Temperature dependence of direct current conductivity in Ag-ED20 nanocomposite films
NASA Astrophysics Data System (ADS)
Novikov, G. F.; Rabenok, E. V.; Bogdanova, L. M.; Irzhak, V. I.
2017-10-01
The effect of silver nanoparticles (NPs) in the concentration range of ≤0.8 wt % have on direct current conductivity σdc of Ag-ED20 nanocomposite is studied by method of broadband dielectric spectroscopy (10-2-105 Hz) method of broadband dielectric spectroscopy. It is found that temperature dependence σdc consists of two sections: above the glass transition temperature ( T g), the dependence corresponds to the empirical Vogel-Fulcher-Tammann law (Vogel temperature T 0 does not depend on the NP concentration); below T g, the dependence is Arrhenius with activation energy E a ≈ 1.2 eV. In the region where T > T g, the σdc value grows along with NP concentration. It is concluded that the observed broken form of the temperature dependence is apparently due to a change in the conduction mechanism after the freezing of ion mobility at temperatures below T g.
DC and AC conductivity properties of bovine dentine hydroxyapatite (BDHA)
NASA Astrophysics Data System (ADS)
Dumludag, F.; Gunduz, O.; Kılıc, O.; Ekren, N.; Kalkandelen, C.; Ozbek, B.; Oktar, F. N.
2017-12-01
Bovine dentine bio-waste may be used as a potential natural source of hydroxyapatite (BDHA), thus extraction of bovine dentin hydroxyapatite (BDHA) from bio-waste is significantly important to fabricate in a simple, economically and environmentally preferable. DC and AC conductivity properties of BDHA were investigated depending on sintering temperature (1000ºC - 1300°C) in air and vacuum (<10-2 mbar) ambient at room temperature. DC conductivity measurements performed between -1 and 1 V. AC conductivity measurements performed in the frequency range of 40 Hz - 100 kHz. DC conductivity results showed that dc conductivity values of the BDHA decrease with increasing sintering temperature in air ambient. It is not observed remarkable/systematic behavior for ac conductivity depending on sintering temperature.
NASA Astrophysics Data System (ADS)
Sarkar, Atri; Rahaman, Abdulla Bin; Banerjee, Debamalya
2018-03-01
Temperature dependent charge transport properties of P3HT:PCBM bulk heterojunction are analysed by dc and ac measurements under dark conditions across a wide temperature range of 110-473 K, which includes the thermodynamic glass transition temperature (Tg ˜320 K) of the system. A change from Ohmic conduction to space charge limited current conduction at higher (⩾1.2 V) applied bias voltages above ⩾200 K is observed from J-V characteristics. From capacitance-voltage (C-V) measurement at room temperature, the occurrence of a peak near the built-in voltage is observed below the dielectric relaxation frequency, originating from the competition between drift and diffusion driven motions of charges. Carrier concentration (N) is calculated from C-V measurements taken at different temperatures. Room temperature mobility values at various applied bias voltages are in accordance with that obtained from transient charge extraction by linearly increasing voltage measurement. Sample impedance is measured over five decades of frequency across temperature range by using lock-in detection. This data is used to extract temperature dependence of carrier mobility (μ), and dc conductivity (σ_dc ) which is low frequency extrapolation of ac conductivity. An activation energy of ˜126 meV for the carrier hopping process at the metal-semiconductor interface is estimated from temperature dependence of σ_dc . Above T g, μ levels off to a constant value, whereas σ_dc starts to decrease after a transition knee at T g that can be seen as a combined effect of changes in μ and N. All these observed changes across T g can be correlated to enhanced polymer motion above the glass transition.
Temperature-dependent performance of all-NbN DC-SQUID magnetometers
NASA Astrophysics Data System (ADS)
Liu, Quansheng; Wang, Huiwu; Zhang, Qiyu; Wang, Hai; Peng, Wei; Wang, Zhen
2017-05-01
Integrated NbN direct current superconducting quantum interference device (DC-SQUID) magnetometers were developed based on high-quality epitaxial NbN/AlN/NbN Josephson junctions for SQUID applications operating at high temperatures. We report the current-voltage and voltage-flux characteristics and the noise performance of the NbN DC-SQUIDs for temperatures ranging from 4.2 to 9 K. The critical current and voltage swing of the DC-SQUIDs decreased by 15% and 25%, respectively, as the temperature was increased from 4.2 to 9 K. The white flux noise of the DC-SQUID magnetometer at 1 kHz increased from 3.9 μΦ0/Hz1/2 at 4.2 K to 4.8 μΦ0/Hz1/2 at 9 K with 23% increase, corresponding to the magnetic field noise of 6.6 and 8.1 fT/Hz1/2, respectively. The results show that NbN DC-SQUIDs improve the tolerance of the operating temperatures and temperature fluctuations in SQUID applications.
NASA Astrophysics Data System (ADS)
Mahmoud, S. A.; Madi, N. K.; Kassem, M. E.; El-Khatib, A.
A study has been made of the temperature dependence of the d.c. conductivity of pure and borated low density polyethylene LDPE (4% and 8% borax). The above calculations were carried out before and after X-ray irradiation. The irradiation dose was varied from 0 to 1000 rad. The d.c. electrical conductivity of Polyvinyl chloride (PVC) and perspex was measured as a function of temperature ranging from 20°C to 100°C. These samples were irradiated with X-rays of dose 200 rad. The variation of the d.c. conductivity of the treated samples versus temperature was investigated. The results reveal that the d.c. conductivity of LDPE is highly affected by radiation and/or dopant. In addition, the sensitivity of the explored polymers to X-ray irradiation is strongly dependent on its chemical nature.
NASA Astrophysics Data System (ADS)
Li, L.; Chen, M. Y.; Zhu, X. C.; Gao, Z. W.; Zhang, H. D.; Li, G. X.; Zhang, J.; Yu, C. L.; Feng, Y. M.
2018-01-01
The breakdown characteristics of oil-paper insulation in AC, DC and compound field at different temperatures were studied. The breakdown mechanism of oil-paper insulation at different temperatures and in AC and DC electric fields was analyzed. The breakdown characteristic mechanisms of the oil-paper insulation in the compound field at different temperatures were obtained: the dielectric strength of oil-paper compound insulation is changed gradually from dependence on oil dielectric strength to dependence on paperboard dielectric strength at low temperature. The dielectric strength of oil-paper compound insulation is always related to the oil dielectric strength closely at high temperature with decrease of AC content.
Electrothermal DC characterization of GaN on Si MOS-HEMTs
NASA Astrophysics Data System (ADS)
Rodríguez, R.; González, B.; García, J.; Núñez, A.
2017-11-01
DC characteristics of AlGaN/GaN on Si single finger MOS-HEMTs, for different gate geometries, have been measured and numerically simulated with substrate temperatures up to 150 °C. Defect density, depending on gate width, and thermal resistance, depending additionally on temperature, are extracted from transfer characteristics displacement and the AC output conductance method, respectively, and modeled for numerical simulations with Atlas. The thermal conductivity degradation in thin films is also included for accurate simulation of the heating response. With an appropriate methodology, the internal model parameters for temperature dependencies have been established. The numerical simulations show a relative error lower than 4.6% overall, for drain current and channel temperature behavior, and account for the measured device temperature decrease with the channel length increase as well as with the channel width reduction, for a set bias.
Steady-state and second-sound measurements of Kapitza resistance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katerberg, James Alan
1980-01-01
Published steady-state (dc) and second-sound (ac) measurements of the Kapitza resistance (R K) have differed in reports of the temperature dependence of R K. The two types of measurements were also seen to conflict on the measured effects of sample damage on the magnitude of R K. To resolve these differences, measurements of R K have been made using both techniques on the same sample, during the same experimental run. Our measurements, made on copper-liquid helium interfaces from 1.1 to 2.1 K, show excellent agreement between the dc and ac results. No evidence is seen for a frequency-dependent Kapitza resistance.more » Our measurements show an increase in R K when the sample is damaged, agreeing with published ac measurements, but disagreeing with published dc measurements. The temperature dependence of R K in our measurements is approximately T -3 from 1.5 to 2.1 K, in agreement with published dc measurements. A T -4 dependence has been seen in the published ac experiments. In our experiments, a T -4 dependence is observed only when second sound is coupled from the generating cavity to the helium bath.« less
Temperature and Microstructural Effects on the Superconducting Properties of Niobium Thin Films
Beebe, Melissa R.; Valente-Feliciano, Anne -Marie; Beringer, Douglas B.; ...
2016-11-23
Here, superconducting thin films have a wide range of dc and RF applications, from detectors to superconducting radio frequency. Amongst the most used materials, niobium (Nb) has the highest critical temperature (TC) and highest lower critical field (HC1) of the elemental superconductors and can be deposited on a variety of substrates, making Nb thin films very appealing for such applications. Here, we present temperature-dependent dc studies on the critical temperature and critical fields of Nb thin films grown on copper and r-plane sapphire surfaces. Additionally, we correlate the dc superconducting properties of these films with their microstructure, which allows formore » the possibility of tailoring future films for a specific application.« less
Retrieval of water vapor mixing ratios from a laser-based sensor
NASA Technical Reports Server (NTRS)
Tucker, George F.
1995-01-01
Langley Research Center has developed a novel external path sensor which monitors water vapor along an optical path between an airplane window and reflective material on the plane's engine. An infrared tunable diode laser is wavelength modulated across a water vapor absorption line at a frequency f. The 2f and DC signals are measured by a detector mounted adjacent to the laser. The 2f/DC ratio depends on the amount of wavelength modulation, the water vapor absorption line being observed, and the temperature, pressure, and water vapor content of the atmosphere. The present work concerns efforts to quantify the contributions of these factors and to derive a method for extracting the water vapor mixing ratio from the measurements. A 3 m cell was fabricated in order to perform laboratory tests of the sensor. Measurements of 2f/DC were made for a series of pressures and modulation amplitudes. During my 1994 faculty fellowship, a computer program was created which allowed 2f/DC to be calculated for any combination of the variables which effect it. This code was used to generate 2f/DC values for the conditions measured in the laboratory. The experimental and theoretical values agreed to within a few percent. As a result, the laser modulation amplitude can now be set in the field by comparing the response of the instrument to the calculated response as a function of modulation amplitude. Once the validity of the computer code was established, it was used to investigate possible candidate absorption lines. 2f/DC values were calculated for pressures, temperatures, and water vapor mixing ratios expected to be encountered in future missions. The results have been incorporated into a database which will be used to select the best line for a particular mission. The database will also be used to select a retrieval technique. For examples under some circumstances there is little temperature dependence in 2f/DC so temperature can be neglected. In other cases, there is a dependence with temperature for a particular pressure, requiring a more complicated retrieval algorithm. Future experimental work is necessary to test agreement with the theoretical values over a range of temperatures and mixing ratios. Additionally, retrieval algorithms for forthcoming missions must be incorporated into the software package which controls the instrument.
Solid Silicone Elastomer Material(DC745U)-Historical Overview and New Experimental Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz-Acosta, Denisse
2012-08-08
DC745U is a silicone elastomer used in several weapon systems. DC745U is manufactured by Dow Corning and its formulation is proprietary. Risk changes without notification to the customer. {sup 1}H and {sup 29}Si{l_brace}{sup 1}H{r_brace} NMR have previously determined that DC745U contains {approx} 98.5% dimethyl siloxane, {approx}1.5% methyl-phenyl siloxane, and a small amount (<1%) of vinyl siloxane repeat units that are converted to crosslinking sites. The polymer is filled with {approx} 38 wt.% of a mixture of fumed silica and quartz. Some conclusions are: (1) DMA shows that crystallization does have an effect on the mechanical properties of DC745U; (2) DMAmore » shows that the crystallization is time and temperature dependent; (3) Mechanical tests show that DC745U undergo a crystalline transition at temperatures below -50 C; (4) Rate and temperature does not have an effect above crystalline transition; (5) Crystalline transition occurs faster at colder temperatures; (6) The material remains responsive and recovers after warming it to temperature above -40 C; (7) We were able to review all previous historical data on DC745U; (8) Identified specific gaps in materials understanding; (9) Developed design of experiments and testing methods to address gaps associated with post-curing and low temperature mechanical behavior; (10) Resolved questions of post-cure and alleviated concerns associated with low temperature mechanical behavior with soak time and temperature; and (11) This work is relevant to mission-critical programs and for supporting programmatic work for weapon research.« less
Examination of the temperature dependent electronic behavior of GeTe for switching applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Champlain, James G.; Ruppalt, Laura B.; Guyette, Andrew C.
2016-06-28
The DC and RF electronic behaviors of GeTe-based phase change material switches as a function of temperature, from 25 K to 375 K, have been examined. In its polycrystalline (ON) state, GeTe behaved as a degenerate p-type semiconductor, exhibiting metal-like temperature dependence in the DC regime. This was consistent with the polycrystalline (ON) state RF performance of the switch, which exhibited low resistance S-parameter characteristics. In its amorphous (OFF) state, the GeTe presented significantly greater DC resistance that varied considerably with bias and temperature. At low biases (<1 V) and temperatures (<200 K), the amorphous GeTe low-field resistance dramatically increased, resulting in exceptionally highmore » amorphous-polycrystalline (OFF-ON) resistance ratios, exceeding 10{sup 9} at cryogenic temperatures. At higher biases and temperatures, the amorphous GeTe exhibited nonlinear current-voltage characteristics that were best fit by a space-charge limited conduction model that incorporates the effect of a defect band. The observed conduction behavior suggests the presence of two regions of localized traps within the bandgap of the amorphous GeTe, located at approximately 0.26–0.27 eV and 0.56–0.57 eV from the valence band. Unlike the polycrystalline state, the high resistance DC behavior of amorphous GeTe does not translate to the RF switch performance; instead, a parasitic capacitance associated with the RF switch geometry dominates OFF state RF transmission.« less
Dual-mode self-validating resistance/Johnson noise thermometer system
Shepard, Robert L.; Blalock, Theron V.; Roberts, Michael J.
1993-01-01
A dual-mode Johnson noise and DC resistance thermometer capable of use in control systems where prompt indications of temperature changes and long term accuracy are needed. A resistance-inductance-capacitance (RLC) tuned circuit produces a continuous voltage signal for Johnson noise temperature measurement. The RLC circuit provides a mean-squared noise voltage that depends only on the capacitance used and the temperature of the sensor. The sensor has four leads for simultaneous coupling to a noise signal processor and to a DC resistance signal processor.
Electrical properties of praseodymium oxide doped Boro-Tellurite glasses
NASA Astrophysics Data System (ADS)
Jagadeesha Gowda G., V.; Devaraja, C.; Eraiah, B.
2016-05-01
Glasses of the composition xPr6O11- (35-x)TeO2-65B2O3 (x=0, 0.1 to 0.5 mol %) have been prepared using the melt quenching method. The ac and dc conductivity of glass have been measured over a wide range of frequencies and temperatures. Experimental results indicate that the ac conductivity depend on temperature, frequency and Praseodymium content. The conductivity as a function of frequency exhibited two components: dc conductivity (σdc), and ac conductivity (σac). The activation energies are estimated and found to be decreases with composition. The impedance plot at each temperature appeared as a semicircle passes through the origin.
2009-09-10
Howard University 2300 6th Street NW, Room 1016 Washington, D.C. 20059 Air Force Office of Scientific Research 875 North Randolph Street Room 3112...Department of Electrical Engineering, Howard University , Washington, DC 20059 Room temperature quantum efficiencies of Ag/n-Si composite...at the Howard University CREST Center for Nanomaterials Characterization Science and Processing Technology were used in this investigation. The
Transport signatures of topology protected quantum criticality in Majorana islands
NASA Astrophysics Data System (ADS)
Papaj, Michal; Zhu, Zheng; Fu, Liang
Using numerical renormalization group we study a topological superconductor island coupled to three metallic leads in the vicinity of the charge degeneracy point. We show that the system flows to a non-Fermi liquid fixed point at low temperatures with fractional quantized DC conductance of 2 / 3e2 / h . Our proposal is experimentally feasible due to a much larger crossover temperature than in the previously studied cases and the robustness of the setup against the channel coupling anisotropy and charge degeneracy detuning. Including Majorana hybridization drives the system into a Fermi liquid phase at very low temperatures. The two proposed experimental signatures of multi-terminal electron teleportation include nonmonotonic temperature dependence of DC conductance and emergence of a plateau at 2 / 3e2 / h in tunnel coupling dependence of DC conductance. This work is funded by the DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award de-sc0010526 (ZZ and LF) and the NSF STC ''Center for Integrated Quantum Materials'' under Cooperative Agreement No. DMR-1231319 (MP).
Far-infrared and dc magnetotransport of CaMnO3-CaRuO3 superlattices
NASA Astrophysics Data System (ADS)
Yordanov, P.; Boris, A. V.; Freeland, J. W.; Kavich, J. J.; Chakhalian, J.; Lee, H. N.; Keimer, B.
2011-07-01
We report temperature- and magnetic-field-dependent measurements of the dc resistivity and the far-infrared reflectivity (FIR) (photon energies ℏω=50-700 cm-1) of superlattices comprising ten consecutive unit cells of the antiferromagnetic insulator CaMnO3, and four to ten unit cells of the correlated paramagnetic metal CaRuO3. Below the Néel temperature of CaMnO3, the dc resistivity exhibits a logarithmic divergence upon cooling, which is associated with a large negative, isotropic magnetoresistance. The ω→0 extrapolation of the resistivity extracted from the FIR reflectivity, on the other hand, shows a much weaker temperature and field dependence. We attribute this behavior to scattering of itinerant charge carriers in CaRuO3 from sparse, spatially isolated magnetic defects at the CaMnO3-CaRuO3 interfaces. This field-tunable “transport bottleneck” effect may prove useful for functional metal-oxide devices.
NASA Astrophysics Data System (ADS)
Yu, GAO; Ning, ZHAO; Yongdi, DENG; Minghang, WANG; Boxue, DU
2018-02-01
In order to improve the anaerobic digestion efficiency of waste activated sludge (WAS), a pretreatment procedure should be carried out so as to disrupt the microbial cell structure, thus releasing intracellular organic matters. In this paper, a corona discharge triggered by a DC voltage was employed to pre-treat WAS for various time periods under different temperatures. The magnitude of the DC voltage was 4 kV at both negative and positive polarities. The changes in the soluble chemical oxygen demand, phosphorus and nitrogen content, and pH value within the WAS were utilized to estimate the pretreatment performance of the DC corona. It was found that with increasing treatment time, the pretreatment efficiency tends to be reduced. With increased temperature, the pretreatment efficiency appears to be better. It is suggested that the oxidative species and the active particles generated in the corona discharge play an important role in disrupting the microbial cell structure, which is dependent upon the treatment time and the temperature.
Multiple electrical phase transitions in Al substituted barium hexaferrite
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Supriya, Sweety; Kar, Manoranjan
2017-12-01
Barium hexaferrite is known to be a very good ferromagnetic material. However, it shows very good dielectric properties, i.e., the dielectric constant is comparable to that of the ferroelectric material. However, its crystal symmetry does not allow it to be a ferroelectric material. Hence, the electrical properties have revived the considerable research interest on these materials, not only for academic interest, but also for technological applications. There are a few reports on temperature dependent dielectric behavior of these materials. However, the exact cause of dielectric as well as electrical conductivity is yet to be established. Hence, Al (very good conducting material) substituted barium hexaferrite (BaFe12-xAlxO19, x = 0.0-4.0) has been prepared by following the modified sol-gel method to understand the ac and DC electrical properties of these materials. The crystal structure and parameters have been studied by employing the XRD and FTIR techniques. There are two transition temperatures, which have been observed in the temperature dependent ac dielectric and DC resistivity measurement. The response of dielectric behaviors to temperature is similar to that of the ferroelectric material; however, the dielectric polarization is due to the polaron hopping, which is evident from the DC resistivity analysis. Hence, the present observations lead to understand the electrical properties of barium hexaferrite. The frequency dependent dielectric dispersion can be understood by the modified Debye model. More interestingly, the dielectric constant decreases and DC resistivity increases with the increase in the Al concentration, which has the correlation between bond length modifications in the crystal due to substitution.
Effect of neodymium substitution on the electric and dielectric properties of Mn-Ni-Zn ferrite
NASA Astrophysics Data System (ADS)
Agami, W. R.
2018-04-01
Ferrite samples of Mn0.5Ni0.1Zn0.4NdxFe2-xO4 (x = 0.0, 0.01, 0.02, 0.05, 0.075 and 0.1) have been prepared by usual ceramic method. The temperature and composition dependences of the dc electric resistivity (ρdc) were studied. The frequency and composition dependences of the ac electric resistivity (ρac) and dielectric parameters (dielectric constant ε' and dielectric loss ε'') have been investigated. ρdc was found to decrease with temperature for all samples while it increases with increasing Nd3+ concentration. On the other hand, ρac and the dielectric properties were found to decrease with increasing the frequency while ρac increases and both ε' and ε'' decrease with increasing Nd3+ concentration. These results were explained by the Maxwell-Wagner two-layer model and Koops's theory. The improvement in dc and ac electric resistivities shows that these prepared materials are valid for decreasing the eddy current losses at high frequencies, so they can be used in the fabrication of multilayer chip inductor (MLCI) devices.
Experimental Investigation of Electrical Conductivity and Permittivity of SC-TiO 2 -EG Nanofluids.
Fal, Jacek; Barylyak, Adriana; Besaha, Khrystyna; Bobitski, Yaroslav V; Cholewa, Marian; Zawlik, Izabela; Szmuc, Kamil; Cebulski, Józef; Żyła, Gaweł
2016-12-01
The paper presents experimental studies of dielectric properties of nanofluids based on ethylene glycol and SC-TiO2 nanoparticles with average size of 15-40 nm with various mass concentrations. The dielectric permittivity both real part and imaginary part as a function of temperature and frequency were measured. Also, dependence ac conductivity on frequency, temperature, and mass concentration were investigated. Based on the curves of ac conductivity, dc conductivity was calculated, and 400 % enhancement in dc conductivity was exposed.
Experimental Investigation of Electrical Conductivity and Permittivity of SC-TiO 2 -EG Nanofluids
NASA Astrophysics Data System (ADS)
Fal, Jacek; Barylyak, Adriana; Besaha, Khrystyna; Bobitski, Yaroslav V.; Cholewa, Marian; Zawlik, Izabela; Szmuc, Kamil; Cebulski, Józef; żyła, Gaweł
2016-08-01
The paper presents experimental studies of dielectric properties of nanofluids based on ethylene glycol and SC-TiO2 nanoparticles with average size of 15-40 nm with various mass concentrations. The dielectric permittivity both real part and imaginary part as a function of temperature and frequency were measured. Also, dependence ac conductivity on frequency, temperature, and mass concentration were investigated. Based on the curves of ac conductivity, dc conductivity was calculated, and 400 % enhancement in dc conductivity was exposed.
2014-09-01
junction is a thin layer of insulating material sep- arating two superconductors that is thin enough for electrons to tunnel through. Two Josephson...can sense minute magnetic fields approaching 1015 Tesla. These SQUIDs can be arranged in arrays with different coupling schemes and parameter values to...different material and/or method on the bisecting Josephson junction for high temperature superconductor (HTS) YBa2Cu3O7 (YBCO) bi-SQUIDs. This
Physical properties of i-R-Cd quasicrystals(R = Y, Gd-Tm)
NASA Astrophysics Data System (ADS)
Kong, Tai; Bud'Ko, Sergey L.; Jesche, Anton; Goldman, Alan I.; Kreyssig, Andreas; Dennis, Kevin W.; Ramazanoglu, Mehmet; Canfield, Paul C.; McArthur, John
2014-03-01
Detailed characterization of recently discovered i-R-Cd (R = Y, Gd-Tm) binary quasicrystals by means of room-temperature powder x-ray diffraction, dc and ac magnetization, resistivity and specific heat measurements will be presented. i-Y-Cd is weakly diamagnetic. The dc magnetization of i-R-Cd (R = Gd, Ho-Tm) shows typical spin-glass type splitting between field-cooled (FC) and zero-field-cooled (ZFC) data. i-Tb-Cd and i-Dy-Cd do not show a clear cusp in their ZFC dc magnetization. ac magnetization measured on i-Gd-Cd indicates a clear frequency-dependence and the third-order non-linear magnetization, χ3, is consistent with a spin-glass transition. The resistivity for i-R-Cd is of order 100 μΩ cm and weakly temperature-dependent. No feature that can be associated with long-range magnetic order was observed in any of the measurements. Characteristic freezing temperatures for i-R-Cd (R = Gd-Tm) deviate from ideal de Gennes scaling. This work is supported by the US DOE, Basic Energy Sciences under Contract No. DE-AC02-07CH11358.
Casimir free energy of dielectric films: classical limit, low-temperature behavior and control.
Klimchitskaya, G L; Mostepanenko, V M
2017-07-12
The Casimir free energy of dielectric films, both free-standing in vacuum and deposited on metallic or dielectric plates, is investigated. It is shown that the values of the free energy depend considerably on whether the calculation approach used neglects or takes into account the dc conductivity of film material. We demonstrate that there are material-dependent and universal classical limits in the former and latter cases, respectively. The analytic behavior of the Casimir free energy and entropy for a free-standing dielectric film at low temperature is found. According to our results, the Casimir entropy goes to zero when the temperature vanishes if the calculation approach with neglected dc conductivity of a film is employed. If the dc conductivity is taken into account, the Casimir entropy takes the positive value at zero temperature, depending on the parameters of a film, i.e. the Nernst heat theorem is violated. By considering the Casimir free energy of SiO 2 and Al 2 O 3 films deposited on a Au plate in the framework of two calculation approaches, we argue that physically correct values are obtained by disregarding the role of dc conductivity. A comparison with the well known results for the configuration of two parallel plates is made. Finally, we compute the Casimir free energy of SiO 2 , Al 2 O 3 and Ge films deposited on high-resistivity Si plates of different thicknesses and demonstrate that it can be positive, negative and equal to zero. The effect of illumination of a Si plate with laser light is considered. Possible applications of the obtained results to thin films used in microelectronics are discussed.
Casimir free energy of dielectric films: classical limit, low-temperature behavior and control
NASA Astrophysics Data System (ADS)
Klimchitskaya, G. L.; Mostepanenko, V. M.
2017-07-01
The Casimir free energy of dielectric films, both free-standing in vacuum and deposited on metallic or dielectric plates, is investigated. It is shown that the values of the free energy depend considerably on whether the calculation approach used neglects or takes into account the dc conductivity of film material. We demonstrate that there are material-dependent and universal classical limits in the former and latter cases, respectively. The analytic behavior of the Casimir free energy and entropy for a free-standing dielectric film at low temperature is found. According to our results, the Casimir entropy goes to zero when the temperature vanishes if the calculation approach with neglected dc conductivity of a film is employed. If the dc conductivity is taken into account, the Casimir entropy takes the positive value at zero temperature, depending on the parameters of a film, i.e. the Nernst heat theorem is violated. By considering the Casimir free energy of SiO2 and Al2O3 films deposited on a Au plate in the framework of two calculation approaches, we argue that physically correct values are obtained by disregarding the role of dc conductivity. A comparison with the well known results for the configuration of two parallel plates is made. Finally, we compute the Casimir free energy of SiO2, Al2O3 and Ge films deposited on high-resistivity Si plates of different thicknesses and demonstrate that it can be positive, negative and equal to zero. The effect of illumination of a Si plate with laser light is considered. Possible applications of the obtained results to thin films used in microelectronics are discussed.
NASA Astrophysics Data System (ADS)
Dey, Arka; Dhar, Joydeep; Sil, Sayantan; Jana, Rajkumar; Ray, Partha Pratim
2018-04-01
In this report, bias voltage-dependent dielectric and electron transport properties of ZnS nanoparticles were discussed. ZnS nanoparticles were synthesized by introducing a modified hydrothermal process. The powder XRD pattern indicates the phase purity, and field emission scanning electron microscope image demonstrates the morphology of the synthesized sample. The optical band gap energy (E g = 4.2 eV) from UV measurement explores semiconductor behavior of the synthesized material. The electrical properties were performed at room temperature using complex impedance spectroscopy (CIS) technique as a function of frequency (40 Hz-10 MHz) under different forward dc bias voltages (0-1 V). The CIS analysis demonstrates the contribution of bulk resistance in conduction mechanism and its dependency on forward dc bias voltages. The imaginary part of the impedance versus frequency curve exhibits the existence of relaxation peak which shifts with increasing dc forward bias voltages. The dc bias voltage-dependent ac and dc conductivity of the synthesized ZnS was studied on thin film structure. A possible hopping mechanism for electrical transport processes in the system was investigated. Finally, it is worth to mention that this analysis of bias voltage-dependent dielectric and transport properties of as-synthesized ZnS showed excellent properties for emerging energy applications.
