NASA Technical Reports Server (NTRS)
Schey, Oscar W; Pinkel, Benjamin; Ellerbrock, Herman H , Jr
1939-01-01
Factors are obtained from semiempirical equations for correcting engine-cylinder temperatures for variation in important engine and cooling conditions. The variation of engine temperatures with atmospheric temperature is treated in detail, and correction factors are obtained for various flight and test conditions, such as climb at constant indicated air speed, level flight, ground running, take-off, constant speed of cooling air, and constant mass flow of cooling air. Seven conventional air-cooled engine cylinders enclosed in jackets and cooled by a blower were tested to determine the effect of cooling-air temperature and carburetor-air temperature on cylinder temperatures. The cooling air temperature was varied from approximately 80 degrees F. to 230 degrees F. and the carburetor-air temperature from approximately 40 degrees F. to 160 degrees F. Tests were made over a large range of engine speeds, brake mean effective pressures, and pressure drops across the cylinder. The correction factors obtained experimentally are compared with those obtained from the semiempirical equations and a fair agreement is noted.
Temperature and pressure effects on capacitance probe cryogenic liquid level measurement accuracy
NASA Technical Reports Server (NTRS)
Edwards, Lawrence G.; Haberbusch, Mark
1993-01-01
The inaccuracies of liquid nitrogen and liquid hydrogen level measurements by use of a coaxial capacitance probe were investigated as a function of fluid temperatures and pressures. Significant liquid level measurement errors were found to occur due to the changes in the fluids dielectric constants which develop over the operating temperature and pressure ranges of the cryogenic storage tanks. The level measurement inaccuracies can be reduced by using fluid dielectric correction factors based on measured fluid temperatures and pressures. The errors in the corrected liquid level measurements were estimated based on the reported calibration errors of the temperature and pressure measurement systems. Experimental liquid nitrogen (LN2) and liquid hydrogen (LH2) level measurements were obtained using the calibrated capacitance probe equations and also by the dielectric constant correction factor method. The liquid levels obtained by the capacitance probe for the two methods were compared with the liquid level estimated from the fluid temperature profiles. Results show that the dielectric constant corrected liquid levels agreed within 0.5 percent of the temperature profile estimated liquid level. The uncorrected dielectric constant capacitance liquid level measurements deviated from the temperature profile level by more than 5 percent. This paper identifies the magnitude of liquid level measurement error that can occur for LN2 and LH2 fluids due to temperature and pressure effects on the dielectric constants over the tank storage conditions from 5 to 40 psia. A method of reducing the level measurement errors by using dielectric constant correction factors based on fluid temperature and pressure measurements is derived. The improved accuracy by use of the correction factors is experimentally verified by comparing liquid levels derived from fluid temperature profiles.
Development of a Pressure Sensitive Paint System with Correction for Temperature Variation
NASA Technical Reports Server (NTRS)
Simmons, Kantis A.
1995-01-01
Pressure Sensitive Paint (PSP) is known to provide a global image of pressure over a model surface. However, improvements in its accuracy and reliability are needed. Several factors contribute to the inaccuracy of PSP. One major factor is that luminescence is temperature dependent. To correct the luminescence of the pressure sensing component for changes in temperature, a temperature sensitive luminophore incorporated in the paint allows the user to measure both pressure and temperature simultaneously on the surface of a model. Magnesium Octaethylporphine (MgOEP) was used as a temperature sensing luminophore, with the pressure sensing luminophore, Platinum Octaethylporphine (PtOEP), to correct for temperature variations in model surface pressure measurements.
Daraktchieva, Z
2017-06-01
Indoor radon concentrations generally vary with season. Radon gas enters buildings from beneath due to a small air pressure difference between the inside of a house and outdoors. This underpressure which draws soil gas including radon into the house depends on the difference between the indoor and outdoor temperatures. The variation in a typical house in UK showed that the mean indoor radon concentration reaches a maximum in January and a minimum in July. Sine functions were used to model the indoor radon data and monthly average outdoor temperatures, covering the period between 2005 and 2014. The analysis showed a strong negative correlation between the modelled indoor radon data and outdoor temperature. This correlation was used to calculate new correction factors that could be used for estimation of annual radon concentration in UK homes. The comparison between the results obtained with the new correction factors and the previously published correction factors showed that the new correction factors perform consistently better on the selected data sets. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Two-Dimensional Thermal Boundary Layer Corrections for Convective Heat Flux Gauges
NASA Technical Reports Server (NTRS)
Kandula, Max; Haddad, George
2007-01-01
This work presents a CFD (Computational Fluid Dynamics) study of two-dimensional thermal boundary layer correction factors for convective heat flux gauges mounted in flat plate subjected to a surface temperature discontinuity with variable properties taken into account. A two-equation k - omega turbulence model is considered. Results are obtained for a wide range of Mach numbers (1 to 5), gauge radius ratio, and wall temperature discontinuity. Comparisons are made for correction factors with constant properties and variable properties. It is shown that the variable-property effects on the heat flux correction factors become significant
NASA Technical Reports Server (NTRS)
Kandula, M.; Haddad, G. F.; Chen, R.-H.
2006-01-01
Three-dimensional Navier-Stokes computational fluid dynamics (CFD) analysis has been performed in an effort to determine thermal boundary layer correction factors for circular convective heat flux gauges (such as Schmidt-Boelter and plug type)mounted flush in a flat plate subjected to a stepwise surface temperature discontinuity. Turbulent flow solutions with temperature-dependent properties are obtained for a free stream Reynolds number of 1E6, and freestream Mach numbers of 2 and 4. The effect of gauge diameter and the plate surface temperature have been investigated. The 3-D CFD results for the heat flux correction factors are compared to quasi-21) results deduced from constant property integral solutions and also 2-D CFD analysis with both constant and variable properties. The role of three-dimensionality and of property variations on the heat flux correction factors has been demonstrated.
Using Mason number to predict MR damper performance from limited test data
NASA Astrophysics Data System (ADS)
Becnel, Andrew C.; Wereley, Norman M.
2017-05-01
The Mason number can be used to produce a single master curve which relates MR fluid stress versus strain rate behavior across a wide range of shear rates, temperatures, and applied magnetic fields. As applications of MR fluid energy absorbers expand to a variety of industries and operating environments, Mason number analysis offers a path to designing devices with desired performance from a minimal set of preliminary test data. Temperature strongly affects the off-state viscosity of the fluid, as the passive viscous force drops considerably at higher temperatures. Yield stress is not similarly affected, and stays relatively constant with changing temperature. In this study, a small model-scale MR fluid rotary energy absorber is used to measure the temperature correction factor of a commercially-available MR fluid from LORD Corporation. This temperature correction factor is identified from shear stress vs. shear rate data collected at four different temperatures. Measurements of the MR fluid yield stress are also obtained and related to a standard empirical formula. From these two MR fluid properties - temperature-dependent viscosity and yield stress - the temperature-corrected Mason number is shown to predict the force vs. velocity performance of a full-scale rotary MR fluid energy absorber. This analysis technique expands the design space of MR devices to high shear rates and allows for comprehensive predictions of overall performance across a wide range of operating conditions from knowledge only of the yield stress vs. applied magnetic field and a temperature-dependent viscosity correction factor.
Evaluation of thermal network correction program using test temperature data
NASA Technical Reports Server (NTRS)
Ishimoto, T.; Fink, L. C.
1972-01-01
An evaluation process to determine the accuracy of a computer program for thermal network correction is discussed. The evaluation is required since factors such as inaccuracies of temperatures, insufficient number of temperature points over a specified time period, lack of one-to-one correlation between temperature sensor and nodal locations, and incomplete temperature measurements are not present in the computer-generated information. The mathematical models used in the evaluation are those that describe a physical system composed of both a conventional and a heat pipe platform. A description of the models used, the results of the evaluation of the thermal network correction, and input instructions for the thermal network correction program are presented.
S-NPP VIIRS thermal emissive band gain correction during the blackbody warm-up-cool-down cycle
NASA Astrophysics Data System (ADS)
Choi, Taeyoung J.; Cao, Changyong; Weng, Fuzhong
2016-09-01
The Suomi National Polar orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) has onboard calibrators called blackbody (BB) and Space View (SV) for Thermal Emissive Band (TEB) radiometric calibration. In normal operation, the BB temperature is set to 292.5 K providing one radiance level. From the NOAA's Integrated Calibration and Validation System (ICVS) monitoring system, the TEB calibration factors (F-factors) have been trended and show very stable responses, however the BB Warm-Up-Cool-Down (WUCD) cycles provide detectors' gain and temperature dependent sensitivity measurements. Since the launch of S-NPP, the NOAA Sea Surface Temperature (SST) group noticed unexpected global SST anomalies during the WUCD cycles. In this study, the TEB Ffactors are calculated during the WUCD cycle on June 17th 2015. The TEB F-factors are analyzed by identifying the VIIRS On-Board Calibrator Intermediate Product (OBCIP) files to be Warm-Up or Cool-Down granules. To correct the SST anomaly, an F-factor correction parameter is calculated by the modified C1 (or b1) values which are derived from the linear portion of C1 coefficient during the WUCD. The F-factor correction factors are applied back to the original VIIRS SST bands showing significantly reducing the F-factor changes. Obvious improvements are observed in M12, M14 and M16, but corrections effects are hardly seen in M16. Further investigation is needed to find out the source of the F-factor oscillations during the WUCD.
Size Distribution of Sea-Salt Emissions as a Function of Relative Humidity
NASA Astrophysics Data System (ADS)
Zhang, K. M.; Knipping, E. M.; Wexler, A. S.; Bhave, P. V.; Tonnesen, G. S.
2004-12-01
Here we introduced a simple method for correcting sea-salt particle-size distributions as a function of relative humidity. Distinct from previous approaches, our derivation uses particle size at formation as the reference state rather than dry particle size. The correction factors, corresponding to the size at formation and the size at 80% RH, are given as polynomial functions of local relative humidity which are straightforward to implement. Without major compromises, the correction factors are thermodynamically accurate and can be applied between 0.45 and 0.99 RH. Since the thermodynamic properties of sea-salt electrolytes are weakly dependent on ambient temperature, these factors can be regarded as temperature independent. The correction factor w.r.t. to the size at 80% RH is in excellent agreement with those from Fitzgerald's and Gerber's growth equations; while the correction factor w.r.t. the size at formation has the advantage of being independent of dry size and relative humidity at formation. The resultant sea-salt emissions can be used directly in atmospheric model simulations at urban, regional and global scales without further correction. Application of this method to several common open-ocean and surf-zone sea-salt-particle source functions is described.
Thermal and Nonthermal Electron-ion Bremsstrahlung Spectrum from High-Temperature Plasmas
NASA Technical Reports Server (NTRS)
Jung, Young-Dae
1994-01-01
Electron-ion bremsstrahlung radiation from high-temperature plasmas is investigated. The first- and second-order Coulomb corrections in the nonrelativistic bremsstrahlung radiation power are obtained by the Elwert-Sommerfeld factor. In this paper, two cases of the electron distributions, the thermal and nonthermal power-law distributions, are considered. The inclusion of Coulomb corrections is necessary in deducing correctly the electron distribution function from radiation data. These results provide the correct information of electron distributions in high-temperature plasmas, such as in inertial confinement fusion plasmas and in the astrophysical hot thermal and nonthermal x-ray sources.
14 CFR 29.1043 - Cooling tests.
Code of Federal Regulations, 2012 CFR
2012-01-01
... be of the minimum grade approved for the engines, and the mixture settings must be those used in... factor (except cylinder barrels). Unless a more rational correction applies, temperatures of engine..., must be corrected by adding to them the difference between the maximum ambient atmospheric temperature...
14 CFR 29.1043 - Cooling tests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... be of the minimum grade approved for the engines, and the mixture settings must be those used in... factor (except cylinder barrels). Unless a more rational correction applies, temperatures of engine..., must be corrected by adding to them the difference between the maximum ambient atmospheric temperature...
NASA Astrophysics Data System (ADS)
Shah, N. S.; Vankar, H. P.; Rana, V. A.
2018-05-01
Static permittivity (ɛ0) and permittivity at optical frequency (ɛ∞) of the Benzaldehyde (BZ), Methanol (MeOH) and their binary mixtures were measured in the temperature range from 293.15 K to 323.15 K (in the interval of 10 K). From the ɛ0 and ɛ∞ other parameters such as effective Kirkwood correlation factor (geff), corrective Kirkwood correction factor (gf), Bruggman factor (fB), excess permittivity (ɛ0E ) and permittivity at optical frequency (ɛ∞E ) were evaluated.
Automated general temperature correction method for dielectric soil moisture sensors
NASA Astrophysics Data System (ADS)
Kapilaratne, R. G. C. Jeewantinie; Lu, Minjiao
2017-08-01
An effective temperature correction method for dielectric sensors is important to ensure the accuracy of soil water content (SWC) measurements of local to regional-scale soil moisture monitoring networks. These networks are extensively using highly temperature sensitive dielectric sensors due to their low cost, ease of use and less power consumption. Yet there is no general temperature correction method for dielectric sensors, instead sensor or site dependent correction algorithms are employed. Such methods become ineffective at soil moisture monitoring networks with different sensor setups and those that cover diverse climatic conditions and soil types. This study attempted to develop a general temperature correction method for dielectric sensors which can be commonly used regardless of the differences in sensor type, climatic conditions and soil type without rainfall data. In this work an automated general temperature correction method was developed by adopting previously developed temperature correction algorithms using time domain reflectometry (TDR) measurements to ThetaProbe ML2X, Stevens Hydra probe II and Decagon Devices EC-TM sensor measurements. The rainy day effects removal procedure from SWC data was automated by incorporating a statistical inference technique with temperature correction algorithms. The temperature correction method was evaluated using 34 stations from the International Soil Moisture Monitoring Network and another nine stations from a local soil moisture monitoring network in Mongolia. Soil moisture monitoring networks used in this study cover four major climates and six major soil types. Results indicated that the automated temperature correction algorithms developed in this study can eliminate temperature effects from dielectric sensor measurements successfully even without on-site rainfall data. Furthermore, it has been found that actual daily average of SWC has been changed due to temperature effects of dielectric sensors with a significant error factor comparable to ±1% manufacturer's accuracy.
NASA Astrophysics Data System (ADS)
Su, Yunquan; Yao, Xuefeng; Wang, Shen; Ma, Yinji
2017-03-01
An effective correction model is proposed to eliminate the refraction error effect caused by an optical window of a furnace in digital image correlation (DIC) deformation measurement under high-temperature environment. First, a theoretical correction model with the corresponding error correction factor is established to eliminate the refraction error induced by double-deck optical glass in DIC deformation measurement. Second, a high-temperature DIC experiment using a chromium-nickel austenite stainless steel specimen is performed to verify the effectiveness of the correction model by the correlation calculation results under two different conditions (with and without the optical glass). Finally, both the full-field and the divisional displacement results with refraction influence are corrected by the theoretical model and then compared to the displacement results extracted from the images without refraction influence. The experimental results demonstrate that the proposed theoretical correction model can effectively improve the measurement accuracy of DIC method by decreasing the refraction errors from measured full-field displacements under high-temperature environment.
Temperature dependent structural and vibrational properties of liquid indium
NASA Astrophysics Data System (ADS)
Patel, A. B.; Bhatt, N. K.
2018-05-01
The influence of the temperature effect on both the structure factor and the phonon dispersion relation of liquid indium have been investigated by means of pseudopotential theory. The Percus-Yevick Hard Sphere reference system is applied to describe the structural calculation. The effective electron-ion interaction is explained by using modified empty core potential due to Hasegawa et al. along with a local field correction function due to Ichimaru-Utsumi (IU). The temperature dependence of pair potential needed at higher temperatures was achieved by multiplying the damping factor exp(- π/kBT2k F r ) in the pair potential. Very close agreement of static structure factor, particularly, at elevated temperatures confirms the validity of the local potential. A positive dispersion is found in low-q region and the correct trend of phonon dispersion branches like the experimental; shows all broad features of collective excitations in liquid metals.
40 CFR 1066.701 - Applicability and general provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Cold Temperature Test Procedures § 1066.701 Applicability and...) temperature range. (b) Do not apply the humidity correction factor in § 1066.615(a) for cold temperature...
Air-braked cycle ergometers: validity of the correction factor for barometric pressure.
Finn, J P; Maxwell, B F; Withers, R T
2000-10-01
Barometric pressure exerts by far the greatest influence of the three environmental factors (barometric pressure, temperature and humidity) on power outputs from air-braked ergometers. The barometric pressure correction factor for power outputs from air-braked ergometers is in widespread use but apparently has never been empirically validated. Our experiment validated this correction factor by calibrating two air-braked cycle ergometers in a hypobaric chamber using a dynamic calibration rig. The results showed that if the power output correction for changes in air resistance at barometric pressures corresponding to altitudes of 38, 600, 1,200 and 1,800 m above mean sea level were applied, then the coefficients of variation were 0.8-1.9% over the range of 160-1,597 W. The overall mean error was 3.0 % but this included up to 0.73 % for the propagated error that was associated with errors in the measurement of: a) temperature b) relative humidity c) barometric pressure d) force, distance and angular velocity by the dynamic calibration rig. The overall mean error therefore approximated the +/- 2.0% of true load that was specified by the Laboratory Standards Assistance Scheme of the Australian Sports Commission. The validity of the correction factor for barometric pressure on power output was therefore demonstrated over the altitude range of 38-1,800 m.
The impact of water temperature on the measurement of absolute dose
NASA Astrophysics Data System (ADS)
Islam, Naveed Mehdi
To standardize reference dosimetry in radiation therapy, Task Group 51 (TG 51) of American Association of Physicist's in Medicine (AAPM) recommends that dose calibration measurements be made in a water tank at a depth of 10 cm and at a reference geometry. Methodologies are provided for calculating various correction factors to be applied in calculating the absolute dose. However the protocol does not specify the water temperature to be used. In practice, the temperature of water during dosimetry may vary considerably between independent sessions and different centers. In this work the effect of water temperature on absolute dosimetry has been investigated. Density of water varies with temperature, which in turn may impact the beam attenuation and scatter properties. Furthermore, due to thermal expansion or contraction air volume inside the chamber may change. All of these effects can result in a change in the measurement. Dosimetric measurements were made using a Farmer type ion chamber on a Varian Linear Accelerator for 6 MV and 23 MV photon energies for temperatures ranging from 10 to 40 °C. A thermal insulation was designed for the water tank in order to maintain relatively stable temperature over the duration of the experiment. Dose measured at higher temperatures were found to be consistently higher by a very small magnitude. Although the differences in dose were less than the uncertainty in each measurement, a linear regression of the data suggests that the trend is statistically significant with p-values of 0.002 and 0.013 for 6 and 23 MV beams respectively. For a 10 degree difference in water phantom temperatures, which is a realistic deviation across clinics, the final calculated reference dose can differ by 0.24% or more. To address this effect, first a reference temperature (e.g.22 °C) can be set as the standard; subsequently a correction factor can be implemented for deviations from this reference. Such a correction factor is expected to be of similar magnitude as existing TG 51 recommended correction factors.
Jay, Ollie; Reardon, Francis D; Webb, Paul; Ducharme, Michel B; Ramsay, Tim; Nettlefold, Lindsay; Kenny, Glen P
2007-08-01
Changes in mean body temperature (DeltaT(b)) estimated by the traditional two-compartment model of "core" and "shell" temperatures and an adjusted two-compartment model incorporating a correction factor were compared with values derived by whole body calorimetry. Sixty participants (31 men, 29 women) cycled at 40% of peak O(2) consumption for 60 or 90 min in the Snellen calorimeter at 24 or 30 degrees C. The core compartment was represented by esophageal, rectal (T(re)), and aural canal temperature, and the shell compartment was represented by a 12-point mean skin temperature (T(sk)). Using T(re) and conventional core-to-shell weightings (X) of 0.66, 0.79, and 0.90, mean DeltaT(b) estimation error (with 95% confidence interval limits in parentheses) for the traditional model was -95.2% (-83.0, -107.3) to -76.6% (-72.8, -80.5) after 10 min and -47.2% (-40.9, -53.5) to -22.6% (-14.5, -30.7) after 90 min. Using T(re), X = 0.80, and a correction factor (X(0)) of 0.40, mean DeltaT(b) estimation error for the adjusted model was +9.5% (+16.9, +2.1) to -0.3% (+11.9, -12.5) after 10 min and +15.0% (+27.2, +2.8) to -13.7% (-4.2, -23.3) after 90 min. Quadratic analyses of calorimetry DeltaT(b) data was subsequently used to derive best-fitting values of X for both models and X(0) for the adjusted model for each measure of core temperature. The most accurate model at any time point or condition only accounted for 20% of the variation observed in DeltaT(b) for the traditional model and 56% for the adjusted model. In conclusion, throughout exercise the estimation of DeltaT(b) using any measure of core temperature together with mean skin temperature irrespective of weighting is inaccurate even with a correction factor customized for the specific conditions.
A comparison of quality of present-day heat flow obtained from BHTs, Horner Plots of Malay Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waples, D.W.; Mahadir, R.
1994-07-01
Reconciling temperature data obtained from measurement of single BHT, multiple BHT at a single depth, RFTs, and DSTs, is very difficult. Quality of data varied widely, however DST data were assumed to be most reliable. Data from 87 wells was used in this study, but only 47 wells have DST data. BASINMOD program was used to calculate the present-day heat flow, using measured thermal conductivity and calibrated against the DST data. The heat flows obtained from the DST data were assumed to be correct and representative throughout the basin. Then, heat flows using (1) uncorrected RFT data, (2) multiple BHTmore » data corrected by the Horner plot method, and (3) single BHT values corrected upward by a standard 10% were calculated. All of these three heat-flow populations had identically standard deviations to that for the DST data, but with significantly lower mean values. Correction factors were calculated to give each of the three erroneous populations the same mean value as the DST population. Heat flows calculated from RFT data had to be corrected upward by a factor of 1.12 to be equivalent to DST data; Horner plot data corrected by a factor of 1.18, and single BHT data by a factor of 1.2. These results suggest that present-day subsurface temperatures using RFT, Horner plot, and BHT data are considerably lower than they should be. The authors suspect qualitatively similar results would be found in other areas. Hence, they recommend significant corrections be routinely made until local calibration factors are established.« less
SU-F-T-492: The Impact of Water Temperature On Absolute Dose Calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Islam, N; Podgorsak, M; Roswell Park Cancer Institute, Buffalo, NY
Purpose: The Task Group 51 (TG 51) protocol prescribes that dose calibration of photon beams be done by irradiating an ionization chamber in a water tank at pre-defined depths. Methodologies are provided to account for variations in measurement conditions by applying correction factors. However, the protocol does not completely account for the impact of water temperature. It is well established that water temperature will influence the density of air in the ion chamber collecting volume. Water temperature, however, will also influence the size of the collecting volume via thermal expansion of the cavity wall and the density of the watermore » in the tank. In this work the overall effect of water temperature on absolute dosimetry has been investigated. Methods: Dose measurements were made using a Farmer-type ion chamber for 6 and 23 MV photon beams with water temperatures ranging from 10 to 40°C. A reference ion chamber was used to account for fluctuations in beam output between successive measurements. Results: For the same beam output, the dose determined using TG 51 was dependent on the temperature of the water in the tank. A linear regression of the data suggests that the dependence is statistically significant with p-values of the slope equal to 0.003 and 0.01 for 6 and 23 MV beams, respectively. For a 10 degree increase in water phantom temperature, the absolute dose determined with TG 51 increased by 0.27% and 0.31% for 6 and 23 MV beams, respectively. Conclusion: There is a measurable effect of water temperature on absolute dose calibration. To account for this effect, a reference temperature can be defined and a correction factor applied to account for deviations from this reference temperature during beam calibration. Such a factor is expected to be of similar magnitude to most of the existing TG 51 correction factors.« less
Correction factors in determining speed of sound among freshmen in undergraduate physics laboratory
NASA Astrophysics Data System (ADS)
Lutfiyah, A.; Adam, A. S.; Suprapto, N.; Kholiq, A.; Putri, N. P.
2018-03-01
This paper deals to identify the correction factor in determining speed of sound that have been done by freshmen in undergraduate physics laboratory. Then, the result will be compared with speed of sound that determining by senior student. Both of them used the similar instrument, namely resonance tube with apparatus. The speed of sound indicated by senior was 333.38 ms-1 with deviation to the theory about 3.98%. Meanwhile, for freshmen, the speed of sound experiment was categorised into three parts: accurate value (52.63%), middle value (31.58%) and lower value (15.79%). Based on analysis, some correction factors were suggested: human error in determining first and second harmonic, end correction of tube diameter, and another factors from environment, such as temperature, humidity, density, and pressure.
Time of death of victims found in cold water environment.
Karhunen, Pekka J; Goebeler, Sirkka; Winberg, Olli; Tuominen, Markku
2008-04-07
Limited data is available on the application of post-mortem temperature methods to non-standard conditions, especially in problematic real life cases in which the body of the victim is found in cold water environment. Here we present our experience on two cases with known post-mortem times. A 14-year-old girl (rectal temperature 15.5 degrees C) was found assaulted and drowned after a rainy cold night (+5 degrees C) in wet clothing (four layers) at the bottom of a shallow ditch, lying in non-flowing water. The post-mortem time turned out to be 15-16 h. Four days later, at the same time in the morning, after a cold (+/- 0 degrees C) night, a young man (rectal temperature 10.8 degrees C) was found drowned in a shallow cold drain (+4 degrees C) wearing similar clothing (four layers) and being exposed to almost similar environmental and weather conditions, except of flow (7.7 l/s or 0.3 m/s) in the drain. The post-mortem time was deduced to be 10-12 h. We tested the applicability of five practical methods to estimate time of death. Henssge's temperature-time of death nomogram method with correction factors was the most versatile and gave also most accurate results, although there is limited data on choosing of correction factors. In the first case, the right correction factor was close to 1.0 (recommended 1.1-1.2), suggesting that wet clothing acted like dry clothing in slowing down body cooling. In the second case, the right correction factor was between 0.3 and 0.5, similar to the recommended 0.35 for naked bodies in flowing water.
A two-dimensional ACAR study of untwinned YBa2Cu3O(7-x)
NASA Astrophysics Data System (ADS)
Smedskjaer, L. C.; Bansil, A.
1991-12-01
We have carried out 2D-ACAR measurements on an untwinned single crystal of YBa2Cu3O(sub 7-x) as a function of temperature, for five temperatures ranging from 30K to 300K. We show that these temperature-dependent 2D-ACAR spectra can be described to a good approximation as a superposition of two temperature independent spectra with temperature-dependent weighting factors. We show further how the data can be used to correct for the 'background' in the experimental spectrum. Such a 'background corrected' spectrum is in remarkable accord with the corresponding band theory predictions, and displays, in particular, clear signatures of the electron ridge Fermi surface.
NASA Astrophysics Data System (ADS)
Nguyen, Huong Giang T.; Horn, Jarod C.; Thommes, Matthias; van Zee, Roger D.; Espinal, Laura
2017-12-01
Addressing reproducibility issues in adsorption measurements is critical to accelerating the path to discovery of new industrial adsorbents and to understanding adsorption processes. A National Institute of Standards and Technology Reference Material, RM 8852 (ammonium ZSM-5 zeolite), and two gravimetric instruments with asymmetric two-beam balances were used to measure high-pressure adsorption isotherms. This work demonstrates how common approaches to buoyancy correction, a key factor in obtaining the mass change due to surface excess gas uptake from the apparent mass change, can impact the adsorption isotherm data. Three different approaches to buoyancy correction were investigated and applied to the subcritical CO2 and supercritical N2 adsorption isotherms at 293 K. It was observed that measuring a collective volume for all balance components for the buoyancy correction (helium method) introduces an inherent bias in temperature partition when there is a temperature gradient (i.e. analysis temperature is not equal to instrument air bath temperature). We demonstrate that a blank subtraction is effective in mitigating the biases associated with temperature partitioning, instrument calibration, and the determined volumes of the balance components. In general, the manual and subtraction methods allow for better treatment of the temperature gradient during buoyancy correction. From the study, best practices specific to asymmetric two-beam balances and more general recommendations for measuring isotherms far from critical temperatures using gravimetric instruments are offered.
Nguyen, Huong Giang T; Horn, Jarod C; Thommes, Matthias; van Zee, Roger D; Espinal, Laura
2017-12-01
Addressing reproducibility issues in adsorption measurements is critical to accelerating the path to discovery of new industrial adsorbents and to understanding adsorption processes. A National Institute of Standards and Technology Reference Material, RM 8852 (ammonium ZSM-5 zeolite), and two gravimetric instruments with asymmetric two-beam balances were used to measure high-pressure adsorption isotherms. This work demonstrates how common approaches to buoyancy correction, a key factor in obtaining the mass change due to surface excess gas uptake from the apparent mass change, can impact the adsorption isotherm data. Three different approaches to buoyancy correction were investigated and applied to the subcritical CO 2 and supercritical N 2 adsorption isotherms at 293 K. It was observed that measuring a collective volume for all balance components for the buoyancy correction (helium method) introduces an inherent bias in temperature partition when there is a temperature gradient (i.e. analysis temperature is not equal to instrument air bath temperature). We demonstrate that a blank subtraction is effective in mitigating the biases associated with temperature partitioning, instrument calibration, and the determined volumes of the balance components. In general, the manual and subtraction methods allow for better treatment of the temperature gradient during buoyancy correction. From the study, best practices specific to asymmetric two-beam balances and more general recommendations for measuring isotherms far from critical temperatures using gravimetric instruments are offered.
Calibration of entrance dose measurement for an in vivo dosimetry programme.
Ding, W; Patterson, W; Tremethick, L; Joseph, D
1995-11-01
An increasing number of cancer treatment centres are using in vivo dosimetry as a quality assurance tool for verifying dosimetry as either the entrance or exit surface of the patient undergoing external beam radiotherapy. Equipment is usually limited to either thermoluminescent dosimeters (TLD) or semiconductor detectors such as p-type diodes. The semiconductor detector is more popular than the TLD due to the major advantage of real time analysis of the actual dose delivered. If a discrepancy is observed between the calculated and the measured entrance dose, it is possible to eliminate several likely sources of errors by immediately verifying all treatment parameters. Five Scanditronix EDP-10 p-type diodes were investigated to determine their calibration and relevant correction factors for entrance dose measurements using a Victoreen White Water-RW3 tissue equivalent phantom and a 6 MV photon beam from a Varian Clinac 2100C linear accelerator. Correction factors were determined for individual diodes for the following parameters: source to surface distance (SSD), collimator size, wedge, plate (tray) and temperature. The directional dependence of diode response was also investigated. The SSD correction factor (CSSD) was found to increase by approximately 3% over the range of SSD from 80 to 130 cm. The correction factor for collimator size (Cfield) also varied by approximately 3% between 5 x 5 and 40 x 40 cm2. The wedge correction factor (Cwedge) and plate correction factor (Cplate) were found to be a function of collimator size. Over the range of measurement, these factors varied by a maximum of 1 and 1.5%, respectively. The Cplate variation between the solid and the drilled plates under the same irradiation conditions was a maximum of 2.4%. The diode sensitivity demonstrated an increase with temperature. A maximum of 2.5% variation for the directional dependence of diode response was observed for angle of +/- 60 degrees. In conclusion, in vivo dosimetry is an important and reliable method for checking the dose delivered to the patient. Preclinical calibration and determination of the relevant correction factors for each diode are essential in order to achieve a high accuracy of dose delivered to the patient.
NASA Astrophysics Data System (ADS)
Saraceno, J.; Shanley, J. B.; Aulenbach, B. T.
2014-12-01
Fluorescent dissolved organic matter (FDOM) is an excellent proxy for dissolved organic carbon (DOC) in natural waters. Through this relationship, in situ FDOM can be utilized to capture both high frequency time series and long term fluxes of DOC in small streams. However, in order to calculate accurate DOC fluxes for comparison across sites, in situ FDOM data must be compensated for matrix effects. Key matrix effects, include temperature, turbidity and the inner filter effect due to color. These interferences must be compensated for to develop a reasonable relationship between FDOM and DOC. In this study, we applied laboratory-derived correction factors to real time data from the five USGS WEBB headwater streams in order to gauge their effectiveness across a range of matrix effects. The good news is that laboratory derived correction factors improved the predicative relationship (higher r2) between DOC and FDOM when compared to uncorrected data. The relative importance of each matrix effect (i.e. temperature) varied by site and by time, implying that each and every matrix effect should be compensated for when available. In general, temperature effects were more important on longer time scales, while corrections for turbidity and DOC inner filter effects were most prevalent during hydrologic events, when the highest instantaneous flux of DOC occurred. Unfortunately, even when corrected for matrix effects, in situ FDOM is a weaker predictor of DOC than A254, a common surrogate for DOC, implying that either DOC fluoresces at varying degrees (but should average out over time), that some matrix effects (e.g. pH) are either unaccounted for or laboratory-derived correction factors do not encompass the site variability of particles and organics. The least impressive finding is that the inherent dependence on three variables in the FDOM correction algorithm increases the likelihood of record data gaps which increases the uncertainty in calculated DOC flux values.
NASA Technical Reports Server (NTRS)
Knudsen, William C.
1992-01-01
The effect of finite grid radius and thickness on the electron current measured by planar retarding potential analyzers (RPAs) is analyzed numerically. Depending on the plasma environment, the current is significantly reduced below that which is calculated using a theoretical equation derived for an idealized RPA having grids with infinite radius and vanishingly small thickness. A correction factor to the idealized theoretical equation is derived for the Pioneer Venus (PV) orbiter RPA (ORPA) for electron gasses consisting of one or more components obeying Maxwell statistics. The error in density and temperature of Maxwellian electron distributions previously derived from ORPA data using the theoretical expression for the idealized ORPA is evaluated by comparing the densities and temperatures derived from a sample of PV ORPA data using the theoretical expression with and without the correction factor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yuxuan; Martin, William; Williams, Mark
In this paper, a correction-based resonance self-shielding method is developed that allows annular subdivision of the fuel rod. The method performs the conventional iteration of the embedded self-shielding method (ESSM) without subdivision of the fuel to capture the interpin shielding effect. The resultant self-shielded cross sections are modified by correction factors incorporating the intrapin effects of radial variation of the shielded cross section, radial temperature distribution, and resonance interference. A quasi–one-dimensional slowing-down equation is developed to calculate such correction factors. The method is implemented in the DeCART code and compared with the conventional ESSM and subgroup method with benchmark MCNPmore » results. The new method yields substantially improved results for both spatially dependent reaction rates and eigenvalues for typical pressurized water reactor pin cell cases with uniform and nonuniform fuel temperature profiles. Finally, the new method is also proved effective in treating assembly heterogeneity and complex material composition such as mixed oxide fuel, where resonance interference is much more intense.« less
Extracting Baseline Electricity Usage Using Gradient Tree Boosting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Taehoon; Lee, Dongeun; Choi, Jaesik
To understand how specific interventions affect a process observed over time, we need to control for the other factors that influence outcomes. Such a model that captures all factors other than the one of interest is generally known as a baseline. In our study of how different pricing schemes affect residential electricity consumption, the baseline would need to capture the impact of outdoor temperature along with many other factors. In this work, we examine a number of different data mining techniques and demonstrate Gradient Tree Boosting (GTB) to be an effective method to build the baseline. We train GTB onmore » data prior to the introduction of new pricing schemes, and apply the known temperature following the introduction of new pricing schemes to predict electricity usage with the expected temperature correction. Our experiments and analyses show that the baseline models generated by GTB capture the core characteristics over the two years with the new pricing schemes. In contrast to the majority of regression based techniques which fail to capture the lag between the peak of daily temperature and the peak of electricity usage, the GTB generated baselines are able to correctly capture the delay between the temperature peak and the electricity peak. Furthermore, subtracting this temperature-adjusted baseline from the observed electricity usage, we find that the resulting values are more amenable to interpretation, which demonstrates that the temperature-adjusted baseline is indeed effective.« less
Calibration and temperature correction of a V-block refractometer
NASA Astrophysics Data System (ADS)
Le Menn, Marc
2018-03-01
V-block refractometers have been used since the 1940s to retrieve the refractive index values of substances or optical glasses. When used outside laboratories, they are submitted to temperature variations which degrade their accuracy by varying the refractive index of the glasses and the length of the prisms. This paper proposes a method to calibrate a double-prism V-block refractometer by retrieving the values of two coefficients at a constant temperature and by applying corrections to these coefficients when the instrument is used at different temperatures. This method is applied to calibrate in salinity a NOSS instrument which can be used at sea on drifting floats, and the results show that measurement errors can be reduced by a factor of 5.8.
NASA Astrophysics Data System (ADS)
Liu, Chengwei; Sui, Xiubao; Gu, Guohua; Chen, Qian
2018-02-01
For the uncooled long-wave infrared (LWIR) camera, the infrared (IR) irradiation the focal plane array (FPA) receives is a crucial factor that affects the image quality. Ambient temperature fluctuation as well as system power consumption can result in changes of FPA temperature and radiation characteristics inside the IR camera; these will further degrade the imaging performance. In this paper, we present a novel shutterless non-uniformity correction method to compensate for non-uniformity derived from the variation of ambient temperature. Our method combines a calibration-based method and the properties of a scene-based method to obtain correction parameters at different ambient temperature conditions, so that the IR camera performance can be less influenced by ambient temperature fluctuation or system power consumption. The calibration process is carried out in a temperature chamber with slowly changing ambient temperature and a black body as uniform radiation source. Enough uniform images are captured and the gain coefficients are calculated during this period. Then in practical application, the offset parameters are calculated via the least squares method based on the gain coefficients, the captured uniform images and the actual scene. Thus we can get a corrected output through the gain coefficients and offset parameters. The performance of our proposed method is evaluated on realistic IR images and compared with two existing methods. The images we used in experiments are obtained by a 384× 288 pixels uncooled LWIR camera. Results show that our proposed method can adaptively update correction parameters as the actual target scene changes and is more stable to temperature fluctuation than the other two methods.
NASA Astrophysics Data System (ADS)
Mahmood, Rashid; JIA, Shaofeng
2017-11-01
In this study, the linear scaling method used for the downscaling of temperature was extended from monthly scaling factors to daily scaling factors (SFs) to improve the daily variations in the corrected temperature. In the original linear scaling (OLS), mean monthly SFs are used to correct the future data, but mean daily SFs are used to correct the future data in the extended linear scaling (ELS) method. The proposed method was evaluated in the Jhelum River basin for the period 1986-2000, using the observed maximum temperature (Tmax) and minimum temperature (Tmin) of 18 climate stations and the simulated Tmax and Tmin of five global climate models (GCMs) (GFDL-ESM2G, NorESM1-ME, HadGEM2-ES, MIROC5, and CanESM2), and the method was also compared with OLS to observe the improvement. Before the evaluation of ELS, these GCMs were also evaluated using their raw data against the observed data for the same period (1986-2000). Four statistical indicators, i.e., error in mean, error in standard deviation, root mean square error, and correlation coefficient, were used for the evaluation process. The evaluation results with GCMs' raw data showed that GFDL-ESM2G and MIROC5 performed better than other GCMs according to all the indicators but with unsatisfactory results that confine their direct application in the basin. Nevertheless, after the correction with ELS, a noticeable improvement was observed in all the indicators except correlation coefficient because this method only adjusts (corrects) the magnitude. It was also noticed that the daily variations of the observed data were better captured by the corrected data with ELS than OLS. Finally, the ELS method was applied for the downscaling of five GCMs' Tmax and Tmin for the period of 2041-2070 under RCP8.5 in the Jhelum basin. The results showed that the basin would face hotter climate in the future relative to the present climate, which may result in increasing water requirements in public, industrial, and agriculture sectors; change in the hydrological cycle and monsoon pattern; and lack of glaciers in the basin.
NASA Astrophysics Data System (ADS)
Alappattu, Denny P.; Wang, Qing; Yamaguchi, Ryan; Lind, Richard J.; Reynolds, Mike; Christman, Adam J.
2017-08-01
The sea surface temperature (SST) relevant to air-sea interaction studies is the temperature immediately adjacent to the air, referred to as skin SST. Generally, SST measurements from ships and buoys are taken at depths varies from several centimeters to 5 m below the surface. These measurements, known as bulk SST, can differ from skin SST up to O(1°C). Shipboard bulk and skin SST measurements were made during the Coupled Air-Sea Processes and Electromagnetic ducting Research east coast field campaign (CASPER-East). An Infrared SST Autonomous Radiometer (ISAR) recorded skin SST, while R/V Sharp's Surface Mapping System (SMS) provided bulk SST from 1 m water depth. Since the ISAR is sensitive to sea spray and rain, missing skin SST data occurred in these conditions. However, SMS measurement is less affected by adverse weather and provided continuous bulk SST measurements. It is desirable to correct the bulk SST to obtain a good representation of the skin SST, which is the objective of this research. Bulk-skin SST difference has been examined with respect to meteorological factors associated with cool skin and diurnal warm layers. Strong influences of wind speed, diurnal effects, and net longwave radiation flux on temperature difference are noticed. A three-step scheme is established to correct for wind effect, diurnal variability, and then for dependency on net longwave radiation flux. Scheme is tested and compared to existing correction schemes. This method is able to effectively compensate for multiple factors acting to modify bulk SST measurements over the range of conditions experienced during CASPER-East.
Tornero-López, Ana M; Guirado, Damián; Perez-Calatayud, Jose; Ruiz-Arrebola, Samuel; Simancas, Fernando; Gazdic-Santic, Maja; Lallena, Antonio M
2013-12-01
Air-communicating well ionization chambers are commonly used to assess air kerma strength of sources used in brachytherapy. The signal produced is supposed to be proportional to the air density within the chamber and, therefore, a density-independent air kerma strength is obtained when the measurement is corrected to standard atmospheric conditions using the usual temperature and pressure correction factor. Nevertheless, when assessing low energy sources, the ionization chambers may not fulfill that condition and a residual density dependence still remains after correction. In this work, the authors examined the behavior of the PTW 34051 SourceCheck ionization chamber when measuring the air kerma strength of (125)I seeds. Four different SourceCheck chambers were analyzed. With each one of them, two series of measurements of the air kerma strength for (125)I selectSeed(TM) brachytherapy sources were performed inside a pressure chamber and varying the pressure in a range from 747 to 1040 hPa (560 to 780 mm Hg). The temperature and relative humidity were kept basically constant. An analogous experiment was performed by taking measurements at different altitudes above sea level. Contrary to other well-known ionization chambers, like the HDR1000 PLUS, in which the temperature-pressure correction factor overcorrects the measurements, in the SourceCheck ionization chamber they are undercorrected. At a typical atmospheric situation of 933 hPa (700 mm Hg) and 20 °C, this undercorrection turns out to be 1.5%. Corrected measurements show a residual linear dependence on the density and, as a consequence, an additional density dependent correction must be applied. The slope of this residual linear density dependence is different for each SourceCheck chamber investigated. The results obtained by taking measurements at different altitudes are compatible with those obtained with the pressure chamber. Variations of the altitude and changes in the weather conditions may produce significant density corrections, and that effect should be taken into account. This effect is chamber-dependent, indicating that a specific calibration is necessary for each particular chamber. To our knowledge, this correction has not been considered so far for SourceCheck ionization chambers, but its magnitude cannot be neglected in clinical practice. The atmospheric pressure and temperature at which the chamber was calibrated need to be taken into account, and they should be reported in the calibration certificate. In addition, each institution should analyze the particular response of its SourceCheck ionization chamber and compute the adequate correction factors. In the absence of a suitable pressure chamber, a possibility for this assessment is to take measurements at different altitudes, spanning a wide enough air density range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tornero-López, Ana M.; Guirado, Damián; Ruiz-Arrebola, Samuel
2013-12-15
Purpose: Air-communicating well ionization chambers are commonly used to assess air kerma strength of sources used in brachytherapy. The signal produced is supposed to be proportional to the air density within the chamber and, therefore, a density-independent air kerma strength is obtained when the measurement is corrected to standard atmospheric conditions using the usual temperature and pressure correction factor. Nevertheless, when assessing low energy sources, the ionization chambers may not fulfill that condition and a residual density dependence still remains after correction. In this work, the authors examined the behavior of the PTW 34051 SourceCheck ionization chamber when measuring themore » air kerma strength of {sup 125}I seeds.Methods: Four different SourceCheck chambers were analyzed. With each one of them, two series of measurements of the air kerma strength for {sup 125}I selectSeed{sup TM} brachytherapy sources were performed inside a pressure chamber and varying the pressure in a range from 747 to 1040 hPa (560 to 780 mm Hg). The temperature and relative humidity were kept basically constant. An analogous experiment was performed by taking measurements at different altitudes above sea level.Results: Contrary to other well-known ionization chambers, like the HDR1000 PLUS, in which the temperature-pressure correction factor overcorrects the measurements, in the SourceCheck ionization chamber they are undercorrected. At a typical atmospheric situation of 933 hPa (700 mm Hg) and 20 °C, this undercorrection turns out to be 1.5%. Corrected measurements show a residual linear dependence on the density and, as a consequence, an additional density dependent correction must be applied. The slope of this residual linear density dependence is different for each SourceCheck chamber investigated. The results obtained by taking measurements at different altitudes are compatible with those obtained with the pressure chamber.Conclusions: Variations of the altitude and changes in the weather conditions may produce significant density corrections, and that effect should be taken into account. This effect is chamber-dependent, indicating that a specific calibration is necessary for each particular chamber. To our knowledge, this correction has not been considered so far for SourceCheck ionization chambers, but its magnitude cannot be neglected in clinical practice. The atmospheric pressure and temperature at which the chamber was calibrated need to be taken into account, and they should be reported in the calibration certificate. In addition, each institution should analyze the particular response of its SourceCheck ionization chamber and compute the adequate correction factors. In the absence of a suitable pressure chamber, a possibility for this assessment is to take measurements at different altitudes, spanning a wide enough air density range.« less
Type 2 diabetes, but not obesity, prevalence is positively associated with ambient temperature.
Speakman, John R; Heidari-Bakavoli, Sahar
2016-08-01
Cold exposure stimulates energy expenditure and glucose disposal. If these factors play a significant role in whole body energy balance, and glucose homeostasis, it is predicted that both obesity and type 2 diabetes prevalence would be lower where it is colder. Previous studies have noted connections between ambient temperature and obesity, but the direction of the effect is confused. No previous studies have explored the link of type 2 diabetes to ambient temperature. We used county level data for obesity and diabetes prevalence across the mainland USA and matched this to county level ambient temperature data. Average ambient temperature explained 5.7% of the spatial variation in obesity and 29.6% of the spatial variation in type 2 diabetes prevalence. Correcting the type 2 diabetes data for the effect of obesity reduced the explained variation to 26.8%. Even when correcting for obesity, poverty and race, ambient temperature explained 12.4% of the variation in the prevalence of type 2 diabetes, and this significant effect remained when latitude was entered into the model as a predictor. When obesity prevalence was corrected for poverty and race the significant effect of temperature disappeared. Enhancing energy expenditure by cold exposure will likely not impact obesity significantly, but may be useful to combat type 2 diabetes.
NASA Astrophysics Data System (ADS)
Yu, Long; Xu, Juanjuan; Zhang, Lifang; Xu, Xiaogang
2018-03-01
Based on stress-strength interference theory to establish the reliability mathematical model for high temperature and high pressure multi-stage decompression control valve (HMDCV), and introduced to the temperature correction coefficient for revising material fatigue limit at high temperature. Reliability of key dangerous components and fatigue sensitivity curve of each component are calculated and analyzed by the means, which are analyzed the fatigue life of control valve and combined with reliability theory of control valve model. The impact proportion of each component on the control valve system fatigue failure was obtained. The results is shown that temperature correction factor makes the theoretical calculations of reliability more accurate, prediction life expectancy of main pressure parts accords with the technical requirements, and valve body and the sleeve have obvious influence on control system reliability, the stress concentration in key part of control valve can be reduced in the design process by improving structure.
40 CFR 86.244-94 - Calculations; exhaust emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.244-94 Calculations; exhaust.... Should NOX measurements be calculated, note that the humidity correction factor is not valid at colder...
40 CFR 86.244-94 - Calculations; exhaust emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.244-94 Calculations; exhaust.... Should NOX measurements be calculated, note that the humidity correction factor is not valid at colder...
40 CFR 86.244-94 - Calculations; exhaust emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.244-94 Calculations; exhaust.... Should NOX measurements be calculated, note that the humidity correction factor is not valid at colder...
INVESTIGATION OF THE HUMIDITY EFFECT ON THE FAC-IR-300 IONIZATION CHAMBER RESPONSE.
Mohammadi, Seyed Mostafa; Tavakoli-Anbaran, Hossein
2018-02-01
The free-air ionization chamber is communicating with the ambient air, therefore, the atmospheric parameters such as temperature, pressure and humidity effect on the ionization chamber performance. The free-air ionization chamber, entitled as FAC-IR-300, that design at the Atomic Energy Organization of Iran, AEOI, is required the atmospheric correction factors for correct the chamber reading. In this article, the effect of humidity on the ionization chamber response was investigated. For this reason, was introduced the humidity correction factor, kh. In this article, the Monte Carlo simulation was used to determine the kh factor. The simulation results show in relative humidities between 30% to 80%, the kh factor is equal 0.9970 at 20°C and 0.9975 at 22°C. From the simulation results, at low energy the energy dependence of the kh factor is significant and with increasing energy this dependence is negligible. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures
NASA Technical Reports Server (NTRS)
Moore, Charles S; Collins, John H
1937-01-01
Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.
Elevation effects in volcano applications of the COSPEC
Gerlach, T.M.
2003-01-01
Volcano applications commonly involve sizeable departures from the reference pressure and temperature of COSPEC calibration cells. Analysis shows that COSPEC SO2 column abundances and derived mass emission rates are independent of pressure and temperature, and thus unaffected by elevation effects related to deviations from calibration cell reference state. However, path-length concentrations are pressure and temperature dependent. Since COSPEC path-length concentration data assume the reference pressure and temperature of calibration cells, they can lead to large errors when used to calculate SO2 mixing ratios of volcanic plumes. Correction factors for COSPEC path-length concentrations become significant (c.10%) at elevations of about 1 km (e.g. Kilauea volcano) and rise rapidly to c.80% at 6 km (e.g. Cotopaxi volcano). Calculating SO2 mixing ratios for volcanic plumes directly from COSPEC path-length concentrations always gives low results. Corrections can substantially increase mixing ratios; for example, corrections increase SO2 ppm concentrations reported for the Mount St Helens, Colima, and Erebus plumes by 25-50%. Several arguments suggest it would be advantageous to calibrate COSPEC measurements in column abundance units rather than path-length concentration units.
Calibration of low-temperature ac susceptometers with a copper cylinder standard
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, D.-X.; Skumryev, V.
2010-02-15
A high-quality low-temperature ac susceptometer is calibrated by comparing the measured ac susceptibility of a copper cylinder with its eddy-current ac susceptibility accurately calculated. Different from conventional calibration techniques that compare the measured results with the known property of a standard sample at certain fixed temperature T, field amplitude H{sub m}, and frequency f, to get a magnitude correction factor, here, the electromagnetic properties of the copper cylinder are unknown and are determined during the calibration of the ac susceptometer in the entire T, H{sub m}, and f range. It is shown that the maximum magnitude error and the maximummore » phase error of the susceptometer are less than 0.7% and 0.3 deg., respectively, in the region T=5-300 K and f=111-1111 Hz at H{sub m}=800 A/m, after a magnitude correction by a constant factor as done in a conventional calibration. However, the magnitude and phase errors can reach 2% and 4.3 deg. at 10 000 and 11 Hz, respectively. Since the errors are reproducible, a large portion of them may be further corrected after a calibration, the procedure for which is given. Conceptual discussions concerning the error sources, comparison with other calibration methods, and applications of ac susceptibility techniques are presented.« less
Temperature-Compensated Clock Skew Adjustment
Castillo-Secilla, Jose María; Palomares, Jose Manuel; Olivares, Joaquín
2013-01-01
This work analyzes several drift compensation mechanisms in wireless sensor networks (WSN). Temperature is an environmental factor that greatly affects oscillators shipped in every WSN mote. This behavior creates the need of improving drift compensation mechanisms in synchronization protocols. Using the Flooding Time Synchronization Protocol (FTSP), this work demonstrates that crystal oscillators are affected by temperature variations. Thus, the influence of temperature provokes a low performance of FTSP in changing conditions of temperature. This article proposes an innovative correction factor that minimizes the impact of temperature in the clock skew. By means of this factor, two new mechanisms are proposed in this paper: the Adjusted Temperature (AT) and the Advanced Adjusted Temperature (A2T). These mechanisms have been combined with FTSP to produce AT-FTSP and A2T-FTSP Both have been tested in a network of TelosB motes running TinyOS. Results show that both AT-FTSP and A2T-FTSP improve the average synchronization errors compared to FTSP and other temperature-compensated protocols (Environment-Aware Clock Skew Estimation and Synchronization for WSN (EACS) and Temperature Compensated Time Synchronization (TCTS)). PMID:23966192
Efficiency of single-particle engines
NASA Astrophysics Data System (ADS)
Proesmans, Karel; Driesen, Cedric; Cleuren, Bart; Van den Broeck, Christian
2015-09-01
We study the efficiency of a single-particle Szilard and Carnot engine. Within a first order correction to the quasistatic limit, the work distribution is found to be Gaussian and the correction factor to average work and efficiency only depends on the piston speed. The stochastic efficiency is studied for both models and the recent findings on efficiency fluctuations are confirmed numerically. Special features are revealed in the zero-temperature limit.
SU-E-T-123: Anomalous Altitude Effect in Permanent Implant Brachytherapy Seeds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watt, E; Spencer, DP; Meyer, T
Purpose: Permanent seed implant brachytherapy procedures require the measurement of the air kerma strength of seeds prior to implant. This is typically accomplished using a well-type ionization chamber. Previous measurements (Griffin et al., 2005; Bohm et al., 2005) of several low-energy seeds using the air-communicating HDR 1000 Plus chamber have demonstrated that the standard temperature-pressure correction factor, P{sub TP}, may overcompensate for air density changes induced by altitude variations by up to 18%. The purpose of this work is to present empirical correction factors for two clinically-used seeds (IsoAid ADVANTAGE™ {sup 103}Pd and Nucletron selectSeed {sup 125}I) for which empiricalmore » altitude correction factors do not yet exist in the literature when measured with the HDR 1000 Plus chamber. Methods: An in-house constructed pressure vessel containing the HDR 1000 Plus well chamber and a digital barometer/thermometer was pumped or evacuated, as appropriate, to a variety of pressures from 725 to 1075 mbar. Current measurements, corrected with P{sub TP}, were acquired for each seed at these pressures and normalized to the reading at ‘standard’ pressure (1013.25 mbar). Results: Measurements in this study have shown that utilization of P{sub TP} can overcompensate in the corrected current reading by up to 20% and 17% for the IsoAid Pd-103 and the Nucletron I-125 seed respectively. Compared to literature correction factors for other seed models, the correction factors in this study diverge by up to 2.6% and 3.0% for iodine (with silver) and palladium respectively, indicating the need for seed-specific factors. Conclusion: The use of seed specific altitude correction factors can reduce uncertainty in the determination of air kerma strength. The empirical correction factors determined in this work can be applied in clinical quality assurance measurements of air kerma strength for two previously unpublished seed designs (IsoAid ADVANTAGE™ {sup 103}Pd and Nucletron selectSeed {sup 125}I) with the HDR 1000 Plus well chamber.« less
Sun, Xingming; Yan, Shuangshuang; Wang, Baowei; Xia, Li; Liu, Qi; Zhang, Hui
2015-01-01
Air temperature (AT) is an extremely vital factor in meteorology, agriculture, military, etc., being used for the prediction of weather disasters, such as drought, flood, frost, etc. Many efforts have been made to monitor the temperature of the atmosphere, like automatic weather stations (AWS). Nevertheless, due to the high cost of specialized AT sensors, they cannot be deployed within a large spatial density. A novel method named the meteorology wireless sensor network relying on a sensing node has been proposed for the purpose of reducing the cost of AT monitoring. However, the temperature sensor on the sensing node can be easily influenced by environmental factors. Previous research has confirmed that there is a close relation between AT and solar radiation (SR). Therefore, this paper presents a method to decrease the error of sensed AT, taking SR into consideration. In this work, we analyzed all of the collected data of AT and SR in May 2014 and found the numerical correspondence between AT error (ATE) and SR. This corresponding relation was used to calculate real-time ATE according to real-time SR and to correct the error of AT in other months. PMID:26213941
Sun, Xingming; Yan, Shuangshuang; Wang, Baowei; Xia, Li; Liu, Qi; Zhang, Hui
2015-07-24
Air temperature (AT) is an extremely vital factor in meteorology, agriculture, military, etc., being used for the prediction of weather disasters, such as drought, flood, frost, etc. Many efforts have been made to monitor the temperature of the atmosphere, like automatic weather stations (AWS). Nevertheless, due to the high cost of specialized AT sensors, they cannot be deployed within a large spatial density. A novel method named the meteorology wireless sensor network relying on a sensing node has been proposed for the purpose of reducing the cost of AT monitoring. However, the temperature sensor on the sensing node can be easily influenced by environmental factors. Previous research has confirmed that there is a close relation between AT and solar radiation (SR). Therefore, this paper presents a method to decrease the error of sensed AT, taking SR into consideration. In this work, we analyzed all of the collected data of AT and SR in May 2014 and found the numerical correspondence between AT error (ATE) and SR. This corresponding relation was used to calculate real-time ATE according to real-time SR and to correct the error of AT in other months.
Real-Gas Correction Factors for Hypersonic Flow Parameters in Helium
NASA Technical Reports Server (NTRS)
Erickson, Wayne D.
1960-01-01
The real-gas hypersonic flow parameters for helium have been calculated for stagnation temperatures from 0 F to 600 F and stagnation pressures up to 6,000 pounds per square inch absolute. The results of these calculations are presented in the form of simple correction factors which must be applied to the tabulated ideal-gas parameters. It has been shown that the deviations from the ideal-gas law which exist at high pressures may cause a corresponding significant error in the hypersonic flow parameters when calculated as an ideal gas. For example the ratio of the free-stream static to stagnation pressure as calculated from the thermodynamic properties of helium for a stagnation temperature of 80 F and pressure of 4,000 pounds per square inch absolute was found to be approximately 13 percent greater than that determined from the ideal-gas tabulation with a specific heat ratio of 5/3.
Evaluating thermoregulation in reptiles: the fallacy of the inappropriately applied method.
Seebacher, Frank; Shine, Richard
2004-01-01
Given the importance of heat in most biological processes, studies on thermoregulation have played a major role in understanding the ecology of ectothermic vertebrates. It is, however, difficult to assess whether body temperature is actually regulated, and several techniques have been developed that allow an objective assessment of thermoregulation. Almost all recent studies on reptiles follow a single methodology that, when used correctly, facilitates comparisons between species, climates, and so on. However, the use of operative temperatures in this methodology assumes zero heat capacity of the study animals and is, therefore, appropriate for small animals only. Operative temperatures represent potentially available body temperatures accurately for small animals but can substantially overestimate the ranges of body temperature available to larger animals whose slower rates of heating and cooling mean that they cannot reach equilibrium if they encounter operative temperatures that change rapidly through either space or time. This error may lead to serious misinterpretations of field data. We derive correction factors specific for body mass and rate of movement that can be used to estimate body temperature null distributions of larger reptiles, thereby overcoming this methodological problem.
Keckhut, P; Funatsu, B M; Claud, C; Hauchecorne, A
2015-01-01
Stratospheric temperature series derived from the Advanced Microwave Sounding Unit (AMSU) on board successive NOAA satellites reveal, during periods of overlap, some bias and drifts. Part of the reason for these discrepancies could be atmospheric tides as the orbits of these satellites drifted, inducing large changes in the actual times of measurement. NOAA 15 and 16, which exhibit a long period of overlap, allow deriving diurnal tides that can correct such temperature drifts. The characteristics of the derived diurnal tides during summer periods is in good agreement with those calculated with the Global Scale Wave Model, indicating that most of the observed drifts are likely due to the atmospheric tides. Cooling can be biased by a factor of 2, if times of measurement are not considered. When diurnal tides are considered, trends derived from temperature lidar series are in good agreement with AMSU series. Future adjustments of temperature time series based on successive AMSU instruments will require considering corrections associated with the local times of measurement. PMID:26300563
Keckhut, P; Funatsu, B M; Claud, C; Hauchecorne, A
2015-01-01
Stratospheric temperature series derived from the Advanced Microwave Sounding Unit (AMSU) on board successive NOAA satellites reveal, during periods of overlap, some bias and drifts. Part of the reason for these discrepancies could be atmospheric tides as the orbits of these satellites drifted, inducing large changes in the actual times of measurement. NOAA 15 and 16, which exhibit a long period of overlap, allow deriving diurnal tides that can correct such temperature drifts. The characteristics of the derived diurnal tides during summer periods is in good agreement with those calculated with the Global Scale Wave Model, indicating that most of the observed drifts are likely due to the atmospheric tides. Cooling can be biased by a factor of 2, if times of measurement are not considered. When diurnal tides are considered, trends derived from temperature lidar series are in good agreement with AMSU series. Future adjustments of temperature time series based on successive AMSU instruments will require considering corrections associated with the local times of measurement.
Saska, Pavel; van der Werf, Wopke; Hemerik, Lia; Luff, Martin L; Hatten, Timothy D; Honek, Alois; Pocock, Michael
2013-02-01
Carabids and other epigeal arthropods make important contributions to biodiversity, food webs and biocontrol of invertebrate pests and weeds. Pitfall trapping is widely used for sampling carabid populations, but this technique yields biased estimates of abundance ('activity-density') because individual activity - which is affected by climatic factors - affects the rate of catch. To date, the impact of temperature on pitfall catches, while suspected to be large, has not been quantified, and no method is available to account for it. This lack of knowledge and the unavailability of a method for bias correction affect the confidence that can be placed on results of ecological field studies based on pitfall data.Here, we develop a simple model for the effect of temperature, assuming a constant proportional change in the rate of catch per °C change in temperature, r , consistent with an exponential Q 10 response to temperature. We fit this model to 38 time series of pitfall catches and accompanying temperature records from the literature, using first differences and other detrending methods to account for seasonality. We use meta-analysis to assess consistency of the estimated parameter r among studies.The mean rate of increase in total catch across data sets was 0·0863 ± 0·0058 per °C of maximum temperature and 0·0497 ± 0·0107 per °C of minimum temperature. Multiple regression analyses of 19 data sets showed that temperature is the key climatic variable affecting total catch. Relationships between temperature and catch were also identified at species level. Correction for temperature bias had substantial effects on seasonal trends of carabid catches. Synthesis and Applications . The effect of temperature on pitfall catches is shown here to be substantial and worthy of consideration when interpreting results of pitfall trapping. The exponential model can be used both for effect estimation and for bias correction of observed data. Correcting for temperature-related trapping bias is straightforward and enables population estimates to be more comparable. It may thus improve data interpretation in ecological, conservation and monitoring studies, and assist in better management and conservation of habitats and ecosystem services. Nevertheless, field ecologists should remain vigilant for other sources of bias.
Toth, Ronald T; Mills, Brittney J; Joshi, Sangeeta B; Esfandiary, Reza; Bishop, Steven M; Middaugh, C Russell; Volkin, David B; Weis, David D
2017-09-05
A barrier to the use of hydrogen exchange-mass spectrometry (HX-MS) in many contexts, especially analytical characterization of various protein therapeutic candidates, is that differences in temperature, pH, ionic strength, buffering agent, or other additives can alter chemical exchange rates, making HX data gathered under differing solution conditions difficult to compare. Here, we present data demonstrating that HX chemical exchange rates can be substantially altered not only by the well-established variables of temperature and pH but also by additives including arginine, guanidine, methionine, and thiocyanate. To compensate for these additive effects, we have developed an empirical method to correct the hydrogen-exchange data for these differences. First, differences in chemical exchange rates are measured by use of an unstructured reporter peptide, YPI. An empirical chemical exchange correction factor, determined by use of the HX data from the reporter peptide, is then applied to the HX measurements obtained from a protein of interest under different solution conditions. We demonstrate that the correction is experimentally sound through simulation and in a proof-of-concept experiment using unstructured peptides under slow-exchange conditions (pD 4.5 at ambient temperature). To illustrate its utility, we applied the correction to HX-MS excipient screening data collected for a pharmaceutically relevant IgG4 mAb being characterized to determine the effects of different formulations on backbone dynamics.
On thermal corrections to near-threshold annihilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Seyong; Laine, M., E-mail: skim@sejong.ac.kr, E-mail: laine@itp.unibe.ch
2017-01-01
We consider non-relativistic ''dark'' particles interacting through gauge boson exchange. At finite temperature, gauge exchange is modified in many ways: virtual corrections lead to Debye screening; real corrections amount to frequent scatterings of the heavy particles on light plasma constituents; mixing angles change. In a certain temperature and energy range, these effects are of order unity. Taking them into account in a resummed form, we estimate the near-threshold spectrum of kinetically equilibrated annihilating TeV scale particles. Weakly bound states are shown to 'melt' below freeze-out, whereas with attractive strong interactions, relevant e.g. for gluinos, bound states boost the annihilation ratemore » by a factor 4 ... 80 with respect to the Sommerfeld estimate, thereby perhaps helping to avoid overclosure of the universe. Modestly non-degenerate dark sector masses and a way to combine the contributions of channels with different gauge and spin structures are also discussed.« less
Scaling methane oxidation: From laboratory incubation experiments to landfill cover field conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abichou, Tarek, E-mail: abichou@eng.fsu.edu; Mahieu, Koenraad; Chanton, Jeff
2011-05-15
Evaluating field-scale methane oxidation in landfill cover soils using numerical models is gaining interest in the solid waste industry as research has made it clear that methane oxidation in the field is a complex function of climatic conditions, soil type, cover design, and incoming flux of landfill gas from the waste mass. Numerical models can account for these parameters as they change with time and space under field conditions. In this study, we developed temperature, and water content correction factors for methane oxidation parameters. We also introduced a possible correction to account for the different soil structure under field conditions.more » These parameters were defined in laboratory incubation experiments performed on homogenized soil specimens and were used to predict the actual methane oxidation rates to be expected under field conditions. Water content and temperature corrections factors were obtained for the methane oxidation rate parameter to be used when modeling methane oxidation in the field. To predict in situ measured rates of methane with the model it was necessary to set the half saturation constant of methane and oxygen, K{sub m}, to 5%, approximately five times larger than laboratory measured values. We hypothesize that this discrepancy reflects differences in soil structure between homogenized soil conditions in the lab and actual aggregated soil structure in the field. When all of these correction factors were re-introduced into the oxidation module of our model, it was able to reproduce surface emissions (as measured by static flux chambers) and percent oxidation (as measured by stable isotope techniques) within the range measured in the field.« less
Rizk, C; Vanhavere, F
2016-09-01
The personal dosimetry service at the Lebanese Atomic Energy Commission uses Harshaw 8814 cards with LiF:Mg,Ti detectors. The dosemeters are read in a Harshaw 6600 TLD reader. In the process of accreditation for the ISO 17025 standard((1)), different influence factors are investigated and the uncertainty has been determined. The Individual Monitoring Service Laboratory-LAEC reads the dosemeters once it receives them from the customer, and new cards are immediately given for the next wearing period. The wearing period is 2 months. The dosemeter results are reported to the customers without background subtraction. Both Hp(10) and Hp(0.07) are reported. For this paper, only the uncertainty on Hp(10) will be focussed. The following factors are taken into account for the uncertainty: calibration factor, dosemeter homogeneity and repeatability, energy and angular dependence, non-linearity, temperature dependence, etc. Also the detection limit was determined. One of the important factors is the correction for fading. This fading correction depends on the procedure used such as storage temperatures, the time-temperature profile of the read-out, pre-heat and annealing conditions. Pre- and post-irradiation fading curves were measured for a storage period up to 182 d at room temperature (15-25°C). The resulting final combined standard uncertainty on the reported doses is of the order of 24 % for doses of ∼1 mSv. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Water surface temperature profiles for the Rhine River derived from Landsat ETM+ data
NASA Astrophysics Data System (ADS)
Fricke, Katharina; Baschek, Björn
2013-10-01
Water temperature influences physical and chemical parameters of rivers and streams and is an important parameter for water quality. It is a crucial factor for the existence and the growth of animal and plant species in the river ecosystem. The aim of the research project "Remote sensing of water surface temperature" at the Federal Institute of Hydrology (BfG), Germany, is to supplement point measurements of water temperature with remote sensing methodology. The research area investigated here is the Upper and Middle Rhine River, where continuous measurements of water temperature are already available for several water quality monitoring stations. Satellite imagery is used to complement these point measurements and to generate longitudinal temperature profiles for a better systematic understanding of the changes in river temperature along its course. Several products for sea surface temperature derived from radiances in the thermal infrared are available, but for water temperature from rivers less research has been carried out. Problems arise from the characteristics of the river valley and morphology and the proximity to the riverbank. Depending on the river width, a certain spatial resolution of the satellite images is necessary to allow for an accurate identification of the river surface and the calculation of water temperature. The bands from the Landsat ETM+ sensor in the thermal infrared region offer a possibility to extract the river surface temperatures (RST) of a sufficiently wide river such as the Rhine. Additionally, problems such as cloud cover, shadowing effects, georeferencing errors, different emissivity of water and land, scattering of thermal radiation, adjacency and mixed pixel effects had to be accounted for and their effects on the radiance temperatures will be discussed. For this purpose, several temperature data sets derived from radiance and in situ measurements were com- pared. The observed radiance temperatures are strongly influenced by the atmosphere. Without atmospheric correction, the absolute mean difference between RST and in situ measurements was 1.1°C with a standard devi- ation of 1.3°C. Thus, a correction of atmospheric influences on radiances measured at the top of the atmosphere was necessary and two different methods for atmospheric correction (ATCOR2 and the Atmospheric Correction Parameter Calculator) were applied. The correction results showed that for both methods, the correct choice of atmospheric profiles is very important. With the calculator, an absolute mean difference of 0.8 +/- 1.0°C and with the selected overall best scenes, an absolute mean difference of 0.5 ± 0.7°C was achieved. The selected corrected RST can be used to interpolate between in situ measurements available only for a limited number of points along the river course and longitudinal example profiles of the surface water temperature in the Upper and Middle Rhine could be calculated for different seasons. On the basis of these profiles, the increasing temperature gradient along the Upper Rhine could be identified and the possibility to detect heat or cooling discharge from tributaries and other sources is evaluated.
Air density correction in ionization dosimetry.
