains in the areas of crystal growth, characterization, and device fabrication before the full potential of silicon carbide can be realized. The presentation will conclude with current and future high-temperature electronics program plans. Although the development of silicon carbide falls into the category of high-risk research, the future looks promising, and the potential payoffs are tremendous.
NASA Astrophysics Data System (ADS)
Tudor, Albert Ioan; Motoc, Adrian Mihail; Ciobota, Cristina Florentina; Ciobota, Dan. Nastase; Piticescu, Radu Robert; Romero-Sanchez, Maria Dolores
2018-05-01
Thermal energy storage systems using phase change materials (PCMs) as latent heat storage are one of the main challenges at European level in improving the performances and efficiency of concentrated solar power energy generation due to their high energy density. PCM with high working temperatures in the temperature range 300-500 °C are required for these purposes. However their use is still limited due to the problems raised by the corrosion of the majority of high temperature PCMs and lower thermal transfer properties. Micro-encapsulation was proposed as one method to overcome these problems. Different micro-encapsulation methods proposed in the literature are presented and discussed. An original process for the micro-encapsulation of potassium nitrate as PCM in inorganic zinc oxide shells based on a solvothermal method followed by spray drying to produce microcapsules with controlled phase composition and distribution is proposed and their transformation temperatures and enthalpies measured by differential scanning calorimetry are presented.
NASA Technical Reports Server (NTRS)
Gasch, Matt; Johnson, Sylvia; Marschall, Jochen
2010-01-01
Ceramic borides, such as hafnium diboride (HfB2) and zirconium diboride (ZrB2), are members of a family of materials with extremely high melting temperatures referred to as Ultra High Temperature Ceramics (UHTCs). UHTCs constitute a class of promising materials for use in high temperature applications, such as sharp leading edges on future-generation hypersonic flight vehicles, because of their high melting points. The controlled development of microstructure has become important to the processing of UHTCs, with the prospect of improving their mechanical and thermal properties. The improved oxidation resistance of HfB2 has also become important if this material is to be successfully used at temperatures above 2000 C. Furthermore, the use of UHTCs on the leading edges of vehicles traveling at hypersonic speeds will mean exposure to a mixed oxidation environment comprised of both molecular and atomic oxygen. The current study has investigated the high-temperature oxidation behavior of HfB2-based materials in a pure O2 environment, as well as in environments containing different levels of dissociated oxygen (O/O2). Materials were processed by two techniques: conventional hot pressing (HP) and electric field-assisted sintering (FAS). Their oxidation behavior was evaluated in both a tube furnace at 1250 C for 3 hours and in a simulated re-entry environment in the Advanced Heating Facility (AHF) arcjet at NASA Ames Research Center, during a 10-minute exposure to a cold wall heat flux of 250W/sq cm and stagnation pressure of 0.1-0.2 atm. The microstructure of the different materials was characterized before and after oxidation using scanning electron microscopy (SEM).
Deformation and annealing study of Nicraly
NASA Technical Reports Server (NTRS)
Trela, D. M.; Ebert, L. J.
1975-01-01
Extensive experiments were carried out on the ODS alloy Nicraly, (an alloy prepared by mechanical alloying and consolidating a powder blend consisting of 16% chromium, 4% aluminum, 2-3% yttria, balance nickel), in efforts to develop methods of controlling the grain size and grain shape of the material. The experiments fell into two general categories: variations in the annealing parameters using the as-extruded material as it was received, and various thermomechanical processing schedules (various combinations of cold work and annealing). Success was achieved in gaining grain size and grain shape control by annealing of the as-extruded material. By proper selection of annealing temperature and cooling rates, the grain size of the as-received material was increased almost two orders of magnitude (from an average grain dimension of 0.023 mm to 1.668 mm) while the aspect ratio was increased by some 50% (from 20:1 to 30:1). No success was achieved in gaining significant control of the grain size and shape of the material by thermo-mechanical processing.
Radiometric Measurements of the Thermal Conductivity of Complex Planetary-like Materials
NASA Astrophysics Data System (ADS)
Piqueux, S.; Christensen, P. R.