NASA Astrophysics Data System (ADS)
Sengwa, R. J.; Dhatarwal, Priyanka; Choudhary, Shobhna
2016-05-01
Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF4) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governed by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10-6 S cm-1 which suggests the suitability of the SPE film for rechargeable lithium batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengwa, R. J., E-mail: rjsengwa@rediffmail.com; Dhatarwal, Priyanka, E-mail: dhatarwalpriyanka@gmail.com; Choudhary, Shobhna, E-mail: shobhnachoudhary@rediffmail.com
2016-05-06
Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF{sub 4}) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governedmore » by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10{sup −6} S cm{sup −1} which suggests the suitability of the SPE film for rechargeable lithium batteries.« less
Dielectric and AC conductivity studies on SrBi4Ti4O15
NASA Astrophysics Data System (ADS)
Jose, Roshan; Saravanan, K. Venkata
2018-05-01
The four layered SrBi4Ti4O15 ceramics which belong to the aurivillius family of oxide was prepared by conventional solid state reaction technique. Analysis of the dielectric data as a function of temperature and frequency revealed normal phase transition. The frequency dependent ac conductivity follows Jonscher's universal power law. Frequency exponent (n), pre-exponential factor (A), bulk dc conductivity (σdc), and hopping frequency (ωp) were determined from the fitting curves. The variation of frequency exponent with temperature indicates that large polaron hopping mechanism up to curie-temperature, then its changes to small polaron hopping. The activation energies were calculated from ac conductivity, bulk dc conductivity and hopping frequency. The activation energies revealed that conductivity had contributions from migrations of oxygen vacancies, bismuth ion vacancies and strontium ion vacancies.
Temperature dependent charge transport in poly(3-hexylthiophene) diodes
NASA Astrophysics Data System (ADS)
Rahaman, Abdulla Bin; Sarkar, Atri; Banerjee, Debamalya
2018-04-01
In this work, we present charge transport properties of poly(3-hexylthiophene) (P3HT) diodes under dark conditions. Temperature dependent current-voltage (J-V) characteristics shows that charge transport represents a transition from ohomic to trap limited current. The forward current density obeys a power law J˜Vm, m>2 represents the space charge limited current region in presence of traps within the band gap. Frequency dependent conductivity has been studied in a temperature range 150K-473K. The dc conductivity values show Arrhenius like behavior and it gives conductivity activation energy 223 meV. Temperature dependent conductivity indicates a thermodynamic transition of our system.
NASA Astrophysics Data System (ADS)
Ge, Xian-Hui; Tian, Yu; Wu, Shang-Yu; Wu, Shao-Feng
2017-08-01
We derive new black hole solutions in Einstein-Maxwell-axion-dilaton theory with a hyperscaling violation exponent. We then examine the corresponding anomalous transport exhibited by cuprate strange metals in the normal phase of high-temperature superconductors via gauge-gravity duality. Linear-temperature-dependence resistivity and quadratic-temperature-dependence inverse Hall angle can be achieved. In the high-temperature regime, the heat conductivity and Hall Lorenz ratio are proportional to the temperature. The Nernst signal first increases as temperature goes up, but it then decreases with increasing temperature in the high-temperature regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brazzini, Tommaso, E-mail: tommaso.brazzini@bristol.ac.uk; Sun, Huarui; Uren, Michael J.
2015-05-25
Hot electrons in AlGaN/GaN high electron mobility transistors are studied during radio frequency (RF) and DC operation by means of electroluminescence (EL) microscopy and spectroscopy. The measured EL intensity is decreased under RF operation compared to DC at the same average current, indicating a lower hot electron density. This is explained by averaging the DC EL intensity over the measured load line used in RF measurements, giving reasonable agreement. In addition, the hot electron temperature is lower by up to 15% under RF compared to DC, again at least partially explainable by the weighted averaging along the specific load line.more » However, peak electron temperature under RF occurs at high V{sub DS} and low I{sub DS} where EL is insignificant suggesting that any wear-out differences between RF and DC stress of the devices will depend on the balance between hot-carrier and field driven degradation mechanisms.« less
Anisotropic Thermal Behavior of Silicone Polymer, DC 745
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Jillian Cathleen; Torres, Joseph Angelo; Volz, Heather Michelle
In material applications, it is important to understand how polymeric materials behave in the various environments they may encounter. One factor governing polymer behavior is processing history. Differences in fabrication will result in parts with varied or even unintended properties. In this work, the thermal expansion behavior of silicone DC 745 is studied. Thermomechanical analysis (TMA) is used to determine changes in sample dimension resulting from changes in temperature. This technique can measure thermal events such as the linear coefficient of thermal expansion (CTE), melting, glass transitions, cure shrinkage, and internal relaxations. Using a thermomechanical analyzer (Q400 TMA), it ismore » determined that DC 745 expands anisotropically when heated. This means that the material has a different CTE depending upon which direction is being measured. In this study, TMA experiments were designed in order to confirm anisotropic thermal behavior in multiple DC 745 samples of various ages and lots. TMA parameters such as temperature ramp rate, preload force, and temperature range were optimized in order to ensure the most accurate and useful data. A better understanding of the thermal expansion of DC 745 will allow for more accurate modeling of systems using this material.« less
Electrical conductivity, thermopower and 57Fe Mössbauer spectroscopy of aegirine (NaFeSi2O6)
NASA Astrophysics Data System (ADS)
Schmidbauer, E.; Kunzmann, Th.
DC and AC electrical conductivities were measured on samples of two different crystals of the mineral aegirine (NaFeSi2O6) parallel (∥) and perpendicular (⊥) to the [001] direction of the clinopyroxene structure between 200 and 600 K. Impedance spectroscopy was applied (20 Hz-1 MHz) and the bulk DC conductivity σDC was determined by extrapolating AC data to zero frequency. In both directions, the log σDC - 1/T curves bend slightly. In the high- and low-temperature limits, differential activation energies were derived for measurements ∥ [001] of EA 0.45 and 0.35 eV, respectively, and the numbers ⊥ [001] are very similar. The value of σDC ∥ [001] with σDC(300 K) 2.0 × 10-6 Ω-1cm-1 is by a factor of 2-10 above that measured ⊥ [001], depending on temperature, which means anisotropic charge transport. Below 350 K, the AC conductivity σ'(ω) (ω/2π=frequency) is enhanced relative to σDC for both directions with an increasing difference for rising frequencies on lowering the temperature. An approximate power law for σ'(ω) is noted at higher frequencies and low temperatures with σ'(ω) ωs, which is frequently observed on amorphous and disordered semiconductors. Scaling of σ'(ω) data is possible with reference to σDC, which results in a quasi-universal curve for different temperatures. An attempt was made to discuss DC and AC results in the light of theoretical models of hopping charge transport and of a possible Fe2+ --> Fe3+ electron hopping mechanism. The thermopower Θ (Seebeck effect) in the temperature range 360 K < T < 770 K is negative in both directions. There is a linear Θ - 1/T relationship above 400 K with activation energy EΘ 0.030 eV ∥ [001] and 0.070 eV ⊥ [001]. 57Fe Mössbauer spectroscopy was applied to detect Fe2+ in addition to the dominating concentration of Fe3+.
Electro–optical properties of poly(vinyl acetate)/polyindole composite film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhagat, D. J., E-mail: bhagatd@rediffmail.com; Dhokane, G. R.; Bajaj, N. S.
2016-05-06
In present work, electrical and optical properties of poly(vinyl acetate)/polyindole (PVAc/PIN) composite film are reported. The prepared composite was characterized via X–ray diffraction (XRD), UV–Vis spectroscopy and DC conductivity measurements. The polymer chain separation was determined using XRD analysis. An attempt has been made to study the temperature dependence of DC conductivity of PVAc/PIN composite in temperature range 308–373 K. The DC conductivity initially increases and reaches to 2.45×10–7 S/cm. The optical band gap value of composite is determined as 4.77 eV. The semiconducting nature of composite observed from electronic as well as optical band gap and Arrhenius behavior of DCmore » plot.« less
On the room temperature multiferroic BiFeO3: magnetic, dielectric and thermal properties
NASA Astrophysics Data System (ADS)
Lu, J.; Günther, A.; Schrettle, F.; Mayr, F.; Krohns, S.; Lunkenheimer, P.; Pimenov, A.; Travkin, V. D.; Mukhin, A. A.; Loidl, A.
2010-06-01
Magnetic dc susceptibility between 1.5 and 800 K, ac susceptibility and magnetization, thermodynamic properties, temperature dependence of radio and audio-wave dielectric constants and conductivity, contact-free dielectric constants at mm-wavelengths, as well as ferroelectric polarization are reported for single crystalline BiFeO3. A well developed anomaly in the magnetic susceptibility signals the onset of antiferromagnetic order close to 635 K. Beside this anomaly no further indications of phase or glass transitions are indicated in the magnetic dc and ac susceptibilities down to the lowest temperatures. The heat capacity has been measured from 2 K up to room temperature and significant contributions from magnon excitations have been detected. From the low-temperature heat capacity an anisotropy gap of the magnon modes of the order of 6 meV has been determined. The dielectric constants measured in standard two-point configuration are dominated by Maxwell-Wagner like effects for temperatures T > 300 K and frequencies below 1 MHz. At lower temperatures the temperature dependence of the dielectric constant and loss reveals no anomalies outside the experimental errors, indicating neither phase transitions nor strong spin phonon coupling. The temperature dependence of the dielectric constant was measured contact free at microwave frequencies. At room temperature the dielectric constant has an intrinsic value of 53. The loss is substantial and strongly frequency dependent indicating the predominance of hopping conductivity. Finally, in small thin samples we were able to measure the ferroelectric polarization between 10 and 200 K. The saturation polarization is of the order of 40 μC/cm2, comparable to reports in literature.
Temperature-Dependent Short-Circuit Capability of Silicon Carbide Power MOSFETs
Wang, Zhiqiang; Shi, Xiaojie; Tolbert, Leon M.; ...
2016-02-01
Our paper presents a comprehensive short-circuit ruggedness evaluation and numerical investigation of up-to-date commercial silicon carbide (SiC) MOSFETs. The short-circuit capability of three types of commercial 1200-V SiC MOSFETs is tested under various conditions, with case temperatures from 25 to 200 degrees C and dc bus voltages from 400 to 750 V. It is found that the commercial SiC MOSFETs can withstand short-circuit current for only several microseconds with a dc bus voltage of 750 V and case temperature of 200 degrees C. Moreover, the experimental short-circuit behaviors are compared, and analyzed through numerical thermal dynamic simulation. Specifically, an electrothermalmore » model is built to estimate the device internal temperature distribution, considering the temperature-dependent thermal properties of SiC material. Based on the temperature information, a leakage current model is derived to calculate the main leakage current components (i.e., thermal, diffusion, and avalanche generation currents). Finally, numerical results show that the short-circuit failure mechanisms of SiC MOSFETs can be thermal generation current induced thermal runaway or high-temperature-related gate oxide damage.« less
High-throughput resistivity apparatus for thin-film combinatorial libraries
NASA Astrophysics Data System (ADS)
Hewitt, K. C.; Casey, P. A.; Sanderson, R. J.; White, M. A.; Sun, R.
2005-09-01
An apparatus, capable of measuring the dc resistance versus temperature of a 49-member library prepared by thin-film deposition techniques was designed and tested. The library is deposited by dc magnetron sputtering onto 10.16cm×10.16cm alumina substrates on which are placed aluminum masks consisting of 8mm diam holes cut on a 7×7 grid, the center-to-center spacing being 10.15mm. Electrical contact to the library is made in a standard van der Pauw geometry using 196 spring-loaded, gold-coated pins, four pins for each member of the library. The temperature is controlled using a helium refrigerator in combination with a liquid-nitrogen radiation shield that greatly reduces radiative heating of the sample stage. With the radiation shield, the cold finger is able to sustain a minimum temperature of 7K and the sample stage a minimum temperature of 27K. The temperature (27-291K) dependent dc resistivity of a thin-film silver library of varying thickness (48-639nm) is presented to highlight the capabilities of the apparatus. The thickness dependence of both the resistivity and the temperature coefficient of resistivity are quantitatively consistent with the literature. For thicknesses greater than about 100nm, the room-temperature resistivity (3.4μΩcm) are consistent with Matthiessen's rule for 1%-2% impurity content, and the temperature coefficient of resistivity is consistent with the bulk value. For thicknesses less than 100nm, an increase in resistivity by a factor of 8 is found, which may be due to surface and boundary scattering effects; a corresponding increase in the temperature coefficient of resistivity is consistent with a concomitant decrease in the magnitude of the elastic constants and surface scattering effects.
Hemispherical emissivity of V, Nb, Ta, Mo, and W from 300 to 1000 K
NASA Technical Reports Server (NTRS)
Cheng, S. X.; Hanssen, L. M.; Riffe, D. M.; Sievers, A. J.; Cebe, P.
1987-01-01
The hemispherical emissivities of five transition elements, V, Nb, Ta, Mo, and W, have been measured from 300 to 1000 K, complementing earlier higher-temperature results. These low-temperature data, which are similar, are fitted to a Drude model in which the room-temperature parameters have been obtained from optical measurements and the temperature dependence of the dc resistivity is used as input to calculate the temperature dependence of the emissivity. A frequency-dependent free-carrier relaxation rate is found to have a similar magnitude for all these elements. For temperatures larger than 1200 K the calculated emissivity is always greater than the measured value, indicating that the high-temperature interband features of transition elements are much weaker than those determined from room-temperature measurements.
Tuned-circuit dual-mode Johnson noise thermometers
NASA Astrophysics Data System (ADS)
Shepard, R. L.; Carroll, R. M.; Falter, D. D.; Blalock, T. V.; Roberts, M. J.
1992-02-01
Dual-mode Johnson noise and direct current (DC) resistance thermometers can be used in control systems where prompt indications of temperature changes and long-term accuracy are needed. Such a thermometer is being developed for the SP-100 space nuclear electric power system that requires temperature measurement at 1400 K in space for 10 years, of which 7 are expected to be at full reactor power. Several direct coupled and transformer coupled, tuned resistance inductance capacitance (RLC) circuits that produce a single, continuous voltage signal were evaluated for noise temperature measurement. The simple direct coupled RLC circuit selected provides a mean squared noise voltage that depends only on the capacitance used and the temperature of the sensor, and it is independent of the value of or changes in the sensor resistance. These circuits provide a noise signal with long term accuracy but require integrating noise signals for a finite length of time. The four wire resistor for the noise temperature sensor allows simultaneous DC resistance measurements to be made that provide a prompt, continuous temperature indication signal. The DC current mode is employed continuously, and a noise voltage measurement is made periodically to correct the temperature indication. The differential noise voltage preamplifier used substantially reduces electromagnetic interference (EMI) in the system. A sensor has been tested that should provide good performance (+/- 1 percent accuracy) and long-term (10 year) reliability in space environments. Accurate noise temperature measurements were made at temperatures above 1300 K, where significant insulator shunting occurs, even though shunting does affect the dc resistance measurements and makes the system more susceptible to EMI.
Uniaxial Pressure and High-Field Effects on Superconducting Single-Crystal CeCoIn5
NASA Astrophysics Data System (ADS)
Johnson, Scooter David
We have measured the a.c. susceptibility response of single-crystal CeCoIn 5 under uniaxial pressure up to 4.07 kbar and in d.c. field parallel to the c axis up to 5 T. From these measurements we report on several pressure and field characteristics of the superconducting state. The results are divided into 3 chapters: (1) We find a non-linear dependence of the superconducting transition temperature Tc on pressure, with a maximum close to 2 kbar. The transition also broadens significantly as pressure increases. We model the broadening as a product of non-uniform pressure and discuss its implications for the pressure dependence of the transition temperature. We relate our measurements to previous theoretical work. (2) We provided evidence and pressure dependence for the FFLO phase with field and pressure along the c axis. The FFLO phase boundary is temperature independent and tracks with the suppression to lower fields of the upper critical field with pressure. We also report the strengthening of the Pauli-limited field in this orientation by calculating the increase of the orbitally-limited field with uniaxial pressure. (3) We extract the critical current using the Bean critical state model and compare it to the expected Ginzberg-Landau behavior. We find that the exponent of the critical current depends on uniaxial pressure and d.c. field. Within a d.c. field the pressure dependence of the exponent may be obscured by the field effect. We have also measured resistivity, susceptibility, and specific heat of high-quality single-crystal YIn3 below 1 K and present a refinement of Tc from previous measurements. We make suggestions for experimental comparisons to the heavy fermion family CeXIn5, (X = Rh, Ir, Co) and the parent compound CeIn3.
NASA Astrophysics Data System (ADS)
Sharma, Mohit K.; Yadav, Kavita; Mukherjee, K.
2018-05-01
The binary intermetallic compound Er5Pd2 has been investigated using dc and ac magnetic susceptibilities, magnetic memory effect, isothermal magnetization, non-linear dc susceptibility, heat capacity and magnetocaloric effect studies. Interestingly, even though the compound does not show geometrical frustration it undergoes glassy magnetic phase transition below 17.2 K. Investigation of dc magnetization and heat capacity data divulged absence of long-ranged magnetic ordering. Through the magnetic memory effect, time dependent magnetization and ac susceptibility studies it was revealed that the compound undergoes glass-like freezing below 17.2 K. Analysis of frequency dependence of this transition temperature through scaling and Arrhenius law; along with the Mydosh parameter indicate, that the dynamics in Er5Pd2 are due to the presence of strongly interacting superspins rather than individual spins. This phase transition was further investigated by non-linear dc susceptibility and was characterized by static critical exponents γ and δ. Our results indicate that this compound shows the signature of superspin glass at low temperature. Additionally, both conventional and inverse magnetocaloric effect was observed with a large value of magnetic entropy change and relative cooling power. Our results suggest that Er5Pd2 can be classified as a superspin glass system with large magnetocaloric effect.
Liu, Han-Chun; Reichl, C; Wegscheider, W; Mani, R G
2018-05-18
We report the observation of dc-current-bias-induced B-periodic Hall resistance oscillations and Hall plateaus in the GaAs/AlGaAs 2D system under combined microwave radiation- and dc bias excitation at liquid helium temperatures. The Hall resistance oscillations and plateaus appear together with concomitant oscillations also in the diagonal magnetoresistance. The periods of Hall and diagonal resistance oscillations are nearly identical, and source power (P) dependent measurements demonstrate sub-linear relationship of the oscillation amplitude with P over the span 0 < P ≤ 20 mW.
Study of temperature dependent electrical properties of Se80-xTe20Bix (x = 0, 3, 6) glasses
NASA Astrophysics Data System (ADS)
Deepika, Singh, Hukum
2018-05-01
This paper reports the variation in electrical properties of Se80-xTe20Bix (x = 0, 3, 6) glasses studied at different temperatures. The amorphous samples were prepared using the melt quenching method and the electrical measurements were performed on Keithley Electrometer in the temperature ranging from 298-373 K. The I-V characteristics were noted at different temperatures and the data obtained was analysed to get dc electrical conductivity and activation energy of electrical conduction. Further, Mott's 3D VRH model has been applied to obtain density of states, hopping range and hopping energy at different temperatures. The obtained results show that dc electrical conductivity increases with increase in Bi composition in Se-Te system. These compositions also show close agreement to Mott's VRH model.
NASA Astrophysics Data System (ADS)
Li, Yan; Zhang, Dongping; Wang, Bo; Liang, Guangxing; Zheng, Zhuanghao; Luo, Jingting; Cai, Xingmin; Fan, Ping
2013-12-01
Vanadium oxide thin films were prepared by DC reactive sputtering method, and the samples were annealed in Ar atmosphere under different temperature for 2 hours. The microstructure, optical and electrical properties of the as-grown and treated samples were characterized by XRD, spectrophotometer, and four-probe technique, respectively. XRD results investigated that the main content of the annealed sample are VO2 and V2O5. With annealing temperature increasing, the intensity of the VO2 phase diffraction peak strengthened. The electrical properties reveal that the annealed samples exhibit semiconductor-to-metal transition characteristic at about 40°C. Comparison of transmission spectra of the samples at room temperature and 100°C, a drastic drop in IR region is found.
NASA Astrophysics Data System (ADS)
Adams, Daniel J.; Khanal, Shankar; Khan, Mohammad Asif; Maksymov, Artur; Spinu, Leonard
2018-05-01
The in-plane temperature dependence of exchange bias was studied through both dc magnetometry and ferromagnetic resonance spectroscopy in a series of [NiFe/IrMn]n multilayer films, where n is the number of layer repetitions. Major hysteresis loops were recorded in the temperature range of 300 K to 2 K to reveal the effect of temperature on the exchange bias in the static regime while temperature-dependent continuous-wave ferromagnetic resonance for frequencies from 3 to 16 GHz was used to determine the exchange bias dynamically. Strong divergence between the values of exchange bias determined using the two different types of measurements as well as a peak in temperature dependence of the resonance linewidth were observed. These results are explained in terms of the slow-relaxer mechanism.
Faria-e-Silva, André L; Piva, Evandro; Moraes, Rafael R
2010-01-01
Objectives: This study evaluated the effect of refrigeration at 4°C and post-refrigeration times (immediate, 5, 10, 15, or 20 min) on the viscosity and conversion kinetics of adhesive bonding resins. Methods: Scotchbond Dual-Cure (3M ESPE) and Clearfil SE Bond (Kuraray) were tested. Control samples were kept at 25°C for 24 h. At each post-refrigeration time, the temperature was checked with a K-type thermocouple. Viscosity measurements as a function of temperature were performed using a cone-plate viscometer. Real-time polymerization was monitored by infrared spectroscopy. Degree of conversion (DC) was calculated for each second during polymerization, and the rate of polymerization analyzed. Data were separately submitted to two-way ANOVA and Tukey’s test (P<.05). Results: Clearfil presented faster increase in temperature after exposure to room temperature than Scotchbond. A continuous decrease in viscosity (Pa.s) was observed for both Scotchbond (0.49, 0.34, 0.30, 0.26, 0.23, 0.23) and Clearfil (0.38, 0.37, 0.34, 0.25, 0.24, 0.22). For Scotchbond, higher final DC was detected for the control (62.7%) compared with the immediate (53.3%) and 5 min (54.7%) groups. For Clearfil, the control sample (81.4%) showed higher DC than all refrigerated groups (68.8–69.5%). Clearfil always showed significantly higher DC than Scotchbond. Conclusions: Refrigeration presented a significant time- and material-dependent effect on the viscosity and polymerization kinetics of the bonding resins. Under clinical conditions, adhesive agents should be removed from the refrigerator at least 20 min before being used. PMID:20396445
On the use of doped polyethylene as an insulating material for HVDC cables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalil, M.S.
1996-12-31
The merits of HVDC cables with polymeric insulation are well recognized. However, the development of such cables is still hampered due to the problems resulting from the complicated dependence of the electrical conductivity of the polymer on the temperature and the dc electric field and the effects of space charge accumulation in this material. Different methods have been suggested to solve these problems yet none of these methods seem to give a conclusive solution. The present report provides, firstly a critical review of the previous works reported in the literature concerning the development of HVDC cables with polymeric insulation. Differentmore » aspects of those works are examined and discussed. Secondly, an account is given on an investigation using low density polyethylene (LDPE) doped with an inorganic additive as a candidate insulating material for HVDC cables. Preliminary results from measurements of dc breakdown strength and insulation resistivity of both the undoped and the doped materials are presented. It is shown that the incorporation of an inorganic additive into LDPE has improved the performance of the doped material under polarity reversal dc conditions at room temperature. Moreover, the dependency of the insulation resistivity on temperature for the doped material appears to be beneficially modified.« less
-Sb Glasses at Low Temperatures
NASA Astrophysics Data System (ADS)
Souri, Dariush; Azizpour, Parvin; Zaliani, Hamideh
2014-09-01
Semiconducting glasses of the type 40TeO2-(60 - x) V2O5- xSb were prepared by rapid melt quenching and their dc electrical conductivity was measured in the temperature range 180-296 K. For these glassy samples, the dc electrical conductivity ranged from 2.26 × 10-7 S cm-1 to 1.11 × 10-5 S cm-1 at 296 K, indicating the conductivity is enhanced by increasing the V2O5 content. These experimental results could be explained on the basis of different mechanisms (based on polaron-hopping theory) in the different temperature regions. At temperatures above Θ D/2 (where Θ D is the Debye temperature), the non-adiabatic small polaron hopping (NASPH) model is consistent with the data, whereas at temperatures below Θ D/2, a T -1/4 dependence of the conductivity indicative of the variable range hopping (VRH) mechanism is dominant. For all these glasses crossover from SPH to VRH conduction was observed at a characteristic temperature T R ≤ Θ D/2. In this study, the hopping carrier density and carrier mobility were determined at different temperatures. N ( E F), the density of states at (or near) the Fermi level, was also determined from the Mott variables; the results were dependent on V2O5 content.
AC conductivity and Dielectric Study of Chalcogenide Glasses of Se-Te-Ge System
NASA Astrophysics Data System (ADS)
Salman, Fathy
2004-01-01
The ac conductivity and dielectric properties of glassy system SexTe79 - xGe21, with x = 11, 14, 17 at.%, has been studied at temperatures 300 to 450 K and over a wide range of frequencies (50 Hz to 500 kHz). Experimental results indicate that the ac conductivity and the dielectric constants depend on temperature, frequency and Se content. The conductivity as a function of frequency exhibited two components: dc conductivity s dc, and ac conductivity s ac, where s ac ˜ w s. The mechanism of ac conductivity can be reasonably interpreted in terms of the correlated barrier hopping model (CBH). The activation energies are estimated and discussed. The dependence of ac conductivity and dielectric constants on the Se content x can be interpreted as the effect of Se fraction on the positional disorder. The impedance plot at each temperature appeared as a semicircle passes through the origin. Each semicircle is represented by an equivalent circuit of parallel resistance Rb and capacitance Cb.
NASA Astrophysics Data System (ADS)
Chou, Kuan-Yu; Hsu, Nai-Wen; Su, Yi-Hsin; Chou, Chung-Tao; Chiu, Po-Yuan; Chuang, Yen; Li, Jiun-Yun
2018-02-01
We investigate DC characteristics of a two-dimensional electron gas (2DEG) in an undoped Si/SiGe heterostructure and its temperature dependence. An insulated-gate field-effect transistor was fabricated, and transfer characteristics were measured at 4 K-300 K. At low temperatures (T < 45 K), source electrons are injected into the buried 2DEG channel first and drain current increases with the gate voltage. By increasing the gate voltage further, the current saturates followed by a negative transconductance observed, which can be attributed to electron tunneling from the buried channel to the surface channel. Finally, the drain current is saturated again at large gate biases due to parallel conduction of buried and surface channels. By increasing the temperature, an abrupt increase in threshold voltage is observed at T ˜ 45 K and it is speculated that negatively charged impurities at the Al2O3/Si interface are responsible for the threshold voltage shift. At T > 45 K, the current saturation and negative transconductance disappear and the device acts as a normal transistor.
Time-dependent low field microwave absorption in the high temperature superconductors
NASA Astrophysics Data System (ADS)
Owens, F. J.; Iqbal, Z.
1990-11-01
It is observed that the hysteresis in the applied magnetic field position and the intensity at the peak of the low field non-resonant microwave absorption (recorded in an EPR experiment with a modulation amplitude of ∼ 10 G) in the superconducting state of the cuprate superconductors, is time-dependent after the removal of a DC magnetic field sizably greater than the lower critical field. This intrinsic time-dependence, which we attribute to flux creep, is reported here for two copper oxide-based high temperature superconductors.
Subsurface Ice Detection via Low Frequency Surface Electromagnetic Method
NASA Astrophysics Data System (ADS)
Stillman, D. E.; Grimm, R. E.; Mcginnis, R. N.
2014-12-01
The geophysical detection of ice in the Cryosphere is typically conducted by measuring the absence of water. These interpretations can become non-unique in dry soils or in clay- and silt-rich soils that contain significant quantities of unfrozen water. Extensive laboratory measurements of electrical properties were made on permafrost samples as a function of frequency, temperature, and water content. These laboratory measurements show that the amount of ice can be uniquely obtained by measuring a frequency dependence of the electrical properties over a large frequency range (20 kHz - 10 Hz). In addition, the electrical properties of permafrost are temperature dependent, which can allow for an estimate of subsurface temperature. In order to test this approach in the field, we performed field surveys at four locations in Alaska. We used three low frequency electromagnetic methods: Spectral Induced Polarization (SIP: 20 kHz - 10 Hz), Capacively Coupled Resistivity (CCR: OhmMapper - 16.5 kHz), and DC Resistivity (Syscal ~ 8 Hz). At the Cold Regions Research and Engineering Laboratory permafrost tunnel near Fox, AK, we used SIP to measure the average ice concentration of 80 v% and determined the temperature to be -3±1°C by matching survey results to lab data. SIP data acquisition is very slow; therefore, at three sites near Tok, AK, we used CCR to perform reconnaissance of the area. Then SIP and DC resistivity were performed at anomalous areas. The three survey types give very similar absolute resistivity values. We found that while SIP gives the most quantitative results, the frequency dependence from the CCR and DC resistivity surveys is all that are needed to determine ice content in permafrost.
Parameters of the plasma of a dc pulsating discharge in a supersonic air flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shibkov, V. M., E-mail: shibkov@phys.msu.ru; Shibkova, L. V.; Logunov, A. A.
A dc discharge in a cold (T = 200 K) supersonic air flow at a static pressure of 200–400 Torr was studied experimentally. The excited unsteady pulsating discharge has the form of a thin plasma channel with a diameter of ≤1 mm, stretched downstream the flow. Depending on the discharge current, the pulsation frequency varies from 800 to 1600 Hz and the electron temperature varies from 8000 to 15000 K.