Christ, G; Dohm, O S; Schüle, E; Gaupp, S; Martin, M
2004-05-21
Air density must be taken into account when ionization dosimetry is performed with unsealed ionization chambers. The German dosimetry protocol DIN 6800-2 states an air density correction factor for which current barometric pressure and temperature and their reference values must be known. It also states that differences between air density and the attendant reference value, as well as changes in ionization chamber sensitivity, can be determined using a radioactive check source. Both methods have advantages and drawbacks which the paper discusses in detail. Barometric pressure at a given height above sea level can be determined by using a suitable barometer, or data downloaded from airport or weather service internet sites. The main focus of the paper is to show how barometric data from measurement or from the internet are correctly processed. Therefore the paper also provides all the requisite equations and terminological explanations. Computed and measured barometric pressure readings are compared, and long-term experience with air density correction factors obtained using both methods is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawke, J.; Scannell, R.; Maslov, M.
2013-10-15
This work isolated the cause of the observed discrepancy between the electron temperature (T{sub e}) measurements before and after the JET Core LIDAR Thomson Scattering (TS) diagnostic was upgraded. In the upgrade process, stray light filters positioned just before the detectors were removed from the system. Modelling showed that the shift imposed on the stray light filters transmission functions due to the variations in the incidence angles of the collected photons impacted plasma measurements. To correct for this identified source of error, correction factors were developed using ray tracing models for the calibration and operational states of the diagnostic. Themore » application of these correction factors resulted in an increase in the observed T{sub e}, resulting in the partial if not complete removal of the observed discrepancy in the measured T{sub e} between the JET core LIDAR TS diagnostic, High Resolution Thomson Scattering, and the Electron Cyclotron Emission diagnostics.« less
de Souza, Vanessa K; Wales, David J
2006-02-10
On short time scales an underlying Arrhenius temperature dependence of the diffusion constant can be extracted from the fragile, super-Arrhenius diffusion of a binary Lennard-Jones mixture. This Arrhenius diffusion is related to the true super-Arrhenius behavior by a factor that depends on the average angle between steps in successive time windows. The correction factor accounts for the fact that on average, successive displacements are negatively correlated, and this effect can therefore be linked directly with the higher apparent activation energy for diffusion at low temperature.
Enhanced polarization of the cosmic microwave background radiation from thermal gravitational waves.
Bhattacharya, Kaushik; Mohanty, Subhendra; Nautiyal, Akhilesh
2006-12-22
If inflation was preceded by a radiation era, then at the time of inflation there will exist a decoupled thermal distribution of gravitons. Gravitational waves generated during inflation will be amplified by the process of stimulated emission into the existing thermal distribution of gravitons. Consequently, the usual zero temperature scale invariant tensor spectrum is modified by a temperature dependent factor. This thermal correction factor amplifies the B-mode polarization of the cosmic microwave background radiation by an order of magnitude at large angles, which may now be in the range of observability of the Wilkinson Microwave Anisotropy Probe.
Rectal temperature-based death time estimation in infants.
Igari, Yui; Hosokai, Yoshiyuki; Funayama, Masato
2016-03-01
In determining the time of death in infants based on rectal temperature, the same methods used in adults are generally used. However, whether the methods for adults are suitable for infants is unclear. In this study, we examined the following 3 methods in 20 infant death cases: computer simulation of rectal temperature based on the infinite cylinder model (Ohno's method), computer-based double exponential approximation based on Marshall and Hoare's double exponential model with Henssge's parameter determination (Henssge's method), and computer-based collinear approximation based on extrapolation of the rectal temperature curve (collinear approximation). The interval between the last time the infant was seen alive and the time that he/she was found dead was defined as the death time interval and compared with the estimated time of death. In Ohno's method, 7 cases were within the death time interval, and the average deviation in the other 12 cases was approximately 80 min. The results of both Henssge's method and collinear approximation were apparently inferior to the results of Ohno's method. The corrective factor was set within the range of 0.7-1.3 in Henssge's method, and a modified program was newly developed to make it possible to change the corrective factors. Modification A, in which the upper limit of the corrective factor range was set as the maximum value in each body weight, produced the best results: 8 cases were within the death time interval, and the average deviation in the other 12 cases was approximately 80min. There was a possibility that the influence of thermal isolation on the actual infants was stronger than that previously shown by Henssge. We conclude that Ohno's method and Modification A are useful for death time estimation in infants. However, it is important to accept the estimated time of death with certain latitude considering other circumstances. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Experimental and casework validation of ambient temperature corrections in forensic entomology.
Johnson, Aidan P; Wallman, James F; Archer, Melanie S
2012-01-01
This paper expands on Archer (J Forensic Sci 49, 2004, 553), examining additional factors affecting ambient temperature correction of weather station data in forensic entomology. Sixteen hypothetical body discovery sites (BDSs) in Victoria and New South Wales (Australia), both in autumn and in summer, were compared to test whether the accuracy of correlation was affected by (i) length of correlation period; (ii) distance between BDS and weather station; and (iii) periodicity of ambient temperature measurements. The accuracy of correlations in data sets from real Victorian and NSW forensic entomology cases was also examined. Correlations increased weather data accuracy in all experiments, but significant differences in accuracy were found only between periodicity treatments. We found that a >5°C difference between average values of body in situ and correlation period weather station data was predictive of correlations that decreased the accuracy of ambient temperatures estimated using correlation. Practitioners should inspect their weather data sets for such differences. © 2011 American Academy of Forensic Sciences.
Influence of air and water temperature on fill characteristics curve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lefevre, M.R.
1985-01-01
In a previous paper, the author discussed approximations of the Merkel Theory, as well as other approximations included in the CTI recommended method of calculation of the Demand curves. The paper concluded that the familiar difference of enthalpies, used as a cooling potential, which is the Merkel Theory, could continue to be used by simply adding a corrective multiplying factor derived from a direct comparison of the exact theory and the Merkel Theory. At the end of the paper the author briefly showed that the corrections to the Demand curve was only one part of the picture and that theremore » was also an influence of the temperatures of the Characteristic curve side. The object of this paper is to now review the influence of the air and water temperature on the Characteristic curve. This completes the work presented last year.« less
Temperature dependence of plastic scintillators
NASA Astrophysics Data System (ADS)
Peralta, L.
2018-03-01
Plastic scintillator detectors have been studied as dosimeters, since they provide a cost-effective alternative to conventional ionization chambers. Several articles have reported undesired response dependencies on beam energy and temperature, which provides the motivation to determine appropriate correction factors. In this work, we studied the light yield temperature dependency of four plastic scintillators, BCF-10, BCF-60, BC-404, RP-200A and two clear fibers, BCF-98 and SK-80. Measurements were made using a 50 kVp X-ray beam to produce the scintillation and/or radioluminescence signal. The 0 to 40 °C temperature range was scanned for each scintillator, and temperature coefficients were obtained.
14 CFR 23.1043 - Cooling tests.
Code of Federal Regulations, 2012 CFR
2012-01-01
... engine. (4) For turbocharged engines, each turbocharger must be operated through that part of the climb profile for which operation with the turbocharger is requested. (5) For a reciprocating engine, the... than 100 degrees F. (c) Correction factor (except cylinder barrels). Temperatures of engine fluids and...
14 CFR 23.1043 - Cooling tests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... engine. (4) For turbocharged engines, each turbocharger must be operated through that part of the climb profile for which operation with the turbocharger is requested. (5) For a reciprocating engine, the... than 100 degrees F. (c) Correction factor (except cylinder barrels). Temperatures of engine fluids and...
Chen, Chongjuan; Li, Jiazhu; Wang, Guoan; Shi, Minrui
2017-12-31
Atmospheric nitrogen deposition affects nitrogen isotope composition (δ 15 N) in plants. However, both negative effect and positive effect have been reported. The effects of climate on plant δ 15 N have not been corrected for in previous studies, this has impeded discovery of a true effect of atmospheric N deposition on plant δ 15 N. To obtain a more reliable result, it is necessary to correct for the effects of climatic factors. Here, we measured δ 15 N and N contents of plants and soils in Baiwangshan and Mount Dongling, north China. Atmospheric N deposition in Baiwangshan was much higher than Mount Dongling. Generally, however, foliar N contents showed no difference between the two regions and foliar δ 15 N was significantly lower in Baiwangshan than Mount Dongling. The corrected foliar δ 15 N after accounting for a predicted value assumed to vary with temperature was obviously more negative in Baiwangshan than Mount Dongling. Thus, this suggested the necessity of temperature correction in revealing the effect of N deposition on foliar δ 15 N. Temperature, soil N sources and mycorrhizal fungi could not explain the difference in foliar δ 15 N between the two regions, this indicated that atmospheric N deposition had a negative effect on plant δ 15 N. Additionally, this study also showed that the corrected foliar δ 15 N of bulk data set increased with altitude above 1300m in Mount Dongling, this provided an another evidence for the conclusion that atmospheric N deposition could cause 15 N-depletion in plants. Copyright © 2017 Elsevier B.V. All rights reserved.
Conductivity Cell Thermal Inertia Correction Revisited
NASA Astrophysics Data System (ADS)
Eriksen, C. C.
2012-12-01
Salinity measurements made with a CTD (conductivity-temperature-depth instrument) rely on accurate estimation of water temperature within their conductivity cell. Lueck (1990) developed a theoretical framework for heat transfer between the cell body and water passing through it. Based on this model, Lueck and Picklo (1990) introduced the practice of correcting for cell thermal inertia by filtering a temperature time series using two parameters, an amplitude α and a decay time constant τ, a practice now widely used. Typically these two parameters are chosen for a given cell configuration and internal flushing speed by a statistical method applied to a particular data set. Here, thermal inertia correction theory has been extended to apply to flow speeds spanning well over an order of magnitude, both within and outside a conductivity cell, to provide predictions of α and τ from cell geometry and composition. The extended model enables thermal inertia correction for the variable flows encountered by conductivity cells on autonomous gliders and floats, as well as tethered platforms. The length scale formed as the product of cell encounter speed of isotherms, α, and τ can be used to gauge the size of the temperature correction for a given thermal stratification. For cells flushed by dynamic pressure variation induced by platform motion, this length varies by less than a factor of 2 over more than a decade of speed variation. The magnitude of correction for free-flow flushed sensors is comparable to that of pumped cells, but at an order of magnitude in energy savings. Flow conditions around a cell's exterior are found to be of comparable importance to thermal inertia response as flushing speed. Simplification of cell thermal response to a single normal mode is most valid at slow speed. Error in thermal inertia estimation arises from both neglect of higher modes and numerical discretization of the correction scheme, both of which can be easily quantified. Consideration of thermal inertia correction enables assessment of various CTD sampling schemes. Spot sampling by pumping a cell intermittently provides particular challenges, and may lead to biases in inferred salinity that are comparable to climate signals reported from profiling float arrays.
Thermal and Compositional Variation of Glassy Metal Structure Factors.
NASA Astrophysics Data System (ADS)
From, Milton
The x-ray total structure factor of the glassy -metal alloys Mg_{70}Zn_ {30}, Ca_{70}Mg_{30 } and Mg_{85.5}Cu _{14.5} has been measured at three temperatures: 9K, 150K, and 300K. The data have a statistical precision of about.8% and an absolute accuracy of roughly 3%. Percus-Yevick hard sphere structure factors may be fitted quite accurately to the data in the region of the first peak. In addition, the variation of the experimental structure factor with composition is found to be consistent with the Percus-Yevick theory. At low k values, Percus -Yevick and other theoretical model structure factors are in poor agreement with the data. Within experimental error, the temperature dependence of the structure factors is in agreement with the Debye plane wave phonon model of atomic vibrations. The measured structure factors are used to calculate the electrical resistivity from the Faber-Ziman equation. In most cases, the calculations yield both the correct magnitude of resistivity and sign of the temperature coefficient of resistivity.
A Temperature-Based Gain Calibration Technique for Precision Radiometry
NASA Astrophysics Data System (ADS)
Parashare, Chaitali Ravindra
Detecting extremely weak signals in radio astronomy demands high sensitivity and stability of the receivers. The gain of a typical radio astronomy receiver is extremely large, and therefore, even very small gain instabilities can dominate the received noise power and degrade the instrument sensitivity. Hence, receiver stabilization is of prime importance. Gain variations occur mainly due to ambient temperature fluctuations. We take a new approach to receiver stabilization, which makes use of active temperature monitoring and corrects for the gain fluctuations in post processing. This approach is purely passive and does not include noise injection or switching for calibration. This system is to be used for the Precision Array for Probing the Epoch of Reionization (PAPER), which is being developed to detect the extremely faint neutral hydrogen (HI) signature of the Epoch of Reionization (EoR). The epoch of reionization refers to the period in the history of the Universe when the first stars and galaxies started to form. When there are N antenna elements in the case of a large scale array, all elements may not be subjected to the same environmental conditions at a given time. Hence, we expect to mitigate the gain variations by monitoring the physical temperature of each element of the array. This stabilization approach will also benefit experiments like EDGES (Experiment to Detect the Global EoR Signature) and DARE (Dark Ages Radio Explorer), which involve a direct measurement of the global 21 cm signal using a single antenna element and hence, require an extremely stable system. This dissertation focuses on the development and evaluation of a calibration technique that compensates for the gain variations caused due to temperature fluctuations of the RF components. It carefully examines the temperature dependence of the components in the receiver chain. The results from the first-order field instrument, called a Gainometer (GoM), highlight the issue with the cable temperature which varies significantly with different climatic conditions. The model used to correct for gain variations is presented. We describe the measurements performed to verify the model. RFI is a major issue at low frequencies, which makes these kind of measurements extremely challenging. We discuss the careful measures required to mitigate the errors due to the unwanted interference. In the case of the laboratory measurements, the model follows closely with the measured power, and shows an improvement in the gain stability by a factor of ˜ 46, when the corrections are applied. The gain stability (rms to mean) improves from 1 part in 32 to 1 part in 1500. The field measurements suggest that correcting for cable temperature variations is challenging. The improvement in the gain stability is by a factor of ˜ 4.3, when the RF front end components are situated out in the field. The results are analyzed using the statistical methods such as the standard error of the mean, the run test, skewness, and kurtosis. These tests demonstrate the normal distribution of the process when the corrections are applied and confirm an effective gain bias removal. The results obtained from the sky observation using a single antenna element are compared before and after applying the corrections. Several days data verify that the power fluctuations are significantly reduced after the gain corrections are applied.
Performance of the STIS CCD Dark Rate Temperature Correction
NASA Astrophysics Data System (ADS)
Branton, Doug; STScI STIS Team
2018-06-01
Since July 2001, the Space Telescope Imaging Spectrograph (STIS) onboard Hubble has operated on its Side-2 electronics due to a failure in the primary Side-1 electronics. While nearly identical, Side-2 lacks a functioning temperature sensor for the CCD, introducing a variability in the CCD operating temperature. Previous analysis utilized the CCD housing temperature telemetry to characterize the relationship between the housing temperature and the dark rate. It was found that a first-order 7%/°C uniform dark correction demonstrated a considerable improvement in the quality of dark subtraction on Side-2 era CCD data, and that value has been used on all Side-2 CCD darks since. In this report, we show how this temperature correction has performed historically. We compare the current 7%/°C value against the ideal first-order correction at a given time (which can vary between ~6%/°C and ~10%/°C) as well as against a more complex second-order correction that applies a unique slope to each pixel as a function of dark rate and time. At worst, the current correction has performed ~1% worse than the second-order correction. Additionally, we present initial evidence suggesting that the variability in pixel temperature-sensitivity is significant enough to warrant a temperature correction that considers pixels individually rather than correcting them uniformly.
Measuring wearing times of glasses and ocular patches using a thermosensor device from orthodontics.
Januschowski, Kai; Bechtold, Till E; Schott, Timm C; Huelber-Januschowski, Maren S; Blumenstock, Gunnar; Bartz-Schmidt, Karl-Ulrich; Besch, Dorothea; Schramm, Charlotte
2013-12-01
Amblyopia is one of the most common visual disorders in children. The risk of severe visual impairment on the healthy eye is doubled in patients with amblyopia. If detected early enough, the chances of visual rehabilitation are good. Treatment consists of refractive correction and occlusion of the dominant eye. Patient compliance is an important factor and can be monitored using thermosensors. It was the goal of our study to give proof of the principle that the wearing times of glasses and patches can be measured using a comparatively small and commercially available microsensor. Agreement between wearing times protocols of ocular patching/refractive correction and temperature measurements of thermosensors attached to the patches or glasses of three individuals were analysed using the Bland-Altman method. It was also analysed whether blinded persons could distinguish between temperature curves of patches and glasses, or temperature curves of an incubator or while worn in a pocket. The temperatures picked up by the microsensors indicate the beginning and the end wearing times of either glasses or ocular patches through steep temperature difference and a distinct temperature curve during measurements. Although blinded test persons were able to cleary distinguish between temperature profiles from incubator/pocket measurements compared to glasses/patching, glasses and patching curves could be discriminated correctly in only 50%. Differences between wearing time protocols and temperature measurements were within the limits of agreement as stated by the Bland-Altman plots. The TheraMon(®) microsensor can reliably measure wearing times of glasses and ocular patches without making the wearer uncomfortable, although the data are not unquestionable, especially in higher surrounding temperatures. Further studies on a larger number of individuals with different wearing profiles are needed. © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Air density dependence of the soft X-ray PTW 34013 ionization chamber.
Torres Del Río, Julia; Forastero, Cristina; Tornero-López, Ana M; López, Jesús J; Guirado, Damián; Perez-Calatayud, José; Lallena, Antonio M
2018-02-01
We studied the dependence on air density of the response of the PTW 34013 ionization chamber, recently upgraded for dosimetry control of low energy X-ray beams. Measurements were performed by changing the pressure conditions inside a pressure chamber. The behavior of the measurements against the air density inside this chamber was analyzed. X-ray beams generated with 50, 70, 100, 150 and 200 kVp and the two electrometer polarities were considered. For all beams studied, measurements corrected with the conventional temperature and pressure factor showed a residual dependence on the air density that was described with a linear function of the air density. For the 50 and 70 kVp beams, corrected measurements remained ∼1% smaller than the value found at standard pressure/temperature conditions, for both electrometer polarities and for the air density range typical in clinical conditions. For air densities smaller than the standard one, measurements found for 100, 150 and 200 kVp beams were below or above the value found at standard pressure and temperature when the negative or positive electrometer polarities were used, respectively. The differences with the measurements at standard conditions were less than 1% for the 100 kVp beam and below 4% for the other two beams. The PTW 34013 ionization chamber showed a dependence on the air density that is not properly described with the usual temperature and pressure correction factor. This residual dependence is negligible for low energy beams, for which this chamber is recommended, but is more substantial for beams with energy above 80 kVp. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Richards, W. Lance
1996-01-01
Significant strain-gage errors may exist in measurements acquired in transient-temperature environments if conventional correction methods are applied. As heating or cooling rates increase, temperature gradients between the strain-gage sensor and substrate surface increase proportionally. These temperature gradients introduce strain-measurement errors that are currently neglected in both conventional strain-correction theory and practice. Therefore, the conventional correction theory has been modified to account for these errors. A new experimental method has been developed to correct strain-gage measurements acquired in environments experiencing significant temperature transients. The new correction technique has been demonstrated through a series of tests in which strain measurements were acquired for temperature-rise rates ranging from 1 to greater than 100 degrees F/sec. Strain-gage data from these tests have been corrected with both the new and conventional methods and then compared with an analysis. Results show that, for temperature-rise rates greater than 10 degrees F/sec, the strain measurements corrected with the conventional technique produced strain errors that deviated from analysis by as much as 45 percent, whereas results corrected with the new technique were in good agreement with analytical results.
Coarse-grained modeling of polyethylene melts: Effect on dynamics
Peters, Brandon L.; Salerno, K. Michael; Agrawal, Anupriya; ...
2017-05-23
The distinctive viscoelastic behavior of polymers results from a coupled interplay of motion on multiple length and time scales. Capturing the broad time and length scales of polymer motion remains a challenge. Using polyethylene (PE) as a model macromolecule, we construct coarse-grained (CG) models of PE with three to six methyl groups per CG bead and probe two critical aspects of the technique: pressure corrections required after iterative Boltzmann inversion (IBI) to generate CG potentials that match the pressure of reference fully atomistic melt simulations and the transferability of CG potentials across temperatures. While IBI produces nonbonded pair potentials thatmore » give excellent agreement between the atomistic and CG pair correlation functions, the resulting pressure for the CG models is large compared with the pressure of the atomistic system. We find that correcting the potential to match the reference pressure leads to nonbonded interactions with much deeper minima and slightly smaller effective bead diameter. However, simulations with potentials generated by IBI and pressure-corrected IBI result in similar mean-square displacements (MSDs) and stress autocorrelation functions G( t) for PE melts. While the time rescaling factor required to match CG and atomistic models is the same for pressure- and non-pressure-corrected CG models, it strongly depends on temperature. Furthermore, transferability was investigated by comparing the MSDs and stress autocorrelation functions for potentials developed at different temperatures.« less
Coarse-grained modeling of polyethylene melts: Effect on dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Brandon L.; Salerno, K. Michael; Agrawal, Anupriya
The distinctive viscoelastic behavior of polymers results from a coupled interplay of motion on multiple length and time scales. Capturing the broad time and length scales of polymer motion remains a challenge. Using polyethylene (PE) as a model macromolecule, we construct coarse-grained (CG) models of PE with three to six methyl groups per CG bead and probe two critical aspects of the technique: pressure corrections required after iterative Boltzmann inversion (IBI) to generate CG potentials that match the pressure of reference fully atomistic melt simulations and the transferability of CG potentials across temperatures. While IBI produces nonbonded pair potentials thatmore » give excellent agreement between the atomistic and CG pair correlation functions, the resulting pressure for the CG models is large compared with the pressure of the atomistic system. We find that correcting the potential to match the reference pressure leads to nonbonded interactions with much deeper minima and slightly smaller effective bead diameter. However, simulations with potentials generated by IBI and pressure-corrected IBI result in similar mean-square displacements (MSDs) and stress autocorrelation functions G( t) for PE melts. While the time rescaling factor required to match CG and atomistic models is the same for pressure- and non-pressure-corrected CG models, it strongly depends on temperature. Furthermore, transferability was investigated by comparing the MSDs and stress autocorrelation functions for potentials developed at different temperatures.« less
Junk, J; Ulber, B; Vidal, S; Eickermann, M
2015-11-01
Agricultural production is directly affected by projected increases in air temperature and changes in precipitation. A multi-model ensemble of regional climate change projections indicated shifts towards higher air temperatures and changing precipitation patterns during the summer and winter seasons up to the year 2100 for the region of Goettingen (Lower Saxony, Germany). A second major controlling factor of the agricultural production is the infestation level by pests. Based on long-term field surveys and meteorological observations, a calibration of an existing model describing the migration of the pest insect Ceutorhynchus napi was possible. To assess the impacts of climate on pests under projected changing environmental conditions, we combined the results of regional climate models with the phenological model to describe the crop invasion of this species. In order to reduce systematic differences between the output of the regional climate models and observational data sets, two different bias correction methods were applied: a linear correction for air temperature and a quantile mapping approach for precipitation. Only the results derived from the bias-corrected output of the regional climate models showed satisfying results. An earlier onset, as well as a prolongation of the possible time window for the immigration of Ceutorhynchus napi, was projected by the majority of the ensemble members.
NASA Astrophysics Data System (ADS)
Junk, J.; Ulber, B.; Vidal, S.; Eickermann, M.
2015-11-01
Agricultural production is directly affected by projected increases in air temperature and changes in precipitation. A multi-model ensemble of regional climate change projections indicated shifts towards higher air temperatures and changing precipitation patterns during the summer and winter seasons up to the year 2100 for the region of Goettingen (Lower Saxony, Germany). A second major controlling factor of the agricultural production is the infestation level by pests. Based on long-term field surveys and meteorological observations, a calibration of an existing model describing the migration of the pest insect Ceutorhynchus napi was possible. To assess the impacts of climate on pests under projected changing environmental conditions, we combined the results of regional climate models with the phenological model to describe the crop invasion of this species. In order to reduce systematic differences between the output of the regional climate models and observational data sets, two different bias correction methods were applied: a linear correction for air temperature and a quantile mapping approach for precipitation. Only the results derived from the bias-corrected output of the regional climate models showed satisfying results. An earlier onset, as well as a prolongation of the possible time window for the immigration of Ceutorhynchus napi, was projected by the majority of the ensemble members.
Challenges in Physical Characterization of Dim Space Objects: What Can We Learn from NEOs
NASA Astrophysics Data System (ADS)
Reddy, V.; Sanchez, J.; Thirouin, A.; Rivera-Valentin, E.; Ryan, W.; Ryan, E.; Mokovitz, N.; Tegler, S.
2016-09-01
Physical characterization of dim space objects in cis-lunar space can be a challenging task. Of particular interest to both natural and artificial space object behavior scientists are the properties beyond orbital parameters that can uniquely identify them. These properties include rotational state, size, shape, density and composition. A wide range of observational and non-observational factors affect our ability to characterize dim objects in cis-lunar space. For example, phase angle (angle between Sun-Target-Observer), temperature, rotational variations, temperature, and particle size (for natural dim objects). Over the last two decades, space object behavior scientists studying natural dim objects have attempted to quantify and correct for a majority of these factors to enhance our situational awareness. These efforts have been primarily focused on developing laboratory spectral calibrations in a space-like environment. Calibrations developed correcting spectral observations of natural dim objects could be applied to characterizing artificial objects, as the underlying physics is the same. The paper will summarize our current understanding of these observational and non-observational factors and present a case study showcasing the state of the art in characterization of natural dim objects.
Unabated global surface temperature warming: evaluating the evidence
NASA Astrophysics Data System (ADS)
Karl, T. R.; Arguez, A.
2015-12-01
New insights related to time-dependent bias corrections in global surface temperatures have led to higher rates of warming over the past few decades than previously reported in the IPCC Fifth Assessment Report (2014). Record high global temperatures in the past few years have also contributed to larger trends. The combination of these factors and new analyses of the rate of temperature change show unabated global warming since at least the mid-Twentieth Century. New time-dependent bias corrections account for: (1) differences in temperatures measured from ships and drifting buoys; (2) improved corrections to ship measured temperatures; and (3) the larger rates of warming in polar regions (particularly the Arctic). Since 1951, the period over which IPCC (2014) attributes over half of the observed global warming to human causes, it is shown that there has been a remarkably robust and sustained warming, punctuated with inter-annual and decadal variability. This finding is confirmed through simple trend analysis and Empirical Mode Decomposition (EMD). Trend analysis however, especially for decadal trends, is sensitive to selection bias of beginning and ending dates. EMD has no selection bias. Additionally, it can highlight both short- and long-term processes affecting the global temperature times series since it addresses both non-linear and non-stationary processes. For the new NOAA global temperature data set, our analyses do not support the notion of a hiatus or slowing of long-term global warming. However, sub-decadal periods of little (or no warming) and rapid warming can also be found, clearly showing the impact of inter-annual and decadal variability that previously has been attributed to both natural and human-induced non-greenhouse forcings.
Bueno, Clarissa; Menna-Barreto, Luiz
2016-01-01
Photic and non-photic environmental factors are suggested to modulate the development of circadian rhythms in infants. Our aim is to evaluate the development of biological rhythms (circadian or ultradian) in newborns in transition from Neonatal Intensive Care Units (NICU) to home and along the first 6 months of life, to identify masking and entraining environment factors along development. Ten newborns were evaluated in their last week inside the NICU and in the first week after being delivered home; 6 babies were also followed until 6 months of corrected age. Activity, recorded with actimeters, wrist temperature and observed sleep and feeding behavior were recorded continuously along their last week inside the NICU and in the first week at home and also until 6 months of corrected age for the subjects who remained in the study. Sleep/wake and activity/rest cycle showed ultradian patterns and the sleep/wake was strongly influenced by the 3 h feeding schedule inside the NICU, while wrist temperature showed a circadian pattern that seemed no to be affected by environmental cycles. A circadian rhythm emerges for sleep/wake behavior in the first week at home, whereas the 3 h period vanishes. Both activity/rest and wrist temperature presented a sudden increase in the contribution of the circadian component immediately after babies were delivered home, also suggesting a masking effect of the NICU environment. We found a positive correlation of postconceptional age and the increase in the daily component of activity and temperature along the following 6 months, while feeding behavior became arrhythmic.
NASA Astrophysics Data System (ADS)
Williams, Robert W.; Schlücker, Sebastian; Hudson, Bruce S.
2008-01-01
A scaled quantum mechanical harmonic force field (SQMFF) corrected for anharmonicity is obtained for the 23 K L-alanine crystal structure using van der Waals corrected periodic boundary condition density functional theory (DFT) calculations with the PBE functional. Scale factors are obtained with comparisons to inelastic neutron scattering (INS), Raman, and FT-IR spectra of polycrystalline L-alanine at 15-23 K. Calculated frequencies for all 153 normal modes differ from observed frequencies with a standard deviation of 6 wavenumbers. Non-bonded external k = 0 lattice modes are included, but assignments to these modes are presently ambiguous. The extension of SQMFF methodology to lattice modes is new, as are the procedures used here for providing corrections for anharmonicity and van der Waals interactions in DFT calculations on crystals. First principles Born-Oppenheimer molecular dynamics (BOMD) calculations are performed on the L-alanine crystal structure at a series of classical temperatures ranging from 23 K to 600 K. Corrections for zero-point energy (ZPE) are estimated by finding the classical temperature that reproduces the mean square displacements (MSDs) measured from the diffraction data at 23 K. External k = 0 lattice motions are weakly coupled to bonded internal modes.
NASA Astrophysics Data System (ADS)
Gonçalves, Denise R.; Wesson, Roger; Morisset, Cristophe; Barlow, Michael; Ercolano, Barbara
2012-08-01
The extraction of chemical abundances of ionised nebulae from a limited spectral range is usually hampered by the lack of emission lines corresponding to certain ionic stages. So far, the missing emission lines have been accounted for by the ionisation correction factors (ICFs), constructed under simplistic assumptions like spherical geometry by using 1-D photoionisation modelling. In this contribution we discuss the results (Gonçalves et al. 2011, in prep.) of our ongoing project to find a new set of ICFs to determine total abundances of N, O, Ne, Ar, and S, with optical spectra, in the case of non-spherical PNe. These results are based on a grid of 3-D photoionisation modelling of round, elliptical and bipolar shaped PNe, spanning the typical PN luminosities, effective temperatures and densities. We show that the additional corrections to the widely used Kingsburgh & Barlow (1994) ICFs are always higher for bipolars than for ellipticals. Moreover, these additional corrections are, for bipolars, up to: 17% for oxygen, 33% for nitrogen, 40% for neon, 28% for argon and 50% for sulphur. Finally, on top of the fact that corrections change greatly with shape, they vary also greatly with the central star temperature, while the luminosity is a less important parameter.
On the Confounding Effect of Temperature on Chemical Shift-Encoded Fat Quantification
Hernando, Diego; Sharma, Samir D.; Kramer, Harald; Reeder, Scott B.
2014-01-01
Purpose To characterize the confounding effect of temperature on chemical shift-encoded (CSE) fat quantification. Methods The proton resonance frequency of water, unlike triglycerides, depends on temperature. This leads to a temperature dependence of the spectral models of fat (relative to water) that are commonly used by CSE-MRI methods. Simulation analysis was performed for 1.5 Tesla CSE fat–water signals at various temperatures and echo time combinations. Oil–water phantoms were constructed and scanned at temperatures between 0 and 40°C using spectroscopy and CSE imaging at three echo time combinations. An explanted human liver, rejected for transplantation due to steatosis, was scanned using spectroscopy and CSE imaging. Fat–water reconstructions were performed using four different techniques: magnitude and complex fitting, with standard or temperature-corrected signal modeling. Results In all experiments, magnitude fitting with standard signal modeling resulted in large fat quantification errors. Errors were largest for echo time combinations near TEinit ≈ 1.3 ms, ΔTE ≈ 2.2 ms. Errors in fat quantification caused by temperature-related frequency shifts were smaller with complex fitting, and were avoided using a temperature-corrected signal model. Conclusion Temperature is a confounding factor for fat quantification. If not accounted for, it can result in large errors in fat quantifications in phantom and ex vivo acquisitions. PMID:24123362
Ianakiev, Kiril D [Los Alamos, NM; Hsue, Sin Tao [Santa Fe, NM; Browne, Michael C [Los Alamos, NM; Audia, Jeffrey M [Abiquiu, NM
2006-07-25
The present invention includes an apparatus and corresponding method for temperature correction and count rate expansion of inorganic scintillation detectors. A temperature sensor is attached to an inorganic scintillation detector. The inorganic scintillation detector, due to interaction with incident radiation, creates light pulse signals. A photoreceiver processes the light pulse signals to current signals. Temperature correction circuitry that uses a fast light component signal, a slow light component signal, and the temperature signal from the temperature sensor to corrected an inorganic scintillation detector signal output and expanded the count rate.
Atmospheric corrections for TIMS estimated emittance
NASA Technical Reports Server (NTRS)
Warner, T. A.; Levandowski, D. W.
1992-01-01
The estimated temperature of the average of 500 lines of Thermal Infrared Multispectral Scanner (TIMS) data of the Pacific Ocean, from flight line 94, collected on 30 Sep. 1988, at 1931 GMT is shown. With no atmospheric corrections, estimated temperature decreases away from nadir (the center of the scan line). A LOWTRAN modeled correction, using local radiosonde data and instrument scan angle information, results in reversed limb darkening effects for most bands, and does not adequately correct all bands to the same temperature. The atmosphere tends to re-radiate energy at the wavelengths at which it most absorbs, and thus the overall difference between corrected and uncorrected temperatures is approximately 40 C, despite the average LOWTRAN calculated transmittance of only 60 percent between 8.1 and 11.6 microns. An alternative approach to atmospheric correction is a black body normalization. This is done by calculating a normalization factor for each pixel position and wavelength, which when applied results in a single calculated temperature, as would be expected for a gray body with near uniform emittance. The black body adjustment is based on the atmospheric conditions over the sea. The ground elevation profile along the remaining 3520 scan lines (approximately 10 km) of flight line 94, up the slopes of Kilauea, determined from aircraft pressure and laser altimeter data is shown. This flight line includes a large amount of vegetation that is clearly discernible on the radiance image, being much cooler than the surrounding rocks. For each of the 3520 scan lines, pixels were classified as vegetation or 'other'. A moving average of 51 lines was applied to the composite vegetation emittance for each scan line, to reduce noise. Assuming vegetation to be like water, and to act as gray body with an emittance of 0.986 across the spectrum, it is shown that that the LOWTRAN induced artifacts are severe, and other than for the 0.9.9 micron channel, not significantly different from applying no corrections at all. As expected, with increasing elevation atmospheric effects are slightly reduced, because moisture tends to be concentrated in the lowermost part of the atmosphere. The black body adjustment is highly robust, and even at elevations nearly 600 meters above the sea, remains an alternative procedure for use in calculating emittance.
Bias correction for rainrate retrievals from satellite passive microwave sensors
NASA Technical Reports Server (NTRS)
Short, David A.
1990-01-01
Rainrates retrieved from past and present satellite-borne microwave sensors are affected by a fundamental remote sensing problem. Sensor fields-of-view are typically large enough to encompass substantial rainrate variability, whereas the retrieval algorithms, based on radiative transfer calculations, show a non-linear relationship between rainrate and microwave brightness temperature. Retrieved rainrates are systematically too low. A statistical model of the bias problem shows that bias correction factors depend on the probability distribution of instantaneous rainrate and on the average thickness of the rain layer.
Ando, Kei; Kobayashi, Kazuyoshi; Ito, Kenyu; Tsushima, Mikito; Morozumi, Masayoshi; Tanaka, Satoshi; Machino, Masaaki; Ota, Kyotaro; Nishida, Yoshihiro; Ishiguro, Naoki; Imagama, Shiro
2018-03-29
There is little information on intraoperative neuromonitoring during correction fusion surgery for syndromic scoliosis. To investigate intraoperative TcMEPs and conditions (body temperature and blood pressure) for syndromic scoliosis. The subjects were 23 patients who underwent 25 surgeries for corrective fusion using TcMEP. Patients were divided into groups based on a decrease (DA+) or no decrease (DA-) of the amplitude of the TcMEP waveform of ≥70%. The groups were compared for age, sex, disease, type of surgery, fusion area, operation time, estimated blood loss, body temperature, blood pressure, Cobb angle, angular curve (Cobb angle/number of vertebra), bending flexibility, correction rate, and recovery. The mean Cobb angles before and after surgery were 85.2° and 29.1°, giving a correction rate of 68.2%. There were 16 surgeries (64.0%) with intraoperative TcMEP wave changes. The DA+ and DA- groups had similar intraoperative conditions, but the short angular curve differed significantly between these groups. Amplitude deterioration occurred in 4 cases during first rod placement, in 8 during rotation, and in 3 during second rod placement after rotation. Seven patients had complete loss of TcMEP. However, most TcMEP changes recovered after pediclectomy or decreased correction. The preoperative angular curve differed significantly between patients with and without TcMEP changes (P < .05). Intraoperative TcMEP wave changes occurred in 64.0% of surgeries for corrective fusion, and all but one of these changes occurred during the correction procedure. The angular curve was a risk factor for intraoperative motor deficit.
NASA Astrophysics Data System (ADS)
Stisen, S.; Højberg, A. L.; Troldborg, L.; Refsgaard, J. C.; Christensen, B. S. B.; Olsen, M.; Henriksen, H. J.
2012-11-01
Precipitation gauge catch correction is often given very little attention in hydrological modelling compared to model parameter calibration. This is critical because significant precipitation biases often make the calibration exercise pointless, especially when supposedly physically-based models are in play. This study addresses the general importance of appropriate precipitation catch correction through a detailed modelling exercise. An existing precipitation gauge catch correction method addressing solid and liquid precipitation is applied, both as national mean monthly correction factors based on a historic 30 yr record and as gridded daily correction factors based on local daily observations of wind speed and temperature. The two methods, named the historic mean monthly (HMM) and the time-space variable (TSV) correction, resulted in different winter precipitation rates for the period 1990-2010. The resulting precipitation datasets were evaluated through the comprehensive Danish National Water Resources model (DK-Model), revealing major differences in both model performance and optimised model parameter sets. Simulated stream discharge is improved significantly when introducing the TSV correction, whereas the simulated hydraulic heads and multi-annual water balances performed similarly due to recalibration adjusting model parameters to compensate for input biases. The resulting optimised model parameters are much more physically plausible for the model based on the TSV correction of precipitation. A proxy-basin test where calibrated DK-Model parameters were transferred to another region without site specific calibration showed better performance for parameter values based on the TSV correction. Similarly, the performances of the TSV correction method were superior when considering two single years with a much dryer and a much wetter winter, respectively, as compared to the winters in the calibration period (differential split-sample tests). We conclude that TSV precipitation correction should be carried out for studies requiring a sound dynamic description of hydrological processes, and it is of particular importance when using hydrological models to make predictions for future climates when the snow/rain composition will differ from the past climate. This conclusion is expected to be applicable for mid to high latitudes, especially in coastal climates where winter precipitation types (solid/liquid) fluctuate significantly, causing climatological mean correction factors to be inadequate.
van Noort, Paul C M
2009-06-01
Fugacity ratios of organic compounds are used to calculate (subcooled) liquid properties, such as solubility or vapour pressure, from solid properties and vice versa. They can be calculated from the entropy of fusion, the melting temperature, and heat capacity data for the solid and the liquid. For many organic compounds, values for the fusion entropy are lacking. Heat capacity data are even scarcer. In the present study, semi-empirical compound class specific equations were derived to estimate fugacity ratios from molecular weight and melting temperature for polycyclic aromatic hydrocarbons and polychlorinated benzenes, biphenyls, dibenzo[p]dioxins and dibenzofurans. These equations estimate fugacity ratios with an average standard error of about 0.05 log units. In addition, for compounds with known fusion entropy values, a general semi-empirical correction equation based on molecular weight and melting temperature was derived for estimation of the contribution of heat capacity differences to the fugacity ratio. This equation estimates the heat capacity contribution correction factor with an average standard error of 0.02 log units for polycyclic aromatic hydrocarbons, polychlorinated benzenes, biphenyls, dibenzo[p]dioxins and dibenzofurans.
Discussion on Boiler Efficiency Correction Method with Low Temperature Economizer-Air Heater System
NASA Astrophysics Data System (ADS)
Ke, Liu; Xing-sen, Yang; Fan-jun, Hou; Zhi-hong, Hu
2017-05-01
This paper pointed out that it is wrong to take the outlet flue gas temperature of low temperature economizer as exhaust gas temperature in boiler efficiency calculation based on GB10184-1988. What’s more, this paper proposed a new correction method, which decomposed low temperature economizer-air heater system into two hypothetical parts of air preheater and pre condensed water heater and take the outlet equivalent gas temperature of air preheater as exhaust gas temperature in boiler efficiency calculation. This method makes the boiler efficiency calculation more concise, with no air heater correction. It has a positive reference value to deal with this kind of problem correctly.
UNBIASED CORRECTION RELATIONS FOR GALAXY CLUSTER PROPERTIES DERIVED FROM CHANDRA AND XMM-NEWTON
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Hai-Hui; Li, Cheng-Kui; Chen, Yong
2015-01-20
We use a sample of 62 clusters of galaxies to investigate the discrepancies between the gas temperature and total mass within r {sub 500} from XMM-Newton and Chandra data. Comparisons of the properties show that (1) both the de-projected and projected temperatures determined by Chandra are higher than those of XMM-Newton and there is a good linear relationship for the de-projected temperatures: T {sub Chandra} = 1.25 × T {sub XMM}–0.13. (2) The Chandra mass is much higher than the XMM-Newton mass with a bias of 0.15 and our mass relation is log{sub 10} M {sub Chandra} = 1.02 × log{sub 10}more » M {sub XMM}+0.15. To explore the reasons for the discrepancy in mass, we recalculate the Chandra mass (expressed as M{sub Ch}{sup mo/d}) by modifying its temperature with the de-projected temperature relation. The results show that M{sub Ch}{sup mo/d} is closer to the XMM-Newton mass with the bias reducing to 0.02. Moreover, M{sub Ch}{sup mo/d} are corrected with the r {sub 500} measured by XMM-Newton and the intrinsic scatter is significantly improved with the value reducing from 0.20 to 0.12. These mean that the temperature bias may be the main factor causing the mass bias. Finally, we find that M{sub Ch}{sup mo/d} is consistent with the corresponding XMM-Newton mass derived directly from our mass relation at a given Chandra mass. Thus, the de-projected temperature and mass relations can provide unbiased corrections for galaxy cluster properties derived from Chandra and XMM-Newton.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-13
... measurements corrected for temperature and non-ideal gas behavior). For gases with low volume consumption for... effect of that abatement system when using either the emission factors and calculation methods in 40 CFR...) basis. To develop the preliminary estimate, the reporter must use the gas consumption in the tools...
Doppler broadening of neutron-induced resonances using ab initio phonon spectrum
NASA Astrophysics Data System (ADS)
Noguere, G.; Maldonado, P.; De Saint Jean, C.
2018-05-01
Neutron resonances observed in neutron cross section data can only be compared with their theoretical analogues after a correct broadening of the resonance widths. This broadening is usually carried out by two different theoretical models, namely the Free Gas Model and the Crystal Lattice Model, which, however, are only applicable under certain assumptions. Here, we use neutron transmission experiments on UO2 samples at T=23.7 K and T=293.7 K, to investigate the limitations of these models when an ab initio phonon spectrum is introduced in the calculations. Comparisons of the experimental and theoretical transmissions highlight the underestimation of the energy transferred at low temperature and its impact on the accurate determination of the radiation widths Γ_{γ_{λ}} of the 238U resonances λ. The observed deficiency of the model represents an experimental evidence that the Debye-Waller factor is not correctly calculated at low temperature near the Neel temperature ( TN=30.8 K).
NASA Technical Reports Server (NTRS)
Gaines, G. B.; Thomas, R. E.; Noel, G. T.; Shilliday, T. S.; Wood, V. E.; Carmichael, D. C.
1979-01-01
An accelerated life test is described which was developed to predict the life of the 25 kW photovoltaic array installed near Mead, Nebraska. A quantitative model for accelerating testing using multiple environmental stresses was used to develop the test design. The model accounts for the effects of thermal stress by a relation of the Arrhenius form. This relation was then corrected for the effects of nonthermal environmental stresses, such as relative humidity, atmospheric pollutants, and ultraviolet radiation. The correction factors for the nonthermal stresses included temperature-dependent exponents to account for the effects of interactions between thermal and nonthermal stresses on the rate of degradation of power output. The test conditions, measurements, and data analyses for the accelerated tests are presented. Constant-temperature, cyclic-temperature, and UV types of tests are specified, incorporating selected levels of relative humidity and chemical contamination and an imposed forward-bias current and static electric field.
An Accurate Temperature Correction Model for Thermocouple Hygrometers 1
Savage, Michael J.; Cass, Alfred; de Jager, James M.
1982-01-01
Numerous water relation studies have used thermocouple hygrometers routinely. However, the accurate temperature correction of hygrometer calibration curve slopes seems to have been largely neglected in both psychrometric and dewpoint techniques. In the case of thermocouple psychrometers, two temperature correction models are proposed, each based on measurement of the thermojunction radius and calculation of the theoretical voltage sensitivity to changes in water potential. The first model relies on calibration at a single temperature and the second at two temperatures. Both these models were more accurate than the temperature correction models currently in use for four psychrometers calibrated over a range of temperatures (15-38°C). The model based on calibration at two temperatures is superior to that based on only one calibration. The model proposed for dewpoint hygrometers is similar to that for psychrometers. It is based on the theoretical voltage sensitivity to changes in water potential. Comparison with empirical data from three dewpoint hygrometers calibrated at four different temperatures indicates that these instruments need only be calibrated at, e.g. 25°C, if the calibration slopes are corrected for temperature. PMID:16662241
Ionization correction factors for H II regions in blue compact dwarf galaxies
NASA Astrophysics Data System (ADS)
Holovatyi, V. V.; Melekh, B. Ya.
2002-08-01
Energy distributions in the spectra of the ionizing nuclei of H II regions beyond λ <= 91.2 nm were calculated. A grid of photoionization models of 270 H II regions was constructed. The free parameters of the model grid are the hydrogen density nH in the nebular gas, filling factor, energy Lc-spectrum of ionizing nuclei, and metallicity. The chemical composition from the studies of Izotov et al. were used for model grid initialization. The integral linear spectra calculated for the photoionization models were used to determine the concentration ne, temperatures Te of electrons, and ionic concentrations n(A+i)/n(H+) by the nebular gas diagnostic method. The averaged relative ionic abundances n(A+i)/n(H+) thus calculated were used to determine new expressions for ionization correction factors which we recommend for the determination of abundances in the H II regions of blue compact dwarf galaxies.
NASA Astrophysics Data System (ADS)
Choudhary, Sumita; Narula, Rahul; Gangopadhyay, Subhashis
2018-05-01
Precise measurement of electrical sheet resistance and resistivity of metallic thin Cu films may play a significant role in temperature sensing by means of resistivity changes which can further act as a safety measure of various electronic devices during their operation. Four point probes resistivity measurement is a useful approach as it successfully excludes the contact resistance between the probes and film surface of the sample. Although, the resistivity of bulk samples at a particular temperature mostly depends on its materialistic property, however, it may significantly differ in the case of thin films, where the shape and thickness of the sample can significantly influence on it. Depending on the ratio of the film thickness to probe spacing, samples are usually classified in two segments such as (i) thick films or (ii) thin films. Accordingly, the geometric correction factors G can be related to the sample resistivity r, which has been calculated here for thin Cu films of thickness up to few 100 nm. In this study, various rectangular shapes of thin Cu films have been used to determine the shape induced geometric correction factors G. An expressions for G have been obtained as a function of film thickness t versus the probe spacing s. Using these expressions, the correction factors have been plotted separately for each cases as a function of (a) film thickness for fixed linear probe spacing and (b) probe distance from the edge of the film surface for particular thickness. Finally, we compare the experimental results of thin Cu films of various rectangular geometries with the theoretical reported results.
1/ f noise from the laws of thermodynamics for finite-size fluctuations.
Chamberlin, Ralph V; Nasir, Derek M
2014-07-01
Computer simulations of the Ising model exhibit white noise if thermal fluctuations are governed by Boltzmann's factor alone; whereas we find that the same model exhibits 1/f noise if Boltzmann's factor is extended to include local alignment entropy to all orders. We show that this nonlinear correction maintains maximum entropy during equilibrium fluctuations. Indeed, as with the usual way to resolve Gibbs' paradox that avoids entropy reduction during reversible processes, the correction yields the statistics of indistinguishable particles. The correction also ensures conservation of energy if an instantaneous contribution from local entropy is included. Thus, a common mechanism for 1/f noise comes from assuming that finite-size fluctuations strictly obey the laws of thermodynamics, even in small parts of a large system. Empirical evidence for the model comes from its ability to match the measured temperature dependence of the spectral-density exponents in several metals and to show non-Gaussian fluctuations characteristic of nanoscale systems.
Correction factor in temperature measurements by optoelectronic systems
NASA Astrophysics Data System (ADS)
Bikberdina, N.; Yunusov, R.; Boronenko, M.; Gulyaev, P.
2017-11-01
It is often necessary to investigate high temperature fast moving microobjects. If you want to measure their temperature, use optoelectronic measuring systems. Optoelectronic systems are always calibrated over a stationary absolutely black body. One of the problems of pyrometry is that you can not use this calibration to measure the temperature of moving objects. Two solutions are proposed in [1]. This article outlines the first results of validation [2]. An experimentally justified coefficient that allows one to take into account the influence of its motion on the decrease in the video signal of the photosensor in the regime of charge accumulation. The study was partially supported by RFBR in the framework of a research project № 15-42-00106
Calibration and temperature correction of heat dissipation matric potential sensors
Flint, A.L.; Campbell, G.S.; Ellett, K.M.; Calissendorff, C.
2002-01-01
This paper describes how heat dissipation sensors, used to measure soil water matric potential, were analyzed to develop a normalized calibration equation and a temperature correction method. Inference of soil matric potential depends on a correlation between the variable thermal conductance of the sensor's porous ceramic and matric poten-tial. Although this correlation varies among sensors, we demonstrate a normalizing procedure that produces a single calibration relationship. Using sensors from three sources and different calibration methods, the normalized calibration resulted in a mean absolute error of 23% over a matric potential range of -0.01 to -35 MPa. Because the thermal conductivity of variably saturated porous media is temperature dependent, a temperature correction is required for application of heat dissipation sensors in field soils. A temperature correction procedure is outlined that reduces temperature dependent errors by 10 times, which reduces the matric potential measurement errors by more than 30%. The temperature dependence is well described by a thermal conductivity model that allows for the correction of measurements at any temperature to measurements at the calibration temperature.
Ceccato, Pietro; Vancutsem, Christelle; Klaver, Robert; Rowland, James; Connor, Stephen J.
2012-01-01
Rainfall and temperature are two of the major factors triggering malaria epidemics in warm semi-arid (desert-fringe) and high altitude (highland-fringe) epidemic risk areas. The ability of the mosquitoes to transmit Plasmodium spp. is dependent upon a series of biological features generally referred to as vectorial capacity. In this study, the vectorial capacity model (VCAP) was expanded to include the influence of rainfall and temperature variables on malaria transmission potential. Data from two remote sensing products were used to monitor rainfall and temperature and were integrated into the VCAP model. The expanded model was tested in Eritrea and Madagascar to check the viability of the approach. The analysis of VCAP in relation to rainfall, temperature and malaria incidence data in these regions shows that the expanded VCAP correctly tracks the risk of malaria both in regions where rainfall is the limiting factor and in regions where temperature is the limiting factor. The VCAP maps are currently offered as an experimental resource for testing within Malaria Early Warning applications in epidemic prone regions of sub-Saharan Africa. User feedback is currently being collected in preparation for further evaluation and refinement of the VCAP model.
Plasmon dispersion and Coulomb drag in low-density electron bi-layers
NASA Astrophysics Data System (ADS)
Badalyan, S. M.; Kim, C. S.; Vignale, G.; Senatore, G.
2007-03-01
We investigate the effect of exchange and correlation (xc) on the plasmon spectrum and the Coulomb drag between spatially separated low-density two-dimensional electron layers. We adopt a new approach, which employs dynamic xc kernels in the calculation of the bi-layer plasmon spectra and of the plasmon-mediated drag, and static many-body local field factors in the calculation of the particle-hole contribution to the drag. We observe that both optical and acoustical plasmon modes are strongly affected by xc corrections and shift in opposite directions with decreasing density. This is in stark contrast with the tendency observed within the random phase approximation (RPA). We find that the introduction of xc corrections results in a significant enhancement of the transresistivity and qualitative changes in its temperature dependence. In particular, the large high-temperature plasmon peak that is present in the RPA is found to disappear when the xc corrections are included. Our numerical results are in good agreement with the results of recent experiments by M. Kellogg et al., Solid State Commun. 123, 515 (2002).
Wang, Hui-Mei; Sun, Wei; Zu, Yuan-Gang; Wang, Wen-Jie
2011-12-01
Based on the one-year (2005) observations with a frequency of half hour on the stem sap flow of Larix gmelinii plantation trees planted in 1969 and the related environmental factors air humidity (RH), air temperature (T(air)), photosynthetic components active radiation (PAR), soil temperature (T(soil)), and soil moisture (TDR), principal analysis (PCA) and correction analysis were made on the time lag effect of the stem flow in different seasons (26 days of each season) and in a year via dislocation analysis, with the complexity and its integrative effects of the time lags of environment factors affecting the stem sap flow approached. The results showed that in different seasons and for different environmental factors, the time lag effect varied obviously. In general, the time lag of PAR was 0.5-1 hour ahead of sap flow, that of T(air) and RH was 0-2 hours ahead of or behind the sap flow, and the time lags of T(soil) and TDR were much longer or sometimes undetectable. Because of the complexity of the time lags, no evident improvements were observed in the linear correlations (R2, slope, and intercept) when the time lags based on short-term (20 days) data were used to correct the time lags based on whole year data. However, obvious improvements were found in the standardized and non-standardized correlation coefficients in stepwise multiple regressions, i.e., the time lag corrections could improve the effects of RH, but decreased the effects of PAR, T(air), and T(soil). PCA could be used to simplify the complexity. The first and the second principal components could stand for over 75% information of all the environmental factors in different seasons and in whole year. The time lags of both the first and the second principal components were 1-1.5 hours in advance of the sap flow, except in winter (no time lag effect).
Ground temperature measurement by PRT-5 for maps experiment
NASA Technical Reports Server (NTRS)
Gupta, S. K.; Tiwari, S. N.
1978-01-01
A simple algorithm and computer program were developed for determining the actual surface temperature from the effective brightness temperature as measured remotely by a radiation thermometer called PRT-5. This procedure allows the computation of atmospheric correction to the effective brightness temperature without performing detailed radiative transfer calculations. Model radiative transfer calculations were performed to compute atmospheric corrections for several values of the surface and atmospheric parameters individually and in combination. Polynomial regressions were performed between the magnitudes or deviations of these parameters and the corresponding computed corrections to establish simple analytical relations between them. Analytical relations were also developed to represent combined correction for simultaneous variation of parameters in terms of their individual corrections.
Self-Correcting Electronically-Scanned Pressure Sensor
NASA Technical Reports Server (NTRS)
Gross, C.; Basta, T.
1982-01-01
High-data-rate sensor automatically corrects for temperature variations. Multichannel, self-correcting pressure sensor can be used in wind tunnels, aircraft, process controllers and automobiles. Offers data rates approaching 100,000 measurements per second with inaccuracies due to temperature shifts held below 0.25 percent (nominal) of full scale over a temperature span of 55 degrees C.
NASA Astrophysics Data System (ADS)
Badalyan, S. M.; Kim, C. S.; Vignale, G.; Senatore, G.
2007-03-01
We investigate the effect of exchange and correlation (XC) on the plasmon spectrum and the Coulomb drag between spatially separated low-density two-dimensional electron layers. We adopt a different approach, which employs dynamic XC kernels in the calculation of the bilayer plasmon spectra and of the plasmon-mediated drag, and static many-body local field factors in the calculation of the particle-hole contribution to the drag. The spectrum of bilayer plasmons and the drag resistivity are calculated in a broad range of temperatures taking into account both intra- and interlayer correlation effects. We observe that both plasmon modes are strongly affected by XC corrections. After the inclusion of the complex dynamic XC kernels, a decrease of the electron density induces shifts of the plasmon branches in opposite directions. This is in stark contrast with the tendency observed within random phase approximation that both optical and acoustical plasmons move away from the boundary of the particle-hole continuum with a decrease in the electron density. We find that the introduction of XC corrections results in a significant enhancement of the transresistivity and qualitative changes in its temperature dependence. In particular, the large high-temperature plasmon peak that is present in the random phase approximation is found to disappear when the XC corrections are included. Our numerical results at low temperatures are in good agreement with the results of recent experiments by Kellogg [Solid State Commun. 123, 515 (2002)].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinwiddie, Ralph Barton; Parris, Larkin S.; Lindal, John M.
This paper explores the temperature range extension of long-wavelength infrared (LWIR) cameras by placing an aperture in front of the lens. An aperture smaller than the lens will reduce the radiance to the sensor, allowing the camera to image targets much hotter than typically allowable. These higher temperatures were accurately determined after developing a correction factor which was applied to the built-in temperature calibration. The relationship between aperture diameter and temperature range is linear. The effect of pre-lens apertures on the image uniformity is a form of anti-vignetting, meaning the corners appear brighter (hotter) than the rest of the image.more » An example of using this technique to measure temperatures of high melting point polymers during 3D printing provide valuable information of the time required for the weld-line temperature to fall below the glass transition temperature.« less
Analysis of different models for atmospheric correction of meteosat infrared images. A new approach
NASA Astrophysics Data System (ADS)
Pérez, A. M.; Illera, P.; Casanova, J. L.
A comparative study of several atmospheric correction models has been carried out. As primary data, atmospheric profiles of temperature and humidity obtained from radiosoundings on cloud-free days have been used. Special attention has been paid to the model used operationally in the European Space operations Centre (ESOC) for sea temperature calculations. The atmospheric correction results are expressed in terms of the increase in the brightness temperature and the surface temperature. A difference of up to a maximum of 1.4 degrees with respect to the correction obtained in the studied models has been observed. The radiances calculated by models are also compared with those obtained directly from the satellite. The temperature corrections by the latter are greater than the former in practically every case. As a result of this, the operational calibration coefficients should be first recalculated if we wish to apply an atmospheric correction model to the satellite data. Finally, a new simplified calculation scheme which may be introduced into any model is proposed.
A first-principles study of methyl lactate adsorption on the chiral Cu (643) surface
NASA Astrophysics Data System (ADS)
Yuk, Simuck F.; Asthagiri, Aravind
2014-11-01
We used dispersion-corrected density function theory (DFT) to investigate the enantiospecific adsorption of R- and S-methyl lactate on the chiral Cu (643)R surface. Initial study of methyl lactate adsorbed on the Cu (111) surface revealed that the most strongly bound states are associated with interaction of the hydroxyl and alkoxide group with the surface. Using dispersion-corrected DFT-derived pre-factors and desorption energies within the Redhead analysis predicts peak temperatures that are in relatively good agreement with experimental values for molecular methyl lactate desorption from both the Cu (111) and Cu (643)R surface. The global minimum of S-methyl lactate is more firmly bound by 9.5 kJ/mol over its enantiomer on the Cu (643)R surface, with a peak temperature difference of 25 K versus an experimental value of 12 K.
A Method for Calculating Viscosity and Thermal Conductivity of a Helium-Xenon Gas Mixture
NASA Technical Reports Server (NTRS)
Johnson, Paul K.
2006-01-01
A method for calculating viscosity and thermal conductivity of a helium-xenon (He-Xe) gas mixture was employed, and results were compared to AiResearch (part of Honeywell) analytical data. The method of choice was that presented by Hirschfelder with Singh's third-order correction factor applied to thermal conductivity. Values for viscosity and thermal conductivity were calculated over a temperature range of 400 to 1200 K for He-Xe gas mixture molecular weights of 20.183, 39.94, and 83.8 kg/kmol. First-order values for both transport properties were in good agreement with AiResearch analytical data. Third-order-corrected thermal conductivity values were all greater than AiResearch data, but were considered to be a better approximation of thermal conductivity because higher-order effects of mass and temperature were taken into consideration. Viscosity, conductivity, and Prandtl number were then compared to experimental data presented by Taylor.
Climate change impact on growing degree day accumulation values
NASA Astrophysics Data System (ADS)
Bekere, Liga; Sile, Tija; Bethers, Uldis; Sennikovs, Juris
2015-04-01
A well-known and often used method to assess and forecast plant growth cycle is the growing degree day (GDD) method with different formulas used for accumulation calculations. With this method the only factor that affects plant development is temperature. So with climate change and therefore also change in temperature the typical times of plant blooming or harvest can be expected to change. The goal of this study is to assess this change in the Northern Europe region. As an example strawberry bloom and harvest times are used. As the first part of this study it was required to define the current GDD amounts required for strawberry bloom and harvest. It was done using temperature data from the Danish Meteorological Institute's (DMI) NWP model HIRLAM for the years 2010-2012 and general strawberry growth observations in Latvia. This way we acquired an example amount of GDD required for strawberry blooming and harvest. To assess change in the plant growth cycle we used regional climate models (RCM) - Euro-CORDEX. RCM temperature data for both past and future periods was analyzed and bias correction was carried out. Then the GDD calculation methodology was applied on corrected temperature data and results showing change in strawberry growth cycle - bloom and harvest times - in Northern Europe were visualized.
Validation of a portable, waterproof blood pH analyser for elasmobranchs.
Talwar, Brendan; Bouyoucos, Ian A; Shipley, Oliver; Rummer, Jodie L; Mandelman, John W; Brooks, Edward J; Grubbs, R Dean
2017-01-01
Quantifying changes in blood chemistry in elasmobranchs can provide insights into the physiological insults caused by anthropogenic stress, and can ultimately inform conservation and management strategies. Current methods for analysing elasmobranch blood chemistry in the field are often costly and logistically challenging. We compared blood pH values measured using a portable, waterproof pH meter (Hanna Instruments HI 99161) with blood pH values measured by an i-STAT system (CG4+ cartridges), which was previously validated for teleost and elasmobranch fishes, to gauge the accuracy of the pH meter in determining whole blood pH for the Cuban dogfish ( Squalus cubensis ) and lemon shark ( Negaprion brevirostris ). There was a significant linear relationship between values derived via the pH meter and the i-STAT for both species across a wide range of pH values and temperatures (Cuban dogfish: 6.8-7.1 pH 24-30°C; lemon sharks: 7.0-7.45 pH 25-31°C). The relative error in the pH meter's measurements was ~±2.7%. Using this device with appropriate correction factors and consideration of calibration temperatures can result in both a rapid and accurate assessment of whole blood pH, at least for the two elasmobranch species examined here. Additional species should be examined in the future across a wide range of temperatures to determine whether correction factors are universal.
Overview of the Temperature Response in the Mesosphere and Lower Thermosphere to Solar Activity
NASA Technical Reports Server (NTRS)
Beig, Gufran; Scheer, Juergen; Mlynczak, Martin G.; Keckhut, Philippe
2008-01-01
The natural variability in the terrestrial mesosphere needs to be known to correctly quantify global change. The response of the thermal structure to solar activity variations is an important factor. Some of the earlier studies highly overestimated the mesospheric solar response. Modeling of the mesospheric temperature response to solar activity has evolved in recent years, and measurement techniques as well as the amount of data have improved. Recent investigations revealed much smaller solar signatures and in some case no significant solar signal at all. However, not much effort has been made to synthesize the results available so far. This article presents an overview of the energy budget of the mesosphere and lower thermosphere (MLT) and an up-to-date status of solar response in temperature structure based on recently available observational data. An objective evaluation of the data sets is attempted and important factors of uncertainty are discussed.
NASA Astrophysics Data System (ADS)
Dudaryonok, A. S.; Lavrentieva, N. N.; Buldyreva, J.
2018-06-01
(J, K)-line broadening and shift coefficients with their temperature-dependence characteristics are computed for the perpendicular (ΔK = ±1) ν6 band of the 12CH3D-N2 system. The computations are based on a semi-empirical approach which consists in the use of analytical Anderson-type expressions multiplied by a few-parameter correction factor to account for various deviations from Anderson's theory approximations. A mathematically convenient form of the correction factor is chosen on the basis of experimental rotational dependencies of line widths, and its parameters are fitted on some experimental line widths at 296 K. To get the unknown CH3D polarizability in the excited vibrational state v6 for line-shift calculations, a parametric vibration-state-dependent expression is suggested, with two parameters adjusted on some room-temperature experimental values of line shifts. Having been validated by comparison with available in the literature experimental values for various sub-branches of the band, this approach is used to generate massive data of line-shape parameters for extended ranges of rotational quantum numbers (J up to 70 and K up to 20) typically requested for spectroscopic databases. To obtain the temperature-dependence characteristics of line widths and line shifts, computations are done for various temperatures in the range 200-400 K recommended for HITRAN and least-squares fit procedures are applied. For the case of line widths strong sub-branch dependence with increasing K is observed in the R- and P-branches; for the line shifts such dependence is stated for the Q-branch.
Mökkönen, Harri; Ala-Nissila, Tapio; Jónsson, Hannes
2016-09-07
The recrossing correction to the transition state theory estimate of a thermal rate can be difficult to calculate when the energy barrier is flat. This problem arises, for example, in polymer escape if the polymer is long enough to stretch between the initial and final state energy wells while the polymer beads undergo diffusive motion back and forth over the barrier. We present an efficient method for evaluating the correction factor by constructing a sequence of hyperplanes starting at the transition state and calculating the probability that the system advances from one hyperplane to another towards the product. This is analogous to what is done in forward flux sampling except that there the hyperplane sequence starts at the initial state. The method is applied to the escape of polymers with up to 64 beads from a potential well. For high temperature, the results are compared with direct Langevin dynamics simulations as well as forward flux sampling and excellent agreement between the three rate estimates is found. The use of a sequence of hyperplanes in the evaluation of the recrossing correction speeds up the calculation by an order of magnitude as compared with the traditional approach. As the temperature is lowered, the direct Langevin dynamics simulations as well as the forward flux simulations become computationally too demanding, while the harmonic transition state theory estimate corrected for recrossings can be calculated without significant increase in the computational effort.
Exhaled breath temperature in children: reproducibility and influencing factors.
Vermeulen, S; Barreto, M; La Penna, F; Prete, A; Martella, S; Biagiarelli, F; Villa, M P
2014-09-01
This study will investigate the reproducibility and influencing factors of exhaled breath temperature measured with the tidal breathing technique in asthmatic patients and healthy children. Exhaled breath temperature, fractional exhaled nitric oxide, and spirometry were assessed in 124 children (63 healthy and 61 asthmatic), aged 11.2 ± 2.5 year, M/F 73/51. A modified version of the American Thoracic Society questionnaire on the child's present and past respiratory history was obtained from parents. Parents were also asked to provide detailed information on their child's medication use during the previous 4 weeks. Ear temperature, ambient temperature, and relative-ambient humidity were also recorded. Exhaled breath temperature measurements were highly reproducible; the second measurement was higher than the first measurement, consistent with a test-retest situation. In 13 subjects, between-session within-day reproducibility of exhaled breath temperature was still high. Exhaled breath temperature increased with age and relative-ambient humidity. Exhaled breath temperature was comparable in healthy and asthmatic children; when adjusted for potential confounders (i.e. ambient conditions and subject characteristics), thermal values of asthmatic patients exceeded those of the healthy children by 1.1 °C. Normalized exhaled breath temperature, by subtracting ambient temperature, was lower in asthmatic patients treated with inhaled corticosteroids than in those who were corticosteroid-naive. Measurements of exhaled breath temperature are highly reproducible, yet influenced by several factors. Corrected values, i.e. normalized exhaled breath temperature, could help us to assess the effect of therapy with inhaled corticosteroids. More studies are needed to improve the usefulness of the exhaled breath temperature measured with the tidal breathing technique in children.
49 CFR 325.75 - Ground surface correction factors. 1
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 5 2010-10-01 2010-10-01 false Ground surface correction factors. 1 325.75... MOTOR CARRIER NOISE EMISSION STANDARDS Correction Factors § 325.75 Ground surface correction factors. 1... account both the distance correction factors contained in § 325.73 and the ground surface correction...
49 CFR 325.75 - Ground surface correction factors. 1
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 5 2011-10-01 2011-10-01 false Ground surface correction factors. 1 325.75... MOTOR CARRIER NOISE EMISSION STANDARDS Correction Factors § 325.75 Ground surface correction factors. 1... account both the distance correction factors contained in § 325.73 and the ground surface correction...
NASA Astrophysics Data System (ADS)
Herring, T.; Cey, E. E.; Pidlisecky, A.
2017-12-01
Time-lapse electrical resistivity tomography (ERT) is used to image changes in subsurface electrical conductivity (EC), e.g. due to a saline contaminant plume. Temperature variation also produces an EC response, which interferes with the signal of interest. Temperature compensation requires the temperature distribution and the relationship between EC and temperature, but this relationship at subzero temperatures is not well defined. The goal of this study is to examine how uncertainty in the subzero EC/temperature relationship manifests in temperature corrected ERT images, especially with respect to relevant plume parameters (location, contaminant mass, etc.). First, a lab experiment was performed to determine the EC of fine-grained glass beads over a range of temperatures (-20° to 20° C) and saturations. The measured EC/temperature relationship was then used to add temperature effects to a hypothetical EC model of a conductive plume. Forward simulations yielded synthetic field data to which temperature corrections were applied. Varying the temperature/EC relationship used in the temperature correction and comparing the temperature corrected ERT results to the synthetic model enabled a quantitative analysis of the error of plume parameters associated with temperature variability. Modeling possible scenarios in this way helps to establish the feasibility of different time-lapse ERT applications by quantifying the uncertainty associated with parameter(s) of interest.
Quasiparticle properties at microwave frequencies in the underdoped YBa2Cu3O7-δ thin films
NASA Astrophysics Data System (ADS)
Hsing, Lai
2004-03-01
Microstrip ring resonators with quality factor (Q) over 10^4 at temperature 5 K were fabricated using the double-side YBa_2Cu_3O_7-δ (YBCO) films deposited on LaAlO3 (LAO) substrates. By placing a narrow gap in the ring resonator, the original fundamental resonating mode (3.61 GHz) splits into two modes (1.80 GHz and 5.33 GHz) with distinct resonating frequencies. The samples allow us to determine the temperature and the frequency dependences of penetration depth and microwave conductivity for various underdoped-cuprates by using Drude formula and the modified two-fluid model. The natures of the order parameter of high-Tc superconductivity in the underdoped cases are shown to be of d-wave type in an exact manner. In particular, the Fermi-liquid correction factor α ^2 and the vertex correction factor β from the model, proposed by Wen and Lee, can be estimated that α ^2 is doping independent in the underdoped regime and β decreases as oxygen content is decreasing in our experiment data. All these results are independent of frequencies as well. The results reveal that the interaction between quasiparticles is insensitive dependence of the impurity concentrations due to oxygen deficiency on the CuO chain and the impurity potential for forward scattering approaches the same as back scattering with more oxygen deficiency.
NASA Astrophysics Data System (ADS)
Fang, G. H.; Yang, J.; Chen, Y. N.; Zammit, C.