2012-12-01
Planetary surface temperatures and thermal inertias are controlled by the physical and compositional characteristics of the surface layer material, which result from current and past geological activity. For this reason, temperature measurements are often acquired because they provide fundamental constraints on the geological history and habitability. Examples of regolith properties affecting surface temperatures and inertias are: grain sizes and mixture ratios, solid composition in the case of ices, presence of cement between grains, regolith porosity, grain roughness, material layering etc.. Other important factors include volatile phase changes, and endogenic or exogenic heat sources (i.e. geothermal heat flow, impact-related heat, biological activity etc.). In the case of Mars, the multitude of instruments observing the surface temperature at different spatial and temporal resolutions (i.e. IRTM, Thermoskan, TES, MiniTES, THEMIS, MCS, REMS, etc.) in conjunction with other instruments allows us to probe and characterize the thermal properties of the surface layer with an unprecedented resolution. While the derivation of thermal inertia values from temperature measurements is routinely performed by well-established planetary regolith numerical models, constraining the physical properties of the surface layer from thermal inertia values requires the additional step of laboratory measurements. The density and specific heat are usually constant and sufficiently well known for common geological materials, but the bulk thermal conductivity is highly variable as a function of the physical characteristics of the regolith. Most laboratory designs do not allow an investigation of the thermal conductivity of complex regolith configurations similar to those observed on planetary surfaces (i.e. cemented material, large grains, layered material, and temperature effects) because the samples are too small and need to be soft to insert heating or measuring devices. For this reason, we have built a new type of apparatus to measure the thermal conductivity of sample significantly larger than previous apparatus under planetary conditions of atmosphere and gas composition. Samples' edges are cooled down from room to LN2 temperature and the surface material temperature is recorded by an infrared camera without inserting thermocouples or heat sources. Sample surface cooling trends are fit with finite element models of heat transfer to retrieve the material thermal conductivity. Preliminary results confirm independent numerical modeling results predicting the thermal conductivity of complex materials: the thermal inertia of particulate material under Mars conditions is temperature-dependent, small amounts of cements significantly increase the bulk conductivity and inertia of particulate material, and one-grain-thick armors similar to those observed by the Mars Exploration Rovers behave like a thin highly conductive layer that does not significantly influence apparent thermal inertias. These results are used to further our interpretation of Martian temperature observations. For example local amounts of subsurface water ice or the fraction of cementing phase in the global Martian duricrust can be constrained; the search for subtle changes in near-surface heat flow can be performed more accurately, and surface thermal inertias under various atmospheric conditions of pressure and gas composition can be predicted.
Anomalous permittivity in fine-grain barium titanate
NASA Astrophysics Data System (ADS)
Ostrander, Steven Paul
Fine-grain barium titanate capacitors exhibit anomalously large permittivity. It is often observed that these materials will double or quadruple the room temperature permittivity of a coarse-grain counterpart. However, aside from a general consensus on this permittivity enhancement, the properties of the fine-grain material are poorly understood. This thesis examines the effect of grain size on dielectric properties of a self-consistent set of high density undoped barium titanate capacitors. This set included samples with grain sizes ranging from submicron to ˜20 microns, and with densities generally above 95% of the theoretical. A single batch of well characterized powder was milled, dry-pressed then isostatically-pressed. Compacts were fast-fired, but sintering temperature alone was used to control the grain size. With this approach, the extrinsic influences are minimized within the set of samples, but more importantly, they are normalized between samples. That is, with a single batch of powder and with identical green processing, uniform impurity concentration is expected. The fine-grain capacitors exhibited a room temperature permittivity of ˜5500 and dielectric losses of ˜2%. The Curie-temperature decreased by {˜}5sp°C from that of the coarse-grain material, and the two ferroelectric-ferroelectric phase transition temperatures increased by {˜}10sp°C. The grain size induced permittivity enhancement was only active in the tetragonal and orthorhombic phases. Strong dielectric anomalies were observed in samples with grain size as small as {˜}0.4\\ mum. It is suggested that the strong first-order character observed in the present data is related to control of microstructure and stoichiometry. Grain size effects on conductivity losses, ferroelectric losses, ferroelectric dispersion, Maxwell-Wagner dispersion, and dielectric aging of permittivity and loss were observed. For the fine-grain material, these observations suggest the suppression of domain wall motion below the Curie transition, and the suppression of conductivity above the Curie transition.