Distinguishing magnetic blocking and surface spin-glass freezing in nickel ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Nadeem, K.; Krenn, H.; Traussing, T.; Letofsky-Papst, I.
2011-01-01
Nickel ferrite nanoparticles dispersed in SiO2 matrix have been synthesized by sol-gel method. Structural analysis has been performed by using x-ray diffraction and transmission electron microscopy. Magnetic properties have been investigated by using superconducting quantum interference device magnetometry. In addition to the average blocking temperature peak at TB=120 K measured by a zero field cooled temperature scan of the dc susceptibility, an additional hump near 15 K is observed. Temperature dependent out-of-phase ac susceptibility shows the same features: one broad peak at high temperature and a second narrow peak at low temperature. The high temperature peak corresponds to magnetic blocking of individual nanoparticles, while the low temperature peak is attributed to surface spin-glass freezing which becomes dominant for decreasing particle diameter. To prove the dynamics of the spin (dis)order in both regimes of freezing and blocking, the frequency dependent ac susceptibility is investigated under a biasing dc field. The frequency shift in the "frozen" low-temperature ac susceptibility peak is fitted to a dynamic scaling law with a critical exponent zv=7.5, which indicates a spin-glass phase. Exchange bias is turned on at low temperature which signifies the existence of a strong core-shell interaction. Aging and memory effects are further unique fingerprints of a spin-glass freezing on the surface of isolated magnetic nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyer, G. C.; Olson, B. V.; Hawkins, S. D.
2016-01-04
Direct current (DC) transport and far infrared photoresponse were studied an InAs/GaSb double quantum well with an inverted band structure. The DC transport depends systematically upon the DC bias configuration and operating temperature. Surprisingly, it reveals robust edge conduction despite prevalent bulk transport in our device of macroscopic size. Under 180 GHz far infrared illumination at oblique incidence, we measured a strong photovoltaic response. We conclude that quantum spin Hall edge transport produces the observed transverse photovoltages. Overall, our experimental results support a hypothesis that the photoresponse arises from direct coupling of the incident radiation field to edge states.
Superparamagnetic behavior of Fe70Dy30 granular thin film
NASA Astrophysics Data System (ADS)
Mekala, Laxman; Muhammed Shameem P., V.; Kumar, M. Senthil
2018-04-01
In the present study, the structural and magnetic properties of the Fe70Dy30 thin films are investigated. The Fe70Dy30 thin film with a thickness of 250 Å is fabricated using a dc magnetron sputtering system. Structural and temperature dependent magnetic properties indicate the granular nature of the film. The nonsaturation of the magnetization curves even at high fields of 50 kOe and the obtained very low coercivity in the temperature range 50 - 300 K reveal that films are superparamagnetic (SPM). The decreasing blocking temperature (Tb) with increasing an external magnetic field in temperature dependent magnetization curves are exposed qualitatively.
Influence of small DC bias field on the electrical behaviour of Sr- and Mg-doped lanthanum gallate
NASA Astrophysics Data System (ADS)
Raghvendra; Singh, Rajesh Kumar; Singh, Prabhakar
2014-09-01
One of the promising electrolyte materials for solid oxide fuel cells application, Sr- and Mg-doped lanthanum gallate La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM), is synthesized by conventional solid state ceramic route. X-ray Rietveld analysis confirms the formation of main orthorhombic phase at room temperature along with a few minor secondary phases. SEM micrograph reveals the grain and grainboundary morphology of the system. Electrical conductivity of the LSGM sample is measured in the temperature range 573-873 K and in the frequency range 20 Hz-1 MHz at a few small DC bias fields (at 0.0, 0.5, 1.0, 1.5 and 2.0 V). The conductivity spectra show power-law behaviour. Electrical conductivity of the sample is found to be weakly dependent on DC bias field. This is attributed to field-dependent bulk and grainboundary conduction processes. In the present system, under investigated bias field range, the possibility of formation of Schottky barrier is ruled out. The concept of grainboundary channel (pathway) modulation on the application of bias field is proposed.
Performance of Power Converters at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard L.
2001-01-01
Power converters capable of operation at cryogenic temperatures are anticipated to play an important role in the power system architecture of future NASA deep space missions. Design of such converters to survive cryogenic temperatures will improve the power system performance and reduce development and launch costs. Aerospace power systems are mainly a DC distribution network. Therefore, DC/DC and DC/AC converters provide the outputs needed to different loads at various power levels. Recently, research efforts have been performed at the NASA Glenn Research Center (GRC) to design and evaluate DC/DC converters that are capable of operating at cryogenic temperatures. This paper presents a summary of the research performed to evaluate the low temperature performance of five DC/DC converters. Various parameters were investigated as a function of temperature in the range of 20 to -196 C. Data pertaining to the output voltage regulation and efficiency of the converters is presented and discussed.
Efficiency and Regulation of Commercial Low Power DC/DC Converter Modules at Low Temperatures
NASA Technical Reports Server (NTRS)
Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard L.
2000-01-01
DC/DC converters that are capable of operating at cryogenic temperatures are anticipated to play an important role in the power systems of future NASA deep space missions. Design of these converters to survive cryogenic temperatures will improve the power system performance, and reduce development and launch costs. At the NASA Glenn Research Center Low Temperature Electronics Laboratory, several commercial off-the-shelf dc/dc converter modules were evaluated for their low temperature performance. Various parameters were investigated as a function of temperature, in the range of 20 C to -190 C. Data pertaining to the efficiency and voltage regulation of the tested converters is presented and discussed.
NASA Astrophysics Data System (ADS)
Moure, A.; Pardo, L.
2005-04-01
Ceramics of composition Bi3TiNbO9 (BTN) and perovskite-layered structure (Aurivillius type) [B. Aurivillius, Ark. Kemi 1, 463 (1949)] were processed by natural sintering and hot pressing from amorphous precursors. Precursors were obtained by mechanochemical activation of stoichiometric mixtures of oxides. These materials are in general interesting for their use as high-temperature piezoelectrics. Among them, BTN possesses the highest ferroparaelectric phase-transition temperature (>900°C). The transition temperature establishes the working limit of the ceramic and the electric properties, especially the dc conductivity, affect on its polarizability. In this work, dielectric studies of BTN ceramics with controlled texture and microstructure have been made at 1, 100KHz, and 1MHZ and in the temperature range from 200°C up to the ferroparaelectric transition temperature. Values of ɛ'˜250 at 200°C are achieved in ceramics hot pressed at temperatures as low as 700°C for 1h.
NASA Astrophysics Data System (ADS)
Ouari, Bachir; Titov, Serguey V.; El Mrabti, Halim; Kalmykov, Yuri P.
2013-02-01
The nonlinear ac susceptibility and dynamic magnetic hysteresis (DMH) of a single domain ferromagnetic particle with biaxial anisotropy subjected to both external ac and dc fields of arbitrary strength and orientation are treated via Brown's continuous diffusions model [W. F. Brown, Jr., Phys. Rev. 130, 1677 (1963)] of magnetization orientations. The DMH loops and nonlinear ac susceptibility strongly depend on the dc and ac field strengths, the polar angle between the easy axis of the particle, the external field vectors, temperature, and damping. In contrast to uniaxial particles, the nonlinear ac stationary response and DMH strongly depend on the azimuthal direction of the ac field and the biaxiality parameter Δ.
Degradation of lead-zirconate-titanate ceramics under different dc loads
NASA Astrophysics Data System (ADS)
Balke, Nina; Granzow, Torsten; Rödel, Jürgen
2009-05-01
During poling and application in actuators, piezoelectric ceramics like lead-zirconate-titanate are exposed to static or cyclically varying electric fields, often leading to pronounced changes in the electromechanical properties. These fatigue phenomena depend on time, peak electric load, and temperature. Although this process impacts the performance of many actuator materials, its physical understanding remains elusive. This paper proposes a set of key experiments to systematically investigate the changes in the ferroelectric hysteresis, field-dependent relative permittivity, and piezoelectric coefficient after submitting the material to dc loads of varying amplitude and duration. The observed effects are explained based on a model of domain stabilization due to charge accumulation at domain boundaries.
Test Results of Selected Commercial DC/DC Converters under Cryogenic Temperatures - A Digest
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad
2010-01-01
DC/DC converters are widely used in space power systems in the areas of power management and distribution, signal conditioning, and motor control. Design of DC/DC converters to survive cryogenic temperatures will improve the power system performance, simplify design, and reduce development and launch costs. In this work, the performance of nine COTS modular, low-tomedium power DC/DC converters was investigated under cryogenic temperatures. The converters were evaluated in terms of their output regulation, efficiency, and input and output currents. At a given temperature, these properties were obtained at various input voltages and at different load levels. A summary on the performance of the tested converters was given. More comprehensive testing and in-depth analysis of performance under long-term exposure to extreme temperatures are deemed necessary to establish the suitability of these and other devices for use in the harsh environment of space exploration missions.
Temperature dependence of electroresistance for La0.67Ba0.33MnO3 manganite
NASA Astrophysics Data System (ADS)
Kumar, Rajesh; Gupta, Ajai K.; Kumar, Vijay; Bhalla, G. L.; Khare, Neeraj
2007-12-01
The influence of dc biasing current on temperature dependence of resistance of La0.67Ba0.33MnO3 bulk sample is reported. A decrease in the resistance (electroresistance) on the application of higher bias current is observed. The electroresistance is maximum at metal insulator transition temperature (TMI) and decreases when the temperature is either increased or decreased from TMI. A two-phase model is proposed to explain the occurrence of electroresistance. The higher bias current leads to an increase in alignment of spins and thus, in turn, leads to an increase in spin stiffness coefficient and decrease in the resistance at TMI.
Purely hopping conduction in c-axis oriented LiNbO3 thin films
NASA Astrophysics Data System (ADS)
Shandilya, Swati; Tomar, Monika; Sreenivas, K.; Gupta, Vinay
2009-05-01
Dielectric constant and ac conductivity of highly c-axis oriented LiNbO3 thin film grown by pulsed laser deposition were studied in a metal-insulator-metal configuration over a wide temperature (200 to 450 K) and frequency (100 Hz to 1 MHz) range. The preferred oriented Al (1%) doped ZnO film with electrical conductivity 1.1×103 Ω-1 cm-1 was deposited for dual purpose: (1) to serve as nucleating center for LiNbO3 crystallites along preferred c-axis growth direction, and (2) to act as a suitable bottom electrode for electrical studies. The room temperature dc conductivity (σdc) of LiNbO3 film was about 5.34×10-10 Ω-1 cm-1 with activation energy ˜0.3 eV, indicating extrinsic conduction. The ac conductivity σac was found to be much higher in comparison to σdc in the low temperature region (<300 K) and exhibits a power law behavior due to the hopping of charge carriers. In higher temperature region (>300 K), σac shows a weak frequency dependence, whereas dielectric constant exhibits a strong frequency dispersion. The dielectric dispersion data has been discussed in the light of theoretical models based on Debye type mixed conduction and purely hopping conduction. The dominant conduction in c-axis oriented LiNbO3 thin film is attributed to the purely hopping where both σdc and σac arise due to same mechanism.
ac-driven vortices and the Hall effect in a superconductor with a tilted washboard pinning potential
NASA Astrophysics Data System (ADS)
Shklovskij, Valerij A.; Dobrovolskiy, Oleksandr V.
2008-09-01
The Langevin equation for a two-dimensional (2D) nonlinear guided vortex motion in a tilted cosine pinning potential in the presence of an ac is exactly solved in terms of a matrix continued fraction at arbitrary value of the Hall effect. The influence of an ac of arbitrary amplitude and frequency on the dc and ac magnetoresistivity tensors is analyzed. The ac density and frequency dependence of the overall shape and the number and position of the Shapiro steps on the anisotropic current-voltage characteristics are considered. The influence of a subcritical or overcritical dc on the time-dependent stationary ac longitudinal and transverse resistive vortex responses (on the frequency of an ac drive Ω ) in terms of the nonlinear impedance tensor Ẑ and the nonlinear ac response at Ω harmonics are studied. Analytical formulas for 2D temperature-dependent linear impedance tensor ẐL in the presence of a dc which depend on the angle α between the current-density vector and the guiding direction of the washboard planar pinning potential are derived and analyzed. Influence of α anisotropy and the Hall effect on the nonlinear power absorption by vortices is discussed.
Photoconduction in amorphous thin films of Se90Sb10-xAgx glassy alloys
NASA Astrophysics Data System (ADS)
Sharma, Suresh Kumar; Shukla, R. K.; Dwivedi, Prabhat K.; Kumar, A.
2017-10-01
The present paper reports the steady state photoconductivity and photosensitivity response of thermally evaporated amorphous thin films of Se90Sb10-xAgx(x = 2, 4, 6, 8, 10). Temperature dependence of dark conductivity is studied and activation energy is calculated for different samples. Temperature dependence of photoconductivity is also studied at different intensities. From temperature dependence of photoconductivity activation energy is computed at different intensities which are found to vary from 0.26 to 0.47 eV. Intensity dependence of photoconductivity has also been studied at different temperatures. These curves are plotted on logarithmic scale and found to be straight lines which show that photoconductivity follows a power law with intensity. Composition dependence of dark conductivity, activation energy of DC conduction and photosensitivity show that these parameters are highly. composition dependent and show a discontinuity at a particular composition when Ag concentration becomes 6 at. %. This is explained in terms of transition from floppy state to mechanically stabilized state at this composition.
Conduction mechanism in bismuth silicate glasses containing titanium
NASA Astrophysics Data System (ADS)
Dult, Meenakshi; Kundu, R. S.; Murugavel, S.; Punia, R.; Kishore, N.
2014-11-01
Bismuth silicate glasses mixed with different concentrations of titanium dioxide having compositions xTiO2-(60-x)Bi2O3-40SiO2 with x=0, 5, 10, 15 and 20 were prepared by the normal melt quench technique. The frequency dependence of the ac electrical conductivity of different compositions of titanium bismuth silicate glasses has been studied in the frequency range 10-1 Hz to 10 MHz and in the temperature range 623-703 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of titanium bismuth silicate glass system. The dc conductivity (σdc), so called crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (Hf) and enthalpy of migration (Hm) have also been estimated. The conductivity data have been analyzed in terms of different theoretical models to determine the possible conduction mechanism. Analysis of the conductivity data and the frequency exponent shows that the correlated barrier hopping of electrons between Ti3+ and Ti4+ ions in the glasses is the most favorable mechanism for ac conduction. The temperature dependent dc conductivity has been analyzed in the framework of theoretical variable range hopping model (VRH) proposed by Mott which describe the hopping conduction in disordered semiconducting systems. The various polaron hopping parameters have also been deduced. Mott's VRH model is found to be in good agreement with experimental data and the values of inverse localization length of s-like wave function (α) obtained by this model with modifications suggested by Punia et al. are close to the ones reported for a number of oxide glasses.
Pohlmann, André; Hameyer, Kay
2012-01-01
Ventricular Assist Devices (VADs) are mechanical blood pumps that support the human heart in order to maintain a sufficient perfusion of the human body and its organs. During VAD operation blood damage caused by hemolysis, thrombogenecity and denaturation has to be avoided. One key parameter causing the blood's denaturation is its temperature which must not exceed 42 °C. As a temperature rise can be directly linked to the losses occuring in the drive system, this paper introduces an efficiency prediction chain for Brushless DC (BLDC) drives which are applied in various VAD systems. The presented chain is applied to various core materials and operation ranges, providing a general overview on the loss dependencies.
Pan, Jianjun; Tristram-Nagle, Stephanie; Kucerka, Norbert; Nagle, John F
2008-01-01
X-ray diffuse scattering was measured from oriented stacks and unilamellar vesicles of dioleoylphosphatidylcholine lipid bilayers to obtain the temperature dependence of the structure and of the material properties. The area/molecule, A, was 75.5 A(2) at 45 degrees C, 72.4 A(2) at 30 degrees C, and 69.1 A(2) at 15 degrees C, which gives the area expansivity alpha(A) = 0.0029/deg at 30 degrees C, and we show that this value is in excellent agreement with the polymer brush theory. The bilayer becomes thinner with increasing temperature; the contractivity of the hydrocarbon portion was alpha(Dc) = 0.0019/deg; the difference between alpha(A) and alpha(Dc) is consistent with the previously measured volume expansivity alpha(Vc) = 0.0010/deg. The bending modulus K(C) decreased as exp(455/T) with increasing T (K). Our area compressibility modulus K(A) decreased with increasing temperature by 5%, the same as the surface tension of dodecane/water, in agreement again with the polymer brush theory. Regarding interactions between bilayers, the compression modulus B as a function of interbilayer water spacing D'(W) was found to be nearly independent of temperature. The repulsive fluctuation pressure calculated from B and K(C) increased with temperature, and the Hamaker parameter for the van der Waals interaction was nearly independent of temperature; this explains why the fully hydrated water spacing, D'(W), that we obtain from our structural results increases with temperature.
El-Ghamaz, N A; Diab, M A; El-Sonbati, A Z; Salem, O L
2011-12-01
Supramolecular coordination of dioxouranium(VI) heterochelates 5-sulphono-7-(4'-X phenylazo)-8-hydroxyquinoline HL(n) (n=1, X=CH(3); n=2, X=H; n=3, X=Cl; n=4, X=NO(2)) have been prepared and characterized with various physico-chemical techniques. The infrared spectral studies showed a monobasic bidentate behavior with the oxygen and azonitrogen donor system. The temperature dependence of the D.C. electrical conductivity of HL(n) ligands and their uranyl complexes has been studied in the temperature range 305-415 K. The thermal activation energies E(a) for HL(n) compounds were found to be in the range 0.44-0.9 eV depending on the nature of the substituent X. The complexation process decreased E(a) values to the range 0.043-045 eV. The electrical conduction mechanism has been investigated for all samples under investigation. It was found to obey the variable range hopping mechanism (VRH). Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sirotkin, N. A.; Titov, V. A.
2018-04-01
An atmospheric-pressure dc discharge in air ( i = 10-50 mA) with metal and liquid electrolyte electrodes was studied experimentally. An aqueous solution of sodium chloride (0.5 mol/L) was used as the cathode or anode. The electric field strength in the plasma and the cathode (anode) voltage drops were obtained from the measured dependences of the discharge voltage on the electrode gap length. The gas temperature was deduced from the spectral distribution of nitrogen emission in the band N2( C 3Π u → B 3Π g , 0-2). The time dependences of the temperatures of the liquid electrolyte electrodes during the discharge and in its afterglow, as well as the evaporation rate of the solution, were determined experimentally. The contributions of ion bombardment and heat flux from the plasma to the heating of the liquid electrode and transfer of solvent (water) into the gas phase are discussed using the experimental data obtained.
Electrically tunable transport and high-frequency dynamics in antiferromagnetic S r3I r2O7
NASA Astrophysics Data System (ADS)
Seinige, Heidi; Williamson, Morgan; Shen, Shida; Wang, Cheng; Cao, Gang; Zhou, Jianshi; Goodenough, John B.; Tsoi, Maxim
2016-12-01
We report dc and high-frequency transport properties of antiferromagnetic S r3I r2O7 . Temperature-dependent resistivity measurements show that the activation energy of this material can be tuned by an applied dc electrical bias. The latter allows for continuous variations in the sample resistivity of as much as 50% followed by a reversible resistive switching at higher biases. Such a switching is of high interest for antiferromagnetic applications in high-speed memory devices. Interestingly, we found the switching behavior to be strongly affected by a high-frequency (microwave) current applied to the sample. The microwaves at 3-7 GHz suppress the dc switching and produce resonancelike features that we tentatively associated with the dissipationless magnonics recently predicted to occur in antiferromagnetic insulators subject to ac electric fields. We have characterized the effects of microwave irradiation on electronic transport in S r3I r2O7 as a function of microwave frequency and power, strength and direction of external magnetic field, strength and polarity of applied dc bias, and temperature. Our observations support the potential of antiferromagnetic materials for high-speed/high-frequency spintronic applications.
NASA Astrophysics Data System (ADS)
Takenaka, K.; Sawaki, Y.; Sugai, S.
1999-11-01
Optical reflectivity spectra were measured on cleaved surfaces of La0.825Sr0.175MnO3 single crystals (TC=283 K) over a temperature range 10-295 K. The optical conductivity σ(ω) shows incoherent-to-coherent crossover with decreasing temperature. The minimum metallic conductivity σmin of this compound was determined by the dc resistivity ρ(T) measurements of Al-substituted crystals (La0.825Sr0.175)(Mn1-zAlz)O3 and was found to be 2000-3000 Ω-1 cm-1. This indicates that the dc conductivity of La0.825Sr0.175MnO3 is smaller than σmin over a wide temperature range below TC even though ρ(T) is metallic (dρ/dT>0). The present results suggest that there are two types of the ferromagnetic-metallic phase below TC-a ``high-temperature incoherent'' metallic (HIM) and a ``low-temperature coherent'' metallic phase. ``Colossal magnetoresistance'' is a characteristic of the HIM phase.
Performance analysis of radiation cooled dc transmission lines for high power space systems
NASA Technical Reports Server (NTRS)
Schwarze, G. E.
1985-01-01
As space power levels increase to meet mission objectives and also as the transmission distance between power source and load increases, the mass, volume, power loss, and operating voltage and temperature become important system design considerations. This analysis develops the dependence of the specific mass and percent power loss on hte power and voltage levels, transmission distance, operating temperature and conductor material properties. Only radiation cooling is considered since the transmission line is assumed to operate in a space environment. The results show that the limiting conditions for achieving low specific mass, percent power loss, and volume for a space-type dc transmission line are the permissible transmission voltage and operating temperature. Other means to achieve low specific mass include the judicious choice of conductor materials. The results of this analysis should be immediately applicable to power system trade-off studies including comparisons with ac transmission systems.
On the nonlinear variation of dc conductivity with dielectric relaxation time
NASA Astrophysics Data System (ADS)
Johari, G. P.; Andersson, Ove
2006-09-01
The long-known observations that dc conductivity σdc of an ultraviscous liquid varies nonlinearly with the dielectric relaxation time τ, and the slope of the logσdc against logτ plot deviates from -1 are currently seen as two of the violations of the Debye-Stokes-Einstein equation. Here we provide a formalism using a zeroth order Bjerrum description for ion association to show that in addition to its variation with temperature T and pressure P, impurity ion population varies with a liquid's equilibrium dielectric permittivity. Inclusion of this electrostatic effect modifies the Debye-Stokes-Einstein equation to log(σdcτ )=constant+logα, where α is the T and P-dependent degree of ionic dissociation of an electrolytic impurity. Variation of a liquid's shear modulus with T and P would add to the nonlinearity of σdc-τ relation, as would a nonequivalence of the shear and dielectric relaxation times, proton transfer along the hydrogen bonds, or occurrence of another chemical process. This is illustrated by using the data for ultraviscous acetaminophen-aspirin liquid.
dc Resistivity of Quantum Critical, Charge Density Wave States from Gauge-Gravity Duality
NASA Astrophysics Data System (ADS)
Amoretti, Andrea; Areán, Daniel; Goutéraux, Blaise; Musso, Daniele
2018-04-01
In contrast to metals with weak disorder, the resistivity of weakly pinned charge density waves (CDWs) is not controlled by irrelevant processes relaxing momentum. Instead, the leading contribution is governed by incoherent, diffusive processes which do not drag momentum and can be evaluated in the clean limit. We compute analytically the dc resistivity for a family of holographic charge density wave quantum critical phases and discuss its temperature scaling. Depending on the critical exponents, the ground state can be conducting or insulating. We connect our results to dc electrical transport in underdoped cuprate high Tc superconductors. We conclude by speculating on the possible relevance of unstable, semilocally critical CDW states to the strange metallic region.
NASA Astrophysics Data System (ADS)
Zhang, M. F.; Wang, Y.; Wang, K. F.; Zhu, J. S.; Liu, J.-M.
2009-03-01
We investigate in detail the migration kinetics of oxygen vacancies (OVs) in Ba-doped Pb(Zr0.52Ti0.48)O3 (PZT) ferroelectrics by complex impedance spectroscopy. The temperature dependent dc-electrical conductivity σdc suggests that Ba doping into PZT can lower significantly the density of OVs, leading to the distinctly decreased σdc and slightly enhanced activation energy U for the migration of OVs, thus benefiting the polarization fatigue resistance. Furthermore, the polarization fluctuation induced by the relaxation of OVs is reduced by the Ba doping. The Cole-Cole fitting to the dielectric loss manifests strong correlation among OVs, and the migration of OVs appears to be a collective behavior.
dc Resistivity of Quantum Critical, Charge Density Wave States from Gauge-Gravity Duality.
Amoretti, Andrea; Areán, Daniel; Goutéraux, Blaise; Musso, Daniele
2018-04-27
In contrast to metals with weak disorder, the resistivity of weakly pinned charge density waves (CDWs) is not controlled by irrelevant processes relaxing momentum. Instead, the leading contribution is governed by incoherent, diffusive processes which do not drag momentum and can be evaluated in the clean limit. We compute analytically the dc resistivity for a family of holographic charge density wave quantum critical phases and discuss its temperature scaling. Depending on the critical exponents, the ground state can be conducting or insulating. We connect our results to dc electrical transport in underdoped cuprate high T_{c} superconductors. We conclude by speculating on the possible relevance of unstable, semilocally critical CDW states to the strange metallic region.
Magnetic studies of high Tc superconducting (La0.9Sr0.1)2CuO4-y
NASA Technical Reports Server (NTRS)
Zirngiebl, E.; Thompson, J. D.; Huang, C. Y.; Hor, P. H.; Meng, R. L.
1987-01-01
The magnetic moment of La(0.9Sr0.1)2CuO4-y was measured as a function of temperature and magnetic field, and the onset of superconductivity was found to occur at a temperature of 35 K. At 2 K, the dc magnetic susceptibility was found to reach 83 percent of perfect diamagnetism. Field studies have shown that the sample is a type-II superconductor and that the temperature dependences of the critical fiedls are anomalous. Its critical fields, kappa, and lambda(eff) are much larger than those for (La0.9Ba0.1)2CuO4-y, and their temperature dependences cannot be explained in terms of BCS theory.
Crystallization kinetics, optical and dielectric properties of Li2OṡCdOṡBi2O3ṡSiO2 glasses
NASA Astrophysics Data System (ADS)
Rani, Saroj; Sanghi, Sujata; Ahlawat, Neetu; Agarwal, Ashish
2015-10-01
Crystallization kinetics, optical absorption and electrical behavior of lithium cadmium silicate glasses with different amount of bismuth oxide were investigated using non-isothermal crystallization approach, UV-VIS-NIR spectroscopy and impedance spectroscopy, respectively. These glasses were synthesized by normal melt quenching technique. Variation in physical properties, viz. density, molar volume with Bi2O3:SiO2 ratio were related to the structural changes occurring in the glasses. The glass transition temperature (Tg), crystalline peak temperature (Tp) and melting temperature (Tm) of these glasses were determined using differential scanning calorimeter at various heating rates. The dependence of Tg and Tp on heating rate has been used for the determination of the activation energy of glass transition and crystallization. Thermal stability parameters have revealed high stability of the glass prepared with 40 mol% of Bi2O3 content. The crystallization kinetics for the glasses was studied by using the Kissinger and modified Ozawa equations. Appearance of a sharp cut-off and a wide and reasonable transmission in VIS-NIR region makes these glasses suitable for IR transmission window. The cut-off wavelength, optical band gap and Urbach's energy have been analyzed and discussed in terms of changes in the glass structure. By analyzing the impedance spectra, the ac and dc conductivities, activation energy for dc conduction (Edc) and for relaxation (EM″) were calculated. The results obtained from dc conductivity confirm the network forming role of Cd2+ ion in the glasses. The scaling of the conductivity spectra has been used to interpret the temperature dependence of the relaxation dynamics. The observed conductivity spectra follows power law with exponent 's' which decreases with temperature and satisfies the correlated barrier hopping (CBH) model. The perfect overlying of normalized plots of electrical modulus on a single 'master curve' depicts temperature as well as composition independent dynamical process at several frequencies.
Dielectric and impedance study of praseodymium substituted Mg-based spinel ferrites
NASA Astrophysics Data System (ADS)
Farid, Hafiz Muhammad Tahir; Ahmad, Ishtiaq; Ali, Irshad; Ramay, Shahid M.; Mahmood, Asif; Murtaza, G.
2017-07-01
Spinel ferrites with nominal composition MgPryFe2-yO4 (y = 0.00, 0.025, 0.05, 0.075, 0.10) were prepared by sol-gel method. Temperature dependent DC electrical conductivity and drift mobility were found in good agreement with each other, reflecting semiconducting behavior. The dielectric properties of all the samples as a function of frequency (1 MHz-3 GHz) were measured at room temperature. The dielectric constant and complex dielectric constant of these samples decreased with the increase of praseodymium concentration. In the present spinel ferrite, Cole-Cole plots were used to separate the grain and grain boundary's effects. The substitution of praseodymium ions in Mg-based spinel ferrites leads to a remarkable rise of grain boundary's resistance as compared to the grain's resistance. As both AC conductivity and Cole-Cole plots are the functions of concentration, they reveal the dominant contribution of grain boundaries in the conduction mechanism. AC activation energy was lower than dc activation energy. Temperature dependence normalized AC susceptibility of spinel ferrites reveals that MgFe2O4 exhibits multi domain (MD) structure with high Curie temperature while on substitution of praseodymium, MD to SD transitions occurs. The low values of conductivity and low dielectric loss make these materials best candidate for high frequency application.