2015-06-01
Water resources are essential to the ecosystem and social economy in the desert and oasis of the arid Tarim River basin, northwestern China, and expected to be vulnerable to climate change. It has been demonstrated that regional climate models (RCMs) provide more reliable results for a regional impact study of climate change (e.g., on water resources) than general circulation models (GCMs). However, due to their considerable bias it is still necessary to apply bias correction before they are used for water resources research. In this paper, after a sensitivity analysis on input meteorological variables based on the Sobol' method, we compared five precipitation correction methods and three temperature correction methods in downscaling RCM simulations applied over the Kaidu River basin, one of the headwaters of the Tarim River basin. Precipitation correction methods applied include linear scaling (LS), local intensity scaling (LOCI), power transformation (PT), distribution mapping (DM) and quantile mapping (QM), while temperature correction methods are LS, variance scaling (VARI) and DM. The corrected precipitation and temperature were compared to the observed meteorological data, prior to being used as meteorological inputs of a distributed hydrologic model to study their impacts on streamflow. The results show (1) streamflows are sensitive to precipitation, temperature and solar radiation but not to relative humidity and wind speed; (2) raw RCM simulations are heavily biased from observed meteorological data, and its use for streamflow simulations results in large biases from observed streamflow, and all bias correction methods effectively improved these simulations; (3) for precipitation, PT and QM methods performed equally best in correcting the frequency-based indices (e.g., standard deviation, percentile values) while the LOCI method performed best in terms of the time-series-based indices (e.g., Nash-Sutcliffe coefficient, R2); (4) for temperature, all correction methods performed equally well in correcting raw temperature; and (5) for simulated streamflow, precipitation correction methods have more significant influence than temperature correction methods and the performances of streamflow simulations are consistent with those of corrected precipitation; i.e., the PT and QM methods performed equally best in correcting flow duration curve and peak flow while the LOCI method performed best in terms of the time-series-based indices. The case study is for an arid area in China based on a specific RCM and hydrologic model, but the methodology and some results can be applied to other areas and models.
Investigation of temperature correction for tire/pavement noise measurements
DOT National Transportation Integrated Search
2010-11-01
The Volpe Center Acoustics Facility, in support of the Federal Highway Administration, : investigated the influence of temperature on tire/pavement noise in order to provide guidance on correcting for temperature variations in measured sound levels. ...
Jäkel, Evelyn; den Outer, Peter N; Tax, Rick B; Görts, Peter C; Reinen, Henk A J M
2007-07-10
To establish trends in surface ultraviolet radiation levels, accurate and stable long-term measurements are required. The accuracy level of today's measurements has become high enough to notice even smaller effects that influence instrument sensitivity. Laboratory measurements of the sensitivity of the entrance optics have shown a decrease of as much as 0.07-0.1%/deg temperature increase. Since the entrance optics can heat to greater than 45 degrees C in Dutch summers, corrections are necessary. A method is developed to estimate the entrance optics temperatures from pyranometer measurements and meteorological data. The method enables us to correct historic data records for which temperature information is not available. The temperature retrieval method has an uncertainty of less than 2.5 degrees C, resulting in a 0.3% uncertainty in the correction to be performed. The temperature correction improves the agreement between modeled and measured doses and instrument intercomparison as performed within the Quality Assurance of Spectral Ultraviolet Measurements in Europe project. The retrieval method is easily transferable to other instruments.
Groves-Kirkby, Christopher J; Crockett, Robin G M; Denman, Antony R; Phillips, Paul S
2015-10-01
Although statistically-derived national Seasonal Correction Factors (SCFs) are conventionally used to convert sub-year radon concentration measurements to an annual mean, it has recently been suggested that external temperature could be used to derive local SCFs for short-term domestic measurements. To validate this approach, hitherto unanalysed radon and temperature data from an environmentally-stable location were analysed. Radon concentration and internal temperature were measured over periods totalling 1025 days during an overall period of 1762 days, the greatest continuous sampling period being 334 days, with corresponding meteorological data collected at a weather station 10 km distant. Mean daily, monthly and annual radon concentrations and internal temperatures were calculated. SCFs derived using monthly mean radon concentration, external temperature and internal-external temperature-difference were cross-correlated with each other and with published UK domestic SCF sets. Relatively good correlation exists between SCFs derived from radon concentration and internal-external temperature difference but correlation with external temperature, was markedly poorer. SCFs derived from external temperature correlate very well with published SCF tabulations, confirming that the complexity of deriving SCFs from temperature data may be outweighed by the convenience of using either of the existing domestic SCF tabulations. Mean monthly radon data fitted to a 12-month sinusoid showed reasonable correlation with many of the annual climatic parameter profiles, exceptions being atmospheric pressure, rainfall and internal temperature. Introducing an additional 6-month sinusoid enhanced correlation with these three parameters, the other correlations remaining essentially unchanged. Radon latency of the order of months in moisture-related parameters suggests that the principal driver for radon is total atmospheric moisture content rather than relative humidity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Suominen, Pertti K; Stayer, Stephen; Wang, Wei; Chang, Anthony C
2007-01-01
We evaluated accuracy of end-tidal carbon dioxide tension (PETco2) monitoring and measured the effect of temperature correction of blood gas values in children after cardiac surgery. Data from 49 consecutive mechanically ventilated children after cardiac surgery in the cardiac intensive care unit were prospectively collected. One patient was excluded from the study. Four arterial-end-tidal CO2 pairs in each patient were obtained. Both the arterial carbon dioxide tension (Paco2) values determined at a temperature of 37 degrees C and values corrected to body temperature (Patcco2) were compared with the PETco2 values. After the surgical correction 28 patients had biventricular, acyanotic (mean age 2.7 +/- 4.8 years) and 20 patients had a cyanotic lesion (mean age 1.0 +/- 1.7 years). The body temperature ranged from 35.2 degrees C to 38.9 degrees C. The Pa-PETco2 discrepancy was affected both by the type of cardiac lesion and by the temperature correction of Paco2 values. Correlation slopes of the Pa-PETco2 and Patc-PETco2 discrepancies were significantly different (p = 0.040) when the body temperature was higher or lower than 37 degrees C. In children, after cardiac surgery, end-tidal CO2 monitoring provided a clinically acceptable estimate of arterial CO2 value, which remained stabile in repeated measurements. End-tidal CO2 monitoring more accurately reflects temperature-corrected blood gas values.
NASA Astrophysics Data System (ADS)
Dugave, Maxime; Göhmann, Frank; Kozlowski, Karol K.; Suzuki, Junji
2016-09-01
We use the form factors of the quantum transfer matrix in the zero-temperature limit in order to study the two-point ground-state correlation functions of the XXZ chain in the antiferromagnetic massive regime. We obtain novel form factor series representations of the correlation functions which differ from those derived either from the q-vertex-operator approach or from the algebraic Bethe Ansatz approach to the usual transfer matrix. We advocate that our novel representations are numerically more efficient and allow for a straightforward calculation of the large-distance asymptotic behaviour of the two-point functions. Keeping control over the temperature corrections to the two-point functions we see that these are of order {T}∞ in the whole antiferromagnetic massive regime. The isotropic limit of our result yields a novel form factor series representation for the two-point correlation functions of the XXX chain at zero magnetic field. Dedicated to the memory of Petr Petrovich Kulish.
Feasibility study of a mini fuel cell to detect interference from a cellular phone
NASA Astrophysics Data System (ADS)
Abdullah, M. O.; Gan, Y. K.
Fuel cells produce electricity without involving combustion processes. They generate no noise, vibration or air pollution and are therefore suitable for use in many vibration-free power-generating applications. In this study, a mini alkaline fuel cell signal detector system has been designed, constructed and tested. The initial results have shown the applicability of such system for used as an indicator of signal disturbance from cellular phones. A small disturbance even at 4 mV cm -1, corresponding to an amplitude of 12-18 mG in terms of electromagnetic field, can be well detected by such a device. Subsequently, a thermodynamics model has been developed to provide a parametric study by simulation to show the likely performance of the fuel cell alone in other environments. As such the model can provide many useful generic design data for alkaline fuel cells. Two general conclusions can be drawn from the present theoretical study: (i) fuel cell performance increases with temperature, pressure and correction factor, C f; (ii) the temperature factor (E/ T) increases with increasing temperature and with increasing pressure factor.
Tuneable diode laser spectroscopy correction factor investigation on ammonia measurement
NASA Astrophysics Data System (ADS)
Li, Nilton; El-Hamalawi, Ashraf; Baxter, Jim; Barrett, Richard; Wheatley, Andrew
2018-01-01
Current diesel engine aftertreatment systems, such as Selective Catalyst Reduction (SCR) use ammonia (NH3) to reduce Nitrogen Oxides (NOx) into Nitrogen (N2) and water (H2O). However, if the reaction between NH3 and NOx is unbalanced, it can lead either NH3 or NOx being released into the environment. As NH3 is classified as a dangerous compound in the environment, its accurate measurement is essential. Tuneable Diode Laser (TDL) spectroscopy is one of the methods used to measure raw emissions inside engine exhaust pipes, especially NH3. This instrument requires a real-time exhaust temperature, pressure and other interference compounds in order to adjust itself to reduce the error in NH3 readings. Most researchers believed that exhaust temperature and pressure were the most influential factors in TDL when measuring NH3 inside exhaust pipes. The aim of this paper was to quantify these interference effects on TDL when undertaking NH3 measurement. Surprisingly, the results show that pressure was the least influential factor when compared to temperature, H2O, CO2 and O2 when undertaking NH3 measurement using TDL.
Thermal properties of nuclear matter in a variational framework with relativistic corrections
NASA Astrophysics Data System (ADS)
Zaryouni, S.; Hassani, M.; Moshfegh, H. R.
2014-01-01
The properties of hot symmetric nuclear matter for a wide range of densities and temperatures are investigated by employing the AV14 potential within the lowest order constrained variational (LOCV) method with the inclusion of a phenomenological three-body force as well as relativistic corrections. The relativistic corrections of many-body kinetic energies as well as the boot interaction corrections are presented for a wide range of densities and temperatures. The free energy, pressure, incompressibility, and other thermodynamic quantities of symmetric nuclear matter are obtained and discussed. The critical temperature is found, and the liquid-gas phase transition is analyzed both with and without the inclusion of three-body forces and relativistic corrections in the LOCV approach. It is shown that the critical temperature is strongly affected by the three-body forces but does not depend on the relativistic corrections. Finally, the results obtained in the present study are compared with other many-body calculations and experimental predictions.
NASA Astrophysics Data System (ADS)
Inazu, D.; Hino, R.
2011-11-01
Ocean bottom pressure (OBP) data obtained by cabled seafloor observatories deployed around Japan, are known to be significantly affected by temperature changes. This paper examines the relationship between the OBP and temperature records of six OBP gauges in terms of a regression coefficient and lag at a wide range of frequencies. No significant temperature dependency is recognized in secular variations, while substantial increases, at rates of the order of 1 hPa/year, are commonly evident in the OBP records. Strong temperature dependencies are apparent for periods of hours to days, and we correct the OBP data based on the estimated OBP-temperature relationship. At periods longer than days, the temperature corrections work well for extracting geophysical signals for OBP data at a station off Hokkaido (KPG2), while other corrected data show insufficient signal-to-noise ratios. At a tsunami frequency, the correction can reduce OBP fluctuations, due to rapid temperature changes, by as much as millimeters, and is especially effective for data at a station off Shikoku (MPG2) at which rapid temperature changes most frequently occur. A tidal analysis shows that OBP data at a station off Honshu (TM1), and at KPG2, are useful for studies on the long-term variations of tidal constituents.
Underwater and Dive Station Work-Site Noise Surveys
2008-03-14
A) octave band noise measurements, dB (A) correction factors, dB ( A ) levels , MK-21 diving helmet attenuation correction factors, overall in-helmet...band noise measurements, dB (A) correction factors, dB ( A ) levels , MK-21 diving helmet attenuation correction factors, overall in-helmet dB (A...noise measurements, dB (A) correction factors, dB ( A ) levels , MK-21 diving helmet attenuation correction factors, overall in-helmet dB (A) level, and
van der Linde, H J; Van Deuren, B; Teisman, A; Towart, R; Gallacher, D J
2008-08-01
Body core temperature (Tc) changes affect the QT interval, but correction for this has not been systematically investigated. It may be important to correct QT intervals for drug-induced changes in Tc. Anaesthetized beagle dogs were artificially cooled (34.2 degrees C) or warmed (42.1 degrees C). The relationship between corrected QT intervals (QTcV; QT interval corrected according to the Van de Water formula) and Tc was analysed. This relationship was also examined in conscious dogs where Tc was increased by exercise. When QTcV intervals were plotted against changes in Tc, linear correlations were observed in all individual dogs. The slopes did not significantly differ between cooling (-14.85+/-2.08) or heating (-13.12+/-3.46) protocols. We propose a correction formula to compensate for the influence of Tc changes and standardize the QTcV duration to 37.5 degrees C: QTcVcT (QTcV corrected for changes in core temperature)=QTcV-14 (37.5 - Tc). Furthermore, cooled dogs were re-warmed (from 34.2 to 40.0 degrees C) and marked QTcV shortening (-29%) was induced. After Tc correction, using the above formula, this decrease was abolished. In these re-warmed dogs, we observed significant increases in T-wave amplitude and in serum [K(+)] levels. No arrhythmias or increase in pro-arrhythmic biomarkers were observed. In exercising dogs, the above formula completely compensated QTcV for the temperature increase. This study shows the importance of correcting QTcV intervals for changes in Tc, to avoid misleading interpretations of apparent QTcV interval changes. We recommend that all ICH S7A, conscious animal safety studies should routinely measure core body temperature and correct QTcV appropriately, if body temperature and heart rate changes are observed.
van der Linde, H J; Van Deuren, B; Teisman, A; Towart, R; Gallacher, D J
2008-01-01
Background and purpose: Body core temperature (Tc) changes affect the QT interval, but correction for this has not been systematically investigated. It may be important to correct QT intervals for drug-induced changes in Tc. Experimental approach: Anaesthetized beagle dogs were artificially cooled (34.2 °C) or warmed (42.1 °C). The relationship between corrected QT intervals (QTcV; QT interval corrected according to the Van de Water formula) and Tc was analysed. This relationship was also examined in conscious dogs where Tc was increased by exercise. Key results: When QTcV intervals were plotted against changes in Tc, linear correlations were observed in all individual dogs. The slopes did not significantly differ between cooling (−14.85±2.08) or heating (−13.12±3.46) protocols. We propose a correction formula to compensate for the influence of Tc changes and standardize the QTcV duration to 37.5 °C: QTcVcT (QTcV corrected for changes in core temperature)=QTcV–14 (37.5 – Tc). Furthermore, cooled dogs were re-warmed (from 34.2 to 40.0 °C) and marked QTcV shortening (−29%) was induced. After Tc correction, using the above formula, this decrease was abolished. In these re-warmed dogs, we observed significant increases in T-wave amplitude and in serum [K+] levels. No arrhythmias or increase in pro-arrhythmic biomarkers were observed. In exercising dogs, the above formula completely compensated QTcV for the temperature increase. Conclusions and implications: This study shows the importance of correcting QTcV intervals for changes in Tc, to avoid misleading interpretations of apparent QTcV interval changes. We recommend that all ICH S7A, conscious animal safety studies should routinely measure core body temperature and correct QTcV appropriately, if body temperature and heart rate changes are observed. PMID:18574451
NASA Astrophysics Data System (ADS)
Farmann, Alexander; Sauer, Dirk Uwe
2017-04-01
The knowledge of nonlinear monotonic correlation between State-of-Charge (SoC) and open-circuit voltage (OCV) is necessary for an accurate battery state estimation in battery management systems. Among the main factors influencing the OCV behavior of lithium-ion batteries (LIBs) are aging, temperature and previous history of the battery. In order to develop an accurate OCV-based SoC estimator, it is necessary that the OCV behavior of the LIBs is sufficiently investigated and understood. In this study, the impact of the mentioned factors on OCV of LIBs at different aging states using various active materials (C/NMC, C/LFP, LTO/NMC) is investigated over a wide temperature range (from -20 °C to +45 °C) comprehensively. It is shown that temperature and aging of the battery influence the battery's relaxation behavior significantly where a linear dependence between the required relaxation time and the temperature can be assumed. Moreover, the required relaxation time increases with decreasing SoC and temperature. Furthermore, we state that for individual LIB, the OCV and the OCV hysteresis change over the battery lifetime. Based on the obtained results a simplified OCV model considering temperature correction term and aging of the battery is proposed.
Validation of a portable, waterproof blood pH analyser for elasmobranchs
Bouyoucos, Ian A.; Shipley, Oliver; Rummer, Jodie L.; Mandelman, John W.; Brooks, Edward J.; Grubbs, R. Dean
2017-01-01
Abstract Quantifying changes in blood chemistry in elasmobranchs can provide insights into the physiological insults caused by anthropogenic stress, and can ultimately inform conservation and management strategies. Current methods for analysing elasmobranch blood chemistry in the field are often costly and logistically challenging. We compared blood pH values measured using a portable, waterproof pH meter (Hanna Instruments HI 99161) with blood pH values measured by an i-STAT system (CG4+ cartridges), which was previously validated for teleost and elasmobranch fishes, to gauge the accuracy of the pH meter in determining whole blood pH for the Cuban dogfish (Squalus cubensis) and lemon shark (Negaprion brevirostris). There was a significant linear relationship between values derived via the pH meter and the i-STAT for both species across a wide range of pH values and temperatures (Cuban dogfish: 6.8–7.1 pH 24–30°C; lemon sharks: 7.0–7.45 pH 25–31°C). The relative error in the pH meter's measurements was ~±2.7%. Using this device with appropriate correction factors and consideration of calibration temperatures can result in both a rapid and accurate assessment of whole blood pH, at least for the two elasmobranch species examined here. Additional species should be examined in the future across a wide range of temperatures to determine whether correction factors are universal. PMID:28616238
Jay, Ollie; Molgat-Seon, Yannick; Chou, Shirley; Murto, Kimmo
2013-12-01
The accurate measurement of core temperature is an essential aspect of intraoperative management in children. Invasive measurement sites are accurate but carry some health risks and cannot be used in certain patients. An accurate form of noninvasive thermometry is therefore needed. Our aim was to develop, and subsequently validate, separate models for estimating core temperature using different skin temperatures with an individualized correction factor. Forty-eight pediatric patients (0-36 months) undergoing elective surgery were separated into a modeling group (MG, n = 28) and validation group (VG, n = 20). Skin temperature was measured over the carotid artery (Tsk_carotid ), upper abdomen (Tsk_abd ), and axilla (Tsk_axilla ), while nasopharyngeal temperature (Tnaso ) was measured as a reference. In the MG, derived models for estimating Tnaso were: Tsk_carotid + 0.52; Tsk_abd + (0.076[body mass] + 0.02); and Tsk_axilla + (0.081[body mass]-0.66). After adjusting raw Tsk_carotid, Tsk_abd , and Tsk_axilla values in the independent VG using these models, the mean bias (Predicted Tnaso - Actual Tnaso [with 95% confidence intervals]) was +0.03[+0.53, -0.50]°C, -0.05[+1.02, -1.07]°C, and -0.06[+1.21, -1.28°C], respectively. The percentage of values within ±0.5°C of Tnaso was 93.2%, 75.4%, and 66.1% for Tsk_carotid, Tsk_abd , and Tsk_axilla , respectively. Sensitivity and specificity for detecting hypothermia (Tnaso < 36.0°C) was 0.88 and 0.91 for Tsk_carotid , 0.61 and 0.76 for Tsk_abd , and 0.91 and 0.73 for Tsk_axilla . Goodness-of-fit (R(2) ) relative to the line-of-identity was 0.74 (Tsk_carotid ), 0.34 (Tsk_abd ), and 0.15 (Tsk_axilla ). Skin temperature over the carotid artery, with a simple correction factor of +0.52°C, provides a viable noninvasive estimate of Tnaso in young children during elective surgery with a general anesthetic. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Vinci, Walter; Lidar, Daniel A.
2018-02-01
Nested quantum annealing correction (NQAC) is an error-correcting scheme for quantum annealing that allows for the encoding of a logical qubit into an arbitrarily large number of physical qubits. The encoding replaces each logical qubit by a complete graph of degree C . The nesting level C represents the distance of the error-correcting code and controls the amount of protection against thermal and control errors. Theoretical mean-field analyses and empirical data obtained with a D-Wave Two quantum annealer (supporting up to 512 qubits) showed that NQAC has the potential to achieve a scalable effective-temperature reduction, Teff˜C-η , with 0 <η ≤2 . We confirm that this scaling is preserved when NQAC is tested on a D-Wave 2000Q device (supporting up to 2048 qubits). In addition, we show that NQAC can also be used in sampling problems to lower the effective-temperature of a quantum annealer. Such effective-temperature reduction is relevant for machine-learning applications. Since we demonstrate that NQAC achieves error correction via a reduction of the effective-temperature of the quantum annealing device, our results address the problem of the "temperature scaling law for quantum annealers," which requires the temperature of quantum annealers to be reduced as problems of larger sizes are attempted to be solved.
NASA Technical Reports Server (NTRS)
Dobrzynski, W.
1984-01-01
Amiet's correction scheme for sound wave transmission through shear-layers is extended to incorporate the additional effects of different temperatures in the flow-field in the surrounding medium at rest. Within a parameter-regime typical for acoustic measurements in wind tunnels amplitude- and angle-correction is calculated and plotted systematically to provide a data base for the test engineer.
Essers, M; van Battum, L; Heijmen, B J
2001-11-01
In vivo dosimetry using thermoluminiscence detectors (TLD) is routinely performed in our institution to determine dose inhomogeneities in the match line region during chest wall irradiation. However, TLDs have some drawbacks: online in vivo dosimetry cannot be performed; generally, doses delivered by the contributing fields are not measured separately; measurement analysis is time consuming. To overcome these problems, the Joined Field Detector (JFD-5), a detector for match line in vivo dosimetry based on diodes, has been developed. This detector and its characteristics are presented. The JFD-5 is a linear array of 5 p-type diodes. The middle three diodes, used to measure the dose in the match line region, are positioned at 5-mm intervals. The outer two diodes, positioned at 3-cm distance from the central diode, are used to measure the dose in the two contributing fields. For three JFD-5 detectors, calibration factors for different energies, and sensitivity correction factors for non-standard field sizes, patient skin temperature, and oblique incidence have been determined. The accuracy of penumbra and match line dose measurements has been determined in phantom studies and in vivo. Calibration factors differ significantly between diodes and between photon and electron beams. However, conversion factors between energies can be applied. The correction factor for temperature is 0.35%/ degrees C, and for oblique incidence 2% at maximum. The penumbra measured with the JFD-5 agrees well with film and linear diode array measurements. JFD-5 in vivo match line dosimetry reproducibility was 2.0% (1 SD) while the agreement with TLD was 0.999+/-0.023 (1 SD). The JFD-5 can be used for accurate, reproducible, and fast on-line match line in vivo dosimetry.
NASA Astrophysics Data System (ADS)
Yavari, H.; Mokhtari, M.
2014-03-01
The effects of impurity and Bose-Fermi interactions on the transition temperature of a dipolar Bose-Einstein condensation in trapped Bose-Fermi mixture, by using the two-fluid model, are investigated. The shift of the transition temperature consists of four contributions due to contact, Bose-Fermi, dipole-dipole, and impurity interactions. We will show that in the presence of an anisotropic trap, the Bose-Fermi correction to the shift of transition temperature due to the excitation spectra of the thermal part is independent of anisotropy factor. Applying our results to trapped Bose-Fermi mixtures shows that, by knowing the impurity effect, the shift of the transition temperature due to Bose-Fermi interaction could be measured for isotropic trap (dipole-dipole contributions is zero) and Feshbach resonance technique (contact potential contribution is negligible).
NASA Technical Reports Server (NTRS)
Fessler, T. E.
1977-01-01
A computer program subroutine, FLUID, was developed to calculate thermodynamic and transport properties of pure fluid substances. It provides for determining the thermodynamic state from assigned values for temperature-density, pressure-density, temperature-pressure, pressure-entropy, or pressure-enthalpy. Liquid or two-phase (liquid-gas) conditions are considered as well as the gas phase. A van der Waals model is used to obtain approximate state values; these values are then corrected for real gas effects by model-correction factors obtained from tables based on experimental data. Saturation conditions, specific heat, entropy, and enthalpy data are included in the tables for each gas. Since these tables are external to the FLUID subroutine itself, FLUID can implement any gas for which a set of tables has been generated. (A setup phase is used to establish pointers dynamically to the tables for a specific gas.) Data-table preparation is described. FLUID is available in both SFTRAN and FORTRAN
NASA Astrophysics Data System (ADS)
Saltas, Ippocratis D.; Sawicki, Ignacy; Lopes, Ilidio
2018-05-01
We use the most recent, complete and independent measurements of masses and radii of white dwarfs in binaries to bound the class of non-trivial modified gravity theories, viable after GW170817/GRB170817, using its effect on the mass-radius relation of the stars. We show that the uncertainty in the latest data is sufficiently small that residual evolutionary effects, most notably the effect of core composition, finite temperature and envelope structure, must now accounted for if correct conclusions about the nature of gravity are to be made. We model corrections resulting from finite temperature and envelopes to a base Hamada-Salpeter cold equation of state and derive consistent bounds on the possible modifications of gravity in the stars' interiors, finding that the parameter quantifying the strength of the modification Y< 0.14 at 95% confidence, an improvement of a factor of three with respect to previous bounds. Finally, our analysis reveals some fundamental degeneracies between the theory of gravity and the precise chemical makeup of white dwarfs.
An ISO and IUE Study of Planetary Nebula NGC 2440
NASA Technical Reports Server (NTRS)
Salas, J. Bernard; Pottasch, S. R.; Feibelman, W. A.; Wesselius, P. R.; Oegerle, William R. (Technical Monitor)
2002-01-01
The infrared and ultraviolet spectra of planetary nebula NGC 2440 is presented. The observations were made respectively by the Infrared Space Observatory (ISO) and International Ultraviolet Explorer (IUE) These data, in conjunction with published optical observations have been used to derive electron temperature and density. A trend of electron temperature with ionization potential is found. In particular the electron temperature increases from 11000 to 18000 K with increasing IBM. The electron density has a constant value of 4500/cu cm in agreement with previous determination. The chemical abundance has been derived for the following elements; helium, carbon, nitrogen, oxygen, neon, sulfur and argon. The ionization correction factor turns out to be very small (almost unnecessary) for all species except sulfur.
Akterian, S G; Fernandez, P S; Hendrickx, M E; Tobback, P P; Periago, P M; Martinez, A
1999-03-01
A risk analysis was applied to experimental heat resistance data. This analysis is an approach for processing experimental thermobacteriological data in order to study the variability of D and z values of target microorganisms depending on the deviations range of environmental factors, to determine the critical factors and to specify their critical tolerance. This analysis is based on sets of sensitivity functions applied to a specific case of experimental data related to the thermoresistance of Clostridium sporogenes and Bacillus stearothermophilus spores. The effect of the following factors was analyzed: the type of target microorganism; nature of the heating substrate; pH, temperature; type of acid employed and NaCl concentration. The type of target microorganism to be inactivated, the nature of the substrate (reference or real food) and the heating temperature were identified as critical factors, determining about 90% of the alteration of the microbiological risk. The effect of the type of acid used for the acidification of products and the concentration of NaCl can be assumed to be negligible factors for the purposes of engineering calculations. The critical non-uniformity in temperature during thermobacteriological studies was set as 0.5% and the critical tolerances of pH value and NaCl concentration were 5%. These results are related to a specific case study, for that reason their direct generalization is not correct.
Liang, Kun; Yang, Cailan; Peng, Li; Zhou, Bo
2017-02-01
In uncooled long-wave IR camera systems, the temperature of a focal plane array (FPA) is variable along with the environmental temperature as well as the operating time. The spatial nonuniformity of the FPA, which is partly affected by the FPA temperature, obviously changes as well, resulting in reduced image quality. This study presents a real-time nonuniformity correction algorithm based on FPA temperature to compensate for nonuniformity caused by FPA temperature fluctuation. First, gain coefficients are calculated using a two-point correction technique. Then offset parameters at different FPA temperatures are obtained and stored in tables. When the camera operates, the offset tables are called to update the current offset parameters via a temperature-dependent interpolation. Finally, the gain coefficients and offset parameters are used to correct the output of the IR camera in real time. The proposed algorithm is evaluated and compared with two representative shutterless algorithms [minimizing the sum of the squares of errors algorithm (MSSE), template-based solution algorithm (TBS)] using IR images captured by a 384×288 pixel uncooled IR camera with a 17 μm pitch. Experimental results show that this method can quickly trace the response drift of the detector units when the FPA temperature changes. The quality of the proposed algorithm is as good as MSSE, while the processing time is as short as TBS, which means the proposed algorithm is good for real-time control and at the same time has a high correction effect.
NASA Astrophysics Data System (ADS)
Gendelis, S.; Jakovičs, A.
2010-01-01
Numerical mathematical modelling of the indoor thermal conditions and of the energy losses for separate rooms is an important part of the analysis of the heat-exchange balance and energy efficiency in buildings. The measurements of heat transfer coefficients for bounding structures, the air-tightness tests and thermographic diagnostics done for a building allow the influence of those factors to be predicted more correctly in developed numerical models. The temperature distribution and airflows in a typical room (along with the heat losses) were calculated for different heater locations and solar radiation (modelled as a heat source) through the window, as well as various pressure differences between the openings in opposite walls. The airflow velocities and indoor temperature, including its gradient, were also analysed as parameters of thermal comfort conditions. The results obtained show that all of the listed factors have an important influence on the formation of thermal comfort conditions and on the heat balance in a room.
NASA Technical Reports Server (NTRS)
Moore, J. H.
1973-01-01
A model was developed for the switching radiometer utilizing a continuous method of calibration. Sources of system degradation were identified and include losses and voltage standing wave ratios in front of the receiver input. After computing the three modes of operation, expressions were developed for the normalized radiometer output, the minimum detectable signal (normalized RMS temperature fluctuation), sensitivity, and accuracy correction factors).
Temperature correction of arterial blood-gas parameters: A comparative review of methodology.
Andritsch, R F; Muravchick, S; Gold, M I
1981-09-01
The need for accurate clinical diagnosis and appropriate intervention requires that a modern blood-gas laboratory have the means to correct for significant discrepancies between patient temperature and the temperature at which in vitro blood samples are analyzed. Recent advances in mini- and microcomputer technology permit application of any or all of the correction formulas above at modest cost and minimal inconvenience (See the Appendix). An expanded program for a TI-59 desk-top calculator and P-100C printer which gives labeled hard-copy readout of temperature-corrected pH, PCO2, PO2, and hemoglobin saturation values, as well as bicarbonate concentration and in vivo base excess is in daily clinical use in our operating room and is available from the authors upon request.
NASA Astrophysics Data System (ADS)
Rodolfo-Metalpa, R.; Peirano, A.; Houlbrèque, F.; Abbate, M.; Ferrier-Pagès, C.
2008-03-01
Recent investigations have shown the temperate scleractinian coral Cladocora caespitosa to be a new potential climate archive for the Mediterranean Sea. Whilst earlier studies have demonstrated a seasonal variation in growth rates, they were unable to distinguish which environmental parameter (light, temperature, or food) was influencing growth. In this study, the effect of these three factors on the coral physiology and calcification rate was characterized to aid the correct interpretation of skeletal trace element variations. Two temperatures (13 and 23°C), irradiances (50 and 120 μmol m-2 s-1), and feeding regimes (unfed and fed with nauplii of Artemia salina) were tested under controlled laboratory conditions on the growth, zooxanthellae density, chlorophyll (chl) content, and asexual reproduction (budding) of C. caespitosa during a 7-week factorial experiment. Unlike irradiance, which had no effect, high temperature and food supply increased the growth rates of C. caespitosa. The effect of feeding was however higher for corals maintained at low temperature, suggesting that heterotrophy is especially important during the cold season, and that temperature is the predominant factor affecting the coral’s growth. At low temperature, fed samples had higher zooxanthellae density and chl content, possibly for maximizing photosynthetic efficiency. Sexual reproduction investment of C. caespitosa was higher during favourable conditions characterised by high temperatures and zooplankton availability.
Intensity-corrected Herschel Observations of Nearby Isolated Low-mass Clouds
NASA Astrophysics Data System (ADS)
Sadavoy, Sarah I.; Keto, Eric; Bourke, Tyler L.; Dunham, Michael M.; Myers, Philip C.; Stephens, Ian W.; Di Francesco, James; Webb, Kristi; Stutz, Amelia M.; Launhardt, Ralf; Tobin, John J.
2018-01-01
We present intensity-corrected Herschel maps at 100, 160, 250, 350, and 500 μm for 56 isolated low-mass clouds. We determine the zero-point corrections for Herschel Photodetector Array Camera and Spectrometer (PACS) and Spectral Photometric Imaging Receiver (SPIRE) maps from the Herschel Science Archive (HSA) using Planck data. Since these HSA maps are small, we cannot correct them using typical methods. Here we introduce a technique to measure the zero-point corrections for small Herschel maps. We use radial profiles to identify offsets between the observed HSA intensities and the expected intensities from Planck. Most clouds have reliable offset measurements with this technique. In addition, we find that roughly half of the clouds have underestimated HSA-SPIRE intensities in their outer envelopes relative to Planck, even though the HSA-SPIRE maps were previously zero-point corrected. Using our technique, we produce corrected Herschel intensity maps for all 56 clouds and determine their line-of-sight average dust temperatures and optical depths from modified blackbody fits. The clouds have typical temperatures of ∼14–20 K and optical depths of ∼10‑5–10‑3. Across the whole sample, we find an anticorrelation between temperature and optical depth. We also find lower temperatures than what was measured in previous Herschel studies, which subtracted out a background level from their intensity maps to circumvent the zero-point correction. Accurate Herschel observations of clouds are key to obtaining accurate density and temperature profiles. To make such future analyses possible, intensity-corrected maps for all 56 clouds are publicly available in the electronic version. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Potyrailo, Radislav A.; Surman, Cheryl
2013-01-01
Uncontrolled fluctuations of ambient temperature in the field typically greatly reduce accuracy of gas sensors. In this study, we developed an approach for the self-correction against fluctuations of ambient temperature of individual gas and vapor sensors. The main innovation of our work is in the temperature correction which is accomplished without the need for a separate uncoated reference sensor or a separate temperature sensor. Our sensors are resonant inductor-capacitor-resistor (LCR) transducers coated with sensing materials and operated as multivariable passive (battery-free) radio-frequency identification (RFID) sensors. Using our developed approach, we performed quantitation of an exemplary vapor over the temperature range from 25 to 40 °C. This technical solution will be attractive in numerous applications where temperature stabilization of a gas sensor or addition of auxiliary temperature or uncoated reference sensors is prohibitive. PMID:23956496
Raghav, Raj; Middleton, Rachael; BSc, Rinshiya Ahamed; Arjunan, Raji; Caliendo, Valentina
2015-12-01
Arterial and venous blood gas analysis is useful in the assessment of tissue oxygenation and ventilation and in diagnosis of metabolic and respiratory derangements. It can be performed with a relatively small volume of blood in avian patients under emergency situations. Arterial and venous blood gas analysis was performed in 30 healthy gyr falcons ( Falco rusticolus ) under anaesthesia to establish temperature-corrected reference intervals for arterial blood gas values and to compare them to temperature-corrected venous blood gas values with a portable point-of-care blood gas analyzer (i-STAT 1, Abbott Laboratories, Abbott Park, IL, USA). Statistically significant differences were observed between the temperature-corrected values of pH, partial pressure of carbon dioxide (Pco2), and partial pressure of oxygen (Po2) and the corresponding nontemperature-corrected values of these parameters in both arterial and venous blood. Values of temperature-corrected pH, temperature-corrected Pco2, bicarbonate concentrations, and base excess of extra cellular fluid did not differ significantly between arterial and venous blood, suggesting that, in anesthetized gyr falcons, venous blood gas analysis can be used in place of arterial blood gas analysis in clinical situations. Values for hematocrit, measured by the point-of-care analyzer, were significantly lower compared with those obtained by the microhematocrit method.
Shoemaker, W. Barclay; Sumner, D.M.
2006-01-01
Corrections can be used to estimate actual wetland evapotranspiration (AET) from potential evapotranspiration (PET) as a means to define the hydrology of wetland areas. Many alternate parameterizations for correction coefficients for three PET equations are presented, covering a wide range of possible data-availability scenarios. At nine sites in the wetland Everglades of south Florida, USA, the relatively complex PET Penman equation was corrected to daily total AET with smaller standard errors than the PET simple and Priestley-Taylor equations. The simpler equations, however, required less data (and thus less funding for instrumentation), with the possibility of being corrected to AET with slightly larger, comparable, or even smaller standard errors. Air temperature generally corrected PET simple most effectively to wetland AET, while wetland stage and humidity generally corrected PET Priestley-Taylor and Penman most effectively to wetland AET. Stage was identified for PET Priestley-Taylor and Penman as the data type with the most correction ability at sites that are dry part of each year or dry part of some years. Finally, although surface water generally was readily available at each monitoring site, AET was not occurring at potential rates, as conceptually expected under well-watered conditions. Apparently, factors other than water availability, such as atmospheric and stomata resistances to vapor transport, also were limiting the PET rate. ?? 2006, The Society of Wetland Scientists.
Fracture Sustainability Pressure, Temperature, Differential Pressure, and Aperture Closure Data
Tim Kneafsey
2016-09-30
In these data sets, the experiment time, actual date and time, room temperature, sample temperature, upstream and downstream pressures (measured independently), corrected differential pressure (measured independently and corrected for offset and room temperature) indication of aperture closure by linear variable differential transformer are presented. An indication of the sample is in the file name and in the first line of data.
Spectral responsivity-based calibration of photometer and colorimeter standards
NASA Astrophysics Data System (ADS)
Eppeldauer, George P.
2013-08-01
Several new generation transfer- and working-standard illuminance meters and tristimulus colorimeters have been developed at the National Institute of Standards and Technology (NIST) [1] to measure all kinds of light sources with low uncertainty. The spectral and broad-band (illuminance) responsivities of the photometer (Y) channels of two tristimulus meters were determined at both the Spectral Irradiance and Radiance Responsivity Calibrations using Uniform Sources (SIRCUS) facility and the Spectral Comparator Facility (SCF) [2]. The two illuminance responsivities agreed within 0.1% with an overall uncertainty of 0.2% (k = 2), which is a factor of two improvement over the present NIST photometric scale. The first detector-based tristimulus color scale [3] was realized. All channels of the reference tristimulus colorimeter were calibrated at the SIRCUS. The other tristimulus meters were calibrated at the SCF and also against the reference meter on the photometry bench in broad-band measurement mode. The agreement between detector- and source-based calibrations was within 3 K when a tungsten lamp-standard was measured at 2856 K and 3100 K [4]. The color-temperature uncertainty of tungsten lamp measurements was 4 K (k = 2) between 2300 K and 3200 K, which is a factor of two improvement over the presently used NIST source-based color temperature scale. One colorimeter was extended with an additional (fifth) channel to apply software implemented matrix corrections. With this correction, the spectral mismatch caused color difference errors were decreased by a factor of 20 for single-color LEDs.
27 CFR 30.1 - Gauging of distilled spirits.
Code of Federal Regulations, 2010 CFR
2010-04-01
... correcting hydrometer indications at temperatures between 0 and 100 degrees Fahrenheit to true proof. If distilled spirits contain dissolved solids, temperature correction of the hydrometer reading by the use of...
Precise Temperature Mapping of GaN-Based LEDs by Quantitative Infrared Micro-Thermography
Chang, Ki Soo; Yang, Sun Choel; Kim, Jae-Young; Kook, Myung Ho; Ryu, Seon Young; Choi, Hae Young; Kim, Geon Hee
2012-01-01
A method of measuring the precise temperature distribution of GaN-based light-emitting diodes (LEDs) by quantitative infrared micro-thermography is reported. To reduce the calibration error, the same measuring conditions were used for both calibration and thermal imaging; calibration was conducted on a highly emissive black-painted area on a dummy sapphire wafer loaded near the LED wafer on a thermoelectric cooler mount. We used infrared thermal radiation images of the black-painted area on the dummy wafer and an unbiased LED wafer at two different temperatures to determine the factors that degrade the accuracy of temperature measurement, i.e., the non-uniform response of the instrument, superimposed offset radiation, reflected radiation, and emissivity map of the LED surface. By correcting these factors from the measured infrared thermal radiation images of biased LEDs, we determined a precise absolute temperature image. Consequently, we could observe from where the local self-heat emerges and how it distributes on the emitting area of the LEDs. The experimental results demonstrated that highly localized self-heating and a remarkable temperature gradient, which are detrimental to LED performance and reliability, arise near the p-contact edge of the LED surface at high injection levels owing to the current crowding effect. PMID:22666050
Quantum Gravity Effects on Hawking Radiation of Schwarzschild-de Sitter Black Holes
NASA Astrophysics Data System (ADS)
Singh, T. Ibungochouba; Meitei, I. Ablu; Singh, K. Yugindro
2017-08-01
The correction of Hawking temperature of Schwarzschild-de Sitter (SdS) black hole is investigated using the generalized Klein-Gordon equation and the generalized Dirac equation by taking the quantum gravity effects into account. We derive the corrected Hawking temperatures for scalar particles and fermions crossing the event horizon. The quantum gravity effects prevent the rise of temperature in the SdS black hole. Besides correction of Hawking temperature, the Hawking radiation of SdS black hole is also investigated using massive particles tunneling method. By considering self gravitation effect of the emitted particles and the space time background to be dynamical, it is also shown that the tunneling rate is related to the change of Bekenstein-Hawking entropy and small correction term (1 + 2 β m 2). If the energy and the angular momentum are taken to be conserved, the derived emission spectrum deviates from the pure thermal spectrum. This result gives a correction to the Hawking radiation and is also in agreement with the result of Parikh and Wilczek.
Satsumoto, Yayoi
2012-06-01
The influence of the clothing material properties(like water absorbency and rapid dryness, water vapor absorption, water vapor permeability and air permeability) and the design factor of the clothing(like opening condition and fitting of clothing), which contributed to prevent heat disorder, was outlined. WBGT(wet-bulb globe temperature) is used to show a guideline for environmental limitation of activities to prevent heat disorder. As the safety function is more important than thermal comfort for some sportswear and protective clothing with high cover area, clothing itself increases the risk of heat disorder. WBGT is corrected by CAF (clothing adjustment factor) in wearing such kind of protective clothing.
NASA Technical Reports Server (NTRS)
Barranger, J. P.
1978-01-01
The rotor blade tip clearance measurement system consists of a capacitance sensing probe with self contained tuning elements, a connecting coaxial cable, and remotely located electronics. Tests show that the accuracy of the system suffers from a strong dependence on probe tip temperature and humidity. A novel inplace recalibration technique was presented which partly overcomes this problem through a simple modification of the electronics that permits a scale factor correction. This technique, when applied to a commercial system significantly reduced errors under varying conditions of humidity and temperature. Equations were also found that characterize the important cable and probe design quantities.
Effect of ambient temperature and humidity on emissions of an idling gas turbine
NASA Technical Reports Server (NTRS)
Kauffman, C. W.
1977-01-01
The effects of inlet pressure, temperature, and humidity on the oxides of nitrogen produced by an engine operating at takeoff power setting were investigated and numerous correction factors were formulated. The effect of ambient relative humidity on gas turbine idle emissions was ascertained. Experimentally, a nonvitiating combustor rig was employed to simulate changing combustor inlet conditions as generated by changing ambient conditions. Emissions measurements were made at the combustor exit. For carbon monoxide, a reaction kinetic scheme was applied within each zone of the combustor where initial species concentrations reflected not only local combustor characteristics but also changing ambient conditions.
A preliminary investigation of shape memory alloys in the surgical correction of scoliosis.
Sanders, J O; Sanders, A E; More, R; Ashman, R B
1993-09-15
Nitinol, a shape memory alloy, is flexible at low temperatures but retains its original shape when heated. This offers interesting possibilities for scoliosis correction. Of the shape memory alloys, nitinol is the most promising medically because of biocompatibility and the ability to control transition temperature. In vivo: Six goats with experimental scoliosis were instrumented with 6-mm nitinol rods. The rods were transformed, and the scoliosis corrected, in the awakened goats by 450-kHz radio frequency induction heating. The curves averaged 41 degrees before instrumentation, 33 degrees after instrumentation, and 11 degrees after rod transformation. The animals tolerated the heating without discomfort, neurologic injury, or evidence of thermal injury to the tissues or the spinal cord. In vitro: Nitinol rods were tested under both constant deflection and constant loading conditions and plotted temperature versus either force or displacement. The 6-mm rod generated forces of 200 N. The 9-mm rod generated up to 500 N. We safely coupled shape memory alloy transformation to the spine and corrected an experimental spinal deformity in awake animals. The forces generated can be estimated by the rod's curvature and temperature. The use of shape memory alloys allows continuous neurologic monitoring during awake correction, true rotational correction by rod torsion, and the potential option of periodic correction to take advantage of spinal viscoelasticity and the potential of true rotational correction by rod torsion.
NASA Astrophysics Data System (ADS)
Qiu, Yunfei; Li, Xizhong; Zheng, Wei; Hu, Qinghe; Wei, Zhanmeng; Yue, Yaqin
2017-08-01
The climate changes have great impact on the residents’ electricity consumption, so the study on the impact of climatic factors on electric power load is of significance. In this paper, the effects of the data of temperature, rainfall and wind of smart city on short-term power load is studied to predict power load. The authors studied the relation between power load and daily temperature, rainfall and wind in the 31 days of January of one year. In the research, the authors used the Matlab neural network toolbox to establish the combinational forecasting model. The authors trained the original input data continuously to get the internal rules inside the data and used the rules to predict the daily power load in the next January. The prediction method relies on the accuracy of weather forecasting. If the weather forecasting is different from the actual weather, we need to correct the climatic factors to ensure accurate prediction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saez-Beltran, M; Fernandez Gonzalez, F
2014-06-15
Purpose: To obtain an analytical empirical formula for the photon dose source term in forward direction from bremsstrahlung generated from laser-plasma accelerated electron beams in aluminum solid targets, with electron-plasma temperatures in the 10–100 keV energy range, and to calculate transmission factors for iron, aluminum, methacrylate, lead and concrete and air, materials most commonly found in vacuum chamber labs. Methods: Bremsstrahlung fluence is calculated from the convolution of thin-target bremsstrahlung spectrum for monoenergetic electrons and the relativistic Maxwell-Juettner energy distribution for the electron-plasma. Unattenuatted dose in tissue is calculated by integrating the photon spectrum with the mass-energy absorption coefficient. Formore » the attenuated dose, energy dependent absorption coefficient, build-up factors and finite shielding correction factors were also taken into account. For the source term we use a modified formula from Hayashi et al., and we fitted the proportionality constant from experiments with the aid of the previously calculated transmission factors. Results: The forward dose has a quadratic dependence on electron-plasma temperature: 1 joule of effective laser energy transferred to the electrons at 1 m in vacuum yields 0,72 Sv per MeV squared of electron-plasma temperature. Air strongly filters the softer part of the photon spectrum and reduce the dose to one tenth in the first centimeter. Exponential higher energy tail of maxwellian spectrum contributes mainly to the transmitted dose. Conclusion: A simple formula for forward photon dose from keV range temperature plasma is obtained, similar to those found in kilovoltage x-rays but with higher dose per dissipated electron energy, due to thin target and absence of filtration.« less
Estimation of surface temperature in remote pollution measurement experiments
NASA Technical Reports Server (NTRS)
Gupta, S. K.; Tiwari, S. N.
1978-01-01
A simple algorithm has been developed for estimating the actual surface temperature by applying corrections to the effective brightness temperature measured by radiometers mounted on remote sensing platforms. Corrections to effective brightness temperature are computed using an accurate radiative transfer model for the 'basic atmosphere' and several modifications of this caused by deviations of the various atmospheric and surface parameters from their base model values. Model calculations are employed to establish simple analytical relations between the deviations of these parameters and the additional temperature corrections required to compensate for them. Effects of simultaneous variation of two parameters are also examined. Use of these analytical relations instead of detailed radiative transfer calculations for routine data analysis results in a severalfold reduction in computation costs.
NASA Astrophysics Data System (ADS)
Ehringfeld, Christian; Schmid, Susanne; Poljanc, Karin; Kirisits, Christian; Aiginger, Hannes; Georg, Dietmar
2005-01-01
The purpose of this study was to investigate the dosimetric characteristics (energy dependence, linearity, fading, reproducibility, etc) of MOSFET detectors for in vivo dosimetry in the kV x-ray range. The experience of MOSFET in vivo dosimetry in a pre-clinical study using the Alderson phantom and in clinical practice is also reported. All measurements were performed with a Gulmay D3300 kV unit and TN-502RDI MOSFET detectors. For the determination of correction factors different solid phantoms and a calibrated Farmer-type chamber were used. The MOSFET signal was linear with applied dose in the range from 0.2 to 2 Gy for all energies. Due to fading it is recommended to read the MOSFET signal during the first 15 min after irradiation. For long time intervals between irradiation and readout the fading can vary largely with the detector. The temperature dependence of the detector signal was small (0.3% °C-1) in the temperature range between 22 and 40 °C. The variation of the measuring signal with beam incidence amounts to ±5% and should be considered in clinical applications. Finally, for entrance dose measurements energy-dependent calibration factors, correction factors for field size and irradiated cable length were applied. The overall accuracy, for all measurements, was dominated by reproducibility as a function of applied dose. During the pre-clinical in vivo study, the agreement between MOSFET and TLD measurements was well within 3%. The results of MOSFET measurements, to determine the dosimetric characteristics as well as clinical applications, showed that MOSFET detectors are suitable for in vivo dosimetry in the kV range. However, some energy-dependent dosimetry effects need to be considered and corrected for. Due to reproducibility effects at low dose levels accurate in vivo measurements are only possible if the applied dose is equal to or larger than 2 Gy.
Ehringfeld, Christian; Schmid, Susanne; Poljanc, Karin; Kirisits, Christian; Aiginger, Hannes; Georg, Dietmar
2005-01-21
The purpose of this study was to investigate the dosimetric characteristics (energy dependence, linearity, fading, reproducibility, etc) of MOSFET detectors for in vivo dosimetry in the kV x-ray range. The experience of MOSFET in vivo dosimetry in a pre-clinical study using the Alderson phantom and in clinical practice is also reported. All measurements were performed with a Gulmay D3300 kV unit and TN-502RDI MOSFET detectors. For the determination of correction factors different solid phantoms and a calibrated Farmer-type chamber were used. The MOSFET signal was linear with applied dose in the range from 0.2 to 2 Gy for all energies. Due to fading it is recommended to read the MOSFET signal during the first 15 min after irradiation. For long time intervals between irradiation and readout the fading can vary largely with the detector. The temperature dependence of the detector signal was small (0.3% degrees C(-1)) in the temperature range between 22 and 40 degrees C. The variation of the measuring signal with beam incidence amounts to +/-5% and should be considered in clinical applications. Finally, for entrance dose measurements energy-dependent calibration factors, correction factors for field size and irradiated cable length were applied. The overall accuracy, for all measurements, was dominated by reproducibility as a function of applied dose. During the pre-clinical in vivo study, the agreement between MOSFET and TLD measurements was well within 3%. The results of MOSFET measurements, to determine the dosimetric characteristics as well as clinical applications, showed that MOSFET detectors are suitable for in vivo dosimetry in the kV range. However, some energy-dependent dosimetry effects need to be considered and corrected for. Due to reproducibility effects at low dose levels accurate in vivo measurements are only possible if the applied dose is equal to or larger than 2 Gy.
Generalized model screening potentials for Fermi-Dirac plasmas
NASA Astrophysics Data System (ADS)
Akbari-Moghanjoughi, M.
2016-04-01
In this paper, some properties of relativistically degenerate quantum plasmas, such as static ion screening, structure factor, and Thomson scattering cross-section, are studied in the framework of linearized quantum hydrodynamic theory with the newly proposed kinetic γ-correction to Bohm term in low frequency limit. It is found that the correction has a significant effect on the properties of quantum plasmas in all density regimes, ranging from solid-density up to that of white dwarf stars. It is also found that Shukla-Eliasson attractive force exists up to a few times the density of metals, and the ionic correlations are seemingly apparent in the radial distribution function signature. Simplified statically screened attractive and repulsive potentials are presented for zero-temperature Fermi-Dirac plasmas, valid for a wide range of quantum plasma number-density and atomic number values. Moreover, it is observed that crystallization of white dwarfs beyond a critical core number-density persists with this new kinetic correction, but it is shifted to a much higher number-density value of n0 ≃ 1.94 × 1037 cm-3 (1.77 × 1010 gr cm-3), which is nearly four orders of magnitude less than the nuclear density. It is found that the maximal Thomson scattering with the γ-corrected structure factor is a remarkable property of white dwarf stars. However, with the new γ-correction, the maximal scattering shifts to the spectrum region between hard X-ray and low-energy gamma-rays. White dwarfs composed of higher atomic-number ions are observed to maximally Thomson-scatter at slightly higher wavelengths, i.e., they maximally scatter slightly low-energy photons in the presence of correction.
Fritz, U; Rohrberg, M; Lange, C; Weyland, W; Bräuer, A; Braun, U
1996-11-01
Temperature of the tympanic membrane is recommended as a "gold standard" of core-temperature recording. However, use of temperature probes in the auditory canal may lead to damage of tympanic membrane. Temperature measurement in the auditory canal with infrared thermometry does not pose this risk. Furthermore it is easy to perform and not very time-consuming. For this reason infrared thermometry of the auditory canal is becoming increasingly popular in clinical practice. We evaluated two infrared thermometers-the Diatek 9000 Thermoguide and the Diatek 9000 Instatemp-regarding factors influencing agreement with conventional tympanic temperature measurement and other core-temperature recording sites. In addition, we systematically evaluated user dependent factors that influence the agreement with the tympanic temperature. In 20 volunteers we evaluated the influence of three factors: duration of the devices in the auditory canal before taking temperature (0 or 5 s), interval between two following recordings (30, 60, 90, 120, 180 s) and positioning of the grip relative to the auditory-canal axis (0, 60, 180 and 270 degrees). Agreement with tympanic contact probes (Mon-a-therm tympanic) in the contralateral ear was investigated in 100 postoperative patients. Comparative readings with rectal (YSI series 400) and esophageal (Mon-a-therm esophageal stethoscope with temperature sensor) probes were done in 100 patients in the ICU. The method of Bland and Altman was taken for comparison. Shortening of the interval between two consecutive readings led to increasing differences between the two measurements with the second reading decreasing. A similar effect was seen when positioning the infrared thermometers in the auditory canal before taking temperatures: after 5 s the recorded temperatures were significantly lower than temperature recordings taken immediately. Rotation of the devices out of the telephone handle position led to increasing lack of agreement between infrared thermometry and contact probes. Mean differences between infrared thermometry (Instatemp and Thermoguide, CAL-Mode) and tympanic probes were -0.41 +/- 0.67 degree C (2 SD) and -0.43 +/- 0.70 degree C, respectively. Mean differences between the Thermoquide (Rectal-Mode) and rectal probe were -0.19 +/- 0.72 degree C, and between the Thermoguide (Core Mode) and esophageal probe -0.13 +/- 0.74 degree C. Although easy to use, infrared thermometry requires careful handling. To obtain optimal recordings, the time between two consecutive readings should not be less than two min. Recordings should be taken immediately after positioning the devices in the auditory canal. Best results are obtained in the 60 degrees position with the grip of the devices following the ramus mandibulae (telephone handle position). The lower readings of infrared thermometry compared with tympanic contact probes indicate that the readings obtained represent the temperature of the auditory canal rather than of the tympanic membrane itself. To compensate for underestimation of core temperature by infrared thermometry, the results obtained are corrected and transferred into core-equivalent temperatures. This data correction reduces mean differences between infrared recordings and traditional core-temperature monitoring, but leaves limits of agreement between the two methods uninfluenced.
NASA Technical Reports Server (NTRS)
Troccoli, Alberto; Rienecker, Michele M.; Keppenne, Christian L.; Johnson, Gregory C.
2003-01-01
The NASA Seasonal-to-Interannual Prediction Project (NSIPP) has developed an Ocean data assimilation system to initialize the quasi-isopycnal ocean model used in our experimental coupled-model forecast system. Initial tests of the system have focused on the assimilation of temperature profiles in an optimal interpolation framework. It is now recognized that correction of temperature only often introduces spurious water masses. The resulting density distribution can be statically unstable and also have a detrimental impact on the velocity distribution. Several simple schemes have been developed to try to correct these deficiencies. Here the salinity field is corrected by using a scheme which assumes that the temperature-salinity relationship of the model background is preserved during the assimilation. The scheme was first introduced for a zlevel model by Troccoli and Haines (1999). A large set of subsurface observations of salinity and temperature is used to cross-validate two data assimilation experiments run for the 6-year period 1993-1998. In these two experiments only subsurface temperature observations are used, but in one case the salinity field is also updated whenever temperature observations are available.
Sun, Li; Westerdahl, Dane; Ning, Zhi
2017-08-19
Emerging low-cost gas sensor technologies have received increasing attention in recent years for air quality measurements due to their small size and convenient deployment. However, in the diverse applications these sensors face many technological challenges, including sensor drift over long-term deployment that cannot be easily addressed using mathematical correction algorithms or machine learning methods. This study aims to develop a novel approach to auto-correct the drift of commonly used electrochemical nitrogen dioxide (NO₂) sensor with comprehensive evaluation of its application. The impact of environmental factors on the NO₂ electrochemical sensor in low-ppb concentration level measurement was evaluated in laboratory and the temperature and relative humidity correction algorithm was evaluated. An automated zeroing protocol was developed and assessed using a chemical absorbent to remove NO₂ as a means to perform zero correction in varying ambient conditions. The sensor system was operated in three different environments in which data were compared to a reference NO₂ analyzer. The results showed that the zero-calibration protocol effectively corrected the observed drift of the sensor output. This technique offers the ability to enhance the performance of low-cost sensor based systems and these findings suggest extension of the approach to improve data quality from sensors measuring other gaseous pollutants in urban air.
NASA Astrophysics Data System (ADS)
Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.
2017-02-01
The parallel-plate free-air ionization chamber termed FAC-IR-300 was designed at the Atomic Energy Organization of Iran, AEOI. This chamber is used for low and medium X-ray dosimetry on the primary standard level. In order to evaluate the air-kerma, some correction factors such as electron-loss correction factor (ke) and photon scattering correction factor (ksc) are needed. ke factor corrects the charge loss from the collecting volume and ksc factor corrects the scattering of photons into collecting volume. In this work ke and ksc were estimated by Monte Carlo simulation. These correction factors are calculated for mono-energy photon. As a result of the simulation data, the ke and ksc values for FAC-IR-300 ionization chamber are 1.0704 and 0.9982, respectively.
Effects of diurnal adjustment on biases and trends derived from inter-sensor calibrated AMSU-A data
NASA Astrophysics Data System (ADS)
Chen, H.; Zou, X.; Qin, Z.
2018-03-01
Measurements of brightness temperatures from Advanced Microwave Sounding Unit-A (AMSU-A) temperature sounding instruments onboard NOAA Polarorbiting Operational Environmental Satellites (POES) have been extensively used for studying atmospheric temperature trends over the past several decades. Intersensor biases, orbital drifts and diurnal variations of atmospheric and surface temperatures must be considered before using a merged long-term time series of AMSU-A measurements from NOAA-15, -18, -19 and MetOp-A.We study the impacts of the orbital drift and orbital differences of local equator crossing times (LECTs) on temperature trends derivable from AMSU-A using near-nadir observations from NOAA-15, NOAA-18, NOAA-19, and MetOp-A during 1998-2014 over the Amazon rainforest. The double difference method is firstly applied to estimation of inter-sensor biases between any two satellites during their overlapping time period. The inter-calibrated observations are then used to generate a monthly mean diurnal cycle of brightness temperature for each AMSU-A channel. A diurnal correction is finally applied each channel to obtain AMSU-A data valid at the same local time. Impacts of the inter-sensor bias correction and diurnal correction on the AMSU-A derived long-term atmospheric temperature trends are separately quantified and compared with those derived from original data. It is shown that the orbital drift and differences of LECTamong different POESs induce a large uncertainty in AMSU-A derived long-term warming/cooling trends. After applying an inter-sensor bias correction and a diurnal correction, the warming trends at different local times, which are approximately the same, are smaller by half than the trends derived without applying these corrections.
NASA Astrophysics Data System (ADS)
Bartels, A.; Bartel, T.; Canadija, M.; Mosler, J.
2015-09-01
This paper deals with the thermomechanical coupling in dissipative materials. The focus lies on finite strain plasticity theory and the temperature increase resulting from plastic deformation. For this type of problem, two fundamentally different modeling approaches can be found in the literature: (a) models based on thermodynamical considerations and (b) models based on the so-called Taylor-Quinney factor. While a naive straightforward implementation of thermodynamically consistent approaches usually leads to an over-prediction of the temperature increase due to plastic deformation, models relying on the Taylor-Quinney factor often violate fundamental physical principles such as the first and the second law of thermodynamics. In this paper, a thermodynamically consistent framework is elaborated which indeed allows the realistic prediction of the temperature evolution. In contrast to previously proposed frameworks, it is based on a fully three-dimensional, finite strain setting and it naturally covers coupled isotropic and kinematic hardening - also based on non-associative evolution equations. Considering a variationally consistent description based on incremental energy minimization, it is shown that the aforementioned problem (thermodynamical consistency and a realistic temperature prediction) is essentially equivalent to correctly defining the decomposition of the total energy into stored and dissipative parts. Interestingly, this decomposition shows strong analogies to the Taylor-Quinney factor. In this respect, the Taylor-Quinney factor can be well motivated from a physical point of view. Furthermore, certain intervals for this factor can be derived in order to guarantee that fundamental physically principles are fulfilled a priori. Representative examples demonstrate the predictive capabilities of the final constitutive modeling framework.
Solar array model corrections from Mars Pathfinder lander data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewell, R.C.; Burger, D.R.
1997-12-31
The MESUR solar array power model initially assumed values for input variables. After landing early surface variables such as array tilt and azimuth or early environmental variables such as array temperature can be corrected. Correction of later environmental variables such as tau versus time, spectral shift, dust deposition, and UV darkening is dependent upon time, on-board science instruments, and ability to separate effects of variables. Engineering estimates had to be made for additional shadow losses and Voc sensor temperature corrections. Some variations had not been expected such as tau versus time of day, and spectral shift versus time of day.more » Additions needed to the model are thermal mass of lander petal and correction between Voc sensor and temperature sensor. Conclusions are: the model works well; good battery predictions are difficult; inclusion of Isc and Voc sensors was valuable; and the IMP and MAE science experiments greatly assisted the data analysis and model correction.« less
Multi-wavelength emissivity measurement of stainless steel substrate
NASA Astrophysics Data System (ADS)
Zhang, Y. F. F.; Dai, J. M. M.; Zhang, L.; Pan, W. D. D.
2013-01-01
The emissivity is a key parameter to measure the surface temperature of materials in the radiation thermometry. In this paper, the surface emissivity of metallic substrates is measured by the multi-wavelength emissivity measurement apparatus developed by the Harbin Institute of Technology (HIT). The measuring principle of this apparatus is based on the energy comparison. Several radiation thermometers, whose emissivity coefficients corrected by the measured emissivity from this apparatus, are used to measure the surface temperature of stainless steel substrates. The temperature values measured by means of radiation thermometry are compared to those measured by means of contact thermometry. The relative error between the two means is less than 2% at temperatures from 700K to 1300K, it suggests that the emissivity of stainless steel substrate measured by the multi-wavelength emissivity measurement apparatus are accurate and reliable. Emissivity measurements performed with this apparatus present an uncertainty of 5.9% (cover factor=2).
Temperature dependent structural and dynamical properties of liquid Cu80Si20 binary alloy
NASA Astrophysics Data System (ADS)
Suthar, P. H.; Shah, A. K.; Gajjar, P. N.
2018-05-01
Ashcroft and Langreth binary structure factor have been used to study for pair correlation function and the study of dynamical variable: velocity auto correlation functions, power spectrum and mean square displacement calculated based on the static harmonic well approximation in liquid Cu80Si20 binary alloy at wide temperature range (1140K, 1175K, 1210K, 1250K, 1373K, 1473K.). The effective interaction for the binary alloy is computed by our well established local pseudopotential along with the exchange and correction functions Sarkar et al(S). The negative dip in velocity auto correlation decreases as the various temperature is increases. For power spectrum as temperature increases, the peak of power spectrum shifts toward lower ω. Good agreement with the experiment is observed for the pair correlation functions. Velocity auto correlation showing the transferability of the local pseudopotential used for metallic liquid environment in the case of copper based binary alloys.
Dryland pasture and crop conditions as seen by HCMM. [Washita River watershed, Oklahoma
NASA Technical Reports Server (NTRS)
Rosenthal, W. D.; Harlan, J. C.; Blanchard, B. J. (Principal Investigator)
1980-01-01
Ground truth, aircraft, and satellite data were examined in order to: (1) assess the capability for determining wheat and pasture canopy temperatures in a dryland farming region from HCMM data; (2) assess the capability for determining soil moisture from HCMM data in dryland crops (winter wheat) from adjacent range lands; and (3) determine the relationship of HCMM-derived soil moisture and canopy temperature values with the condition of winter wheat and dryland farming areas during the principal growth stages. The IR data were screened to include areas having greater than 60% pasture and surface temperatures were recalculated using the atmospheric correction factor calculated by the modified RADTRA model, and the July 29, 1978 IR data were analyzed. Screening the IR data improved the relationship for July 24/July 13 and October 7/August 31 temperature/API relationship. However the coefficient of determination was not improved in the July 29/July 13 relationship.
Minimal entropy reconstructions of thermal images for emissivity correction
NASA Astrophysics Data System (ADS)
Allred, Lloyd G.
1999-03-01
Low emissivity with corresponding low thermal emission is a problem which has long afflicted infrared thermography. The problem is aggravated by reflected thermal energy which increases as the emissivity decreases, thus reducing the net signal-to-noise ratio, which degrades the resulting temperature reconstructions. Additional errors are introduced from the traditional emissivity-correction approaches, wherein one attempts to correct for emissivity either using thermocouples or using one or more baseline images, collected at known temperatures. These corrections are numerically equivalent to image differencing. Errors in the baseline images are therefore additive, causing the resulting measurement error to either double or triple. The practical application of thermal imagery usually entails coating the objective surface to increase the emissivity to a uniform and repeatable value. While the author recommends that the thermographer still adhere to this practice, he has devised a minimal entropy reconstructions which not only correct for emissivity variations, but also corrects for variations in sensor response, using the baseline images at known temperatures to correct for these values. The minimal energy reconstruction is actually based on a modified Hopfield neural network which finds the resulting image which best explains the observed data and baseline data, having minimal entropy change between adjacent pixels. The autocorrelation of temperatures between adjacent pixels is a feature of most close-up thermal images. A surprising result from transient heating data indicates that the resulting corrected thermal images have less measurement error and are closer to the situational truth than the original data.
Adiabatic pressure dependence of the 2.7 and 1.9 micron water vapor bands
NASA Technical Reports Server (NTRS)
Mathai, C. V.; Walls, W. L.; Broersma, S.
1977-01-01
An acoustic excitation technique is used to determine the adiabatic pressure derivative of the spectral absorptance of the 2.7 and 1.9 micron water vapor bands, and the 3.5 micron HCl band. The dependence of this derivative on thermodynamic parameters such as temperature, concentration, and pressure is evaluated. A cross-flow water vapor system is used to measure spectral absorptance. Taking F as the ratio of nonrigid to rotor line strengths, it is found that an F factor correction is needed for the 2.7 micron band. The F factor for the 1.9 micron band is also determined. In the wings of each band a wavelength can be found where the concentration dependence is predominant. Farther out in the wings a local maximum occurs for the temperature derivative. It is suggested that the pressure derivative is significant in the core of the band.
Artifact Correction in Temperature-Dependent Attenuated Total Reflection Infrared (ATR-IR) Spectra.
Sobieski, Brian; Chase, Bruce; Noda, Isao; Rabolt, John
2017-08-01
A spectral processing method was developed and tested for analyzing temperature-dependent attenuated total reflection infrared (ATR-IR) spectra of aliphatic polyesters. Spectra of a bio-based, biodegradable polymer, 3.9 mol% 3HHx poly[(R)-3-hydroxybutyrate- co-(R)-3-hydroxyhexanoate] (PHBHx), were analyzed and corrected prior to analysis using two-dimensional correlation spectroscopy (2D-COS). Removal of the temperature variation of diamond absorbance, correction of the baseline, ATR correction, and appropriate normalization were key to generating more reliable data. Both the processing steps and order were important. A comparison to differential scanning calorimetry (DSC) analysis indicated that the normalization method should be chosen with caution to avoid unintentional trends and distortions of the crystalline sensitive bands.
NASA Astrophysics Data System (ADS)
Hervo, Maxime; Poltera, Yann; Haefele, Alexander
2016-07-01
Imperfections in a lidar's overlap function lead to artefacts in the background, range and overlap-corrected lidar signals. These artefacts can erroneously be interpreted as an aerosol gradient or, in extreme cases, as a cloud base leading to false cloud detection. A correct specification of the overlap function is hence crucial in the use of automatic elastic lidars (ceilometers) for the detection of the planetary boundary layer or of low cloud. In this study, an algorithm is presented to correct such artefacts. It is based on the assumption of a homogeneous boundary layer and a correct specification of the overlap function down to a minimum range, which must be situated within the boundary layer. The strength of the algorithm lies in a sophisticated quality-check scheme which allows the reliable identification of favourable atmospheric conditions. The algorithm was applied to 2 years of data from a CHM15k ceilometer from the company Lufft. Backscatter signals corrected for background, range and overlap were compared using the overlap function provided by the manufacturer and the one corrected with the presented algorithm. Differences between corrected and uncorrected signals reached up to 45 % in the first 300 m above ground. The amplitude of the correction turned out to be temperature dependent and was larger for higher temperatures. A linear model of the correction as a function of the instrument's internal temperature was derived from the experimental data. Case studies and a statistical analysis of the strongest gradient derived from corrected signals reveal that the temperature model is capable of a high-quality correction of overlap artefacts, in particular those due to diurnal variations. The presented correction method has the potential to significantly improve the detection of the boundary layer with gradient-based methods because it removes false candidates and hence simplifies the attribution of the detected gradients to the planetary boundary layer. A particularly significant benefit can be expected for the detection of shallow stable layers typical of night-time situations. The algorithm is completely automatic and does not require any on-site intervention but requires the definition of an adequate instrument-specific configuration. It is therefore suited for use in large ceilometer networks.