Schaffner, Beatrice; Meier, Anton; Wuillemin, Daniel; Hoffelner, Wolfgang; Steinfeld, Aldo
2003-01-01
A novel high-temperature solar chemical reactor is proposed for the thermal recycling of hazardous solid waste material using concentrated solar power. It features two cavities in series, with the inner one functioning as the solar absorber and the outer one functioning as the reaction chamber. The solar reactor can handle thermochemical processes at temperatures above 1,300 K involving multiphases and controlled atmospheres. It further allows for batch or continuous mode of operation and for easy adjustment of the residence time of the reactants to match the kinetics of the reaction. A 10-kW solar reactor prototype was designed and tested for the carbothermic reduction of electric arc furnace dusts (EAFD). The reactor was subjected to mean solar flux intensities of 2,000 kW m(-2) and operated in both batch and continuous mode within the temperature range of 1,120-1,400 K. Extraction of over 90% of the toxic compounds originally contained in the EAFD was achieved while the condensable products of the off-gas contained mainly Zn, Pb, and Cl. The use of concentrated solar energy as the source of process heat offers the possibility of converting hazardous solid waste material into valuable commodities for processes in closed and sustainable material cycles.
Design and implementation of a system for laser assisted milling of advanced materials
NASA Astrophysics Data System (ADS)
Wu, Xuefeng; Feng, Gaocheng; Liu, Xianli
2016-09-01
Laser assisted machining is an effective method to machine advanced materials with the added benefits of longer tool life and increased material removal rates. While extensive studies have investigated the machining properties for laser assisted milling(LAML), few attempts have been made to extend LAML to machining parts with complex geometric features. A methodology for continuous path machining for LAML is developed by integration of a rotary and movable table into an ordinary milling machine with a laser beam system. The machining strategy and processing path are investigated to determine alignment of the machining path with the laser spot. In order to keep the material removal temperatures above the softening temperature of silicon nitride, the transformation is coordinated and the temperature interpolated, establishing a transient thermal model. The temperatures of the laser center and cutting zone are also carefully controlled to achieve optimal machining results and avoid thermal damage. These experiments indicate that the system results in no surface damage as well as good surface roughness, validating the application of this machining strategy and thermal model in the development of a new LAML system for continuous path processing of silicon nitride. The proposed approach can be easily applied in LAML system to achieve continuous processing and improve efficiency in laser assisted machining.
High-throughput screening for combinatorial thin-film library of thermoelectric materials.
Watanabe, Masaki; Kita, Takuji; Fukumura, Tomoteru; Ohtomo, Akira; Ueno, Kazunori; Kawasaki, Masashi
2008-01-01
A high-throughput method has been developed to evaluate the Seebeck coefficient and electrical resistivity of combinatorial thin-film libraries of thermoelectric materials from room temperature to 673 K. Thin-film samples several millimeters in size were deposited on an integrated Al2O3 substrate with embedded lead wires and local heaters for measurement of the thermopower under a controlled temperature gradient. An infrared camera was used for real-time observation of the temperature difference Delta T between two electrical contacts on the sample to obtain the Seebeck coefficient. The Seebeck coefficient and electrical resistivity of constantan thin films were shown to be almost identical to standard data for bulk constantan. High-throughput screening was demonstrated for a thermoelectric Mg-Si-Ge combinatorial library.
NASA Technical Reports Server (NTRS)
Waterman, A. W.; Huxford, R. L.; Nelson, W. G.
1976-01-01
Molded high temperature plastic first and second stage rod seal elements were evaluated in seal assemblies to determine performance characteristics. These characteristics were compared with the performance of machined seal elements. The 6.35 cm second stage Chevron seal assembly was tested using molded Chevrons fabricated from five molding materials. Impulse screening tests conducted over a range of 311 K to 478 K revealed thermal setting deficiencies in the aromatic polyimide molding materials. Seal elements fabricated from aromatic copolyester materials structurally failed during impulse cycle calibration. Endurance testing of 3.85 million cycles at 450 K using MIL-H-83283 fluid showed poorer seal performance with the unfilled aromatic polyimide material than had been attained with seals machined from Vespel SP-21 material. The 6.35 cm first stage step-cut compression loaded seal ring fabricated from copolyester injection molding material failed structurally during impulse cycle calibration. Molding of complex shape rod seals was shown to be a potentially controllable technique, but additional molding material property testing is recommended.