NASA Astrophysics Data System (ADS)
Bayer, T. J. M.; Carter, J. J.; Wang, Jian-Jun; Klein, Andreas; Chen, Long-Qing; Randall, C. A.
2017-12-01
Under electrical bias, mixed ionic conductors such as SrTiO3 are characterized by oxygen vacancy migration which leads to resistance degradation. The defect chemistry to describe the relationship between conductivity and oxygen vacancies is usually obtained by high temperature conductivity data or quenching experiments. These techniques can investigate the equilibrated state only. Here, we introduce a new approach using in-situ impedance studies with applied dc voltage to analyze the temperature dependent electrical properties of degraded SrTiO3 single crystals. This procedure is most beneficial since it includes electric field driven effects. The benefits of the approach are highlighted by comparing acceptor doped and undoped SrTiO3. This approach allows the determination of the temperature activation of both anodic and cathodic conductivity of Fe-doped SrTiO3 in the degraded state. The anodic activation energy matches well with the published results, while the activation energy of the degraded cathode region reported here is not in agreement with earlier assumptions. The specific discrepancies of the experimental data and the published defect chemistry are discussed, and a defect chemistry model that includes the strong temperature dependence of the electron conductivity in the cathode region is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, T. V. A.; Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531; Hattori, A. N.
2014-07-14
Temperature-dependent conductivities at dc and terahertz (THz) frequency region (σ{sub THz}(ω,T)) were obtained for a strongly correlated (La{sub 0.275}Pr{sub 0.35}Ca{sub 0.375})MnO{sub 3} (LPCMO) film using THz time domain spectroscopy. A composite model that describes σ{sub THz}(ω,T) for LPCMO through the insulator-metal transition (IMT) was established by incorporating Austin-Mott model characterizing the hopping of localized electrons and Drude model explaining the behavior of free electrons. This model enables us to reliably investigate the dc transport dynamics from THz conductivity measurement, i.e., simultaneously evaluate the dc conductivity and the competing composition of metal and insulator phases through the IMT, reflecting the changesmore » in microscopic conductivity of these phases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nefzi, H.; Sediri, F., E-mail: faouzi.sediri@ipeit.rnu.tn; Faculte des Sciences de Tunis, Universite Tunis El Manar, 2092 El Manar, BP 94 CEDEX 1068, Cite Rommana Tunis
2012-06-15
Plate-like crystals of the polyvanadate (H{sub 3}N(CH{sub 2}){sub 4}NH{sub 3})[V{sub 6}O{sub 14}] have been synthesized via an hydrothermal treatment. X-ray powder diffraction, scanning electron microscope, Fourier transform infrared spectroscopy, electron spin resonance and complex impedance spectroscopy were used to analyze the hybrid material. The frequency dependence of AC conductivity at different temperatures indicates that the CBH model is the probable mechanism for the AC conduction behavior. The conductivity was measured by complex impedance spectroscopy which is equal to 31.10{sup -3} {Omega}{sup -1} m{sup -1} at 443 K. The Arrhenius diagram is not linear, it presents a rupture situated at 357more » K and the activation energies' average values are 0.22 eV and 0.14 eV, deduced from the Arrhenius relation. - Graphical abstract: At high temperature {epsilon} Double-Prime increases more rapidly which is due to the increasing conduction loss which rises with the increment in the DC conductivity. Highlights: Black-Right-Pointing-Pointer Rectangular plate-like crystals (H{sub 3}N(CH{sub 2}){sub 4}NH{sub 3})[V{sub 6}O{sub 14}] were synthesized. Black-Right-Pointing-Pointer frequency and temperature dependence of AC conductivity indicate CBH model. Black-Right-Pointing-Pointer The temperature dependence of DC conductivity exhibits two conduction mechanisms.« less
NASA Astrophysics Data System (ADS)
Asada, M.; Suzuki, S.; Fukuma, T.
2017-11-01
The temperature dependences of output power, oscillation frequency, and current-voltage curve are measured for resonant-tunneling-diode terahertz (THz) oscillators. The output power largely changes with temperature owing to the change in Ohmic loss. In contrast to the output power, the oscillation frequency and current-voltage curve are almost insensitive to temperature. The measured temperature dependence of output power is compared with the theoretical calculation including the negative differential conductance (NDC) as a fitting parameter assumed to be independent of temperature. Very good agreement was obtained between the measurement and calculation, and the NDC in the THz frequency region is estimated. The results show that the absolute values of NDC in the THz region significantly decrease relative to that at DC, and increases with increasing frequency in the measured frequency range.
Control of plasma-liquid interaction of atmospheric DC glow discharge using liquid electrode
NASA Astrophysics Data System (ADS)
Shirai, Naoki; Aoki, Ryuta; Nito, Aihito; Aoki, Takuya; Uchida, Satoshi; Tochikubo, Fumiyoshi
2014-10-01
Atmospheric plasma in contact with liquid have a variety of interesting phenomena and applications. Previously, we investigated the fundamental characteristics of an atmospheric dc glow discharge using a liquid electrode with a miniature helium flow. We tried to control the plasma-liquid interaction by changing the plasma parameter such as gas species, liquid, and applied voltage. Sheath flow system enables another gas (N2, O2, Ar) flow to around the helium core flow. It can control the gas species around the discharge. When liquid (NaCl aq.) cathode DC discharge is generated, Na emission (588 nm) can be observed from liquid surface with increasing discharge current. Na emission strongly depends on the discharge current and liquid temperature. However, when Ar sheath flow is used, the intensity of Na becomes weak. When liquid anode DC discharge is generated, self-organized luminous pattern formation can be observed at the liquid surface. The pattern depends on existence of oxygen gas in gap. By changing the oxygen gas ratio in the gap, variety of pattern formation can be observed. The discharge in contact with liquid also can be used for synthesis of metal nanoparticles at plasma-liquid interface. Size and shape of nanoparticles depend on discharge gases. This work was supported financially in part by a Grant-in-Aid for Scientific Research on Innovative Areas (No 21110007) from MEXT, Japan.
Role of thermal heating on the voltage induced insulator-metal transition in VO2.
Zimmers, A; Aigouy, L; Mortier, M; Sharoni, A; Wang, Siming; West, K G; Ramirez, J G; Schuller, Ivan K
2013-02-01
We show that the main mechanism for the dc voltage or dc current induced insulator-metal transition in vanadium dioxide VO(2) is due to local Joule heating and not a purely electronic effect. This "tour de force" experiment was accomplished by using the fluorescence spectra of rare-earth doped micron sized particles as local temperature sensors. As the insulator-metal transition is induced by a dc voltage or dc current, the local temperature reaches the transition temperature indicating that Joule heating plays a predominant role. This has critical implications for the understanding of the dc voltage or dc current induced insulator-metal transition and has a direct impact on applications which use dc voltage or dc current to externally drive the transition.
Relaxation processes and conduction mechanism in bismuth ferrite lead titanate composites
NASA Astrophysics Data System (ADS)
Sahu, Truptimayee; Behera, Banarji
2018-02-01
In this study, samarium (Sm)-doped multiferroic composites of 0.8BiSmxFe1-xO3-0.2PbTiO3 where x = 0.05, 0.10, 0.15, and 0.20 were prepared via the conventional solid state reaction route. The electrical properties of these composites were analyzed using an impedance analyzer over a wide range of temperatures and frequencies (102-106 Hz). The impedance and modulus analyses confirmed the presence of both bulk and grain boundary effects in the materials. The temperature dependence of impedance and modulus spectrum indicated the negative temperature coefficient of resistance behavior. The dielectric relaxation exhibited non-Debye type behavior and it was temperature dependent. The relaxation time (τ) and DC conductivity followed an Arrhenius type behavior. The frequency-dependent AC conductivity obeyed Jonscher's power law. The correlated barrier hopping model was appropriate to understand the conduction mechanism in the composites considered.
Low-temperature operation of a Buck DC/DC converter
NASA Technical Reports Server (NTRS)
Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.
1995-01-01
Low-temperature (77 K) operation of a 42/28 V, 175 W, 50 kHz PWM Buck DC/DC converter designed with commercially available components is reported. Overall, the converter losses decreased at 77 K compared to room temperature operation. A full-load efficiency of 97 percent was recorded at liquid-nitrogen temperature, compared to 95.8 percent at room temperature. Power MOSFET operation improved significantly where as the output rectifier operation deteriorated at low-temperature. The performance of the output filter inductor and capacitor did not change significantly at 77 K compared to room temperature performance. It is possible to achieve high-density and high efficiency power conversion at low-temperatures due to improved electronic, electrical and thermal properties of materials.
NASA Astrophysics Data System (ADS)
Yamamoto, R.; Yanagita, Y.; Namaizawa, T.; Komuro, S.; Furukawa, T.; Itou, T.; Kato, R.
2018-06-01
We measured the ac magnetic susceptibility for the layered organic superconductor EtMe3P [Pd(dmit)2] 2 under pressure with a dc magnetic field applied perpendicular to the ac field. We investigated the dc field dependence of the ac susceptibility in detail and concluded that the superconductivity in EtMe3P [Pd(dmit)2] 2 is an anisotropic three-dimensional superconductivity even at low temperatures, which contrasts with the large majority of other correlated electron layered superconductors such as high-Tc cuprate and κ -(ET) 2X systems.
Computational modeling of properties
NASA Technical Reports Server (NTRS)
Franz, Judy R.
1994-01-01
A simple model was developed to calculate the electronic transport parameters in disordered semiconductors in strong scattered regime. The calculation is based on a Green function solution to Kubo equation for the energy-dependent conductivity. This solution together with a rigorous calculation of the temperature-dependent chemical potential allows the determination of the dc conductivity and the thermopower. For wise-gap semiconductors with single defect bands, these transport properties are investigated as a function of defect concentration, defect energy, Fermi level, and temperature. Under certain conditions the calculated conductivity is quite similar to the measured conductivity in liquid II-VI semiconductors in that two distinct temperature regimes are found. Under different conditions the conductivity is found to decrease with temperature; this result agrees with measurements in amorphous Si. Finally the calculated thermopower can be positive or negative and may change sign with temperature or defect concentration.
Computational modeling of properties
NASA Technical Reports Server (NTRS)
Franz, Judy R.
1994-01-01
A simple model was developed to calculate the electronic transport parameters in disordered semiconductors in strong scattered regime. The calculation is based on a Green function solution to Kubo equation for the energy-dependent conductivity. This solution together with a rigorous calculation of the temperature-dependent chemical potential allows the determination of the dc conductivity and the thermopower. For wide-gap semiconductors with single defect bands, these transport properties are investigated as a function of defect concentration, defect energy, Fermi level, and temperature. Under certain conditions the calculated conductivity is quite similar to the measured conductivity in liquid 2-6 semiconductors in that two distinct temperature regimes are found. Under different conditions the conductivity is found to decrease with temperature; this result agrees with measurements in amorphous Si. Finally the calculated thermopower can be positive or negative and may change sign with temperature or defect concentration.
Chen, Hsi-Chao; Lee, Kuan-Shiang; Lee, Cheng-Chung
2008-05-01
Titanium oxide (TiO(2)) thin films were prepared by different deposition methods. The methods were E-gun evaporation with ion-assisted deposition (IAD), radio-frequency (RF) ion-beam sputtering, and direct current (DC) magnetron sputtering. Residual stress was released after annealing the films deposited by RF ion-beam or DC magnetron sputtering but not evaporation, and the extinction coefficient varied significantly. The surface roughness of the evaporated films exceeded that of both sputtered films. At the annealing temperature of 300 degrees C, anatase crystallization occurred in evaporated film but not in the RF ion-beam or DC magnetron-sputtered films. TiO(2) films deposited by sputtering were generally more stable during annealing than those deposited by evaporation.
4He sample probe for combined microwave and dc transport measurements
NASA Astrophysics Data System (ADS)
Dobrovolskiy, Oleksandr V.; Franke, Jörg; Huth, Michael
2015-03-01
Combined microwave and dc electrical transport measurements at low temperatures represent a valuable experimental method in many research areas. In particular, when samples are conventional superconductors, a typical experiment requires a combination of helium temperatures, a wide range of magnetic fields, and the utilization of coaxial lines along with the usual dc wiring. We report on the general design features and the microwave performance of a custom-made low-temperature sample probe, with a measurement bandwidth tested from dc to 20 GHz. Equipped with six coaxial cables, a heater, Hall and temperature sensors, the probe fits into a ⊘32 mm shaft. We present our setup, analyze its microwave performance, and describe two representative experiments enabled by this system. The proposed setup will be essential for a systematic study of the dc and ac response of the vortex dynamics in nanopatterned superconductors subject to combined dc and microwave stimuli. Besides, it will be valuable for the investigation of a broad class of nonlinear stochastic systems where a combination of dc and high-frequency ac driving in a wide temperature range is necessary.
Performance of a spacecraft DC-DC converter breadboard modified for low temperature operation
NASA Technical Reports Server (NTRS)
Gerber, Scott S.; Stell, Chris; Patterson, Richard; Ray, Biswajit
1996-01-01
A 1OW 3OV/5.OV push-pull dc-dc converter breadboard, designed by the Jet Propulsion Laboratory (JPL) with a +50 C to +5 C operating range for the Cassini space probe, was characterized for lower operating temperatures. The breadboard converter which failed to operate for temperatures below -125 C was then modified to operate at temperatures approaching that of liquid nitrogen (LN2). Associated with this low operating temperature range (greater than -196 C) was a variety of performance problems such as significant change in output voltage, converter switching instability, and failure to restart at temperatures below -154 C. An investigation into these problems yielded additional modifications to the converter which improved low temperature performance even further.
Laser-induced fluorescence of phosphors for remote cryogenic thermometry
NASA Technical Reports Server (NTRS)
Beshears, D. L.; Capps, G. J.; Cates, M. R.; Simmons, C. M.; Schwenterly, S. W.
1990-01-01
Remote cryogenic temperature measurements can be made by inducing fluorescence in phosphors with temperature-dependent emissions and measuring the emission lifetimes. The thermographic phosphor technique can be used for making precision, noncontact, cryogenic-temperature measurements in electrically hostile environments, such as high dc electric or magnetic fields. The National Aeronautics and Space Administration is interested in using these thermographic phosphors for mapping hot spots on cryogenic tank walls. Europium-doped lanthanum oxysulfide (La2O2S:Eu) and magnesium fluorogermanate doped with manganese (Mg4FGeO6:Mn) are suitable for low-temperature surface thermometry. Several emission lines, excited by a 337-nm ultraviolet laser, provide fluorescence lifetimes having logarithmic dependence with temperature from 4 to above 125 K. A calibration curve for both La2O2S:Eu and Mg4FGeO6:Mn is presented, as well as emission spectra taken at room temperature and 11 K.
Frenz, Theresa; Graalmann, Lukas; Detje, Claudia N; Döring, Marius; Grabski, Elena; Scheu, Stefanie; Kalinke, Ulrich
2014-09-01
Upon treatment with vesicular stomatitis virus (VSV) particles, plasmacytoid dendritic cells (pDC) are triggered to mount substantial type I IFN responses, whereas myeloid DC (mDC) are only minor producers. Interestingly, bone marrow-derived (BM-)mDC were more vulnerable to infection with enhanced GFP (eGFP)-expressing VSV (VSVeGFP) than BM-pDC. BM-pDC stimulated with wild-type VSV mounted TLR-dependent IFN responses that were independent of RIG-I-like helicase (RLH) signaling. In contrast, in BM-pDC the VSV variant M2 induced particularly high IFN responses triggered in a TLR- and RLH-dependent manner, whereas BM-mDC stimulation was solely RLH-dependent. Importantly, VSVeGFP treatment of BM-pDC derived from IFN-β yellow fluorescent protein (YFP) reporter mice (messenger of IFN-β) resulted in YFP(+) and eGFP(+) single-positive cells, whereas among messenger of IFN-β-BM-mDC most YFP(+) cells were also eGFP(+). This observation indicated that unlike mDC, direct virus infection was not required to trigger IFN responses of pDC. VSV-infected BM-mDC triggered BM-pDC to mount significantly higher IFN responses than free virus particles. Stimulation with infected cells enhanced the percentages of pDC subsets expressing either IFN-β(+) or IFN-α6(+) plus IFN-β(+). Irrespective of whether stimulated with free virus or infected cells, IFN induction was dependent on autophagy of pDC, whereas autophagy of the infected mDC was dispensable. Collectively, these results indicated that productive VSV infection was needed to trigger IFN responses of mDC, but not of pDC, and that IFN responses were primarily induced by virus-infected cells that stimulated pDC in a TLR-dependent manner. Copyright © 2014 by The American Association of Immunologists, Inc.
Cooling and stabilization of graphene nanoplatelets in high vacuum
NASA Astrophysics Data System (ADS)
Nagornykh, Pavel
The study of 2D materials is a rapidly growing area of research, where the ability to isolate and probe an individual single-layer specimen is of high importance. The levitation approach serves as a natural solution for this problem and can be used in ways complementary to the standard techniques. Experiments, including study of properties at high or close to melting temperatures, stretching, folding, vibration and functionalization, can be conducted on levitated 2D materials. As a first step towards realization of all these ideas, one needs to develop and test a system allowing for control over the thermal state and orientation of mono-layer flakes. In this thesis, I present the results of implementation of the parametric feedback cooling scheme in a quadrupole ion trap for stabilization and cooling of graphene nanopletelets. I have tested and showed that the feedback allows to stabilize levitated graphene nanoplatelets in high vacuum conditions (<1 microTorr) to have trapped life times longer than a week. Cooling of the center of mass motion to temperatures below 20 K for all translational degrees of freedom was observed. I have also studied the coupling of DC patch potentials, which were found to be present in the high vacuum chamber. Their effect on cooling was studied and the protocol for minimizing the noise coupling created by the DC fields was designed. We have shown that by varying DC voltages on a set of auxiliary DC electrodes, placed near the trap, one can balance out the DC fields and achieve the lowest cooling temperature. The settings corresponding to this temperature were measured to have a slow drift in time. Ability to tune the settings to balance this drift without breaking the vacuum was studied and found to be a viable solution for the drift cancellation. In addition, our effort in characterization of the flakes is presented. It was shown that the flake discharge quantization observed during the initial pumping down of the high vacuum chamber allows to extract absolute values of flake mass and charge. I also mention the issues experienced with estimation of the shape of the flake, as well as its temperature based on an equipartition theorem. Finally, I discuss the preliminary data on the precession and reorientation of the flakes in the presence of circularly polarized light (CPL) and DC stray fields. The dependence of flake orientation on the offset from the nulling settings is observed and is explained in terms of basic model of a solid charged disk in the presence of two torques created by CPL and DC stray fields.
Broadband dielectric response of CaCu3Ti4O12 : From dc to the electronic transition regime
NASA Astrophysics Data System (ADS)
Kant, Ch.; Rudolf, T.; Mayr, F.; Krohns, S.; Lunkenheimer, P.; Ebbinghaus, S. G.; Loidl, A.
2008-01-01
We report on phonon properties and electronic transitions in CaCu3Ti4O12 , a material which reveals a colossal dielectric constant at room temperature without any ferroelectric transition. The results of far- and midinfrared measurements are compared to those obtained by broadband dielectric and millimeter-wave spectroscopy on the same single crystal. The unusual temperature dependence of phonon eigenfrequencies, dampings, and ionic plasma frequencies of low-lying phonon modes is analyzed and discussed in detail. Electronic excitations below 4eV are identified as transitions between full and empty hybridized oxygen-copper bands and between oxygen-copper and unoccupied Ti3d bands. The unusually small band gap determined from the dc conductivity (˜200meV) compares well with the optical results.
Unidirectional Spin-Wave-Propagation-Induced Seebeck Voltage in a PEDOT:PSS/YIG Bilayer
NASA Astrophysics Data System (ADS)
Wang, P.; Zhou, L. F.; Jiang, S. W.; Luan, Z. Z.; Shu, D. J.; Ding, H. F.; Wu, D.
2018-01-01
We clarify the physical origin of the dc voltage generation in a bilayer of a conducting polymer film and a micrometer-thick magnetic insulator Y3Fe5O12 (YIG) film under ferromagnetic resonance and/or spin wave excitation conditions. The previous attributed mechanism, the inverse spin Hall effect in the polymer [Nat. Mater. 12, 622 (2013), 10.1038/nmat3634], is excluded by two control experiments. We find an in-plane temperature gradient in YIG which has the same angular dependence with the generated voltage. Both vanish when the YIG thickness is reduced to a few nanometers. Thus, we argue that the dc voltage is governed by the Seebeck effect in the polymer, where the temperature gradient is created by the nonreciprocal magnetostatic surface spin wave propagation in YIG.
Investigation of flux penetration in YBa 2Cu 3O 7-δ filaments
NASA Astrophysics Data System (ADS)
Devos, P.; Buekenhoudt, A.; D'Anna, G.; André, M.-O.; Indenbom, M. V.; Benoit, W.; De Batist, R.; Cornelis, J.
1994-12-01
ac Susceptibility measurements using a low frequency torsion pendulum and an ac susceptometer were conducted on YBa 2Cu 3O 7-δ filaments in low magnetic dc fields (≤1T). Different dissipation peaks are observed, dependent on the temperature and the applied amplitude. The peak at low temperatures, which is of intergranular nature is studied in detail. The penetration follows the Bean model and the intergranular creep is observed.
NASA Astrophysics Data System (ADS)
Al-Daraghmeh, Tariq M.; Saleh, Mahmoud H.; Ahmad, Mais Jamil A.; Bulos, Basim N.; Shehadeh, Khawla M.; Jafar, Mousa M. Abdul-Gader
2018-03-01
The flash-evaporation technique was utilized to fabricate undoped 1.35-μm and 1.2-μm thick lead iodide films at substrate temperatures T_{{s}} = 150 °C and 200°C, respectively. The films were deposited onto a coplanar comb-like copper (Cu-) electrode pattern, previously coated on glass substrates to form lateral metal-semiconductor-metal (MSM-) structures. The as-measured constant- temperature direct-current (dc)-voltage ( I( {V;T} ) - V ) curves of the obtained lateral coplanar Cu-PbI2-Cu samples (film plus electrode) displayed remarkable ohmic behavior at all temperatures ( T = 18 - 90°C). Their dc electrical resistance R_{{dc}} (T ) revealed a single thermally-activated conduction mechanism over the temperature range with activation energy E_{{act}} ≈ 0.90 - 0.98 {eV} , slightly less than half of room-temperature bandgap energy E_{{g}} ( ≈ 2.3 {eV} ) of undoped 2H-polytype PbI2 single crystals. The undoped flash-evaporated {PbI}_{{x}} thin films were homogeneous and almost stoichiometric ( x ≈ 1.87 ), in contrast to findings on lead iodide films prepared by other methods, and were highly crystalline hexagonal 2H-polytypic structure with c-axis perpendicular to the surface of substrates maintained at T_{s} ≳ 150°C. Photoconductivity measurements made on these lateral Cu-PbI2-Cu-structures under on-off visible-light illumination reveal a feeble photoresponse for long wavelengths ( λ > 570 {nm} ), but a strong response to blue light of photon energy E_{{ph}} ≈ 2.73 {eV} ( > E_{{g}} ), due to photogenerated electron-hole (e-h) pairs via direct band-to-band electronic transitions. The constant-temperature/dc voltage current-time I( {T,V} ) - t curves of the studied lateral PbI2 MSM-structures at low ambient temperatures ( T < 50°C), after cutting off the blue-light illumination, exhibit two trapping mechanisms with different relaxation times. These strongly depend on V and T , with thermally generated charge carriers in the PbI2 mask photogenerated (e-h) pairs at higher temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harish, B. M.; Rajeeva, M. P.; Naveen, C. S.
2016-05-06
Cerium oxide nanoparticles were synthesized by solution combustion method with varying the oxidizer (cerium nitrate hexa hydrate) to fuel (Glycine) molar ratio. The prepared samples were characterized by UV-visible spectrometer, X-ray diffractometer (XRD), Scanning electron microscope (SEM) and Energy dispersive X-Ray analysis (EDAX). XRD pattern reveals the formation of cubic fluorite structure of CeO{sub 2}. It was observed that finest crystallites were found at extreme fuel-deficient condition and it is good enough to produce favorable powder characteristics. The average crystallite size was found to be 14.46 nm to 21.57 nm. The temperature dependent dc conductivity was carried out using Keithleymore » source meter between the temperature range from 300 K to 573 K. From this study it was found that the conductivity increases with increase of temperature due to semiconducting behavior of CeO{sub 2} and it decreases with particle size due to increase in the energy band gap.« less
NASA Astrophysics Data System (ADS)
Liu, K.; Hu, H.; Lei, J.; Hu, Y.; Zheng, Z.
2016-12-01
Most air-water plasma jets are rich in hydroxyl radicals (•OH), but the plasma has higher temperatures, compared to that of pure gas, especially when using air as working gas. In this paper, pulsating direct current (PDC) power was used to excite the air-water plasma jet to reduce plume temperature. In addition to the temperature, other differences between PDC and DC plasma jets are not yet clear. Thus, comparative studies of those plasmas are performed to evaluate characteristics, such as breakdown voltage, temperature, and reactive oxygen species. The results show that the plume temperature of PDC plasma is roughly 5-10 °C lower than that of DC plasma in the same conditions. The •OH content of PDC is lower than that of DC plasma, whereas the O content of PDC plasma is higher. The addition of water leads in an increase in the plume temperature and in the production of •OH with two types of power supplies. The production of O inversely shows a declining tendency with higher water ratio. The most important finding is that the PDC plasma with 100% water ratio achieves lower temperature and more abundant production of •OH and O, compared with DC plasma with 0% water ratio.
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Eldridge, Jeffrey J.; Krainsky, Isay L.
2009-01-01
Raman spectroscopy is used to measure the junction temperature of a Cree SiC MESFET as a function of the ambient temperature and DC power. The carrier temperature, which is approximately equal to the ambient temperature, is varied from 25 C to 450 C, and the transistor is biased with VDS=10V and IDS of 50 mA and 100 mA. It is shown that the junction temperature is approximately 52 and 100 C higher than the ambient temperature for the DC power of 500 and 1000 mW, respectively.
Cryogenic Evaluation of an Advanced DC/DC Converter Module for Deep Space Applications
NASA Technical Reports Server (NTRS)
Elbuluk, Malik E.; Hammoud, Ahmad; Gerber, Scott S.; Patterson, Richard
2003-01-01
DC/DC converters are widely used in power management, conditioning, and control of space power systems. Deep space applications require electronics that withstand cryogenic temperature and meet a stringent radiation tolerance. In this work, the performance of an advanced, radiation-hardened (rad-hard) commercial DC/DC converter module was investigated at cryogenic temperatures. The converter was investigated in terms of its steady state and dynamic operations. The output voltage regulation, efficiency, terminal current ripple characteristics, and output voltage response to load changes were determined in the temperature range of 20 to -140 C. These parameters were obtained at various load levels and at different input voltages. The experimental procedures along with the results obtained on the investigated converter are presented and discussed.
NASA Astrophysics Data System (ADS)
Ke, Shaoying; Lin, Shaoming; Ye, Yujie; Mao, Danfeng; Huang, Wei; Xu, Jianfang; Li, Cheng; Chen, Songyan
2018-03-01
We report a near-bubble-free low-temperature silicon (Si) wafer bonding with a thin amorphous Ge (a-Ge) intermediate layer. The DC-magnetron-sputtered a-Ge film on Si is demonstrated to be extremely flat (RMS = 0.28 nm) and hydrophilic (contact angle = 3°). The effect of the post-annealing temperature on the surface morphology and crystallinity of a-Ge film at the bonded interface is systematically identified. The relationship among the bubble density, annealing temperature, and crystallinity of a-Ge film is also clearly clarified. The crystallization of a-Ge film firstly appears at the bubble region. More interesting feature is that the crystallization starts from the center of the bubbles and sprawls to the bubble edge gradually. The H2 by-product is finally absorbed by intermediate Ge layer with crystalline phase after post annealing. Moreover, the whole a-Ge film out of the bubble totally crystallizes when the annealing time increases. This Ge integration at the bubble region leads to the decrease of the bubble density, which in turn increases the bonding strength.
NASA Astrophysics Data System (ADS)
Quamruzzaman, M.; Mohammad, Nur; Matin, M. A.; Alam, M. R.
2016-10-01
Solar photovoltaics (PVs) have nonlinear voltage-current characteristics, with a distinct maximum power point (MPP) depending on factors such as solar irradiance and operating temperature. To extract maximum power from the PV array at any environmental condition, DC-DC converters are usually used as MPP trackers. This paper presents the performance analysis of a coupled inductor single-ended primary inductance converter for maximum power point tracking (MPPT) in a PV system. A detailed model of the system has been designed and developed in MATLAB/Simulink. The performance evaluation has been conducted on the basis of stability, current ripple reduction and efficiency at different operating conditions. Simulation results show considerable ripple reduction in the input and output currents of the converter. Both the MPPT and converter efficiencies are significantly improved. The obtained simulation results validate the effectiveness and suitability of the converter model in MPPT and show reasonable agreement with the theoretical analysis.