Mort, Brendan C; Autschbach, Jochen
2006-08-09
Vibrational corrections (zero-point and temperature dependent) of the H-D spin-spin coupling constant J(HD) for six transition metal hydride and dihydrogen complexes have been computed from a vibrational average of J(HD) as a function of temperature. Effective (vibrationally averaged) H-D distances have also been determined. The very strong temperature dependence of J(HD) for one of the complexes, [Ir(dmpm)Cp*H2]2 + (dmpm = bis(dimethylphosphino)methane) can be modeled simply by the Boltzmann average of the zero-point vibrationally averaged JHD of two isomers. For this complex and four others, the vibrational corrections to JHD are shown to be highly significant and lead to improved agreement between theory and experiment in most cases. The zero-point vibrational correction is important for all complexes. Depending on the shape of the potential energy and J-coupling surfaces, for some of the complexes higher vibrationally excited states can also contribute to the vibrational corrections at temperatures above 0 K and lead to a temperature dependence. We identify different classes of complexes where a significant temperature dependence of J(HD) may or may not occur for different reasons. A method is outlined by which the temperature dependence of the HD spin-spin coupling constant can be determined with standard quantum chemistry software. Comparisons are made with experimental data and previously calculated values where applicable. We also discuss an example where a low-order expansion around the minimum of a complicated potential energy surface appears not to be sufficient for reproducing the experimentally observed temperature dependence.
Can a pseudo-Nambu-Goldstone Higgs lead to symmetry non-restoration?
NASA Astrophysics Data System (ADS)
Kilic, Can; Swaminathan, Sivaramakrishnan
2016-01-01
The calculation of finite temperature contributions to the scalar potential in a quantum field theory is similar to the calculation of loop corrections at zero temperature. In natural extensions of the Standard Model where loop corrections to the Higgs potential cancel between Standard Model degrees of freedom and their symmetry partners, it is interesting to contemplate whether finite temperature corrections also cancel, raising the question of whether a broken phase of electroweak symmetry may persist at high temperature. It is well known that this does not happen in supersymmetric theories because the thermal contributions of bosons and fermions do not cancel each other. However, for theories with same spin partners, the answer is less obvious. Using the Twin Higgs model as a benchmark, we show that although thermal corrections do cancel at the level of quadratic divergences, subleading corrections still drive the system to a restored phase. We further argue that our conclusions generalize to other well-known extensions of the Standard Model where the Higgs is rendered natural by being the pseudo-Nambu-Goldstone mode of an approximate global symmetry.
Sarkar, Sujoy; Sampath, S
2016-05-28
Correction for 'Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control' by Sujoy Sarkar et al., Chem. Commun., 2016, 52, 6407-6410.
Enhanced power factor via the control of structural phase transition in SnSe
Yu, Hulei; Dai, Shuai; Chen, Yue
2016-01-01
Tin selenide has attracted much research interest due to its unprecedentedly high thermoelectric figure of merit (ZT). For real applications, it is desirable to increase the ZT value in the lower-temperature range, as the peak ZT value currently exists near the melting point. It is shown in this paper that the structural phase transition plays an important role in boosting the ZT value of SnSe in the lower-temperature range, as the Cmcm phase is found to have a much higher power factor than the Pnma phase. Furthermore, hydrostatic pressure is predicted to be extremely effective in tuning the phase transition temperature based on ab-initio molecular dynamic simulations; a remarkable decrease in the phase transition temperature is found when a hydrostatic pressure is applied. Dynamical stabilities are investigated based on phonon calculations, providing deeper insight into the pressure effects. Accurate band structures are obtained using the modified Becke-Johnson correction, allowing reliable prediction of the electrical transport properties. The effects of hydrostatic pressure on the thermal transport properties are also discussed. Hydrostatic pressure is shown to be efficient in manipulating the transport properties via the control of phase transition temperature in SnSe, paving a new path for enhancing its thermoelectric efficiency. PMID:27193260
The variability of atmospheric equivalent temperature for radar altimeter range correction
NASA Technical Reports Server (NTRS)
Liu, W. Timothy; Mock, Donald
1990-01-01
Two sets of data were used to test the validity of the presently used approximation for radar altimeter range correction due to atmospheric water vapor. The approximation includes an assumption of constant atmospheric equivalent temperature. The first data set includes monthly, three-dimensional, gridded temperature and humidity fields over global oceans for a 10-year period, and the second is comprised of daily or semidaily rawinsonde data at 17 island stations for a 7-year period. It is found that the standard method underestimates the variability of the equivalent temperature, and the approximation could introduce errors of 2 cm for monthly means. The equivalent temperature is found to have a strong meridional gradient, and the highest temporal variabilities are found over western boundary currents. The study affirms that the atmospheric water vapor is a good predictor for both the equivalent temperature and the range correction. A relation is proposed to reduce the error.
Resistivity Correction Factor for the Four-Probe Method: Experiment II
NASA Astrophysics Data System (ADS)
Yamashita, Masato; Yamaguchi, Shoji; Nishii, Toshifumi; Kurihara, Hiroshi; Enjoji, Hideo
1989-05-01
Experimental verification of the theoretically derived resistivity correction factor F is presented. Factor F can be applied to a system consisting of a disk sample and a four-probe array. Measurements are made on isotropic graphite disks and crystalline ITO films. Factor F can correct the apparent variations of the data and lead to reasonable resistivities and sheet resistances. Here factor F is compared to other correction factors; i.e. FASTM and FJIS.
Exchange enhancement of the electron g-factor in a two-dimensional semimetal in HgTe quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bovkun, L. S., E-mail: bovkun@ipmras.ru; Krishtopenko, S. S.; Zholudev, M. S.
The exchange enhancement of the electron g-factor in perpendicular magnetic fields to 12 T in HgTe/CdHgTe quantum wells 20 nm wide with a semimetal band structure is studied. The electron effective mass and g-factor at the Fermi level are determined by analyzing the temperature dependence of the amplitude of Shubnikov–de Haas oscillation in weak fields and near odd Landau-level filling factors ν ≤ 9. The experimental values are compared with theoretical calculations performed in the one-electron approximation using the eight-band kp Hamiltonian. The found dependence of g-factor enhancement on the electron concentration is explained by changes in the contributions ofmore » hole- and electron-like states to exchange corrections to the Landau-level energies in the conduction band.« less
Yang, Jie; Liu, Qingquan; Dai, Wei
2017-02-01
To improve the air temperature observation accuracy, a low measurement error temperature sensor is proposed. A computational fluid dynamics (CFD) method is implemented to obtain temperature errors under various environmental conditions. Then, a temperature error correction equation is obtained by fitting the CFD results using a genetic algorithm method. The low measurement error temperature sensor, a naturally ventilated radiation shield, a thermometer screen, and an aspirated temperature measurement platform are characterized in the same environment to conduct the intercomparison. The aspirated platform served as an air temperature reference. The mean temperature errors of the naturally ventilated radiation shield and the thermometer screen are 0.74 °C and 0.37 °C, respectively. In contrast, the mean temperature error of the low measurement error temperature sensor is 0.11 °C. The mean absolute error and the root mean square error between the corrected results and the measured results are 0.008 °C and 0.01 °C, respectively. The correction equation allows the temperature error of the low measurement error temperature sensor to be reduced by approximately 93.8%. The low measurement error temperature sensor proposed in this research may be helpful to provide a relatively accurate air temperature result.
Ning, Zhi; Ye, Sheng; Sun, Li; Yang, Fenhuan; Wong, Ka Chun; Westerdahl, Dane; Louie, Peter K. K.
2018-01-01
The increasing applications of low-cost air sensors promises more convenient and cost-effective systems for air monitoring in many places and under many conditions. However, the data quality from such systems has not been fully characterized and may not meet user expectations in research and regulatory uses, or for use in citizen science. In our study, electrochemical sensors (Alphasense B4 series) for carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), and oxidants (Ox) were evaluated under controlled laboratory conditions to identify the influencing factors and quantify their relation with sensor outputs. Based on the laboratory tests, we developed different correction methods to compensate for the impact of ambient conditions. Further, the sensors were assembled into a monitoring system and tested in ambient conditions in Hong Kong side-by-side with regulatory reference monitors, and data from these tests were used to evaluate the performance of the models, to refine them, and validate their applicability in variable ambient conditions in the field. The more comprehensive correction models demonstrated enhanced performance when compared with uncorrected data. One over-arching observation of this study is that the low-cost sensors may promise excellent sensitivity and performance, but it is essential for users to understand and account for several key factors that may strongly affect the nature of sensor data. In this paper, we also evaluated factors of multi-month stability, temperature, and humidity, and considered the interaction of oxidant gases NO2 and ozone on a newly introduced oxidant sensor. PMID:29360749
Wei, Peng; Ning, Zhi; Ye, Sheng; Sun, Li; Yang, Fenhuan; Wong, Ka Chun; Westerdahl, Dane; Louie, Peter K K
2018-01-23
The increasing applications of low-cost air sensors promises more convenient and cost-effective systems for air monitoring in many places and under many conditions. However, the data quality from such systems has not been fully characterized and may not meet user expectations in research and regulatory uses, or for use in citizen science. In our study, electrochemical sensors (Alphasense B4 series) for carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO₂), and oxidants (O x ) were evaluated under controlled laboratory conditions to identify the influencing factors and quantify their relation with sensor outputs. Based on the laboratory tests, we developed different correction methods to compensate for the impact of ambient conditions. Further, the sensors were assembled into a monitoring system and tested in ambient conditions in Hong Kong side-by-side with regulatory reference monitors, and data from these tests were used to evaluate the performance of the models, to refine them, and validate their applicability in variable ambient conditions in the field. The more comprehensive correction models demonstrated enhanced performance when compared with uncorrected data. One over-arching observation of this study is that the low-cost sensors may promise excellent sensitivity and performance, but it is essential for users to understand and account for several key factors that may strongly affect the nature of sensor data. In this paper, we also evaluated factors of multi-month stability, temperature, and humidity, and considered the interaction of oxidant gases NO₂ and ozone on a newly introduced oxidant sensor.
NASA Astrophysics Data System (ADS)
Jiang, Fulin; Tang, Jie; Fu, Dinfa; Huang, Jianping; Zhang, Hui
2018-04-01
Multistage stress-strain curve correction based on an instantaneous friction factor was studied for axisymmetric uniaxial hot compression of 7150 aluminum alloy. Experimental friction factors were calculated based on continuous isothermal axisymmetric uniaxial compression tests at various deformation parameters. Then, an instantaneous friction factor equation was fitted by mathematic analysis. After verification by comparing single-pass flow stress correction with traditional average friction factor correction, the instantaneous friction factor equation was applied to correct multistage stress-strain curves. The corrected results were reasonable and validated by multistage relative softening calculations. This research provides a broad potential for implementing axisymmetric uniaxial compression in multistage physical simulations and friction optimization in finite element analysis.
Huckins, J.N.; Petty, J.D.; Orazio, C.E.; Lebo, J.A.; Clark, R.C.; Gibson, V.L.; Gala, W.R.; Echols, K.R.
1999-01-01
The use of lipid-containing semipermeable membrane devices (SPMDs) is becoming commonplace, but very little sampling rate data are available for the estimation of ambient contaminant concentrations from analyte levels in exposed SPMDs. We determined the aqueous sampling rates (R(s)s; expressed as effective volumes of water extracted daily) of the standard (commercially available design) 1-g triolein SPMD for 15 of the priority pollutant (PP) polycyclic aromatic hydrocarbons (PAHs) at multiple temperatures and concentrations. Under the experimental conditions of this study, recovery- corrected R(s) values for PP PAHs ranged from ???1.0 to 8.0 L/d. These values would be expected to be influenced by significant changes (relative to this study) in water temperature, degree of biofouling, and current velocity- turbulence. Included in this paper is a discussion of the effects of temperature and octanol-water partition coefficient (K(ow)); the impacts of biofouling and hydrodynamics are reported separately. Overall, SPMDs responded proportionally to aqueous PAH concentrations; i.e., SPMD R(s) values and SPMD-water concentration factors were independent of aqueous concentrations. Temperature effects (10, 18, and 26 ??C) on Rs values appeared to be complex but were relatively small.The use of lipid-containing semipermeable membrane devices (SPMDs) is becoming commonplace, but very little sampling rate data are available for the estimation of ambient contaminant concentrations from analyte levels in exposed SPMDs. We determined the aqueous sampling rates (Rss; expressed as effective volumes of water extracted daily) of the standard (commercially available design) 1-g triolein SPMD for 15 of the priority pollutant (PP) polycyclic aromatic hydrocarbons (PAHs) at multiple temperatures and concentrations. Under the experimental conditions of this study, recovery-corrected Rs values for PP PAHs ranged from ???1.0 to 8.0 L/d. These values would be expected to be influenced by significant changes (relative to this study) in water temperature, degree of biofouling, and current velocity-turbulence. Included in this paper is a discussion of the effects of temperature and octanol-water partition coefficient (KOW); the impacts of biofouling and hydrodynamics are reported separately. Overall, SPMDs responded proportionally to aqueous PAH concentrations; i.e., SPMD RS values and SPMD-water concentration factors were independent of aqueous concentrations. Temperature effects (10, 18, and 26??C) on RS values appeared to be complex but were relatively small.
Global Surface Temperature Change and Uncertainties Since 1861
NASA Technical Reports Server (NTRS)
Shen, Samuel S. P.; Lau, William K. M. (Technical Monitor)
2002-01-01
The objective of this talk is to analyze the warming trend and its uncertainties of the global and hemi-spheric surface temperatures. By the method of statistical optimal averaging scheme, the land surface air temperature and sea surface temperature observational data are used to compute the spatial average annual mean surface air temperature. The optimal averaging method is derived from the minimization of the mean square error between the true and estimated averages and uses the empirical orthogonal functions. The method can accurately estimate the errors of the spatial average due to observational gaps and random measurement errors. In addition, quantified are three independent uncertainty factors: urbanization, change of the in situ observational practices and sea surface temperature data corrections. Based on these uncertainties, the best linear fit to annual global surface temperature gives an increase of 0.61 +/- 0.16 C between 1861 and 2000. This lecture will also touch the topics on the impact of global change on nature and environment. as well as the latest assessment methods for the attributions of global change.
NASA Technical Reports Server (NTRS)
Radakovich, Jon; Bosilovich, M.; Chern, Jiun-dar; daSilva, Arlindo
2004-01-01
The NASA/NCAR Finite Volume GCM (fvGCM) with the NCAR CLM (Community Land Model) version 2.0 was integrated into the NASA/GMAO Finite Volume Data Assimilation System (fvDAS). A new method was developed for coupled skin temperature assimilation and bias correction where the analysis increment and bias correction term is passed into the CLM2 and considered a forcing term in the solution to the energy balance. For our purposes, the fvDAS CLM2 was run at 1 deg. x 1.25 deg. horizontal resolution with 55 vertical levels. We assimilate the ISCCP-DX (30 km resolution) surface temperature product. The atmospheric analysis was performed 6-hourly, while the skin temperature analysis was performed 3-hourly. The bias correction term, which was updated at the analysis times, was added to the skin temperature tendency equation at every timestep. In this presentation, we focus on the validation of the surface energy budget at the in situ reference sites for the Coordinated Enhanced Observation Period (CEOP). We will concentrate on sites that include independent skin temperature measurements and complete energy budget observations for the month of July 2001. In addition, MODIS skin temperature will be used for validation. Several assimilations were conducted and preliminary results will be presented.
NASA Astrophysics Data System (ADS)
Lu, Zhiwei; Han, Li; Hu, Chengjun; Pan, Yong; Duan, Shengnan; Wang, Ningbo; Li, Shijian; Nuer, Maimaiti
2017-10-01
With the development of oil and gas fields, the accuracy and quantity requirements of real-time dynamic monitoring data needed for well dynamic analysis and regulation are increasing. Permanent, distributed downhole optical fiber temperature and pressure monitoring and other online real-time continuous data monitoring has become an important data acquisition and transmission technology in digital oil field and intelligent oil field construction. Considering the requirement of dynamic analysis of steam chamber developing state in SAGD horizontal wells in F oil reservoir in Xinjiang oilfield, it is necessary to carry out real-time and continuous temperature monitoring in horizontal section. Based on the study of the principle of optical fiber temperature measurement, the factors that cause the deviation of optical fiber temperature sensing are analyzed, and the method of fiber temperature calibration is proposed to solve the problem of temperature deviation. Field application in three wells showed that it could attain accurate measurement of downhole temperature by temperature correction. The real-time and continuous downhole distributed fiber temperature sensing technology has higher application value in the reservoir management of SAGD horizontal wells. It also has a reference for similar dynamic monitoring in reservoir production.
Correction of the heat loss method for calculating clothing real evaporative resistance.
Wang, Faming; Zhang, Chengjiao; Lu, Yehu
2015-08-01
In the so-called isothermal condition (i.e., Tair [air temperature]=Tmanikin [manikin temperature]=Tr [radiant temperature]), the actual energy used for moisture evaporation detected by most sweating manikins was underestimated due to the uncontrolled fabric 'skin' temperature Tsk,f (i.e., Tsk,f
Gradient corrections to the exchange-correlation free energy
Sjostrom, Travis; Daligault, Jerome
2014-10-07
We develop the first-order gradient correction to the exchange-correlation free energy of the homogeneous electron gas for use in finite-temperature density functional calculations. Based on this, we propose and implement a simple temperature-dependent extension for functionals beyond the local density approximation. These finite-temperature functionals show improvement over zero-temperature functionals, as compared to path-integral Monte Carlo calculations for deuterium equations of state, and perform without computational cost increase compared to zero-temperature functionals and so should be used for finite-temperature calculations. Furthermore, while the present functionals are valid at all temperatures including zero, non-negligible difference with zero-temperature functionals begins at temperatures abovemore » 10 000 K.« less
Corrected Implicit Monte Carlo
Cleveland, Mathew Allen; Wollaber, Allan Benton
2018-01-02
Here in this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle formore » frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. Finally, we present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.« less
Corrected implicit Monte Carlo
NASA Astrophysics Data System (ADS)
Cleveland, M. A.; Wollaber, A. B.
2018-04-01
In this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle for frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. We present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.
NASA Technical Reports Server (NTRS)
Yueh, Simon H.; Chaubell, Mario J.
2011-01-01
Aquarius is a combined passive/active L-band microwave instrument developed to map the salinity field at the surface of the ocean from space. The data will support studies of the coupling between ocean circulation, the global water cycle, and climate. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean with a spatial resolution of 150 kilometers and a retrieval accuracy of 0.2 practical salinity units globally on a monthly basis. The measurement principle is based on the response of the L-band (1.413 gigahertz) sea surface brightness temperatures (T (sub B)) to sea surface salinity. To achieve the required 0.2 practical salinity units accuracy, the impact of sea surface roughness (e.g. wind-generated ripples and waves) along with several factors on the observed brightness temperature has to be corrected to better than a few tenths of a degree Kelvin. To the end, Aquarius includes a scatterometer to help correct for this surface roughness effect.
NASA Astrophysics Data System (ADS)
Mathien-Blard, Elise; Bassinot, Franck
2009-12-01
Mg/Ca in foraminiferal calcite has recently been extensively used to estimate past oceanic temperatures. Here we show, however, that the Mg/Ca temperature relationship of the planktonic species Globigerinoides ruber is significantly affected by seawater salinity, with a +1 psu change in salinity resulting in a +1.6°C bias in Mg/Ca temperature calculations. If not accounted for, such a bias could lead, for instance, to systematic overestimations of Mg/Ca temperatures during glacial periods, when global ocean salinity had significantly increased compared to today. We present here a correction procedure to derive unbiased sea surface temperatures (SST) and δ18Osw from G. ruber TMg/Ca and δ18Of measurements. This correction procedure was applied to a sedimentary record to reconstruct hydrographic changes since the Last Glacial Maximum (LGM) in the Western Pacific Warm Pool. While uncorrected TMg/Ca data indicate a 3°C warming of the Western Pacific Warm Pool since the LGM, the salinity-corrected SST result in a stronger warming of 4°C.
Correction of the Temperature Effect in 1020 NM Band of Sun-Sky Radiometer
NASA Astrophysics Data System (ADS)
Li, K.; Li, Z.; Li, D.; Xie, Y.; Xu, H.
2018-04-01
Aerosol is an important part of the earth-atmosphere system. It can directly and indirectly influence solar radiation and then affect the energy balance of earth-atmosphere system. AERONET, as the largest ground-based observation network, provides multi-parameters of aerosol from more than 600 hundred sites using sun-sky radiometer, which contains 9 channels from 340 nm to 1640 nm. Among which, 1020 nm channel is greatly influenced by the temperature. In this paper, a new correction method of 1020 nm band is introduced. The new method transfers the temperature correction coefficient of the master radiometer to the comparative one. The filed calibration experiment shown that the temperature correction coefficient obtained by this method is close to the result from the temperature controlled chamber, and the difference is about 2.1 %. This new method is easy-to-use, and its accuracy is comparable to the standard one. It is more applicable for large-scale instrument calibration. In principle, this method is applicable to all bands of the sun-sky radiometer.
Climatic indicators over Catalonia during the last century
NASA Astrophysics Data System (ADS)
Busto, M.; Prohom, M.
2010-09-01
The Meteorological Service of Catalonia releases a yearly bulletin whose main objective is to try to detect climate trends over Catalonia during the last decades. Climate indicators are obtained from the analysis of historical daily air temperature, sea temperature and rainfall series. Those series have been first completed, analyzed for quality control and homogenized to ensure its final reliability. Regarding homogenization, monthly air temperature series have been tested and corrected according to the methodology proposed by Caussinus and Mestre (2004). For the two longest air temperature series, the calculated correction factors have been transferred to the daily values following Vincent et al. (2002) recommendations, while no significant inhomogeneities have been detected for precipitation series. The analysis of temperature trends, for the period 1950-2010, of 17 selected climatic series spread across the territory shows a common temperature increase between +0.19 to +0.24 °C/decade. This warming trend is uniform and no specific sub-regional trends are detected. Furthermore, the seasonal approach reveals that mean maximum temperature increases at a higher rate than mean minimum temperature. The summer temperature rise is the most significant, between +0.32 and +0.44 °C/decade, while autumn is the only season showing no significant positive trend. The summer maximum temperature shows the highest increase, exceeding +0.39 °C/decade in all the 17 series. The climatic extremes analysis of the longest Catalan series (Ebre Observatory in Roquetes, Tarragona, since 1905 and Fabra Observatory in Barcelona since 1913) reveals an increase in the number of summer days, tropical nights, minimum of maximum temperature, warm days and warm nights, and a decrease in the number of frost days, cold nights, cold days and cold spell duration indicator. Concerning precipitation, the only significant trend is the reduction of snow days. These trends were calculated according to the Expert Team on Climate Change Detection and Indices (ETCCDI). The sea temperature trend in l'Estartit (NE coast of Catalonia, Costa Brava) since 1974 shows a steady increment in all the measured levels (surface, -20 m, -50 m and -80 m) of +0,33 °C/decade on average. Temperature increment is maximum at -20 m, with +0.36 °C/decade variation. Moreover, there is an increase in the sea level of +3.35 cm/decade. CAUSSINUS, H. and MESTRE, O. (2004): Detection and correction of artificial shifts in climate series. Journal of the Royal Statistical Society Series C - Applied Statistics, 53, 405-425. VINCENT, L.A., ZHANG, X., BONSAL, B.R., HOGG, W.D. (2002): Homogenization of daily temperatures over Canada. Journal of Climate, 15, 1322-1334
NASA Technical Reports Server (NTRS)
Njoku, E. G.; Christensen, E. J.; Cofield, R. E.
1980-01-01
The antenna temperatures measured by the Seasat scanning multichannel microwave radiometer (SMMR) differ from the true brightness temperatures of the observed scene due to antenna pattern effects, principally from antenna sidelobe contributions and cross-polarization coupling. To provide accurate brightness temperatures convenient for geophysical parameter retrievals the antenna temperatures are processed through a series of stages, collectively known as the antenna pattern correction (APC) algorithm. A description of the development and implementation of the APC algorithm is given, along with an error analysis of the resulting brightness temperatures.
Temperature-dependent spectral mismatch corrections
Osterwald, Carl R.; Campanelli, Mark; Moriarty, Tom; ...
2015-11-01
This study develops the mathematical foundation for a translation of solar cell short-circuit current from one thermal and spectral irradiance operating condition to another without the use of ill-defined and error-prone temperature coefficients typically employed in solar cell metrology. Using the partial derivative of quantum efficiency with respect to temperature, the conventional isothermal expression for spectral mismatch corrections is modified to account for changes of current due to temperature; this modification completely eliminates the need for short-circuit-current temperature coefficients. An example calculation is provided to demonstrate use of the new translation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calderon, E; Siergiej, D
2014-06-01
Purpose: Output factor determination for small fields (less than 20 mm) presents significant challenges due to ion chamber volume averaging and diode over-response. Measured output factor values between detectors are known to have large deviations as field sizes are decreased. No set standard to resolve this difference in measurement exists. We observed differences between measured output factors of up to 14% using two different detectors. Published Monte Carlo derived correction factors were used to address this challenge and decrease the output factor deviation between detectors. Methods: Output factors for Elekta's linac-based stereotactic cone system were measured using the EDGE detectormore » (Sun Nuclear) and the A16 ion chamber (Standard Imaging). Measurements conditions were 100 cm SSD (source to surface distance) and 1.5 cm depth. Output factors were first normalized to a 10.4 cm × 10.4 cm field size using a daisy-chaining technique to minimize the dependence of field size on detector response. An equation expressing the relation between published Monte Carlo correction factors as a function of field size for each detector was derived. The measured output factors were then multiplied by the calculated correction factors. EBT3 gafchromic film dosimetry was used to independently validate the corrected output factors. Results: Without correction, the deviation in output factors between the EDGE and A16 detectors ranged from 1.3 to 14.8%, depending on cone size. After applying the calculated correction factors, this deviation fell to 0 to 3.4%. Output factors determined with film agree within 3.5% of the corrected output factors. Conclusion: We present a practical approach to applying published Monte Carlo derived correction factors to measured small field output factors for the EDGE and A16 detectors. Using this method, we were able to decrease the percent deviation between both detectors from 14.8% to 3.4% agreement.« less
Correction of WindScat Scatterometric Measurements by Combining with AMSR Radiometric Data
NASA Technical Reports Server (NTRS)
Song, S.; Moore, R. K.
1996-01-01
The Seawinds scatterometer on the advanced Earth observing satellite-2 (ADEOS-2) will determine surface wind vectors by measuring the radar cross section. Multiple measurements will be made at different points in a wind-vector cell. When dense clouds and rain are present, the signal will be attenuated, thereby giving erroneous results for the wind. This report describes algorithms to use with the advanced mechanically scanned radiometer (AMSR) scanning radiometer on ADEOS-2 to correct for the attenuation. One can determine attenuation from a radiometer measurement based on the excess brightness temperature measured. This is the difference between the total measured brightness temperature and the contribution from surface emission. A major problem that the algorithm must address is determining the surface contribution. Two basic approaches were developed for this, one using the scattering coefficient measured along with the brightness temperature, and the other using the brightness temperature alone. For both methods, best results will occur if the wind from the preceding wind-vector cell can be used as an input to the algorithm. In the method based on the scattering coefficient, we need the wind direction from the preceding cell. In the method using brightness temperature alone, we need the wind speed from the preceding cell. If neither is available, the algorithm can work, but the corrections will be less accurate. Both correction methods require iterative solutions. Simulations show that the algorithms make significant improvements in the measured scattering coefficient and thus is the retrieved wind vector. For stratiform rains, the errors without correction can be quite large, so the correction makes a major improvement. For systems of separated convective cells, the initial error is smaller and the correction, although about the same percentage, has a smaller effect.
Statistical Correction of Air Temperature Forecasts for City and Road Weather Applications
NASA Astrophysics Data System (ADS)
Mahura, Alexander; Petersen, Claus; Sass, Bent; Gilet, Nicolas
2014-05-01
The method for statistical correction of air /road surface temperatures forecasts was developed based on analysis of long-term time-series of meteorological observations and forecasts (from HIgh Resolution Limited Area Model & Road Conditions Model; 3 km horizontal resolution). It has been tested for May-Aug 2012 & Oct 2012 - Mar 2013, respectively. The developed method is based mostly on forecasted meteorological parameters with a minimal inclusion of observations (covering only a pre-history period). Although the st iteration correction is based taking into account relevant temperature observations, but the further adjustment of air and road temperature forecasts is based purely on forecasted meteorological parameters. The method is model independent, e.g. it can be applied for temperature correction with other types of models having different horizontal resolutions. It is relatively fast due to application of the singular value decomposition method for matrix solution to find coefficients. Moreover, there is always a possibility for additional improvement due to extra tuning of the temperature forecasts for some locations (stations), and in particular, where for example, the MAEs are generally higher compared with others (see Gilet et al., 2014). For the city weather applications, new operationalized procedure for statistical correction of the air temperature forecasts has been elaborated and implemented for the HIRLAM-SKA model runs at 00, 06, 12, and 18 UTCs covering forecast lengths up to 48 hours. The procedure includes segments for extraction of observations and forecast data, assigning these to forecast lengths, statistical correction of temperature, one-&multi-days statistical evaluation of model performance, decision-making on using corrections by stations, interpolation, visualisation and storage/backup. Pre-operational air temperature correction runs were performed for the mainland Denmark since mid-April 2013 and shown good results. Tests also showed that the CPU time required for the operational procedure is relatively short (less than 15 minutes including a large time spent for interpolation). These also showed that in order to start correction of forecasts there is no need to have a long-term pre-historical data (containing forecasts and observations) and, at least, a couple of weeks will be sufficient when a new observational station is included and added to the forecast point. Note for the road weather application, the operationalization of the statistical correction of the road surface temperature forecasts (for the RWM system daily hourly runs covering forecast length up to 5 hours ahead) for the Danish road network (for about 400 road stations) was also implemented, and it is running in a test mode since Sep 2013. The method can also be applied for correction of the dew point temperature and wind speed (as a part of observations/ forecasts at synoptical stations), where these both meteorological parameters are parts of the proposed system of equations. The evaluation of the method performance for improvement of the wind speed forecasts is planned as well, with considering possibilities for the wind direction improvements (which is more complex due to multi-modal types of such data distribution). The method worked for the entire domain of mainland Denmark (tested for 60 synoptical and 395 road stations), and hence, it can be also applied for any geographical point within this domain, as through interpolation to about 100 cities' locations (for Danish national byvejr forecasts). Moreover, we can assume that the same method can be used in other geographical areas. The evaluation for other domains (with a focus on Greenland and Nordic countries) is planned. In addition, a similar approach might be also tested for statistical correction of concentrations of chemical species, but such approach will require additional elaboration and evaluation.
Cable delay compensator for microwave signal distribution over optical fibers
NASA Astrophysics Data System (ADS)
Primas, Lori E.
1990-12-01
The basic principles of microwave fiber-optic systems are outlined with emphasis on fiber-optic cable delay compensators (CDC). Degradation of frequency and phase stability is considered, and it is pointed out that the long-term stability of a fiber-optic link is degraded by group delay variations due to temperature fluctuations in the optical fiber and low-frequency noise characteristics of the laser. A CDC employing a voltage-controlled oscillator to correct for phase variations in the optical fiber is presented, and the static as well as dynamic closed-loop analyses of the fiber-optic CDC are discussed. A constructed narrow-band fiber-optic CDC is shown to reduce phase variations caused by temperature fluctuations by a factor of 400. A wide-band CDC utilizing a temperature-controlled coil of fiber to compensate for phase delay is also proposed.
Bucher, Thomas; Clodt, Juliana I.; Grabowski, Andrej; Hein, Martin; Filiz, Volkan
2017-01-01
Porous polyethersulfone membranes as used in oenology were investigated in order to evaluate temperature-dependent permeances in a temperature range from 10 to 35 °C. A temperature correction factor was determined for this type of membrane to get accurate and comparable results for further developments. Moreover, the membranes were modified with a bio-inspired polydopamine coating in order to reduce fouling. The performance of the membranes could be increased with respect to permeance and flux recovery under cross-flow conditions. In order to test the applicability and stability of the coating layer, they were treated with basic and acidic cleaning agents as used in industry for fouled membranes. The chemical stability of the coating layer was studied under basic and acidic conditions, by systematic observation of the colour change of the coated membranes over treatment time. PMID:29258193
Bucher, Thomas; Clodt, Juliana I; Grabowski, Andrej; Hein, Martin; Filiz, Volkan
2017-12-16
Porous polyethersulfone membranes as used in oenology were investigated in order to evaluate temperature-dependent permeances in a temperature range from 10 to 35 °C. A temperature correction factor was determined for this type of membrane to get accurate and comparable results for further developments. Moreover, the membranes were modified with a bio-inspired polydopamine coating in order to reduce fouling. The performance of the membranes could be increased with respect to permeance and flux recovery under cross-flow conditions. In order to test the applicability and stability of the coating layer, they were treated with basic and acidic cleaning agents as used in industry for fouled membranes. The chemical stability of the coating layer was studied under basic and acidic conditions, by systematic observation of the colour change of the coated membranes over treatment time.
NASA Technical Reports Server (NTRS)
Khonsari, M. M.
1983-01-01
Thermohydrodynamic effects in journal bearings operating under steady load in laminar regime are investigated. An analytical model for the finite and infinitely long journal bearings is formulated. The model includes correction factors for the cavitation effects in the unloaded region of the bearing and the mixing of the recirculating oil and supply oil at the oil inlet. A finite difference computer program is developed to numerically solve the governing equations of the continuity, Reynolds, energy, Laplace heat conduction, and a viscosity-temperature relation simultaneously. The program includes a numerical technique for obtaining an isothermal shaft temperature. The numerical results of temperature distribution and the heat effects on the bearing load carrying capacity agree closely with those of experimental findings. Several different sets of simpler boundary conditions for the energy equation are studied.
FAST INVERSION OF SOLAR Ca II SPECTRA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, C.; Choudhary, D. P.; Rezaei, R.
We present a fast (<<1 s per profile) inversion code for solar Ca II lines. The code uses an archive of spectra that are synthesized prior to the inversion under the assumption of local thermodynamic equilibrium (LTE). We show that it can be successfully applied to spectrograph data or more sparsely sampled spectra from two-dimensional spectrometers. From a comparison to a non-LTE inversion of the same set of spectra, we derive a first-order non-LTE correction to the temperature stratifications derived in the LTE approach. The correction factor is close to unity up to log τ ∼ –3 and increases to valuesmore » of 2.5 and 4 at log τ = –6 in the quiet Sun and the umbra, respectively.« less
NASA Astrophysics Data System (ADS)
Kim, Soo-Ock; Kim, Jin-Hee; Kim, Dae-Jun; Shim, Kyo Moon; Yun, Jin I.
2015-08-01
When the midday temperature distribution in a mountainous region was estimated using data from a nearby weather station, the correction of elevation difference based on temperature lapse caused a large error. An empirical approach reflecting the effects of solar irradiance and advection was suggested in order to increase the reliability of the results. The normalized slope irradiance, which was determined by normalizing the solar irradiance difference between a horizontal surface and a sloping surface from 1100 to 1500 LST on a clear day, and the deviation relationship between the horizontal surface and the sloping surface at the 1500 LST temperature on each day were presented as simple empirical formulas. In order to simulate the phenomenon that causes immigrant air parcels to push out or mix with the existing air parcels in order to decrease the solar radiation effects, an advection correction factor was added to exponentially reduce the solar radiation effect with an increase in wind speed. In order to validate this technique, we estimated the 1500 LST air temperatures on 177 clear days in 2012 and 2013 at 10 sites with different slope aspects in a mountainous catchment and compared these values to the actual measured data. The results showed that this technique greatly improved the error bias and the overestimation of the solar radiation effect in comparison with the existing methods. By applying this technique to the Korea Meteorological Administration's 5-km grid data, it was possible to determine the temperature distribution at a 30-m resolution over a mountainous rural area south of Jiri Mountain National Park, Korea.
NASA Technical Reports Server (NTRS)
Kitzis, J. L.; Kitzis, S. N.
1979-01-01
The brightness temperature data produced by the SMMR final Antenna Pattern Correction (APC) algorithm is discussed. The algorithm consisted of: (1) a direct comparison of the outputs of the final and interim APC algorithms; and (2) an analysis of a possible relationship between observed cross track gradients in the interim brightness temperatures and the asymmetry in the antenna temperature data. Results indicate a bias between the brightness temperature produced by the final and interim APC algorithm.
Sun, Li; Westerdahl, Dane; Ning, Zhi
2017-01-01
Emerging low-cost gas sensor technologies have received increasing attention in recent years for air quality measurements due to their small size and convenient deployment. However, in the diverse applications these sensors face many technological challenges, including sensor drift over long-term deployment that cannot be easily addressed using mathematical correction algorithms or machine learning methods. This study aims to develop a novel approach to auto-correct the drift of commonly used electrochemical nitrogen dioxide (NO2) sensor with comprehensive evaluation of its application. The impact of environmental factors on the NO2 electrochemical sensor in low-ppb concentration level measurement was evaluated in laboratory and the temperature and relative humidity correction algorithm was evaluated. An automated zeroing protocol was developed and assessed using a chemical absorbent to remove NO2 as a means to perform zero correction in varying ambient conditions. The sensor system was operated in three different environments in which data were compared to a reference NO2 analyzer. The results showed that the zero-calibration protocol effectively corrected the observed drift of the sensor output. This technique offers the ability to enhance the performance of low-cost sensor based systems and these findings suggest extension of the approach to improve data quality from sensors measuring other gaseous pollutants in urban air. PMID:28825633
Thermal corrections to the Casimir energy in a general weak gravitational field
NASA Astrophysics Data System (ADS)
Nazari, Borzoo
2016-12-01
We calculate finite temperature corrections to the energy of the Casimir effect of a two conducting parallel plates in a general weak gravitational field. After solving the Klein-Gordon equation inside the apparatus, mode frequencies inside the apparatus are obtained in terms of the parameters of the weak background. Using Matsubara’s approach to quantum statistical mechanics gravity-induced thermal corrections of the energy density are obtained. Well-known weak static and stationary gravitational fields are analyzed and it is found that in the low temperature limit the energy of the system increases compared to that in the zero temperature case.
Microscale Heat Conduction Models and Doppler Feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawari, Ayman I.; Ougouag, Abderrafi
2015-01-22
The objective of this project is to establish an approach for providing the fundamental input that is needed to estimate the magnitude and time-dependence of the Doppler feedback mechanism in Very High Temperature reactors. This mechanism is the foremost contributor to the passive safety of gas-cooled, graphite-moderated high temperature reactors that use fuel based on Tristructural-Isotropic (TRISO) coated particles. Therefore, its correct prediction is essential to the conduct of safety analyses for these reactors. Since the effect is directly dependent on the actual temperature reached by the fuel during transients, the underlying phenomena of heat deposition, heat transfer and temperaturemore » rise must be correctly predicted. To achieve the above objective, this project will explore an approach that accounts for lattice effects as well as local temperature variations and the correct definition of temperature and related local effects.« less
NASA Astrophysics Data System (ADS)
Šafanda, Jan
2018-03-01
Reconstructions of past ground surface temperature changes from temperature logs conducted in several hundred meter deep boreholes have proved to be a valuable independent source of information on climate variations over the last millennium. The reconstruction techniques have been evolving for more than two decades to extract optimally the climate signal of the last millennium contained in the temperature logs of different length performed in sites with different histories of the Last Glacial Cycle. This paper analyzes the method of the Last Glacial Cycle thermal effect removal from such borehole temperature profiles used by Beltrami et al. (2017, https://doi.org/10.1002/2016GL071317) in reconstructing the last 500 year history. I show that the reported results of additional warming in this period reconstructed from the corrected borehole data for North America are an artifact generated by the correction.
Use of GLOBE Observations to Derive a Landsat 8 Split Window Algorithm for Urban Heat Island
NASA Astrophysics Data System (ADS)
Fagerstrom, L.; Czajkowski, K. P.
2017-12-01
Surface temperature has been studied to investigate the warming of urban climates, also known as urban heat islands, which can impact urban planning, public health, pollution levels, and energy consumption. However, the full potential of remotely sensed images is limited when analyzing land surface temperature due to the daunting task of correcting for atmospheric effects. Landsat 8 has two thermal infrared sensors. With two bands in the infrared region, a split window algorithm (SWA), can be applied to correct for atmospheric effects. This project used in situ surface temperature measurements from NASA's ground observation program, the Global Learning and Observations to Benefit the Environment (GLOBE), to derive the correcting coefficients for use in the SWA. The GLOBE database provided land surface temperature data that coincided with Landsat 8 overpasses. The land surface temperature derived from Landsat 8 SWA can be used to analyze for urban heat island effect.
Mapping the Physical and Chemical Conditions of the Ring Nebula
NASA Astrophysics Data System (ADS)
Leal-Ferreira, Marcelo L.; Aleman, Isabel; Gaughan, Andrea; Ladjal, Djazia; Ueta, Toshiya; Kerber, Samuel; Conn, Blair; Gardiner, Rhiannon; Tielens, Alexander G. G. M.
2017-10-01
We observed the Planetary Nebula NGC 6720 with the Gemini Telescope and the Gemini Multi-Object Spectrographs. We obtained spatial maps of 36 emission-lines in the wavelength range between 3600 Å and 9400 Å. We derived maps of c(Hβ), electronic densities, electronic temperatures, ionic and elemental abundances, and Ionization Correction Factors (ICFs) in the source and investigated the mass-loss history of the progenitor. The elemental abundance results indicate the need for ICFs based on three-dimensional photoionization models.
Cooling Rates of Humans in Air and in Water: An Experiment
NASA Astrophysics Data System (ADS)
Bohren, Craig F.
2012-12-01
In a previous article I analyzed in detail the physical factors resulting in greater cooling rates of objects in still water than in still air, emphasizing cooling of the human body. By cooling rate I mean the rate of decrease of core temperature uncompensated by metabolism. I concluded that the "correct ratio for humans is closer to 2 than to 10." To support this assertion I subsequently did experiments, which I report following a digression on hypothermia.
Therriault-Proulx, Francois; Wootton, Landon; Beddar, Sam
2015-01-01
Plastic scintillation detectors (PSDs) work well for radiation dosimetry. However, they show some temperature dependence, and a priori knowledge of the temperature surrounding the PSD is required to correct for this dependence. We present a novel approach to correct PSD response values for temperature changes instantaneously and without the need for prior knowledge of the temperature value. In addition to rendering the detector temperature-independent, this approach allows for actual temperature measurement using solely the PSD apparatus. With a temperature-controlled water tank, the temperature was varied from room temperature to more than 40°C and the PSD was used to measure the dose delivered from a cobalt-60 photon beam unit to within an average of 0.72% from the expected value. The temperature was measured during each acquisition with the PSD and a thermocouple and values were within 1°C of each other. The depth-dose curve of a 6-MV photon beam was also measured under warm non-stable conditions and this curve agreed to within an average of −0.98% from the curve obtained at room temperature. The feasibility of rendering PSDs temperature-independent was demonstrated with our approach, which also enabled simultaneous measurement of both dose and temperature. This novel approach improves both the robustness and versatility of PSDs. PMID:26407188
NASA Astrophysics Data System (ADS)
Rosenbaum, Ulrike; Huisman, Sander; Vrba, Jan; Vereecken, Harry; Bogena, Heye
2010-05-01
For a monitoring of dynamic spatiotemporal soil moisture patterns at the catchment scale, automated and continuously measuring systems that provide spatial coverage and high temporal resolution are needed. Promising techniques like wireless sensor networks (e.g. SoilNet) have to integrate low-cost electromagnetic soil water content sensors [1], [2]. However, the measurement accuracy of such sensors is often deteriorated by effects of temperature and soil bulk electrical conductivity. The objective of this study is to derive and validate correction functions for such temperature and electrical conductivity effects for the ECH2O EC-5, TE and 5TE sensors. We used dielectric liquids with known dielectric properties for two different laboratory experiments. In the first experiment, the temperature of eight reference liquids with permittivity ranging from 7 to 42 was varied from 5 to 40°C. All sensor types showed an underestimation of permittivity for low temperatures and an overestimation for high temperatures. In the second experiment, the conductivity of the reference liquids was increased by adding NaCl. The highest deviations occurred for high permittivity and electrical conductivity between ~0.8 and 1.5 dS/m (underestimation from 8 to 16 permittivity units depending on sensor type). For higher electrical conductivity (2.5 dS/m), the permittivity was overestimated (10 permittivity units for the EC-5 and 7 for the 5TE sensor). Based on these measurements on reference liquids, we derived empirical correction functions that are able to correct thermal and conductivity effects on measured sensor response. These correction functions were validated using three soil samples (coarse sand, silty clay loam and bentonite). For the temperature correction function, the results corresponded better with theoretical predictions after correction for temperature effects on the sensor circuitry. It was also shown that the application of the conductivity correction functions improved the accuracy of the soil water content predictions considerably. References: [1] Bogena, H.R., J.A. Huisman, C. Oberdörster, H. Vereecken (2007): Evaluation of a low-cost soil water content sensor for wireless network applications. Journal of Hydrology: 344, 32- 42. [2] Rosenbaum, U., Huisman, J.A., Weuthen, A., Vereecken, H. and Bogena, H.R. (2010): Quantification of sensor-to-sensor variability of the ECH2O EC-5, TE and 5TE sensors in dielectric liquids. Accepted for publication in VZJ (09/2009).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Shiguang; Mao, Chaoliang, E-mail: maochaoliang@mail.sic.ac.cn, E-mail: xldong@mail.sic.ac.cn; Wang, Genshui
2014-10-14
Relaxation like dielectric anomaly is observed in Y³⁺ and Mn²⁺ doped barium strontium titanate ceramics when the temperature is over 450 K. Apart from the conventional dielectric relaxation analysis method with Debye or modified Debye equations, which is hard to give exact temperature dependence of the relaxation process, dielectric response in the form of complex impedance, assisted with Cole-Cole impedance model corrected equivalent circuits, is adopted to solve this problem and chase the polarization mechanism in this paper. Through this method, an excellent description to temperature dependence of the dielectric relaxation anomaly and its dominated factors are achieved. Further analysismore » reveals that the exponential decay of the Cole distribution parameter n with temperature is confirmed to be induced by the microscopic lattice distortion due to ions doping and the interaction between the defects. At last, a clear sight to polarization mechanism containing both the intrinsic dipolar polarization and extrinsic distributed oxygen vacancies hopping response under different temperature is obtained.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleveland, Mathew Allen; Wollaber, Allan Benton
Here in this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle formore » frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. Finally, we present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.« less
40 CFR 1065.695 - Data requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... restriction. (v) Charge air cooler volume. (vi) Charge air cooler outlet temperature, specified engine... following: (i) Drift correction. (ii) Noise correction. (iii) “Dry-to-wet” correction. (iv) NMHC, CH4, and...
40 CFR 1065.695 - Data requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... restriction. (v) Charge air cooler volume. (vi) Charge air cooler outlet temperature, specified engine... following: (i) Drift correction. (ii) Noise correction. (iii) “Dry-to-wet” correction. (iv) NMHC, CH4, and...
40 CFR 1065.695 - Data requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... restriction. (v) Charge air cooler volume. (vi) Charge air cooler outlet temperature, specified engine... following: (i) Drift correction. (ii) Noise correction. (iii) “Dry-to-wet” correction. (iv) NMHC, CH4, and...
The Effects of Abiotic Factors on Induced Volatile Emissions in Corn Plants1
Gouinguené, Sandrine P.; Turlings, Ted C.J.
2002-01-01
Many plants respond to herbivory by releasing a specific blend of volatiles that is attractive to natural enemies of the herbivores. In corn (Zea mays), this induced odor blend is mainly composed of terpenoids and indole. The induced signal varies with plant species and genotype, but little is known about the variation due to abiotic factors. Here, we tested the effect of soil humidity, air humidity, temperature, light, and fertilization rate on the emission of induced volatiles in young corn plants. Each factor was tested separately under constant conditions for the other factors. Plants released more when standing in dry soil than in wet soil, whereas for air humidity, the optimal release was found at around 60% relative humidity. Temperatures between 22°C and 27°C led to a higher emission than lower or higher temperatures. Light intensity had a dramatic effect. The emission of volatiles did not occur in the dark and increased steadily with an increase in the light intensity. An experiment with an unnatural light-dark cycle showed that the release was fully photophase dependent. Fertilization also had a strong positive effect; the emission of volatiles was minimal when plants were grown under low nutrition, even when results were corrected for plant biomass. Changes in all abiotic factors caused small but significant changes in the relative ratios among the different compounds (quality) in the induced odor blends, except for air humidity. Hence, climatic conditions and nutrient availability can be important factors in determining the intensity and variability in the release of induced plant volatiles. PMID:12114583
Build 3 of an Accelerated Mission Test of a TF41 with Block 76 Hardware.
1979-12-01
Temperature and Calculated Turbine 28 Stator Inlet Temperature Time History 7 ACU/DCU Time Checks 31 8 Oil Consumption Between Fills 32 9 Overall Oil...Consumption 33 10 Engine Vibration History 36 11 Corrected "A" Cycle Performance Trends 33 12 Corrected "A" Cycle Performance Trends 39 13 Corrected...records of engine histories during actual flight. An extensive program of pilot interviews 12 0 Li) 05 ____ ____ ___ ____ ____ ___ ____ ____ __ F
Assessing Near-surface Heat, Water Vapor and Carbon Dioxide Exchange Over a Coastal Salt-marsh
NASA Astrophysics Data System (ADS)
Bogoev, I.; O'Halloran, T. L.; LeMoine, J.
2017-12-01
Coastal ecosystems play an important role in mitigating the effects of climate change by storing significant quantities of carbon. A growing number of studies suggest that vegetated estuarine habitats, specifically salt marshes, have high long-term rates of carbon sequestration, perhaps even higher than mature tropical and temperate forests. Large amounts of carbon, accumulated over thousands of years, are stored in the plant materials and sediment. Improved understanding of the factors that control energy and carbon exchange is needed to better guide restoration and conservation management practices. To that end, we recently established an observation system to study marsh-atmosphere interactions within the North Inlet-Winyah Bay National Estuarine Research Reserve. Near-surface fluxes of heat, water vapor (H2O) and carbon dioxide (CO2) were measured by an eddy-covariance system consisting of an aerodynamic open-path H2O / CO2 gas analyzer with a spatially integrated 3D sonic anemometer/thermometer (IRGASON). The IRGASON instrument provides co-located and highly synchronized, fast response H2O, CO2 and air- temperature measurements, which eliminates the need for spectral corrections associated with the separation between the sonic anemometer and the gas analyzer. This facilitates calculating the instantaneous CO2 molar mixing ratio relative to dry air. Fluxes computed from CO2 and H2O mixing ratios, which are conserved quantities, do not require post-processing corrections for air-density changes associated with temperature and water vapor fluctuations. These corrections are particularly important for CO2, because they could be even larger than the measured flux. Here we present the normalized frequency spectra of air temperature, water vapor and CO2, as well as their co-spectra with the co-located vertical wind. We also show mean daily cycles of sensible, latent and CO2 fluxes and analyze correlations with air/water temperature, wind speed and light availability.
NASA Astrophysics Data System (ADS)
Chen, Jie; Li, Chao; Brissette, François P.; Chen, Hua; Wang, Mingna; Essou, Gilles R. C.
2018-05-01
Bias correction is usually implemented prior to using climate model outputs for impact studies. However, bias correction methods that are commonly used treat climate variables independently and often ignore inter-variable dependencies. The effects of ignoring such dependencies on impact studies need to be investigated. This study aims to assess the impacts of correcting the inter-variable correlation of climate model outputs on hydrological modeling. To this end, a joint bias correction (JBC) method which corrects the joint distribution of two variables as a whole is compared with an independent bias correction (IBC) method; this is considered in terms of correcting simulations of precipitation and temperature from 26 climate models for hydrological modeling over 12 watersheds located in various climate regimes. The results show that the simulated precipitation and temperature are considerably biased not only in the individual distributions, but also in their correlations, which in turn result in biased hydrological simulations. In addition to reducing the biases of the individual characteristics of precipitation and temperature, the JBC method can also reduce the bias in precipitation-temperature (P-T) correlations. In terms of hydrological modeling, the JBC method performs significantly better than the IBC method for 11 out of the 12 watersheds over the calibration period. For the validation period, the advantages of the JBC method are greatly reduced as the performance becomes dependent on the watershed, GCM and hydrological metric considered. For arid/tropical and snowfall-rainfall-mixed watersheds, JBC performs better than IBC. For snowfall- or rainfall-dominated watersheds, however, the two methods behave similarly, with IBC performing somewhat better than JBC. Overall, the results emphasize the advantages of correcting the P-T correlation when using climate model-simulated precipitation and temperature to assess the impact of climate change on watershed hydrology. However, a thorough validation and a comparison with other methods are recommended before using the JBC method, since it may perform worse than the IBC method for some cases due to bias nonstationarity of climate model outputs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiuchi, T.; Yasuoka, A.
1988-05-24
A method of controlling the solenoid current of a solenoid valve which controls suction air in an internal combustion engine, is described comprising the steps of: calculating a solenoid current control value as a function of engine operating conditions; detecting an engine coolant temperature corresponding to the solenoid temperature; determining a temperature correction value in accordance with the solenoid temperature; and calculating a driving signal for controlling the operation of the solenoid as a function of the solenoid current control value and the temperature correction value.
Many observations of temperature and wind speed profiles have been taken over "ideal" terrain and analyzed to develop the stability correction terms which are commonly used in the application of similarity theory. Fewer observations have been taken and analyzed in this manner ov...
NASA Astrophysics Data System (ADS)
Moghim, S.; Hsu, K.; Bras, R. L.
2013-12-01
General Circulation Models (GCMs) are used to predict circulation and energy transfers between the atmosphere and the land. It is known that these models produce biased results that will have impact on their uses. This work proposes a new method for bias correction: the equidistant cumulative distribution function-artificial neural network (EDCDFANN) procedure. The method uses artificial neural networks (ANNs) as a surrogate model to estimate bias-corrected temperature, given an identification of the system derived from GCM models output variables. A two-layer feed forward neural network is trained with observations during a historical period and then the adjusted network can be used to predict bias-corrected temperature for future periods. To capture the extreme values this method is combined with the equidistant CDF matching method (EDCDF, Li et al. 2010). The proposed method is tested with the Community Climate System Model (CCSM3) outputs using air and skin temperature, specific humidity, shortwave and longwave radiation as inputs to the ANN. This method decreases the mean square error and increases the spatial correlation between the modeled temperature and the observed one. The results indicate the EDCDFANN has potential to remove the biases of the model outputs.
Verifying the distributed temperature sensing Bowen ratio method for measuring evaporation
NASA Astrophysics Data System (ADS)
Schilperoort, Bart; Coenders-Gerrits, Miriam; Luxemburg, Willem; Cisneros Vaca, César; Ucer, Murat
2016-04-01
Evaporation is an important process in the hydrological cycle, therefore measuring evaporation accurately is essential for water resource management, hydrological management and climate change models. Current techniques to measure evaporation, like eddy covariance systems, scintillometers, or lysimeters, have their limitations and therefore cannot always be used to estimate evaporation correctly. Also the conventional Bowen ratio surface energy balance method has as drawback that two sensors are used, which results in large measuring errors. In Euser et al. (2014) a new method was introduced, the DTS-based Bowen ratio (BR-DTS), that overcomes this drawback. It uses a distributed temperature sensing technique (DTS) whereby a fibre optic cable is placed vertically, going up and down along a measurement tower. One stretch of the cable is dry, the other wrapped with cloth and kept wet, akin to a psychrometer. Using this, the wet and dry bulb temperatures are determined every 12.5 cm over the height, from which the Bowen ratio can be determined. As radiation and wind have an effect on the cooling and heating of the cable's sheath as well, the DTS cables do not necessarily always measure dry and wet bulb temperature of the air accurately. In this study the accuracy in representing the dry and wet bulb temperatures of the cable are verified, and evaporation observations of the BR-DTS method are compared to Eddy Covariance (EC) measurements. Two ways to correct for errors due to wind and solar radiation warming up the DTS cables are presented: one for the dry cable and one for the wet cable. The measurements were carried out in a pine forest near Garderen (The Netherlands), along a 46-meter tall scaffold tower (15 meters above the canopy). Both the wet (Twet) and dry (Tdry) temperature of the DTS cable were compared to temperature and humidity (from which Twet is derived) observations from sensors placed along the height of the tower. Underneath the canopy, where there was barely any direct sunlight, the non-corrected temperatures correlated well for both Tdry (R2=0.998) and Twet (R2=0.995). Above the canopy the two temperature corrections worked well Tdry (R2=0.978) and Twet (R2=0.979). The comparison of the latent and sensible heat flux from the BR-DTS and the EC-system was often not possible, due to large energy balance residuals estimated during north-eastern winds (using an averaging interval of 30 minutes). For the limited days with other wind directions the BR-DTS overestimated the latent and sensible heat flux. Additionally, we even found that the applied temperature corrections resulted in a lower performance due to increased uncertainties in the applied corrections. Furthermore, we found that both the corrected and uncorrected DTS-temperatures resulted in rather similar latent and sensible heat fluxes, due to the fact that BR-DTS applies gradients of temperatures over the height, rather than absolute values. Hence, based on our limited data, the correction methods are not recommended if one is interested in the fluxes.
49 CFR 325.79 - Application of correction factors.
Code of Federal Regulations, 2014 CFR
2014-10-01
... microphone location point and the microphone target point is 60 feet (18.3 m) and that the measurement area... vehicle would be 87 dB(A), calculated as follows: 88 dB(A)Uncorrected average of readings −3 dB(A)Distance correction factor +2 dB(A)Ground surface correction factor _____ 87 dB(A)Corrected reading ...
49 CFR 325.79 - Application of correction factors.
Code of Federal Regulations, 2013 CFR
2013-10-01
... microphone location point and the microphone target point is 60 feet (18.3 m) and that the measurement area... vehicle would be 87 dB(A), calculated as follows: 88 dB(A)Uncorrected average of readings −3 dB(A)Distance correction factor +2 dB(A)Ground surface correction factor _____ 87 dB(A)Corrected reading ...
49 CFR 325.79 - Application of correction factors.
Code of Federal Regulations, 2012 CFR
2012-10-01
... microphone location point and the microphone target point is 60 feet (18.3 m) and that the measurement area... vehicle would be 87 dB(A), calculated as follows: 88 dB(A)Uncorrected average of readings −3 dB(A)Distance correction factor +2 dB(A)Ground surface correction factor _____ 87 dB(A)Corrected reading ...
The SEASAT altimeter wet tropospheric range correction revisited
NASA Technical Reports Server (NTRS)
Tapley, D. B.; Lundberg, J. B.; Born, G. H.
1984-01-01
An expanded set of radiosonde observations was used to calculate the wet tropospheric range correction for the brightness temperature measurements of the SEASAT scanning multichannel microwave radiometer (SMMR). The accuracy of the conventional algorithm for wet tropospheric range correction was evaluated. On the basis of the expanded observational data set, the algorithm was found to have a bias of about 1.0 cm, and a standard deviation 2.8 cm. In order to improve the algorithm, the exact linear, quadratic and logarithmic relationships between brightness temperatures and range corrections were determined. Various combinations of measurement parameters were used to reduce the standard deviation between SEASAT SMMR and radiosonde observations to about 2.1 cm. The performance of various range correction formulas is compared in a table.
O'Brien, D J; León-Vintró, L; McClean, B
2016-01-01
The use of radiotherapy fields smaller than 3 cm in diameter has resulted in the need for accurate detector correction factors for small field dosimetry. However, published factors do not always agree and errors introduced by biased reference detectors, inaccurate Monte Carlo models, or experimental errors can be difficult to distinguish. The aim of this study was to provide a robust set of detector-correction factors for a range of detectors using numerical, empirical, and semiempirical techniques under the same conditions and to examine the consistency of these factors between techniques. Empirical detector correction factors were derived based on small field output factor measurements for circular field sizes from 3.1 to 0.3 cm in diameter performed with a 6 MV beam. A PTW 60019 microDiamond detector was used as the reference dosimeter. Numerical detector correction factors for the same fields were derived based on calculations from a geant4 Monte Carlo model of the detectors and the Linac treatment head. Semiempirical detector correction factors were derived from the empirical output factors and the numerical dose-to-water calculations. The PTW 60019 microDiamond was found to over-respond at small field sizes resulting in a bias in the empirical detector correction factors. The over-response was similar in magnitude to that of the unshielded diode. Good agreement was generally found between semiempirical and numerical detector correction factors except for the PTW 60016 Diode P, where the numerical values showed a greater over-response than the semiempirical values by a factor of 3.7% for a 1.1 cm diameter field and higher for smaller fields. Detector correction factors based solely on empirical measurement or numerical calculation are subject to potential bias. A semiempirical approach, combining both empirical and numerical data, provided the most reliable results.
Choice of 17O Abundance Correction Affects Δ47 and Thus Calibrations for Paleothermometry
NASA Astrophysics Data System (ADS)
Kelson, J.; Schauer, A. J.; Huntington, K. W.; Saenger, C.; Lechler, A. R.
2016-12-01
The clumped isotope composition of CO2 derived from carbonate (Δ47) varies with temperature, making it a valuable geothermometer with broad applications. However, its accuracy is limited by inter-laboratory discrepancies of carbonate reference materials and disagreement among Δ47-temperature calibrations. Here we use a suite of CO2-H2O equilibrations at known temperatures with a wide range in 13C and 18O compositions to show how the correction for the abundance of 17O impacts Δ47 and potentially explains these discrepancies. When a traditional value of 0.5164 is used for the fractionation between 17O and 18O (λ), corrected Δ47 in 23 °C CO2-H2O equilibrations exhibits a dependence on 13C composition that is equivalent to 20 ºC (Δ47 range of 0.06 ‰). In contrast, these discrepancies are effectively removed when λ=0.528, as in global meteoric waters. Furthermore, carbonate standards with identical formation temperatures have significantly different Δ47 when corrected using λ=0.5164, but agree within error when λ=0.528. The choice of λ affects the accuracy of all sample Δ47 values, unless the sample CO2, mass spectrometer reference gas, and equilibrated gases share the same 13C composition. The sensitivity of Δ47 to the choice of λ, and the apparent dependence on 13C when 0.5164 is used, are relevant to the abiogenic experiments used in Δ47-temperature calibrations given that precipitation methods involving CO2 bubbling produce carbonates depleted in 13C by tens of permil relative to methods that mix salts. We evaluate the influence of 17O correction on Δ47-temperature calibrations using a suite of 58 abiogenic carbonates precipitated at 4-85 ºC using CO2 bubbling and the mixing of salts. Aliquots of precipitated carbonates were digested at 25 and 90ºC, but all other preparatory and analytical variables were held constant. When corrected using λ=0.5164, various precipitation methods yield sub-parallel Δ47-temperature relationships with slopes of 0.034-0.044 (x 106/T2), but offset intercepts. Conversely, Δ47-temperature relationships overlap within error when λ=0.528. This suggests that the method used to correct for 17O abundance likely contributes to observed calibration discrepancies and that adopting λ=0.528 may reduce the uncertainty in Δ47 temperature reconstructions.
Khokhlova, Vera A.; Shmeleva, Svetlana M.; Gavrilov, Leonid R.; Martin, Eleanor; Sadhoo, Neelaksh; Shaw, Adam
2013-01-01
Considerable progress has been achieved in the use of infrared (IR) techniques for qualitative mapping of acoustic fields of high intensity focused ultrasound (HIFU) transducers. The authors have previously developed and demonstrated a method based on IR camera measurement of the temperature rise induced in an absorber less than 2 mm thick by ultrasonic bursts of less than 1 s duration. The goal of this paper was to make the method more quantitative and estimate the absolute intensity distributions by determining an overall calibration factor for the absorber and camera system. The implemented approach involved correlating the temperature rise measured in an absorber using an IR camera with the pressure distribution measured in water using a hydrophone. The measurements were conducted for two HIFU transducers and a flat physiotherapy transducer of 1 MHz frequency. Corresponding correction factors between the free field intensity and temperature were obtained and allowed the conversion of temperature images to intensity distributions. The system described here was able to map in good detail focused and unfocused ultrasound fields with sub-millimeter structure and with local time average intensity from below 0.1 W/cm2 to at least 50 W/cm2. Significantly higher intensities could be measured simply by reducing the duty cycle. PMID:23927199
Khokhlova, Vera A; Shmeleva, Svetlana M; Gavrilov, Leonid R; Martin, Eleanor; Sadhoo, Neelaksh; Shaw, Adam
2013-08-01
Considerable progress has been achieved in the use of infrared (IR) techniques for qualitative mapping of acoustic fields of high intensity focused ultrasound (HIFU) transducers. The authors have previously developed and demonstrated a method based on IR camera measurement of the temperature rise induced in an absorber less than 2 mm thick by ultrasonic bursts of less than 1 s duration. The goal of this paper was to make the method more quantitative and estimate the absolute intensity distributions by determining an overall calibration factor for the absorber and camera system. The implemented approach involved correlating the temperature rise measured in an absorber using an IR camera with the pressure distribution measured in water using a hydrophone. The measurements were conducted for two HIFU transducers and a flat physiotherapy transducer of 1 MHz frequency. Corresponding correction factors between the free field intensity and temperature were obtained and allowed the conversion of temperature images to intensity distributions. The system described here was able to map in good detail focused and unfocused ultrasound fields with sub-millimeter structure and with local time average intensity from below 0.1 W/cm(2) to at least 50 W/cm(2). Significantly higher intensities could be measured simply by reducing the duty cycle.
Unlabeled oligonucleotides as internal temperature controls for genotyping by amplicon melting.
Seipp, Michael T; Durtschi, Jacob D; Liew, Michael A; Williams, Jamie; Damjanovich, Kristy; Pont-Kingdon, Genevieve; Lyon, Elaine; Voelkerding, Karl V; Wittwer, Carl T
2007-07-01
Amplicon melting is a closed-tube method for genotyping that does not require probes, real-time analysis, or allele-specific polymerase chain reaction. However, correct differentiation of homozygous mutant and wild-type samples by melting temperature (Tm) requires high-resolution melting and closely controlled reaction conditions. When three different DNA extraction methods were used to isolate DNA from whole blood, amplicon Tm differences of 0.03 to 0.39 degrees C attributable to the extractions were observed. To correct for solution chemistry differences between samples, complementary unlabeled oligonucleotides were included as internal temperature controls to shift and scale the temperature axis of derivative melting plots. This adjustment was applied to a duplex amplicon melting assay for the methylenetetrahydrofolate reductase variants 1298A>C and 677C>T. High- and low-temperature controls bracketing the amplicon melting region decreased the Tm SD within homozygous genotypes by 47 to 82%. The amplicon melting assay was 100% concordant to an adjacent hybridization probe (HybProbe) melting assay when temperature controls were included, whereas a 3% error rate was observed without temperature correction. In conclusion, internal temperature controls increase the accuracy of genotyping by high-resolution amplicon melting and should also improve results on lower resolution instruments.
Hawking radiation due to photon and gravitino tunneling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majhi, Bibhas Ranjan, E-mail: bibhas@bose.res.i; Samanta, Saurav, E-mail: srvsmnt@gmail.co
2010-11-15
Applying the Hamilton-Jacobi method we investigate the tunneling of photon across the event horizon of a static spherically symmetric black hole. The necessity of the gauge condition on the photon field, to derive the semiclassical Hawking temperature, is explicitly shown. Also, the tunneling of photon and gravitino beyond this semiclassical approximation are presented separately. Quantum corrections of the action for both cases are found to be proportional to the semiclassical contribution. Modifications to the Hawking temperature and Bekenstein-Hawking area law are thereby obtained. Using this corrected temperature and Hawking's periodicity argument, the modified metric for the Schwarzschild black hole ismore » given. This corrected version of the metric, up to h order is equivalent to the metric obtained by including one loop back reaction effect. Finally, the coefficient of the leading order correction of entropy is shown to be related to the trace anomaly.« less
NASA Astrophysics Data System (ADS)
Hu, Taiyang; Lv, Rongchuan; Jin, Xu; Li, Hao; Chen, Wenxin
2018-01-01
The nonlinear bias analysis and correction of receiving channels in Chinese FY-3C meteorological satellite Microwave Temperature Sounder (MWTS) is a key technology of data assimilation for satellite radiance data. The thermal-vacuum chamber calibration data acquired from the MWTS can be analyzed to evaluate the instrument performance, including radiometric temperature sensitivity, channel nonlinearity and calibration accuracy. Especially, the nonlinearity parameters due to imperfect square-law detectors will be calculated from calibration data and further used to correct the nonlinear bias contributions of microwave receiving channels. Based upon the operational principles and thermalvacuum chamber calibration procedures of MWTS, this paper mainly focuses on the nonlinear bias analysis and correction methods for improving the calibration accuracy of the important instrument onboard FY-3C meteorological satellite, from the perspective of theoretical and experimental studies. Furthermore, a series of original results are presented to demonstrate the feasibility and significance of the methods.
NASA Technical Reports Server (NTRS)
Braunscheidel, Edward P.; Welch, Gerard E.; Skoch, Gary J.; Medic, Gorazd; Sharma, Om P.
2014-01-01
The measured aerodynamic performance of a compact, high work factor, single-stage centrifugal compressor, comprising an impeller, diffuser, 90-bend, and exit guide vane (EGV), is reported. Performance levels are based on steady-state total-pressure and total-temperature rake and angularity-probe data acquired at key machine rating planes during recent testing at NASA Glenn Research Center. Aerodynamic performance at the stage level are reported for operation between 70 to 105 of design corrected speed, with subcomponent (impeller, diffuser, and exitguide-vane) detailed flow field measurements presented and discussed at the 100 design-speed condition. Individual component losses from measurements are compared with pre-test predictions on a limited basis.
Request for Correction 10008 Endangerment Findings for Greenhouse Gases
Request for correction by Peabody Energy Company for the EPA to correct temperature data in Endangerment and Cause or Contribute Findings for Greenhouse Gases under Section 202(a) of the Clean Air Act
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathew, D; Tanny, S; Parsai, E
2015-06-15
Purpose: The current small field dosimetry formalism utilizes quality correction factors to compensate for the difference in detector response relative to dose deposited in water. The correction factors are defined on a machine-specific basis for each beam quality and detector combination. Some research has suggested that the correction factors may only be weakly dependent on machine-to-machine variations, allowing for determinations of class-specific correction factors for various accelerator models. This research examines the differences in small field correction factors for three detectors across two Varian Truebeam accelerators to determine the correction factor dependence on machine-specific characteristics. Methods: Output factors were measuredmore » on two Varian Truebeam accelerators for equivalently tuned 6 MV and 6 FFF beams. Measurements were obtained using a commercial plastic scintillation detector (PSD), two ion chambers, and a diode detector. Measurements were made at a depth of 10 cm with an SSD of 100 cm for jaw-defined field sizes ranging from 3×3 cm{sup 2} to 0.6×0.6 cm{sup 2}, normalized to values at 5×5cm{sup 2}. Correction factors for each field on each machine were calculated as the ratio of the detector response to the PSD response. Percent change of correction factors for the chambers are presented relative to the primary machine. Results: The Exradin A26 demonstrates a difference of 9% for 6×6mm{sup 2} fields in both the 6FFF and 6MV beams. The A16 chamber demonstrates a 5%, and 3% difference in 6FFF and 6MV fields at the same field size respectively. The Edge diode exhibits less than 1.5% difference across both evaluated energies. Field sizes larger than 1.4×1.4cm2 demonstrated less than 1% difference for all detectors. Conclusion: Preliminary results suggest that class-specific correction may not be appropriate for micro-ionization chamber. For diode systems, the correction factor was substantially similar and may be useful for class-specific reference conditions.« less
Investigation of the feasibility of CARS measurements in scramjet combustion
NASA Technical Reports Server (NTRS)
Shirley, J. A.; Hall, R. J.; Eckbreth, A. C.