Cayuela, Jean-Michel; Mauté, Carole; Fabre, Anne-Lise; Nibourel, Olivier; Dulucq, Stéphanie; Delabesse, Eric; Villarèse, Patrick; Hayette, Sandrine; Mozziconacci, Marie-Joelle; Macintyre, Elizabeth
2015-10-01
Performance of methods used for molecular diagnostics must be closely controlled by regular analysis of internal quality controls. However, conditioning, shipping and long lasting storage of nucleic acid controls remain problematic. Therefore, we evaluated the minicapsule-based innovative process developed by Imagene (Evry, France) for implementing DNA and RNA controls designed for clonality assessment of lymphoproliferations and BCR-ABL1 mRNA quantification, respectively. DNA samples were extracted from 12 cell lines selected for giving specific amplifications with most BIOMED-2 PCR tubes. RNA samples were extracted from 8 cell line mixtures expressing various BCR-ABL1 transcript levels. DNA and RNA were encapsulated by Imagene and shipped at room temperature to participating laboratories. Biologists were asked to report quality data of recovered nucleic acids as well as PCR results. Encapsulated nucleic acids samples were easily and efficiently recovered from minicapsules. The expected rearrangements at immunoglobulin, T-cell receptor and BCL2 loci were detected in DNA samples by all laboratories. Quality of RNA was consistent between laboratories and met the criteria requested for quantification of BCR-ABL1 transcripts. Expression levels measured by the 5 laboratories were within ±2 fold interval from the corresponding pre-encapsulation reference value. Moreover aging studies of encapsulated RNA simulating up to 100 years storage at room temperature show no bias in quantitative outcome. Therefore, Imagene minicapsules are suitable for storage and distribution at room temperature of genetic material designed for proficiency control of molecular diagnostic methods based on end point or real-time quantitative PCR. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Downing, Bryan D.; Pellerin, Brian A.; Bergamaschi, Brian A.; Saraceno, John Franco; Kraus, Tamara E.C.
2012-01-01
Field-deployable sensors designed to continuously measure the fluorescence of colored dissolved organic matter (FDOM) in situ are of growing interest. However, the ability to make FDOM measurements that are comparable across sites and over time requires a clear understanding of how instrument characteristics and environmental conditions affect the measurements. In particular, the effects of water temperature and light attenuation by both colored dissolved material and suspended particles may be significant in settings such as rivers and streams. Using natural standard reference materials, we characterized the performance of four commercially-available FDOM sensors under controlled laboratory conditions over ranges of temperature, dissolved organic matter (DOM) concentrations, and turbidity that spanned typical environmental ranges. We also examined field data from several major rivers to assess how often attenuation artifacts or temperature effects might be important. We found that raw (uncorrected) FDOM values were strongly affected by the light attenuation that results from dissolved substances and suspended particles as well as by water temperature. Observed effects of light attenuation and temperature agreed well with theory. Our results show that correction of measured FDOM values to account for these effects is necessary and feasible over much of the range of temperature, DOM concentration, and turbidity commonly encountered in surface waters. In most cases, collecting high-quality FDOM measurements that are comparable through time and between sites will require concurrent measurements of temperature and turbidity, and periodic discrete sample collection for laboratory measurement of DOM.
Sliding seal materials for adiabatic engines
NASA Technical Reports Server (NTRS)
Lankford, J.
1985-01-01
The sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, loading conditions that are representative of the adiabatic engine environment. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Microhardness tests were performed on the candidate materials at elevated temperatures, and in atmospheres relevant to the piston seal application, and optical and electron microscopy were used to elucidate the micromechanisms of wear following wear testing. X-ray spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Electrical effects in the friction and wear processes were explored in order to evaluate the potential usefulness of such effects in modifying the friction and wear rates in service. However, this factor was found to be of negligible significance in controlling friction and wear.
Advanced Strain-Isolation-Pad Material with Bonded Fibrous Construction
NASA Technical Reports Server (NTRS)
Seibold, R. W.; Saito, C. A.; Buller, B. W.
1982-01-01
The feasibility of utilizing air lay and liquid lay felt deposition techniques to fabricate strain isolation pad (SIP) materials for the Space Shuttle Orbiter was demonstrated. These materials were developed as candidate replacements for the present needled felt SIP used between the ceramic tiles and the aluminum skin on the undersurface of the Orbiter. The SIP materials that were developed consisted of high temperature aramid fibers deposited by controlled fluid (air or liquid) carriers to form low density unbonded felts. The deposited felts were then bonded at the fiber intersections with a small amount of high temperature polyimide resin. This type of bonded felt construction can potentially eliminate two of the problems associated with the present SIP, viz., transmittal of localized stresses into the tiles and load history dependent mechanical response. However, further work is needed to achieve adequate through thickness tensile strength in the bonded felts.
Thermal expansion behavior of LDEF metal matrix composites
NASA Technical Reports Server (NTRS)
Le, Tuyen D.; Steckel, Gary L.