Pahlevan, Ayob; Tabatabaei, Masumeh Hasani; Arami, Sakineh; Valizadeh, Sara
2016-01-01
Objectives: Different light curing units are used for polymerization of composite resins. The aim of this study was to evaluate the degree of conversion (DC) and temperature rise in hybrid and low shrinkage composite resins cured by LED and Argon Laser curing lights. Materials and Methods: DC was measured using FTIR spectroscopy. For measuring temperature rise, composite resin samples were placed in Teflon molds and cured from the top. The thermocouple under samples recorded the temperature rise. After initial radiation and specimens reaching the ambient temperature, reirradiation was done and temperature was recorded again. Both temperature rise and DC data submitted to one-way ANOVA and Tukey-HSD tests (5% significance). Results: The obtained results revealed that DC was not significantly different between the understudy composite resins or curing units. Low shrinkage composite resin showed a significantly higher temperature rise than hybrid composite resin. Argon laser caused the lowest temperature rise among the curing units. Conclusion: Energy density of light curing units was correlated with the DC. Type of composite resin and light curing unit had a significant effect on temperature rise due to polymerization and curing unit, respectively. PMID:27843507
Pahlevan, Ayob; Tabatabaei, Masumeh Hasani; Arami, Sakineh; Valizadeh, Sara
2016-01-01
Different light curing units are used for polymerization of composite resins. The aim of this study was to evaluate the degree of conversion (DC) and temperature rise in hybrid and low shrinkage composite resins cured by LED and Argon Laser curing lights. DC was measured using FTIR spectroscopy. For measuring temperature rise, composite resin samples were placed in Teflon molds and cured from the top. The thermocouple under samples recorded the temperature rise. After initial radiation and specimens reaching the ambient temperature, reirradiation was done and temperature was recorded again. Both temperature rise and DC data submitted to one-way ANOVA and Tukey-HSD tests (5% significance). The obtained results revealed that DC was not significantly different between the understudy composite resins or curing units. Low shrinkage composite resin showed a significantly higher temperature rise than hybrid composite resin. Argon laser caused the lowest temperature rise among the curing units. Energy density of light curing units was correlated with the DC. Type of composite resin and light curing unit had a significant effect on temperature rise due to polymerization and curing unit, respectively.
NASA Astrophysics Data System (ADS)
Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Lee, Jong-Geon; Cho, Jeon-Wook; Ryoo, Hee-Suk; Lee, Bang-Wook
2013-11-01
High temperature superconducting (HTS) cable has been paid much attention due to its high efficiency and high current transportation capability, and it is also regarded as eco-friendly power cable for the next generation. Especially for DC HTS cable, it has more sustainable and stable properties compared to AC HTS cable due to the absence of AC loss in DC HTS cable. Recently, DC HTS cable has been investigated competitively all over the world, and one of the key components of DC HTS cable to be developed is a cable joint box considering HVDC environment. In order to achieve the optimum insulation design of the joint box, analysis of DC electric field distribution of the joint box is a fundamental process to develop DC HTS cable. Generally, AC electric field distribution depends on relative permittivity of dielectric materials but in case of DC, electrical conductivity of dielectric material is a dominant factor which determines electric field distribution. In this study, in order to evaluate DC electric field characteristics of the joint box for DC HTS cable, polypropylene laminated paper (PPLP) specimen has been prepared and its DC electric field distribution was analyzed based on the measurement of electrical conductivity of PPLP in liquid nitrogen (LN2). Electrical conductivity of PPLP in LN2 has not been reported yet but it should be measured for DC electric field analysis. The experimental works for measuring electrical conductivity of PPLP in LN2 were presented in this paper. Based on the experimental works, DC electric field distribution of PPLP specimen was fully analyzed considering the steady state and the transient state of DC. Consequently, it was possible to determine the electric field distribution characteristics considering different DC applying stages including DC switching on, DC switching off and polarity reversal conditions.
Ozone Observations by the Gas and Aerosol Measurement Sensor during SOLVE II
NASA Technical Reports Server (NTRS)
Pitts, M. C.; Thomason, L. W.; Zawodny, J. M.; Wenny, B. N.; Livingston, J. M.; Russell, P. B.; Yee, J.-H.; Swartz, W. H.; Shetter, R. E.
2006-01-01
The Gas and Aerosol Measurement Sensor (GAMS) was deployed aboard the NASA DC-8 aircraft during the second SAGE III Ozone Loss and Validation Experiment (SOLVE II). GAMS acquired line-of-sight (LOS) direct solar irradiance spectra during the sunlit portions of ten science flights of the DC-8 between 12 January and 4 February 2003. Differential line-of-sight (DLOS) optical depth spectra are produced from the GAMS raw solar irradiance spectra. Then, DLOS ozone number densities are retrieved from the GAMS spectra using a multiple linear regression spectral fitting technique. Both the DLOS optical depth spectra and retrieved ozone data are compared with coincident measurements from two other solar instruments aboard the DC-8 platform to demonstrate the robustness and stability of the GAMS data. The GAMS ozone measurements are then utilized to evaluate the quality of the Wulf band ozone cross sections, a critical component of the SAGE III aerosol, water vapor, and temperature/pressure retrievals. Results suggest the ozone cross section compilation of Shettle and Anderson currently used operationally in SAGE III data processing may be in error by as much as 10-20% in theWulf bands, and their lack of reported temperature dependence is a significant deficiency. A second, more recent, cross section database compiled for the SCIAMACHY satellite mission appears to be of much better quality in the Wulf bands, but still may have errors as large as 5% near the Wulf band absorption peaks, which is slightly larger than their stated uncertainty. Additional laboratory measurements of the Wulf band cross sections should be pursued to further reduce their uncertainty and better quantify their temperature dependence.
Activation like behaviour on the temperature dependence of the carrier density in In2O3-ZnO films
NASA Astrophysics Data System (ADS)
K, Makise; B, Shinozaki; T, Asano; K, Yano; H, Nakamura
2012-12-01
We study the effect of annealing in high vacuum on the transport properties for In2O3-ZnO films. We prepared indium zinc oxide films by the DC-magnetron sputtering method using an In2O3-ZnO target (89.3 wt % In2O3 and 10.7 wt % ZnO). The annealing temperature is from 373 to 773K. From the XRD analysis, we find that all as deposited films are amorphous. In addition we find that amorphous films are crystallized by annealing at a temperature above 773 K over 2 hours. The temperature dependence of resistivity ρ of all amorphous films shows metallic behaviour. On the other hand, ρ(T) of poly In2O3-ZnO films shows semi-conducting behaviour. We carry out a detailed analysis of the temperature dependence of Hall mobility. The activation energy Ed has been obtained from the slope of the carrier concentration Ne vs. the inverse temperature plot at high temperatures. We found that the Ed takes values between 0.43 and 0.19 meV. Meanwhile, temperature dependence of Ne for poly-In2O3-ZnO films did not show activation-like behaviour. This behaviour is thought to be causally related to impurity conduction band.
NASA Astrophysics Data System (ADS)
Ebisawa, Yoshihito; Yamada, Shin; Mori, Shigekazu; Ikeda, Masami
This paper describes breakdown characteristics of an oil-pressboard insulation system to a superposition voltage of AC and DC voltages. Although AC electric field is decided by the ratio of the relative permittivity of a pressboard and insulating oil, DC electric field is decided by ratio α of volume resistivities. From the measurement in this study, 13—78 and 1.8—5.7 are obtained as the volume resistivity ratios α at temperature of 30°C and 80°C, respectively. The breakdown voltages against AC, DC, and those superposition voltages are surveyed to insulation models. In normal temperature, the breakdown voltage to the superposition voltage of AC and DC is determined by AC electric field applied to the oil duct. Since the α becomes as low as 2-3 at temperature of 80°C, AC and DC voltages almost equally contribute to the electric field of the oil duct as a result. That is, it became clear that superposed DC voltage boosts the electric field across oil ducts at operating high temperature.
NASA Astrophysics Data System (ADS)
Yasin, Sk. Mohammad; Srinivas, V.; Kasiviswanathan, S.; Vagadia, Megha; Nigam, A. K.
2018-04-01
In the present study magnetic and electrical transport properties of transition metal substituted Co-Ga alloys (near critical cobalt concentration) have been investigated. Analysis of temperature and field dependence of dc magnetization and ac susceptibility (ACS) data suggests an evidence of reentrant spin glass (RSG) phase in Co55.5TM3Ga41.5 (TM = Co, Cr, Fe, Cu). The magnetic transition temperatures (TC and Tf) are found to depend on the nature of TM element substitution with the exchange coupling strength Co-Fe > Co-Co > Co-Cu > Co-Cr. From magnetization dynamics precise transition temperatures for the glassy phases are estimated. It is found that characteristic relaxation times are higher than that of spin glasses with minimal spin-cluster formation. The RSG behavior has been further supported by the temperature dependence of magnetotransport studies. From the magnetic field and substitution effects it has been established that the magnetic and electrical transport properties are correlated in this system.
Stationary Temperature Distribution in a Rotating Ring-Shaped Target
NASA Astrophysics Data System (ADS)
Kazarinov, N. Yu.; Gulbekyan, G. G.; Kazacha, V. I.
2018-05-01
For a rotating ring-shaped target irradiated by a heavy-ion beam, a differential equation for computing the stationary distribution of the temperature averaged over the cross section is derived. The ion-beam diameter is assumed to be equal to the ring width. Solving this equation allows one to obtain the stationary temperature distribution along the ring-shaped target depending on the ion-beam, target, and cooling-gas parameters. Predictions are obtained for the rotating target to be installed at the DC-280 cyclotron. For an existing rotating target irradiated by an ion beam, our predictions are compared with the measured temperature distribution.
Electromigration analysis of solder joints under ac load: A mean time to failure model
NASA Astrophysics Data System (ADS)
Yao, Wei; Basaran, Cemal
2012-03-01
In this study, alternating current (ac) electromigration (EM) degradation simulations were carried out for Sn95.5%Ag4.0%Cu0.5 (SAC405- by weight) solder joints. Mass transport analysis was conducted with viscoplastic material properties for quantifying damage mechanism in solder joints. Square, sine, and triangle current wave forms ac were used as input signals. dc and pulsed dc (PDC) electromigration analysis were conducted for comparison purposes. The maximum current density ranged from 2.2×106A/cm2 to 5.0×106A/cm2, frequency ranged from 0.05 Hz to 5 Hz with ambient temperature varying from 350 K to 450 K. Because the room temperature is nearly two-thirds of SAC solder joint's melting point on absolute temperature scale (494.15 K), viscoplastic material model is essential. Entropy based damage evolution model was used to investigate mean time to failure (MTF) behavior of solder joints subjected to ac stressing. It was observed that MTF was inversely proportional to ambient temperature T1.1 in Celsius and also inversely proportional to current density j0.27 in A/cm2. Higher frequency will lead to a shorter lifetime with in the frequency range we studied, and a relationship is proposed as MTF∝f-0.41. Lifetime of a solder joint subjected to ac is longer compared with dc and PDC loading conditions. By introducing frequency, ambient temperature and current density dependency terms, a modified MTTF equation was proposed for solder joints subjected to ac current stressing.
Ji, Shiqi; Zheng, Sheng; Wang, Fei; ...
2017-07-06
The temperature-dependent characteristics of the third-generation 10-kV/20-A SiC MOSFET including the static characteristics and switching performance are carried out in this paper. The steady-state characteristics, including saturation current, output characteristics, antiparallel diode, and parasitic capacitance, are tested. Here, a double pulse test platform is constructed including a circuit breaker and gate drive with >10-kV insulation and also a hotplate under the device under test for temperature-dependent characterization during switching transients. The switching performance is tested under various load currents and gate resistances at a 7-kV dc-link voltage from 25 to 125 C and compared with previous 10-kV MOSFETs. A simplemore » behavioral model with its parameter extraction method is proposed to predict the temperature-dependent characteristics of the 10-kV SiC MOSFET. The switching speed limitations, including the reverse recovery of SiC MOSFET's body diode, overvoltage caused by stray inductance, crosstalk, heat sink, and electromagnetic interference to the control are discussed based on simulations and experimental results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Shiqi; Zheng, Sheng; Wang, Fei
The temperature-dependent characteristics of the third-generation 10-kV/20-A SiC MOSFET including the static characteristics and switching performance are carried out in this paper. The steady-state characteristics, including saturation current, output characteristics, antiparallel diode, and parasitic capacitance, are tested. Here, a double pulse test platform is constructed including a circuit breaker and gate drive with >10-kV insulation and also a hotplate under the device under test for temperature-dependent characterization during switching transients. The switching performance is tested under various load currents and gate resistances at a 7-kV dc-link voltage from 25 to 125 C and compared with previous 10-kV MOSFETs. A simplemore » behavioral model with its parameter extraction method is proposed to predict the temperature-dependent characteristics of the 10-kV SiC MOSFET. The switching speed limitations, including the reverse recovery of SiC MOSFET's body diode, overvoltage caused by stray inductance, crosstalk, heat sink, and electromagnetic interference to the control are discussed based on simulations and experimental results.« less
Single-contact tunneling thermometry
Maksymovych, Petro
2016-02-23
A single-contact tunneling thermometry circuit includes a tunnel junction formed between two objects. Junction temperature gradient information is determined based on a mathematical relationship between a target alternating voltage applied across the junction and the junction temperature gradient. Total voltage measured across the junction indicates the magnitude of the target alternating voltage. A thermal gradient is induced across the junction. A reference thermovoltage is measured when zero alternating voltage is applied across the junction. An increasing alternating voltage is applied while measuring a thermovoltage component and a DC rectification voltage component created by the applied alternating voltage. The target alternating voltage is reached when the thermovoltage is nullified or doubled by the DC rectification voltage depending on the sign of the reference thermovoltage. Thermoelectric current and current measurements may be utilized in place of the thermovoltage and voltage measurements. The system may be automated with a feedback loop.
Mobility-dependent low-frequency noise in graphene field-effect transistors.
Zhang, Yan; Mendez, Emilio E; Du, Xu
2011-10-25
We have investigated the low-frequency 1/f noise of both suspended and on-substrate graphene field-effect transistors and its dependence on gate voltage, in the temperature range between 300 and 30 K. We have found that the noise amplitude away from the Dirac point can be described by a generalized Hooge's relation in which the Hooge parameter α(H) is not constant but decreases monotonically with the device's mobility, with a universal dependence that is sample and temperature independent. The value of α(H) is also affected by the dynamics of disorder, which is not reflected in the DC transport characteristics and varies with sample and temperature. We attribute the diverse behavior of gate voltage dependence of the noise amplitude to the relative contributions from various scattering mechanisms, and to potential fluctuations near the Dirac point caused by charge carrier inhomogeneity. The higher carrier mobility of suspended graphene devices accounts for values of 1/f noise significantly lower than those observed in on-substrate graphene devices and most traditional electronic materials.
DC-8 MTP calibration for SOLVE-2
NASA Technical Reports Server (NTRS)
Mahoney, M. J.
2003-01-01
The Jet Propulsion Laboratory (JPL) Microwave Temperature Profiler (MTP) was the only instrument making temperature measurements at and below flight level on the DC-8 during the SOLVE-2 campaign. Many years of careful comparison of MTP measurements with radiosondes near the DC-8 flight track have shown that the flight level temperature can be determined to an accuracy of 0.2K relative to radiosondes.
Penetration depth of MgB2 measured using Josephson junctions and SQUIDs
NASA Astrophysics Data System (ADS)
Cunnane, Daniel; Zhuang, Chenggang; Chen, Ke; Xi, X. X.; Yong, Jie; Lemberger, T. R.
2013-02-01
The penetration depth of MgB2 was measured using two methods of different mechanisms. The first method used MgB2 Josephson junctions and the magnetic field dependence of the junction critical current. The second method deduced the penetration depth from the inductance of a MgB2 microstrip used to modulate the voltage of a MgB2 DC SQUID. The two methods showed a consistent value of the low-temperature penetration depth for MgB2 to be about 40 nm. Both the small penetration depth value and its temperature dependence are in agreement with a microscopic theory for MgB2 in the clean limit.
Electronics Demonstrated for Low- Temperature Operation
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammond, Ahmad; Gerber, Scott S.
2000-01-01
The operation of electronic systems at cryogenic temperatures is anticipated for many NASA spacecraft, such as planetary explorers and deep space probes. For example, an unheated interplanetary probe launched to explore the rings of Saturn would experience an average temperature near Saturn of about 183 C. Electronics capable of low-temperature operation in the harsh deep space environment also would help improve circuit performance, increase system efficiency, and reduce payload development and launch costs. An ongoing research and development program on low-temperature electronics at the NASA Glenn Research Center at Lewis Field is focusing on the design of efficient power systems that can survive and exploit the advantages of low-temperature environments. The targeted systems, which are mission driven, include converters, inverters, controls, digital circuits, and special-purpose circuits. Initial development efforts successfully demonstrated the low-temperature operation and cold-restart of several direct-current/direct-current (dc/dc) converters based on different types of circuit design, some with superconducting inductors. The table lists some of these dc/dc converters with their properties, and the photograph shows a high-voltage, high-power dc/dc converter designed for an ion propulsion system for low-temperature operation. The development efforts of advanced electronic systems and the supporting technologies for low-temperature operation are being carried out in-house and through collaboration with other Government agencies, industry, and academia. The Low Temperature Electronics Program supports missions and development programs at NASA s Jet Propulsion Laboratory and Goddard Space Flight Center. The developed technologies will be transferred to commercial end users for applications such as satellite infrared sensors and medical diagnostic equipment.
Observation of giant exchange bias in bulk Mn50Ni42Sn8 Heusler alloy
NASA Astrophysics Data System (ADS)
Sharma, Jyoti; Suresh, K. G.
2015-02-01
We report a giant exchange bias (EB) field of 3520 Oe in bulk Mn50Ni42Sn8 Heusler alloy. The low temperature magnetic state of the martensite phase has been studied by DC magnetization and AC susceptibility measurements. Frequency dependence of spin freezing temperature (Tf) on critical slowing down relation and observation of memory effect in zero field cooling mode confirms the super spin glass (SSG) phase at low temperatures. Large EB is attributed to the strong exchange coupling between the SSG clusters formed by small regions of ferromagnetic order embedded in an antiferromagnetic (AFM) matrix. The temperature and cooling field dependence of EB have been studied and related to the change in unidirectional anisotropy at SSG/AFM interface. The training effect also corroborates with the presence of frozen (SSG) moments at the interface and their role in EB.
Colossal dielectric behavior of semiconducting Sr2TiMnO6 ceramics
NASA Astrophysics Data System (ADS)
Meher, K. R. S. Preethi; Varma, K. B. R.
2009-02-01
Manganitelike double perovskite Sr2TiMnO6 (STMO) ceramics fabricated from the powders synthesized via the solid-state reaction route, exhibited dielectric constants as high as ˜105 in the low frequency range (100 Hz-10 kHz) at room temperature. The Maxwell-Wagner type of relaxation mechanism was found to be more appropriate to rationalize such high dielectric constant values akin to that observed in materials such as KxTiyNi(1-x-y)O and CaCu3Ti4O12. The dielectric measurements carried out on the samples with different thicknesses and electrode materials reflected the influence of extrinsic effects. The impedance studies (100 Hz-10 MHz) in the 180-300 K temperature range revealed the presence of two dielectric relaxations corresponding to the grain boundary and the electrode. The dielectric response of the grain boundary was found to be weakly dependent on the dc bias field (up to 11 V/cm). However, owing to the electrode polarization, the applied ac/dc field had significant effect on the low frequency dielectric response. At low temperatures (100-180 K), the dc conductivity of STMO followed a variable range hopping behavior. Above 180 K, it followed the Arrhenius behavior because of the thermally activated conduction process. The bulk conductivity relaxation owing to the localized hopping of charge carriers obeyed the typical universal dielectric response.
NASA Astrophysics Data System (ADS)
Zhang, J.-Z.; Dyson, A.; Ridley, B. K.
2015-01-01
Using the dielectric continuum (DC) and three-dimensional phonon (3DP) models, energy relaxation (ER) of the hot electrons in the quasi-two-dimensional channel of lattice-matched InAlN/AlN/GaN heterostructures is studied theoretically, taking into account non-equilibrium polar optical phonons, electron degeneracy, and screening from the mobile electrons. The electron power dissipation (PD) and ER time due to both half-space and interface phonons are calculated as functions of the electron temperature Te using a variety of phonon lifetime values from experiment, and then compared with those evaluated by the 3DP model. Thereby, particular attention is paid to examination of the 3DP model to use for the hot-electron relaxation study. The 3DP model yields very close results to the DC model: With no hot phonons or screening, the power loss calculated from the 3DP model is 5% smaller than the DC power dissipation, whereas slightly larger 3DP power loss (by less than 4% with a phonon lifetime from 0.1 to 1 ps) is obtained throughout the electron temperature range from room temperature to 2500 K after including both the hot-phonon effect (HPE) and screening. Very close results are obtained also for ER time with the two phonon models (within a 5% of deviation). However, the 3DP model is found to underestimate the HPE by 9%. The Mori-Ando sum rule is restored by which it is proved that the PD values obtained from the DC and 3DP models are in general different in the spontaneous phonon emission process, except when scattering with interface phonons is sufficiently weak, or when the degenerate modes condition is imposed, which is also consistent with Register's scattering rate sum rule. The discrepancy between the DC and 3DP results is found to be caused by how much the high-energy interface phonons contribute to the ER: their contribution is enhanced in the spontaneous emission process but is dramatically reduced after including the HPE. Our calculation with both phonon models has obtained a great fall in ER time at low electron temperatures (Te < 750 K) and slow decrease at the high temperatures with the use of decreasing phonon lifetime with Te. The calculated temperature dependence of the relaxation time and the high-temperature relaxation time ˜0.09 ps are in good agreement with experimental results.
Conductivity measurements on CdCl2 doped PVA solid polymeric electrolyte for battery application
NASA Astrophysics Data System (ADS)
Baraker, Basavarajeshwari M.; Lobo, Blaise
2018-04-01
Ionic conductivity of pure polyvinyl alcohol (PVA) and 6.3 wt% of CdCl2 doped PVA solid polymeric electrolyte have been studied using DC and AC electrical measurements. From DC electrical results, the determination transference number confirmed that ions are the dominant charge carriers in CdCl2 doped PVA. Interestingly, the ion transference number (ti) for 6.3 wt% CdCl2 doped sample is significantly more (0.993), when compared to that of pure PVA (for which, ti is 0.988). Temperature dependent dielectric studies showed interesting results at different frequencies: 120 Hz, 500 Hz, 1 kHz, 5 kHz, 10 kHz and 100 kHz.
NASA Astrophysics Data System (ADS)
Basile, A. F.; Kyndiah, A.; Biscarini, F.; Fraboni, B.
2014-06-01
A numerical procedure to calculate the drain-current (ID) vs. gate-voltage (VG) characteristics from numerical solutions of the Poisson equation for organic Thin-Film Transistors (TFTs) is presented. Polaron transport is modeled as two-dimensional charge transport in a semiconductor having free-carrier density of states proportional to the density of molecules and traps with energy equal to the polaron-hopping barrier. The simulated ID-VG curves are proportional to the product of the density of free carriers, calculated as a function of VG, and the intrinsic mobility, assumed to be a constant independent of temperature. The presence of traps in the oxide was also taken into account in the model, which was applied to a TFT made with six monolayers of pentacene grown on an oxide substrate. The polaron-hopping barrier determines the temperature dependence of the simulated ID-VG curves, trapping in the oxide is responsible for current reduction at high bias and the slope of the characteristics near threshold is related to the metal-semiconductor work-function difference. The values of the model parameters yielding the best match between calculations and experiments are consistent with previous experimental results and theoretical predictions. Therefore, this model enables to extract both physical and technological properties of thin-film devices from the temperature-dependent dc characteristics.
Research on resistance characteristics of YBCO tape under short-time DC large current impact
NASA Astrophysics Data System (ADS)
Zhang, Zhifeng; Yang, Jiabin; Qiu, Qingquan; Zhang, Guomin; Lin, Liangzhen
2017-06-01
Research of the resistance characteristics of YBCO tape under short-time DC large current impact is the foundation of the developing DC superconducting fault current limiter (SFCL) for voltage source converter-based high voltage direct current system (VSC-HVDC), which is one of the valid approaches to solve the problems of renewable energy integration. SFCL can limit DC short-circuit and enhance the interrupting capabilities of DC circuit breakers. In this paper, under short-time DC large current impacts, the resistance features of naked tape of YBCO tape are studied to find the resistance - temperature change rule and the maximum impact current. The influence of insulation for the resistance - temperature characteristics of YBCO tape is studied by comparison tests with naked tape and insulating tape in 77 K. The influence of operating temperature on the tape is also studied under subcooled liquid nitrogen condition. For the current impact security of YBCO tape, the critical current degradation and top temperature are analyzed and worked as judgment standards. The testing results is helpful for in developing SFCL in VSC-HVDC.
Influence of Ag, Cd or Pb Addition on Electrical and Dielectric Properties of Bulk Glassy Se-Ge
NASA Astrophysics Data System (ADS)
El-Metwally, E. G.; Shakra, A. M.
2018-05-01
Bulk glassy samples of Se0.7Ge0.3 and Se0.7Ge0.25 X 0.05 (X = Ag, Cd or Pb) chalcogenide glass have been prepared by melt-quenching method. The studied compositions were examined in powder form by x-ray diffraction analysis. The direct-current (dc) conductivity σ_{{dc}} was measured for bulk samples in the temperature range from 303 K to 433 K, revealing enhancement with temperature for all samples. The results indicate two values of activation energy ( Δ E_{{σ1 }} and Δ E_{{σ2 }} ) due to two conduction mechanisms. Measurements of the alternating-current (ac) conductivity σ_{{ac}} ( ω ) and dielectric properties for bulk samples were carried out in the temperature range from 303 K to 433 K and frequency range from 1 kHz to 1 MHz. The ac conductivity σ_{{ac}} ( ω ) was temperature dependent and proportional to ωS , where S is the frequency exponent, which reduced with rising temperature, and ω is the angular frequency. These results are discussed based on a correlated barrier hopping model. The calculated values of the maximum height of the barrier W_{{M}} for each composition are consistent with carrier hopping over a potential barrier. The density of localized states N( {E_{{F}} } ) at the Fermi level lay in the range from 1019 eV-1 cm-3 to 1020 eV-1 cm-3, and increased with temperature. The dielectric constant ɛ1 ( ω ) and loss ɛ2 ( ω ) increased with temperature but decreased with frequency. The values of σ_{{dc}} , σ_{{ac}} ( ω ) , ɛ1 ( ω ) , and ɛ2 ( ω ) increased with temperature and with addition of Ag, Cd or Pb. The observed increase was greater for Se0.7Ge0.25Pb0.05 than for Se0.7Ge0.25Cd0.05, which was greater than for Se0.7Ge0.25Ag0.05.
New perspectives on the dynamics of AC and DC plasma arcs exposed to cross-fields
NASA Astrophysics Data System (ADS)
Abdo, Youssef; Rohani, Vandad; Cauneau, François; Fulcheri, Laurent
2017-02-01
Interactions between an arc and external fields are crucially important for the design and the optimization of modern plasma torches. Multiple studies have been conducted to help better understand the behavior of DC and AC current arcs exposed to external and ‘self-induced’ magnetic fields, but the theoretical foundations remain very poorly explored. An analytical investigation has therefore been carried out in order to study the general behavior of DC and AC arcs under the effect of random cross-fields. A simple differential equation describing the general behavior of a planar DC or AC arc has been obtained. Several dimensionless numbers that depend primarily on arc and field parameters and the main arc characteristics (temperature, electric field strength) have also been determined. Their magnitude indicates the general tendency pattern of the arc evolution. The analytical results for many case studies have been validated using an MHD numerical model. The main purpose of this investigation was deriving a practical analytical model for the electric arc, rendering possible its stabilization and control, and the enhancement of the plasma torch power.
Ion dynamics in AgI doped silver selenium-tellurite mixed former glasses
NASA Astrophysics Data System (ADS)
Palui, A.; Ghosh, A.
2017-03-01
The ionic conductivity and the conductivity spectra of the glass compositions xAgI-(1-x)[yAg2O-(1-y)(0.5SeO2-0.5TeO2)] have been studied at different temperatures The activation energy for the dc conduction has been analyzed using the Anderson-Stuart model, and a correlation between the dc conductivity and the doorway radius has been obtained. We have analyzed the conductivity spectra using the random free-energy barrier model, taking into account the contribution of electrode polarization. It is observed that the Barton-Nakajima-Namikawa relation between the conductivity and the relaxation time is valid for these glasses. The time-temperature superposition principle has been verified using the scaling of the conductivity spectra in the framework of the random barrier model. The charge carrier density, obtained from the Nernst-Einstein relation, is found to be almost independent of temperature, but dependent weakly on composition. We have also studied the influence of the modification of the network structure of these glasses on ion migration and correlated the conductivity with the relative strength of the structural units.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haidar, S. M., E-mail: haidar@imr.tohoku.ac.jp; Lustikova, J.; Shiomi, Y.