1980-01-01
Results are presented of analytical and experimental investigations to determine the feasibility of using coherent anti-Stokes Raman Spectroscopy (CARS) to measure temperature and species concentration in supersonic combustion experiments. The CARS spectra of H2O, O2 and H2 were measured in laboratory flames. Computer code calculated spectra agree very well with the measured spectra. Temperature, and O2 and H2 concentration profiles have been determined from CARS spectra in a laboratory H2 air flat diffusion flame. Temperature measurements agree with radiation corrected thermocouple measurements within 5 to 10 percent, depending on species concentration. The feasibility of measuring O2 concentrations up to 10 percent, from the spectral shape was demonstrated. H2 concentrations determined from CARS intensities agree with spontaneous Raman measurements within a factor of two. Finally, a conceptual design was formulated for diagnostics in the Langley Research Center scramjet combustion facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keyser, Matthew A
Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type ofmore » battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.« less
Enabling fast charging - Battery thermal considerations
NASA Astrophysics Data System (ADS)
Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; Santhanagopalan, Shriram; Smith, Kandler; Wood, Eric; Ahmed, Shabbir; Bloom, Ira; Dufek, Eric; Shirk, Matthew; Meintz, Andrew; Kreuzer, Cory; Michelbacher, Christopher; Burnham, Andrew; Stephens, Thomas; Francfort, James; Carlson, Barney; Zhang, Jiucai; Vijayagopal, Ram; Hardy, Keith; Dias, Fernando; Mohanpurkar, Manish; Scoffield, Don; Jansen, Andrew N.; Tanim, Tanvir; Markel, Anthony
2017-11-01
Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.
Evaluation of thermal data for geologic applications
NASA Technical Reports Server (NTRS)
Kahle, A. B.; Palluconi, F. D.; Levine, C. J.; Abrams, M. J.; Nash, D. B.; Alley, R. E.; Schieldge, J. P.
1982-01-01
Sensitivity studies using thermal models indicated sources of errors in the determination of thermal inertia from HCMM data. Apparent thermal inertia, with only simple atmospheric radiance corrections to the measured surface temperature, would be sufficient for most operational requirements for surface thermal inertia. Thermal data does have additional information about the nature of surface material that is not available in visible and near infrared reflectance data. Color composites of daytime temperature, nighttime temperature, and albedo were often more useful than thermal inertia images alone for discrimination of lithologic boundaries. A modeling study, using the annual heating cycle, indicated the feasibility of looking for geologic features buried under as much as a meter of alluvial material. The spatial resolution of HCMM data is a major limiting factor in the usefulness of the data for geologic applications. Future thermal infrared satellite sensors should provide spatial resolution comparable to that of the LANDSAT data.
Thermalization Time Bounds for Pauli Stabilizer Hamiltonians
NASA Astrophysics Data System (ADS)
Temme, Kristan
2017-03-01
We prove a general lower bound to the spectral gap of the Davies generator for Hamiltonians that can be written as the sum of commuting Pauli operators. These Hamiltonians, defined on the Hilbert space of N-qubits, serve as one of the most frequently considered candidates for a self-correcting quantum memory. A spectral gap bound on the Davies generator establishes an upper limit on the life time of such a quantum memory and can be used to estimate the time until the system relaxes to thermal equilibrium when brought into contact with a thermal heat bath. The bound can be shown to behave as {λ ≥ O(N^{-1} exp(-2β overline{ɛ}))}, where {overline{ɛ}} is a generalization of the well known energy barrier for logical operators. Particularly in the low temperature regime we expect this bound to provide the correct asymptotic scaling of the gap with the system size up to a factor of N -1. Furthermore, we discuss conditions and provide scenarios where this factor can be removed and a constant lower bound can be proven.
Analysis and Calibration of Sources of Electronic Error in PSD Sensor Response.
Rodríguez-Navarro, David; Lázaro-Galilea, José Luis; Bravo-Muñoz, Ignacio; Gardel-Vicente, Alfredo; Tsirigotis, Georgios
2016-04-29
In order to obtain very precise measurements of the position of agents located at a considerable distance using a sensor system based on position sensitive detectors (PSD), it is necessary to analyze and mitigate the factors that generate substantial errors in the system's response. These sources of error can be divided into electronic and geometric factors. The former stem from the nature and construction of the PSD as well as the performance, tolerances and electronic response of the system, while the latter are related to the sensor's optical system. Here, we focus solely on the electrical effects, since the study, analysis and correction of these are a prerequisite for subsequently addressing geometric errors. A simple calibration method is proposed, which considers PSD response, component tolerances, temperature variations, signal frequency used, signal to noise ratio (SNR), suboptimal operational amplifier parameters, and analog to digital converter (ADC) quantitation SNRQ, etc. Following an analysis of these effects and calibration of the sensor, it was possible to correct the errors, thus rendering the effects negligible, as reported in the results section.
Analysis and Calibration of Sources of Electronic Error in PSD Sensor Response
Rodríguez-Navarro, David; Lázaro-Galilea, José Luis; Bravo-Muñoz, Ignacio; Gardel-Vicente, Alfredo; Tsirigotis, Georgios
2016-01-01
In order to obtain very precise measurements of the position of agents located at a considerable distance using a sensor system based on position sensitive detectors (PSD), it is necessary to analyze and mitigate the factors that generate substantial errors in the system’s response. These sources of error can be divided into electronic and geometric factors. The former stem from the nature and construction of the PSD as well as the performance, tolerances and electronic response of the system, while the latter are related to the sensor’s optical system. Here, we focus solely on the electrical effects, since the study, analysis and correction of these are a prerequisite for subsequently addressing geometric errors. A simple calibration method is proposed, which considers PSD response, component tolerances, temperature variations, signal frequency used, signal to noise ratio (SNR), suboptimal operational amplifier parameters, and analog to digital converter (ADC) quantitation SNRQ, etc. Following an analysis of these effects and calibration of the sensor, it was possible to correct the errors, thus rendering the effects negligible, as reported in the results section. PMID:27136562
High-resolution near real-time drought monitoring in South Asia
NASA Astrophysics Data System (ADS)
Aadhar, Saran; Mishra, Vimal
2017-10-01
Drought in South Asia affect food and water security and pose challenges for millions of people. For policy-making, planning, and management of water resources at sub-basin or administrative levels, high-resolution datasets of precipitation and air temperature are required in near-real time. We develop a high-resolution (0.05°) bias-corrected precipitation and temperature data that can be used to monitor near real-time drought conditions over South Asia. Moreover, the dataset can be used to monitor climatic extremes (heat and cold waves, dry and wet anomalies) in South Asia. A distribution mapping method was applied to correct bias in precipitation and air temperature, which performed well compared to the other bias correction method based on linear scaling. Bias-corrected precipitation and temperature data were used to estimate Standardized precipitation index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) to assess the historical and current drought conditions in South Asia. We evaluated drought severity and extent against the satellite-based Normalized Difference Vegetation Index (NDVI) anomalies and satellite-driven Drought Severity Index (DSI) at 0.05°. The bias-corrected high-resolution data can effectively capture observed drought conditions as shown by the satellite-based drought estimates. High resolution near real-time dataset can provide valuable information for decision-making at district and sub-basin levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collin, Blaise P.; Petti, David A.; Demkowicz, Paul A.
Safety tests were conducted on fuel compacts from AGR-1, the first irradiation experiment of the Advanced Gas Reactor (AGR) Fuel Development and Qualification program, at temperatures ranging from 1600 to 1800 °C to determine fission product release at temperatures that bound reactor accident conditions. The PARFUME (PARticle FUel ModEl) code was used to predict the release of fission products silver, cesium, strontium, and krypton from fuel compacts containing tristructural isotropic (TRISO) coated particles during 15 of these safety tests. Comparisons between PARFUME predictions and post-irradiation examination results of the safety tests were conducted on two types of AGR-1 compacts: compactsmore » containing only intact particles and compacts containing one or more particles whose SiC layers failed during safety testing. In both cases, PARFUME globally over-predicted the experimental release fractions by several orders of magnitude: more than three (intact) and two (failed SiC) orders of magnitude for silver, more than three and up to two orders of magnitude for strontium, and up to two and more than one orders of magnitude for krypton. The release of cesium from intact particles was also largely over-predicted (by up to five orders of magnitude) but its release from particles with failed SiC was only over-predicted by a factor of about 3. These over-predictions can be largely attributed to an over-estimation of the diffusivities used in the modeling of fission product transport in TRISO-coated particles. The integral release nature of the data makes it difficult to estimate the individual over-estimations in the kernel or each coating layer. Nevertheless, a tentative assessment of correction factors to these diffusivities was performed to enable a better match between the modeling predictions and the safety testing results. The method could only be successfully applied to silver and cesium. In the case of strontium, correction factors could not be assessed because potential release during the safety tests could not be distinguished from matrix content released during irradiation. Furthermore, in the case of krypton, all the coating layers are partly retentive and the available data did not allow the level of retention in individual layers to be determined, hence preventing derivation of any correction factors.« less
Collin, Blaise P.; Petti, David A.; Demkowicz, Paul A.; ...
2016-04-07
Safety tests were conducted on fuel compacts from AGR-1, the first irradiation experiment of the Advanced Gas Reactor (AGR) Fuel Development and Qualification program, at temperatures ranging from 1600 to 1800 °C to determine fission product release at temperatures that bound reactor accident conditions. The PARFUME (PARticle FUel ModEl) code was used to predict the release of fission products silver, cesium, strontium, and krypton from fuel compacts containing tristructural isotropic (TRISO) coated particles during 15 of these safety tests. Comparisons between PARFUME predictions and post-irradiation examination results of the safety tests were conducted on two types of AGR-1 compacts: compactsmore » containing only intact particles and compacts containing one or more particles whose SiC layers failed during safety testing. In both cases, PARFUME globally over-predicted the experimental release fractions by several orders of magnitude: more than three (intact) and two (failed SiC) orders of magnitude for silver, more than three and up to two orders of magnitude for strontium, and up to two and more than one orders of magnitude for krypton. The release of cesium from intact particles was also largely over-predicted (by up to five orders of magnitude) but its release from particles with failed SiC was only over-predicted by a factor of about 3. These over-predictions can be largely attributed to an over-estimation of the diffusivities used in the modeling of fission product transport in TRISO-coated particles. The integral release nature of the data makes it difficult to estimate the individual over-estimations in the kernel or each coating layer. Nevertheless, a tentative assessment of correction factors to these diffusivities was performed to enable a better match between the modeling predictions and the safety testing results. The method could only be successfully applied to silver and cesium. In the case of strontium, correction factors could not be assessed because potential release during the safety tests could not be distinguished from matrix content released during irradiation. Furthermore, in the case of krypton, all the coating layers are partly retentive and the available data did not allow the level of retention in individual layers to be determined, hence preventing derivation of any correction factors.« less
Hammerle, Albin; Meier, Fred; Heinl, Michael; Egger, Angelika; Leitinger, Georg
2017-04-01
Thermal infrared (TIR) cameras perfectly bridge the gap between (i) on-site measurements of land surface temperature (LST) providing high temporal resolution at the cost of low spatial coverage and (ii) remotely sensed data from satellites that provide high spatial coverage at relatively low spatio-temporal resolution. While LST data from satellite (LST sat ) and airborne platforms are routinely corrected for atmospheric effects, such corrections are barely applied for LST from ground-based TIR imagery (using TIR cameras; LST cam ). We show the consequences of neglecting atmospheric effects on LST cam of different vegetated surfaces at landscape scale. We compare LST measured from different platforms, focusing on the comparison of LST data from on-site radiometry (LST osr ) and LST cam using a commercially available TIR camera in the region of Bozen/Bolzano (Italy). Given a digital elevation model and measured vertical air temperature profiles, we developed a multiple linear regression model to correct LST cam data for atmospheric influences. We could show the distinct effect of atmospheric conditions and related radiative processes along the measurement path on LST cam , proving the necessity to correct LST cam data on landscape scale, despite their relatively low measurement distances compared to remotely sensed data. Corrected LST cam data revealed the dampening effect of the atmosphere, especially at high temperature differences between the atmosphere and the vegetated surface. Not correcting for these effects leads to erroneous LST estimates, in particular to an underestimation of the heterogeneity in LST, both in time and space. In the most pronounced case, we found a temperature range extension of almost 10 K.
Inversion of Farmland Soil Moisture in Large Region Based on Modified Vegetation Index
NASA Astrophysics Data System (ADS)
Wang, J. X.; Yu, B. S.; Zhang, G. Z.; Zhao, G. C.; He, S. D.; Luo, W. R.; Zhang, C. C.
2018-04-01
Soil moisture is an important parameter for agricultural production. Efficient and accurate monitoring of soil moisture is an important link to ensure the safety of agricultural production. Remote sensing technology has been widely used in agricultural moisture monitoring because of its timeliness, cyclicality, dynamic tracking of changes in things, easy access to data, and extensive monitoring. Vegetation index and surface temperature are important parameters for moisture monitoring. Based on NDVI, this paper introduces land surface temperature and average temperature for optimization. This article takes the soil moisture in winter wheat growing area in Henan Province as the research object, dividing Henan Province into three main regions producing winter wheat and dividing the growth period of winter wheat into the early, middle and late stages on the basis of phenological characteristics and regional characteristics. Introducing appropriate correction factor during the corresponding growth period of winter wheat, correcting the vegetation index in the corresponding area, this paper establishes regression models of soil moisture on NDVI and soil moisture on modified NDVI based on correlation analysis and compare models. It shows that modified NDVI is more suitable as a indicator of soil moisture because of the better correlation between soil moisture and modified NDVI and the higher prediction accuracy of the regression model of soil moisture on modified NDVI. The research in this paper has certain reference value for winter wheat farmland management and decision-making.
NASA Astrophysics Data System (ADS)
Hasan, M. Alfi; Islam, A. K. M. Saiful; Akanda, Ali Shafqat
2017-11-01
In the era of global warning, the insight of future climate and their changing extremes is critical for climate-vulnerable regions of the world. In this study, we have conducted a robust assessment of Regional Climate Model (RCM) results in a monsoon-dominated region within the new Coupled Model Intercomparison Project Phase 5 (CMIP5) and the latest Representative Concentration Pathways (RCP) scenarios. We have applied an advanced bias correction approach to five RCM simulations in order to project future climate and associated extremes over Bangladesh, a critically climate-vulnerable country with a complex monsoon system. We have also generated a new gridded product that performed better in capturing observed climatic extremes than existing products. The bias-correction approach provided a notable improvement in capturing the precipitation extremes as well as mean climate. The majority of projected multi-model RCMs indicate an increase of rainfall, where one model shows contrary results during the 2080s (2071-2100) era. The multi-model mean shows that nighttime temperatures will increase much faster than daytime temperatures and the average annual temperatures are projected to be as hot as present-day summer temperatures. The expected increase of precipitation and temperature over the hilly areas are higher compared to other parts of the country. Overall, the projected extremities of future rainfall are more variable than temperature. According to the majority of the models, the number of the heavy rainy days will increase in future years. The severity of summer-day temperatures will be alarming, especially over hilly regions, where winters are relatively warm. The projected rise of both precipitation and temperature extremes over the intense rainfall-prone northeastern region of the country creates a possibility of devastating flash floods with harmful impacts on agriculture. Moreover, the effect of bias-correction, as presented in probable changes of both bias-corrected and uncorrected extremes, can be considered in future policy making.
Detailed Uncertainty Analysis of the ZEM-3 Measurement System
NASA Technical Reports Server (NTRS)
Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred
2014-01-01
The measurement of Seebeck coefficient and electrical resistivity are critical to the investigation of all thermoelectric systems. Therefore, it stands that the measurement uncertainty must be well understood to report ZT values which are accurate and trustworthy. A detailed uncertainty analysis of the ZEM-3 measurement system has been performed. The uncertainty analysis calculates error in the electrical resistivity measurement as a result of sample geometry tolerance, probe geometry tolerance, statistical error, and multi-meter uncertainty. The uncertainty on Seebeck coefficient includes probe wire correction factors, statistical error, multi-meter uncertainty, and most importantly the cold-finger effect. The cold-finger effect plagues all potentiometric (four-probe) Seebeck measurement systems, as heat parasitically transfers through thermocouple probes. The effect leads to an asymmetric over-estimation of the Seebeck coefficient. A thermal finite element analysis allows for quantification of the phenomenon, and provides an estimate on the uncertainty of the Seebeck coefficient. The thermoelectric power factor has been found to have an uncertainty of +9-14 at high temperature and 9 near room temperature.
Pressure-Sensitive Paint Measurements on Surfaces with Non-Uniform Temperature
NASA Technical Reports Server (NTRS)
Bencic, Timothy J.
1999-01-01
Pressure-sensitive paint (PSP) has become a useful tool to augment conventional pressure taps in measuring the surface pressure distribution of aerodynamic components in wind tunnel testing. While the PSP offers the advantage of a non-intrusive global mapping of the surface pressure, one prominent drawback to the accuracy of this technique is the inherent temperature sensitivity of the coating's luminescent intensity. A typical aerodynamic surface PSP test has relied on the coated surface to be both spatially and temporally isothermal, along with conventional instrumentation for an in situ calibration to generate the highest accuracy pressure mappings. In some tests however, spatial and temporal thermal gradients are generated by the nature of the test as in a blowing jet impinging on a surface. In these cases, the temperature variations on the painted surface must be accounted for in order to yield high accuracy and reliable data. A new temperature correction technique was developed at NASA Lewis to collapse a "family" of PSP calibration curves to a single intensity ratio versus pressure curve. This correction allows a streamlined procedure to be followed whether or not temperature information is used in the data reduction of the PSP. This paper explores the use of conventional instrumentation such as thermocouples and pressure taps along with temperature-sensitive paint (TSP) to correct for the thermal gradients that exist in aeropropulsion PSP tests. Temperature corrected PSP measurements for both a supersonic mixer ejector and jet cavity interaction tests are presented.
Skin Temperature Analysis and Bias Correction in a Coupled Land-Atmosphere Data Assimilation System
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Radakovich, Jon D.; daSilva, Arlindo; Todling, Ricardo; Verter, Frances
2006-01-01
In an initial investigation, remotely sensed surface temperature is assimilated into a coupled atmosphere/land global data assimilation system, with explicit accounting for biases in the model state. In this scheme, an incremental bias correction term is introduced in the model's surface energy budget. In its simplest form, the algorithm estimates and corrects a constant time mean bias for each gridpoint; additional benefits are attained with a refined version of the algorithm which allows for a correction of the mean diurnal cycle. The method is validated against the assimilated observations, as well as independent near-surface air temperature observations. In many regions, not accounting for the diurnal cycle of bias caused degradation of the diurnal amplitude of background model air temperature. Energy fluxes collected through the Coordinated Enhanced Observing Period (CEOP) are used to more closely inspect the surface energy budget. In general, sensible heat flux is improved with the surface temperature assimilation, and two stations show a reduction of bias by as much as 30 Wm(sup -2) Rondonia station in Amazonia, the Bowen ratio changes direction in an improvement related to the temperature assimilation. However, at many stations the monthly latent heat flux bias is slightly increased. These results show the impact of univariate assimilation of surface temperature observations on the surface energy budget, and suggest the need for multivariate land data assimilation. The results also show the need for independent validation data, especially flux stations in varied climate regimes.
A first-principles study of elastic and diffusion properties of magnesium based alloys
NASA Astrophysics Data System (ADS)
Ganeshan, Swetha
2011-12-01
In this thesis, the influence of alloying elements on the elastic and diffusion properties of Magnesium (Mg) has been studied based on first-principles density functional theory. The stress-strain method has been used to predict the elastic constants of the Mg based alloys studied herein. This method involves calculating the resultant change in stress due to application of strain. The validity of this method has been successfully tested for both 0K as well as at finite temperatures. The elastic constants predicted in this work have been correlated to ductility, fracture toughness, stiffness, elastic anisotropy and bond directionality, thus providing a better understanding of the influence of alloying elements on the mechanical and physical properties of Mg. Elastic constants, as a function of temperature have been predicted using first-principles quasi-static approximation. In this approach elastic stiffness coefficients calculated with respect to volume (cij( V)) have been correlated to the equilibrium volume as a function of temperature V(T) from phonon calculations to obtain temperature dependence of elastic stiffness coefficients cij(T). To compare our calculated temperature dependent elastic constants with that of experiments an isentropic correction term has been introduced. It is seen that the influence of this isentropic correction term on the elastic constants becomes significant at high temperatures. The quasi-static approximation has been primarily applied to calculate temperature dependent elastic constants of Mg2Ge, Mg2Si, Mg 2Sn and Mg2Pb. In the case of dilute Mg alloys, a 36 atom supercell with 35 atoms of Mg and one atom of the alloying impurity has been used for calculating the corresponding elastic constants. It is seen that there is a direct correspondence between the trends in the elastic constants and the lattice parameters of all the Mg based alloys studied herein. Elements that cause a decrease (increase) in the lattice constants result in an increase (decrease) in the bulk modulus. Self-diffusion calculations of Mg have been performed within both LDA and GGA. It is seen that, in the absence of surface corrections, while results of the two approximations (i.e. LDA and GGA) bound experimental data, better agreement is seen with respect to results from LDA, in comparison with experimental measurements. The effect of thermal expansion on the diffusivity of Mg has been studied using both HA and QHA. It is seen that the influence of anharmonicity on the diffusivity of Mg is negligible. Self-diffusion of Mg is faster in the basal plane than between adjacent basal planes. Partial correlation factors corresponding to the diffusion of a Mg atom from one basal plane to the adjacent basal plane, i.e. fBx and fBz, decrease with temperature whereas the partial correlation factor corresponding to the diffusion of Mg atom within the basal plane, i.e. fAx , increases with temperature. The ratio of jump frequencies w⊥/w∥ for self-diffusion of Mg increase with increase in temperature. The method used to calculate self-diffusion coefficients has been extended to compute impurity diffusion coefficients of Al, Ca, Sn and Zn in Mg. For these calculations, a 36 atom supercell with 1 vacant site and 1 impurity has been used. The 8-frequencey model has been implemented to obtain the different atom jump frequencies in order to calculate impurity diffusion coefficients in Mg. The trend in the impurity diffusion coefficients, with the exception of DZn-Mg is as follows: D Mg-Ca>DMg>DMg-Sn> DMg-Al. For impurity diffusion of Zn in Mg, at high temperatures DMg-Zn overlaps with that of DMg-Al , while at low temperatures it overlaps with that of D Mg-Sn. The different atom jump frequencies computed during the diffusion calculations are seen to be temperature dependent, increasing with increase in temperature. The correlation factors for all the alloy systems considered herein, is close to 1. This is expected to be due to the close packing of Mg lattice. (Abstract shortened by UMI.)
Modulation of Soil Initial State on WRF Model Performance Over China
NASA Astrophysics Data System (ADS)
Xue, Haile; Jin, Qinjian; Yi, Bingqi; Mullendore, Gretchen L.; Zheng, Xiaohui; Jin, Hongchun
2017-11-01
The soil state (e.g., temperature and moisture) in a mesoscale numerical prediction model is typically initialized by reanalysis or analysis data that may be subject to large bias. Such bias may lead to unrealistic land-atmosphere interactions. This study shows that the Climate Forecast System Reanalysis (CFSR) dramatically underestimates soil temperature and overestimates soil moisture over most parts of China in the first (0-10 cm) and second (10-25 cm) soil layers compared to in situ observations in July 2013. A correction based on the global optimal dual kriging is employed to correct CFSR bias in soil temperature and moisture using in situ observations. To investigate the impacts of the corrected soil state on model forecasts, two numerical model simulations—a control run with CFSR soil state and a disturbed run with the corrected soil state—were conducted using the Weather Research and Forecasting model. All the simulations are initiated 4 times per day and run 48 h. Model results show that the corrected soil state, for example, warmer and drier surface over the most parts of China, can enhance evaporation over wet regions, which changes the overlying atmospheric temperature and moisture. The changes of the lifting condensation level, level of free convection, and water transport due to corrected soil state favor precipitation over wet regions, while prohibiting precipitation over dry regions. Moreover, diagnoses indicate that the remote moisture flux convergence plays a dominant role in the precipitation changes over the wet regions.
NASA Technical Reports Server (NTRS)
Kitzis, S. N.; Kitzis, J. L.
1979-01-01
The accuracy of the SEASAT-A SMMR antenna pattern correction (APC) algorithm was assessed. Interim APC brightness temperature measurements for the SMMR 6.6 GHz channels are compared with surface truth derived sea surface temperatures. Plots and associated statistics are presented for SEASAT-A SMMR data acquired for the Gulf of Alaska experiment. The cross-track gradients observed in the 6.6 GHz brightness temperature data are discussed.
Igniter adapter-to-igniter chamber deflection test
NASA Technical Reports Server (NTRS)
Cook, M.
1990-01-01
Testing was performed to determine the maximum RSRM igniter adapter-to-igniter chamber joint deflection at the crown of the inner joint primary seal. The deflection data was gathered to support igniter inner joint gasket resiliency predictions which led to launch commit criteria temperature determinations. The proximity (deflection) gage holes for the first test (Test No. 1) were incorrectly located; therefore, the test was declared a non-test. Prior to Test No. 2, test article configuration was modified with the correct proximity gage locations. Deflection data were successfully acquired during Test No. 2. However, the proximity gage deflection measurements were adversely affected by temperature increases. Deflections measured after the temperature rise at the proximity gages were considered unreliable. An analysis was performed to predict the maximum deflections based on the reliable data measured before the detectable temperature rise. Deflections to the primary seal crown location were adjusted to correspond to the time of maximum expected operating pressure (2,159 psi) to account for proximity gage bias, and to account for maximum attach and special bolt relaxation. The maximum joint deflection for the igniter inner joint at the crown of the primary seal, accounting for all significant correction factors, was 0.0031 in. (3.1 mil). Since the predicted (0.003 in.) and tested maximum deflection values were sufficiently close, the launch commit criteria was not changed as a result of this test. Data from this test should be used to determine if the igniter inner joint gasket seals are capable of maintaining sealing capability at a joint displacement of (1.4) x (0.0031 in.) = 0.00434 inches. Additional testing should be performed to increase the database on igniter deflections and address launch commit criteria temperatures.
The correction of time and temperature effects in MR-based 3D Fricke xylenol orange dosimetry.
Welch, Mattea L; Jaffray, David A
2017-04-21
Previously developed MR-based three-dimensional (3D) Fricke-xylenol orange (FXG) dosimeters can provide end-to-end quality assurance and validation protocols for pre-clinical radiation platforms. FXG dosimeters quantify ionizing irradiation induced oxidation of Fe 2+ ions using pre- and post-irradiation MR imaging methods that detect changes in spin-lattice relaxation rates (R 1 = [Formula: see text]) caused by irradiation induced oxidation of Fe 2+ . Chemical changes in MR-based FXG dosimeters that occur over time and with changes in temperature can decrease dosimetric accuracy if they are not properly characterized and corrected. This paper describes the characterization, development and utilization of an empirical model-based correction algorithm for time and temperature effects in the context of a pre-clinical irradiator and a 7 T pre-clinical MR imaging system. Time and temperature dependent changes of R 1 values were characterized using variable TR spin-echo imaging. R 1 -time and R 1 -temperature dependencies were fit using non-linear least squares fitting methods. Models were validated using leave-one-out cross-validation and resampling. Subsequently, a correction algorithm was developed that employed the previously fit empirical models to predict and reduce baseline R 1 shifts that occurred in the presence of time and temperature changes. The correction algorithm was tested on R 1 -dose response curves and 3D dose distributions delivered using a small animal irradiator at 225 kVp. The correction algorithm reduced baseline R 1 shifts from -2.8 × 10 -2 s -1 to 1.5 × 10 -3 s -1 . In terms of absolute dosimetric performance as assessed with traceable standards, the correction algorithm reduced dose discrepancies from approximately 3% to approximately 0.5% (2.90 ± 2.08% to 0.20 ± 0.07%, and 2.68 ± 1.84% to 0.46 ± 0.37% for the 10 × 10 and 8 × 12 mm 2 fields, respectively). Chemical changes in MR-based FXG dosimeters produce time and temperature dependent R 1 values for the time intervals and temperature changes found in a typical small animal imaging and irradiation laboratory setting. These changes cause baseline R 1 shifts that negatively affect dosimeter accuracy. Characterization, modeling and correction of these effects improved in-field reported dose accuracy to less than 1% when compared to standardized ion chamber measurements.
Correcting horsepower measurements to a standard temperature
NASA Technical Reports Server (NTRS)
Sparrow, Stanwood W
1925-01-01
This report discusses the relation between the temperature of the air at the entrance to the carburetor and the power developed by the engine. Its scope is limited to a consideration of the range of temperatures likely to result from changes of season, locality, or altitude, since its primary aim is the finding of a satisfactory basis for correcting power measurements to a standard temperature. The tests upon which this report is based were made upon aviation engines in the Altitude Laboratory of the Bureau of Standards. From the results of over 1,600 tests it is concluded that if calculations be based on the assumption that the indicated horsepower of an engine varies inversely as the square root of the absolute temperature of the carburetor air the values obtained will check closely experimental measurements. The extent to which this relationship would be expected from theoretical considerations is discussed and some suggestions are given relative to the use of this relationship in correcting horsepower measurements. (author)
Veligdan, James T.
1993-01-01
Atmospheric effects on sighting measurements are compensated for by adjusting any sighting measurements using a correction factor that does not depend on atmospheric state conditions such as temperature, pressure, density or turbulence. The correction factor is accurately determined using a precisely measured physical separation between two color components of a light beam (or beams) that has been generated using either a two-color laser or two lasers that project different colored beams. The physical separation is precisely measured by fixing the position of a short beam pulse and measuring the physical separation between the two fixed-in-position components of the beam. This precisely measured physical separation is then used in a relationship that includes the indexes of refraction for each of the two colors of the laser beam in the atmosphere through which the beam is projected, thereby to determine the absolute displacement of one wavelength component of the laser beam from a straight line of sight for that projected component of the beam. This absolute displacement is useful to correct optical measurements, such as those developed in surveying measurements that are made in a test area that includes the same dispersion effects of the atmosphere on the optical measurements. The means and method of the invention are suitable for use with either single-ended systems or a double-ended systems.
NASA Astrophysics Data System (ADS)
Gutschwager, Berndt; Hollandt, Jörg
2017-01-01
We present a novel method of nonuniformity correction (NUC) of infrared cameras and focal plane arrays (FPA) in a wide optical spectral range by reading radiance temperatures and by applying a radiation source with an unknown and spatially nonhomogeneous radiance temperature distribution. The benefit of this novel method is that it works with the display and the calculation of radiance temperatures, it can be applied to radiation sources of arbitrary spatial radiance temperature distribution, and it only requires sufficient temporal stability of this distribution during the measurement process. In contrast to this method, an initially presented method described the calculation of NUC correction with the reading of monitored radiance values. Both methods are based on the recording of several (at least three) images of a radiation source and a purposeful row- and line-shift of these sequent images in relation to the first primary image. The mathematical procedure is explained in detail. Its numerical verification with a source of a predefined nonhomogeneous radiance temperature distribution and a thermal imager of a predefined nonuniform FPA responsivity is presented.
García-Garduño, Olivia A; Rodríguez-Ávila, Manuel A; Lárraga-Gutiérrez, José M
2018-01-01
Silicon-diode-based detectors are commonly used for the dosimetry of small radiotherapy beams due to their relatively small volumes and high sensitivity to ionizing radiation. Nevertheless, silicon-diode-based detectors tend to over-respond in small fields because of their high density relative to water. For that reason, detector-specific beam correction factors ([Formula: see text]) have been recommended not only to correct the total scatter factors but also to correct the tissue maximum and off-axis ratios. However, the application of [Formula: see text] to in-depth and off-axis locations has not been studied. The goal of this work is to address the impact of the correction factors on the calculated dose distribution in static non-conventional photon beams (specifically, in stereotactic radiosurgery with circular collimators). To achieve this goal, the total scatter factors, tissue maximum, and off-axis ratios were measured with a stereotactic field diode for 4.0-, 10.0-, and 20.0-mm circular collimators. The irradiation was performed with a Novalis® linear accelerator using a 6-MV photon beam. The detector-specific correction factors were calculated and applied to the experimental dosimetry data for in-depth and off-axis locations. The corrected and uncorrected dosimetry data were used to commission a treatment planning system for radiosurgery planning. Various plans were calculated with simulated lesions using the uncorrected and corrected dosimetry. The resulting dose calculations were compared using the gamma index test with several criteria. The results of this work presented important conclusions for the use of detector-specific beam correction factors ([Formula: see text] in a treatment planning system. The use of [Formula: see text] for total scatter factors has an important impact on monitor unit calculation. On the contrary, the use of [Formula: see text] for tissue-maximum and off-axis ratios has not an important impact on the dose distribution calculation by the treatment planning system. This conclusion is only valid for the combination of treatment planning system, detector, and correction factors used in this work; however, this technique can be applied to other treatment planning systems, detectors, and correction factors.
Michaels, Chris A.; Cook, Robert F.
2016-01-01
Maps of residual stress distributions arising from anisotropic thermal expansion effects in a polycrystalline alumina are generated using fluorescence microscopy. The shifts of both the R1 and R2 ruby fluorescence lines of Cr in alumina are used to create maps with sub-µm resolution of either the local mean and shear stresses or local crystallographic a- and c-stresses in the material, with approximately ± 1 MPa stress resolution. The use of single crystal control materials and explicit correction for temperature and composition effects on line shifts enabled determination of the absolute values and distributions of values of stresses. Temperature correction is shown to be critical in absolute stress determination. Experimental determinations of average stress parameters in the mapped structure are consistent with assumed equilibrium conditions and with integrated large-area measurements. Average crystallographic stresses of order hundreds of MPa are determined with characteristic distribution widths of tens of MPa. The stress distributions reflect contributions from individual clusters of stress in the structure; the cluster size is somewhat larger than the grain size. An example application of the use of stress maps is shown in the calculation of stress-intensity factors for fracture in the residual stress field. PMID:27563163
NASA Astrophysics Data System (ADS)
Haider, Shahid A.; Kazemzadeh, Farnoud; Wong, Alexander
2017-03-01
An ideal laser is a useful tool for the analysis of biological systems. In particular, the polarization property of lasers can allow for the concentration of important organic molecules in the human body, such as proteins, amino acids, lipids, and carbohydrates, to be estimated. However, lasers do not always work as intended and there can be effects such as mode hopping and thermal drift that can cause time-varying intensity fluctuations. The causes of these effects can be from the surrounding environment, where either an unstable current source is used or the temperature of the surrounding environment is not temporally stable. This intensity fluctuation can cause bias and error in typical organic molecule concentration estimation techniques. In a low-resource setting where cost must be limited and where environmental factors, like unregulated power supplies and temperature, cannot be controlled, the hardware required to correct for these intensity fluctuations can be prohibitive. We propose a method for computational laser intensity stabilisation that uses Bayesian state estimation to correct for the time-varying intensity fluctuations from electrical and thermal instabilities without the use of additional hardware. This method will allow for consistent intensities across all polarization measurements for accurate estimates of organic molecule concentrations.
Comparing simulation of plasma turbulence with experiment. II. Gyrokinetic simulations
NASA Astrophysics Data System (ADS)
Ross, David W.; Dorland, William
2002-12-01
The direct quantitative correspondence between theoretical predictions and the measured plasma fluctuations and transport is tested by performing nonlinear gyrokinetic simulations with the GS2 code. This is a continuation of previous work with gyrofluid simulations [D. W. Ross et al., Phys. Plasmas 9, 177 (2002)], and the same L-mode reference discharge in the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)] is studied. The simulated turbulence is dominated by ion temperature gradient (ITG) modes, corrected by trapped-electron, passing-electron and impurity effects. The energy fluxes obtained in the gyrokinetic simulations are comparable to, even somewhat higher than, those of the earlier work, and the simulated ion thermal transport, corrected for E×B flow shear, exceeds the experimental value by more than a factor of 2. The simulation also overestimates the density fluctuation level. Varying the local temperature gradient shows a stiff response in the flux and an apparent up-shift from the linear mode threshold [A. M. Dimits et al., Phys. Plasmas 7, 969 (2000)]. This effect is insufficient, within the estimated error, to bring the results into conformity with the experiment.
Excessive bleeding predictors after cardiac surgery in adults: integrative review.
Lopes, Camila Takao; Dos Santos, Talita Raquel; Brunori, Evelise Helena Fadini Reis; Moorhead, Sue A; Lopes, Juliana de Lima; Barros, Alba Lucia Bottura Leite de
2015-11-01
To integrate literature data on the predictors of excessive bleeding after cardiac surgery in adults. Perioperative nursing care requires awareness of the risk factors for excessive bleeding after cardiac surgery to assure vigilance prioritising and early correction of those that are modifiable. Integrative literature review. Articles were searched in seven databases. Seventeen studies investigating predictive factors for excessive bleeding after open-heart surgery from 2004-2014 were included. Predictors of excessive bleeding after cardiac surgery were: Patient-related: male gender, higher preoperative haemoglobin levels, lower body mass index, diabetes mellitus, impaired left ventricular function, lower amount of prebypass thrombin generation, lower preoperative platelet counts, decreased preoperative platelet aggregation, preoperative platelet inhibition level >20%, preoperative thrombocytopenia and lower preoperative fibrinogen concentration. Procedure-related: the operating surgeon, coronary artery bypass surgery with three or more bypasses, use of the internal mammary artery, duration of surgery, increased cross-clamp time, increased cardiopulmonary bypass time, lower intraoperative core body temperature and bypass-induced haemostatic disorders. Postoperative: fibrinogen levels and metabolic acidosis. Patient-related, procedure-related and postoperative predictors of excessive bleeding after cardiac surgery were identified. The predictors summarised in this review can be used for risk stratification of excessive bleeding after cardiac surgery. Assessment, documentation and case reporting can be guided by awareness of these factors, so that postoperative vigilance can be prioritised. Timely identification and correction of the modifiable factors can be facilitated. © 2015 John Wiley & Sons Ltd.
Li, C; Wu, P T; Li, X L; Zhou, T W; Sun, S K; Wang, Y B; Luan, X B; Yu, X
2017-07-01
Agriculture is very sensitive to climate change, and correct forecasting of climate change is a great help to accurate allocation of irrigation water. The use of irrigation water is influenced by crop water demand and precipitation. Potential evapotranspiration (ET 0 ) is a measure of the ability of the atmosphere to remove water from the surface through the processes of evaporation and transpiration, assuming no control on water supply. It plays an important role in assessing crop water requirements, regional dry-wet conditions, and other factors of water resource management. This study analyzed the spatial and temporal evolution processes and characteristics of major meteorological parameters at 10 stations in the Loess Plateau of northern Shaanxi (LPNS). By using the Mann-Kendall trend test with trend-free pre-whitening and the ArcGIS platform, the potential evapotranspiration of each station was quantified by using the Penman-Monteith equation, and the effects of climatic factors on potential evapotranspiration were assessed by analyzing the contribution rate and sensitivity of the climatic factors. The results showed that the climate in LPNS has become warmer and drier. In terms of the sensitivity of ET 0 to the variation of each climatic factor in LPNS, relative humidity (0.65) had the highest sensitivity, followed by daily maximum temperature, wind speed, sunshine hours, and daily minimum temperature (-0.05). In terms of the contribution rate of each factor to ET 0 , daily maximum temperature (5.16%) had the highest value, followed by daily minimum temperature, sunshine hours, relative humidity, and wind speed (1.14%). This study provides a reference for the management of agricultural water resources and for countermeasures to climate change. According to the climate change and the characteristics of the study area, farmers in the region should increase irrigation to guarantee crop water demand. Copyright © 2017. Published by Elsevier B.V.
Diagnostics of vector magnetic fields
NASA Technical Reports Server (NTRS)
Stenflo, J. O.
1985-01-01
It is shown that the vector magnetic fields derived from observations with a filter magnetograph will be severely distorted if the spatially unresolved magnetic structure is not properly accounted for. Thus the apparent vector field will appear much more horizontal than it really is, but this distortion is strongly dependent on the area factor and the temperature line weakenings. As the available fluxtube models are not sufficiently well determined, it is not possible to correct the filter magnetograph observations for these effects in a reliable way, although a crude correction is of course much better than no correction at all. The solution to this diagnostic problem is to observe simultaneously in suitable combinations of spectral lines, and/or use Stokes line profiles recorded with very high spectral resolution. The diagnostic power of using a Fourier transform spectrometer for polarimetry is shown and some results from I and V spectra are illustrated. The line asymmetries caused by mass motions inside the fluxtubes adds an extra complication to the diagnostic problem, in particular as there are indications that the motions are nonstationary in nature. The temperature structure appears to be a function of fluxtube diameter, as a clear difference between plage and network fluxtubes was revealed. The divergence of the magnetic field with height plays an essential role in the explanation of the Stokes V asymmetries (in combination with the mass motions). A self consistent treatment of the subarcsec field geometry may be required to allow an accurate derivation of the spatially averaged vector magnetic field from spectrally resolved data.
Noninvasive Thermometry Assisted by a Dual Function Ultrasound Transducer for Mild Hyperthermia
Lai, Chun-Yen; Kruse, Dustin E.; Caskey, Charles F.; Stephens, Douglas N.; Sutcliffe, Patrick L.; Ferrara, Katherine W.
2010-01-01
Mild hyperthermia is increasingly important for the activation of temperature-sensitive drug delivery vehicles. Noninvasive ultrasound thermometry based on a 2-D speckle tracking algorithm was examined in this study. Here, a commercial ultrasound scanner, a customized co-linear array transducer, and a controlling PC system were used to generate mild hyperthermia. Because the co-linear array transducer is capable of both therapy and imaging at widely separated frequencies, RF image frames were acquired during therapeutic insonation and then exported for off-line analysis. For in vivo studies in a mouse model, before temperature estimation, motion correction was applied between a reference RF frame and subsequent RF frames. Both in vitro and in vivo experiments were examined; in the in vitro and in vivo studies, the average temperature error had a standard deviation of 0.7°C and 0.8°C, respectively. The application of motion correction improved the accuracy of temperature estimation, where the error range was −1.9 to 4.5°C without correction compared with −1.1 to 1.0°C following correction. This study demonstrates the feasibility of combining therapy and monitoring using a commercial system. In the future, real-time temperature estimation will be incorporated into this system. PMID:21156363
WE-E-18A-06: To Remove Or Not to Remove: Comfort Pads From Beneath Neonates for Radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, X; Baad, M; Reiser, I
2014-06-15
Purpose: To obtain an analytical empirical formula for the photon dose source term in forward direction from bremsstrahlung generated from laser-plasma accelerated electron beams in aluminum solid targets, with electron-plasma temperatures in the 10–100 keV energy range, and to calculate transmission factors for iron, aluminum, methacrylate, lead and concrete and air, materials most commonly found in vacuum chamber labs. Methods: Bremsstrahlung fluence is calculated from the convolution of thin-target bremsstrahlung spectrum for monoenergetic electrons and the relativistic Maxwell-Juettner energy distribution for the electron-plasma. Unattenuatted dose in tissue is calculated by integrating the photon spectrum with the mass-energy absorption coefficient. Formore » the attenuated dose, energy dependent absorption coefficient, build-up factors and finite shielding correction factors were also taken into account. For the source term we use a modified formula from Hayashi et al., and we fitted the proportionality constant from experiments with the aid of the previously calculated transmission factors. Results: The forward dose has a quadratic dependence on electron-plasma temperature: 1 joule of effective laser energy transferred to the electrons at 1 m in vacuum yields 0,72 Sv per MeV squared of electron-plasma temperature. Air strongly filters the softer part of the photon spectrum and reduce the dose to one tenth in the first centimeter. Exponential higher energy tail of maxwellian spectrum contributes mainly to the transmitted dose. Conclusion: A simple formula for forward photon dose from keV range temperature plasma is obtained, similar to those found in kilovoltage x-rays but with higher dose per dissipated electron energy, due to thin target and absence of filtration.« less
Dryland pasture and crop conditions as seen by HCMM. [Washita River watershed, Oklahoma
NASA Technical Reports Server (NTRS)
Rosenthal, W. D.; Harlan, J. C.; Blanchard, B. J. (Principal Investigator)
1980-01-01
Heat capacity mapping mission data were obtained for use in enhancing estimates of soil moisture content. Day/day thermal IR difference between data from August 31 and October 17 were analyzed. Atmospheric correction on HCMM pass dates using the RADTRA model were calculated. Differences between corrections using lake temperatures and calculated temperatures were small.
NASA Technical Reports Server (NTRS)
Chin, R. T.; Beaudet, P. R.
1981-01-01
Large antenna multi-channel microwave radiometer (LAMMR) software specifications were written for LAMMR ground processing. There is a need to determine more computationally-efficient antenna temperature correction methods in compensating side lobe contributions especially near continents, islands and weather fronts. One of the major conclusions was that the antenna pattern corrections (APC) processes did not accomplish the implied goals of compensating for the antenna side lobe influences on brightness temperature. A-priori knowledge of land/water locations was shown to be needed and had to be incorporated in a context sensitive APC process if the artifacts caused by land presence is to be avoided. The high temperatures in land regions can severely bias the lower ocean response.
NASA Astrophysics Data System (ADS)
Wang, L.; Norberg, P.; Gunawardhana, M. L. P.; Heinis, S.; Baldry, I. K.; Bland-Hawthorn, J.; Bourne, N.; Brough, S.; Brown, M. J. I.; Cluver, M. E.; Cooray, A.; da Cunha, E.; Driver, S. P.; Dunne, L.; Dye, S.; Eales, S.; Grootes, M. W.; Holwerda, B. W.; Hopkins, A. M.; Ibar, E.; Ivison, R.; Lacey, C.; Lara-Lopez, M. A.; Loveday, J.; Maddox, S. J.; Michałowski, M. J.; Oteo, I.; Owers, M. S.; Popescu, C. C.; Smith, D. J. B.; Taylor, E. N.; Tuffs, R. J.; van der Werf, P.
2016-09-01
We compare common star formation rate (SFR) indicators in the local Universe in the Galaxy and Mass Assembly (GAMA) equatorial fields (˜160 deg2), using ultraviolet (UV) photometry from GALEX, far-infrared and sub-millimetre (sub-mm) photometry from Herschel Astrophysical Terahertz Large Area Survey, and Hα spectroscopy from the GAMA survey. With a high-quality sample of 745 galaxies (median redshift
Effect of modified thermal conductivity on the temperature distribution in the protonosphere.
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Fontheim, E. G.; Mahajan, K. K.
1973-01-01
At typical protonospheric electron densities the electron mean free path is sufficiently long so that the coefficient of thermal conductivity is no longer given by Spitzer's expression. The effect on the temperature profile of using the corrected expression for conductivity is investigated. The corrected thermal conduction coefficient is density-dependent and has a more complicated temperature dependence than the coefficient applicable to higher density plasmas. The results indicate that the effect is not negligible even under quiet conditions and at low latitudes.
NASA Astrophysics Data System (ADS)
Sakurai, G.; Iizumi, T.; Yokozawa, M.
2011-12-01
The actual impact of elevated [CO2] with the interaction of the other climatic factors on the crop growth is still debated. In many process-based crop models, the response of photosynthesis per single leaf to environmental factors is basically described using the biochemical model of Farquhar et al. (1980). However, the decline in photosynthetic enhancement known as down regulation has not been taken into account. On the other hand, the mechanisms causing photosynthetic down regulation is still unknown, which makes it difficult to include the effect of down regulation into process-based crop models. The current results of Free-air CO2 enrichment (FACE) experiments have reported the effect of down regulation under actual environments. One of the effective approaches to involve these results into future crop yield prediction is developing a semi process-based crop growth model, which includes the effect of photosynthetic down regulation as a statistical model, and assimilating the data obtained in FACE experiments. In this study, we statistically estimated the parameters of a semi process-based model for soybean growth ('SPM-soybean') using a hierarchical Baysian method with the FACE data on soybeans (Morgan et al. 2005). We also evaluated the effect of down regulation on the soybean yield in future climatic conditions. The model selection analysis showed that the effective correction to the overestimation of the Farquhar's biochemical C3 model was to reduce the maximum rate of carboxylation (Vcmax) under elevated [CO2]. However, interestingly, the difference in the estimated final crop yields between the corrected model and the non-corrected model was very slight (Fig.1a) for future projection under climate change scenario (Miroc-ESM). This was due to that the reduction in Vcmax also brought about the reduction of the base dark respiration rate of leaves. Because the dark respiration rate exponentially increases with temperature, the slight difference in base respiration rate becomes a large difference under high temperature under the future climate scenarios. In other words, if the temperature rise is very small or zero under elevated [CO2] condition, the effect of down regulation significantly appears (Fig.1b). This result suggest that further experimental data that considering high CO2 effect and high temperature effect in field conditions should be important and elaborate the model projection of the future crop yield through data assimilation method.
Resistivity Correction Factor for the Four-Probe Method: Experiment III
NASA Astrophysics Data System (ADS)
Yamashita, Masato; Nishii, Toshifumi; Kurihara, Hiroshi; Enjoji, Hideo; Iwata, Atsushi
1990-04-01
Experimental verification of the theoretically derived resistivity correction factor F is presented. Factor F is applied to a system consisting of a rectangular parallelepiped sample and a square four-probe array. Resistivity and sheet resistance measurements are made on isotropic graphites and crystalline ITO films. Factor F corrects experimental data and leads to reasonable resistivity and sheet resistance.
Measuring unsteady pressure on rotating compressor blades
NASA Technical Reports Server (NTRS)
Englund, D. R.; Grant, H. P.; Lanati, G. A.
1979-01-01
Miniature semiconductor strain gage pressure transducers mounted in several arrangements were studied. Both surface mountings and recessed flush mountings were tested. Test parameters included mounting arrangement, blade material, temperature, local strain in the acceleration normal to the transducer diaphragm, centripetal acceleration, and pressure. Test results show no failures of transducers or mountings and indicate an uncertainty of unsteady pressure measurement of approximately + or - 6 percent + 0.1 kPa for a typical application. Two configurations were used on a rotating fan flutter program. Examples of transducer data and correction factors are presented.
1988-01-01
of environmental factors that attack and degrade drain performance, and methods that may be used to minimize degradation and correct deficiencies of... risks to site per- sonnel or to public health and safety. 1.3 Description of EMCB Major components of an EMCB are shown in Figure 1.1. An EMCB consists of...differential temperature effects that can occur during the design lifetime of the structure. Severe environmental loads would consist of: W - Loads
Can small field diode correction factors be applied universally?
Liu, Paul Z Y; Suchowerska, Natalka; McKenzie, David R
2014-09-01
Diode detectors are commonly used in dosimetry, but have been reported to over-respond in small fields. Diode correction factors have been reported in the literature. The purpose of this study is to determine whether correction factors for a given diode type can be universally applied over a range of irradiation conditions including beams of different qualities. A mathematical relation of diode over-response as a function of the field size was developed using previously published experimental data in which diodes were compared to an air core scintillation dosimeter. Correction factors calculated from the mathematical relation were then compared those available in the literature. The mathematical relation established between diode over-response and the field size was found to predict the measured diode correction factors for fields between 5 and 30 mm in width. The average deviation between measured and predicted over-response was 0.32% for IBA SFD and PTW Type E diodes. Diode over-response was found to be not strongly dependent on the type of linac, the method of collimation or the measurement depth. The mathematical relation was found to agree with published diode correction factors derived from Monte Carlo simulations and measurements, indicating that correction factors are robust in their transportability between different radiation beams. Copyright © 2014. Published by Elsevier Ireland Ltd.
Unlabeled Oligonucleotides as Internal Temperature Controls for Genotyping by Amplicon Melting
Seipp, Michael T.; Durtschi, Jacob D.; Liew, Michael A.; Williams, Jamie; Damjanovich, Kristy; Pont-Kingdon, Genevieve; Lyon, Elaine; Voelkerding, Karl V.; Wittwer, Carl T.
2007-01-01
Amplicon melting is a closed-tube method for genotyping that does not require probes, real-time analysis, or allele-specific polymerase chain reaction. However, correct differentiation of homozygous mutant and wild-type samples by melting temperature (Tm) requires high-resolution melting and closely controlled reaction conditions. When three different DNA extraction methods were used to isolate DNA from whole blood, amplicon Tm differences of 0.03 to 0.39°C attributable to the extractions were observed. To correct for solution chemistry differences between samples, complementary unlabeled oligonucleotides were included as internal temperature controls to shift and scale the temperature axis of derivative melting plots. This adjustment was applied to a duplex amplicon melting assay for the methylenetetrahydrofolate reductase variants 1298A>C and 677C>T. High- and low-temperature controls bracketing the amplicon melting region decreased the Tm SD within homozygous genotypes by 47 to 82%. The amplicon melting assay was 100% concordant to an adjacent hybridization probe (HybProbe) melting assay when temperature controls were included, whereas a 3% error rate was observed without temperature correction. In conclusion, internal temperature controls increase the accuracy of genotyping by high-resolution amplicon melting and should also improve results on lower resolution instruments. PMID:17591926
Hunt, Andrew P; Bach, Aaron J E; Borg, David N; Costello, Joseph T; Stewart, Ian B
2017-01-01
An accurate measure of core body temperature is critical for monitoring individuals, groups and teams undertaking physical activity in situations of high heat stress or prolonged cold exposure. This study examined the range in systematic bias of ingestible temperature sensors compared to a certified and traceable reference thermometer. A total of 119 ingestible temperature sensors were immersed in a circulated water bath at five water temperatures (TEMP A: 35.12 ± 0.60°C, TEMP B: 37.33 ± 0.56°C, TEMP C: 39.48 ± 0.73°C, TEMP D: 41.58 ± 0.97°C, and TEMP E: 43.47 ± 1.07°C) along with a certified traceable reference thermometer. Thirteen sensors (10.9%) demonstrated a systematic bias > ±0.1°C, of which 4 (3.3%) were > ± 0.5°C. Limits of agreement (95%) indicated that systematic bias would likely fall in the range of -0.14 to 0.26°C, highlighting that it is possible for temperatures measured between sensors to differ by more than 0.4°C. The proportion of sensors with systematic bias > ±0.1°C (10.9%) confirms that ingestible temperature sensors require correction to ensure their accuracy. An individualized linear correction achieved a mean systematic bias of 0.00°C, and limits of agreement (95%) to 0.00-0.00°C, with 100% of sensors achieving ±0.1°C accuracy. Alternatively, a generalized linear function (Corrected Temperature (°C) = 1.00375 × Sensor Temperature (°C) - 0.205549), produced as the average slope and intercept of a sub-set of 51 sensors and excluding sensors with accuracy outside ±0.5°C, reduced the systematic bias to < ±0.1°C in 98.4% of the remaining sensors ( n = 64). In conclusion, these data show that using an uncalibrated ingestible temperature sensor may provide inaccurate data that still appears to be statistically, physiologically, and clinically meaningful. Correction of sensor temperature to a reference thermometer by linear function eliminates this systematic bias (individualized functions) or ensures systematic bias is within ±0.1°C in 98% of the sensors (generalized function).
High-Resolution Near Real-Time Drought Monitoring in South Asia
NASA Astrophysics Data System (ADS)
Aadhar, S.; Mishra, V.
2017-12-01
Drought in South Asia affect food and water security and pose challenges for millions of people. For policy-making, planning and management of water resources at the sub-basin or administrative levels, high-resolution datasets of precipitation and air temperature are required in near-real time. Here we develop a high resolution (0.05 degree) bias-corrected precipitation and temperature data that can be used to monitor near real-time drought conditions over South Asia. Moreover, the dataset can be used to monitor climatic extremes (heat waves, cold waves, dry and wet anomalies) in South Asia. A distribution mapping method was applied to correct bias in precipitation and air temperature (maximum and minimum), which performed well compared to the other bias correction method based on linear scaling. Bias-corrected precipitation and temperature data were used to estimate Standardized precipitation index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) to assess the historical and current drought conditions in South Asia. We evaluated drought severity and extent against the satellite-based Normalized Difference Vegetation Index (NDVI) anomalies and satellite-driven Drought Severity Index (DSI) at 0.05˚. We find that the bias-corrected high-resolution data can effectively capture observed drought conditions as shown by the satellite-based drought estimates. High resolution near real-time dataset can provide valuable information for decision-making at district and sub- basin levels.
NASA Astrophysics Data System (ADS)
Morignat, Eric; Gay, Emilie; Vinard, Jean-Luc; Calavas, Didier; Hénaux, Viviane
2017-11-01
The issue of global warming and more specifically its health impact on populations is increasingly concerning. The aim of our study was to evaluate the impact of temperature on dairy cattle mortality in France during the warm season (April-August). We therefore devised and implemented a spatial partitioning method to divide France into areas in which weather conditions were homogeneous, combining a multiple factor analysis with a clustering method using both weather and spatial data. We then used time-series regressions (2001-2008) to model the relationship between temperature humidity index (an index representing the temperature corrected by the relative humidity) and dairy cattle mortality within these areas. We found a significant effect of heat on dairy cattle mortality, but also an effect of cooler temperatures (to a lesser extent in some areas), which leads to a U-shaped relationship in the studied areas. Our partitioning approach based on weather criteria, associated with classic clustering methods, may contribute to better estimating temperature effects, a critical issue for animal health and welfare. Beyond the interest of its use in animal health, this approach can also be of interest in several situations in the frame of human health.
Solvation effect of bacteriochlorophyll excitons in light-harvesting complex LH2.
Urboniene, V; Vrublevskaja, O; Trinkunas, G; Gall, A; Robert, B; Valkunas, L
2007-09-15
We have characterized the influence of the protein environment on the spectral properties of the bacteriochlorophyll (Bchl) molecules of the peripheral light-harvesting (or LH2) complex from Rhodobacter sphaeroides. The spectral density functions of the pigments responsible for the 800 and 850 nm electronic transitions were determined from the temperature dependence of the Bchl absorption spectra in different environments (detergent micelles and native membranes). The spectral density function is virtually independent of the hydrophobic support that the protein experiences. The reorganization energy for the B850 Bchls is 220 cm(-1), which is almost twice that of the B800 Bchls, and its Huang-Rhys factor reaches 8.4. Around the transition point temperature, and at higher temperatures, both the static spectral inhomogeneity and the resonance interactions become temperature-dependent. The inhomogeneous distribution function of the transitions exhibits less temperature dependence when LH2 is embedded in membranes, suggesting that the lipid phase protects the protein. However, the temperature dependence of the fluorescence spectra of LH2 cannot be fitted using the same parameters determined from the analysis of the absorption spectra. Correct fitting requires the lowest exciton states to be additionally shifted to the red, suggesting the reorganization of the exciton spectrum.
Factors affecting the stability of viral vaccines.
Peetermans, J
1996-01-01
The stability of viral vaccines is determined by the rate of loss of "integrity" of the viral antigen during storage. For live vaccines, such as measles, mumps, rubella, canine distemper, stability is equivalent to the preservation of the infectious titres. For inactivated and subunit vaccines, the preservation of the antigenic structure and the correct steric presentation of the relevant epitopes are the parameters which determine their stability. In general, the following factors may have a negative effect on stability: temperature, pH outside the physiological limits, organic solvents, repeated freezing and thawing, some antiseptics and inactivating agents, and light. However their negative effect is in most cases specific for the individual viruses. Approaches to stabilisation of most vaccines are based on the elimination or neutralisation of the negative factors. Practical examples for the most relevant existing vaccines are described.
NASA Astrophysics Data System (ADS)
Iizumi, Toshichika; Takikawa, Hiroki; Hirabayashi, Yukiko; Hanasaki, Naota; Nishimori, Motoki
2017-08-01
The use of different bias-correction methods and global retrospective meteorological forcing data sets as the reference climatology in the bias correction of general circulation model (GCM) daily data is a known source of uncertainty in projected climate extremes and their impacts. Despite their importance, limited attention has been given to these uncertainty sources. We compare 27 projected temperature and precipitation indices over 22 regions of the world (including the global land area) in the near (2021-2060) and distant future (2061-2100), calculated using four Representative Concentration Pathways (RCPs), five GCMs, two bias-correction methods, and three reference forcing data sets. To widen the variety of forcing data sets, we developed a new forcing data set, S14FD, and incorporated it into this study. The results show that S14FD is more accurate than other forcing data sets in representing the observed temperature and precipitation extremes in recent decades (1961-2000 and 1979-2008). The use of different bias-correction methods and forcing data sets contributes more to the total uncertainty in the projected precipitation index values in both the near and distant future than the use of different GCMs and RCPs. However, GCM appears to be the most dominant uncertainty source for projected temperature index values in the near future, and RCP is the most dominant source in the distant future. Our findings encourage climate risk assessments, especially those related to precipitation extremes, to employ multiple bias-correction methods and forcing data sets in addition to using different GCMs and RCPs.
Hansen solubility parameters for polyethylene glycols by inverse gas chromatography.
Adamska, Katarzyna; Voelkel, Adam
2006-11-03
Inverse gas chromatography (IGC) has been applied to determine solubility parameter and its components for nonionic surfactants--polyethylene glycols (PEG) of different molecular weight. Flory-Huggins interaction parameter (chi) and solubility parameter (delta(2)) were calculated according to DiPaola-Baranyi and Guillet method from experimentally collected retention data for the series of carefully selected test solutes. The Hansen's three-dimensional solubility parameters concept was applied to determine components (delta(d), delta(p), delta(h)) of corrected solubility parameter (delta(T)). The molecular weight and temperature of measurement influence the solubility parameter data, estimated from the slope, intercept and total solubility parameter. The solubility parameters calculated from the intercept are lower than those calculated from the slope. Temperature and structural dependences of the entopic factor (chi(S)) are presented and discussed.
NASA Astrophysics Data System (ADS)
Bogoev, Ivan; Helbig, Manuel; Sonnentag, Oliver
2015-04-01
A growing number of studies report systematic differences in CO2 flux estimates obtained with the two main types of gas analyzers: compared to eddy-covariance systems based on closed-path (CP) gas analyzers, systems with open-path (OP) gas analyzers systematically overestimate CO2 uptake during daytime periods with high positive sensible heat fluxes, while patterns for differences in nighttime CO2 exchange are less obvious. These biases have been shown to correlate with the sign and the magnitude of the sensible heat flux and to introduce large uncertainties when calculating annual CO2 budgets. In general, CP and OP gas analyzers commonly used to measure the CO2 density in the atmosphere operate on the principle of infrared light absorption approximated by Beer-Lambert's law. Non-dispersive interference-based optical filter elements are used to select spectral bands with strong attenuation of light transmission, characteristic to the gas of interest. The intensity of the light passing through the optical sensing path depends primarily on the amount of absorber gas in the measurement volume. Besides the density of the gas, barometric pressure and air temperature are additional factors affecting the strength and the half-width of the absorption lines. These so-called spectroscopic effects are accounted for by measuring barometric pressure and air temperature in the sensing path and scaling the light-intensity measurements before applying the calibration equation. This approach works well for CP gas analyzers with an intake tube that acts as a low-pass filter on fast air-temperature fluctuations. Low-frequency response temperature sensors in the measurement cell are therefore sufficient to account for spectroscopic temperature effects. In contrast, OP gas analyzers are exposed to high-frequency air-temperature fluctuations associated with the atmospheric surface-layer turbulent heat exchange. If not corrected adequately, these fast air-temperature variations can cause systematic errors in the CO2 density measurements. Under conditions of high positive or negative sensible heat flux, air-temperature fluctuations are correlated with fluctuations of the vertical wind component and can lead to significant biases in the CO2 flux estimates. This study demonstrates that sonically derived fast-response air temperature in the optical sensing path of an OP gas analyzer can replace the slow-response measurements from the temperature sensor as a scaling parameter in the calibration model to correct for these air temperature-induced spectroscopic effects. Our approach is evaluated by comparison between different OP and CP gas analyzer-based eddy-covariance systems in ecosystems with low CO2 uptake under a range of sensible heat flux regimes and varying meteorological parameters. We show that ignoring high-frequency spectroscopic effects can lead to false interpretations of net ecosystem CO2 exchange for specific site and environmental conditions.
Comparison of Oral and Axillary Temperatures in Intubated Pediatric Patients.
Wood, Danielle; Heitschmidt, Mary; Fogg, Louis
2018-05-10
Accurate body temperature measurement is essential in providing timely care to critically ill patients. Current practice within the Pediatric ICU (PICU) at a Midwestern academic medical center is to obtain axillary temperatures in endotracheally intubated patients. According to research, axillary temperatures have greater variance than other forms of temperature measurement. Research in adult patients show that oral temperature measurement in endotracheally intubated patients is acceptable as the heated gases from the ventilator has no significant effect on measured temperatures. This study sought to determine if the same is true in pediatrics. Oral and axillary temperatures of endotracheally intubated pediatric patients were obtained during unit prescribed vital assessment intervals. Patients were divided into neonate, infant, and children age groups with 25 sets of temperatures obtained for each group. Descriptive statistics and Bland-Altman plot interpretation were performed to determine confidence intervals for each age group. Bland-Altman plot analysis of oral and axillary routes of temperature measurement showed a high positive correlation within all age groups studied. The infant age group showed lower correlation in comparison to neonates and children. The infant age group also had an outlier of data sets with lower oral temperatures as compared to the axilla. Oral temperature measurement is a viable alternative to axillary temperature measurement in endotracheally intubated pediatric patients. Correction factors for age groups were calculated for prediction of axillary temperature based on measured oral temperature. This study serves as evidence for practice change within the studied unit. Copyright © 2018. Published by Elsevier Inc.
Robert, Mark E; Linthicum, Fred H
2016-01-01
Profile count method for estimating cell number in sectioned tissue applies a correction factor for double count (resulting from transection during sectioning) of count units selected to represent the cell. For human spiral ganglion cell counts, we attempted to address apparent confusion between published correction factors for nucleus and nucleolus count units that are identical despite the role of count unit diameter in a commonly used correction factor formula. We examined a portion of human cochlea to empirically derive correction factors for the 2 count units, using 3-dimensional reconstruction software to identify double counts. The Neurotology and House Histological Temporal Bone Laboratory at University of California at Los Angeles. Using a fully sectioned and stained human temporal bone, we identified and generated digital images of sections of the modiolar region of the lower first turn of cochlea, identified count units with a light microscope, labeled them on corresponding digital sections, and used 3-dimensional reconstruction software to identify double-counted count units. For 25 consecutive sections, we determined that double-count correction factors for nucleus count unit (0.91) and nucleolus count unit (0.92) matched the published factors. We discovered that nuclei and, therefore, spiral ganglion cells were undercounted by 6.3% when using nucleolus count units. We determined that correction factors for count units must include an element for undercounting spiral ganglion cells as well as the double-count element. We recommend a correction factor of 0.91 for the nucleus count unit and 0.98 for the nucleolus count unit when using 20-µm sections. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.
Non-Uniformity Correction Using Nonlinear Characteristic Performance Curves for Calibration
NASA Astrophysics Data System (ADS)
Lovejoy, McKenna Roberts
Infrared imaging is an expansive field with many applications. Advances in infrared technology have lead to a greater demand from both commercial and military sectors. However, a known problem with infrared imaging is its non-uniformity. This non-uniformity stems from the fact that each pixel in an infrared focal plane array has its own photoresponse. Many factors such as exposure time, temperature, and amplifier choice affect how the pixels respond to incoming illumination and thus impact image uniformity. To improve performance non-uniformity correction (NUC) techniques are applied. Standard calibration based techniques commonly use a linear model to approximate the nonlinear response. This often leaves unacceptable levels of residual non-uniformity. Calibration techniques often have to be repeated during use to continually correct the image. In this dissertation alternates to linear NUC algorithms are investigated. The goal of this dissertation is to determine and compare nonlinear non-uniformity correction algorithms. Ideally the results will provide better NUC performance resulting in less residual non-uniformity as well as reduce the need for recalibration. This dissertation will consider new approaches to nonlinear NUC such as higher order polynomials and exponentials. More specifically, a new gain equalization algorithm has been developed. The various nonlinear non-uniformity correction algorithms will be compared with common linear non-uniformity correction algorithms. Performance will be compared based on RMS errors, residual non-uniformity, and the impact quantization has on correction. Performance will be improved by identifying and replacing bad pixels prior to correction. Two bad pixel identification and replacement techniques will be investigated and compared. Performance will be presented in the form of simulation results as well as before and after images taken with short wave infrared cameras. The initial results show, using a third order polynomial with 16-bit precision, significant improvement over the one and two-point correction algorithms. All algorithm have been implemented in software with satisfactory results and the third order gain equalization non-uniformity correction algorithm has been implemented in hardware.
NASA Technical Reports Server (NTRS)
Braunscheidel, Edward P.; Welch, Gerard E.; Skoch, Gary J.; Medic, Gorazd; Sharma, Om P.
2015-01-01
The measured aerodynamic performance of a compact, high work-factor, single-stage centrifugal compressor, comprising an impeller, diffuser, 90deg-bend, and exit guide vane is reported. Performance levels are based on steady-state total-pressure and total-temperature rake and angularity-probe data acquired at key machine rating planes during recent testing at NASA Glenn Research Center. Aerodynamic performance at the stage level is reported for operation between 70 to 105 percent of design corrected speed, with subcomponent (impeller, diffuser, and exit-guide-vane) flow field measurements presented and discussed at the 100 percent design-speed condition. Individual component losses from measurements are compared with pre-test CFD predictions on a limited basis.
Correction Factor for Determining the London Penetration Depth from Strip Resonators
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.
1995-01-01
A significant disagreement is often seen between the theoretical temperature dependent magnetic penetration depth profile and experimentally derived calculations based on stripline type resonators. This short paper shows that the disagreement can be attributed to the susceptance coupled into the resonator from the gap discontinuity as well as the feed line. When the effect is taken into account, the natural resonant frequency of the resonator is increased, and the frequency shift due to kinetic inductance can be calculated much more accurately. While it is necessary to include this effect to determine the penetration depth, it is shown that the impact on unloaded quality factor is generally negligible. The situation when the strip characteristic impedance is not matched to the generator is included.
NASA Technical Reports Server (NTRS)
Braunscheidel, Edward P.; Welch, Gerard E.; Skoch, Gary J.; Medic, Gorazd; Sharma, Om P.