1993-01-01
The thermal expansion behavior of Long Duration Exposure Facility (LDEF) metal matrix composite materials was studied by (1) analyzing the flight data that was recorded on orbit to determine the effects of orbital time and heating/cooling rates on the performance of the composite materials, and (2) characterizing and comparing the thermal expansion behavior of post-flight LDEF and lab-control samples. The flight data revealed that structures in space are subjected to nonuniform temperature distributions, and thermal conductivity of a material is an important factor in establishing a uniform temperature distribution and avoiding thermal distortion. The flight and laboratory data showed that both Gr/Al and Gr/Mg composites were stabilized after prolonged thermal cycling on orbit. However, Gr/Al composites showed more stable thermal expansion behavior than Gr/Mg composites and offer advantages for space structures particularly where very tight thermal stability requirements in addition to high material performance must be met.
Foundations of low-temperature plasma enhanced materials synthesis and etching
NASA Astrophysics Data System (ADS)
Oehrlein, Gottlieb S.; Hamaguchi, Satoshi
2018-02-01
Low temperature plasma (LTP)-based synthesis of advanced materials has played a transformational role in multiple industries, including the semiconductor industry, liquid crystal displays, coatings and renewable energy. Similarly, the plasma-based transfer of lithographically defined resist patterns into other materials, e.g. silicon, SiO2, Si3N4 and other electronic materials, has led to the production of nanometer scale devices that are the basis of the information technology, microsystems, and many other technologies based on patterned films or substrates. In this article we review the scientific foundations of both LTP-based materials synthesis at low substrate temperature and LTP-based isotropic and directional etching used to transfer lithographically produced resist patterns into underlying materials. We cover the fundamental principles that are the basis of successful application of the LTP techniques to technological uses and provide an understanding of technological factors that may control or limit material synthesis or surface processing with the use of LTP. We precede these sections with a general discussion of plasma surface interactions, the LTP-generated particle fluxes including electrons, ions, radicals, excited neutrals and photons that simultaneously contact and modify surfaces. The surfaces can be in the line of sight of the discharge or hidden from direct interaction for structured substrates. All parts of the article are extensively referenced, which is intended to help the reader study the topics discussed here in more detail.
Manufacturing Precise, Lightweight Paraboloidal Mirrors
NASA Technical Reports Server (NTRS)
Hermann, Frederick Thomas
2006-01-01
A process for fabricating a precise, diffraction- limited, ultra-lightweight, composite- material (matrix/fiber) paraboloidal telescope mirror has been devised. Unlike the traditional process of fabrication of heavier glass-based mirrors, this process involves a minimum of manual steps and subjective judgment. Instead, this process involves objectively controllable, repeatable steps; hence, this process is better suited for mass production. Other processes that have been investigated for fabrication of precise composite-material lightweight mirrors have resulted in print-through of fiber patterns onto reflecting surfaces, and have not provided adequate structural support for maintenance of stable, diffraction-limited surface figures. In contrast, this process does not result in print-through of the fiber pattern onto the reflecting surface and does provide a lightweight, rigid structure capable of maintaining a diffraction-limited surface figure in the face of changing temperature, humidity, and air pressure. The process consists mainly of the following steps: 1. A precise glass mandrel is fabricated by conventional optical grinding and polishing. 2. The mandrel is coated with a release agent and covered with layers of a carbon- fiber composite material. 3. The outer surface of the outer layer of the carbon-fiber composite material is coated with a surfactant chosen to provide for the proper flow of an epoxy resin to be applied subsequently. 4. The mandrel as thus covered is mounted on a temperature-controlled spin table. 5. The table is heated to a suitable temperature and spun at a suitable speed as the epoxy resin is poured onto the coated carbon-fiber composite material. 6. The surface figure of the optic is monitored and adjusted by use of traditional Ronchi, Focault, and interferometric optical measurement techniques while the speed of rotation and the temperature are adjusted to obtain the desired figure. The proper selection of surfactant, speed or rotation, viscosity of the epoxy, and temperature make it possible to obtain the desired diffraction-limited, smooth (1/50th wave) parabolic outer surface, suitable for reflective coating. 7. A reflective coat is applied by use of conventional coating techniques. 8. Once the final figure is set, a lightweight structural foam is applied to the rear of the optic to ensure stability of the figure.
High Temperature Hot Corrosion Control by Fuel Additives (Contaminated Fuels).