2015-10-12
We have investigated microwave power dependence of dc voltage generated upon ferromagnetic resonance in a La{sub 0.67}Sr{sub 0.33}MnO{sub 3}/SrRuO{sub 3} epitaxial bilayer film at room temperature. With increasing microwave power above ∼75 mW, the magnitude of the voltage signal decreases as the sample temperature approaches the Curie temperature of La{sub 0.67}Sr{sub 0.33}MnO{sub 3} due to heating effects. By analyzing the dependence of the voltage signal on the direction of the magnetic field, we show that with increasing microwave power the contribution from the inverse spin Hall effect becomes more dominant than that from the anisotropic magnetoresistance effect.
Processing and property evaluation of metal matrix superconducting materials
NASA Technical Reports Server (NTRS)
Rao, Appajosula S.
1995-01-01
Metal - superconductor (YBCO) systems have been prepared and characterized by resistivity, ac susceptibility and dc SQUID magnetic moment measurements. The silver composites showed superconducting transition for all the composites processed and the superconducting transition temperature tends to depend upon the concentration of the silver in the composite. Aluminum composites showed an unusual resistivity results with two transitions around 90 K and 120 K. The superconducting property of silver composites can be explained qualitatively in terms of the proximity theory that has been suggested for the low temperature superconductors.
Webb, Ian K.; Gao, Yang; Londry, Frank A.; McLuckey, Scott A.
2013-01-01
The application of dipolar DC (DDC) to the RF-only ion guide (Q0) of a hybrid quadrupole/time-of-flight (QqTOF) mass spectrometer for collision-induced declustering of large bio-ions is described. As a broadband technique, ion trap DDC collision activation (CA) is employed to decluster ions simultaneously over a relatively broad mass-to-charge range. Declustering DDC CA can yield significantly narrower peaks relative to those observed in the absence of declustering methods, depending upon the extent of non-covalent adduction associated with the ions, and can also be used in conjunction with other methods, such as nozzle-skimmer collisional activation. The key experimental variables in the DDC experiment are the dipolar DC voltage (VDDC), VRF, and the time over which VDDC is applied. The VDDC/VRF ratio is key to the extent to which ion temperatures are elevated and also influences the upper mass-to-charge limit for ion storage. The VDDC/VRF ratio affects ion temperatures and upper m/z limit in opposing directions. That is, as the ratio increases, ion temperature increases whereas the upper m/z storage limit decreases. However, for a given VDDC/VRF ratio, the upper m/z storage limit can be increased by increasing VRF, at the expense of the lower m/z limit for ion storage. The key value of the approach is that it affords a relatively precise degree of control over ion temperatures as well as the time over which they are elevated to the higher temperature. The utility of the method is illustrated by the application of ion trap DDC CA in Q0 to oligonucleotide, protein, and multimeric protein complex analyte ions. PMID:24078247
Distinct DC subsets regulate adaptive Th1 and 2 responses during Trichuris muris infection.
Demiri, M; Müller-Luda, K; Agace, W W; Svensson-Frej, M
2017-10-01
Low- and high-dose infections with the murine large intestinal nematode Trichuris muris are associated with induction of adaptive Th1 and Th2 responses, respectively, in mesenteric lymph nodes (MLN). Classical dendritic cells (cDC) accumulate in the large intestinal mucosa and MLN upon T. muris infection, yet their role in driving adaptive responses to infection remains largely unknown. We performed low- and high-dose T. muris infections of mice deficient in defined cDC subsets to investigate their role in induction of adaptive immune responses. Mice lacking IRF4-dependent cDC failed to clear a high-dose infection and displayed impaired Th2 responses. Conversely, mice lacking IRF8-dependent cDC cleared a low-dose infection and displayed an impaired Th1 response while increased production of Th2 cytokines. Finally, mice lacking both IRF4- and IRF8-dependent cDC were able to generate a Th2 response and clear a low-dose infection. Collectively, these results suggest that IRF4- and IRF8-dependent cDC act antagonistically during T. muris infection, and demonstrate that intestinal Th2 responses can be generated towards T. muris in the absence of IRF4-dependent cDC. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Kim, Kwangmin; Go, Byeong-Soo; Sung, Hae-Jin; Park, Hea-chul; Kim, Seokho; Lee, Sangjin; Jin, Yoon-Su; Oh, Yunsang; Park, Minwon; Yu, In-Keun
2014-09-01
This paper describes the design specifications and performance of a real toroid-type high temperature superconducting (HTS) DC reactor. The HTS DC reactor was designed using 2G HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The target inductance of the HTS DC reactor was 400 mH. The expected operating temperature was under 20 K. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. Performances of the toroid-type HTS DC reactor were analyzed through experiments conducted under the steady-state and charge conditions. The fundamental design specifications and the data obtained from this research will be applied to the design of a commercial-type HTS DC reactor.
Low Temperature Performance of High Power Density DC/DC Converter Modules
NASA Technical Reports Server (NTRS)
Elbuluk, Malik E.; Hammond, Ahmad; Gerber, Scott; Patterson, Richard L.; Overton, Eric
2001-01-01
In this paper, two second-generation high power density DC/DC converter modules have been evaluated at low operating temperatures. The power rating of one converter (Module 1) was specified at 150 W with an input voltage range of 36 to 75 V and output voltage of 12 V. The other converter (Module 2) was specified at 100 W with the same input voltage range and an output voltage of 3.3 V. The converter modules were evaluated in terms of their performance as a function of operating temperature in the range of 25 to -140 C. The experimental procedures along with the experimental data obtained are presented and discussed in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemalatha, K. S.; Damle, R.; Rukmani, K., E-mail: rukmani9909@yahoo.co.in
2015-10-21
Dielectric and conductivity behaviors of nano ZnO doped polyvinyl alcohol (PVA) composites for various concentrations of dopant were investigated using impedance spectroscopy for a wide range of temperatures (303 K–423 K) and frequencies (5 Hz–30 MHZ). The dielectric properties of host polymer matrix have been improved by the addition of nano ZnO and are found to be highly temperature dependent. Anomalous dielectric behavior was observed in the frequency range of 2.5 MHz–5 MHz. Increase in dielectric permittivity and dielectric loss was observed with respect to temperature. The Cole-Cole plot could be modeled by low resistance regions in a high resistance matrix and the lowest resistance wasmore » observed for the 10 mol. % films. The imaginary part of the electric modulus showed asymmetric peaks with the relaxation following Debye nature below and non-Debye nature above the peaks. The ac conductivity is found to obey Jonscher's power law, whereas the variation of dc conductivity with temperature was found to follow Arrhenius behavior. Two different activation energy values were obtained from Arrhenius plot indicating that two conduction mechanisms are involved in the composite films. Fitting the ac conductivity data to Jonscher's law indicates that large polaron assisted tunneling is the most likely conduction mechanism in the composites. Maximum conductivity is observed at 423 K for all the samples and it is optimum for 10 mol. % ZnO doped PVA composite film. Significant increase in dc and ac conductivities in these composite films makes them a potential candidate for application in electronic devices.« less
Electrical conductivity of Gd doped BiFeO3-PbZrO3 composite
NASA Astrophysics Data System (ADS)
Satpathy, Santosh Kumar; Mohanty, Nilaya Kumar; Behera, Ajay Kumar; Behera, Banarji; Nayak, Pratibindhya
2013-09-01
The composite, 0.5(BiGd0.15Fe0.85O3)-0.5(PbZrO3), was synthesized using the solid-state reaction technique. The formation of the compound was confirmed by XRD with an orthorhombic structure at room temperature. The impedance parameters were studied using an impedance analyzer in a wide range of frequency (102-106 Hz) at different temperatures. The Nyquist plot suggests the contribution of bulk effect and a slight indication of grain boundary effect and the bulk resistance decreases with a rise in temperature. The presence of temperature-dependent relaxation process occurs in the material. Electrical modulus reveals the presence of the hopping mechanism in the materials. The value of exponent n, pre-factor A and σ dc were obtained by fitting ac conductivity data with Jonscher's universal power law. The activation energies calculated from the ac conductivity were found to be 0.50, 0.46, 0.44, 0.43, 0.42 and 0.38 eV at 1, 10, 50, 100, 500 kHz and 1 MHz respectively in the temperature region of 110°C-350°C. The dc conductivity was found to increase with the rise in temperature. The activation energy calculated from complex impedance plot and from the fitted Jonscher's power law are very close, which results similar type of charge carrier exist in conduction mechanism of the material.
Pore-size dependence and characteristics of water diffusion in slitlike micropores
Diallo, S. O.
2015-07-16
The temperature dependence of the dynamics of water inside microporous activated carbon fibers (ACF) is investigated by means of incoherent elastic and quasielastic neutron-scattering techniques. The aim is to evaluate the effect of increasing pore size on the water dynamics in these primarily hydrophobic slit-shaped channels. Using two different micropore sizes (similar to 12 and 18 angstrom, denoted, respectively, ACF-10 and ACF-20), a clear suppression of the mobility of the water molecules is observed as the pore gap or temperature decreases. Suppression, we found, is accompanied by a systematic dependence of the average translational diffusion coefficient D-r and relaxation timemore » [tau(0)] of the restricted water on pore size and temperature. We observed D-r values and tested against a proposed scaling law, in which the translational diffusion coefficient D-r of water within a porous matrix was found to depend solely on two single parameters, a temperature-independent translational diffusion coefficient D-c associated with the water bound to the pore walls and the ratio theta of this strictly confined water to the total water inside the pore, yielding unique characteristic parameters for water transport in these carbon channels across the investigated temperature range.« less
Radiofrequency amplifier based on a dc superconducting quantum interference device
Hilbert, C.; Martinis, J.M.; Clarke, J.
1984-04-27
A low noise radiofrequency amplifer, using a dc SQUID (superconducting quantum interference device) as the input amplifying element. The dc SQUID and an input coil are maintained at superconductivity temperatures in a superconducting shield, with the input coil inductively coupled to the superconducting ring of the dc SQUID. A radiofrequency signal from outside the shield is applied to the input coil, and an amplified radiofrequency signal is developed across the dc SQUID ring and transmitted to exteriorly of the shield. A power gain of 19.5 +- 0.5 dB has been achieved with a noise temperature of 1.0 +- 0.4 K at a frequency of 100 MHz.
NASA Astrophysics Data System (ADS)
Sorokin, N. I.
2018-04-01
The frequency (ν = 10-1-107 Hz) dependences of electrical conductivity σ(ν) of single crystals of superionic conductor Pb0.9Sc0.1F2.1 (10 mol % ScF3) with fluorite type structure (CaF2) in the temperature range 153-410 K have been investigated. The static bulk conductivity σ dc =1.5 × 10-4 S/cm and average hopping frequency ν h = 1.5 × 107 Hz of charge carriers (mobile ions F-) at room temperature (293 K) have been defined from the σ dc (ν) experimental curves. Enthalpies of thermoactivated processes of ionic conductivity σ dc ( T) (Δ H σ = 0.393 ± 0.005 eV) and dielectric relaxation ν h ( T) (Δ H h = 0.37 ± 0.03 eV) coincide within their errors. A crystal-physical model of fluorine-ion transport in a Pb0.9Sc0.1F2.1 crystal lattice has been proposed. The characteristic parameters of charge carriers have been calculated: concentration n mob = 2.0 × 1021 cm-3, the distance of the hopping d ≈ 0.5 nm and mobility μmob = 4.5 × 10-7 cm2/s V (293 K).
Lu, Zichun J; Markham, George D
2004-01-02
S-Adenosylmethionine decarboxylase (AdoMetDC) is a pyruvoyl cofactor-dependent enzyme that participates in polyamine biosynthesis. AdoMetDC from the Archaea Methanococcus jannaschii is a prototype for a recently discovered class that is not homologous to the eucaryotic enzymes or to a distinct group of microbial enzymes. M. jannaschii AdoMetDC has a Km of 95 microm and the turnover number (kcat) of 0.0075 s(-1) at pH 7.5 and 22 degrees C. The turnover number increased approximately 38-fold at a more physiological temperature of 80 degrees C. AdoMetDC was inactivated by treatment with the imine reductant NaCNBH3 only in the presence of substrate. Mass spectrometry of the inactivated protein showed modification solely of the pyruvoyl-containing subunit, with a mass increase corresponding to reduction of a Schiff base adduct with decarboxylated AdoMet. The presteady state time course of the AdoMetDC reaction revealed a burst of product formation; thus, a step after CO2 formation is rate-limiting in turnover. Comparable D2O kinetic isotope effects of were seen on the first turnover (1.9) and on kcat/Km (1.6); there was not a significant D2O isotope effect on kcat, suggesting that product release is rate-limiting in turnover. The pH dependence of the steady state rate showed participation of acid and basic groups with pK values of 5.3 and 8.2 for kcat and 6.5 and 8.3 for kcat/Km, respectively. The competitive inhibitor methylglyoxal bis(guanylhydrazone) binds at a single site per (alphabeta) heterodimer. UV spectroscopic studies show that methylglyoxal bis(guanylhydrazone) binds as the dication with a 23 microm dissociation constant. Studies with substrate analogs show a high specificity for AdoMet.
Electrical Conductivity Mechanism in Unconventional Lead Vanadate Glasses
NASA Astrophysics Data System (ADS)
Abdel-Wahab, F.; Merazga, A.; Montaser, A. A.
2017-03-01
Lead vanadate glasses of the system (V2O5)_{1-x}(PbO)x with x = 0.4, 0.45, 0.5, 0.55, 0.6 have been prepared by the press-quenching technique. The dc (σ (0)) and ac (σ (ω )) electrical conductivities were measured in the temperature range from 150 to 420 K and the frequency range from 102 to 106 Hz. The electrical properties are shown to be sensitive to composition. The experimental results have been analyzed within the framework of different models. The dc conductivity is found to be proportional to Tp with the exponent p ranging from 8.2 to 9.8, suggesting that the transport is determined by a multi-phonon process of weak electron-lattice coupling. The ac conductivity is explained by the percolation path approximation (PPA). In this model, σ (ω ) is closely related to the σ (0) and fitting the experimental data produces a dielectric relaxation time τ in good agreement with the expected value in both magnitude and temperature dependence.
NASA Astrophysics Data System (ADS)
El-Menyawy, E. M.; Zedan, I. T.; Nawar, H. H.
2014-03-01
The electrical and dielectric properties of the synthesized 2-(antipyrin-4-ylhydrazono)-2-(4-nitrophenyl)acetonitrile (AHNA) have been studied. The direct and alternating current (DC and AC) conductivities and complex dielectric constant were investigated in temperature range 303-403 K. The AC conductivity and dielectric properties of AHNA were investigated over frequency range 100 Hz-5 MHz. From DC and AC measurements, electrical conduction is found to be a thermally activated process. The frequency-dependent AC conductivity obeys Jonscher's universal power law in which the frequency exponent decreases with increasing temperature. The correlated barrier hopping (CBH) is the predominant model for describing the charge carrier transport in which the electrical parameters are evaluated. The activation energy is found to decrease with increasing frequency. The behaviors of dielectric and dielectric loss are discussed in terms of a polarization mechanism. The dielectric loss shows frequency power law from which the maximum barrier height is determined as 0.19 eV in terms of the Guintini model.
NASA Astrophysics Data System (ADS)
Badr, A. M.; El-Anssary, E. H.; Elshaikh, H. A.; Afify, H. H.
2017-12-01
In the current study, α-MoO3 nanocrystals were successfully synthesized from ammonium heptamolybdate tetrahydrate using a simple hydrothermal route. The influence of calcination temperature on the structural, optical and electrical properties was systematically investigated for the MoO3 powder products. The XRD results were analyzed for these powders, revealing the formation of a mixed phase (β- and α-MoO3) at calcination temperatures ranging from 350 °C-450 °C, and hence a residual monoclinic phase still exists in the samples at the calcination temperature of 450 °C. Subsequently, the mixed phase was completely converted to a pure single phase of α-MoO3 at a calcination temperature of 500 °C. The optical properties of the MoO3 powders were investigated using the transformed diffuse reflectance technique according to Kubelka-Munk theory. For such a powder product, the results of the optical measurements demonstrated the realization of indirect and direct allowed transitions at the spectral ranges 3.31-3.91 eV and 3.66-4.27 eV, respectively. The indirect- and direct-allowed band-gaps of the MoO3 products were found to increase from 2.69-3.12 eV and from 3.43-3.64 eV, respectively, by increasing the calcination temperature from 350 °C-600 °C. The MoO3 powders calcined at different temperatures were converted into five dense tablets for performing the electrical measurements. These measurements were carried out at different working temperatures using a system operating under high vacuum conditions. The results revealed that the dc-conductivity of such a tablet typically increases by more than five orders of magnitude with an increase in the working temperature from 77-300 K. These results also demonstrated a high dependence of dc-conductivity on the calcination temperature for the MoO3 products. The dc-conductivity as a function of the operating temperature revealed the presence of at least three different electrical conduction mechanisms for the same MoO3 tablet.
NASA Astrophysics Data System (ADS)
Yaney, Perry P.; Ouchen, Fahima; Grote, James G.
2009-08-01
DC resistivity studies were carried out on biopolymer films of DNA-CTMA and silk fibroin, and on selected traditional polymer films, including PMMA and APC. Films of DNA-CTMA versus molecular weight and with conductive dopants PCBM, BAYTRON P and ammonium tetrachloroplatinate are reported. The films were spin coated on glass slides configured for measurements of volume dc resistance. The measurements used the alternating polarity method to record the applied voltage-dependent current independent of charging and background currents. The Arrhenius equation plus a constant was fitted to the conductivity versus temperature data of the polymers and the non-doped DNA-based biopolymers with activation energies ranging from 0.8 to 1.4 eV.
BC8 Silicon (Si-III) is a Narrow-Gap Semiconductor
NASA Astrophysics Data System (ADS)
Zhang, Haidong; Liu, Hanyu; Wei, Kaya; Kurakevych, Oleksandr O.; Le Godec, Yann; Liu, Zhenxian; Martin, Joshua; Guerrette, Michael; Nolas, George S.; Strobel, Timothy A.
2017-04-01
Large-volume, phase-pure synthesis of BC8 silicon (I a 3 ¯ , c I 16 ) has enabled bulk measurements of optical, electronic, and thermal properties. Unlike previous reports that conclude BC8-Si is semimetallic, we demonstrate that this phase is a direct band gap semiconductor with a very small energy gap and moderate carrier concentration and mobility at room temperature, based on far- and midinfrared optical spectroscopy, temperature-dependent electrical conductivity, Seebeck and heat capacity measurements. Samples exhibit a plasma wavelength near 11 μ m , indicating potential for infrared plasmonic applications. Thermal conductivity is reduced by 1-2 orders of magnitude depending on temperature as compared with the diamond cubic (DC-Si) phase. The electronic structure and dielectric properties can be reproduced by first-principles calculations with hybrid functionals after adjusting the level of exact Hartree-Fock (HF) exchange mixing. These results clarify existing limited and controversial experimental data sets and ab initio calculations.
Ebad-Allah, J; Baldassarre, L; Sing, M; Claessen, R; Brabers, V A M; Kuntscher, C A
2013-01-23
The optical properties of magnetite at room temperature were studied by infrared reflectivity measurements as a function of pressure up to 8 GPa. The optical conductivity spectrum consists of a Drude term, two sharp phonon modes, a far-infrared band at around 600 cm(-1) and a pronounced mid-infrared absorption band. With increasing pressure both absorption bands shift to lower frequencies and the phonon modes harden in a linear fashion. Based on the shape of the MIR band, the temperature dependence of the dc transport data, and the occurrence of the far-infrared band in the optical conductivity spectrum, the polaronic coupling strength in magnetite at room temperature should be classified as intermediate. For the lower energy phonon mode an abrupt increase of the linear pressure coefficient occurs at around 6 GPa, which could be attributed to minor alterations of the charge distribution among the different Fe sites.
Influence of DC-biasing on the performance of graphene spin valve
NASA Astrophysics Data System (ADS)
Iqbal, Muhammad Zahir; Hussain, Ghulam; Siddique, Salma; Hussain, Tassadaq; Iqbal, Muhammad Javaid
2018-04-01
Generating and controlling the spin valve signal are key factors in 'spintronics', which aims to utilize the spin degree of electrons. For this purpose, spintronic devices are constructed that can detect the spin signal. Here we investigate the effect of direct current (DC) on the magnetoresistance (MR) of graphene spin valve. The DC input not only decreases the magnitude of MR but also distorts the spin valve signal at higher DC inputs. Also, low temperature measurements revealed higher MR for the device, while the magnitude is noticed to decrease at higher temperatures. Furthermore, the spin polarization associated with NiFe electrodes is continuously increased at low DC bias and low temperatures. We also demonstrate the ohmic behavior of graphene spin valve by showing linear current-voltage (I-V) characteristics of the junction. Our findings may contribute significantly in modulating and controlling the spin transport properties of vertical spin valve structures.
Magnetic and transport properties of amorphous Ce-Al alloy
NASA Astrophysics Data System (ADS)
Amakai, Yusuke; Murayama, Shigeyuki; Momono, Naoki; Takano, Hideaki; Kuwai, Tomohiko
2018-05-01
Amorphous (a-)Ce50Al50 has been prepared by DC high-rate sputter method. The structure of the obtained sample has been confirmed to have an amorphous structure because there are no Bragg peaks in the X-ray diffraction measurement and have a clear exothermic peak by the differential scanning calorimetry measurement. We have measured the resistivity ρ, magnetic susceptibility χ, specific heat Cp and thermoelectric power S for a-Ce50Al50. The temperature dependence of ρ exhibits a small temperature dependence less than 10% in the whole temperature region. χ follows a Curie-Weiss behavior in the high-temperature region of T>90 K. The effective paramagnetic moment peff, estimated from C is 2.18 μB/Ce-atom. The low-temperature Cp/T increases rapidly with decreasing temperature and tends to a saturation. S(T) exhibits negative values in a wide temperature region. A minimum of S appear at around 60 K, and S decreases linearly with decreasing temperature down to 10 K. The low-temperature S is almost 0 μV/K down to 2 K. From these results, we have pointed out that present a-Ce50Al50 would be an incoherent Kondo material.
NASA Technical Reports Server (NTRS)
Edie, P. C.
1981-01-01
Straight and chopped DC motor performances for a Reliance EV-250AT motor with an EV-1 controller were examined. Effects of motor temperature and operating voltage are shown. It is found that the maximum motor efficiency is approximately 85% at low operating temperatures in the straight DC mode. Chopper efficiency is 95% under all operating conditions. For equal speeds, the motor operated in the chopped mode develops slightly more torque and draws more current than it does in the straight DC mode.
Magnetic and dielectric studies on half-doped orthochromite R(Fe0.5Cr0.5)O3 (R=Gd, Sm) ceramics
NASA Astrophysics Data System (ADS)
Tirupathi, Patri; Reddy, H. Satish Kumar
2018-05-01
In the present paper, we report a details on magnetic and dielectric studies on ball milled single phase Gd(Fe0.5Cr0.5)O3 (GFC) and Sm(Fe0.5Cr0.5)O3 (SmFC) ceramics. The room temperature X-ray diffraction suggest that GFC and SmFC are exhibit orthorhombic crystal system with Pnma space group. Temperature dependent dc-magnetic studies exhibit a complex sequence of magnetic transitions (TN = 281 K) for GFC (TN = 249 K for SmFC ceramics respectively. A weak ferromagnetic character at low temperature were observed for both compounds. In addition, high temperature dielectric studies were also reported for SmFC ceramics.
Temperature dependent DC characterization of InAlN/(AlN)/GaN HEMT for improved reliability
NASA Astrophysics Data System (ADS)
Takhar, K.; Gomes, U. P.; Ranjan, K.; Rathi, S.; Biswas, D.
2015-02-01
InxAl1-xN/AlN/GaN HEMT device performance is analysed at various temperatures with the help of physics based 2-D simulation using commercially available BLAZE and GIGA modules from SILVACO. Various material parameters viz. band-gap, low field mobility, density of states, velocity saturation, and substrate thermal conductivity are considered as critical parameters for predicting temperature effect in InxAl1-xN/AlN/GaN HEMT. Reduction in drain current and transconductance has been observed due to the decrease of 2-DEG mobility and effective electron velocity with the increase in temperature. Degradation in cut-off frequency follows the transconductance profile as variation in gate-source/gate-drain capacitances observed very small.
Dynamics of runaway tails with time-dependent sub-Dreicer dc fields in magnetized plasmas
NASA Technical Reports Server (NTRS)
Moghaddam-Taaheri, E.; Vlahos, L.
1987-01-01
The evolution of runaway tails driven by sub-Dreicer time-dependent dc fields in a magnetized plasma are studied numerically using a quasi-linear code based on the Ritz-Galerkin method and finite elements. It is found that the runaway tail maintained a negative slope during the dc field increase. Depending on the values of the dc electric field at t = 0 and the electron gyrofrequency to the plasma frequency ratio the runaway tail became unstable to the anomalous Doppler resonance or remained stable before the saturation of the dc field at some maximum value. The systems that remained stable during this stage became unstable to the anomalous Doppler or the Cerenkov resonances when the dc field was kept at the saturation level or decreased. Once the instability is triggered, the runaway tail is isotropized.
Crossover of Dissipation Mechanism in Flowing Superfluid 3He-B Near the Tricritical Pressure
NASA Astrophysics Data System (ADS)
Ling, Ren-Zhi; Betts, D. S.; Brewer, D. F.
1984-08-01
dc flow of superfluid 3He-B through a rectangular superleak exhibits two dissipative regimes and two critical currents with temperature dependence of the form Jc=b(1-TTc)a. At low pressures a~=32 and b increases with pressure. Around 21.5 bars a crossover occurs to a new dissipation regime with a~=2 and the prefactor b then decreases with pressure.
Silicon Carbide Diodes Characterization at High Temperature and Comparison With Silicon Devices
NASA Technical Reports Server (NTRS)
Lebron-Velilla, Ramon C.; Schwarze, Gene E.; Gardner, Brent G.; Adams, Jerry D., Jr.
2004-01-01
Commercially available silicon carbide (SiC) Schottky diodes from different manufacturers rated at 200, 300, 600, and 1200 V, were electrically tested and characterized as a function of temperature up to 300 C. Electrical tests included both steady state and dynamic tests. Steady state tests produced forward and reverse I-V characteristic curves. Transient tests evaluated the switching performance of the diodes in either a hard-switched DC to DC buck converter or a half-bridge boost converter. For evaluation and comparison purposes, the same tests were performed with current state-of-the-art ultra fast silicon (Si) pn-junction diodes of similar ratings and also a Si Schottky diode. The comparisons made were forward voltage drop at rated current, reverse current at rated voltage, and turn-off peak reverse recovery current and reverse recovery time. In addition, efficiency measurements were taken for the buck DC to DC converter using both the SiC Schottky diodes and the Si pn-junction diodes at different temperatures and frequencies. The test results showed that at high temperature, the forward voltage drop for SiC Schottky diodes is higher than the forward drop of the ultra fast Si pn-junction diodes. As the temperature increased, the forward voltage drop of the SiC Schottky increased while for the ultra fast Si pn-junction diodes, the forward voltage drop decreased as temperature increased. For the elevated temperature steady state reverse voltage tests, the SiC Schottky diodes showed low leakage current at their rated voltage. Likewise, for the transient tests, the SiC Schottky diodes displayed low reverse recovery currents over the range of temperatures tested. Conversely, the Si pn-junction diodes showed increasing peak reverse current values and reverse recovery times with increasing temperature. Efficiency measurements in the DC to DC buck converter showed the advantage of the SiC Schottky diodes over the ultra fast Si pn-junction diodes, especially at the higher temperatures and higher frequencies.
Numerical modelling of dynamic resistance in high-temperature superconducting coated-conductor wires
NASA Astrophysics Data System (ADS)
Ainslie, Mark D.; Bumby, Chris W.; Jiang, Zhenan; Toyomoto, Ryuki; Amemiya, Naoyuki
2018-07-01
The use of superconducting wire within AC power systems is complicated by the dissipative interactions that occur when a superconductor is exposed to an alternating current and/or magnetic field, giving rise to a superconducting AC loss caused by the motion of vortices within the superconducting material. When a superconductor is exposed to an alternating field whilst carrying a constant DC transport current, a DC electrical resistance can be observed, commonly referred to as ‘dynamic resistance.’ Dynamic resistance is relevant to many potential high-temperature superconducting (HTS) applications and has been identified as critical to understanding the operating mechanism of HTS flux pump devices. In this paper, a 2D numerical model based on the finite-element method and implementing the H -formulation is used to calculate the dynamic resistance and total AC loss in a coated-conductor HTS wire carrying an arbitrary DC transport current and exposed to background AC magnetic fields up to 100 mT. The measured angular dependence of the superconducting properties of the wire are used as input data, and the model is validated using experimental data for magnetic fields perpendicular to the plane of the wire, as well as at angles of 30° and 60° to this axis. The model is used to obtain insights into the characteristics of such dynamic resistance, including its relationship with the applied current and field, the wire’s superconducting properties, the threshold field above which dynamic resistance is generated and the flux-flow resistance that arises when the total driven transport current exceeds the field-dependent critical current, I c( B ), of the wire. It is shown that the dynamic resistance can be mostly determined by the perpendicular field component with subtle differences determined by the angular dependence of the superconducting properties of the wire. The dynamic resistance in parallel fields is essentially negligible until J c is exceeded and flux-flow resistance occurs.
Electrothermal flow effects in insulating (electrodeless) dielectrophoresis systems.