2014-01-01
The measured aerodynamic performance of a compact, high work-factor, single-stage centrifugal compressor, comprising an impeller, diffuser, 90º-bend, and exit guide vane is reported. Performance levels are based on steady-state total-pressure and total-temperature rake and angularity-probe data acquired at key machine rating planes during recent testing at NASA Glenn Research Center. Aerodynamic performance at the stage level is reported for operation between 70 to 105% of design corrected speed, with subcomponent (impeller, diffuser, and exit-guide-vane) flow field measurements presented and discussed at the 100% design-speed condition. Individual component losses from measurements are compared with pre-test CFD predictions on a limited basis.
NASA Astrophysics Data System (ADS)
Hamada, K.; Yoshizawa, K.
2013-12-01
Anelastic attenuation of seismic waves provides us with valuable information on temperature and water content in the Earth's mantle. While seismic velocity models have been investigated by many researchers, anelastic attenuation (or Q) models have yet to be investigated in detail mainly due to the intrinsic difficulties and uncertainties in the amplitude analysis of observed seismic waveforms. To increase the horizontal resolution of surface wave attenuation models on a regional scale, we have developed a new method of fully non-linear waveform fitting to measure inter-station phase velocities and amplitude ratios simultaneously, using the Neighborhood Algorithm (NA) as a global optimizer. Model parameter space (perturbations of phase speed and amplitude ratio) is explored to fit two observed waveforms on a common great-circle path by perturbing both phase and amplitude of the fundamental-mode surface waves. This method has been applied to observed waveform data of the USArray from 2007 to 2008, and a large-number of inter-station amplitude and phase speed data are corrected in a period range from 20 to 200 seconds. We have constructed preliminary phase speed and attenuation models using the observed phase and amplitude data, with careful considerations of the effects of elastic focusing and station correction factors for amplitude data. The phase velocity models indicate good correlation with the conventional tomographic results in North America on a large-scale; e.g., significant slow velocity anomaly in volcanic regions in the western United States. The preliminary results of surface-wave attenuation achieved a better variance reduction when the amplitude data are inverted for attenuation models in conjunction with corrections for receiver factors. We have also taken into account the amplitude correction for elastic focusing based on a geometrical ray theory, but its effects on the final model is somewhat limited and our attenuation model show anti-correlation with the phase velocity models; i.e., lower attenuation is found in slower velocity areas that cannot readily be explained by the temperature effects alone. Some former global scale studies (e.g., Dalton et al., JGR, 2006) indicated that the ray-theoretical focusing corrections on amplitude data tend to eliminate such anti-correlation of phase speed and attenuation, but this seems not to work sufficiently well for our regional scale model, which is affected by stronger velocity gradient relative to global-scale models. Thus, the estimated elastic focusing effects based on ray theory may be underestimated in our regional-scale studies. More rigorous ways to estimate the focusing corrections as well as data selection criteria for amplitude measurements are required to achieve a high-resolution attenuation models on regional scales in the future.
Thompson, Kelly; Zhang, Jianying; Zhang, Chunlong
2011-08-01
Effluents from sewage treatment plants (STPs) are known to contain residual micro-contaminants including endocrine disrupting chemicals (EDCs) despite the utilization of various removal processes. Temperature alters the efficacy of removal processes; however, experimental measurements of EDC removal at various temperatures are limited. Extrapolation of EDC behavior over a wide temperature range is possible using available physicochemical property data followed by the correction of temperature dependency. A level II fugacity-based STP model was employed by inputting parameters obtained from the literature and estimated by the US EPA's Estimations Programs Interface (EPI) including EPI's BIOWIN for temperature-dependent biodegradation half-lives. EDC removals in a three-stage activated sludge system were modeled under various temperatures and hydraulic retention times (HRTs) for representative compounds of various properties. Sensitivity analysis indicates that temperature plays a significant role in the model outcomes. Increasing temperature considerably enhances the removal of β-estradiol, ethinyestradiol, bisphenol, phenol, and tetrachloroethylene, but not testosterone with the highest biodegradation rate. The shortcomings of BIOWIN were mitigated by the correction of highly temperature-dependent biodegradation rates using the Arrhenius equation. The model predicts well the effects of operating temperature and HRTs on the removal via volatilization, adsorption, and biodegradation. The model also reveals that an impractically long HRT is needed to achieve a high EDC removal. The STP model along with temperature corrections is able to provide some useful insight into the different patterns of STP performance, and useful operational considerations relevant to EDC removal at winter low temperatures. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
DeBaca, Richard C.; Sarkissian, Edwin; Madatyan, Mariyetta; Shepard, Douglas; Gluck, Scott; Apolinski, Mark; McDuffie, James; Tremblay, Dennis
2006-01-01
TES L1B Subsystem is a computer program that performs several functions for the Tropospheric Emission Spectrometer (TES). The term "L1B" (an abbreviation of "level 1B"), refers to data, specific to the TES, on radiometric calibrated spectral radiances and their corresponding noise equivalent spectral radiances (NESRs), plus ancillary geolocation, quality, and engineering data. The functions performed by TES L1B Subsystem include shear analysis, monitoring of signal levels, detection of ice build-up, and phase correction and radiometric and spectral calibration of TES target data. Also, the program computes NESRs for target spectra, writes scientific TES level-1B data to hierarchical- data-format (HDF) files for public distribution, computes brightness temperatures, and quantifies interpixel signal variability for the purpose of first-order cloud and heterogeneous land screening by the level-2 software summarized in the immediately following article. This program uses an in-house-developed algorithm, called "NUSRT," to correct instrument line-shape factors.
RF sputter deposition of SrS:Eu and ZnS:Mn thin film electroluminescent phosphors
NASA Astrophysics Data System (ADS)
Droes, Steven Roy
1998-09-01
The radio-frequency (rf) sputter deposition of thin film electroluminescent (TFEL) materials was studied. Thin films of strontium sulfide doped with europium (SrS:Eu) and zinc sulfide doped with manganese (ZnS:Mn) were RF sputter deposited at different conditions. Photoluminescent and electroluminescent behaviors of these films were examined. Photoluminescent active, crystalline films of SrS:Eu were deposited at temperatures from 300o C to 650o C. The best temperature was 400o C, where a PL efficiency of 35% was achieved. Films were deposited at two power levels (90 and 120 watts) and five H2S concentrations (0.6%, 1.3%, 2.4%, 4.0% and 5.3%). The H2S concentration affected the crystallinity of the films and the PL performance. Lower H2S concentrations resulted in films with smaller crystallite sizes and poorer PL performance. Increased H2S concentrations increased the PL intensity and the overall spectra resembled that of an efficient SrS:Eu powder. Although there was a correlation between crystallinity and PL performance other factors such as europium concentration, distribution, and local environment also influence PL performance. Analytical results suggested that, although a film may be crystalline and have the correct europium concentration, unless the europium is in the correct localized environment, optimum PL response will not be achieved. Increased H2S concentrations produced films with europium located in optimum locations. Contrary to vacuum or chemical vapor deposited films, the sputter deposited films showed no trailing edge emission during electroluminescence. A suggested reason for this lack of a trailing edge emission in these films is that the sputter deposition process produces phosphor- insulator interfaces without shallow trap states. A statistical design of experiments approach was implemented for the sputter deposition of ZnS:Mn. The effects of four factors (substrate temperature, chamber pressure, power to the target, and H2S concentration) on three responses (deposition rate, stoichiometry, and PL performance) were studied. A 1/2 fractional factorial showed that each of the factors had a significant influence on at least one response. A large experimental error with subsequent Box-Behnken experiments, however, indicated that some uncontrolled factor was influencing the quality of the films. The large experimental error prevented the development of reliable experimental models based on the Box-Behnken results.
Temperature dependent current transport of Pd/ZnO nanowire Schottky diodes
NASA Astrophysics Data System (ADS)
Gayen, R. N.; Bhattacharyya, S. R.; Jana, P.
2014-09-01
Zinc oxide (ZnO) nanowire based Schottky barrier diodes are fabricated by depositing Pd metal contact on top of vertically well-aligned ZnO nanowire arrays. A vertical array of ZnO nanowires on indium tin oxide (ITO) coated glass substrates is synthesized by hybrid wet chemical route. Scanning electron microscopy (SEM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) measurement confirm the formation of stoichiometric well-aligned hexagonal (h-ZnO) nanowire arrays with wurtzite structure. Temperature dependent current-voltage (I-V) measurements on palladium-ZnO (Pd/ZnO) nanowire Schottky junctions in the temperature range 303-383 K exhibit excellent rectifying character. From these nonlinear I-V plots, different electrical parameters of diode-like reverse saturation current, barrier height and ideality factor are determined as a function of temperature assuming pure thermionic emission model. The ideality factor is found to decrease while the barrier height increases with the increase in temperature. The series resistance values calculated from Cheung’s functions also show temperature dependency. Such behavior can be attributed to the presence of defects that traps carriers, and barrier height inhomogeneity at the interface of the barrier junction. After barrier height inhomogeneity correction, considering a Gaussian distributed barrier height fluctuation across the Pd/ZnO interface, the estimated values of mean barrier height and modified Richardson constant are more closely matched to the theoretically predicted value for Pd/ZnO Schottky barrier diodes. The variation of density of interface states as a function of interface state energy is also calculated.
Brady's Geothermal Field - Analysis of Pressure Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, David
*This submission provides corrections to GDR Submissions 844 and 845* Poroelastic Tomography (PoroTomo) by Adjoint Inverse Modeling of Data from Hydrology. The 3 *csv files containing pressure data are the corrected versions of the pressure dataset found in Submission 844. The dataset has been corrected in the sense that the atmospheric pressure has been subtracted from the total pressure measured in the well. Also, the transducers used at wells 56A-1 and SP-2 are sensitive to surface temperature fluctuations. These temperature effects have been removed from the corrected datasets. The 4th *csv file contains corrected version of the pumping data foundmore » in Submission 845. The data has been corrected in the sense that the data from several wells that were used during the PoroTomo deployment pumping tests that were not included in the original dataset has been added. In addition, several other minor changes have been made to the pumping records due to flow rate instrument calibration issues that were discovered.« less
NASA Astrophysics Data System (ADS)
Nahar, Jannatun; Johnson, Fiona; Sharma, Ashish
2018-02-01
Conventional bias correction is usually applied on a grid-by-grid basis, meaning that the resulting corrections cannot address biases in the spatial distribution of climate variables. To solve this problem, a two-step bias correction method is proposed here to correct time series at multiple locations conjointly. The first step transforms the data to a set of statistically independent univariate time series, using a technique known as independent component analysis (ICA). The mutually independent signals can then be bias corrected as univariate time series and back-transformed to improve the representation of spatial dependence in the data. The spatially corrected data are then bias corrected at the grid scale in the second step. The method has been applied to two CMIP5 General Circulation Model simulations for six different climate regions of Australia for two climate variables—temperature and precipitation. The results demonstrate that the ICA-based technique leads to considerable improvements in temperature simulations with more modest improvements in precipitation. Overall, the method results in current climate simulations that have greater equivalency in space and time with observational data.
Magnetic Field Effects on the Fluctuation Corrections to the Sound Attenuation in Liquid ^3He
NASA Astrophysics Data System (ADS)
Zhao, Erhai; Sauls, James A.
2002-03-01
We investigated the effect of a magnetic field on the excess sound attenuation due to order parameter fluctuations in bulk liquid ^3He and liquid ^3He in aerogel for temperatures just above the corresponding superfluid transition temperatures. The fluctuation corrections to the acoustic attenuation are sensitive to magnetic field pairbreaking, aerogel scattering as well as the spin correlations of fluctuating pairs. Calculations of the corrections to the zero sound velocity, δ c_0, and attenuation, δα_0, are carried out in the ladder approximation for the singular part of the quasiparticle-quasiparticle scattering amplitude(V. Samalam and J. W. Serene, Phys. Rev. Lett. \\underline41), 497 (1978). as a function of frequency, temperature, impurity scattering and magnetic field strength. The magnetic field suppresses the fluctuation contributions to the attenuation of zero sound. With increasing magnetic field the temperature dependence of δα_0(t) crosses over from δα_0(t) ~√ t to δα_0(t) ~ t, where t=T/Tc -1 is the reduced temperature.
NASA Astrophysics Data System (ADS)
Wu, M. J.; Guo, P.; Fu, N. F.; Xu, T. L.; Xu, X. S.; Jin, H. L.; Hu, X. G.
2016-06-01
The ionosphere scale height is one of the most significant ionospheric parameters, which contains information about the ion and electron temperatures and dynamics in upper ionosphere. In this paper, an empirical orthogonal function (EOF) analysis method is applied to process all the ionospheric radio occultations of GPS/COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) from the year 2007 to 2011 to reconstruct a global ionospheric scale height model. This monthly medium model has spatial resolution of 5° in geomagnetic latitude (-87.5° ~ 87.5°) and temporal resolution of 2 h in local time. EOF analysis preserves the characteristics of scale height quite well in the geomagnetic latitudinal, anural, seasonal, and diurnal variations. In comparison with COSMIC measurements of the year of 2012, the reconstructed model indicates a reasonable accuracy. In order to improve the topside model of International Reference Ionosphere (IRI), we attempted to adopt the scale height model in the Bent topside model by applying a scale factor q as an additional constraint. With the factor q functioning in the exponent profile of topside ionosphere, the IRI scale height should be forced equal to the precise COSMIC measurements. In this way, the IRI topside profile can be improved to get closer to the realistic density profiles. Internal quality check of this approach is carried out by comparing COSMIC realistic measurements and IRI with or without correction, respectively. In general, the initial IRI model overestimates the topside electron density to some extent, and with the correction introduced by COSMIC scale height model, the deviation of vertical total electron content (VTEC) between them is reduced. Furthermore, independent validation with Global Ionospheric Maps VTEC implies a reasonable improvement in the IRI VTEC with the topside model correction.
Forster, A.; Merriam, D.F.; Davis, J.C.
1997-01-01
Large numbers of bottom-hole temperatures (BHTs) and temperatures measured during drill-stem tests (DSTs) are available in areas explored for hydrocarbons, but their usefulness for estimating geothermal gradients and heat-flow density is limited. We investigated a large data set of BHT and DST measurements taken in boreholes in the American Midcontinent, a geologically uniform stable cratonic area, and propose an empirical correction for BHTs based on relationships between BHTs, DSTs, and thermal logs. This empirical correction is compared with similar approaches determined for other areas. The data were analyzed by multivariate statistics prior to the BHT correction to identify anomalous measurements and quantify external influences. Spatial patterns in temperature measurements for major stratigraphic units outline relations to regional structure. Comparision of temperature and structure trend-surface residuals reveals a relationship between temperature highs and local structure highs. The anticlines, developed by continuous but intermittent movement of basement fault blocks in the Late Paleozoic, are subtle features having closures of 10-30 m and contain relatively small hydrocarbon reservoirs. The temperature anomalies of the order of 5-7 ??C may reflect fluids moving upward along fractures and faults, rather than changes in thermal conductivity resulting from different pore fluids. ?? Springer-Verlag 1997.
Forster, A.; Merriam, D.F.; Davis, J.C.
1997-01-01
Large numbers of bottom-hole temperatures (BHTs) and temperatures measured during drill-stem tests (DSTs) are available in areas explored for hydrocarbons, but their usefulness for estimating geothermal gradients and heat-flow density is limited. We investigated a large data set of BHT and DST measurements taken in boreholes in the American Midcontinent, a geologically uniform stable cratonic area, and propose an empirical correction for BHTs based on relationships between BHTs, DSTs, and thermal logs. This empirical correction is compared with similar approaches determined for other areas. The data were analyzed by multivariate statistics prior to the BHT correction to identify anomalous measurements and quantify external influences. Spatial patterns in temperature measurements for major stratigraphic units outline relations to regional structure. Comparision of temperature and structure trend-surface residuals reveals a relationship between temperature highs and local structure highs. The anticlines, developed by continuous but intermittent movement of basement fault blocks in the Late Paleozoic, are subtle features having closures of 10-30 m and contain relatively small hydrocarbon reservoirs. The temperature anomalies of the order of 5-7??C may reflect fluids moving upward along fractures and faults, rather than changes in thermal conductivity resulting from different pore fluids.
NASA Astrophysics Data System (ADS)
Vickers, H.; Baddeley, L.
2011-11-01
RF heating of the F region plasma at high latitudes has long been known to produce electron temperature increases that can vary from tens to hundreds of percent above the background, unperturbed level. In contrast, artificial ionospheric modification experiments conducted using the Space Plasma Exploration by Active Radar (SPEAR) heating facility on Svalbard have often failed to produce obvious enhancements in the electron temperatures when measured using the European Incoherent Scatter Svalbard radar (ESR), colocated with the heater. Contamination of the ESR ion line spectra by the zero-frequency purely growing mode (PGM) feature is known to persist at varying amplitudes throughout SPEAR heating, and such spectral features can lead to significant temperature underestimations when the incoherent scatter spectra are analyzed using conventional methods. In this study, we present the first results of applying a recently developed technique to correct the PGM-contaminated spectra to SPEAR-enhanced ESR spectra and derive an alternative estimate of the SPEAR-heated electron temperature. We discuss how the effectiveness of the spectrum corrections can be affected by the data variance, estimated over the integration period. The subsequent electron temperatures, inferred from corrected spectra, range from a few tens to a few hundred Kelvin above the average background temperature. These temperatures are found to be in reasonable agreement with the theoretical “enhanced” temperature, calculated for the peak of the stationary temperature perturbation profile, when realistic absorption effects are accounted for.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyachkov, Sergey, E-mail: serj.dyachkov@gmail.com; Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region 141700; Levashov, Pavel, E-mail: pasha@ihed.ras.ru
We determine the region of applicability of the finite–temperature Thomas–Fermi model and its thermal part with respect to quantum and exchange corrections. Very high accuracy of computations has been achieved by using a special approach for the solution of the boundary problem and numerical integration. We show that the thermal part of the model can be applied at lower temperatures than the full model. Also we offer simple approximations of the boundaries of validity for practical applications.
Empirical effective temperatures and bolometric corrections for early-type stars
NASA Technical Reports Server (NTRS)
Code, A. D.; Bless, R. C.; Davis, J.; Brown, R. H.
1976-01-01
An empirical effective temperature for a star can be found by measuring its apparent angular diameter and absolute flux distribution. The angular diameters of 32 bright stars in the spectral range O5f to F8 have recently been measured with the stellar interferometer at Narrabri Observatory, and their absolute flux distributions have been found by combining observations of ultraviolet flux from the Orbiting Astronomical Observatory (OAO-2) with ground-based photometry. In this paper, these data have been combined to derive empirical effective temperatures and bolometric corrections for these 32 stars.
Speed of Sound versus Temperature Using PVC Pipes Open at Both Ends
ERIC Educational Resources Information Center
Bacon, Michael E.
2012-01-01
In this paper we investigate the speed of sound in air as a function of temperature using a simple and inexpensive apparatus. For this experiment it is essential that the appropriate end corrections be taken into account. In a recent paper the end corrections for 2-in i.d. (5.04-cm) PVC pipes open at both ends were investigated. The air column…
NASA Astrophysics Data System (ADS)
Collell, Julien; Galliero, Guillaume
2014-05-01
The multi-component diffusive mass transport is generally quantified by means of the Maxwell-Stefan diffusion coefficients when using molecular simulations. These coefficients can be related to the Fick diffusion coefficients using the thermodynamic correction factor matrix, which requires to run several simulations to estimate all the elements of the matrix. In a recent work, Schnell et al. ["Thermodynamics of small systems embedded in a reservoir: A detailed analysis of finite size effects," Mol. Phys. 110, 1069-1079 (2012)] developed an approach to determine the full matrix of thermodynamic factors from a single simulation in bulk. This approach relies on finite size effects of small systems on the density fluctuations. We present here an extension of their work for inhomogeneous Lennard Jones fluids confined in slit pores. We first verified this extension by cross validating the results obtained from this approach with the results obtained from the simulated adsorption isotherms, which allows to determine the thermodynamic factor in porous medium. We then studied the effects of the pore width (from 1 to 15 molecular sizes), of the solid-fluid interaction potential (Lennard Jones 9-3, hard wall potential) and of the reduced fluid density (from 0.1 to 0.7 at a reduced temperature T* = 2) on the thermodynamic factor. The deviation of the thermodynamic factor compared to its equivalent bulk value decreases when increasing the pore width and becomes insignificant for reduced pore width above 15. We also found that the thermodynamic factor is sensitive to the magnitude of the fluid-fluid and solid-fluid interactions, which softens or exacerbates the density fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collell, Julien; Galliero, Guillaume, E-mail: guillaume.galliero@univ-pau.fr
2014-05-21
The multi-component diffusive mass transport is generally quantified by means of the Maxwell-Stefan diffusion coefficients when using molecular simulations. These coefficients can be related to the Fick diffusion coefficients using the thermodynamic correction factor matrix, which requires to run several simulations to estimate all the elements of the matrix. In a recent work, Schnell et al. [“Thermodynamics of small systems embedded in a reservoir: A detailed analysis of finite size effects,” Mol. Phys. 110, 1069–1079 (2012)] developed an approach to determine the full matrix of thermodynamic factors from a single simulation in bulk. This approach relies on finite size effectsmore » of small systems on the density fluctuations. We present here an extension of their work for inhomogeneous Lennard Jones fluids confined in slit pores. We first verified this extension by cross validating the results obtained from this approach with the results obtained from the simulated adsorption isotherms, which allows to determine the thermodynamic factor in porous medium. We then studied the effects of the pore width (from 1 to 15 molecular sizes), of the solid-fluid interaction potential (Lennard Jones 9-3, hard wall potential) and of the reduced fluid density (from 0.1 to 0.7 at a reduced temperature T* = 2) on the thermodynamic factor. The deviation of the thermodynamic factor compared to its equivalent bulk value decreases when increasing the pore width and becomes insignificant for reduced pore width above 15. We also found that the thermodynamic factor is sensitive to the magnitude of the fluid-fluid and solid-fluid interactions, which softens or exacerbates the density fluctuations.« less
40 CFR 1066.605 - Mass-based and molar-based exhaust emission calculations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the test interval, corrected to standard temperature and pressure. m PMfil = mass of particulate... = stabilized, ht = hot transient), corrected to standard reference conditions. m PMfil = mass of particulate... stabilized), corrected to standard reference conditions. m PMfil = mass of particulate matter emissions on...
Zilg, B; Bernard, S; Alkass, K; Berg, S; Druid, H
2015-09-01
Analysis of potassium concentration in the vitreous fluid of the eye is frequently used by forensic pathologists to estimate the postmortem interval (PMI), particularly when other methods commonly used in the early phase of an investigation can no longer be applied. The postmortem rise in vitreous potassium has been recognized for several decades and is readily explained by a diffusion of potassium from surrounding cells into the vitreous fluid. However, there is no consensus regarding the mathematical equation that best describes this increase. The existing models assume a linear increase, but different slopes and starting points have been proposed. In this study, vitreous potassium levels, and a number of factors that may influence these levels, were examined in 462 cases with known postmortem intervals that ranged from 2h to 17 days. We found that the postmortem rise in potassium followed a non-linear curve and that decedent age and ambient temperature influenced the variability by 16% and 5%, respectively. A long duration of agony and a high alcohol level at the time of death contributed less than 1% variability, and evaluation of additional possible factors revealed no detectable impact on the rise of vitreous potassium. Two equations were subsequently generated, one that represents the best fit of the potassium concentrations alone, and a second that represents potassium concentrations with correction for decedent age and/or ambient temperature. The former was associated with narrow confidence intervals in the early postmortem phase, but the intervals gradually increased with longer PMIs. For the latter equation, the confidence intervals were reduced at all PMIs. Therefore, the model that best describes the observed postmortem rise in vitreous potassium levels includes potassium concentration, decedent age, and ambient temperature. Furthermore, the precision of these equations, particularly for long PMIs, is expected to gradually improve by adjusting the constants as more reference data are added over time. A web application that facilitates this calculation process and allows for such future modifications has been developed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Entezari, N; Sarfehnia, A; Renaud, J
Purpose: The purpose of this work is to design and optimize a portable Water Calorimeter (WC) for use in a commercial MRI-linac and Gamma-knife in addition to conventional radiotherapy linacs. Water calorimeters determine absorbed dose to water at a point by measuring radiation-induced temperature rise of the volume (the two are related by the medium specific heat capacity). In this formalism, one important correction factor is heat transfer correction k-ht. It compensates for heat gain/loss due to conductive and convective effects, and is numerically calculated as ratio of temperature rise in the absence of heat loss to that in themore » presence of heat loss. Operating at 4°C ensures convection is minimal. Methods: A commercial finite element software was used to evaluate several WC designs with different insulation materials and thicknesses; channels allowing coolant to travel around WC (to sustain WC at 4°C) were modeled, and worst-case scenario variation in the temperature of the coolant was simulated for optimization purposes (2.6 mK/s). Additionally, several calorimeter vessel design parameters (front/back glass thickness/separation, diameter) were also simulated and optimized. Optimization is based on minimizing long term calorimeter drift (24h) as well as variation and magnitude of k-ht. Results: The final selected WC design reached a modest drift of 11µK/s after 15h for the worst-case coolant temperature variation. This design consists of coolant channels being encompassed on both sides by cryogel insulation. For the MRI-linac beam, glass thickness plays the largest effect on k-ht with variation of upto 0.6% in the first run for thicknesses ranging between 0.5–1.7mm. Subsequent runs vary only within 0.1% with glass thickness. Other factors such as vessel radius and top/bottom glass separation have sub 0.1% effects on k-ht. Conclusion: An MR-safe 4°C stagnant WC appropriate for dosimetry in MRI-linac and Gamma-Knife was designed, optimized, and construction is nearly completed. NSERC Discovery Grant RGPIN-435608.« less
NASA Astrophysics Data System (ADS)
Clarke, F. W.; Balevieius, S.; McDonald, J. K.; Grisham, J. A.
2004-10-01
Effective mass ratios, m*, of electrons in near intrinsic and n-type Hg1-xCdxTe for 0.20 <= x <= 0.30 over the temperature range 77 K <= T <= 296 K were measured using Faraday rotation spectroscopy. Effective masses were found to be about twice as large at room temperature as band edge effective mass, m*be, calculations. Measured effective masses diverge further from the theoretical formulations as temperature increases which appears to be due to a thermal excitation effect that is not accounted for in theoretical calculations. These calculations can be corrected using a linear correction factor, m**, where the true effective mass ratio, m* = m** m*be, where m** was found empirically to be m** = 4.52 x 10-3 T + 0.78. Carrier concentrations were measured using Hall or van der Pauw tests. Soldered contacts to high mobility materials like HgCdTe using even the purest indium solder inevitably result in contamination that can add significant numbers of impurity carriers to the material and severely decrease mobility. A simple method of burnishing contacts to the material without heat using indium solder is presented. These cold contacts do not effect the material properties and are very effective in n-type HgCdTe making good physically strong contacts that remain ohmic to at least 10 K. This is a review paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donaghue, J; Gajdos, S
Purpose: To determine the correction factor of the correspondence factor for the Standard Imaging IVB 1000 well chamber for commissioning of Elekta’s Leipzig and Valencia skin applicators. Methods: The Leipzig and Valencia applicators are designed to treat small skin lesions by collimating irradiation to the treatment area. Published output factors are used to calculate dose rates for clinical treatments. To validate onsite applicators, a correspondence factor (CFrev) is measured and compared to published values. The published CFrev is based on well chamber model SI HDR 1000 Plus. The CFrev is determined by correlating raw values of the source calibration setupmore » (Rcal,raw) and values taken when each applicator is mounted on the same well chamber with an adapter (Rapp,raw). The CFrev is calculated by using the equation CFrev =Rapp,raw/Rcal,raw. The CFrev was measured for each applicator in both the SI HDR 1000 Plus and the SI IVB 1000. A correction factor, CFIVB for the SI IVB 1000 was determined by finding the ratio of CFrev (SI IVB 1000) and CFrev (SI HDR 1000 Plus). Results: The average correction factors at dwell position 1121 were found to be 1.073, 1.039, 1.209, 1.091, and 1.058 for the Valencia V2, Valencia V3, Leipzig H1, Leipzig H2, and Leipzig H3 respectively. There were no significant variations in the correction factor for dwell positions 1119 through 1121. Conclusion: By using the appropriate correction factor, the correspondence factors for the Leipzig and Valencia surface applicators can be validated with the Standard Imaging IVB 1000. This allows users to correlate their measurements with the Standard Imaging IVB 1000 to the published data. The correction factor is included in the equation for the CFrev as follows: CFrev= Rapp,raw/(CFIVB*Rcal,raw). Each individual applicator has its own correction factor, so care must be taken that the appropriate factor is used.« less
Bias-correction of CORDEX-MENA projections using the Distribution Based Scaling method
NASA Astrophysics Data System (ADS)
Bosshard, Thomas; Yang, Wei; Sjökvist, Elin; Arheimer, Berit; Graham, L. Phil
2014-05-01
Within the Regional Initiative for the Assessment of the Impact of Climate Change on Water Resources and Socio-Economic Vulnerability in the Arab Region (RICCAR) lead by UN ESCWA, CORDEX RCM projections for the Middle East Northern Africa (MENA) domain are used to drive hydrological impacts models. Bias-correction of newly available CORDEX-MENA projections is a central part of this project. In this study, the distribution based scaling (DBS) method has been applied to 6 regional climate model projections driven by 2 RCP emission scenarios. The DBS method uses a quantile mapping approach and features a conditional temperature correction dependent on the wet/dry state in the climate model data. The CORDEX-MENA domain is particularly challenging for bias-correction as it spans very diverse climates showing pronounced dry and wet seasons. Results show that the regional climate models simulate too low temperatures and often have a displaced rainfall band compared to WATCH ERA-Interim forcing data in the reference period 1979-2008. DBS is able to correct the temperature biases as well as some aspects of the precipitation biases. Special focus is given to the analysis of the influence of the dry-frequency bias (i.e. climate models simulating too few rain days) on the bias-corrected projections and on the modification of the climate change signal by the DBS method.
Temporal Gain Correction for X-Ray Calorimeter Spectrometers
NASA Technical Reports Server (NTRS)
Porter, F. S.; Chiao, M. P.; Eckart, M. E.; Fujimoto, R.; Ishisaki, Y.; Kelley, R. L.; Kilbourne, C. A.; Leutenegger, M. A.; McCammon, D.; Mitsuda, K.
2016-01-01
Calorimetric X-ray detectors are very sensitive to their environment. The boundary conditions can have a profound effect on the gain including heat sink temperature, the local radiation temperature, bias, and the temperature of the readout electronics. Any variation in the boundary conditions can cause temporal variations in the gain of the detector and compromise both the energy scale and the resolving power of the spectrometer. Most production X-ray calorimeter spectrometers, both on the ground and in space, have some means of tracking the gain as a function of time, often using a calibration spectral line. For small gain changes, a linear stretch correction is often sufficient. However, the detectors are intrinsically non-linear and often the event analysis, i.e., shaping, optimal filters etc., add additional non-linearity. Thus for large gain variations or when the best possible precision is required, a linear stretch correction is not sufficient. Here, we discuss a new correction technique based on non-linear interpolation of the energy-scale functions. Using Astro-HSXS calibration data, we demonstrate that the correction can recover the X-ray energy to better than 1 part in 104 over the entire spectral band to above 12 keV even for large-scale gain variations. This method will be used to correct any temporal drift of the on-orbit per-pixel gain using on-board calibration sources for the SXS instrument on the Astro-H observatory.
A method to preserve trends in quantile mapping bias correction of climate modeled temperature
NASA Astrophysics Data System (ADS)
Grillakis, Manolis G.; Koutroulis, Aristeidis G.; Daliakopoulos, Ioannis N.; Tsanis, Ioannis K.
2017-09-01
Bias correction of climate variables is a standard practice in climate change impact (CCI) studies. Various methodologies have been developed within the framework of quantile mapping. However, it is well known that quantile mapping may significantly modify the long-term statistics due to the time dependency of the temperature bias. Here, a method to overcome this issue without compromising the day-to-day correction statistics is presented. The methodology separates the modeled temperature signal into a normalized and a residual component relative to the modeled reference period climatology, in order to adjust the biases only for the former and preserve the signal of the later. The results show that this method allows for the preservation of the originally modeled long-term signal in the mean, the standard deviation and higher and lower percentiles of temperature. To illustrate the improvements, the methodology is tested on daily time series obtained from five Euro CORDEX regional climate models (RCMs).
El Amrani, Abdel-Ilah; El Amrani-Callens, Francine; Loriot, Stéphane; Singh, Pramila; Forster, Roy
2016-01-01
Cardiovascular safety assessment requires accurate evaluation of QT interval, which depends on the length of the cardiac cycle and also on core body temperature (BT). Increases in QT interval duration have been shown to be associated with decreases in BT in dogs. An example of altered QT interval duration associated with changes in body temperature observed during a 4-week regulatory toxicology study in dogs is presented. Four groups of Beagle dogs received the vehicle or test item once on Day 1, followed by a 4-week observation period. Electrocardiogram (ECG) parameters were continuously recorded on Days 1 and 26 by jacketed external telemetry (JET). Core body temperature (BT) was measured with a conventional rectal thermometer at appropriate time-points during the Day 1 recording period. Decreased BT was observed approximately 2h after treatment on Day 1, along with increased QT interval duration corrected according to the Van de Water formula (QTcV), but the effect was no longer observed after correction for changes in BT [QTcVcT=QTcV-14(37.5-BT)] according to the Van der Linde formula. No significant changes in QTcV were reported at the end of the observation period, on Day 26. The present study demonstrates that core body (rectal) temperature can easily be monitored at appropriate time-points during JET recording in regulatory toxicology studies in dogs, in order to correct QT interval duration values for treatment-related changes in BT. The successful application of the Van der Linde formula to correct QTc prolongation for changes in BT was demonstrated. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Wang, Chunpeng; Lou, Zhengzhao Johnny; Chen, Xiuhong; Zeng, Xiping; Tao, Wei-Kuo; Huang, Xianglei
2014-01-01
Cloud-top temperature (CTT) is an important parameter for convective clouds and is usually different from the 11-micrometers brightness temperature due to non-blackbody effects. This paper presents an algorithm for estimating convective CTT by using simultaneous passive [Moderate Resolution Imaging Spectroradiometer (MODIS)] and active [CloudSat 1 Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)] measurements of clouds to correct for the non-blackbody effect. To do this, a weighting function of the MODIS 11-micrometers band is explicitly calculated by feeding cloud hydrometer profiles from CloudSat and CALIPSO retrievals and temperature and humidity profiles based on ECMWF analyses into a radiation transfer model.Among 16 837 tropical deep convective clouds observed by CloudSat in 2008, the averaged effective emission level (EEL) of the 11-mm channel is located at optical depth; approximately 0.72, with a standard deviation of 0.3. The distance between the EEL and cloud-top height determined by CloudSat is shown to be related to a parameter called cloud-top fuzziness (CTF), defined as the vertical separation between 230 and 10 dBZ of CloudSat radar reflectivity. On the basis of these findings a relationship is then developed between the CTF and the difference between MODIS 11-micrometers brightness temperature and physical CTT, the latter being the non-blackbody correction of CTT. Correction of the non-blackbody effect of CTT is applied to analyze convective cloud-top buoyancy. With this correction, about 70% of the convective cores observed by CloudSat in the height range of 6-10 km have positive buoyancy near cloud top, meaning clouds are still growing vertically, although their final fate cannot be determined by snapshot observations.
NASA Technical Reports Server (NTRS)
Brown, Shannon; Misra, Sidharth
2013-01-01
The Aquarius/SAC-D mission was launched on June 10, 2011 from Vandenberg Air Force Base. Aquarius consists of an L-band radiometer and scatterometer intended to provide global maps of sea surface salinity. One of the main mission objectives is to provide monthly global salinity maps for climate studies of ocean circulation, surface evaporation and precipitation, air/sea interactions and other processes. Therefore, it is critical that any spatial or temporal systematic biases be characterized and corrected. One of the main mission requirements is to measure salinity with an accuracy of 0.2 psu on montly time scales which requires a brightness temperature stability of about 0.1K, which is a challenging requirement for the radiometer. A secondary use of the Aquarius data is for soil moisture applications, which requires brightness temperature stability at the warmer end of the brightness temperature dynamic range. Soon after launch, time variable drifts were observed in the Aquarius data compared to in-situ data from ARGO and models for the ocean surface salinity. These drifts could arise from a number of sources, including the various components of the retrieval algorithm, such as the correction for direct and reflected galactic emission, or from the instrument brightness temperature calibration. If arising from the brightness temperature calibration, they could have gain and offset components. It is critical that the nature of the drifts be understood before a suitable correction can be implemented. This paper describes the approach that was used to detect and characterize the components of the drift that were in the brightness temperature calibration using on-Earth reference targets that were independent of the ocean model.
Impact of Electromagnetic Field upon Temperature Measurement of Induction Heated Charges
NASA Astrophysics Data System (ADS)
Smalcerz, A.; Przylucki, R.
2013-04-01
The use of thermoelements is a commonly applied method in industry and engineering. It provides a wide measurement range of temperature, a direct voltage signal from the transducer, low cost of the thermoelement, and its resistance to many unfavorable factors which occur in an industrial environment. Unfortunately, thermoelements may not be resistant to interferences of a strong electromagnetic field because of the nature and design of a transducer. Induction heating is the most commonly used type of heating, at present, for metals. In order to guarantee the correctness of the carried out heating process, it is essential to control the temperature of the heated element. The impact of a strong electromagnetic field upon the thermocouple temperature measurement of the inductively heated elements has been analyzed in this paper. The experiment includes dozens of measurements where the following parameters have been varied: frequency of the current which feeds the heating inductor, power supplied to the heating system, geometry of heat inductor, and the charge material and its geometrical dimensions. Interferences of the power-line frequency have been eliminated in part of the carried out measurements.
Pressure dependence of the electron-phonon interaction and the normal-state resistivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapp, O.; Sundqvist, B.
1981-07-01
Accurate measurements of the electrical resistance as a function of temperature and pressure are reported for Sn, Zr, dhcp La, and V. These measurements cover a temperature region around room temperature and pressures up to 1.3 GPa. From these data, including also our previous measurements for Al and published results for Pb, the pressure dependence of drho/dT (the resistivity-temperature derivative) is obtained. This quantity is found to be a significant factor in the pressure dependence of the electron-phonon interaction parameter lambda. For the nontransition metals the relative pressure dependence of drho/dT is much larger than the compressibility. Therefore the pressuremore » dependence of the superconducting T/sub c/ is quantitatively well accounted for by the resistance data for these metals. For the transition metals the pressure dependence of drho/dT is relatively smaller and T/sub c/(p) calculated from the resistance data is, at the best, only qualitatively correct. These differences are discussed. Estimates for the pressure dependence of the plasma frequency are obtained.« less
An experimental study of laminar film condensation with Stefan number greater than unity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahajan, R.L.; Dickinson, D.A.; Chu, T.Y.
1991-05-01
Experimental laminar condensation heat transfer data are reported for fluids with Stefan number up to 3.5. The fluid is a member of a family of fluorinated fluids, which have been used extensively in the electronics industry for soldering, cooling, and testing applications. Experiments were performed by suddenly immersing cold copper spheres in the saturated vapor of this fluid, and heat transfer rates were calculated using the quasi-steady temperature response of the spheres. In these experiments, the difference between saturation and wall temperature varied from 0.5C to 190C. Over this range of temperature difference, the condensate properties vary significantly; viscosity ofmore » the condensate varies by a factor of nearly 50. Corrections for the temperature-dependent properties of the condensate therefore were incorporated in calculating the Nusselt number based on the average heat transfer coefficient. The results are discussed in light of past experimental data and theory for Stefan number less than unity. To the knowledge of the authors, this is the first reported study of condensation heat transfer examining the effects of Stefan number greater than unity.« less
NASA Astrophysics Data System (ADS)
Lai, L. S.; Juang, J. Y.; Wu, K. H.; Uen, T. M.; Gou, Y. S.
2005-11-01
By using a microstrip ring resonator to measure the temperature dependence of the in-plane magnetic penetration depth λ(T) in YBa2Cu3O7-δ (YBCO) and Y0.7Ca0.3Ba2Cu3O7-δ (Ca-YBCO) epitaxially grown thin films, the linear temperature dependence of the superfluid density ρs/m∗ ≡ 1/λ2(T) was observed from the under- to the overdoped regime at the temperatures below T/Tc ≈ 0.3 . For the underdoped regime of YBCO and Ca-YBCO thin films, the magnitude of the slope d(1/λ2(T))/dT is insensitive to doping, and it can be treated in the framework of projected d-density-wave model. Combining these slope values with the thermal conductivity measurements, the Fermi-liquid correction factor α2 from the Fermi-liquid model, suggested by Wen and Lee, was revealed here with various doping levels.
Holographic conductivity of holographic superconductors with higher-order corrections
NASA Astrophysics Data System (ADS)
Sheykhi, Ahmad; Ghazanfari, Afsoon; Dehyadegari, Amin
2018-02-01
We analytically and numerically disclose the effects of the higher-order correction terms in the gravity and in the gauge field on the properties of s-wave holographic superconductors. On the gravity side, we consider the higher curvature Gauss-Bonnet corrections and on the gauge field side, we add a quadratic correction term to the Maxwell Lagrangian. We show that, for this system, one can still obtain an analytical relation between the critical temperature and the charge density. We also calculate the critical exponent and the condensation value both analytically and numerically. We use a variational method, based on the Sturm-Liouville eigenvalue problem for our analytical study, as well as a numerical shooting method in order to compare with our analytical results. For a fixed value of the Gauss-Bonnet parameter, we observe that the critical temperature decreases with increasing the nonlinearity of the gauge field. This implies that the nonlinear correction term to the Maxwell electrodynamics makes the condensation harder. We also study the holographic conductivity of the system and disclose the effects of the Gauss-Bonnet and nonlinear parameters α and b on the superconducting gap. We observe that, for various values of α and b, the real part of the conductivity is proportional to the frequency per temperature, ω /T, as the frequency is large enough. Besides, the conductivity has a minimum in the imaginary part which is shifted toward greater frequency with decreasing temperature.
Han, Xiao-Jing; Duan, Si-Bo; Li, Zhao-Liang
2017-02-20
An analysis of the atmospheric impact on ground brightness temperature (Tg) is performed for numerous land surface types at commonly-used frequencies (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz). The results indicate that the atmosphere has a negligible impact on Tg at 1.4 GHz for land surfaces with emissivities greater than 0.7, at 6.93 GHz for land surfaces with emissivities greater than 0.8, and at 10.65 GHz for land surfaces with emissivities greater than 0.9 if a root mean square error (RMSE) less than 1 K is desired. To remove the atmospheric effect on Tg, a generalized atmospheric correction method is proposed by parameterizing the atmospheric transmittance τ and upwelling atmospheric brightness temperature Tba↑. Better accuracies with Tg RMSEs less than 1 K are achieved at 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz and 36.5 GHz, and worse accuracies with RMSEs of 1.34 K and 4.35 K are obtained at 23.8 GHz and 89.0 GHz, respectively. Additionally, a simplified atmospheric correction method is developed when lacking sufficient input data to perform the generalized atmospheric correction method, and an emissivity-based atmospheric correction method is presented when the emissivity is known. Consequently, an appropriate atmospheric correction method can be selected based on the available data, frequency and required accuracy. Furthermore, this study provides a method to estimate τ and Tba↑ of different frequencies using the atmospheric parameters (total water vapor content in observation direction Lwv, total cloud liquid water content Lclw and mean temperature of cloud Tclw), which is important for simultaneously determining the land surface parameters using multi-frequency passive microwave satellite data.
Combat Stress Decreases Memory of Warfighters in Action.
Delgado-Moreno, Rosa; Robles-Pérez, José Juan; Clemente-Suárez, Vicente Javier
2017-08-01
The present research aimed to analyze the effect of combat stress in the psychophysiological response and attention and memory of warfighters in a simulated combat situation. Variables of blood oxygen saturation, heart rate, blood glucose, blood lactate, body temperature, lower body muscular strength manifestation, cortical arousal, autonomic modulation, state anxiety and memory and attention through a postmission questionnaire were analyzed before and after a combat simulation in 20 male professional Spanish Army warfighters. The combat simulation produces a significant increase (p < 0.05) in explosive leg strength, rated perceived exertion, blood glucose, blood lactate, somatic anxiety, heart rate, and low frequency domain of the HRV (LF) and a significant decrease of high frequency domain of the heart rate variability (HF). The percentage of correct response in the postmission questionnaire parameters show that elements more related with a physical integrity threat are the most correctly remembered. There were significant differences in the postmission questionnaire variables when participants were divided by the cortical arousal post: sounds no response, mobile phone correct, mobile phone no response, odours correct. The correlation analysis showed positive correlations: LF post/body temperature post, HF post/correct sound, body temperature post/glucose post, CFFTpre/lactate post, CFFT post/wrong sound, glucose post/AC pre, AC post/wrong fusil, AS post/SC post and SC post/wrong olfactory; and negative correlations: LF post/correct sound, body temperature post/lactate post and glucose post/lactate post. This data suggest that combat stress actives fight-flight system of soldiers. As conclusion, Combat stress produces an increased psychophysiological response that cause a selective decrease of memory, depending on the nature, dangerous or harmless of the objects.
Analytical methods for measuring the parameters of interstellar gas using methanol observations
NASA Astrophysics Data System (ADS)
Kalenskii, S. V.; Kurtz, S.
2016-08-01
The excitation of methanol in the absence of external radiation is analyzed, and LTE methods for probing interstellar gas considered. It is shown that rotation diagrams correctly estimate the gas kinetic temperature only if they are constructed using lines whose upper levels are located in the same K-ladders, such as the J 0- J -1 E lines at 157 GHz, the J 1- J 0 E lines at 165 GHz, and the J 2- J 1 E lines at 25 GHz. The gas density must be no less than 107 cm-3. Rotation diagrams constructed from lines with different K values for their upper levels (e.g., 2 K -1 K at 96 GHz, 3 K -2 K at 145 GHz, 5 K -4 K at 241 GHz) significantly underestimate the temperature, but enable estimation of the density. In addition, diagrams based on the 2 K -1 K lines can be used to estimate the methanol column density within a factor of about two to five. It is suggested that rotation diagrams should be used in the following manner. First, two rotation diagrams should be constructed, one from the lines at 96, 145, or 241 GHz, and another from the lines at 157, 165, or 25 GHz. The former diagram is used to estimate the gas density. If the density is about 107 cm-3 or higher, the latter diagram reproduces the temperature fairly well. If the density is around 106 cm-3, the temperature obtained from the latter diagram should be multiplied by a factor of 1.5-2. If the density is about 105 cm-3 or lower, then the latter diagram yields a temperature that is lower than the kinetic temperature by a factor of three or more, and should be used only as a lower limit for the kinetic temperature. The errors in the methanol column density determined from the integrated intensity of a single line can be more than an order of magnitude, even when the gas temperature is well known. However, if the J 0-( J - 1)0 E lines, as well as the J 1-( J - 1)1 A + or A - lines are used, the relative error in the column density is no more than a factor of a few.
75 FR 5536 - Pipeline Safety: Control Room Management/Human Factors, Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-03
... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Parts...: Control Room Management/Human Factors, Correction AGENCY: Pipeline and Hazardous Materials Safety... following correcting amendments: PART 192--TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM...
McGuigan, John A S; Kay, James W; Elder, Hugh Y
2016-09-01
In Ca(2+) and Mg(2+) buffer solutions the ionised concentrations ([X(2+)]) are either calculated or measured. Calculated values vary by up to a factor of seven due to the following four problems: 1) There is no agreement amongst the tabulated constants in the literature. These constants have usually to be corrected for ionic strength and temperature. 2) The ionic strength correction entails the calculation of the single ion activity coefficient, which involves non-thermodynamic assumptions; the data for temperature correction is not always available. 3) Measured pH is in terms of activity i.e. pHa. pHa measurements are complicated by the change in the liquid junction potentials at the reference electrode making an accurate conversion from H(+) activity to H(+) concentration uncertain. 4) Ligands such as EGTA bind water and are not 100% pure. Ligand purity has to be measured, even when the [X(2+)] are calculated. The calculated [X(2+)] in buffers are so inconsistent that calculation is not an option. Until standards are available, the [X(2+)] in the buffers must be measured. The Ligand Optimisation Method is an accurate and independently verified method of doing this (McGuigan & Stumpff, Anal. Biochem. 436, 29, 2013). Lack of standards means it is not possible to compare the published [Ca(2+)] in the nmolar range, and the apparent constant (K(/)) values for Ca(2+) and Mg(2+) binding to intracellular ligands amongst different laboratories. Standardisation of Ca(2+)/Mg(2+) buffers is now essential. The parameters to achieve this are proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.
40 CFR 1065.695 - Data requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... restriction. (v) Charge air cooler volume. (vi) Charge air cooler outlet temperature, specified engine.... (iii) “Dry-to-wet” correction. (iv) NMHC, CH4, and contamination correction. (v) NOX humidity...
How do Stability Corrections Perform in the Stable Boundary Layer Over Snow?
NASA Astrophysics Data System (ADS)
Schlögl, Sebastian; Lehning, Michael; Nishimura, Kouichi; Huwald, Hendrik; Cullen, Nicolas J.; Mott, Rebecca
2017-10-01
We assess sensible heat-flux parametrizations in stable conditions over snow surfaces by testing and developing stability correction functions for two alpine and two polar test sites. Five turbulence datasets are analyzed with respect to, (a) the validity of the Monin-Obukhov similarity theory, (b) the model performance of well-established stability corrections, and (c) the development of new univariate and multivariate stability corrections. Using a wide range of stability corrections reveals an overestimation of the turbulent sensible heat flux for high wind speeds and a generally poor performance of all investigated functions for large temperature differences between snow and the atmosphere above (>10 K). Applying the Monin-Obukhov bulk formulation introduces a mean absolute error in the sensible heat flux of 6 W m^{-2} (compared with heat fluxes calculated directly from eddy covariance). The stability corrections produce an additional error between 1 and 5 W m^{-2}, with the smallest error for published stability corrections found for the Holtslag scheme. We confirm from previous studies that stability corrections need improvements for large temperature differences and wind speeds, where sensible heat fluxes are distinctly overestimated. Under these atmospheric conditions our newly developed stability corrections slightly improve the model performance. However, the differences between stability corrections are typically small when compared to the residual error, which stems from the Monin-Obukhov bulk formulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, J C; Karmanos Cancer Institute McLaren-Macomb, Clinton Township, MI; Knill, C
Purpose: To determine small field correction factors for PTW’s microDiamond detector in Elekta’s Gamma Knife Model-C unit. These factors allow the microDiamond to be used in QA measurements of output factors in the Gamma Knife Model-C; additionally, the results also contribute to the discussion on the water equivalence of the relatively-new microDiamond detector and its overall effectiveness in small field applications. Methods: The small field correction factors were calculated as k correction factors according to the Alfonso formalism. An MC model of the Gamma Knife and microDiamond was built with the EGSnrc code system, using BEAMnrc and DOSRZnrc user codes.more » Validation of the model was accomplished by simulating field output factors and measurement ratios for an available ABS plastic phantom and then comparing simulated results to film measurements, detector measurements, and treatment planning system (TPS) data. Once validated, the final k factors were determined by applying the model to a more waterlike solid water phantom. Results: During validation, all MC methods agreed with experiment within the stated uncertainties: MC determined field output factors agreed within 0.6% of the TPS and 1.4% of film; and MC simulated measurement ratios matched physically measured ratios within 1%. The final k correction factors for the PTW microDiamond in the solid water phantom approached unity to within 0.4%±1.7% for all the helmet sizes except the 4 mm; the 4 mm helmet size over-responded by 3.2%±1.7%, resulting in a k factor of 0.969. Conclusion: Similar to what has been found in the Gamma Knife Perfexion, the PTW microDiamond requires little to no corrections except for the smallest 4 mm field. The over-response can be corrected via the Alfonso formalism using the correction factors determined in this work. Using the MC calculated correction factors, the PTW microDiamond detector is an effective dosimeter in all available helmet sizes. The authors would like to thank PTW (Friedberg, Germany) for providing the PTW microDiamond detector for this research.« less
NASA Astrophysics Data System (ADS)
Talamo, Alberto; Gohar, Y.; Cao, Y.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.
2012-03-01
In subcritical assemblies, the Bell and Glasstone spatial correction factor is used to correct the measured reactivity from different detector positions. In addition to the measuring position, several other parameters affect the correction factor: the detector material, the detector size, and the energy-angle distribution of source neutrons. The effective multiplication factor calculated by computer codes in criticality mode slightly differs from the average value obtained from the measurements in the different experimental channels of the subcritical assembly, which are corrected by the Bell and Glasstone spatial correction factor. Generally, this difference is due to (1) neutron counting errors; (2) geometrical imperfections, which are not simulated in the calculational model, and (3) quantities and distributions of material impurities, which are missing from the material definitions. This work examines these issues and it focuses on the detector choice and the calculation methodologies. The work investigated the YALINA Booster subcritical assembly of Belarus, which has been operated with three different fuel enrichments in the fast zone either: high (90%) and medium (36%), medium (36%), or low (21%) enriched uranium fuel.
Cao, Yanpeng; Tisse, Christel-Loic
2013-09-01
In uncooled long-wave infrared (LWIR) microbolometer imaging systems, temperature fluctuations of the focal plane array (FPA) result in thermal drift and spatial nonuniformity. In this paper, we present a novel approach based on single-image processing to simultaneously estimate temperature variances of FPAs and compensate the resulting temperature-dependent nonuniformity. Through well-controlled thermal calibrations, empirical behavioral models are derived to characterize the relationship between the responses of microbolometer and FPA temperature variations. Then, under the assumption that strong dependency exists between spatially adjacent pixels, we estimate the optimal FPA temperature so as to minimize the global intensity variance across the entire thermal infrared image. We make use of the estimated FPA temperature to infer an appropriate nonuniformity correction (NUC) profile. The performance and robustness of the proposed temperature-adaptive NUC method are evaluated on realistic IR images obtained by a 640 × 512 pixels uncooled LWIR microbolometer imaging system operating in a significantly changed temperature environment.
Homomorphic Filtering for Improving Time Synchronization in Wireless Networks
Castillo-Secilla, José María; Palomares, José Manuel; León, Fernando; Olivares, Joaquín
2017-01-01
Wireless sensor networks are used to sample the environment in a distributed way. Therefore, it is mandatory for all of the measurements to be tightly synchronized in order to guarantee that every sensor is sampling the environment at the exact same instant of time. The synchronization drift gets bigger in environments suffering from temperature variations. Thus, this work is focused on improving time synchronization under deployments with temperature variations. The working hypothesis demonstrated in this work is that the clock skew of two nodes (the ratio of the real frequencies of the oscillators) is composed of a multiplicative combination of two main components: the clock skew due to the variations between the cut of the crystal of each oscillator and the clock skew due to the different temperatures affecting the nodes. By applying a nonlinear filtering, the homomorphic filtering, both components are separated in an effective way. A correction factor based on temperature, which can be applied to any synchronization protocol, is proposed. For testing it, an improvement of the FTSP synchronization protocol has been developed and physically tested under temperature variation scenarios using TelosB motes flashed with the IEEE 802.15.4 implementation supplied by TinyOS. PMID:28425955
Homomorphic Filtering for Improving Time Synchronization in Wireless Networks.
Castillo-Secilla, José María; Palomares, José Manuel; León, Fernando; Olivares, Joaquín
2017-04-20
Wireless sensor networks are used to sample the environment in a distributed way. Therefore, it is mandatory for all of the measurements to be tightly synchronized in order to guarantee that every sensor is sampling the environment at the exact same instant of time. The synchronization drift gets bigger in environments suffering from temperature variations. Thus, this work is focused on improving time synchronization under deployments with temperature variations. The working hypothesis demonstrated in this work is that the clock skew of two nodes (the ratio of the real frequencies of the oscillators) is composed of a multiplicative combination of two main components: the clock skew due to the variations between the cut of the crystal of each oscillator and the clock skew due to the different temperatures affecting the nodes. By applying a nonlinear filtering, the homomorphic filtering, both components are separated in an effective way. A correction factor based on temperature, which can be applied to any synchronization protocol, is proposed. For testing it, an improvement of the FTSP synchronization protocol has been developed and physically tested under temperature variation scenarios using TelosB motes flashed with the IEEE 802.15.4 implementation supplied by TinyOS.
Enabling fast charging – Battery thermal considerations
Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; ...
2017-10-23
Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell,more » the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today’s market. Here, thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.« less
Statically screened ion potential and Bohm potential in a quantum plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moldabekov, Zhandos; Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71 Al-Farabi Str., 050040 Almaty; Schoof, Tim
2015-10-15
The effective potential Φ of a classical ion in a weakly correlated quantum plasma in thermodynamic equilibrium at finite temperature is well described by the random phase approximation screened Coulomb potential. Additionally, collision effects can be included via a relaxation time ansatz (Mermin dielectric function). These potentials are used to study the quality of various statically screened potentials that were recently proposed by Shukla and Eliasson (SE) [Phys. Rev. Lett. 108, 165007 (2012)], Akbari-Moghanjoughi (AM) [Phys. Plasmas 22, 022103 (2015)], and Stanton and Murillo (SM) [Phys. Rev. E 91, 033104 (2015)] starting from quantum hydrodynamic (QHD) theory. Our analysis revealsmore » that the SE potential is qualitatively different from the full potential, whereas the SM potential (at any temperature) and the AM potential (at zero temperature) are significantly more accurate. This confirms the correctness of the recently derived [Michta et al., Contrib. Plasma Phys. 55, 437 (2015)] pre-factor 1/9 in front of the Bohm term of QHD for fermions.« less
Enabling fast charging – Battery thermal considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keyser, Matthew; Pesaran, Ahmad; Li, Qibo
Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell,more » the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today’s market. Here, thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.« less
An analysis of the ArcCHECK-MR diode array's performance for ViewRay quality assurance.
Ellefson, Steven T; Culberson, Wesley S; Bednarz, Bryan P; DeWerd, Larry A; Bayouth, John E
2017-07-01
The ArcCHECK-MR diode array utilizes a correction system with a virtual inclinometer to correct the angular response dependencies of the diodes. However, this correction system cannot be applied to measurements on the ViewRay MR-IGRT system due to the virtual inclinometer's incompatibility with the ViewRay's multiple simultaneous beams. Additionally, the ArcCHECK's current correction factors were determined without magnetic field effects taken into account. In the course of performing ViewRay IMRT quality assurance with the ArcCHECK, measurements were observed to be consistently higher than the ViewRay TPS predictions. The goals of this study were to quantify the observed discrepancies and test whether applying the current factors improves the ArcCHECK's accuracy for measurements on the ViewRay. Gamma and frequency analysis were performed on 19 ViewRay patient plans. Ion chamber measurements were performed at a subset of diode locations using a PMMA phantom with the same dimensions as the ArcCHECK. A new method for applying directionally dependent factors utilizing beam information from the ViewRay TPS was developed in order to analyze the current ArcCHECK correction factors. To test the current factors, nine ViewRay plans were altered to be delivered with only a single simultaneous beam and were measured with the ArcCHECK. The current correction factors were applied using both the new and current methods. The new method was also used to apply corrections to the original 19 ViewRay plans. It was found the ArcCHECK systematically reports doses higher than those actually delivered by the ViewRay. Application of the current correction factors by either method did not consistently improve measurement accuracy. As dose deposition and diode response have both been shown to change under the influence of a magnetic field, it can be concluded the current ArcCHECK correction factors are invalid and/or inadequate to correct measurements on the ViewRay system. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
On the enrichment of hydrophobic organic compounds in fog droplets
NASA Astrophysics Data System (ADS)
Valsaraj, K. T.; Thoma, G. J.; Reible, D. D.; Thibodeaux, L. J.
The unusual degree of enrichment of hydrophobic organics in fogwater droplets reported by several investigators can be interpreted as a result of (a) the effects of temperature correction on the reported enrichment factors, (b) the effects of colloidal organic matter (both filterable and non-filterable) in fog water and (c) the effects of the large air-water interfacial adsorption of neutral hydrophobic organics on the tiny fog droplets. The enrichment factor was directly correlated to the hydrophobicity (or the activity coefficient in water) of the compounds, as indicated by their octanol-water partition constants. Compounds with large octanol-water partition coefficients (high activity coefficients in water) showed the largest enrichment. Available experimental data on the adsorption of hydrophobic compounds at the air-water interface and on colloidal organic carbon were used to show that the large specific air-water interfacial areas of fog droplets contribute significantly to the enrichment factor.
Geometry-dependent penetration fields of superconducting Bi2Sr2CaCu2O8+δ platelets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curran, P. J.; Clem, J. R.; Bending, S. J.
Magneto-optical imaging has been used to study vortex penetration into regular polygon-shaped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} platelets with various geometries (disks, pentagons, squares, and triangles) but known fixed areas. In all cases we observe an exponential dependence of the field of first penetration, H{sub p}, on temperature, consistent with a dominant Bean-Livingston barrier for pancake vortices at our measurement temperatures (45-80 K). However, the penetration field consistently decreases with decreasing degree of sample symmetry, in stark contrast to conventional estimates of demagnetization factors using equivalent ellipsoids based on inscribed circles, which predict the reverse trend. Surprisingly, this observation doesmore » not appear to have been reported in the literature before. We demonstrate empirically that estimates using equivalent ellipsoids based on circumscribed circles predict the correct qualitative experimental trend in Hp. Our work has important implications for the estimation of appropriate effective demagnetization factors for flux penetration into arbitrarily shaped superconducting bodies.« less
Geometry-dependent penetration fields in superconducting Bi2Sr2CaCu2O8+δ platelets
DOE Office of Scientific and Technical Information (OSTI.GOV)
By: Curran, P. J.; Clem, J. R.; Bending, S. J.
Magneto-optical imaging has been used to study vortex penetration into regular polygon-shaped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} platelets with various geometries (disks, pentagons, squares, and triangles) but known fixed areas. In all cases we observe an exponential dependence of the field of first penetration, H{sub p}, on temperature, consistent with a dominant Bean-Livingston barrier for pancake vortices at our measurement temperatures (45-80 K). However, the penetration field consistently decreases with decreasing degree of sample symmetry, in stark contrast to conventional estimates of demagnetization factors using equivalent ellipsoids based on inscribed circles, which predict the reverse trend. Surprisingly, this observation doesmore » not appear to have been reported in the literature before. We demonstrate empirically that estimates using equivalent ellipsoids based on circumscribed circles predict the correct qualitative experimental trend in H{sub p}. Our work has important implications for the estimation of appropriate effective demagnetization factors for flux penetration into arbitrarily shaped superconducting bodies.« less
High-Temperature Resistance Strain Gauges
NASA Technical Reports Server (NTRS)
Lei, Jih-Fen
1994-01-01
Resistance strain gauges developed for use at high temperatures in demanding applications like testing aircraft engines and structures. Measures static strains at temperatures up to 800 degrees C. Small and highly reproducible. Readings corrected for temperature within small tolerances, provided temperatures measured simultaneously by thermocouples or other suitable devices. Connected in wheatstone bridge.
The perturbation correction factors for cylindrical ionization chambers in high-energy photon beams.
Yoshiyama, Fumiaki; Araki, Fujio; Ono, Takeshi
2010-07-01
In this study, we calculated perturbation correction factors for cylindrical ionization chambers in high-energy photon beams by using Monte Carlo simulations. We modeled four Farmer-type cylindrical chambers with the EGSnrc/Cavity code and calculated the cavity or electron fluence correction factor, P (cav), the displacement correction factor, P (dis), the wall correction factor, P (wall), the stem correction factor, P (stem), the central electrode correction factor, P (cel), and the overall perturbation correction factor, P (Q). The calculated P (dis) values for PTW30010/30013 chambers were 0.9967 +/- 0.0017, 0.9983 +/- 0.0019, and 0.9980 +/- 0.0019, respectively, for (60)Co, 4 MV, and 10 MV photon beams. The value for a (60)Co beam was about 1.0% higher than the 0.988 value recommended by the IAEA TRS-398 protocol. The P (dis) values had a substantial discrepancy compared to those of IAEA TRS-398 and AAPM TG-51 at all photon energies. The P (wall) values were from 0.9994 +/- 0.0020 to 1.0031 +/- 0.0020 for PTW30010 and from 0.9961 +/- 0.0018 to 0.9991 +/- 0.0017 for PTW30011/30012, in the range of (60)Co-10 MV. The P (wall) values for PTW30011/30012 were around 0.3% lower than those of the IAEA TRS-398. Also, the chamber response with and without a 1 mm PMMA water-proofing sleeve agreed within their combined uncertainty. The calculated P (stem) values ranged from 0.9945 +/- 0.0014 to 0.9965 +/- 0.0014, but they are not considered in current dosimetry protocols. The values were no significant difference on beam qualities. P (cel) for a 1 mm aluminum electrode agreed within 0.3% with that of IAEA TRS-398. The overall perturbation factors agreed within 0.4% with those for IAEA TRS-398.
Ghirlando, Rodolfo; Balbo, Andrea; Piszczek, Grzegorz; Brown, Patrick H.; Lewis, Marc S.; Brautigam, Chad A.; Schuck, Peter; Zhao, Huaying
2013-01-01
Sedimentation velocity (SV) is a method based on first-principles that provides a precise hydrodynamic characterization of macromolecules in solution. Due to recent improvements in data analysis, the accuracy of experimental SV data emerges as a limiting factor in its interpretation. Our goal was to unravel the sources of experimental error and develop improved calibration procedures. We implemented the use of a Thermochron iButton® temperature logger to directly measure the temperature of a spinning rotor, and detected deviations that can translate into an error of as much as 10% in the sedimentation coefficient. We further designed a precision mask with equidistant markers to correct for instrumental errors in the radial calibration, which were observed to span a range of 8.6%. The need for an independent time calibration emerged with use of the current data acquisition software (Zhao et al., doi 10.1016/j.ab.2013.02.011) and we now show that smaller but significant time errors of up to 2% also occur with earlier versions. After application of these calibration corrections, the sedimentation coefficients obtained from eleven instruments displayed a significantly reduced standard deviation of ∼ 0.7 %. This study demonstrates the need for external calibration procedures and regular control experiments with a sedimentation coefficient standard. PMID:23711724
Ghirlando, Rodolfo; Balbo, Andrea; Piszczek, Grzegorz; Brown, Patrick H; Lewis, Marc S; Brautigam, Chad A; Schuck, Peter; Zhao, Huaying
2013-09-01
Sedimentation velocity (SV) is a method based on first principles that provides a precise hydrodynamic characterization of macromolecules in solution. Due to recent improvements in data analysis, the accuracy of experimental SV data emerges as a limiting factor in its interpretation. Our goal was to unravel the sources of experimental error and develop improved calibration procedures. We implemented the use of a Thermochron iButton temperature logger to directly measure the temperature of a spinning rotor and detected deviations that can translate into an error of as much as 10% in the sedimentation coefficient. We further designed a precision mask with equidistant markers to correct for instrumental errors in the radial calibration that were observed to span a range of 8.6%. The need for an independent time calibration emerged with use of the current data acquisition software (Zhao et al., Anal. Biochem., 437 (2013) 104-108), and we now show that smaller but significant time errors of up to 2% also occur with earlier versions. After application of these calibration corrections, the sedimentation coefficients obtained from 11 instruments displayed a significantly reduced standard deviation of approximately 0.7%. This study demonstrates the need for external calibration procedures and regular control experiments with a sedimentation coefficient standard. Published by Elsevier Inc.
Dynamics in entangled polyethylene melts using coarse-grained models
NASA Astrophysics Data System (ADS)
Peters, Brandon L.; Grest, Gary S.; Salerno, K. Michael; Agrawal, Anupriya; Perahia, Dvora
Polymer dynamics creates distinctive viscoelastic behavior as a result of a coupled interplay of motion on multiple length scales. Capturing the broad time and length scales of polymeric motion however, remains a challenge. Using polyethylene (PE) as a model system, we probe the effects of the degree of coarse graining on polymer dynamics. Coarse-grained (CG) potentials are derived using iterative Boltzmann inversion (iBi) with 2-6 methyl groups per CG bead from all fully atomistic melt simulations for short chains. While the iBi methods produces non-bonded potentials which give excellent agreement for the atomistic and CG pair correlation functions, the pressure P = 100-500MPa for the CG model. Correcting for potential so P 0 leads to non-bonded models with slightly smaller effective diameter and much deeper minimum. However, both the pressure and non-pressure corrected CG models give similar results for mean squared displacement (MSD) and the stress auto correlation function G(t) for PE melts above the melting point. The time rescaling factor between CG and atomistic models is found to be nearly the same for both CG models. Transferability of potential for different temperatures was tested by comparing the MSD and G(t) for potentials generated at different temperatures.
Pacheco-Labrador, Javier; Martín, M. Pilar
2015-01-01
Field spectroradiometers integrated in automated systems at Eddy Covariance (EC) sites are a powerful tool for monitoring and upscaling vegetation physiology and carbon and water fluxes. However, exposure to varying environmental conditions can affect the functioning of these sensors, especially if these cannot be completely insulated and stabilized. This can cause inaccuracy in the spectral measurements and hinder the comparison between data acquired at different sites. This paper describes the characterization of key sensor models in a double beam spectroradiometer necessary to calculate the Hemispherical-Conical Reflectance Factor (HCRF). Dark current, temperature dependence, non-linearity, spectral calibration and cosine receptor directional responses are modeled in the laboratory as a function of temperature, instrument settings, radiation measured or illumination angle. These models are used to correct the spectral measurements acquired continuously by the same instrument integrated outdoors in an automated system (AMSPEC-MED). Results suggest that part of the instrumental issues cancel out mutually or can be controlled by the instrument configuration, so that changes induced in HCFR reached about 0.05 at maximum. However, these corrections are necessary to ensure the inter-comparison of data with other ground or remote sensors and to discriminate instrumentally induced changes in HCRF from those related with vegetation physiology and directional effects. PMID:25679315
Thermal margin protection system for a nuclear reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musick, C.R.
1974-02-12
A thermal margin protection system for a nuclear reactor is described where the coolant flow flow trip point and the calculated thermal margin trip point are switched simultaneously and the thermal limit locus is made more restrictive as the allowable flow rate is decreased. The invention is characterized by calculation of the thermal limit Locus in response to applied signals which accurately represent reactor cold leg temperature and core power; cold leg temperature being corrected for stratification before being utilized and reactor power signals commensurate with power as a function of measured neutron flux and thermal energy added to themore » coolant being auctioneered to select the more conservative measure of power. The invention further comprises the compensation of the selected core power signal for the effects of core radial peaking factor under maximum coolant flow conditions. (Official Oazette)« less
[Investigation on Mobile Phone Based Thermal Imaging System and Its Preliminary Application].