1987-06-01
ABSTRACT The potential of fuel additives to minimize corrosion of blade material in gas turbine engines has been analyzed by the following series of steps...INTRODUCTION High chrome steels and superalloys, which are used extensively for high temperature boilers and gas turbine (GT) engines and related...combustion gases onto turbine blades and other hot components. Among the factors expected to affect the corrosion resis
Thermoelectric Properties of Lanthanum Sulfide
NASA Technical Reports Server (NTRS)
Wood, C.; Lockwood, R.; Parker, J. B.; Zoltan, A.; Zoltan, L. D.; Danielson, L.; Raag, V.
1987-01-01
Report describes measurement of Seebeck coefficient, electrical resistivity, thermal conductivity, and Hall effect in gamma-phase lanthanum sulfide with composition of La3-x S4. Results of study, part of search for high-temperature thermoelectric energy-conversion materials, indicate this sulfide behaves like extrinsic semiconductor over temperature range of 300 to 1,400 K, with degenerate carrier concentration controlled by stoichiometric ratio of La to S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kropka, Jamie Michael; Stavig, Mark E.; Jaramillo, Rex
When thermosetting polymers are used to bond or encapsulate electrical, mechanical or optical assemblies, residual stress, which often affects the performance and/or reliability of these devices, develops within the structure. The Thin-Disk-on-Cylinder structural response test is demonstrated as a powerful tool to design epoxy encapsulant cure schedules to reduce residual stress, even when all the details of the material evolution during cure are not explicitly known. The test's ability to (1) distinguish between cohesive and adhesive failure modes and (2) demonstrate methodologies to eliminate failure and reduce residual stress, make choices of cure schedules that optimize stress in the encapsulantmore » unambiguous. For the 828/DEA/GMB material in the Thin-Disk-on-Cylinder geometry, the stress associated with cure is significant and outweighs that associated with cool down from the final cure temperature to room temperature (for measured lid strain, Scure I > I I e+h erma * II) * The difference between the final cure temperature and 1 1 -- the temperature at which the material gels, Tf-T ge i, was demonstrated to be a primary factor in determining the residual stress associated with cure. Increasing T f -T ge i leads to a reduction in cure stress that is described as being associated with balancing some of the 828/DEA/GMB cure shrinkage with thermal expansion. The ability to tune residual stress associated with cure by controlling T f -T ge i would be anticipated to translate to other thermosetting encapsulation materials, but the times and temperatures appropriate for a given material may vary widely.« less
Dynamic optimization and adaptive controller design
NASA Astrophysics Data System (ADS)
Inamdar, S. R.
2010-10-01
In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.
The effects of intrinsic properties and defect structures on the indentation size effect in metals
NASA Astrophysics Data System (ADS)
Maughan, Michael R.; Leonard, Ariel A.; Stauffer, Douglas D.; Bahr, David F.
2017-08-01
The indentation size effect has been linked to the generation of geometrically necessary dislocations that may be impacted by intrinsic materials properties, such as stacking fault energy, and extrinsic defects, such as statistically stored dislocations. Nanoindentation was carried out at room temperature and elevated temperatures on four different metals in a variety of microstructural conditions. A size effect parameter was determined for each material set combining the effects of temperature and existing dislocation structure. Extrinsic defects, particularly dislocation density, dominate the size effect parameter over those due to intrinsic properties such as stacking fault energy. A multi-mechanism description using a series of mechanisms, rather than a single mechanism, is presented as a phenomenological explanation for the observed size effect in these materials. In this description, the size effect begins with a volume scale dominated by sparse sources, next is controlled by the ability of dislocations to cross-slip and multiply, and then finally at larger length scales work hardening and recovery dominate the effect.
Combining pressure and temperature control in dynamics on energy landscapes
NASA Astrophysics Data System (ADS)
Hoffmann, Karl Heinz; Christian Schön, J.
2017-05-01
Complex systems from science, technology or mathematics usually appear to be very different in their specific dynamical evolution. However, the concept of an energy landscape with its basins corresponding to locally ergodic regions separated by energy barriers provides a unifying approach to the description of complex systems dynamics. In such systems one is often confronted with the task to control the dynamics such that a certain basin is reached with the highest possible probability. Typically one aims for the global minimum, e.g. when dealing with global optimization problems, but frequently other local minima such as the metastable compounds in materials science are of primary interest. Here we show how this task can be solved by applying control theory using magnesium fluoride as an example system, where different modifications of MgF2 are considered as targets. In particular, we generalize previous work restricted to temperature controls only and present controls which simultaneously adjust temperature and pressure in an optimal fashion.