Hawkins, Benjamin G; Kirby, Brian J
2010-11-01
We simulate electrothermally induced flow in polymeric, insulator-based dielectrophoresis (iDEP) systems with DC-offset, AC electric fields at finite thermal Péclet number, and we identify key regimes where electrothermal (ET) effects enhance particle deflection and trapping. We study a single, two-dimensional constriction in channel depth with parametric variations in electric field, channel geometry, fluid conductivity, particle electrophoretic (EP) mobility, and channel electroosmotic (EO) mobility. We report the effects of increasing particle EP mobility, channel EO mobility, and AC and DC field magnitudes on the mean constriction temperature and particle behavior. Specifically, we quantify particle deflection and trapping, referring to the deviation of particles from their pathlines due to dielectrophoresis as they pass a constriction and the stagnation of particles due to negative dielectrophoresis near a constriction, respectively. This work includes the coupling between fluid, heat, and electromagnetic phenomena via temperature-dependent physical parameters. Results indicate that the temperature distribution depends strongly on the fluid conductivity and electric field magnitude, and particle deflection and trapping depend strongly on the channel geometry. Electrothermal (ET) effects perturb the EO flow field, creating vorticity near the channel constriction and enhancing the deflection and trapping effects. ET effects alter particle deflection and trapping responses in insulator-based dielectrophoresis devices, especially at intermediate device aspect ratios (2 ≤ r ≤ 7) in solutions of higher conductivity (σ m ≥ 1 × 10(-3)S/m). The impact of ET effects on particle deflection and trapping are diminished when particle EP mobility or channel EO mobility is high. In almost all cases, ET effects enhance negative dielectrophoretic particle deflection and trapping phenomena. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Submicron nickel-oxide-gold tunnel diode detectors for rectennas
NASA Technical Reports Server (NTRS)
Hoofring, A. B.; Kapoor, V. J.; Krawczonek, W.
1989-01-01
The characteristics of a metal-oxide-metal (MOM) tunnel diode made of nickel, nickel-oxide, and gold, designed and fabricated by standard integrated circuit technology for use in FIR rectennas, are presented. The MOM tunnel diode was formed by overlapping a 0.8-micron-wide layer of 1000-A of nickel, which was oxidized to form a thin layer of nickel oxide, with a 1500 A-thick layer of gold. The dc current-voltage characteristics of the MOM diode showed that the current dependence on voltage was linear about zero bias up to a bias of about 70 mV. The maximum detection of a low-level signal (10-mV ac) was determined to be at a dc voltage of 70 mV across the MOM diode. The rectified output signal due to a chopped 10.6-micron CO2 laser incident upon the rectenna device was found to increase with dc bias, with a maximum value of 1000 nV for a junction bias of 100 mV at room temperature.
Relaxation dynamics in AgI-doped silver vanadate superionic glasses.
Bhattacharya, S; Ghosh, A
2005-09-22
Relaxation dynamics of Ag+ ions in several series of AgI-Ag2O-V2O5 superionic glasses has been studied in the frequency range from 10 Hz to 2 MHz and in the temperature range from 93 to 323 K. The composition dependence of the dc conductivity and the activation energy of these glasses has been compared with those of AgI-doped silver phosphate and borate glasses. The frequency-dependent electrical data have been analyzed in the framework of conductivity formalism. We have obtained the mobile ion concentration and the power-law exponent from the analysis of the conductivity spectra. We have observed that the concentration of Ag+ ions is independent of temperature and the conductivity is primarily determined by the mobility. A fraction of the Ag+ ions in the glass compositions are involved in the dynamic process. We have also shown that the power-law exponent is independent of temperature. The results are also supported by the temperature and composition independence of the scaling of the conductivity spectra.
Observation of giant exchange bias in bulk Mn{sub 50}Ni{sub 42}Sn{sub 8} Heusler alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Jyoti; Suresh, K. G., E-mail: suresh@iitb.ac.in
2015-02-16
We report a giant exchange bias (EB) field of 3520 Oe in bulk Mn{sub 50}Ni{sub 42}Sn{sub 8} Heusler alloy. The low temperature magnetic state of the martensite phase has been studied by DC magnetization and AC susceptibility measurements. Frequency dependence of spin freezing temperature (T{sub f}) on critical slowing down relation and observation of memory effect in zero field cooling mode confirms the super spin glass (SSG) phase at low temperatures. Large EB is attributed to the strong exchange coupling between the SSG clusters formed by small regions of ferromagnetic order embedded in an antiferromagnetic (AFM) matrix. The temperature and coolingmore » field dependence of EB have been studied and related to the change in unidirectional anisotropy at SSG/AFM interface. The training effect also corroborates with the presence of frozen (SSG) moments at the interface and their role in EB.« less
Terahertz conductivity of MnSi thin films
NASA Astrophysics Data System (ADS)
Dodge, J.; Mohtashemi, Laleh; Farahani, Amir; Karhu, Eric; Monchesky, Theodore
2013-03-01
We present measurements of the low-frequency optical conductivity of MnSi thin films, using time-domain terahertz spectroscopy. At low temperatures and low frequencies, we extract the DC resistivity, scattering life time and plasma frequency from a Drude fit. We obtain a value of ωp ~= 1 . 0 eV, which can be used to estimate the renormalization coefficient through comparison with band theory. At higher temperatures, deviations from Drude behavior are observed, suggesting a loss of quasi-particle coherence. In the region of low temperatures and high frequencies, we see evidence for a crossover to the anomalous power law dependence observed by Mena et al. As the temperature increases, the anomalous frequency dependence becomes more pronounced, and the plasma frequency inferred from a Drude fit decreases dramatically. Above T ~ 50 K, σ2 (ω) develops a negative slope that is inconsistent with both a Drude model and the anomalous power law observed earlier, indicating a sharp pseudogap in the conductivity spectrum.
Zhong, Min; Li, Shuai; Duan, Hou-Jian; Hu, Liang-Bin; Yang, Mou; Wang, Rui-Qiang
2017-06-21
We investigate the thermoelectric effect on a topological insulator surface with particular interest in impurity-induced resonant states. To clarify the role of the resonant states, we calculate the dc and ac conductivities and the thermoelectric coefficients along the longitudinal direction within the full Born approximation. It is found that at low temperatures, the impurity resonant state with strong energy de-pendence can lead to a zero-energy peak in the dc conductivity, whose height is sensitively dependent on the strength of scattering potential, and even can reverse the sign of the thermopower, implying the switching from n- to p-type carriers. Also, we exhibit the thermoelectric signatures for the filling process of a magnetic band gap by the resonant state. We further study the impurity effect on the dynamic optical conductivity, and find that the resonant state also generates an optical conductivity peak at the absorption edge for the interband transition. These results provide new perspectives for understanding the doping effect on topological insulator materials.
NASA Astrophysics Data System (ADS)
Shen, Boyang; Li, Chao; Geng, Jianzhao; Zhang, Xiuchang; Gawith, James; Ma, Jun; Liu, Yingzhen; Grilli, Francesco; Coombs, T. A.
2018-07-01
This paper presents a comprehensive alternating current (AC) loss study of a circular high temperature superconductor (HTS) coated conductor coil. The AC losses from a circular double pancake coil were measured using the electrical method. A 2D axisymmetric H -formulation model using the FEM package in COMSOL Multiphysics has been established to match the circular geometry of the coil used in the experiment. Three scenarios have been analysed: Scenario 1 with AC transport current and DC magnetic field (experiment and simulation); Scenario 2 with DC transport current and AC magnetic field (simulation); and Scenario 3 with AC transport current and AC magnetic field (simulation and experimental data support). The angular dependence analysis on the coil under a magnetic field with different orientation angle θ has been carried out for all three scenarios. For Scenario 3, the effect of the relative phase difference Δφ between the AC current and the AC field on the total AC loss of the coil has been investigated. In summary, a current/field/angle/phase dependent AC loss ( I , B , θ, Δφ) study of a circular HTS coil has been carried out. The obtained results provide useful indications for the future design and research of HTS AC systems.
Electronics for Deep Space Cryogenic Applications
NASA Technical Reports Server (NTRS)
Patterson, R. L.; Hammond, A.; Dickman, J. E.; Gerber, S. S.; Elbuluk, M. E.; Overton, E.
2002-01-01
Deep space probes and planetary exploration missions require electrical power management and control systems that are capable of efficient and reliable operation in very cold temperature environments. Typically, in deep space probes, heating elements are used to keep the spacecraft electronics near room temperature. The utilization of power electronics designed for and operated at low temperature will contribute to increasing efficiency and improving reliability of space power systems. At NASA Glenn Research Center, commercial-off-the-shelf devices as well as developed components are being investigated for potential use at low temperatures. These devices include semiconductor switching devices, magnetics, and capacitors. Integrated circuits such as digital-to-analog and analog-to-digital converters, DC/DC converters, operational amplifiers, and oscillators are also being evaluated. In this paper, results will be presented for selected analog-to-digital converters, oscillators, DC/DC converters, and pulse width modulation (PWM) controllers.
Spacer layer thickness dependent structural and magnetic properties of Co/Si multilayers
NASA Astrophysics Data System (ADS)
Roy, Ranjan; Singh, Dushyant; Kumar, M. Senthil
2018-05-01
In this article, the study of high resolution x-ray diffraction and magnetization of sputter deposited Co/Si multilayer is reported. Multilayers are prepared at ambient temperature by dc magnetron sputtering. Structural properties are studied by high resolution x-ray diffraction. Magnetic properties are studied at room temperature by vibrating sample magnetometer. Structural properties show that the Co layer is polycrystalline and the Si layer is amorphous. The magnetization study indicates that the samples are soft ferromagnetic in nature. The study of magnetization also shows that the easy axis of magnetization lies in the plane of the film.
Experimental study on the coalescence process of SiO2 supported colloidal Au nanoparticles
NASA Astrophysics Data System (ADS)
Ruffino, F.; Torrisi, V.; Grimaldi, M. G.
2015-11-01
We report on an experimental study of the coalescence-driven grow process of colloidal Au nanoparticles on SiO2 surface. Nanoparticles with 30, 50, 80, 100 nm nominal diameters on a SiO2 substrate were deposited, from solutions, by the drop-casting method. Then, annealing processes, in the 573-1173 K temperature range and 900-3600 s time range, were performed. Using scanning electron microscopy analyses, the temporal evolution of the nanoparticles sizes has been studied. In particular, for all classes of nanoparticles, the experimental-obtained diameters distributions evidenced double-peak shapes (i. e. bimodal distributions): a first peak centered (and unchanged changing the annealing temperature and/or time) at the nominal diameter of the as-deposited nanoparticles,
Inflight fuel tank temperature survey data
NASA Technical Reports Server (NTRS)
Pasion, A. J.
1979-01-01
Statistical summaries of the fuel and air temperature data for twelve different routes and for different aircraft models (B747, B707, DC-10 and DC-8), are given. The minimum fuel, total air and static air temperature expected for a 0.3% probability were summarized in table form. Minimum fuel temperature extremes agreed with calculated predictions and the minimum fuel temperature did not necessarily equal the minimum total air temperature even for extreme weather, long range flights.
NASA Astrophysics Data System (ADS)
Rao, K. S.; Krishna, P. M.; Prasad, D. M.; Latha, T. S.; Hussain, M.
2007-09-01
Dielectric, impedance, modulus and conductivity studies were performed over temperature 35 °C 600 °C and frequency 45 Hz 5 MHz range on the Lead Potassium Lithium Niobate (Pb{4.0}K{1.0}Li{1.0}Nb{10}O{30}, PKLN) ceramics. These studies established the conduction ion motion and polarization mechanism in the material. The dispersive dielectric loss at high temperature reveals the ionic conductivity. From frequency variation of \\varepsilonl response the pre-factor A(T) and critical exponent n(T) are evaluated, and are used in Jonscher's dielectric dispersion relation for \\varepsilon ' to fit with the experimental data. Complex impedance plots showed a non Debye type relaxation, are used to evaluate the grain and grain boundary conduction and relaxation activation energies. DC and ac conduction activation energies are estimated from Arrhenius plots. Occupancy of Li+ for C-sites gave a completely filled structure and enhanced the phase transition temperature to 520 °C compared to PKN. This is supported by the conduction activation energy in ferro region is more than the para region. Also, the dc conductivity characterized from bulk resistance and M^ll peak frequency. Polaron hoping mechanism at room temperature has been confirmed via the linear variation of the plot log (σ ac-σ dc) as a function of log ω 2. Stretched exponential parameter, β (0 < β ≤slant 1) has been evaluated from impedance plots, interpreted as a result of correlated motions between the Li+ ions and distribution of dielectric relaxation. Compared the results from different techniques, and discussed the conduction mechanism in the material.
Charge carrier transport mechanisms in perovskite CdTiO{sub 3} fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imran, Z.; Rafiq, M. A., E-mail: aftab@cantab.net; Hasan, M. M.
Electrical transport properties of electrospun cadmium titanate (CdTiO{sub 3}) fibers have been investigated using ac and dc measurements. Air annealing of as spun fibers at 1000 °C yielded the single phase perovskite fibers having diameter ∼600 nm - 800 nm. Both the ac and dc electrical measurements were carried out at temperatures from 200 K – 420 K. The complex impedance plane plots revealed a single semicircular arc which indicates the interfacial effect due to grain boundaries of fibers. The dielectric properties obey the Maxwell-Wagner theory of interfacial polarization. In dc transport study at low voltages, data show Ohmic like behaviormore » followed by space charge limited current (SCLC) with traps at higher voltages at all temperatures (200 K – 420 K). Trap density in our fibers system is N{sub t} = 6.27 × 10{sup 17} /cm{sup 3}. Conduction mechanism in the sample is governed by 3-D variable range hopping (VRH) from 200 K – 300 K. The localized density of states were found to be N(E{sub F}) = 5.51 × 10{sup 21} eV{sup −1} cm{sup −3} at 2 V. Other VRH parameters such as hopping distance (R{sub hop}) and hopping energy (W{sub hop}) were also calculated. In the high temperature range of 320 K – 420 K, conductivity follows the Arrhenius law. The activation energy found at 2 V is 0.10 eV. Temperature dependent and higher values of dielectric constant make the perovskite CdTiO{sub 3} fibers efficient material for capacitive energy storage devices.« less
Generator of the low-temperature heterogeneous plasma flow
NASA Astrophysics Data System (ADS)
Yusupov, D. I.; Gadzhiev, M. Kh; Tyuftyaev, A. S.; Chinnov, V. F.; Sargsyan, M. A.
2018-01-01
A generator of low-temperature dc plasma with an expanding channel of an output electrode for gas-thermal spraying was designed and constructed. The delivery of the sprayed powder into the cathode and anode arc-binding zones or into the plasma jet below the anode binding was realized. The electrophysical characteristics of both the plasma torch and the heterogeneous plasma flow with Al2O3 powder are studied. It is shown that the current-voltage characteristic (CVC) of a plasma torch depends on the gas flow rate. If the flow rate varies from 1 to 3 g/s, the falling CVC becomes gradually increasing. The speed and temperature of the sprayed powder are determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sicupira, Felipe Lucas; Sandim, Maria José R.; Sandim, Hugo R.Z.
The good performance of supermartensitic stainless steels is strongly dependent on the volume fraction of retained austenite at room temperature. The present work investigates the effect of secondary tempering temperatures on this phase transformation and quantifies the amount of retained austenite by X-ray diffraction and saturation magnetization. The steel samples were tempered for 1 h within a temperature range of 600–800 °C. The microstructure was characterized using scanning electron microscopy and electron backscatter diffraction. Results show that the amount of retained austenite decreased with increasing secondary tempering temperature in both quantification methods. - Highlights: • The phase transformation during secondarymore » tempering temperatures was observed. • Phases were quantified by X-ray diffraction and DC-saturation magnetization. • More retained austenite forms with increasing secondary tempering temperature. • The retained austenite is mainly located at the grain and lath boundaries.« less
Zhou, Xuhong; Mo, Xijun; Gui, Min; Wu, Xuewei; Jiang, Yalian; Ma, Lulin; Shi, Ziming; Luo, Ying; Tang, Wenru
2015-12-01
In plant evolution, because of its key role in sexual polyploidization or whole genome duplication events, diploid gamete formation is considered as an important component in diversification and speciation. Environmental stress often triggers unreduced gamete production. However, the molecular, cellular mechanisms and adverse temperature regulating diplogamete production in carnation remain poorly understood. Here, we investigate the cytological basis for 2n male gamete formation and describe the isolation and characterization of the first gene, DcPS1 (Dianthus Caryophyllus Parallel Spindle 1). In addition, we analyze influence of temperature stress on diploid gamete formation and transcript levels of DcPS1. Cytological evidence indicated that 2n male gamete formation is attributable to abnormal spindle orientation at male meiosis II. DcPS1 protein is conserved throughout the plant kingdom and carries domains suggestive of a regulatory function. DcPS1 expression analysis show DcPS1 gene probably have a role in 2n pollen formation. Unreduced pollen formation in various cultivation was sensitive to high or low temperature which was probably regulated by the level of DcPS1 transcripts. In a broader perspective, these findings can have potential applications in fundamental polyploidization research and plant breeding programs. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Electrode effects in dielectric spectroscopy measurements on (Nb +In) co-doped TiO2
NASA Astrophysics Data System (ADS)
Crandles, David; Yee, Susan; Savinov, Maxim; Nuzhnyy, Dimitri; Petzelt, Jan; Kamba, Stanislav; Prokes, Jan
Recently, several papers reported the discovery of giant permittivity and low dielectric loss in (Nb+In) co-doped TiO2. A series of tests was performed which included the measurement of the frequency dependence of the dielectric permittivity and ac conductivity of co-doped (Nb+In)TiO2 as a function of electrode type, sample thickness and temperature. The data suggest that the measurements are strongly affected by the electrodes. The consistency between four contact van der Pauw dc conductivity measurements and bulk conductivity values extracted from two contact ac conductivity measurements suggest that the values of colossal permittivity are, at least in part, a result of Schottky barrier depletion widths that depend on electrode type and temperature. Nserc, Czech Science Foundation (Project 15-08389S).
Performance power evaluation of DC fan cooling system for PV panel by using ANSYS CFX
NASA Astrophysics Data System (ADS)
Syafiqah, Z.; Amin, N. A. M.; Irwan, Y. M.; Irwanto, M.; Leow, W. Z.; Amelia, A. R.
2017-09-01
A research has been conducted to find the optimum combination for DC fan air cooling system of photovoltaic (PV) panel. During normal operation of PV panel, it is estimated that only 15 % of solar radiation is converted into electrical energy. Meanwhile, the rest of the solar radiation is converted into heat energy which affects the performance of the PV panel. Therefore, the aim of this research is to investigate the performance power evaluation of DC fan cooling system for PV panel by using ANSYS CFX. The effect of airflow configuration of DC fan has been investigated. This is to analyze whether the airflow circulation of DC fan cause a change towards the maximum temperature of PV panel. Besides, the impact of varying number of DC fans attached at the back of PV panel is evaluated. The result of airflow circulation of DC fan has been discussed. Meanwhile, with the increment number of DC fans, the PV panel temperature drops significantly. As a conclusion, the optimum number of DC fans is two with the combination of inlet airflow.
NASA Astrophysics Data System (ADS)
Parida, Kalpana; Choudhary, R. N. P.
2017-07-01
CaCu3Ti4O12 (CCTO) was prepared by a chemical reaction method. The pellets prepared from the calcined powder of the material were sintered at 1100 °C. Analysis of x-ray diffraction pattern, recorded on CCTO powder, confirms the phase formation of CCTO. Studies of dielectric (ɛ r, tanδ) and impedance parameters using dielectric and impedance spectroscopy of the compound have provided information about the electrical properties and the dielectric relaxation mechanism of the material. Detailed studies on the variation of electrical conductivity (dc) with temperature show semi-conducting nature of the material. Study of frequency (of applied electric field) dependence of ac conductivity at different temperatures suggests that the compound follows the Jonscher’s power law. Complex impedance spectroscopic analysis suggests that the semicircles formed in the Nyquist plot are connected to the grains, grain boundary and interface effects. An optical energy band gap of ~1.9 eV is obtained from the UV-visible absorbance spectrum. The magnetic data related to magneto-electric (ME) coefficient, measured by varying dc bias magnetic field, have been obtained at room temperature.
Microwave Hybrid Integrated Circuit Applicatins of High Transition Temperature Superconductor
NASA Astrophysics Data System (ADS)
Lu, Shih-Lin
This research work involves microwave characterization of high Tc superconducting (HTS) thin film using microstrip ring resonators, studying the nonlinear properties of HTS thin film transmission lines using two-tone intermodulation technique, coupling mechanisms and coupling factors of microstrip ring resonators side coupled to a microstrip line, two-port S-parameters measurements of GaAs MESFET at low temperature, and the design and implementation of hybrid ring resonator stabilized microwave oscillator using both metal films and superconducting films. A microstrip ring resonators operating at 10 GHz have been fabricated from YBCO HTS thin films deposited on one side of LaAl_2O_3 substrates. Below 60^circ Kelvin the measured unloaded Q of the HTS thin film microstrip ring resonators are more than 1.5 times that of gold film resonators. The two distinct but very close resonance peaks of a ring resonator side coupled to a microstrip line are experimentally identified as due to odd-mode and even-mode coupling. These two mechanisms have different characteristic equivalent circuit models and lead to different coupling coefficients and loaded resonance frequencies. The coupling factors for the two coupling modes are calculated using piecewise coupled line approximations. The two-port S-parameters measurement techniques and GaAs MESFET low temperature DC and microwave characteristics have been investigated. A system errors model including the errors caused by the line constriction at low temperature has been proposed and a temperature errors correction procedure has been developed for the two-port microwave S-parameters measurements at low temperature. The measured GaAs MESFET DC characteristics shows a 20% increase in transconductance at 77^circ K. There is also a 2 db increase in /S21/ at 77^circ K. The microwave oscillator stabilized with both metal and HTS thin film ring resonators have been studied. The tuning ability of the oscillator by a varactor diode has also been investigated. The phase noise performance of one side of the high Tc film oscillator does not show appreciable improvement over the gold film oscillator. With a varactor diode, the oscillator tuning range can be 300 MHz more. Two-tone intermodulation distortion (IMD) at 6.3 GHz in an HTS YBCO superconducting thin film microstrip transmission line on LaAl_2O _3 substrates are experimentally studied. At fixed input power, the 3rd order IMD power as function of temperature shows a minimum at a temperature around 60^circ Kelvin. With DC current applied, the second order IMD is observed and shows a strong functional dependance to the applied DC current and input power.
Xi, Yang; Troy, Niamh M.; Anderson, Denise; Pena, Olga M.; Lynch, Jason P.; Phipps, Simon; Bosco, Anthony; Upham, John W.
2017-01-01
Though human rhinoviruses (HRVs) are usually innocuous viruses, they can trigger serious consequences in certain individuals, especially in the setting of impaired interferon (IFN) synthesis. Plasmacytoid dendritic cells (pDCs) are key IFN producing cells, though we know little about the role of pDC in HRV-induced immune responses. Herein, we used gene expression microarrays to examine HRV-activated peripheral blood mononuclear cells (PBMCs) from healthy people, in combination with pDC depletion, to assess whether observed gene expression patterns were pDC dependent. As expected, pDC depletion led to a major reduction in IFN-α release. This was associated with profound differences in gene expression between intact PBMC and pDC-depleted PBMC, and major changes in upstream regulators: 70–80% of the HRV activated genes appeared to be pDC dependent. Real-time PCR confirmed key changes in gene expression, in which the following selected genes were shown to be highly pDC dependent: the transcription factor IRF7, both IL-27 chains (IL-27p28 and EBI3), the alpha chain of the IL-15 receptor (IL-15RA) and the IFN-related gene IFI27. HRV-induced IL-6, IFN-γ, and IL-27 protein synthesis were also highly pDC dependent. Supplementing pDC-depleted cultures with recombinant IL-15, IFN-γ, IL-27, or IL-6 was able to restore the IFN-α response, thereby compensating for the absence of pDC. Though pDC comprise only a minority population of migratory leukocytes, our findings highlight the profound extent to which these cells contribute to the immune response to HRV. PMID:29118754
Development of toroid-type HTS DC reactor series for HVDC system
NASA Astrophysics Data System (ADS)
Kim, Kwangmin; Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho; Lee, Sangjin; Oh, Yunsang; Park, Minwon; Yu, In-Keun
2015-11-01
This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.
NASA Astrophysics Data System (ADS)
Pastoriza, H.; Arribere, A.; Goffman, M. F.; de la Cruz, F.; Mitzi, D. B.; Kapitulnik, A.
1994-02-01
AC susceptibility and dc magnetization measurements on Bi 2Sr 2CaCu 2O 8 (BSCCO) single crystals in a wide range of temperatures clearly show that below the dc irreversibility line the vortex system loss the long range order in the c direction. The susceptibility data taken at 7 Hz show the different nature of two dissipation peaks: One related to the interplane currents at temperatures well below the dc irreversibility line and the other associated with the intraplane ones at temperatures above that line. In this sense the irreversibility line corresponds to the temperature where quasi-two dimensional vortices are depinned.
Kelledes, William L.; St. John, Don K.
1992-01-01
The present invention maintains constant torque in an inverter driven AC induction motor during variations in rotor temperature. It is known that the torque output of a given AC induction motor is dependent upon rotor temperature. At rotor temperatures higher than the nominal operating condition the rotor impedance increases, reducing the rotor current and motor torque. In a similar fashion, the rotor impedance is reduced resulting in increased rotor current and motor torque when the rotor temperature is lower than the nominal operating condition. The present invention monitors the bus current from the DC supply to the inverter and adjusts the slip frequency of the inverter drive to maintain a constant motor torque. This adjustment is based upon whether predetermined conditions implying increased rotor temperature or decreased rotor temperature exist for longer that a predetermined interval of time.
Effects of sintering temperature on electrical properties of sheep enamel hydroxyapatite
NASA Astrophysics Data System (ADS)
Dumludag, F.; Gunduz, O.; Kılıc, O.; Kılıc, B.; Ekren, N.; Kalkandelen, C.; Oktar, F. N.
2017-12-01
Bioceramics, especially calcium phosphate based bioceramics, whose examples are hydroxyapatite, and calcium phosphate powders have been widely used in the biomedical engineering applications. Hydroxyapatite (HA) is one of the most promising biomaterials, which are derived from natural sources, chemical method, animal like dental enamel and corals. The influence of sintering temperature on the electrical properties (i.e. DC conductivity, AC conductivity) of samples of sintered sheep enamel (SSSE) was studied in air and in vacuum ambient at room temperature. The sheep enamel were sintered at varying temperatures between 1000°C and 1300°C. DC conductivity results revealed that while dc conductivity of the SSSE decreases with increasing the sintering temperature in air ambient the values increased with increasing the sintering temperature in vacuum ambient. AC conductivity measurements were performed in the frequency range of 40 Hz - 105 Hz. The results showed that ac conductivity values decrease with increasing the sintering temperature.
Effects of Temperature and Moisture Content on the Storability of Hardwoods Seeds
Kristina F. Connor; Franklin T. Bonner
1999-01-01
Experimental results have been inconclusive about low temperature storage of recalcitrant seeds from temperate zone trees. Experiments were conducted on four species of oak - chinkapin (Quercus muehlenbergii Engelm.), water (Quercus nigra L.), Shumard (Quercus shumardii Buckl.), and northern red (Quercus rubra L.). Storage temperatures were -1.5 DC and 3 DC, and...
A split-cavity design for the incorporation of a DC bias in a 3D microwave cavity
NASA Astrophysics Data System (ADS)
Cohen, Martijn A.; Yuan, Mingyun; de Jong, Bas W. A.; Beukers, Ewout; Bosman, Sal J.; Steele, Gary A.
2017-04-01
We report on a technique for applying a DC bias in a 3D microwave cavity. We achieve this by isolating the two halves of the cavity with a dielectric and directly using them as DC electrodes. As a proof of concept, we embed a variable capacitance diode in the cavity and tune the resonant frequency with a DC voltage, demonstrating the incorporation of a DC bias into the 3D cavity with no measurable change in its quality factor at room temperature. We also characterize the architecture at millikelvin temperatures and show that the split cavity design maintains a quality factor Qi ˜ 8.8 × 105, making it promising for future quantum applications.
Radiofrequency amplifier based on a dc superconducting quantum interference device
Hilbert, Claude; Martinis, John M.; Clarke, John
1986-01-01
A low noise radiofrequency amplifier (10), using a dc SQUID (superconducting quantum interference device) as the input amplifying element. The dc SQUID (11) and an input coil (12) are maintained at superconductivity temperatures in a superconducting shield (13), with the input coil (12) inductively coupled to the superconducting ring (17) of the dc SQUID (11). A radiofrequency signal from outside the shield (13) is applied to the input coil (12), and an amplified radiofrequency signal is developed across the dc SQUID ring (17) and transmitted to exteriorly of the shield (13). A power gain of 19.5.+-.0.5 dB has been achieved with a noise temperature of 1.0.+-.0.4 K. at a frequency of 100 MHz.
Grain Boundary Resistivity of Yttria-Stabilized Zirconia at 1400°C
Wang, J.; Du, A.; Yang, Di; ...