Li, Fufeng; Chen, Feng; Liu, Jing
2015-03-01
The technical structure of a low-cost thermal imaging system (TIM) lunched on a mobile phone was investigated, which consists of a thermal infrared module and mobile phone and application software. The designing strategies and technical factors toward realizing various TIM array performances are interpreted, including sensor cost and Noise Equivalent Temperature Difference (NETD). In the software algorithm, a mechanism for scene-change detection was implemented to optimize the efficiency of non-uniformity correction (NUC). The performance experiments and analysis indicate that the NETD of the system can be smaller than 150 mK when the integration time is larger than 16 frames. Furthermore, a practical application for human temperature monitoring during physical exercise is proposed and interpreted. The measurement results support the feasibility and facility of the system in the medical application.
Baseline body temperatures, heart rates, and respiratory rates of moose in Alaska.
Franzmann, A W; Schwartz, C C; Johnson, D C
1984-10-01
Baseline body temperatures (BT), heart rates (HR) and respiratory rates (RR) were obtained from Alaskan moose (Alces alces gigas Miller) at the Moose Research Center (MRC), Alaska. Excitability, seasons and drugs influenced the values to varying degrees. Excitability was the most influential factor. Safe expected ranges were: BT 38.4 to 38.9 C, HR 70 to 91 beats/min (b/min), and RR 13 to 40 respirations/min (r/min). These ranges incorporated all seasons, a central nervous system depressant drug and a paralyzing drug. Values which may be considered critical and an indication that corrective action should be taken include: BT 40.2 C, HR 102 b/min, and RR 40 r/min. It is recommended that persons trained in monitoring vital signs be on hand during moose capture and immobilization procedures.
NASA Technical Reports Server (NTRS)
Wallner, Lewis E.; Saari, Martin J.
1948-01-01
As part of an investigation of the performance and operational characteristics of the axial-flow gas turbine-propeller engine, conducted in the Cleveland altitude wind tunnel, the performance characteristics of the compressor and the turbine were obtained. The data presented were obtained at a compressor-inlet ram-pressure ratio of 1.00 for altitudes from 5000 to 35,000 feet, engine speeds from 8000 to 13,000 rpm, and turbine-inlet temperatures from 1400 to 2100 R. The highest compressor pressure ratio obtained was 6.15 at a corrected air flow of 23.7 pounds per second and a corrected turbine-inlet temperature of 2475 R. Peak adiabatic compressor efficiencies of about 77 percent were obtained near the value of corrected air flow corresponding to a corrected engine speed of 13,000 rpm. This maximum efficiency may be somewhat low, however, because of dirt accumulations on the compressor blades. A maximum adiabatic turbine efficiency of 81.5 percent was obtained at rated engine speed for all altitudes and turbine-inlet temperatures investigated.
NASA Technical Reports Server (NTRS)
Wallner, Lewis E.; Saari, Martin J.
1947-01-01
As part of an investigation of the performance and operational characteristics of the TG-100A gas turbine-propeller engine, conducted in the Cleveland altitude wind tunnel, the performance characteristics of the compressor and the turbine were obtained. The data presented were obtained at a compressor-inlet ram-pressure ratio of 1.00 for altitudes from 5000 to 35,000 feet, engine speeds from 8000 to 13,000 rpm, and turbine-inlet temperatures from 1400 to 2100R. The highest compressor pressure ratio was 6.15 at a corrected air flow of 23.7 pounds per second and a corrected turbine-inlet temperature of 2475R. Peak adiabatic compressor efficiencies of about 77 percent were obtained near the value of corrected air flow corresponding to a corrected engine speed of 13,000 rpm. This maximum efficiency may be somewhat low, however, because of dirt accumulations on the compressor blades. A maximum adiabatic turbine efficiency of 81.5 percent was obtained at rated engine speed for all altitudes and turbine-inlet temperatures investigated.
ERIC Educational Resources Information Center
Zhang, Guangjian; Preacher, Kristopher J.; Luo, Shanhong
2010-01-01
This article is concerned with using the bootstrap to assign confidence intervals for rotated factor loadings and factor correlations in ordinary least squares exploratory factor analysis. Coverage performances of "SE"-based intervals, percentile intervals, bias-corrected percentile intervals, bias-corrected accelerated percentile…
Three-Wire Thermocouple: Frequency Response in Constant Flow
NASA Technical Reports Server (NTRS)
Forney, L. J.; Fralick, G. C.
1995-01-01
Theory and experimental measurements are compared with a novel three-wire thermocouple. Signals from three wires of unequal diameters are recorded from the thermocouple suspended in constant flow with a periodic temperature fluctuation. It is demonstrated that the reconstructed signal from the three-wire thermocouple requires no compensation for omega less than or equal to 5(omega(sub 1)), where omega(sub 1) is the natural frequency of the smaller wire. The latter result represents a significant improvement compared to previous work with two-wire thermocouples. A correction factor has also been derived to account for wires of arbitrary diameter.
Three-wire Thermocouple: Frequency Response in Constant Flow
NASA Technical Reports Server (NTRS)
Forney, L. J.; Fralick, G. C.
1995-01-01
Theory and experimental measurements are compared with a novel three-wire thermocouple. Signals from three wires of unequal diameters arc recorded from the thermocouple suspended in constant flow with a periodic temperature fluctuation. It is demonstrated that the reconstructed signal from the three-wire thermocouple requires no compensation for omega less than or equal to 5(sub omega1), where omega, is the natural frequency of the smaller wire. The latter result represents a significant improvement compared to previous work with two-wire thermocouples. A correction factor has also been derived to account for wires of arbitrary diameter.
The absolute magnitudes of RR Lyrae stars. II - DX Delphini
NASA Astrophysics Data System (ADS)
Skillen, I.; Fernley, J. A.; Jameson, R. F.; Lynas-Gray, A. E.; Longmore, A. J.
1989-11-01
UV, IR and visual photometry of the short-period RR Lyrae star DX Del is presented and treated by means of the Blackwell and Shallis (1977) IR Flux Method-based formulation of the Baade-Wesselink method. Upon correcting to common reddening, extinction, and radial-velocity conversion factors, as well as applying the Baade-Wesselink analysis of Burki and Meylan (1986), it proved impossible to reproduce their results. It is suggested that the present methods are inherently more stable than those of Burki and Meylan, given their reliance on optical colors and magnitudes to derive effective temperatures and radii.
COBE ground segment gyro calibration
NASA Technical Reports Server (NTRS)
Freedman, I.; Kumar, V. K.; Rae, A.; Venkataraman, R.; Patt, F. S.; Wright, E. L.
1991-01-01
Discussed here is the calibration of the scale factors and rate biases for the Cosmic Background Explorer (COBE) spacecraft gyroscopes, with the emphasis on the adaptation for COBE of an algorithm previously developed for the Solar Maximum Mission. Detailed choice of parameters, convergence, verification, and use of the algorithm in an environment where the reference attitudes are determined form the Sun, Earth, and star observations (via the Diffuse Infrared Background Experiment (DIRBE) are considered. Results of some recent experiments are given. These include tests where the gyro rate data are corrected for the effect of the gyro baseplate temperature on the spacecraft electronics.
Tempest Simulations of Collisionless Damping of the Geodesic-Acoustic Mode in Edge-Plasma Pedestals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, X. Q.; Xiong, Z.; Nevins, W. M.
The fully nonlinear (full-f) four-dimensional TEMPEST gyrokinetic continuum code correctly produces the frequency and collisionless damping of geodesic-acoustic modes (GAMs) and zonal flow, with fully nonlinear Boltzmann electrons for the inverse aspect ratio {epsilon} scan and the tokamak safety factor q scan in homogeneous plasmas. TEMPEST simulations show that the GAMs exist in the edge pedestal for steep density and temperature gradients in the form of outgoing waves. The enhanced GAM damping may explain experimental beam emission spectroscopy measurements on the edge q scaling of the GAM amplitude.
Tempest Simulations of Collisionless Damping of the Geodesic-Acoustic Mode in Edge-Plasma Pedestals
NASA Astrophysics Data System (ADS)
Xu, X. Q.; Xiong, Z.; Gao, Z.; Nevins, W. M.; McKee, G. R.
2008-05-01
The fully nonlinear (full-f) four-dimensional TEMPEST gyrokinetic continuum code correctly produces the frequency and collisionless damping of geodesic-acoustic modes (GAMs) and zonal flow, with fully nonlinear Boltzmann electrons for the inverse aspect ratio γ scan and the tokamak safety factor q scan in homogeneous plasmas. TEMPEST simulations show that the GAMs exist in the edge pedestal for steep density and temperature gradients in the form of outgoing waves. The enhanced GAM damping may explain experimental beam emission spectroscopy measurements on the edge q scaling of the GAM amplitude.
TEMPEST simulations of collisionless damping of the geodesic-acoustic mode in edge-plasma pedestals.
Xu, X Q; Xiong, Z; Gao, Z; Nevins, W M; McKee, G R
2008-05-30
The fully nonlinear (full-f) four-dimensional TEMPEST gyrokinetic continuum code correctly produces the frequency and collisionless damping of geodesic-acoustic modes (GAMs) and zonal flow, with fully nonlinear Boltzmann electrons for the inverse aspect ratio scan and the tokamak safety factor q scan in homogeneous plasmas. TEMPEST simulations show that the GAMs exist in the edge pedestal for steep density and temperature gradients in the form of outgoing waves. The enhanced GAM damping may explain experimental beam emission spectroscopy measurements on the edge q scaling of the GAM amplitude.
Veselsky, T; Novotny, J; Pastykova, V; Koniarova, I
2017-12-01
The aim of this study was to determine small field correction factors for a synthetic single-crystal diamond detector (PTW microDiamond) for routine use in clinical dosimetric measurements. Correction factors following small field Alfonso formalism were calculated by comparison of PTW microDiamond measured ratio M Qclin fclin /M Qmsr fmsr with Monte Carlo (MC) based field output factors Ω Qclin,Qmsr fclin,fmsr determined using Dosimetry Diode E or with MC simulation itself. Diode measurements were used for the CyberKnife and Varian Clinac 2100C/D linear accelerator. PTW microDiamond correction factors for Leksell Gamma Knife (LGK) were derived using MC simulated reference values from the manufacturer. PTW microDiamond correction factors for CyberKnife field sizes 25-5 mm were mostly smaller than 1% (except for 2.9% for 5 mm Iris field and 1.4% for 7.5 mm fixed cone field). The correction of 0.1% and 2.0% for 8 mm and 4 mm collimators, respectively, needed to be applied to PTW microDiamond measurements for LGK Perfexion. Finally, PTW microDiamond M Qclin fclin /M Qmsr fmsr for the linear accelerator varied from MC corrected Dosimetry Diode data by less than 0.5% (except for 1 × 1 cm 2 field size with 1.3% deviation). Regarding low resulting correction factor values, the PTW microDiamond detector may be considered an almost ideal tool for relative small field dosimetry in a large variety of stereotactic and radiosurgery treatment devices. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Greenhalgh, E. E.; Kusznir, N. J.
2006-12-01
Satellite gravity inversion incorporating a lithosphere thermal gravity correction has been used to map crustal thickness and lithosphere thinning factor for the N.E. Atlantic. The inversion of gravity data to determine crustal thickness incorporates a lithosphere thermal gravity anomaly correction for both oceanic and continental margin lithosphere. Predicted crustal thicknesses in the Norwegian Basin are between 7 and 4 km on the extinct Aegir oceanic ridge which ceased sea-floor spreading in the Oligocene. Crustal thickness estimates do not include a correction for sediment thickness and are upper bounds. Crustal thicknesses determined by gravity inversion for the Aegir Ridge are consistent with recent estimates derived using refraction seismology by Breivik et al. (2006). Failure to incorporate a lithosphere thermal gravity anomaly correction produces an over-estimate of crustal thickness. Oceanic crustal thicknesses within the Norwegian Basin are predicted by the gravity inversion to increase to 9-10 km eastwards towards the Norwegian (Moere) and westwards towards the Jan Mayen micro-continent, consistent with volcanic margin continental breakup at the end of the Palaeocene. The observation (from gravity inversion and seismic refraction studies) of thin oceanic crust produced by the Aegir ocean ridge in the Oligocene has implications for the temporal evolution of asthenosphere temperature under the N.E. Atlantic during the Tertiary. Thin Oligocene oceanic crust may imply cool (normal) asthenosphere temperatures during the Oligocene in contrast to elevated asthenosphere temperatures in the Palaeocene and Miocene-Recent as indicated by volcanic margin formation and the formation of Iceland respectively. Gravity inversion also predicts a region of thin oceanic crust to the west of the northern part of the Jan Mayen micro-continent and to the east of the thicker oceanic crust currently being formed at the Kolbeinsey Ridge. Thicker crust (c.f. ocean basins) is predicted for the Jan Mayen micro- continent south of Jan Mayen Island, with crust of the order of 20 km thickness extending southwards to connect with both the Faroes-Iceland Ridge and N.E. Iceland. Predicted crustal thicknesses under the Faroes- Iceland Ridge are approximately 25 km. The lithosphere thermal model used to predict the lithosphere thermal gravity anomaly correction may be conditioned using magnetic isochron data to provide the age of oceanic lithosphere. The resulting crustal thickness determination and the location of ocean-continent transition (OCT) are however sensitive to errors in the magnetic isochron data. An alternative method of inverting satellite gravity to give crustal thickness, incorporating a lithosphere thermal correction, has been used which does not use magnetic isochron data and provides an independent prediction of crustal thickness and OCT location. The crustal thickness estimates and OCT locations detailed above are robust to these sensitivity tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soh, R; Lee, J; Harianto, F
Purpose: To determine and compare the correction factors obtained for TLDs in 2 × 2cm{sup 2} small field in lung heterogenous phantom using Acuros XB (AXB) and EGSnrc. Methods: This study will simulate the correction factors due to the perturbation of TLD-100 chips (Harshaw/Thermoscientific, 3 × 3 × 0.9mm{sup 3}, 2.64g/cm{sup 3}) in small field lung medium for Stereotactic Body Radiation Therapy (SBRT). A physical lung phantom was simulated by a 14cm thick composite cork phantom (0.27g/cm{sup 3}, HU:-743 ± 11) sandwiched between 4cm thick Plastic Water (CIRS,Norfolk). Composite cork has been shown to be a good lung substitute materialmore » for dosimetric studies. 6MV photon beam from Varian Clinac iX (Varian Medical Systems, Palo Alto, CA) with field size 2 × 2cm{sup 2} was simulated. Depth dose profiles were obtained from the Eclipse treatment planning system Acuros XB (AXB) and independently from DOSxyznrc, EGSnrc. Correction factors was calculated by the ratio of unperturbed to perturbed dose. Since AXB has limitations in simulating actual material compositions, EGSnrc will also simulate the AXB-based material composition for comparison to the actual lung phantom. Results: TLD-100, with its finite size and relatively high density, causes significant perturbation in 2 × 2cm{sup 2} small field in a low lung density phantom. Correction factors calculated by both EGSnrc and AXB was found to be as low as 0.9. It is expected that the correction factor obtained by EGSnrc wlll be more accurate as it is able to simulate the actual phantom material compositions. AXB have a limited material library, therefore it only approximates the composition of TLD, Composite cork and Plastic water, contributing to uncertainties in TLD correction factors. Conclusion: It is expected that the correction factors obtained by EGSnrc will be more accurate. Studies will be done to investigate the correction factors for higher energies where perturbation may be more pronounced.« less
Factors Associated With Early Loss of Hallux Valgus Correction.
Shibuya, Naohiro; Kyprios, Evangelos M; Panchani, Prakash N; Martin, Lanster R; Thorud, Jakob C; Jupiter, Daniel C
Recurrence is common after hallux valgus corrective surgery. Although many investigators have studied the risk factors associated with a suboptimal hallux position at the end of long-term follow-up, few have evaluated the factors associated with actual early loss of correction. We conducted a retrospective cohort study to identify the predictors of lateral deviation of the hallux during the postoperative period. We evaluated the demographic data, preoperative severity of the hallux valgus, other angular measurements characterizing underlying deformities, amount of hallux valgus correction, and postoperative alignment of the corrected hallux valgus for associations with recurrence. After adjusting for the covariates, the only factor associated with recurrence was the postoperative tibial sesamoid position. The recurrence rate was ~50% and ~60% when the postoperative tibial sesamoid position was >4 and >5 on the 7-point scale, respectively. Published by Elsevier Inc.
Determination of combustion gas temperatures by infrared radiometry in sooting and nonsooting flames
NASA Technical Reports Server (NTRS)
Lyons, Valerie J.; Gracia-Salcedo, Carmen M.
1989-01-01
Flame temperatures in nonsooting and sooting environments were successfully measured by radiometry for pre-mixed propane-oxygen laminar flames stabilized on a water-cooled, porous sintered-bronze burner. The measured temperatures in the nonsooting flames were compared with fine-wire thermocouple measurements. The results show excellent agreement below 1700 K, and when the thermocouple measurements were corrected for radiation effects, the agreement was good for even higher temperatures. The benefits of radiometry are: (1) the flow is not disturbed by an intruding probe, (2) calibration is easily done using a blackbody source, and (3) measurements can be made even with soot present. The theory involved in the radiometry measurements and the energy balance calculations used to correct the thermocouple temperature measurements are discussed.
Męczykowska, Hanna; Kobylis, Paulina; Stepnowski, Piotr; Caban, Magda
2017-05-04
Passive sampling is one of the most efficient methods of monitoring pharmaceuticals in environmental water. The reliability of the process relies on a correctly performed calibration experiment and a well-defined sampling rate (R s ) for target analytes. Therefore, in this review the state-of-the-art methods of passive sampler calibration for the most popular pharmaceuticals: antibiotics, hormones, β-blockers and non-steroidal anti-inflammatory drugs (NSAIDs), along with the sampling rate variation, were presented. The advantages and difficulties in laboratory and field calibration were pointed out, according to the needs of control of the exact conditions. Sampling rate calculating equations and all the factors affecting the R s value - temperature, flow, pH, salinity of the donor phase and biofouling - were discussed. Moreover, various calibration parameters gathered from the literature published in the last 16 years, including the device types, were tabled and compared. What is evident is that the sampling rate values for pharmaceuticals are impacted by several factors, whose influence is still unclear and unpredictable, while there is a big gap in experimental data. It appears that the calibration procedure needs to be improved, for example, there is a significant deficiency of PRCs (Performance Reference Compounds) for pharmaceuticals. One of the suggestions is to introduce correction factors for R s values estimated in laboratory conditions.
LRO Diviner Nonlinear Response and Opposition Effect Corrections
NASA Astrophysics Data System (ADS)
Gyalay, S.; Aye, K. M.; Paige, D. A.
2016-12-01
Aboard the Lunar Reconnaissance Orbiter, the Diviner Lunar Radiometer Experiment measures thermal radiation to determine the brightness temperature of the lunar surface. As with the Mars Climate Sounder (upon which Diviner is based), we use pre-flight calibration data to correct for the nonlinear response in Diviner's detectors, which in-turn accounts for much of the detector non-uniformity within channels. Furthermore, channels 8 and 9 exhibit unexpectedly high brightness temperatures close to the equator around midday, with even higher brightness temperatures when observing lunar highlands as opposed to maria. Unexpectedly high brightness temperatures around midday at the equator is reminiscent of the opposition effect known to exist on the Moon at low phase angles in Visual to Near Infra-Red (VNIR) wavelengths. Diviner channel 2 data (which detects solar radiation reflected by the Moon) shows this opposition effect, which is more pronounced in the highlands than the maria. We interpret a correlation we observe between channel 2 detected radiance and channel 8 and 9 brightness temperature as due to incomplete blocking of reflected solar radiation. This leads us to an opposition effect correction for Diviner channels 8 and 9 dependent on Diviner's solar channel data. Whether this is a direct leak of VNIR light upon the detectors, or solar heating of blocking filters, which then radiate infrared radiation upon the detectors, is yet to be determined. We can use the nonlinearity and opposition effect corrections to recharacterize the spectral emissivity of the lunar regolith, which we can then compare to laboratory spectra.
Wavelength references for interferometry in air
NASA Astrophysics Data System (ADS)
Fox, Richard W.; Washburn, Brian R.; Newbury, Nathan R.; Hollberg, Leo
2005-12-01
Cavity-mode wavelengths in air are determined by measuring a laser's frequency while it is locked to the mode in vacuum during a calibration step and subsequently correcting the mode wavelength for atmospheric pressure compression, temperature difference, and material aging. Using a Zerodur ring cavity, we demonstrate a repeatability of ±2×10-8 (3σ), with the wavelength accuracy limited to ±4×10-8 by knowledge of the absolute helium gas temperature during the pressure calibration. Mirror cleaning perturbed the mode frequency by less than Δ ν/ν˜3×10-9, limited by temperature correction residuals.
Wavelength references for interferometry in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, Richard W.; Washburn, Brian R.; Newbury, Nathan R.
2005-12-20
Cavity-mode wavelengths in air are determined by measuring a laser's frequency while it is locked to the mode in vacuum during a calibration step and subsequently correcting the mode wavelength for atmospheric pressure compression, temperature difference, and material aging. Using a Zerodur ring cavity, we demonstrate a repeatability of {+-}2x10-8(3{sigma}), with the wavelength accuracy limited to {+-}4x10-8by knowledge of the absolute helium gas temperature during the pressure calibration. Mirror cleaning perturbed the mode frequency by less than {delta} {nu}/{nu}{approx}3x10-9, limited by temperature correction residuals.
Wavelength references for interferometry in air.
Fox, Richard W; Washburn, Brian R; Newbury, Nathan R; Hollberg, Leo
2005-12-20
Cavity-mode wavelengths in air are determined by measuring a laser's frequency while it is locked to the mode in vacuum during a calibration step and subsequently correcting the mode wavelength for atmospheric pressure compression, temperature difference, and material aging. Using a Zerodur ring cavity, we demonstrate a repeatability of +/- 2 x 10(-8) (3sigma), with the wavelength accuracy limited to +/- 4 x 10(-8) by knowledge of the absolute helium gas temperature during the pressure calibration. Mirror cleaning perturbed the mode frequency by less than deltav/v approximately 3 x 10(-9), limited by temperature correction residuals.
The performance of hafnium and gadolinium self powered neutron detectors in the TREAT reactor
NASA Astrophysics Data System (ADS)
Imel, G. R.; Hart, P. R.
1996-05-01
The use of gadolinium and hafnium self powered neutron detectors in a transient reactor is described in this paper. The detectors were calibrated to the fission rate of U-235 using calibrated fission chambers; the calibration factors were tested in two reactors in steady state and found to be consistent. Calibration of the detectors in transient reactor conditions was done by using uranium wires that were analyzed by radiochemistry techniques to determine total fissions during the transient. This was correlated to the time-integrated current of the detectors during the transient. A temperature correction factor was derived to account for self-shielding effects in the hafnium and gadolinium detectors. The dynamic response of the detectors under transient conditions was studied, and found to be excellent.
NASA Astrophysics Data System (ADS)
Smitha, P. S.; Narasimhan, B.; Sudheer, K. P.; Annamalai, H.
2018-01-01
Regional climate models (RCMs) are used to downscale the coarse resolution General Circulation Model (GCM) outputs to a finer resolution for hydrological impact studies. However, RCM outputs often deviate from the observed climatological data, and therefore need bias correction before they are used for hydrological simulations. While there are a number of methods for bias correction, most of them use monthly statistics to derive correction factors, which may cause errors in the rainfall magnitude when applied on a daily scale. This study proposes a sliding window based daily correction factor derivations that help build reliable daily rainfall data from climate models. The procedure is applied to five existing bias correction methods, and is tested on six watersheds in different climatic zones of India for assessing the effectiveness of the corrected rainfall and the consequent hydrological simulations. The bias correction was performed on rainfall data downscaled using Conformal Cubic Atmospheric Model (CCAM) to 0.5° × 0.5° from two different CMIP5 models (CNRM-CM5.0, GFDL-CM3.0). The India Meteorological Department (IMD) gridded (0.25° × 0.25°) observed rainfall data was considered to test the effectiveness of the proposed bias correction method. The quantile-quantile (Q-Q) plots and Nash Sutcliffe efficiency (NSE) were employed for evaluation of different methods of bias correction. The analysis suggested that the proposed method effectively corrects the daily bias in rainfall as compared to using monthly factors. The methods such as local intensity scaling, modified power transformation and distribution mapping, which adjusted the wet day frequencies, performed superior compared to the other methods, which did not consider adjustment of wet day frequencies. The distribution mapping method with daily correction factors was able to replicate the daily rainfall pattern of observed data with NSE value above 0.81 over most parts of India. Hydrological simulations forced using the bias corrected rainfall (distribution mapping and modified power transformation methods that used the proposed daily correction factors) was similar to those simulated by the IMD rainfall. The results demonstrate that the methods and the time scales used for bias correction of RCM rainfall data have a larger impact on the accuracy of the daily rainfall and consequently the simulated streamflow. The analysis suggests that the distribution mapping with daily correction factors can be preferred for adjusting RCM rainfall data irrespective of seasons or climate zones for realistic simulation of streamflow.
NASA Astrophysics Data System (ADS)
Fathi, K.; Galer, S.; Kirkby, K. J.; Palmans, H.; Nisbet, A.
2017-11-01
The high uncertainty in the Relative Biological Effectiveness (RBE) values of particle therapy beam, which are used in combination with the quantity absorbed dose in radiotherapy, together with the increase in the number of particle therapy centres worldwide necessitate a better understating of the biological effect of such modalities. The present novel study is part of performance testing and development of a micro-calorimeter based on Superconducting QUantum Interference Devices (SQUIDs). Unlike other microdosimetric detectors that are used for investigating the energy distribution, this detector provides a direct measurement of energy deposition at the micrometre scale, that can be used to improve our understanding of biological effects in particle therapy application, radiation protection and environmental dosimetry. Temperature rises of less than 1μK are detectable and when combined with the low specific heat capacity of the absorber at cryogenic temperature, extremely high energy deposition sensitivity of approximately 0.4 eV can be achieved. The detector consists of 3 layers: tissue equivalent (TE) absorber, superconducting (SC) absorber and silicon substrate. Ideally all energy would be absorbed in the TE absorber and heat rise in the superconducting layer would arise due to heat conduction from the TE layer. However, in practice direct particle absorption occurs in all 3 layers and must be corrected for. To investigate the thermal behaviour within the detector, and quantify any possible correction, particle tracks were simulated employing Geant4 (v9.6) Monte Carlo simulations. The track information was then passed to the COMSOL Multiphysics (Finite Element Method) software. The 3D heat transfer within each layer was then evaluated in a time-dependent model. For a statistically reliable outcome, the simulations had to be repeated for a large number of particles. An automated system has been developed that couples Geant4 Monte Carlo output to COMSOL for determining the expected distribution of proton tracks and their thermal contribution within the detector. The correction factor for a 3.8 MeV proton pencil beam was determined and applied to the expected spectra. The corrected microdosimetric spectra was shown to have a good agreement with the ideal spectra.
40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.
Code of Federal Regulations, 2012 CFR
2012-07-01
... combustion air humidity to calculate this correction if your combustion air humidity remains within a...-air humidity. You may use a time-weighted mean combustion air humidity to calculate this correction if your combustion air humidity remains within a tolerance of ±0.0025 mol/mol of the mean value over the...
40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.
Code of Federal Regulations, 2013 CFR
2013-07-01
... combustion air humidity to calculate this correction if your combustion air humidity remains within a...-air humidity. You may use a time-weighted mean combustion air humidity to calculate this correction if your combustion air humidity remains within a tolerance of ±0.0025 mol/mol of the mean value over the...
40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.
Code of Federal Regulations, 2014 CFR
2014-07-01
... combustion air humidity to calculate this correction if your combustion air humidity remains within a...-air humidity. You may use a time-weighted mean combustion air humidity to calculate this correction if your combustion air humidity remains within a tolerance of ±0.0025 mol/mol of the mean value over the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamio, Y; Bouchard, H
2014-06-15
Purpose: Discrepancies in the verification of the absorbed dose to water from an IMRT plan using a radiation dosimeter can be wither caused by 1) detector specific nonstandard field correction factors as described by the formalism of Alfonso et al. 2) inaccurate delivery of the DQA plan. The aim of this work is to develop a simple/fast method to determine an upper limit on the contribution of composite field correction factors to these discrepancies. Methods: Indices that characterize the non-flatness of the symmetrised collapsed delivery (VSC) of IMRT fields over detector-specific regions of interest were shown to be correlated withmore » IMRT field correction factors. The indices introduced are the uniformity index (UI) and the mean fluctuation index (MF). Each one of these correlation plots have 10 000 fields generated with a stochastic model. A total of eight radiation detectors were investigated in the radial orientation. An upper bound on the correction factors was evaluated by fitting values of high correction factors for a given index value. Results: These fitted curves can be used to compare the performance of radiation dosimeters in composite IMRT fields. Highly water-equivalent dosimeters like the scintillating detector (Exradin W1) and a generic alanine detector have been found to have corrections under 1% over a broad range of field modulations (0 – 0.12 for MF and 0 – 0.5 for UI). Other detectors have been shown to have corrections of a few percent over this range. Finally, a full Monte Carlo simulations of 18 clinical and nonclinical IMRT field showed good agreement with the fitted curve for the A12 ionization chamber. Conclusion: This work proposes a rapid method to evaluate an upper bound on the contribution of correction factors to discrepancies found in the verification of DQA plans.« less
Optimization of Selective Laser Melting by Evaluation Method of Multiple Quality Characteristics
NASA Astrophysics Data System (ADS)
Khaimovich, A. I.; Stepanenko, I. S.; Smelov, V. G.
2018-01-01
Article describes the adoption of the Taguchi method in selective laser melting process of sector of combustion chamber by numerical and natural experiments for achieving minimum temperature deformation. The aim was to produce a quality part with minimum amount of numeric experiments. For the study, the following optimization parameters (independent factors) were chosen: the laser beam power and velocity; two factors for compensating the effect of the residual thermal stresses: the scale factor of the preliminary correction of the part geometry and the number of additional reinforcing elements. We used an orthogonal plan of 9 experiments with a factor variation at three levels (L9). As quality criterias, the values of distortions for 9 zones of the combustion chamber and the maximum strength of the material of the chamber were chosen. Since the quality parameters are multidirectional, a grey relational analysis was used to solve the optimization problem for multiple quality parameters. As a result, according to the parameters obtained, the combustion chamber segments of the gas turbine engine were manufactured.
Test of Monin-Obukhov similarity theory using distributed temperature sensing
NASA Astrophysics Data System (ADS)
Cheng, Y.; Sayde, C.; Li, Q.; Gentine, P.
2017-12-01
Monin-Obukhov similarity theory [Monin and Obukhov, 1954] (MOST) has been widely used to calculate atmospheric surface fluxes applying the structure correction functions [Stull, 1988]. The exact forms of the structure correction functions for momentum and heat, which depend on the vertical gradient velocity and temperature, have been determined empirically mostly from the Kansas experiment [Kaimal et al., 1972]. However, due to the limitation of point measurement, the vertical gradient of temperature and horizontal wind speed are not well captured. Here we propose a way to measure the vertical gradient of temperature and horizontal wind speed with high resolution in space (every 12.7 cm) and time (every second) using the Distributed Temperature Sensing [Selker et al., 2006] (DTS), thus determining the exact form of the structure correction functions of MOST under various stability conditions. Two parallel vertical fiber optics will be placed on a tower at the central facility of ARM SGP site. Vertical air temperature will be measured every 12.7 cm by the fiber optics and horizontal wind speed along fiber will be measured. Then vertical gradient of temperature and horizontal wind speed will be calculated and stability correction functions for momentum and heat will be determined. ReferencesKaimal, J. C., Wyngaard, J. C., Izumi, Y., and Cote, O. R. (1972), Spectral characteristics of surface-layer turbulence, Quarterly Journal of the Royal Meteorological Society, 98(417), 563-589, doi: 10.1002/qj.49709841707. Monin, A., and Obukhov, A. (1954), Basic laws of turbulent mixing in the surface layer of the atmosphere, Contrib. Geophys. Inst. Acad. Sci. USSR, 24(151), 163-187. Selker, J., Thévenaz, L., Huwald, H., Mallet, A., Luxemburg, W., van de Giesen, N., Stejskal, M., Zeman, J., Westhoff, M., and Parlange, M. B. (2006), Distributed fiber-optic temperature sensing for hydrologic systems, Water Resources Research, 42, W12202, doi: 10.1029/2006wr005326. Stull, R. (1988), An Introduction to Boundary Layer Meteorology, pp. 666, Kluwer Academic Publishers, Dordrecht.
Flint, L.E.; Flint, A.L.
2008-01-01
Stream temperature is an important component of salmonid habitat and is often above levels suitable for fish survival in the Lower Klamath River in northern California. The objective of this study was to provide boundary conditions for models that are assessing stream temperature on the main stem for the purpose of developing strategies to manage stream conditions using Total Maximum Daily Loads. For model input, hourly stream temperatures for 36 tributaries were estimated for 1 Jan. 2001 through 31 Oct. 2004. A basin-scale approach incorporating spatially distributed energy balance data was used to estimate the stream temperatures with measured air temperature and relative humidity data and simulated solar radiation, including topographic shading and corrections for cloudiness. Regression models were developed on the basis of available stream temperature data to predict temperatures for unmeasured periods of time and for unmeasured streams. The most significant factor in matching measured minimum and maximum stream temperatures was the seasonality of the estimate. Adding minimum and maximum air temperature to the regression model improved the estimate, and air temperature data over the region are available and easily distributed spatially. The addition of simulated solar radiation and vapor saturation deficit to the regression model significantly improved predictions of maximum stream temperature but was not required to predict minimum stream temperature. The average SE in estimated maximum daily stream temperature for the individual basins was 0.9 ?? 0.6??C at the 95% confidence interval. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Bohm, Tim D; Griffin, Sheridan L; DeLuca, Paul M; DeWerd, Larry A
2005-04-01
The determination of the air kerma strength of a brachytherapy seed is necessary for effective treatment planning. Well ionization chambers are used on site at therapy clinics to determine the air kerma strength of seeds. In this work, the response of the Standard Imaging HDR 1000 Plus well chamber to ambient pressure is examined using Monte Carlo calculations. The experimental work examining the response of this chamber as well as other chambers is presented in a companion paper. The Monte Carlo results show that for low-energy photon sources, the application of the standard temperature pressure PTP correction factor produces an over-response at the reduced air densities/pressures corresponding to high elevations. With photon sources of 20 to 40 keV, the normalized PTP corrected chamber response is as much as 10% to 20% over unity for air densities/pressures corresponding to an elevation of 3048 m (10000 ft) above sea level. At air densities corresponding to an elevation of 1524 m (5000 ft), the normalized PTP-corrected chamber response is 5% to 10% over unity for these photon sources. With higher-energy photon sources (>100 keV), the normalized PTP corrected chamber response is near unity. For low-energy beta sources of 0.25 to 0.50 MeV, the normalized PTP-corrected chamber response is as much as 4% to 12% over unity for air densities/pressures corresponding to an elevation of 3048 m (10000 ft) above sea level. Higher-energy beta sources (>0.75 MeV) have a normalized PTP corrected chamber response near unity. Comparing calculated and measured chamber responses for common 103Pd- and 125I-based brachytherapy seeds show agreement to within 2.7% and 1.9%, respectively. Comparing MCNP calculated chamber responses with EGSnrc calculated chamber responses show agreement to within 3.1% at photon energies of 20 to 40 keV. We conclude that Monte Carlo transport calculations accurately model the response of this well chamber. Further, applying the standard PTP correction factor for this well chamber is insufficient in accounting for the change in chamber response with air pressure for low-energy (<100 keV) photon and low-energy (<0.75 MeV)beta sources.
ERIC Educational Resources Information Center
Ellis, Johnica; McFadden, Cheryl; Colaric, Susan
2008-01-01
This article summarizes the results of a study conducted to investigate factors influencing the organizational design, establishment, administration, and governance of correctional education for females. The research involved interviews with correctional and community college administrators and practitioners representing North Carolina female…
Improving satellite retrievals of NO2 in biomass burning regions
NASA Astrophysics Data System (ADS)
Bousserez, N.; Martin, R. V.; Lamsal, L. N.; Mao, J.; Cohen, R. C.; Anderson, B. E.
2010-12-01
The quality of space-based nitrogen dioxide (NO2) retrievals from solar backscatter depends on a priori knowledge of the NO2 profile shape as well as the effects of atmospheric scattering. These effects are characterized by the air mass factor (AMF) calculation. Calculation of the AMF combines a radiative transfer calculation together with a priori information about aerosols and about NO2 profiles (shape factors), which are usually taken from a chemical transport model. In this work we assess the impact of biomass burning emissions on the AMF using the LIDORT radiative transfer model and a GEOS-Chem simulation based on a daily fire emissions inventory (FLAMBE). We evaluate the GEOS-Chem aerosol optical properties and NO2 shape factors using in situ data from the ARCTAS summer 2008 (North America) and DABEX winter 2006 (western Africa) experiments. Sensitivity studies are conducted to assess the impact of biomass burning on the aerosols and the NO2 shape factors used in the AMF calculation. The mean aerosol correction over boreal fires is negligible (+3%), in contrast with a large reduction (-18%) over African savanna fires. The change in sign and magnitude over boreal forest and savanna fires appears to be driven by the shielding effects that arise from the greater biomass burning aerosol optical thickness (AOT) above the African biomass burning NO2. In agreement with previous work, the single scattering albedo (SSA) also affects the aerosol correction. We further investigated the effect of clouds on the aerosol correction. For a fixed AOT, the aerosol correction can increase from 20% to 50% when cloud fraction increases from 0 to 30%. Over both boreal and savanna fires, the greatest impact on the AMF is from the fire-induced change in the NO2 profile (shape factor correction), that decreases the AMF by 38% over the boreal fires and by 62% of the savanna fires. Combining the aerosol and shape factor corrections together results in small differences compared to the shape factor correction alone (without the aerosol correction), indicating that a shape factor-only correction is a good approximation of the total AMF correction associated with fire emissions. We use this result to define a measurement-based correction of the AMF based on the relationship between the slant column variability and the variability of the shape factor in the lower troposphere. This method may be generalized to other types of emission sources.
A database for the static dielectric constant of water and steam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, D.P.; Mulev, Y.; Goodwin, A.R.H.
All reliable sources of data for the static dielectric constant or relative permittivity of water and steam, many of them unpublished or inaccessible, have been collected, evaluated, corrected when required, and converted to the ITS-90 temperature scale. The data extend over a temperature range from 238 to 873 K and over a pressure range from 0.1 MPa up to 1189 MPa. The evaluative part of this work includes a review of the different types of measurement techniques, and the corrections for frequency dependence due to the impedance of circuit components, and to electrode polarization. It also includes a detailed assessmentmore » of the uncertainty of each particular data source, as compared to other sources in the same range of pressure and temperature. Both the raw and the corrected data have been tabulated, and are also available on diskette. A comprehensive list of references to the literature is included.« less
NASA Astrophysics Data System (ADS)
Pelanti, Marica; Shyue, Keh-Ming
2015-05-01
The authors regret that one erroneous plot of the numerical results for a dodecane liquid-vapor shock tube problem was included in Fig. 3, p. 346, of the article [1]. Specifically, the graph of the vapor-liquid temperature difference (Tv -Tl) displayed at the bottom-right corner of Fig. 3 in [1] is not correct due to some wrong settings introduced in the temperature visualization tool. The error pertains solely to simulation data post-processing, and it is not related to the numerical methods and programs employed to run the experiment. We display here in Fig. 1 the correct temperature difference plot, generated from our original results computed for the dodecane shock tube test described in [1]. We think that is important to notify this correction to avoid any confusion.
NASA Astrophysics Data System (ADS)
Burba, G. G.; Anderson, D. J.; Xu, L.; McDermitt, D. K.
2006-12-01
One laboratory and two field experiments were conducted between September 2005 and September 2006 to investigate the impact of an added heat flux in the sample path of the LI-7500 CO2/H2O gas analyzer caused by the difference in temperatures between the ambient air and the surface of the instrument. Contribution of heat dissipated from the internal instrument electronics toward the instrument surface was substantial, especially in cold conditions. In the environmental chamber, surface heating ranged from about 0 °C above ambient, at air temperatures above +40 °C, to about 7 °C, at an air temperature of -25 °C. In the field, daytime temperature differences were overall smaller than in the chamber due to convective cooling by the wind and some long-wave cooling, despite the added sunlight contribution. However, considerable temperature gradients (up to 2 °C per 1mm) were still observed over the lower window of the LI-7500, suggesting strong sensible heat fluxes above the instrument surface. The nighttime situation was different due to strong long-wave cooling of some parts of the instrument, partially (and sometimes, fully) offsetting effects of the electronics heating in the other parts. The concept of an added heat flux term in the Web-Pearman-Leuning correction is revisited, and effect of the instrument surface heating on the CO2 flux measurements is examined. The proposed concept is presented in detail, along with resulted corrections to the originally computed flux. Field data are examined separately for daytime and nighttime cases, and on hourly and seasonal time scales. Significant reduction in the apparent CO2 uptake during off-season periods was observed as a result of applying correction due to the added heat, while fluxes during the growing season have not been noticeably affected. The correction also resulted in the elimination of most of the wrong signs from the off-season open- path CO2 fluxes, in considerable reduction in variability of the data, elimination of the difference between measurements made with the LI-6262 and the LI-7500, and in a significant improvement in off-season integrations of CO2 exchange. A framework was created to develop a site-specific practical correction due to instrument surface heating. The concept may provide a basis for further research in the area of instrument temperature affecting the measurement of the open-path fluxes. Proposed correction may be useful for future CO2 flux research, and it can also be applied to pre-existing data today.
NASA Astrophysics Data System (ADS)
Xu, H.; Wittmer, J. P.; Polińska, P.; Baschnagel, J.
2012-10-01
The truncation of a pair potential at a distance rc is well known to imply, in general, an impulsive correction to the pressure and other moments of the first derivatives of the potential. That, depending on rc, the truncation may also be of relevance to higher derivatives is shown theoretically for the Born contributions to the elastic moduli obtained using the stress-fluctuation formalism in d dimensions. Focusing on isotropic liquids for which the shear modulus G must vanish by construction, the predicted corrections are tested numerically for binary mixtures and polydisperse Lennard-Jones beads in, respectively, d=3 and 2 dimensions. Both models being glass formers, we comment briefly on the temperature (T) dependence of the (corrected) shear modulus G(T) around the glass transition temperature Tg.
2014-09-01
peak shaving, conducting power factor correction, matching critical load to most efficient distributed resource, and islanding a system during...photovoltaic arrays during islanding, and power factor correction, the implementation of the ESS by itself is likely to prove cost prohibitive. The DOD...These functions include peak shaving, conducting power factor correction, matching critical load to most efficient distributed resource, and islanding a
NASA Astrophysics Data System (ADS)
Shmatukha, Andriy V.; Bakker, Chris J. G.
2006-05-01
Respiratory Induced Resonance Offset (RIRO) is a periodic disturbance of the magnetic field due to breathing. Such disturbances handicap the accuracy of the Proton Resonance Frequency Shift (PRFS) method of MRI temperature mapping in anatomies situated nearby the lungs and chest wall. In this work, we propose a method capable of minimizing errors caused by RIRO in PRFS temperature maps. In this method, a set of baseline images characterizing RIRO at a variety of respiratory cycle instants is acquired before the thermal treatment starts. During the treatment, the temperature evolution is found from two successive images. Then, the calculated temperature changes are corrected for the additional contribution caused by RIRO using the pre-treatment baseline images acquired at the identical instances of the respiratory cycle. Our method is shown to improve the accuracy and stability of PRFS temperature maps in the presence of RIRO and motion in phantom and volunteer experiments.
[Changes in blood gases with temperature: implications for clinical practice].
Tremey, B; Vigué, B
2004-05-01
To understand changes in blood gases results with core temperature. Analysis from two case reports. Hypothermia induces a decrease in PaCO(2) with a related increase in pH, thus a physiologic alkalosis. Decrease in PaCO(2) is due to an increase of gas solubility and a decrease of peripheral consumption that can be estimated from comparison between corrected and non-corrected for temperature blood gases. For O(2), variations of temperature induce variations of solubility but also of haemoglobin affinity for O(2). During hyperthermia, haemoglobin affinity for O(2) is decreased with a decreased SvO(2) for a same PvO(2). SvO(2) ischemic or therapeutic thresholds are thus modified with core temperature. Blood gases cannot be understood without patient core temperature. Physiologic variations of PaCO(2) and pH must probably be tolerated. Ischemic threshold should be estimated on PvO(2), not only on PvO(2).
Techniques for improving the accuracy of cyrogenic temperature measurement in ground test programs
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Fabik, Richard H.
1993-01-01
The performance of a sensor is often evaluated by determining to what degree of accuracy a measurement can be made using this sensor. The absolute accuracy of a sensor is an important parameter considered when choosing the type of sensor to use in research experiments. Tests were performed to improve the accuracy of cryogenic temperature measurements by calibration of the temperature sensors when installed in their experimental operating environment. The calibration information was then used to correct for temperature sensor measurement errors by adjusting the data acquisition system software. This paper describes a method to improve the accuracy of cryogenic temperature measurements using corrections in the data acquisition system software such that the uncertainty of an individual temperature sensor is improved from plus or minus 0.90 deg R to plus or minus 0.20 deg R over a specified range.
Wang, Xi-fen; Zhou, Huai-chun
2005-01-01
The control of 3-D temperature distribution in a utility boiler furnace is essential for the safe, economic and clean operation of pc-fired furnace with multi-burner system. The development of the visualization of 3-D temperature distributions in pc-fired furnaces makes it possible for a new combustion control strategy directly with the furnace temperature as its goal to improve the control quality for the combustion processes. Studied in this paper is such a new strategy that the whole furnace is divided into several parts in the vertical direction, and the average temperature and its bias from the center in every cross section can be extracted from the visualization results of the 3-D temperature distributions. In the simulation stage, a computational fluid dynamics (CFD) code served to calculate the 3-D temperature distributions in a furnace, then a linear model was set up to relate the features of the temperature distributions with the input of the combustion processes, such as the flow rates of fuel and air fed into the furnaces through all the burners. The adaptive genetic algorithm was adopted to find the optimal combination of the whole input parameters which ensure to form an optimal 3-D temperature field in the furnace desired for the operation of boiler. Simulation results showed that the strategy could soon find the factors making the temperature distribution apart from the optimal state and give correct adjusting suggestions.
The effect of low-energy electrons on the response of ion chambers to ionizing photon beams
NASA Astrophysics Data System (ADS)
La Russa, Daniel J.
Cavity ionization chambers are one of the most popular and widely used devices for quantifying ionizing photon beams. This popularity originates from the precision of these devices and the relative ease with which ionization measurements are converted to quantities of interest in therapeutic radiology or radiation protection, collectively referred to as radiation dosimetry. The formalisms used for these conversions, known as cavity theory, make several assumptions about the electron spectrum in the low-energy range resulting from the incident photon beam. These electrons often account for a significant fraction of the ion chamber response. An inadequate treatment of low-energy electrons can therefore significantly effect calculated quantities of interest. This thesis sets out to investigate the effect of low-energy electrons on (1) the use of Spencer-Attix cavity theory with 60Co beams; and (2) the standard temperature-pressure correction factor, P TP, used to relate the measured ionization to a set of reference temperature and pressure conditions for vented ion chambers. Problems with the PTP correction are shown to arise when used with kilovoltage x rays, where ionization measurements are due primarily to electrons that do not have enough energy to cross the cavity. A combination of measurements and Monte Carlo calculations using the EGSnrc Monte Carlo code demonstrate the breakdown of PTP in these situations when used with non-air-equivalent chambers. The extent of the breakdown is shown to depend on cavity size, energy of the incident photons, and the composition of the chamber. In the worst case, the standard P TP factor overcorrects the response of an aluminum chamber by ≈12% at an air density typical of Mexico City. The response of a more common graphite-walled chamber with similar dimensions at the same air density is undercorrected by ≈ 2%. The EGSnrc Monte Carlo code is also used to investigate Spencer-Attix cavity theory as it is used in the formalism to determine the air kerma for a 60Co beam. Following a comparison with measurements in the literature, the air kerma formalism is shown to require a fluence correction factor, Kfl, to ensure the accuracy of the formalism regardless of chamber composition and cavity size. The need for such a correction stems from the fact that the cavity clearly distorts the fluence for mismatched cavity and wall materials, and the inability to select the appropriate "cut-off" energy, Delta, in the Spencer-Attix stopping-power ratio. A discussion of this issue is followed by detailed calculations of K fl values for several of the graphite ionization chambers used at national metrology institutes, which range between 0.9999 and 0.9994 with a one standard deviation uncertainty of +/- 0.0002.
NASA Astrophysics Data System (ADS)
Faghihi, V.; Kozicki, M.; Aerts-Bijma, A. T.; Jansen, H. G.; Spriensma, J. J.; Peruzzi, A.; Meijer, H. A. J.
2015-12-01
This paper is the second of two articles on the quantification of isotope effects on the triple point temperature of water. In this second article, we address the combined effects of 18O and 17O isotopes. We manufactured five triple point cells with waters with 18O and 17O abundances exceeding widely the natural abundance range while maintaining their natural 18O/17O relationship. The 2H isotopic abundance was kept close to that of VSMOW (Vienna Standard Mean Ocean Water). These cells realized triple point temperatures ranging between -220 μK to 1420 μK with respect to the temperature realized by a triple point cell filled with VSMOW. Our experiment allowed us to determine an accurate and reliable value for the newly defined combined 18, 17O correction parameter of AO = 630 μK with a combined uncertainty of 10 μK. To apply this correction, only the 18O abundance of the TPW needs to be known (and the water needs to be of natural origin). Using the results of our two articles, we recommend a correction equation along with the coefficient values for isotopic compositions differing from that of VSMOW and compare the effect of this new equation on a number of triple point cells from the literature and from our own institute. Using our correction equation, the uncertainty in the isotope correction for triple point cell waters used around the world will be <1 μK.
Study on micro-water measurement method based on SF6 insulation equipment in high altitude area
NASA Astrophysics Data System (ADS)
Zhang, Han; Liu, Yajin; Yan, Jun; Liu, Zhijian; Yan, Yongfei
2018-06-01
Moisture content is an important indicator of the insulation and arc extinguishing performance of SF6 insulated electrical equipment. The research shows that moisture measurements are strongly influenced by altitude pressures and the different order of pressure correction and temperature correction calculation, different calculation results will result. Therefore, in this paper, we studies the pressure and temperature environment based on moisture test of SF6 gas insulated equipment in power industry. Firstly, the PVT characteristics of pure SF6 gas and water vapor were analyzed and put forward the necessity of pressure correction, then combined the Pitzer-Veli equation of SF6 gas and Water Pitzer-Veli equation to fit PVT equation of state of SF6-H20 that suitable for electric power industry and deduced the Correction Formula of Moisture Measurement in SF6 Gas. Finally, through experiments, completion of the calibration formula optimization and verification SF6 electrical equipment on, proof of the applicability and effectiveness of the correction formula.
Zero-field magnetic response functions in Landau levels
Gao, Yang; Niu, Qian
2017-01-01
We present a fresh perspective on the Landau level quantization rule; that is, by successively including zero-field magnetic response functions at zero temperature, such as zero-field magnetization and susceptibility, the Onsager’s rule can be corrected order by order. Such a perspective is further reinterpreted as a quantization of the semiclassical electron density in solids. Our theory not only reproduces Onsager’s rule at zeroth order and the Berry phase and magnetic moment correction at first order but also explains the nature of higher-order corrections in a universal way. In applications, those higher-order corrections are expected to curve the linear relation between the level index and the inverse of the magnetic field, as already observed in experiments. Our theory then provides a way to extract the correct value of Berry phase as well as the magnetic susceptibility at zero temperature from Landau level fan diagrams in experiments. Moreover, it can be used theoretically to calculate Landau levels up to second-order accuracy for realistic models. PMID:28655849
A lysimeter-based approach to quantify the impact of climate change on soil hydrological processes
NASA Astrophysics Data System (ADS)
Slawitsch, Veronika; Steffen, Birk; Herndl, Markus
2016-04-01
The predicted climate change involving increasing CO2 concentrations and increasing temperatures will have effects on both vegetation and soil properties and thus on the soil water balance. The aim of this work is to quantify the effects of changes in these climatic factors on soil hydrological processes and parameters. For this purpose data of six high precision weighable lysimeters will be used. The lysimeters are part of a Lysi-T-FACE concept, where free-air will be enriched with CO2 (FACE-Technique) and infrared heaters heat the plots for investigation on effects of increasing temperatures (T-FACE-Technique). The Lysi-T-FACE concept was developed on the „Clim Grass Site" at the HBLFA Raumberg-Gumpenstein (Styria, Austria) in 2011 and 2012 with a total of 54 experimental plots. These include six plots with lysimeters where the two climatic factors are varied in different combinations. On the basis of these grass land lysimeters the soil hydraulic parameters under different experimental conditions will be investigated. The lysimeters are equipped with TDR-Trime sensors and temperature sensors combined with tensiometers in different depths. In addition, a mechanical separation snow cover system is implemented to obtain a correct water balance in winter. To be able to infer differences between the lysimeters reliably a verification of functionalities and a plausibility check of the data from the lysimeters as well as adequate data corrections are needed. Both an automatic and a user-defined control including the recently developed filter method AWAT (Adaptive Window and Adaptive Threshold Filter) are combined with a visualisation tool using the software NI DIAdem. For each lysimeter the raw data is classified in groups of matric potentials, soil water contents and lysimeter weights. Values exceeding technical thresholds are eliminated and marked automatically. The manual data control is employed every day to obtain high precision seepage water weights. The subsequent application of the AWAT Filter reduces up to 80% of the oscillations in the calculated precipitation and evapotranspiration. The filtered data of the reference plot in June 2014 yields a precipitation of about 100 mm, whereas the non-filtered raw data result in approximately 170 mm and thus an obvious overestimation of precipitation. The resulting evapotranspiration amounts to slightly more than 100 mm with filter and 200 mm without filter in the same time period. The total water balance (precipitation minus evapotranspiration) of the year 2014 obtained with the automatic and manual data filter is 470 mm on the reference plot but only 358 mm on a plot where CO2 is enriched and temperature increased. In summary, these first results demonstrate that an adequate data correction is the precondition to identify changes of soil hydrological processes and properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergstrom, P
Purpose: The National Institute of Standards and Technology (NIST) uses 3 free-air chambers to establish primary standards for radiation dosimetry at x-ray energies. For medium-energy × rays, the Ritz free-air chamber is the main measurement device. In order to convert the charge or current collected by the chamber to the radiation quantities air kerma or air kerma rate, a number of correction factors specific to the chamber must be applied. Methods: We used the Monte Carlo codes EGSnrc and PENELOPE. Results: Among these correction factors are the diaphragm correction (which accounts for interactions of photons from the x-ray source inmore » the beam-defining diaphragm of the chamber), the scatter correction (which accounts for the effects of photons scattered out of the primary beam), the electron-loss correction (which accounts for electrons that only partially expend their energy in the collection region), the fluorescence correction (which accounts for ionization due to reabsorption ffluorescence photons and the bremsstrahlung correction (which accounts for the reabsorption of bremsstrahlung photons). We have computed monoenergetic corrections for the NIST Ritz chamber for the 1 cm, 3 cm and 7 cm collection plates. Conclusion: We find good agreement with other’s results for the 7 cm plate. The data used to obtain these correction factors will be used to establish air kerma and it’s uncertainty in the standard NIST x-ray beams.« less
Wavefront control of high-power laser beams in the National Ignition Facility (NIF)
NASA Astrophysics Data System (ADS)
Zacharias, Richard A.; Bliss, Erlan S.; Winters, Scott; Sacks, Richard A.; Feldman, Mark; Grey, Andrew; Koch, Jeffrey A.; Stolz, Christopher J.; Toeppen, John S.; Van Atta, Lewis; Woods, Bruce W.
2000-04-01
The use of lasers as the driver for inertial confinement fusion and weapons physics experiments is based on their ability to produce high-energy short pulses in a beam with low divergence. Indeed, the focusability of high quality laser beams far exceeds alternate technologies and is a major factor in the rationale for building high power lasers for such applications. The National Ignition Facility (NIF) is a large, 192-beam, high-power laser facility under construction at the Lawrence Livermore National Laboratory for fusion and weapons physics experiments. Its uncorrected minimum focal spot size is limited by laser system aberrations. The NIF includes a Wavefront Control System to correct these aberrations to yield a focal spot small enough for its applications. Sources of aberrations to be corrected include prompt pump-induced distortions in the laser amplifiers, previous-shot thermal distortions, beam off-axis effects, and gravity, mounting, and coating-induced optic distortions. Aberrations from gas density variations and optic-manufacturing figure errors are also partially corrected. This paper provides an overview of the NIF Wavefront Control System and describes the target spot size performance improvement it affords. It describes provisions made to accommodate the NIF's high fluence (laser beam and flashlamp), large wavefront correction range, wavefront temporal bandwidth, temperature and humidity variations, cleanliness requirements, and exception handling requirements (e.g. wavefront out-of-limits conditions).
Zhang, Yanbin; Lin, Guanfeng; Wang, Shengru; Zhang, Jianguo; Shen, Jianxiong; Wang, Yipeng; Guo, Jianwei; Yang, Xinyu; Zhao, Lijuan
2016-01-01
Study Design. Retrospective study. Objective. To study the behavior of the unfused thoracic curve in Lenke type 5C during the follow-up and to identify risk factors for its correction loss. Summary of Background Data. Few studies have focused on the spontaneous behaviors of the unfused thoracic curve after selective thoracolumbar or lumbar fusion during the follow-up and the risk factors for spontaneous correction loss. Methods. We retrospectively reviewed 45 patients (41 females and 4 males) with AIS who underwent selective TL/L fusion from 2006 to 2012 in a single institution. The follow-up averaged 36 months (range, 24–105 months). Patients were divided into two groups. Thoracic curves in group A improved or maintained their curve magnitude after spontaneous correction, with a negative or no correction loss during the follow-up. Thoracic curves in group B deteriorated after spontaneous correction with a positive correction loss. Univariate analysis and multivariate analysis were built to identify the risk factors for correction loss of the unfused thoracic curves. Results. The minor thoracic curve was 26° preoperatively. It was corrected to 13° immediately with a spontaneous correction of 48.5%. At final follow-up it was 14° with a correction loss of 1°. Thoracic curves did not deteriorate after spontaneous correction in 23 cases in group A, while 22 cases were identified with thoracic curve progressing in group B. In multivariate analysis, two risk factors were independently associated with thoracic correction loss: higher flexibility and better immediate spontaneous correction rate of thoracic curve. Conclusion. Posterior selective TL/L fusion with pedicle screw constructs is an effective treatment for Lenke 5C AIS patients. Nonstructural thoracic curves with higher flexibility or better immediate correction are more likely to progress during the follow-up and close attentions must be paid to these patients in case of decompensation. Level of Evidence: 4 PMID:27831989
Bolte, John F B
2016-09-01
Personal exposure measurements of radio frequency electromagnetic fields are important for epidemiological studies and developing prediction models. Minimizing biases and uncertainties and handling spatial and temporal variability are important aspects of these measurements. This paper reviews the lessons learnt from testing the different types of exposimeters and from personal exposure measurement surveys performed between 2005 and 2015. Applying them will improve the comparability and ranking of exposure levels for different microenvironments, activities or (groups of) people, such that epidemiological studies are better capable of finding potential weak correlations with health effects. Over 20 papers have been published on how to prevent biases and minimize uncertainties due to: mechanical errors; design of hardware and software filters; anisotropy; and influence of the body. A number of biases can be corrected for by determining multiplicative correction factors. In addition a good protocol on how to wear the exposimeter, a sufficiently small sampling interval and sufficiently long measurement duration will minimize biases. Corrections to biases are possible for: non-detects through detection limit, erroneous manufacturer calibration and temporal drift. Corrections not deemed necessary, because no significant biases have been observed, are: linearity in response and resolution. Corrections difficult to perform after measurements are for: modulation/duty cycle sensitivity; out of band response aka cross talk; temperature and humidity sensitivity. Corrections not possible to perform after measurements are for: multiple signals detection in one band; flatness of response within a frequency band; anisotropy to waves of different elevation angle. An analysis of 20 microenvironmental surveys showed that early studies using exposimeters with logarithmic detectors, overestimated exposure to signals with bursts, such as in uplink signals from mobile phones and WiFi appliances. Further, the possible corrections for biases have not been fully applied. The main findings are that if the biases are not corrected for, the actual exposure will on average be underestimated. Copyright © 2016 Elsevier Ltd. All rights reserved.
Determinants of Rotavirus Transmission: A Lag Nonlinear Time Series Analysis.
van Gaalen, Rolina D; van de Kassteele, Jan; Hahné, Susan J M; Bruijning-Verhagen, Patricia; Wallinga, Jacco
2017-07-01
Rotavirus is a common viral infection among young children. As in many countries, the infection dynamics of rotavirus in the Netherlands are characterized by an annual winter peak, which was notably low in 2014. Previous study suggested an association between weather factors and both rotavirus transmission and incidence. From epidemic theory, we know that the proportion of susceptible individuals can affect disease transmission. We investigated how these factors are associated with rotavirus transmission in the Netherlands, and their impact on rotavirus transmission in 2014. We used available data on birth rates and rotavirus laboratory reports to estimate rotavirus transmission and the proportion of individuals susceptible to primary infection. Weather data were directly available from a central meteorological station. We developed an approach for detecting determinants of seasonal rotavirus transmission by assessing nonlinear, delayed associations between each factor and rotavirus transmission. We explored relationships by applying a distributed lag nonlinear regression model with seasonal terms. We corrected for residual serial correlation using autoregressive moving average errors. We inferred the relationship between different factors and the effective reproduction number from the most parsimonious model with low residual autocorrelation. Higher proportions of susceptible individuals and lower temperatures were associated with increases in rotavirus transmission. For 2014, our findings suggest that relatively mild temperatures combined with the low proportion of susceptible individuals contributed to lower rotavirus transmission in the Netherlands. However, our model, which overestimated the magnitude of the peak, suggested that other factors were likely instrumental in reducing the incidence that year.
The Additional Secondary Phase Correction System for AIS Signals
Wang, Xiaoye; Zhang, Shufang; Sun, Xiaowen
2017-01-01
This paper looks at the development and implementation of the additional secondary phase factor (ASF) real-time correction system for the Automatic Identification System (AIS) signal. A large number of test data were collected using the developed ASF correction system and the propagation characteristics of the AIS signal that transmits at sea and the ASF real-time correction algorithm of the AIS signal were analyzed and verified. Accounting for the different hardware of the receivers in the land-based positioning system and the variation of the actual environmental factors, the ASF correction system corrects original measurements of positioning receivers in real time and provides corrected positioning accuracy within 10 m. PMID:28362330
Relativistic corrections to the form factors of Bc into P-wave orbitally excited charmonium
NASA Astrophysics Data System (ADS)
Zhu, Ruilin
2018-06-01
We investigated the form factors of the Bc meson into P-wave orbitally excited charmonium using the nonrelativistic QCD effective theory. Through the analytic computation, the next-to-leading order relativistic corrections to the form factors were obtained, and the asymptotic expressions were studied in the infinite bottom quark mass limit. Employing the general form factors, we discussed the exclusive decays of the Bc meson into P-wave orbitally excited charmonium and a light meson. We found that the relativistic corrections lead to a large correction for the form factors, which makes the branching ratios of the decay channels B (Bc ± →χcJ (hc) +π± (K±)) larger. These results are useful for the phenomenological analysis of the Bc meson decays into P-wave charmonium, which shall be tested in the LHCb experiments.
NASA Technical Reports Server (NTRS)
Lan, C. E.; Lamar, J. E.
1977-01-01
A logarithmic-singularity correction factor is derived for use in kernel function methods associated with Multhopp's subsonic lifting-surface theory. Because of the form of the factor, a relation was formulated between the numbers of chordwise and spanwise control points needed for good accuracy. This formulation is developed and discussed. Numerical results are given to show the improvement of the computation with the new correction factor.
Power corrections to TMD factorization for Z-boson production
Balitsky, I.; Tarasov, A.
2018-05-24
A typical factorization formula for production of a particle with a small transverse momentum in hadron-hadron collisions is given by a convolution of two TMD parton densities with cross section of production of the final particle by the two partons. For practical applications at a given transverse momentum, though, one should estimate at what momenta the power corrections to the TMD factorization formula become essential. In this work, we calculate the first power corrections to TMD factorization formula for Z-boson production and Drell-Yan process in high-energy hadron-hadron collisions. At the leading order in N c power corrections are expressed inmore » terms of leading power TMDs by QCD equations of motion.« less
Power corrections to TMD factorization for Z-boson production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balitsky, I.; Tarasov, A.
A typical factorization formula for production of a particle with a small transverse momentum in hadron-hadron collisions is given by a convolution of two TMD parton densities with cross section of production of the final particle by the two partons. For practical applications at a given transverse momentum, though, one should estimate at what momenta the power corrections to the TMD factorization formula become essential. In this work, we calculate the first power corrections to TMD factorization formula for Z-boson production and Drell-Yan process in high-energy hadron-hadron collisions. At the leading order in N c power corrections are expressed inmore » terms of leading power TMDs by QCD equations of motion.« less
NASA Astrophysics Data System (ADS)
Ludwig, T.; Gornyi, I. V.; Mirlin, A. D.; Wölfle, P.
2008-06-01
We consider the quantum corrections to the conductivity of fermions interacting via a Chern Simons gauge field and concentrate on the Hartree-type contributions. The first-order Hartree approximation is only valid in the limit of weak coupling λ≪g-1/2 to the gauge field ( g≫1 is the dimensionless conductance) and results in an antilocalizing conductivity correction ˜λ2gln2T . In the case of strong coupling, an infinite summation of higher-order terms is necessary, which includes both the virtual (renormalization of the frequency) and real (dephasing) processes. At intermediate temperatures, T0≪T≪gT0 , where T0˜1/g2τ and τ is the elastic scattering time, the T dependence of the conductivity is determined by the Hartree correction, δσH(T)-δσH(gT0)∝g1/2-(T/T0)1/2[1+ln(gT0/T)1/2] , so that σ(T) increases with lowering T . At low temperatures, T≪T0 , the temperature-dependent part of the Hartree correction assumes a logarithmic form with a coefficient of order unity, δσH∝ln(1/T) . As a result, the negative exchange contribution δσex∝-lngln(1/T) becomes dominant, which yields localization in the limit of T→0 . We further discuss dephasing at strong coupling and show that the dephasing rates are of the order of T , owing to the interplay of inelastic scattering and renormalization. On the other hand, the dephasing length is anomalously short, Lφ≪LT , where LT is the thermal length. For the case of composite fermions with long-range Coulomb interaction, the gauge-field propagator is less singular. The resulting Hartree correction has the usual sign and temperature dependence, δσH∝lngln(1/T) , and for realistic g is overcompensated by the negative exchange contribution due to the gauge-boson and scalar parts of the interaction. In this case, the dephasing length Lφ is of the order of LT for not too low temperatures and exceeds LT for T≲gT0 .
Thermal-hydraulics of internally heated molten salts and application to the Molten Salt Fast Reactor
NASA Astrophysics Data System (ADS)
Fiorina, Carlo; Cammi, Antonio; Luzzi, Lelio; Mikityuk, Konstantin; Ninokata, Hisashi; Ricotti, Marco E.
2014-04-01
The Molten Salt Reactors (MSR) are an innovative kind of nuclear reactors and are presently considered in the framework of the Generation IV International Forum (GIF-IV) for their promising performances in terms of low resource utilization, waste minimization and enhanced safety. A unique feature of MSRs is that molten fluoride salts play the distinctive role of both fuel (heat source) and coolant. The presence of an internal heat generation perturbs the temperature field and consequences are to be expected on the heat transfer characteristics of the molten salts. In this paper, the problem of heat transfer for internally heated fluids in a straight circular channel is first faced on a theoretical ground. The effect of internal heat generation is demonstrated to be described by a corrective factor applied to traditional correlations for the Nusselt number. It is shown that the corrective factor can be fully characterized by making explicit the dependency on Reynolds and Prandtl numbers. On this basis, a preliminary correlation is proposed for the case of molten fluoride salts by interpolating the results provided by an analytic approach previously developed at the Politecnico di Milano. The experimental facility and the related measuring procedure for testing the proposed correlation are then presented. Finally, the developed correlation is used to carry out a parametric investigation on the effect of internal heat generation on the main out-of-core components of the Molten Salt Fast Reactor (MSFR), the reference circulating-fuel MSR design in the GIF-IV. The volumetric power determines higher temperatures at the channel wall, but the effect is significant only in case of large diameters and/or low velocities.
Theory of droplet. Part 1: Renormalized laws of droplet vaporization in non-dilute sprays
NASA Technical Reports Server (NTRS)
Chiu, H. H.
1989-01-01
The vaporization of a droplet, interacting with its neighbors in a non-dilute spray environment is examined as well as a vaporization scaling law established on the basis of a recently developed theory of renormalized droplet. The interacting droplet consists of a centrally located droplet and its vapor bubble which is surrounded by a cloud of droplets. The distribution of the droplets and the size of the cloud are characterized by a pair-distribution function. The vaporization of a droplet is retarded by the collective thermal quenching, the vapor concentration accumulated in the outer sphere, and by the limited percolative passages for mass, momentum and energy fluxes. The retardation is scaled by the local collective interaction parameters (group combustion number of renormalized droplet, droplet spacing, renormalization number and local ambient conditions). The numerical results of a selected case study reveal that the vaporization correction factor falls from unity monotonically as the group combustion number increases, and saturation is likely to occur when the group combustion number reaches 35 to 40 with interdroplet spacing of 7.5 diameters and an environment temperature of 500 K. The scaling law suggests that dense sprays can be classified into: (1) a diffusively dense cloud characterized by uniform thermal quenching in the cloud; (2) a stratified dense cloud characterized by a radial stratification in temperature by the differential thermal quenching of the cloud; or (3) a sharply dense cloud marked by fine structure in the quasi-droplet cloud and the corresponding variation in the correction factor due to the variation in the topological structure of the cloud characterized by a pair-distribution function of quasi-droplets.
Cardy, John; Herzog, Christopher P
2014-05-02
We consider single interval Rényi and entanglement entropies for a two dimensional conformal field theory on a circle at nonzero temperature. Assuming that the finite size of the system introduces a unique ground state with a nonzero mass gap, we calculate the leading corrections to the Rényi and entanglement entropy in a low temperature expansion. These corrections have a universal form for any two dimensional conformal field theory that depends only on the size of the mass gap and its degeneracy. We analyze the limits where the size of the interval becomes small and where it becomes close to the size of the spatial circle.
NASA Technical Reports Server (NTRS)
Viegas, John R.; Rubesin, Morris W.
1991-01-01
Several recently published compressibility corrections to the standard k-epsilon turbulence model are used with the Navier-Stokes equations to compute the mixing region of a large variety of high speed flows. These corrections, specifically developed to address the weakness of higher order turbulence models to accurately predict the spread rate of compressible free shear flows, are applied to two stream flows of the same gas mixing under a large variety of free stream conditions. Results are presented for two types of flows: unconfined streams with either (1) matched total temperatures and static pressures, or (2) matched static temperatures and pressures, and a confined stream.