Maestro, Armando; Jones, Daniel; Sánchez de Rojas Candela, Carmen; Guzman, Eduardo; Duits, Michel H G; Cicuta, Pietro
2018-06-05
By combining controlled experiments on single interfaces with measurements on solitary bubbles and liquid foams, we show that poly( N-isopropylacrylamide) (PNIPAM) microgels assembled at air/water interfaces exhibit a solid to liquid transition changing the temperature, and that this is associated with the change in the interfacial microstructure of the PNIPAM particles around their volume phase transition temperature. We show that the solid behaves as a soft 2D colloidal glass, and that the existence of this solid/liquid transition offers an ideal platform to tune the permeability of air bubbles covered by PNIPAM and to control macroscopic foam properties such as drainage, stability, and foamability. PNIPAM particles on fluid interfaces allow new tunable materials, for example foam structures with variable mechanical properties upon small temperature changes.
System for maintaining materials at freezer temperatures for shipping
Schabron, John F [Laramie, WY; Sorini-Wong, Susan S [Laramie, WY
2007-08-28
At least one embodiment of the inventive technology relates to a frozen environmental sample temperature control system that comprises a frozen formulation having water in an amount from substantially 87% to 78% by weight of the formulation, and salt in an amount from substantially 13% to 22% by weight of the formulation, the system further including at least one container containing the frozen formulation; and a cooler having insulating material disposed between an outer wall and an inner surface that defines an inner chamber into which the at least one container and the at least one frozen environmental sample may be placed for storage and/or transport. Various embodiments may incorporate specific types of insulating material and/or adaptations to an inner surface of the cooler to enhance the insulation effected thereby.
Magnetic stirling cycles: A new application for magnetic materials
NASA Technical Reports Server (NTRS)
Brown, G. V.
1977-01-01
The elements of the cycle are summarized. The basic advantages include high entropy density in the magnetic material, completely reversible processes, convenient control of the entropy by the applied field, the feature that heat transfer is possible during all processes, and the ability of the ideal cycle to attain Carnot efficiency. The mean field theory is used to predict the entropy of a ferromagnet in an applied field and also the isothermal entropy change and isentropic temperature change caused by applying a field. The results for isentropic temperature change are compared with experimental data on Gd. Coarse mixtures of ferromagnetic materials with different Curie points are proposed to modify the path of the cycle in the T-S diagram in order to improve the efficiency or to increase the specific power.
Shock-induced synthesis of high temperature superconducting materials
Ginley, D.S.; Graham, R.A.; Morosin, B.; Venturini, E.L.
1987-06-18
It has now been determined that the unique features of the high pressure shock method, especially the shock-induced chemical synthesis technique, are fully applicable to high temperature superconducting materials. Extraordinarily high yields are achievable in accordance with this invention, e.g., generally in the range from about 20% to about 99%, often in the range from about 50% to about 90%, lower and higher yields, of course, also being possible. The method of this invention involves the application of a controlled high pressure shock compression pulse which can be produced in any conventional manner, e.g., by detonation of a high explosive material, the impact of a high speed projectile or the effect of intense pulsed radiation sources such as lasers or electron beams. Examples and a discussion are presented.
Reactor for producing large particles of materials from gases
NASA Technical Reports Server (NTRS)
Flagan, Richard C. (Inventor); Alam, Mohammed K. (Inventor)
1987-01-01
A method and apparatus is disclosed for producing large particles of material from gas, or gases, containing the material (e.g., silicon from silane) in a free-space reactor comprised of a tube (20) and controlled furnace (25). A hot gas is introduced in the center of the reactant gas through a nozzle (23) to heat a quantity of the reactant gas, or gases, to produce a controlled concentration of seed particles (24) which are entrained in the flow of reactant gas, or gases. The temperature profile (FIG. 4) of the furnace is controlled for such a slow, controlled rate of reaction that virtually all of the material released condenses on seed particles and new particles are not nucleated in the furnace. A separate reactor comprised of a tube (33) and furnace (30) may be used to form a seed aerosol which, after passing through a cooling section (34) is introduced in the main reactor tube (34) which includes a mixer (36) to mix the seed aerosol in a controlled concentration with the reactant gas or gases.
Materials technology for an advanced space power nuclear reactor concept: Program summary
NASA Technical Reports Server (NTRS)
Gluyas, R. E.; Watson, G. K.
1975-01-01
The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).
Facilities for studing radiation damage in nonmetals during irradiation
NASA Astrophysics Data System (ADS)
Levy, P. W.
1984-08-01
Two facilities were developed for making optical absorption, luminescence and other measurements on a single sample before, during and after irradiation. One facility uses Co-60 gamma rays and the other 0.5 to 3 MeV electrons from an accelerator. Optical relays function as spectrophotometers, luminescence detectors, etc. All radiation sensitive components are outside of walk-in irradiation chambers; all measurement control and data recording is computerized. Irradiations are made at controlled temperatures between 5 K and 900 C. The materials studied include glasses, quartz, alkali halides (especially natural rock salt), organic crystals, etc. As determined from color center measurements the damage formation rate in all materials studied at 25 C or above is strongly temperature dependent. The defect concentration during irradiation is usually much greater than that measured after irradiation. The fraction of defects annealing after irradiation and the annealing rate usually increases as the irradiation temperature increases. The completed studies demonstrate that, in most cases, the extent of maximum damage and the damage formation and annealing kinetics can be determined only by making measurements during irradiation.
Detection and drug delivery from superhydrophobic materials
NASA Astrophysics Data System (ADS)
Falde, Eric John
The wetting of a rough material is controlled by surface chemistry and morphology, the liquid phase, solutes, and surfactants that affect the surface tension with the gas phase, and environmental conditions such as temperature and pressure. Materials with high (>150°) apparent contact angles are known as superhydrophobic and are very resistant to wetting. However, in complex biological mixtures eventually protein adsorbs, fouling the surface and facilitating wetting on time scales from seconds to months. The work here uses the partially-wetted (Cassie-Baxter) to fully-wetted (Wenzel) state transition to control drug delivery and to perform surfactant detection via surface tension using hydrophobic and superhydrophobic materials. First there is an overview of the physics of the non-wetting state and the transition to wetting. Then there is a review of how wetting can be controlled by outside stimuli and applications of these materials. Next there is work presented on controlling drug release using superhydrophobic materials with controlled wetting rates, with both in vitro and in vivo results. Then there is work on developing a sensor based on this wetting state transition and its applications toward detecting solute levels in biological fluids for point-of-care diagnosis. Finally, there is work presented on using these sensors for detecting the alcohol content in wine and spirits.
Method and apparatus for thermal management of vehicle exhaust systems
Benson, David K.; Potter, Thomas F.
1995-01-01
A catalytic converter is surrounded by variable conductance insulation for maintaining the operating temperature of the catalytic converter at an optimum level, for inhibiting heat loss when raising catalytic converter temperature to light-off temperature, for storing excess heat to maintain or accelerate reaching light-off temperature, and for conducting excess heat away from the catalytic converter after reaching light-off temperature. The variable conductance insulation includes vacuum gas control and metal-to-metal thermal shunt mechanisms. Radial and axial shielding inhibits radiation and convection heat loss. Thermal storage media includes phase change material, and heat exchanger chambers and fluids carry heat to and from the catalytic converter.
Methods for producing monodispersed particles of barium titanate
Hu, Zhong-Cheng
2001-01-01
The present invention is a low-temperature controlled method for producing high-quality, ultrafine monodispersed nanocrystalline microsphere powders of barium titanate and other pure or composite oxide materials having particles ranging from nanosized to micronsized particles. The method of the subject invention comprises a two-stage process. The first stage produces high quality monodispersed hydrous titania microsphere particles prepared by homogeneous precipitation via dielectric tuning in alcohol-water mixed solutions of inorganic salts. Titanium tetrachloride is used as an inorganic salt precursor material. The second stage converts the pure hydrous titania microsphere particles into crystalline barium titanate microsphere powders via low-temperature, hydrothermal reactions.
Lind, Cora; Gates, Stacy D.; Pedoussaut, Nathalie M.; Baiz, Tamam I.
2010-01-01
Low temperature methods have been applied to the synthesis of many advanced materials. Non-hydrolytic sol-gel (NHSG) processes offer an elegant route to stable and metastable phases at low temperatures. Excellent atomic level homogeneity gives access to polymorphs that are difficult or impossible to obtain by other methods. The NHSG approach is most commonly applied to the preparation of metal oxides, but can be easily extended to metal sulfides. Exploration of experimental variables allows control over product stoichiometry and crystal structure. This paper reviews the application of NHSG chemistry to the synthesis of negative thermal expansion oxides and selected metal sulfides.