NASA Astrophysics Data System (ADS)
Song, Hyeong Yong; Salehiyan, Reza; Li, Xiaolei; Lee, Seung Hak; Hyun, Kyu
2017-11-01
In this study, the effects of cone-plate (C/P) and parallel-plate (P/P) geometries were investigated on the rheological properties of various complex fluids, e.g. single-phase (polymer melts and solutions) and multiphase systems (polymer blend and nanocomposite, and suspension). Small amplitude oscillatory shear (SAOS) tests were carried out to compare linear rheological responses while nonlinear responses were compared using large amplitude oscillatory shear (LAOS) tests at different frequencies. Moreover, Fourier-transform (FT)-rheology method was used to analyze the nonlinear responses under LAOS flow. Experimental results were compared with predictions obtained by single-point correction and shear rate correction. For all systems, SAOS data measured by C/P and P/P coincide with each other, but results showed discordance between C/P and P/P measurements in the nonlinear regime. For all systems except xanthan gum solutions, first-harmonic moduli were corrected using a single horizontal shift factor, whereas FT rheology-based nonlinear parameters ( I 3/1, I 5/1, Q 3, and Q 5) were corrected using vertical shift factors that are well predicted by single-point correction. Xanthan gum solutions exhibited anomalous corrections. Their first-harmonic Fourier moduli were superposed using a horizontal shift factor predicted by shear rate correction applicable to highly shear thinning fluids. The distinguished corrections were observed for FT rheology-based nonlinear parameters. I 3/1 and I 5/1 were superposed by horizontal shifts, while the other systems displayed vertical shifts of I 3/1 and I 5/1. Q 3 and Q 5 of xanthan gum solutions were corrected using both horizontal and vertical shift factors. In particular, the obtained vertical shift factors for Q 3 and Q 5 were twice as large as predictions made by single-point correction. Such larger values are rationalized by the definitions of Q 3 and Q 5. These results highlight the significance of horizontal shift corrections in nonlinear oscillatory shear data.
[Atmospheric Influences Analysis on the Satellite Passive Microwave Remote Sensing].
Qiu, Yu-bao; Shi, Li-juan; Shi, Jian-cheng; Zhao, Shao-jie
2016-02-01
Passive microwave remote sensing offers its all-weather work capabilities, but atmospheric influences on satellite microwave brightness temperature were different under different atmospheric conditions and environments. In order to clarify atmospheric influences on Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), atmospheric radiation were simulated based on AMSR-E configuration under clear sky and cloudy conditions, by using radiative transfer model and atmospheric conditions data. Results showed that atmospheric water vapor was the major factor for atmospheric radiation under clear sky condition. Atmospheric transmittances were almost above 0.98 at AMSR-E's low frequencies (< 18.7 GHz) and the microwave brightness temperature changes caused by atmosphere can be ignored in clear sky condition. Atmospheric transmittances at 36.5 and 89 GHz were 0.896 and 0.756 respectively. The effects of atmospheric water vapor needed to be corrected when using microwave high-frequency channels to inverse land surface parameters in clear sky condition. But under cloud cover or cloudy conditions, cloud liquid water was the key factor to cause atmospheric radiation. When sky was covered by typical stratus cloud, atmospheric transmittances at 10.7, 18.7 and 36.5 GHz were 0.942, 0.828 and 0.605 respectively. Comparing with the clear sky condition, the down-welling atmospheric radiation caused by cloud liquid water increased up to 75.365 K at 36.5 GHz. It showed that the atmospheric correction under different clouds covered condition was the primary work to improve the accuracy of land surface parameters inversion of passive microwave remote sensing. The results also provided the basis for microwave atmospheric correction algorithm development. Finally, the atmospheric sounding data was utilized to calculate the atmospheric transmittance of Hailaer Region, Inner Mongolia province, in July 2013. The results indicated that atmospheric transmittances were close to 1 at C-band and X-band. 89 GHz was greatly influenced by water vapor and its atmospheric transmittance was not more than 0.7. Atmospheric transmittances in Hailaer Region had a relatively stable value in summer, but had about 0.1 fluctuations with the local water vapor changes.
NASA Astrophysics Data System (ADS)
Moise Famien, Adjoua; Janicot, Serge; Delfin Ochou, Abe; Vrac, Mathieu; Defrance, Dimitri; Sultan, Benjamin; Noël, Thomas
2018-03-01
The objective of this paper is to present a new dataset of bias-corrected CMIP5 global climate model (GCM) daily data over Africa. This dataset was obtained using the cumulative distribution function transform (CDF-t) method, a method that has been applied to several regions and contexts but never to Africa. Here CDF-t has been applied over the period 1950-2099 combining Historical runs and climate change scenarios for six variables: precipitation, mean near-surface air temperature, near-surface maximum air temperature, near-surface minimum air temperature, surface downwelling shortwave radiation, and wind speed, which are critical variables for agricultural purposes. WFDEI has been used as the reference dataset to correct the GCMs. Evaluation of the results over West Africa has been carried out on a list of priority user-based metrics that were discussed and selected with stakeholders. It includes simulated yield using a crop model simulating maize growth. These bias-corrected GCM data have been compared with another available dataset of bias-corrected GCMs using WATCH Forcing Data as the reference dataset. The impact of WFD, WFDEI, and also EWEMBI reference datasets has been also examined in detail. It is shown that CDF-t is very effective at removing the biases and reducing the high inter-GCM scattering. Differences with other bias-corrected GCM data are mainly due to the differences among the reference datasets. This is particularly true for surface downwelling shortwave radiation, which has a significant impact in terms of simulated maize yields. Projections of future yields over West Africa are quite different, depending on the bias-correction method used. However all these projections show a similar relative decreasing trend over the 21st century.
Low-power low-voltage superior-order curvature corrected voltage reference
NASA Astrophysics Data System (ADS)
Popa, Cosmin
2010-06-01
A complementary metal oxide semiconductor (CMOS) voltage reference with a logarithmic curvature-correction will be presented. The first-order compensation is realised using an original offset voltage follower (OVF) block as a proportional to absolute temperature (PTAT) voltage generator, with the advantages of reducing the silicon area and of increasing accuracy by replacing matched resistors with matched transistors. The new logarithmic curvature-correction technique will be implemented using an asymmetric differential amplifier (ADA) block for compensating the logarithmic temperature dependent term from the first-order compensated voltage reference. In order to increase the circuit accuracy, an original temperature-dependent current generator will be designed for computing the exact type of the implemented curvature-correction. The relatively small complexity of the current squarer allows an important increasing of the circuit accuracy that could be achieved by increasing the current generator complexity. As a result of operating most of the MOS transistors in weak inversion, the original proposed voltage reference could be valuable for low-power applications. The circuit is implemented in 0.35 μm CMOS technology and consumes only 60μA for t = 25°C, being supplied at the minimal supply voltage V DD = 1.75V. The temperature coefficient of the reference voltage is 8.7 ppm/°C, while the line sensitivity is 0.75 mV/V for a supply voltage between 1.75 V and 7 V.
Oparaji, U; Tsai, Y H; Liu, Y C; Lee, K W; Patelli, E; Sheu, R J
2017-06-01
This paper presents improved and extended results of our previous study on corrections for conventional neutron dose meters used in environments with high-energy neutrons (En > 10 MeV). Conventional moderated-type neutron dose meters tend to underestimate the dose contribution of high-energy neutrons because of the opposite trends of dose conversion coefficients and detection efficiencies as the neutron energy increases. A practical correction scheme was proposed based on analysis of hundreds of neutron spectra in the IAEA-TRS-403 report. By comparing 252Cf-calibrated dose responses with reference values derived from fluence-to-dose conversion coefficients, this study provides recommendations for neutron field characterization and the corresponding dose correction factors. Further sensitivity studies confirm the appropriateness of the proposed scheme and indicate that (1) the spectral correction factors are nearly independent of the selection of three commonly used calibration sources: 252Cf, 241Am-Be and 239Pu-Be; (2) the derived correction factors for Bonner spheres of various sizes (6"-9") are similar in trend and (3) practical high-energy neutron indexes based on measurements can be established to facilitate the application of these correction factors in workplaces. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Seasonal prediction skill of winter temperature over North India
NASA Astrophysics Data System (ADS)
Tiwari, P. R.; Kar, S. C.; Mohanty, U. C.; Dey, S.; Kumari, S.; Sinha, P.
2016-04-01
The climatology, amplitude error, phase error, and mean square skill score (MSSS) of temperature predictions from five different state-of-the-art general circulation models (GCMs) have been examined for the winter (December-January-February) seasons over North India. In this region, temperature variability affects the phenological development processes of wheat crops and the grain yield. The GCM forecasts of temperature for a whole season issued in November from various organizations are compared with observed gridded temperature data obtained from the India Meteorological Department (IMD) for the period 1982-2009. The MSSS indicates that the models have skills of varying degrees. Predictions of maximum and minimum temperature obtained from the National Centers for Environmental Prediction (NCEP) climate forecast system model (NCEP_CFSv2) are compared with station level observations from the Snow and Avalanche Study Establishment (SASE). It has been found that when the model temperatures are corrected to account the bias in the model and actual orography, the predictions are able to delineate the observed trend compared to the trend without orography correction.
Panagou, Efstathios Z; Nychas, George-John E
2008-09-01
A product-specific model was developed and validated under dynamic temperature conditions for predicting the growth of Listeria monocytogenes in pasteurized vanilla cream, a traditional milk-based product. Model performance was also compared with Growth Predictor and Sym'Previus predictive microbiology software packages. Commercially prepared vanilla cream samples were artificially inoculated with a five-strain cocktail of L. monocytogenes, with an initial concentration of 102 CFU g(-1), and stored at 3, 5, 10, and 15 degrees C for 36 days. The growth kinetic parameters at each temperature were determined by the primary model of Baranyi and Roberts. The maximum specific growth rate (mu(max)) was further modeled as a function of temperature by means of a square root-type model. The performance of the model in predicting the growth of the pathogen under dynamic temperature conditions was based on two different temperature scenarios with periodic changes from 4 to 15 degrees C. Growth prediction for dynamic temperature profiles was based on the square root model and the differential equations of the Baranyi and Roberts model, which were numerically integrated with respect to time. Model performance was based on the bias factor (B(f)), the accuracy factor (A(f)), the goodness-of-fit index (GoF), and the percent relative errors between observed and predicted growth. The product-specific model developed in the present study accurately predicted the growth of L. monocytogenes under dynamic temperature conditions. The average values for the performance indices were 1.038, 1.068, and 0.397 for B(f), A(f), and GoF, respectively for both temperature scenarios assayed. Predictions from Growth Predictor and Sym'Previus overestimated pathogen growth. The average values of B(f), A(f), and GoF were 1.173, 1.174, 1.162, and 0.956, 1.115, 0.713 for [corrected] Growth Predictor and Sym'Previus, respectively.
49 CFR 325.79 - Application of correction factors.
Code of Federal Regulations, 2011 CFR
2011-10-01
... illustrate the application of correction factors to sound level measurement readings: (1) Example 1—Highway operations. Assume that a motor vehicle generates a maximum observed sound level reading of 86 dB(A) during a... of the test site is acoustically “hard.” The corrected sound level generated by the motor vehicle...
49 CFR 325.79 - Application of correction factors.
Code of Federal Regulations, 2010 CFR
2010-10-01
... illustrate the application of correction factors to sound level measurement readings: (1) Example 1—Highway operations. Assume that a motor vehicle generates a maximum observed sound level reading of 86 dB(A) during a... of the test site is acoustically “hard.” The corrected sound level generated by the motor vehicle...
Cashmore, Aaron W; Indig, Devon; Hampton, Stephen E; Hegney, Desley G; Jalaludin, Bin B
2016-11-01
Little is known about the environmental and organisational determinants of workplace violence in correctional health settings. This paper describes the views of health professionals working in these settings on the factors influencing workplace violence risk. All employees of a large correctional health service in New South Wales, Australia, were invited to complete an online survey. The survey included an open-ended question seeking the views of participants about the factors influencing workplace violence in correctional health settings. Responses to this question were analysed using qualitative thematic analysis. Participants identified several factors that they felt reduced the risk of violence in their workplace, including: appropriate workplace health and safety policies and procedures; professionalism among health staff; the presence of prison guards and the quality of security provided; and physical barriers within clinics. Conversely, participants perceived workplace violence risk to be increased by: low health staff-to-patient and correctional officer-to-patient ratios; high workloads; insufficient or underperforming security staff; and poor management of violence, especially horizontal violence. The views of these participants should inform efforts to prevent workplace violence among correctional health professionals.
Palmans, H; Al-Sulaiti, L; Andreo, P; Shipley, D; Lühr, A; Bassler, N; Martinkovič, J; Dobrovodský, J; Rossomme, S; Thomas, R A S; Kacperek, A
2013-05-21
The conversion of absorbed dose-to-graphite in a graphite phantom to absorbed dose-to-water in a water phantom is performed by water to graphite stopping power ratios. If, however, the charged particle fluence is not equal at equivalent depths in graphite and water, a fluence correction factor, kfl, is required as well. This is particularly relevant to the derivation of absorbed dose-to-water, the quantity of interest in radiotherapy, from a measurement of absorbed dose-to-graphite obtained with a graphite calorimeter. In this work, fluence correction factors for the conversion from dose-to-graphite in a graphite phantom to dose-to-water in a water phantom for 60 MeV mono-energetic protons were calculated using an analytical model and five different Monte Carlo codes (Geant4, FLUKA, MCNPX, SHIELD-HIT and McPTRAN.MEDIA). In general the fluence correction factors are found to be close to unity and the analytical and Monte Carlo codes give consistent values when considering the differences in secondary particle transport. When considering only protons the fluence correction factors are unity at the surface and increase with depth by 0.5% to 1.5% depending on the code. When the fluence of all charged particles is considered, the fluence correction factor is about 0.5% lower than unity at shallow depths predominantly due to the contributions from alpha particles and increases to values above unity near the Bragg peak. Fluence correction factors directly derived from the fluence distributions differential in energy at equivalent depths in water and graphite can be described by kfl = 0.9964 + 0.0024·zw-eq with a relative standard uncertainty of 0.2%. Fluence correction factors derived from a ratio of calculated doses at equivalent depths in water and graphite can be described by kfl = 0.9947 + 0.0024·zw-eq with a relative standard uncertainty of 0.3%. These results are of direct relevance to graphite calorimetry in low-energy protons but given that the fluence correction factor is almost solely influenced by non-elastic nuclear interactions the results are also relevant for plastic phantoms that consist of carbon, oxygen and hydrogen atoms as well as for soft tissues.
Analytical Retrieval of Global Land Surface Emissivity Maps at AMSR-E passive microwave frequencies
NASA Astrophysics Data System (ADS)
Norouzi, H.; Temimi, M.; Khanbilvardi, R.
2009-12-01
Land emissivity is a crucial boundary condition in Numerical Weather Prediction (NWP) modeling. Land emissivity is also a key indicator of land surface and subsurface properties. The objective of this study, supported by NOAA-NESDIS, is to develop global land emissivity maps using AMSR-E passive microwave measurements along with several ancillary data. The International Satellite Cloud Climatology Project (ISCCP) database has been used to obtain several inputs for the proposed approach such as land surface temperature, cloud mask and atmosphere profile. The Community Radiative Transfer Model (CRTM) has been used to estimate upwelling and downwelling atmospheric contributions. Although it is well known that correction of the atmospheric effect on brightness temperature is required at higher frequencies (over 19 GHz), our preliminary results have shown that a correction at 10.7 GHz is also necessary over specific areas. The proposed approach is based on three main steps. First, all necessary data have been collected and processed. Second, a global cloud free composite of AMSR-E data and corresponding ancillary images is created. Finally, monthly composting of emissivity maps has been performed. AMSR-E frequencies at 6.9, 10.7, 18.7, 36.5 and 89.0 GHz have been used to retrieve the emissivity. Water vapor information obtained from ISCCP (TOVS data) was used to calculate upwelling, downwelling temperatures and atmospheric transmission in order to assess the consistency of those derived from the CRTM model. The frequent land surface temperature (LST) determination (8 times a day) in the ISCCP database has allowed us to assess the diurnal cycle effect on emissivity retrieval. Differences in magnitude and phase between thermal temperature and low frequencies microwave brightness temperature have been noticed. These differences seem to vary in space and time. They also depend on soil texture and thermal inertia. The proposed methodology accounts for these factors and resultant differences in phase and magnitude between LST and microwave brightness temperature. Additional factors such as topography and vegetation cover are under investigation. In addition, the potential of extrapolating the obtained land emissivity maps to different window and sounding channels has been also investigated in this study. The extrapolation of obtained emissivities to different incident angles is also under investigation. Land emissivity maps have been developed at different AMSR-E frequencies. Obtained product has been validated and compared to global land use distribution. Moreover, global soil moisture AMSR-E product maps have been also used to assess to the spatial distribution of the emissivity. Moreover, obtained emissivity maps seem to be consistent with landuse/land cover maps. They also agree well with land emissivity maps obtained from the ISCCP database and developed using SSM/I observations (for frequencies over 19 GHz).
78 FR 75449 - Miscellaneous Corrections; Corrections
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-12
... refer to Docket ID NRC-2013-0019 when contacting the NRC about the availability of information for this..., Packaging and containers, Radiation protection, Reporting and recordkeeping requirements, Scientific... region with the highest reference temperature. * * * * * * * * PART 52--LICENSES, CERTIFICATIONS, AND...
SU-F-T-67: Correction Factors for Monitor Unit Verification of Clinical Electron Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haywood, J
Purpose: Monitor units calculated by electron Monte Carlo treatment planning systems are often higher than TG-71 hand calculations for a majority of patients. Here I’ve calculated tables of geometry and heterogeneity correction factors for correcting electron hand calculations. Method: A flat water phantom with spherical volumes having radii ranging from 3 to 15 cm was created. The spheres were centered with respect to the flat water phantom, and all shapes shared a surface at 100 cm SSD. D{sub max} dose at 100 cm SSD was calculated for each cone and energy on the flat phantom and for the spherical volumesmore » in the absence of the flat phantom. The ratio of dose in the sphere to dose in the flat phantom defined the geometrical correction factor. The heterogeneity factors were then calculated from the unrestricted collisional stopping power for tissues encountered in electron beam treatments. These factors were then used in patient second check calculations. Patient curvature was estimated by the largest sphere that aligns to the patient contour, and appropriate tissue density was read from the physical properties provided by the CT. The resulting MU were compared to those calculated by the treatment planning system and TG-71 hand calculations. Results: The geometry and heterogeneity correction factors range from ∼(0.8–1.0) and ∼(0.9–1.01) respectively for the energies and cones presented. Percent differences for TG-71 hand calculations drop from ∼(3–14)% to ∼(0–2)%. Conclusion: Monitor units calculated with the correction factors typically decrease the percent difference to under actionable levels, < 5%. While these correction factors work for a majority of patients, there are some patient anatomies that do not fit the assumptions made. Using these factors in hand calculations is a first step in bringing the verification monitor units into agreement with the treatment planning system MU.« less
Unexplained Discontinuity in the US Radiosonde Temperature Data. Part 2; Stratosphere
NASA Technical Reports Server (NTRS)
Redder, Christopher R.; Luers, Jim K.; Eskridge, Robert E.
2003-01-01
In part I of this paper, the United States (US) radiosonde temperature data are shown to have significant and unexplained inhomogeneities in the mid-troposphere. This part discusses the differences between observations taken at 0 and 12 UTC especially in the stratosphere by the Vaisala RS80 radiosondes that are integrated within the National Weather Service's (NWS) Micro-ART system. The results show that there is a large maxima in the horizontal distribution of the monthly means of the 0/12 UTC differences over the central US that is absent over Canada and this maxima is as large as 5 C at 10 hPa. The vertical profiles of the root-mean-square of the monthly means are much larger in the US than those else where. The data clearly shows that the 0/12 UTC differences are largely artificial especially over the central US and originate in the post processing software at observing stations, thus confirming the findings in part I. Special flight data from the NWS's test facility at Sterling, Va. have been obtained. This data can be used to deduce the bias correction applied by Vaisala's post processing system. By analyzing the correction data, it can be shown that the inconsistencies with non-US Vaisala RS80 data as well as most of the large 0/12 UTC differences over the US can be accounted for by multiplying the reported elapsed time (i.e. time since launch) by the factor which is incorrectly applied by the post processing software. After being presented with the findings in this paper, Vaisala further isolated the source of the inconsistencies to a software coding error in the radiation bias correction scheme. The error effects only the software installed at US stations.
Attribution of Extreme Rainfall Events in the South of France Using EURO-CORDEX Simulations
NASA Astrophysics Data System (ADS)
Luu, L. N.; Vautard, R.; Yiou, P.
2017-12-01
The Mediterranean region regularly undergoes episodes of intense precipitation in the fall season that exceed 300mm a day. This study focuses on the role of climate change on the dynamics of the events that occur in the South of France. We used an ensemble of 10 EURO-CORDEX model simulations with two horizontal resolutions (EUR-11: 0.11° and EUR-44: 0.44°) for the attribution of extreme rainfall in the fall in the Cevennes mountain range (South of France). The biases of the simulations were corrected with simple scaling adjustment and a quantile correction (CDFt). This produces five datasets including EUR-44 and EUR-11 with and without scaling adjustment and CDFt-EUR-11, on which we test the impact of resolution and bias correction on the extremes. Those datasets, after pooling all of models together, are fitted by a stationary Generalized Extreme Value distribution for several periods to estimate a climate change signal in the tail of distribution of extreme rainfall in the Cévenne region. Those changes are then interpreted by a scaling model that links extreme rainfall with mean and maximum daily temperature. The results show that higher-resolution simulations with bias adjustment provide a robust and confident increase of intensity and likelihood of occurrence of autumn extreme rainfall in the area in current climate in comparison with historical climate. The probability (exceedance probability) of 1-in-1000-year event in historical climate may increase by a factor of 1.8 under current climate with a confident interval of 0.4 to 5.3 following the CDFt bias-adjusted EUR-11. The change of magnitude appears to follow the Clausius-Clapeyron relation that indicates a 7% increase in rainfall per 1oC increase in temperature.
Radiative corrections to the η(') Dalitz decays
NASA Astrophysics Data System (ADS)
Husek, Tomáš; Kampf, Karol; Novotný, Jiří; Leupold, Stefan
2018-05-01
We provide the complete set of radiative corrections to the Dalitz decays η(')→ℓ+ℓ-γ beyond the soft-photon approximation, i.e., over the whole range of the Dalitz plot and with no restrictions on the energy of a radiative photon. The corrections inevitably depend on the η(')→ γ*γ(*) transition form factors. For the singly virtual transition form factor appearing, e.g., in the bremsstrahlung correction, recent dispersive calculations are used. For the one-photon-irreducible contribution at the one-loop level (for the doubly virtual form factor), we use a vector-meson-dominance-inspired model while taking into account the η -η' mixing.
NASA Astrophysics Data System (ADS)
Mortier, A.; Sousa, S. G.; Adibekyan, V. Zh.; Brandão, I. M.; Santos, N. C.
2014-12-01
Context. Precise stellar parameters (effective temperature, surface gravity, metallicity, stellar mass, and radius) are crucial for several reasons, amongst which are the precise characterization of orbiting exoplanets and the correct determination of galactic chemical evolution. The atmospheric parameters are extremely important because all the other stellar parameters depend on them. Using our standard equivalent-width method on high-resolution spectroscopy, good precision can be obtained for the derived effective temperature and metallicity. The surface gravity, however, is usually not well constrained with spectroscopy. Aims: We use two different samples of FGK dwarfs to study the effect of the stellar surface gravity on the precise spectroscopic determination of the other atmospheric parameters. Furthermore, we present a straightforward formula for correcting the spectroscopic surface gravities derived by our method and with our linelists. Methods: Our spectroscopic analysis is based on Kurucz models in local thermodynamic equilibrium, performed with the MOOG code to derive the atmospheric parameters. The surface gravity was either left free or fixed to a predetermined value. The latter is either obtained through a photometric transit light curve or derived using asteroseismology. Results: We find first that, despite some minor trends, the effective temperatures and metallicities for FGK dwarfs derived with the described method and linelists are, in most cases, only affected within the errorbars by using different values for the surface gravity, even for very large differences in surface gravity, so they can be trusted. The temperatures derived with a fixed surface gravity continue to be compatible within 1 sigma with the accurate results of the infrared flux method (IRFM), as is the case for the unconstrained temperatures. Secondly, we find that the spectroscopic surface gravity can easily be corrected to a more accurate value using a linear function with the effective temperature. Tables 1 and 2 are available in electronic form at http://www.aanda.org
Calibration of Radiation Thermometers up to : Effective Emissivity of the Source
NASA Astrophysics Data System (ADS)
Kozlova, O.; Briaudeau, S.; Rongione, L.; Bourson, F.; Guimier, S.; Kosmalski, S.; Sadli, M.
2015-08-01
The growing demand of industry for traceable temperature measurements up to encourages improvement of calibration techniques for industrial-type radiation thermometers in this temperature range. High-temperature fixed points can be used at such high temperatures, but due to the small diameter of apertures of their cavities (3 mm), they are not adapted for the large field-of-views commonly featured by this kind of radiation thermometers. At LNE-Cnam, a Thermo Gauge furnace of 25.4 mm source aperture diameter is used as a comparison source to calibrate customers' instruments against a reference radiation thermometer calibrated according to the ITS-90 with the lowest uncertainties achievable in the Laboratory. But the furnace blackbody radiator exhibits a large temperature gradient that degrades its effective emissivity, and increases the calibration uncertainty due to the lack of information on the working spectral band of the industrial radiation thermometer. In order to estimate the corrections to apply, the temperature distribution (radial and on-axis) of the Thermo Gauge furnace blackbody radiator was characterized and the effective emissivity of the Thermo Gauge cavity was determined by three different methods. Because of this investigation, the corrections due to different fields of view and due to the different spectral bands of the reference pyrometer and the customer's pyrometer were obtained and the uncertainties on these corrections were evaluated.
Changing body temperature affects the T2* signal in the rat brain and reveals hypothalamic activity.
Vanhoutte, G; Verhoye, M; Van der Linden, A
2006-05-01
This study was designed to determine brain activity in the hypothalamus-in particular the thermoregulatory function of the hypothalamic preoptic area (PO). We experimentally changed the body temperature in rats within the physiological range (37-39 degrees C) and monitored changes in blood oxygenation level-dependent (BOLD) MR signal. To explore PO activity we had to deal with general signal changes caused by temperature-dependent alterations in the affinity of oxygen for hemoglobin, which contributes to BOLD contrast because it is partly sensitive to the amount of paramagnetic deoxyhemoglobin in the voxel. To reduce these overall temperature-induced effects, we corrected the BOLD data using brain-specific correction algorithms. The results showed activity of the PO during body warming from 38 degrees C to 39 degrees C, supported by an increased BOLD signal after correction. This is the first fMRI study on the autonomous nervous system in which hypothalamic activity elicited by changes in the internal environment (body temperature) was monitored. In this study we also demonstrate 1) that any fMRI study of anesthetized small animals should guard against background BOLD signal drift, since animals are vulnerable to body temperature fluctuations; and 2) the existence of a link between PO activity and the sympathetically-mediated opening of the arteriovenous anastomoses in a parallel study on the rat tail, a peripheral thermoregulatory organ.
Bazarian, Jeffrey J; Beck, Christopher; Blyth, Brian; von Ahsen, Nicolas; Hasselblatt, Martin
2006-01-01
To validate a correction factor for the extracranial release of the astroglial protein, S-100B, based on concomitant creatine kinase (CK) levels. The CK- S-100B relationship in non-head injured marathon runners was used to derive a correction factor for the extracranial release of S-100B. This factor was then applied to a separate cohort of 96 mild traumatic brain injury (TBI) patients in whom both CK and S-100B levels were measured. Corrected S-100B was compared to uncorrected S-100B for the prediction of initial head CT, three-month headache and three-month post concussive syndrome (PCS). Corrected S-100B resulted in a statistically significant improvement in the prediction of 3-month headache (area under curve [AUC] 0.46 vs 0.52, p=0.02), but not PCS or initial head CT. Using a cutoff that maximizes sensitivity (> or = 90%), corrected S-100B improved the prediction of initial head CT scan (negative predictive value from 75% [95% CI, 2.6%, 67.0%] to 96% [95% CI: 83.5%, 99.8%]). Although S-100B is overall poorly predictive of outcome, a correction factor using CK is a valid means of accounting for extracranial release. By increasing the proportion of mild TBI patients correctly categorized as low risk for abnormal head CT, CK-corrected S100-B can further reduce the number of unnecessary brain CT scans performed after this injury.
Influence of atmospheric properties on detection of wood-warbler nocturnal flight calls
NASA Astrophysics Data System (ADS)
Horton, Kyle G.; Stepanian, Phillip M.; Wainwright, Charlotte E.; Tegeler, Amy K.
2015-10-01
Avian migration monitoring can take on many forms; however, monitoring active nocturnal migration of land birds is limited to a few techniques. Avian nocturnal flight calls are currently the only method for describing migrant composition at the species level. However, as this method develops, more information is needed to understand the sources of variation in call detection. Additionally, few studies examine how detection probabilities differ under varying atmospheric conditions. We use nocturnal flight call recordings from captive individuals to explore the dependence of flight call detection on atmospheric temperature and humidity. Height or distance from origin had the largest influence on call detection, while temperature and humidity also influenced detectability at higher altitudes. Because flight call detection varies with both atmospheric conditions and flight height, improved monitoring across time and space will require correction for these factors to generate standardized metrics of songbird migration.
NASA Astrophysics Data System (ADS)
Dopita, Michael; Nicholls, David
2012-07-01
Although the analysis of HII region emission lines provides the main way of probing the chemical evolution of the universe throughout cosmic time, currently significant (factor of 2) discrepancies exist between the different methods (principally the strong line, electron temperature and recombination line methods) used to calibrate the cosmic chemical abundance scale. Although effects such as temperature fluctuations and geometrical effects have been invoked, these fail to explain the observations, particularly in the UV. Here we will show that there exists good grounds for supposing that the electrons in HII regions, as in other space plasmas, are not distributed according to a Boltzmann law. Rather, they follow a κ- distribution with κ ˜ 10. With this novel formulation, we can resolve the abundance discrepancies which have plagued this field for over three decades. Interestingly enough, the size of the correction in emission line strengths increases as we go into the UV.
Improved calibration-based non-uniformity correction method for uncooled infrared camera
NASA Astrophysics Data System (ADS)
Liu, Chengwei; Sui, Xiubao
2017-08-01
With the latest improvements of microbolometer focal plane arrays (FPA), uncooled infrared (IR) cameras are becoming the most widely used devices in thermography, especially in handheld devices. However the influences derived from changing ambient condition and the non-uniform response of the sensors make it more difficult to correct the nonuniformity of uncooled infrared camera. In this paper, based on the infrared radiation characteristic in the TEC-less uncooled infrared camera, a novel model was proposed for calibration-based non-uniformity correction (NUC). In this model, we introduce the FPA temperature, together with the responses of microbolometer under different ambient temperature to calculate the correction parameters. Based on the proposed model, we can work out the correction parameters with the calibration measurements under controlled ambient condition and uniform blackbody. All correction parameters can be determined after the calibration process and then be used to correct the non-uniformity of the infrared camera in real time. This paper presents the detail of the compensation procedure and the performance of the proposed calibration-based non-uniformity correction method. And our method was evaluated on realistic IR images obtained by a 384x288 pixels uncooled long wave infrared (LWIR) camera operated under changed ambient condition. The results show that our method can exclude the influence caused by the changed ambient condition, and ensure that the infrared camera has a stable performance.
Winterhalter, Wade E.
2011-09-01
Global climate change is expected to impact biological populations through a variety of mechanisms including increases in the length of their growing season. Climate models are useful tools for predicting how season length might change in the future. However, the accuracy of these models tends to be rather low at regional geographic scales. Here, I determined the ability of several atmosphere and ocean general circulating models (AOGCMs) to accurately simulate historical season lengths for a temperate ectotherm across the continental United States. I also evaluated the effectiveness of regional-scale correction factors to improve the accuracy of these models. I foundmore » that both the accuracy of simulated season lengths and the effectiveness of the correction factors to improve the model's accuracy varied geographically and across models. These results suggest that regional specific correction factors do not always adequately remove potential discrepancies between simulated and historically observed environmental parameters. As such, an explicit evaluation of the correction factors' effectiveness should be included in future studies of global climate change's impact on biological populations.« less
NASA Technical Reports Server (NTRS)
Kitzis, J. L.; Kitzis, S. N.
1979-01-01
The brightness temperature data produced by the SMMR Antenna Pattern Correction algorithm are evaluated. The evaluation consists of: (1) a direct comparison of the outputs of the interim, cross, and nominal APC modes; (2) a refinement of the previously determined cos beta estimates; and (3) a comparison of the world brightness temperature (T sub B) map with actual SMMR measurements.
Effect of quantum correction on nonlinear thermal wave of electrons driven by laser heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nafari, F.; Ghoranneviss, M., E-mail: ghoranneviss@gmail.com
2016-08-15
In thermal interaction of laser pulse with a deuterium-tritium (DT) plane, the thermal waves of electrons are generated instantly. Since the thermal conductivity of electron is a nonlinear function of temperature, a nonlinear heat conduction equation is used to investigate the propagation of waves in solid DT. This paper presents a self-similar analytic solution for the nonlinear heat conduction equation in a planar geometry. The thickness of the target material is finite in numerical computation, and it is assumed that the laser energy is deposited at a finite initial thickness at the initial time which results in a finite temperaturemore » for electrons at initial time. Since the required temperature range for solid DT ignition is higher than the critical temperature which equals 35.9 eV, the effects of quantum correction in thermal conductivity should be considered. This letter investigates the effects of quantum correction on characteristic features of nonlinear thermal wave, including temperature, penetration depth, velocity, heat flux, and heating and cooling domains. Although this effect increases electron temperature and thermal flux, penetration depth and propagation velocity are smaller. This effect is also applied to re-evaluate the side-on laser ignition of uncompressed DT.« less
Bose–Einstein condensation temperature of finite systems
NASA Astrophysics Data System (ADS)
Xie, Mi
2018-05-01
In studies of the Bose–Einstein condensation of ideal gases in finite systems, the divergence problem usually arises in the equation of state. In this paper, we present a technique based on the heat kernel expansion and zeta function regularization to solve the divergence problem, and obtain the analytical expression of the Bose–Einstein condensation temperature for general finite systems. The result is represented by the heat kernel coefficients, where the asymptotic energy spectrum of the system is used. Besides the general case, for systems with exact spectra, e.g. ideal gases in an infinite slab or in a three-sphere, the sums of the spectra can be obtained exactly and the calculation of corrections to the critical temperatures is more direct. For a system confined in a bounded potential, the form of the heat kernel is different from the usual heat kernel expansion. We show that as long as the asymptotic form of the global heat kernel can be found, our method works. For Bose gases confined in three- and two-dimensional isotropic harmonic potentials, we obtain the higher-order corrections to the usual results of the critical temperatures. Our method can also be applied to the problem of generalized condensation, and we give the correction of the boundary on the second critical temperature in a highly anisotropic slab.
Interstellar cyanogen and the temperature of the cosmic microwave background radiation
NASA Technical Reports Server (NTRS)
Roth, Katherine C.; Meyer, David M.; Hawkins, Isabel
1993-01-01
We present the results of a recently completed effort to determine the amount of CN rotational excitation in five diffuse interstellar clouds for the purpose of accurately measuring the temperature of the cosmic microwave background radiation (CMBR). In addition, we report a new detection of emission from the strongest hyperfine component of the 2.64 mm CN rotational transition (N = 1-0) in the direction toward HD 21483. We have used this result in combination with existing emission measurements toward our other stars to correct for local excitation effects within diffuse clouds which raise the measured CN rotational temperature above that of the CMBR. After making this correction, we find a weighted mean value of T(CMBR) = 2.729 (+0.023, -0.031) K. This temperature is in excellent agreement with the new COBE measurement of 2.726 +/- 0.010 K (Mather et al., 1993). Our result, which samples the CMBR far from the near-Earth environment, attests to the accuracy of the COBE measurement and reaffirms the cosmic nature of this background radiation. From the observed agreement between our CMBR temperature and the COBE result, we conclude that corrections for local CN excitation based on millimeter emission measurements provide an accurate adjustment to the measured rotational excitation.
NASA Technical Reports Server (NTRS)
Buggle, R. N.; Metka, W. H., Jr
1984-01-01
Instrument reads tip temperature and contact potential in seconds. Tinned soldering tip touched to temperature sensitive button for 4 seconds and to voltage probe for 1 to 3 seconds. Tip temperature and voltage appear on digital displays. Instrument quickly gives assurance conditions are correct for reliable soldering.
Protein Denaturation on p-T Axes--Thermodynamics and Analysis.
Smeller, László
2015-01-01
Proteins are essential players in the vast majority of molecular level life processes. Since their structure is in most cases substantial for their correct function, study of their structural changes attracted great interest in the past decades. The three dimensional structure of proteins is influenced by several factors including temperature, pH, presence of chaotropic and cosmotropic agents, or presence of denaturants. Although pressure is an equally important thermodynamic parameter as temperature, pressure studies are considerably less frequent in the literature, probably due to the technical difficulties associated to the pressure studies. Although the first steps in the high-pressure protein study have been done 100 years ago with Bridgman's ground breaking work, the field was silent until the modern spectroscopic techniques allowed the characterization of the protein structural changes, while the protein was under pressure. Recently a number of proteins were studied under pressure, and complete pressure-temperature phase diagrams were determined for several of them. This review summarizes the thermodynamic background of the typical elliptic p-T phase diagram, its limitations and the possible reasons for deviations of the experimental diagrams from the theoretical one. Finally we show some examples of experimentally determined pressure-temperature phase diagrams.
An experimental study of laminar film condensation with Stefan number greater than unity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahajan, R.L.; Dickinson, D.A.; Chu, T.Y.
1990-01-01
Experimental laminar condensation heat transfer data is reported for fluids with Stefan number up to 3.5. The fluid is a member of a family of fluorinated fluids developed in the last decade which have been extensively used in the electronics industry for soldering, cooling, and testing applications. Experiments were performed by suddenly immersing cold copper spheres in the saturated vapor of this fluid, and heat transfer rates were calculated using the quasi-steady temperature response of the spheres. In these experiments, the difference between saturation and wall temperature varied from 0.5{degree}C to 190{degree}C. Over this range of temperature difference, the condensatemore » properties vary significantly. For example, viscosity of the condense varies by a factor of over 50. Corrections for the temperature dependent properties of the condensate therefore were incorporated in calculating the Nusselt number based on the average heat transfer coefficient. The results are discussed in light of past experimental data theory for Stefan number less than 1. To the knowledge of the authors, this is the first reported study of condensation heat transfer for Stefan number greater that unity. 24 refs., 7 figs., 2 tabs.« less
Resistivity Correction Factor for the Four-Probe Method: Experiment I
NASA Astrophysics Data System (ADS)
Yamashita, Masato; Yamaguchi, Shoji; Enjoji, Hideo
1988-05-01
Experimental verification of the theoretically derived resistivity correction factor (RCF) is presented. Resistivity and sheet resistance measurements by the four-probe method are made on three samples: isotropic graphite, ITO film and Au film. It is indicated that the RCF can correct the apparent variations of experimental data to yield reasonable resistivities and sheet resistances.
Statistical physics when the minimum temperature is not absolute zero
NASA Astrophysics Data System (ADS)
Chung, Won Sang; Hassanabadi, Hassan
2018-04-01
In this paper, the nonzero minimum temperature is considered based on the third law of thermodynamics and existence of the minimal momentum. From the assumption of nonzero positive minimum temperature in nature, we deform the definitions of some thermodynamical quantities and investigate nonzero minimum temperature correction to the well-known thermodynamical problems.
An Implementation of the Salt-Farm Monitoring System Using Wireless Sensor Network
NASA Astrophysics Data System (ADS)
Ju, Jonggil; Park, Ingon; Lee, Yongwoong; Cho, Jongsik; Cho, Hyunwook; Yoe, Hyun; Shin, Changsun
In producing solar salt, natural environmental factors such as temperature, humidity, solar radiation, wind direction, wind speed and rain are essential elements which influence on the productivity and quality of salt. If we can manage the above mentioned environmental elements efficiently, we could achieve improved results in production of salt with good quality. To monitor and manage the natural environments, this paper suggests the Salt-Farm Monitoring System (SFMS) which is operated with renewable energy power. The system collects environmental factors directly from the environmental measure sensors and the sensor nodes. To implement a stand-alone system, we applied solar cell and wind generator to operate this system. Finally, we showed that the SFMS could monitor the salt-farm environments by using wireless sensor nodes and operate correctly without external power supply.
NASA Astrophysics Data System (ADS)
Kanjilal, Baishali; Iram, Samreen; Das, Atreyee; Chakrabarti, Haimanti
2018-05-01
This work reports a novel two dimensional approach to the theoretical computation of the glass transition temperature in simple hypothetical icosahedral packed structures based on Thin Film metallic glasses using liquid state theories in the realm of transport properties. The model starts from Navier-Stokes equation and evaluates the statistical average velocity of each different species of atom under the condition of ensemble equality to compute diffusion lengths and the diffusion coefficients as a function of temperature. The additional correction brought in is that of the limited states due to tethering of one nodule vis -a-vis the others. The movement of the molecules use our Twin Cell Model a typical model pertinent for modeling chain motions. A temperature viscosity correction by Cohen and Grest is included through the temperature dependence of the relaxation times for glass formers.
Combined Henyey-Greenstein and Rayleigh phase function.
Liu, Quanhua; Weng, Fuzhong
2006-10-01
The phase function is an important parameter that affects the distribution of scattered radiation. In Rayleigh scattering, a scatterer is approximated by a dipole, and its phase function is analytically related to the scattering angle. For the Henyey-Greenstein (HG) approximation, the phase function preserves only the correct asymmetry factor (i.e., the first moment), which is essentially important for anisotropic scattering. When the HG function is applied to small particles, it produces a significant error in radiance. In addition, the HG function is applied only for an intensity radiative transfer. We develop a combined HG and Rayleigh (HG-Rayleigh) phase function. The HG phase function plays the role of modulator extending the application of the Rayleigh phase function for small asymmetry scattering. The HG-Rayleigh phase function guarantees the correct asymmetry factor and is valid for a polarization radiative transfer. It approaches the Rayleigh phase function for small particles. Thus the HG-Rayleigh phase function has wider applications for both intensity and polarimetric radiative transfers. For microwave radiative transfer modeling in this study, the largest errors in the brightness temperature calculations for weak asymmetry scattering are generally below 0.02 K by using the HG-Rayleigh phase function. The errors can be much larger, in the 1-3 K range, if the Rayleigh and HG functions are applied separately.
A new approach to the analysis of Type 1 non-uniqueness of the ITS-90 above 0 °C
NASA Astrophysics Data System (ADS)
Gaita, Sonia; Bonnier, Georges
2018-04-01
The Type 1 non-uniqueness (NU-1) is the difference between interpolated values at the same temperature in the resistance thermometer subranges of the International Temperature Scale of 1990 (ITS-90) that overlap. The paper argues for a method of evaluating the NU-1 at a given temperature which considers all subranges of the Scale that contain the respective temperature, not only combinations of two, and it proposes mathematical models to determine the values of NU-1 for temperatures above 0 °C. The paper demonstrates that NU-1 is not the right contributor to the uncertainty associated with the realisation of the ITS-90. Therefore, a new concept of Correction for the Type 1 non-uniqueness of the Scale, CNU-1, is introduced and its mathematical model is established. Also, the estimate of CNU-1 and its standard uncertainty are defined and they are assessed through statistical analysis. The values of standard uncertainty determined by the novel methodology do not exceed 0.26 mK and they are smaller than the values given in the specific Guides developed by the Consultative Committee for Thermometry. The proposed models allow authors to single out and analyse the factors that generate Type 1 non-uniqueness of the Scale and influence its value.
Job, Gabriel E.; Kennedy, Robert J.; Heitmann, Björn; Miller, Justin S.; Walker, Sharon M.; Kemp*, Daniel S.
2006-01-01
Length-dependent helical propensities wAla(n,T) at T = 10, 25, and 60 °C are assigned from t/c values and NMR 13C chemical shifts for series 1 peptides TrpLysmInp2tLeu–AlantLeuInp2LysmNH2, n = 15, 19, and 25, m = 5, in water. Van’t Hoff analysis of wAla(n,T) show that α-helix formation is primarily enthalpy-driven. For series 2 peptides Ac–Trp Lys5Inp2tLeu–βAspHel–Alan–beta–tLeuInp2Lys5NH2, n = 12 and 22, which contain exceptionally helical Alan cores, protection factor-derived fractional helicities FH are assigned in the range 10–30 °C in water and used to calibrate temperature-dependent CD ellipticities [θ]λ,H,n,T. These are applied to CD data for series 1 peptides, 12 ≤ n ≤ 45, to confirm the wAla(n,T) assignments at T = 25 and 60 °C. The [θ]λ,H,n,T are temperature dependent within the wavelength region, 222 ± 12 nm, and yield a temperature correction for calculation of FH from experimental values of [θ]222,n,T,Exp. PMID:16787087
NASA Astrophysics Data System (ADS)
Van Wynsberge, Simon; Menkes, Christophe; Le Gendre, Romain; Passfield, Teuru; Andréfouët, Serge
2017-12-01
In remote coral reef environments, lagoon and reef in situ measurements of temperature are scarce. Sea Surface Temperature (SST) measured by satellite has been frequently used as a proxy of the lagoon temperature experienced by coral reef organisms (TL) especially during coral bleaching events. However, the link between SST and TL is poorly characterized. First, we compared the correlation between various SST series and TL from 2012 to 2016 in three atolls and one island in the Central South Pacific Ocean. Simple linear correlation between SST and TL ranged between 0.44 and 0.97 depending on lagoons, localities of sensors, and type of SST data. High-resolution-satellite-measurements of SST inside the lagoons did not outperform oceanic SST series, suggesting that SST products are not adapted for small lagoons. Second, we modelled the difference between oceanic SST and TL as a function of the drivers of lagoon water renewal and mixing, namely waves, tide, wind, and season. The multivariate models reduced significantly the bias between oceanic SST and TL. In atoll lagoons, and probably in other hydrodynamically semi-open systems, a correction taking into account these factors is necessary when SST are used to characterize organisms' thermal stress thresholds.
NASA Astrophysics Data System (ADS)
Cooper, W. A.; Spuler, S. M.; Spowart, M.; Lenschow, D. H.; Friesen, R. B.
2014-03-01
A new laser air-motion sensor measures the true airspeed with an uncertainty of less than 0.1 m s-1 (standard error) and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard-error uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the Global Positioning System, then indicate (via integrations of the hydrostatic equation during climbs and descents) that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that the new laser air-motion sensor, combined with parametrized fits to correction factors for the measured dynamic and ambient pressure, provides a measurement of temperature that is independent of any other temperature sensor.
Monte Carlo calculated correction factors for diodes and ion chambers in small photon fields.
Czarnecki, D; Zink, K
2013-04-21
The application of small photon fields in modern radiotherapy requires the determination of total scatter factors Scp or field factors Ω(f(clin), f(msr))(Q(clin), Q(msr)) with high precision. Both quantities require the knowledge of the field-size-dependent and detector-dependent correction factor k(f(clin), f(msr))(Q(clin), Q(msr)). The aim of this study is the determination of the correction factor k(f(clin), f(msr))(Q(clin), Q(msr)) for different types of detectors in a clinical 6 MV photon beam of a Siemens KD linear accelerator. The EGSnrc Monte Carlo code was used to calculate the dose to water and the dose to different detectors to determine the field factor as well as the mentioned correction factor for different small square field sizes. Besides this, the mean water to air stopping power ratio as well as the ratio of the mean energy absorption coefficients for the relevant materials was calculated for different small field sizes. As the beam source, a Monte Carlo based model of a Siemens KD linear accelerator was used. The results show that in the case of ionization chambers the detector volume has the largest impact on the correction factor k(f(clin), f(msr))(Q(clin), Q(msr)); this perturbation may contribute up to 50% to the correction factor. Field-dependent changes in stopping-power ratios are negligible. The magnitude of k(f(clin), f(msr))(Q(clin), Q(msr)) is of the order of 1.2 at a field size of 1 × 1 cm(2) for the large volume ion chamber PTW31010 and is still in the range of 1.05-1.07 for the PinPoint chambers PTW31014 and PTW31016. For the diode detectors included in this study (PTW60016, PTW 60017), the correction factor deviates no more than 2% from unity in field sizes between 10 × 10 and 1 × 1 cm(2), but below this field size there is a steep decrease of k(f(clin), f(msr))(Q(clin), Q(msr)) below unity, i.e. a strong overestimation of dose. Besides the field size and detector dependence, the results reveal a clear dependence of the correction factor on the accelerator geometry for field sizes below 1 × 1 cm(2), i.e. on the beam spot size of the primary electrons hitting the target. This effect is especially pronounced for the ionization chambers. In conclusion, comparing all detectors, the unshielded diode PTW60017 is highly recommended for small field dosimetry, since its correction factor k(f(clin), f(msr))(Q(clin), Q(msr)) is closest to unity in small fields and mainly independent of the electron beam spot size.
Trailer microclimate and calf welfare during fall-run transportation of beef calves in Alberta.
Goldhawk, C; Janzen, E; González, L A; Crowe, T; Kastelic, J; Pajor, E; Schwartzkopf-Genswein, K S
2014-11-01
Twenty-four commercial loads of beef calves (BW 300 ± 52 kg, mean ± SD) were evaluated for associations among transportation factors, in-transit microclimate, and calf welfare. Transport factors evaluated included vehicle speed, space allowance, compartment within trailer, and transit duration. Calves were transported for 7 h 44 min ± 4 h 15 min, with space allowances ranging from 0.56 to 1.17 m(2)/animal. Compartment within trailer, space allowance, and vehicle speed did not affect the difference between compartment ceiling-level and ambient temperatures during a 30-min period of steady-state microclimate. During the steady-state period, a 1°C increase in ambient temperature above the mean of 5.6°C was associated with a 0.62°C decrease in the difference between ceiling-level and ambient temperature (P < 0.01). Ceiling-level temperature and humidity during the first 400 min of transport could be predicted by ambient conditions and vehicle speed (pseudo-r(2) of 0.91 and 0.82 for temperature and humidity ratio; P < 0.01). Events when animal-level temperature-humidity index (THI) was classified as above the "danger" level lasted for 10.2 ± 4.1 consecutive minutes. Ambient and ceiling-level THI values were not classified as above "danger" for 90.0 and 84.9% of animal-level events. Ambient and ceiling-level THI were 5.0 ± 2.1 and 4.7 ± 2.0° Flower than animal-level THI during periods of disagreement, respectively. The majority of calves arrived in good condition and biochemical indicators of calf welfare were within reference ranges for healthy cattle. Within the study population, high pre-transport cortisol and hematocrit were associated with elevated post-transport values (P < 0.01). A 1% increase in shrink during the weaning to loading interval (24 or 48 h) decreased transportation shrink by 0.26 ± 0.04% when average animal-level temperature was greater than 5°C and decreased transportation shrink by 0.11 ± 0.04% when average animal-level temperature was less than 5°C (P < 0.01). We inferred that the study results support future investigation of the extension of in-transit microclimate as a risk factor for post-transport treatment for disease. The study also provided correction factors for estimating in-transit microclimate that could assist in evaluation of transportation management and decisions affecting profitability and calf welfare.
Neonatal infrared thermography imaging: Analysis of heat flux during different clinical scenarios
NASA Astrophysics Data System (ADS)
Abbas, Abbas K.; Heimann, Konrad; Blazek, Vladimir; Orlikowsky, Thorsten; Leonhardt, Steffen
2012-11-01
IntroductionAn accurate skin temperature measurement of Neonatal Infrared Thermography (NIRT) imaging requires an appropriate calibration process for compensation of external effects (e.g. variation of environmental temperature, variable air velocity or humidity). Although modern infrared cameras can perform such calibration, an additional compensation is required for highly accurate thermography. This compensation which corrects any temperature drift should occur during the NIRT imaging process. We introduce a compensation technique which is based on modeling the physical interactions within the measurement scene and derived the detected temperature signal of the object. Materials and methodsIn this work such compensation was performed for different NIRT imaging application in neonatology (e.g. convective incubators, kangaroo mother care (KMC), and an open radiant warmer). The spatially distributed temperatures of 12 preterm infants (average gestation age 31 weeks) were measured under these different infant care arrangements (i.e. closed care system like a convective incubator, and open care system like kangaroo mother care, and open radiant warmer). ResultsAs errors in measurement of temperature were anticipated, a novel compensation method derived from infrared thermography of the neonate's skin was developed. Moreover, the differences in temperature recording for the 12 preterm infants varied from subject to subject. This variation could be arising from individual experimental setting applied to the same region of interest over the neonate's body. The experimental results for the model-based corrections is verified over the selected patient group. ConclusionThe proposed technique relies on applying model-based correction to the measured temperature and reducing extraneous errors during NIRT. This application specific method is based on different heat flux compartments present in neonatal thermography scene. Furthermore, these results are considered to be groundwork for further investigation, especially when using NIRT imaging arrangement with additional compensation settings together with reference temperature measurements.
Fatigue Crack Growth Rate and Stress-Intensity Factor Corrections for Out-of-Plane Crack Growth
NASA Technical Reports Server (NTRS)
Forth, Scott C.; Herman, Dave J.; James, Mark A.
2003-01-01
Fatigue crack growth rate testing is performed by automated data collection systems that assume straight crack growth in the plane of symmetry and use standard polynomial solutions to compute crack length and stress-intensity factors from compliance or potential drop measurements. Visual measurements used to correct the collected data typically include only the horizontal crack length, which for cracks that propagate out-of-plane, under-estimates the crack growth rates and over-estimates the stress-intensity factors. The authors have devised an approach for correcting both the crack growth rates and stress-intensity factors based on two-dimensional mixed mode-I/II finite element analysis (FEA). The approach is used to correct out-of-plane data for 7050-T7451 and 2025-T6 aluminum alloys. Results indicate the correction process works well for high DeltaK levels but fails to capture the mixed-mode effects at DeltaK levels approaching threshold (da/dN approximately 10(exp -10) meter/cycle).
Weekly headache periodicity and the effect of weather changes on headache
NASA Astrophysics Data System (ADS)
Osterman, P. O.; Lövstrand, K. G.; Lundberg, P. O.; Lundquist, S.; Muhr, C.
1981-03-01
A weekly periodicity in the occurrence of headache was found in 53 patients with migraine and in 20 with tension headache during an observation period of four weeks. In the migraine group the frequency was highest on Thursday and on Saturday and lowest on Sunday Monday, and in patients with tension headache it was lowest on Sunday Tuesday and highest on Friday. During the observation period several climatic factors were recorded. After correction for the weekly periodicity a highly significant correlation was found in the migraine group between headache frequency, on the one hand, and atmospheric pressure and outdoor temperature recorded 1 3 days later, on the other.
Unraveling fabrication and calibration of wearable gas monitor for use under free-living conditions.
Yue Deng; Cheng Chen; Tsow, Francis; Xiaojun Xian; Forzani, Erica
2016-08-01
Volatile organic compounds (VOC) are organic chemicals that have high vapor pressure at regular conditions. Some VOC could be dangerous to human health, therefore it is important to determine real-time indoor and outdoor personal exposures to VOC. To achieve this goal, our group has developed a wearable gas monitor with a complete sensor fabrication and calibration protocol for free-living conditions. Correction factors for calibrating the sensors, including sensitivity, aging effect, and temperature effect are implemented into a Quick Response Code (QR code), so that the pre-calibrated quartz tuning fork (QTF) sensor can be used with the wearable monitor under free-living conditions.
Hawking radiation of charged Dirac particles from a Kerr-Newman black hole
NASA Astrophysics Data System (ADS)
Zhou, Shiwei; Liu, Wenbiao
2008-05-01
Charged Dirac particles’ Hawking radiation from a Kerr-Newman black hole is calculated using Damour-Ruffini’s method. When energy conservation and the backreaction of particles to the space-time are considered, the emission spectrum is not purely thermal anymore. The leading term is exactly the Boltzman factor, and the deviation from the purely thermal spectrum can bring some information out, which can be treated as an explanation to the information loss paradox. The result can also be treated as a quantum-corrected radiation temperature, which is dependent on the black hole background and the radiation particle’s energy, angular momentum, and charge.
The Effects of Engine Speed and Mixture Temperature on the Knocking Characteristics of Several Fuels
1940-07-01
only. NACA list dtd 28 Sep 1945; NASA TR Server website ‘ ,f. ; :,““’? ,. .--:- .— #..- “W!+ ‘ ‘:u:i’w W9SlFlCAT10#CAME1lEO~ . TilCH131CAL NOTES...A photograph of the engine ’”used.is shown in figure 1. The electric air heater is above the engine and the cathod.e- ray oscill”ograph used as a...indicated that increasing the con- “press,ion ratio fro@ 6 to 11 results in.’a decie~se in the ‘dbzisity correction fact-or of shout . “0.030 at 1,500
Jarque, Sergio; Prats, Eva; Olivares, Alba; Casado, Marta; Ramón, Montserrat; Piña, Benjamin
2014-11-15
The blue mussel Mytilus galloprovincialis has been used as monitoring organism in many biomonitoring programs because of its broad distribution in South European sea waters and its physiological characteristics. Different pollution-stress biomarkers, including gene expression biomarkers, have been developed to determine its physiological response to the presence of different pollutants. However, the existing information about basal expression profiles is very limited, as very few biomarker-based studies were designed to reflect the natural seasonal variations. In the present study, we analyzed the natural expression patterns of several genes commonly used in biomonitoring, namely ferritin, metallothionein, cytochrome P450, glutathione S-transferase, heat shock protein and the kinase responsive to stress KRS, during an annual life cycle. Analysis of mantle-gonad samples of cultured populations of M. galloprovincialis from the Delta del Ebro (North East Spain) showed natural seasonal variability of these biomarkers, pointing to temperature and oxidative stress as major abiotic modulators. In turn, the reproductive cycle, a process that can be tracked by VCLM7 expression, and known to be influenced by temperature, seems to be the major biotic factor involved in seasonality. Our results illustrate the influence of environmental factors in the physiology of mussels through their annual cycle, a crucial information for the correct interpretation of responses under stress conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Exact-solution for cone-plate viscometry
NASA Astrophysics Data System (ADS)
Giacomin, A. J.; Gilbert, P. H.
2017-11-01
The viscosity of a Newtonian fluid is often measured by confining the fluid to the gap between a rotating cone that is perpendicular to a fixed disk. We call this experiment cone-plate viscometry. When the cone angle approaches π/2 , the viscometer gap is called narrow. The shear stress in the fluid, throughout a narrow gap, hardly departs from the shear stress exerted on the plate, and we thus call cone-plate flow nearly homogeneous. In this paper, we derive an exact solution for this slight heterogeneity, and from this, we derive the correction factors for the shear rate on the cone and plate, for the torque, and thus, for the measured Newtonian viscosity. These factors thus allow the cone-plate viscometer to be used more accurately, and with cone-angles well below π/2 . We find cone-plate flow field heterogeneity to be far slighter than previously thought. We next use our exact solution for the velocity to arrive at the exact solution for the temperature rise, due to viscous dissipation, in cone-plate flow subject to isothermal boundaries. Since Newtonian viscosity is a strong function of temperature, we expect our new exact solution for the temperature rise be useful to those measuring Newtonian viscosity, and especially so, to those using wide gaps. We include two worked examples to teach practitioners how to use our main results.
Generating daily weather data for ecosystem modelling in the Congo River Basin
NASA Astrophysics Data System (ADS)
Petritsch, Richard; Pietsch, Stephan A.
2010-05-01
Daily weather data are an important constraint for diverse applications in ecosystem research. In particular, temperature and precipitation are the main drivers for forest ecosystem productivity. Mechanistic modelling theory heavily relies on daily values for minimum and maximum temperatures, precipitation, incident solar radiation and vapour pressure deficit. Although the number of climate measurement stations increased during the last centuries, there are still regions with limited climate data. For example, in the WMO database there are only 16 stations located in Gabon with daily weather measurements. Additionally, the available time series are heavily affected by measurement errors or missing values. In the WMO record for Gabon, on average every second day is missing. Monthly means are more robust and may be estimated over larger areas. Therefore, a good alternative is to interpolate monthly mean values using a sparse network of measurement stations, and based on these monthly data generate daily weather data with defined characteristics. The weather generator MarkSim was developed to produce climatological time series for crop modelling in the tropics. It provides daily values for maximum and minimum temperature, precipitation and solar radiation. The monthly means can either be derived from the internal climate surfaces or prescribed as additional inputs. We compared the generated outputs observations from three climate stations in Gabon (Lastourville, Moanda and Mouilla) and found that maximum temperature and solar radiation were heavily overestimated during the long dry season. This is due to the internal dependency of the solar radiation estimates to precipitation. With no precipitation a cloudless sky is assumed and thus high incident solar radiation and a large diurnal temperature range. However, in reality it is cloudy in the Congo River Basin during the long dry season. Therefore, we applied a correction factor to solar radiation and temperature range based on the ratio of values on rainy days and days without rain, respectively. For assessing the impact of our correction, we simulated the ecosystem behaviour using the climate data from Lastourville, Moanda and Mouilla with the mechanistic ecosystem model Biome-BGC. Differences in terms of the carbon, nitrogen and water cycle were subsequently analysed and discussed.
NASA Astrophysics Data System (ADS)
Cheng, Y.; He, K. B.; Duan, F. K.; Zheng, M.; Ma, Y. L.; Tan, J. H.; Du, Z. Y.
2010-06-01
The sampling artifacts (both positive and negative) and the influence of thermal-optical methods (both charring correction method and the peak inert mode temperature) on the split of organic carbon (OC) and elemental carbon (EC) were evaluated in Beijing. The positive sampling artifact constituted 10% and 23% of OC concentration determined by the bare quartz filter during winter and summer, respectively. For summer samples, the adsorbed gaseous organics were found to continuously evolve off the filter during the whole inert mode when analyzed by the IMPROVE-A temperature protocol. This may be due to the oxidation of the adsorbed organics during sampling (reaction artifact) which would increase their thermal stability. The backup quartz approach was evaluated by a denuder-based method for assessing the positive artifact. The quartz-quartz (QBQ) in series method was demonstrated to be reliable, since all of the OC collected by QBQ was from originally gaseous organics. Negative artifact that could be adsorbed by quartz filter was negligible. When the activated carbon impregnated glass fiber (CIG) filter was used as the denuded backup filter, the denuder efficiency for removing gaseous organics that could be adsorbed by the CIG filter was only about 30%. EC values were found to differ by a factor of about two depending on the charring correction method. Influence of the peak inert mode temperature was evaluated based on the summer samples. The EC value was found to continuously decrease with the peak inert mode temperature. Premature evolution of light absorbing carbon began when the peak inert mode temperature was increased from 580 to 650 °C; when further increased to 800 °C, the OC and EC split frequently occurred in the He mode, and the last OC peak was characterized by the overlapping of two separate peaks. The discrepancy between EC values defined by different temperature protocols was larger for Beijing carbonaceous aerosol compared with North America and Europe, perhaps due to the higher concentration of brown carbon in Beijing aerosol.
Radar attenuation and temperature within the Greenland Ice Sheet
MacGregor, Joseph A; Li, Jilu; Paden, John D; Catania, Ginny A; Clow, Gary D.; Fahnestock, Mark A; Gogineni, Prasad S.; Grimm, Robert E.; Morlighem, Mathieu; Nandi, Soumyaroop; Seroussi, Helene; Stillman, David E
2015-01-01
The flow of ice is temperature-dependent, but direct measurements of englacial temperature are sparse. The dielectric attenuation of radio waves through ice is also temperature-dependent, and radar sounding of ice sheets is sensitive to this attenuation. Here we estimate depth-averaged radar-attenuation rates within the Greenland Ice Sheet from airborne radar-sounding data and its associated radiostratigraphy. Using existing empirical relationships between temperature, chemistry, and radar attenuation, we then infer the depth-averaged englacial temperature. The dated radiostratigraphy permits a correction for the confounding effect of spatially varying ice chemistry. Where radar transects intersect boreholes, radar-inferred temperature is consistently higher than that measured directly. We attribute this discrepancy to the poorly recognized frequency dependence of the radar-attenuation rate and correct for this effect empirically, resulting in a robust relationship between radar-inferred and borehole-measured depth-averaged temperature. Radar-inferred englacial temperature is often lower than modern surface temperature and that of a steady state ice-sheet model, particularly in southern Greenland. This pattern suggests that past changes in surface boundary conditions (temperature and accumulation rate) affect the ice sheet's present temperature structure over a much larger area than previously recognized. This radar-inferred temperature structure provides a new constraint for thermomechanical models of the Greenland Ice Sheet.
Local non-Calderbank-Shor-Steane quantum error-correcting code on a three-dimensional lattice
NASA Astrophysics Data System (ADS)
Kim, Isaac H.
2011-05-01
We present a family of non-Calderbank-Shor-Steane quantum error-correcting code consisting of geometrically local stabilizer generators on a 3D lattice. We study the Hamiltonian constructed from ferromagnetic interaction of overcomplete set of local stabilizer generators. The degenerate ground state of the system is characterized by a quantum error-correcting code whose number of encoded qubits are equal to the second Betti number of the manifold. These models (i) have solely local interactions; (ii) admit a strong-weak duality relation with an Ising model on a dual lattice; (iii) have topological order in the ground state, some of which survive at finite temperature; and (iv) behave as classical memory at finite temperature.
Hwang, Dusun; Yoon, Dong-Jin; Kwon, Il-Bum; Seo, Dae-Cheol; Chung, Youngjoo
2010-05-10
A novel method for auto-correction of fiber optic distributed temperature sensor using anti-Stokes Raman back-scattering and its reflected signal is presented. This method processes two parts of measured signal. One part is the normal back scattered anti-Stokes signal and the other part is the reflected signal which eliminate not only the effect of local losses due to the micro-bending or damages on fiber but also the differential attenuation. Because the beams of the same wavelength are used to cancel out the local variance in transmission medium there is no differential attenuation inherently. The auto correction concept was verified by the bending experiment on different bending points. (c) 2010 Optical Society of America.
NASA Astrophysics Data System (ADS)
Jimenez, Jose Ramón; González Anera, Rosario; Jiménez del Barco, Luis; Hita, Enrique; Pérez-Ocón, Francisco
2005-01-01
We provide a correction factor to be added in ablation algorithms when a Gaussian beam is used in photorefractive laser surgery. This factor, which quantifies the effect of pulse overlapping, depends on beam radius and spot size. We also deduce the expected post-surgical corneal radius and asphericity when considering this factor. Data on 141 eyes operated on LASIK (laser in situ keratomileusis) with a Gaussian profile show that the discrepancy between experimental and expected data on corneal power is significantly lower when using the correction factor. For an effective improvement of post-surgical visual quality, this factor should be applied in ablation algorithms that do not consider the effects of pulse overlapping with a Gaussian beam.
NASA Astrophysics Data System (ADS)
Rivalland, Vincent; Tardy, Benjamin; Huc, Mireille; Hagolle, Olivier; Marcq, Sébastien; Boulet, Gilles
2016-04-01
Land Surface temperature (LST) is a critical variable for studying the energy and water budgets at the Earth surface, and is a key component of many aspects of climate research and services. The Landsat program jointly carried out by NASA and USGS has been providing thermal infrared data for 40 years, but no associated LST product has been yet routinely proposed to community. To derive LST values, radiances measured at sensor-level need to be corrected for the atmospheric absorption, the atmospheric emission and the surface emissivity effect. Until now, existing LST products have been generated with multi channel methods such as the Temperature/Emissivity Separation (TES) adapted to ASTER data or the generalized split-window algorithm adapted to MODIS multispectral data. Those approaches are ill-adapted to the Landsat mono-window data specificity. The atmospheric correction methodology usually used for Landsat data requires detailed information about the state of the atmosphere. This information may be obtained from radio-sounding or model atmospheric reanalysis and is supplied to a radiative transfer model in order to estimate atmospheric parameters for a given coordinate. In this work, we present a new automatic tool dedicated to Landsat thermal data correction which improves the common atmospheric correction methodology by introducing the spatial dimension in the process. The python tool developed during this study, named LANDARTs for LANDsat Automatic Retrieval of surface Temperature, is fully automatic and provides atmospheric corrections for a whole Landsat tile. Vertical atmospheric conditions are downloaded from the ERA Interim dataset from ECMWF meteorological organization which provides them at 0.125 degrees resolution, at a global scale and with a 6-hour-time step. The atmospheric correction parameters are estimated on the atmospheric grid using the commercial software MODTRAN, then interpolated to 30m resolution. We detail the processing steps implemented in LANDARTs and propose a local and spatial validation of the LST products from Landsat dataset archive over two climatically contrasted zones: south-west France and centre of Tunisia. In both sites, long term datasets of in-situ surface temperature measurements have been compared to LST obtained for Landsat data processed by LANDARTs and filtered from clouds. This temporal comparison presents RMSE between 1.84K and 2.55K. Then, Landsat LST products are compared to ASTER kinetic surface temperature products on two synchronous dates from both zones. This comparison presents satisfactory RMSE about 2.55K with a good correlation coefficient of 0.9. Finally, a sensibility analysis to the spatial variation of parameters presents a variability reaching 2K at the Landsat image scale and confirms the improved accuracy in Landsat LST estimation linked to our spatial approach.
Gu, Huidong; Liu, Guowen; Wang, Jian; Aubry, Anne-Françoise; Arnold, Mark E
2014-09-16
A simple procedure for selecting the correct weighting factors for linear and quadratic calibration curves with least-squares regression algorithm in bioanalytical LC-MS/MS assays is reported. The correct weighting factor is determined by the relationship between the standard deviation of instrument responses (σ) and the concentrations (x). The weighting factor of 1, 1/x, or 1/x(2) should be selected if, over the entire concentration range, σ is a constant, σ(2) is proportional to x, or σ is proportional to x, respectively. For the first time, we demonstrated with detailed scientific reasoning, solid historical data, and convincing justification that 1/x(2) should always be used as the weighting factor for all bioanalytical LC-MS/MS assays. The impacts of using incorrect weighting factors on curve stability, data quality, and assay performance were thoroughly investigated. It was found that the most stable curve could be obtained when the correct weighting factor was used, whereas other curves using incorrect weighting factors were unstable. It was also found that there was a very insignificant impact on the concentrations reported with calibration curves using incorrect weighting factors as the concentrations were always reported with the passing curves which actually overlapped with or were very close to the curves using the correct weighting factor. However, the use of incorrect weighting factors did impact the assay performance significantly. Finally, the difference between the weighting factors of 1/x(2) and 1/y(2) was discussed. All of the findings can be generalized and applied into other quantitative analysis techniques using calibration curves with weighted least-squares regression algorithm.