2013-01-01
Tmore » he grain size dependence of the bulk resistivity of 3 mol% yttria-stabilized zirconia at 1400°C was determined from the effect of a dc electric field E a = 18.1 V/cm on grain growth and the corresponding electric current during isothermal annealing tests. Employing the brick layer model, the present annealing test results were in accordance with extrapolations of the values obtained at lower temperature employing impedance spectroscopy and 4-point-probe dc. he combined values give that the magnitude of the grain boundary resistivity ρ b = 133 ohm-cm. he electric field across the grain boundary width was 28–43 times the applied field for the grain size and current ranges in the present annealing test.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Byung-Jae; Hwang, Ya-Hsi; Ahn, Shihyun
The recovery effects of thermal annealing on dc and rf performance of off-state step-stressed AlGaN/GaN high electron mobility transistors were investigated. After stress, reverse gate leakage current and sub-threshold swing increased and drain current on-off ratio decreased. However, these degradations were completely recovered after thermal annealing at 450 °C for 10 mins for devices stressed either once or twice. The trap densities, which were estimated by temperature-dependent drain-current sub-threshold swing measurements, increased after off-state step-stress and were reduced after subsequent thermal annealing. In addition, the small signal rf characteristics of stressed devices were completely recovered after thermal annealing.
NASA Astrophysics Data System (ADS)
Ma, Yongchang; Hou, Yanhui; Lu, Cuimin; Li, Lijun; Petrovic, Cedomir
2018-05-01
The electric field dependence of the dielectric properties and the nonlinear conductance of 1 T -TaS2 below 50 K has been investigated. A large dielectric constant of about 104 is obtained up to 107 Hz, which cannot be attributed to hopping of the localized carriers alone, the collective excitations of the commensurate charge-density-wave must be another contributor. The dielectric spectra disperse slightly in our measured temperature and frequency range. At a moderate dc bias field, the real part of the dielectric constant ɛ1(ω ) decreases. We propose that the separation of bound soliton-antisoliton pairs may be a contributor to the reduction of ɛ1(ω ) and the accompanying nonlinear conductivity with increasing dc bias.
NASA Astrophysics Data System (ADS)
El-Sayed, S. A.; Morsy, M. A.
2018-05-01
Amorphous chalcogenide composition AS4Se3Te3 is prepared by conventional quenching technique. The separate annealing or γ quanta irradiation not effect on the dc conductivity properties of the prepared composition. When the prepared samples are subjected to simultaneous annealing at temperature 413 K and γ quanta irradiation the dc conductivity increases. The dark dc conductivity increases by increasing the time of exposure to γ irradiation. At irradiation dose 1.47 × 104 Gy the dc conductivity starts to have metallic like conductivity character. These samples could be used as high temperature γ quanta dosimeter. By applying scaling theory on the samples irradiated with different dose of γ irradiation the critical exponents are determined and found to be < 2. The dark dc conductivity continuously decreases to 0 as temperature tends to zero. The steric value is low in the insulator side of conductivity, but high and almost saturated in the metallic side of conductivity.
Behavior of temperature-dependent dc-photoconductivity in hot-wall deposited CaAl2Se4 layers
NASA Astrophysics Data System (ADS)
Jeong, J. W.; Hong, K. J.; Jeong, T. S.; Youn, C. J.
2017-10-01
The dc-photoconductive characteristic on the hot-wall grown CaAl2Se4 (CAS) layers was explored as a function of temperature. From the photocurrent (PC) measurement, three PC peaks A, B, and C corresponded to the intrinsic transitions, which represent the band-to-band transitions from the valence-band states of Γ2(A), Γ3 + Γ4(B), and Γ3 + Γ4(C) to the conduction-band state of Γ1, respectively. Based on these PC results, the optical band-gap energy was well matched by E g ( T) = E g (0) - 4.94 × 10-3 T 2/( T + 552), where E g (0) is found to be 3.8239, 3.8716, and 3.8801 eV for three peaks A, B, and C, respectively. Thus, the effect of the crystal field and spin-orbit splitting (These values were extracted out to be 47.7 and 8.5 meV, respectively.) was observed and calculated by means of the PC spectroscopy. However, PC intensity gradually decreased with decreasing temperature unlike an ordinary behavior. In the log J ph vs 1/ T plot, two dominant traplevels were observed to be 20.81 meV at temperatures of 300 - 70 K and 1.18 meV at temperatures below 70 K. Consequently, we extract out that these trapping centers caused by native defects in CAS confine the PC intensity as temperature decreases.
Huang, Si-Si; Xie, Dong-Mei; Cai, Yi-Jing; Wu, Jian-Min; Chen, Rui-Chong; Wang, Xiao-Dong; Song, Mei; Zheng, Ming-Hua; Wang, Yu-Qun; Lin, Zhuo; Shi, Ke-Qing
2017-04-01
Hepatitis B virus (HBV) infection remains a major health problem and HBV-related-decompensated cirrhosis (HBV-DC) usually leads to a poor prognosis. Our aim was to determine the utility of inflammatory biomarkers in predicting mortality of HBV-DC. A total of 329 HBV-DC patients were enrolled. Survival estimates for the entire study population were generated using the Kaplan-Meier method. The prognostic values for model for end-stage liver disease (MELD) score, Child-Pugh score, and inflammatory biomarkers neutrophil/lymphocyte ratio, C-reactive protein-to-albumin ratio (CAR), and lymphocyte-to-monocyte ratio (LMR) for HBV-DC were compared using time-dependent receiver operating characteristic curves and time-dependent decision curves. The survival time was 23.1±15.8 months. Multivariate analysis identified age, CAR, LMR, and platelet count as prognostic independent risk factors. Kaplan-Meier analysis indicated that CAR of at least 1.0 (hazard ratio, 7.19; 95% confidence interval, 4.69-11.03), and LMR less than 1.9 (hazard ratio, 2.40; 95% confidence interval, 1.69-3.41) were independently associated with mortality of HBV-DC. The time-dependent receiver operating characteristic indicated that CAR showed the best performance in predicting mortality of HBV-DC compared with LMR, MELD score, and Child-Pugh score. The results were also confirmed by time-dependent decision curves. CAR and LMR were associated with the prognosis of HBV-DC. CAR was superior to LMR, MELD score, and Child-Pugh score in HBV-DC mortality prediction.
Ionic-to-electronic conductivity of glasses in the P2O5-V2O5-ZnO-Li2O system
NASA Astrophysics Data System (ADS)
Langar, A.; Sdiri, N.; Elhouichet, H.; Ferid, M.
2016-12-01
Glasses having a composition 15V2O5-5ZnO-(80- x P2O5- xLi2O ( x = 5 , 10, 15 mol%) were prepared by the conventional melt quenching. Conduction and relaxation mechanisms in these glasses were studied using impedance spectroscopy in a frequency range from 10 Hz to 10 MHz and in a temperature range from 513 K to 566 K. The structure of the amorphous synthetic product was corroborated by X-ray diffraction (disappearance of nacrite peaks). The DC conductivity follows the Arrhenius law and the activation energy determined by regression analysis varies with the content of Li2O. Frequency-dependent AC conductivity was analyzed by Jonscher's universal power law, which is varying as ωn, and the temperature-dependent power parameter supported by the Correlated Barrier Hopping (CBH) model. For x = 15 mol%, the values of n ≤ 0.5 confirm the dominance of ionic conductivity. The analysis of the modulus formalism with a distribution of relaxation times was carried out using the Kohlrausch-Williams-Watts (KWW) stretched exponential function. The stretching exponent, β, is dependent on temperature. The analysis of the temperature variation of the M" peak indicates that the relaxation process is thermally activated. Modulus study reveals the temperature-dependent non-Debye-type relaxation phenomenon.
NASA Astrophysics Data System (ADS)
Predoi-Cross, Adriana; Liu, W.; Murphy, Reba; Povey, Chad; Gamache, R.; Laraia, A.; McKellar, A. R. W.; Hurtmans, Daniel; Devi, V. M.
2015-10-01
The group of authors would like to make the following clarification: the retrievals of self-broadened temperature dependence coefficients were performed by the authors both using the multispectrum fit program from Ref. [14] and using the multispectrum fit program of D. Chris Benner [Benner DC, Rinsland CP, Devi VM, Smith MAH, Atkins D. A multispectrum nonlinear least-squares fitting technique. J. Quant. Spectrosc. Radiat. Transf. 1995;53:705-21.). To retrieve the room temperature self-broadening parameters, the authors have used the values in Ref. [4]. For reasons of consistency with the results published for air-broadening and air-shift temperature dependence coefficients in A. Predoi-Cross, A.R.W. McKellar, D. Chris Benner, V. Malathy Devi, R.R. Gamache, C.E. Miller, R.A. Toth, L.R. Brown, Temperature dependences for air-broadened Lorentz half width and pressure-shift coefficients in the 30013←00001 and 30012←00001 bands of CO2near 1600 μm, Canadian Journal of Physics, 87 (5) (2009) 517-535, Tables 2 and 3, and Figures 2 and 4 contain only the values retrieved using the multispectrum fit program of D. Chris Benner. We would like to thank D. Chris Benner for allowing us to use his fitting software.
Static and Dynamic Effects of Lateral Carrier Diffusion in Semiconductor Lasers
NASA Technical Reports Server (NTRS)
Li, Jian-Zhong; Cheung, Samson H.; Ning, C. Z.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Electron and hole diffusions in the plane of semiconductor quantum wells play an important part in the static and dynamic operations of semiconductor lasers. It is well known that the value of diffusion coefficients affects the threshold pumping current of a semiconductor laser. At the same time, the strength of carrier diffusion process is expected to affect the modulation bandwidth of an AC-modulated laser. It is important not only to investigate the combined DC and AC effects due to carrier diffusion, but also to separate the AC effects from that of the combined effects in order to provide design insights for high speed modulation. In this presentation, we apply a hydrodynamic model developed by the present authors recently from the semiconductor Bloch equations. The model allows microscopic calculation of the lateral carrier diffusion coefficient, which is a nonlinear function of the carrier density and plasma temperature. We first studied combined AC and DC effects of lateral carrier diffusion by studying the bandwidth dependence on diffusion coefficient at a given DC current under small signal modulation. The results show an increase of modulation bandwidth with decrease in the diffusion coefficient. We simultaneously studied the effects of nonlinearity in the diffusion coefficient. To clearly identify how much of the bandwidth increase is a result of decrease in the threshold pumping current for smaller diffusion coefficient, thus an effective increase of DC pumping, we study the bandwidth dependence on diffusion coefficient at a given relative pumping. A detailed comparison of the two cases will be presented.
Liu, Yang; Wang, Li; Cai, Guohua; Jiang, Shanshan; Sun, Liping; Li, Dequan
2013-07-01
Pseudomonas syringae pv. Tomato DC3000 (Pst DC3000) was the first pathogen to be demonstrated to infect Arabidopsis and to cause disease symptoms in the laboratory setting. However, the defense response to Pst DC3000 was unclear in tobacco. In this report, the expression profiles of twelve defense response-related genes were analyzed after treatment with salicylic acid (SA), jasmonic acid (JA), and pathogen Pst DC3000 by qRT-PCR. According to our results, it could be presented that the genes primarily induced by SA were also induced to higher levels after Pst DC3000 infection. SA accumulation could be induced to a higher level than that of JA after Pst DC3000 infection. In addition, SA could result in hypersensitive response (HR), which did not completely depend on accumulation of reactive oxygen species. These results indicated that tobacco mainly depended on SA signaling pathway rather than on JA signaling pathway in response to Pst DC3000. Further study demonstrated that JA could significantly inhibit the accumulation of SA and the generation of the HR induced by Pst DC3000. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mancusi, D.; Polichetti, M.; Cimberle, M. R.; Pace, S.
2015-09-01
The temperature-dependent fundamental ac susceptibility of a granular superconductor in the absence of dc fields has been analyzed by developing a phenomenological model for effective magnetic fields, taking into account the influence of the magnetic interaction between the intergranular and the intragranular magnetizations due to demagnetizing effects. For this purpose a policrystal Fe-based superconductor FeSe0.5Te0.5 sample has been studied. By the frequency dependence of the peaks of the temperature-dependent imaginary part of the fundamental complex susceptibility, the dependence on temperature of the characteristic times both for intergranular and intragranular relaxations of magnetic flux are derived, and the corresponding relaxation processes due to combinations of the flux creep, the flux flow and the thermally activated flux flow regimes are identified on the basis of the effective magnetic fields both at the sample surface and at the grains’ surfaces. Such characteristic times, through the Havriliak-Negami function, determine the temperature and the frequency dependences of the complex susceptibility. The comparison of the numerically obtained curves with the experimental ones confirms the relevance, for identifying the intergranular and intragranular contributions to the ac magnetic response and the corresponding flux dynamical regimes, of the interaction between the intergranular and intragranular magnetizations due to demagnetizing effects.
Ion transport mechanism in glasses: non-Arrhenius conductivity and nonuniversal features.
Murugavel, S; Vaid, C; Bhadram, V S; Narayana, C
2010-10-28
In this article, we report non-Arrhenius behavior in the temperature-dependent dc conductivity of alkali ion conducting silicate glasses well below their glass transition temperature. In contrast to the several fast ion-conducting and binary potassium silicate glasses, these glasses show a positive deviation in the Arrhenius plot. The observed non-Arrhenius behavior is completely reproducible in nature even after prolonged annealing close to the glass transition temperature of the respective glass sample. These results are the manifestation of local structural changes of the silicate network with temperature and give rise to different local environments into which the alkali ions hop, revealed by in situ high-temperature Raman spectroscopy. Furthermore, the present study provides new insights into the strong link between the dynamics of the alkali ions and different sites associated with it in the glasses.
Felix, Kumar
2012-01-01
After stimulation of antigen-specific T cells, dendritic cell (DCs) are susceptible to killing by these activated T cells that involve perforin and Fas-dependent mechanisms. Fas-dependent DC apoptosis has been shown to limit DC accumulation and prevent the development of autoimmunity. However, a role for perforin in the maintenance of DC homeostasis for immune regulation remains to be determined. Here we show that perforin deficiency in mice, together with the deletion of Fas in DCs (perforin−/−DC-Fas−/−), led to DC accumulation, uncontrolled T-cell activation, and IFN-γ production by CD8+ T cells, resulting in the development of lethal hemophagocytic lymphohistiocytosis. Consistently, adoptive transfer of Fas−/− DCs induced over-activation and IFN-γ production in perforin−/− CD8+ T cells. Neutralization of IFN-γ prevented the spreading of inflammatory responses to different cell types and protected the survival of perforin−/−DC-Fas−/− mice. Our data suggest that perforin and Fas synergize in the maintenance of DC homeostasis to limit T cell activation, and prevent the initiation of an inflammatory cascade. PMID:22042696
Rupp, Ghislain M.; Fleig, Jürgen
2018-01-01
La0.6Sr0.4FeO3–δ (LSF) thin films of different thickness were prepared by pulsed laser deposition on yttria stabilized zirconia (YSZ) and characterized by using three electrode impedance spectroscopy. Electrochemical film capacitance was analyzed in relation to oxygen partial pressure (0.25 mbar to 1 bar), DC polarization (0 m to –600 m) and temperature (500 to 650 °C). For most measurement parameters, the chemical bulk capacitance dominates the overall capacitive properties and the corresponding defect chemical state depends solely on the oxygen chemical potential inside the film, independent of atmospheric oxygen pressure and DC polarization. Thus, defect chemical properties (defect concentrations and defect formation enthalpies) could be deduced from such measurements. Comparison with LSF defect chemical bulk data from the literature showed good agreement for vacancy formation energies but suggested larger electronic defect concentrations in the films. From thickness-dependent measurements at lower oxygen chemical potentials, an additional capacitive contribution could be identified and attributed to the LSF|YSZ interface. Deviations from simple chemical capacitance models at high pressures are most probably due to defect interactions. PMID:29671421
Schmid, Alexander; Rupp, Ghislain M; Fleig, Jürgen
2018-05-03
La0.6Sr0.4FeO3-δ (LSF) thin films of different thickness were prepared by pulsed laser deposition on yttria stabilized zirconia (YSZ) and characterized by using three electrode impedance spectroscopy. Electrochemical film capacitance was analyzed in relation to oxygen partial pressure (0.25 mbar to 1 bar), DC polarization (0 m to -600 m) and temperature (500 to 650 °C). For most measurement parameters, the chemical bulk capacitance dominates the overall capacitive properties and the corresponding defect chemical state depends solely on the oxygen chemical potential inside the film, independent of atmospheric oxygen pressure and DC polarization. Thus, defect chemical properties (defect concentrations and defect formation enthalpies) could be deduced from such measurements. Comparison with LSF defect chemical bulk data from the literature showed good agreement for vacancy formation energies but suggested larger electronic defect concentrations in the films. From thickness-dependent measurements at lower oxygen chemical potentials, an additional capacitive contribution could be identified and attributed to the LSF|YSZ interface. Deviations from simple chemical capacitance models at high pressures are most probably due to defect interactions.
Comprehensive Evaluation of Power Supplies at Cryogenic Temperatures for Deep Space Applications
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Gerber, Scott; Hammoud, Ahmad; Elbuluk, Malik E.; Lyons, Valerie (Technical Monitor)
2002-01-01
The operation of power electronic systems at cryogenic temperatures is anticipated in many future space missions such as planetary exploration and deep space probes. In addition to surviving the space hostile environments, electronics capable of low temperature operation would contribute to improving circuit performance, increasing system efficiency, and reducing development and launch costs. DC/DC converters are widely used in space power systems in the areas of power management, conditioning, and control. As part of the on-going Low Temperature Electronics Program at NASA, several commercial-off-the-shelf (COTS) DC/DC converters, with specifications that might fit the requirements of specific future space missions have been selected for investigation at cryogenic temperatures. The converters have been characterized in terms of their performance as a function of temperature in the range of 20 C to - 180 C. These converters ranged in electrical power from 8 W to 13 W, input voltage from 9 V to 72 V and an output voltage of 3.3 V. The experimental set-up and procedures along with the results obtained on the converters' steady state and dynamic characteristics are presented and discussed.
NASA Astrophysics Data System (ADS)
Bossé, G.; Pan, LiDong; Li, Yize S.; Greene, L. H.; Eckstein, J.; Armitage, N. P.
2016-02-01
We present THz range optical conductivity data of a thin film of the near quantum critical heavy-fermion compound CeFe2Ge2 . Our complex conductivity measurements find a deviation from conventional Drude-like transport in a temperature range previously reported to exhibit unconventional behavior. We calculate the frequency-dependent effective mass and scattering rate using an extended Drude model analysis. We find the inelastic scattering rate can be described by a temperature-dependent power law ωn (T ), where n (T ) approaches ˜1.0 ±0.2 at 1.5 K. This is compared to the ρ ˜T1.5 behavior claimed in dc resistivity data and the ρ ˜T2 expected from Fermi-liquid theory. In addition to a low-temperature mass renormalization, we find an anomalous mass renormalization that persists to high temperature. We attribute this to a Hund's coupling in the Fe states in a manner similar to that recently proposed in the ferropnictides. CeFe2Ge2 appears to be a very interesting system where one may study the interplay between the usual 4 f lattice Kondo effect and this Hund's enhanced Kondo effect in the 3 d states.
Zinc chloride modified electronic transport and relaxation studies in barium-tellurite glasses
NASA Astrophysics Data System (ADS)
Dhankhar, Sunil; Kundu, R. S.; Rani, Sunita; Sharma, Preeti; Murugavel, S.; Punia, Rajesh; Kishore, N.
2017-09-01
The ac conductivity of halide based tellurium glasses having composition 70 TeO2-(30-x) BaO-x ZnCl2; x = 5, 10, 15, 20 and 25 has been investigated in the frequency range 10-1 Hz to 105Hz and in the temperature range 453 K to 553 K. The frequency and temperature dependent ac conductivity show mixed behaviour with increase in halide content and found to obey Jonscher's universal power law. The values of dc conductivity, crossover frequency and frequency exponent have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. For determining the conduction mechanism in studied glass system, frequency exponent has been analyzed by various theoretical models. In presently studied glasses, the ac conduction takes place via overlapping large polaron tunneling (OLPT). The values of activation energy for dc conduction (W) and the one associated with relaxation process ( E R) are found to increase with increase in x up to glass sample with x = 15 and thereafter it decrease with increase in zinc chloride content. DC conduction takes place via variable range hopping (VRH) as proposed by Mott with some modification suggested by Punia et al. The value of real part of modulus ( M') is observed to decrease with increase in temperature. The value of stretched exponent (β) obtained from fitting of M'' reveals the presence of non-Debye type of relaxation in presently studied glass samples. Scaling spectra of ac conductivity and values of electric modulus ( M' and M'') collapse into a single master curve for all the compositions and temperatures. The values of relaxation energy ( E R) for all the studied glass compositions are almost equal to W, suggesting that polarons have to overcome same barrier while relaxing and conducting. The conduction and relaxation processes in the studied glass samples are composition and temperature independent. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Crapo, Alan D.; Lloyd, Jerry D.
1991-03-01
Two motors have been designed and built for use with high-temperature superconductor (HTSC) materials. They are a homopolar dc motor that uses HTSC field windings and a brushless dc motor that uses bulk HTSC materials to trap flux in steel rotor poles. The HTSC field windings of the homopolar dc motor are designed to operate at 1000 A/sq cm in a 0.010-T field. In order to maximize torque in the homopolar dc motor, an iron magnetic circuit with small air gaps gives maximum flux for minimum Ampere turns in the field. A copper field winding version of the homopolar dc motor has been tested while waiting for 575 A turn HTSC coils. The trapped flux brushless dc motor has been built and is ready to test melt textured bulk HTSC rings that are currently being prepared. The stator of the trapped flux motor will impress a magnetic field in the steel rotor poles with warm HTSC bulk rings. The rings are then cooled to 77 K to trap the flux in the rotor. The motor can then operate as a brushless dc motor.
Structural, dielectric and magnetic studies of magnetoelectric trirutile Fe{sub 2}TeO{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaushik, S. D., E-mail: sdkaushik@csr.res.in; Sahu, B.; Mohapatra, S. R.
2016-05-23
We have investigated structural, magnetic and dielectric properties of Fe{sub 2}TeO{sub 6} which is a magnetoelectric antiferromagnet with the trirutile lattice. Rietveld analysis of room temperature X-ray diffraction data shows the phase purity of the sample with tetragonal trirutile structure (space group P4{sub 2}/mnm). The DC susceptibility measurement performed on polycrystalline powders exhibits antiferromagnetic ordering below transition temperature ~ 210K. The employment of Curie-Weiss law to inverse magnetic susceptibility only in the temperature range 350-260 K indicates the magnetic ordering starts developing before the transition temperature. The temperature dependent dielectric measurements show an intrinsic behavior of dielectric constant below 150more » K while a continuous increase in dielectric constant with temperature above 150 K may be attributed to a small increase in electrical conduction, known commonly in the literatures.« less
Guo, Xiaobo; Zhang, Ye; Hu, Wenhao; Tan, Haizhu; Wang, Xueqin
2014-01-01
Nonlinear dependence is general in regulation mechanism of gene regulatory networks (GRNs). It is vital to properly measure or test nonlinear dependence from real data for reconstructing GRNs and understanding the complex regulatory mechanisms within the cellular system. A recently developed measurement called the distance correlation (DC) has been shown powerful and computationally effective in nonlinear dependence for many situations. In this work, we incorporate the DC into inferring GRNs from the gene expression data without any underling distribution assumptions. We propose three DC-based GRNs inference algorithms: CLR-DC, MRNET-DC and REL-DC, and then compare them with the mutual information (MI)-based algorithms by analyzing two simulated data: benchmark GRNs from the DREAM challenge and GRNs generated by SynTReN network generator, and an experimentally determined SOS DNA repair network in Escherichia coli. According to both the receiver operator characteristic (ROC) curve and the precision-recall (PR) curve, our proposed algorithms significantly outperform the MI-based algorithms in GRNs inference.
Inferring Nonlinear Gene Regulatory Networks from Gene Expression Data Based on Distance Correlation
Guo, Xiaobo; Zhang, Ye; Hu, Wenhao; Tan, Haizhu; Wang, Xueqin
2014-01-01
Nonlinear dependence is general in regulation mechanism of gene regulatory networks (GRNs). It is vital to properly measure or test nonlinear dependence from real data for reconstructing GRNs and understanding the complex regulatory mechanisms within the cellular system. A recently developed measurement called the distance correlation (DC) has been shown powerful and computationally effective in nonlinear dependence for many situations. In this work, we incorporate the DC into inferring GRNs from the gene expression data without any underling distribution assumptions. We propose three DC-based GRNs inference algorithms: CLR-DC, MRNET-DC and REL-DC, and then compare them with the mutual information (MI)-based algorithms by analyzing two simulated data: benchmark GRNs from the DREAM challenge and GRNs generated by SynTReN network generator, and an experimentally determined SOS DNA repair network in Escherichia coli. According to both the receiver operator characteristic (ROC) curve and the precision-recall (PR) curve, our proposed algorithms significantly outperform the MI-based algorithms in GRNs inference. PMID:24551058
The effect of DC voltage polarity on ionic wind in ambient air for cooling purposes
NASA Astrophysics Data System (ADS)
Chen, She; van den Berg, R. G. W.; Nijdam, S.
2018-05-01
Gas flows can be induced by gas discharges like DC coronas because neutral molecules gain momentum by ion-neutral collisions. This can be used for active cooling and has advantages over mechanical fans. We investigate ionic wind by a DC corona discharge under different conditions with an emphasis on the effects of voltage polarity and the transition between different discharge regimes. We also consider the gas temperature of a DC corona which is important when it is to be used for cooling purposes. Although DC coronas are usually characterized as low temperature plasmas, gas heating can have a significant impact on flow generation, especially at higher operating voltages. In this paper, a 5–20 kV DC voltage of positive and negative polarity is applied to a needle–cylinder electrode. The ionic wind velocity at the exit of the cylinder electrode is measured by hot wire anemometry and the emission spectrum is used to study the gas temperature. It is found that the flow velocity induced by positive coronas is higher than that by negative coronas for voltages above 10–15 kV, which is also demonstrated by a phenomenological EHD force model. Furthermore, a heated column is observed by Schlieren technique for both voltage polarities. An improved self-consistent ionic wind model considering heat transfer is built to study the temperature distribution. The simulation results indicate that the gas flow velocity is lower on the symmetry axis when the temperature gradient is taken into account, something which is usually ignored in ionic wind simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhavale Ashavai, Pashupati Dhakal, Anatolii A Polyanskii, Gianluigi Ciovati
We present the results of from DC magnetization and penetration depth measurements of cylindrical bulk large-grain (LG) and fine-grain (FG) niobium samples used for the fabrication of superconducting radio frequency (SRF) cavities. The surface treatment consisted of electropolishing and low temperature baking as they are typically applied to SRF cavities. The magnetization data were fitted using a modified critical state model. The critical current density Jc and pinning force Fp are calculated from the magnetization data and their temperature dependence and field dependence are presented. The LG samples have lower critical current density and pinning force density compared to FGmore » samples which implies a lower flux trapping efficiency. This effect may explain the lower values of residual resistance often observed in LG cavities than FG cavities.« less
Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments
NASA Astrophysics Data System (ADS)
Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.
2018-04-01
We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three-dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb2 Pt2 Pb , a metal where itinerant electrons coexist with localized moments of Yb ions which can be described in terms of effective S =1 /2 spins with a dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the two interacting subsystems. We characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasilinear temperature dependence.
NASA Astrophysics Data System (ADS)
Dhar, S.; Brandt, O.; Trampert, A.; Friedland, K. J.; Sun, Y. J.; Ploog, K. H.
2003-04-01
We present a detailed study of the magnetic properties of (Ga,Mn)N layers grown directly on 4H-SiC substrates by reactive molecular-beam epitaxy. X-ray diffraction and transmission electron microscopy demonstrates that homogeneous (Ga,Mn)N alloys of high crystal quality can be synthesized by this growth method up to a Mn-content of 10 12 %. Using a variety of magnetization experiments (temperature-dependent dc magnetization, isothermal remanent magnetization, frequency and field dependent ac susceptibility), we demonstrate that insulating (Ga,Mn)N alloys represent a Heisenberg spin-glass with a spin-freezing temperature around 4.5 K. We discuss the origins of this spin-glass characteristics in terms of the deep-acceptor nature of Mn in GaN and the resulting insulating character of this compound.
Magnetic characterization of mixed phases in FeVO4sbnd Co3V2O8 system
NASA Astrophysics Data System (ADS)
Guskos, N.; Zolnierkiewicz, G.; Pilarska, M.; Typek, J.; Berczynski, P.; Blonska-Tabero, A.; Aidinis, K.
2018-04-01
Dynamic and static magnetic properties of four nFeVO4/(1-n)Co3V2O8 composites obtained in reactions between nFeVO4 and (1-n)Co3V2O8 (n = 0.82, 0.80, 0.78 and 0.76) have been investigated by dc magnetometry and electron paramagnetic resonance (EPR). All samples were diphase containing both the howardevansite-type and the lyonsite-type phases in different proportions. Dc magnetic susceptibility study showed the Curie-Weiss paramagnetic behavior with strong antiferromagnetic (AFM) interaction in the high-temperature range and the phase transition to the AFM state at low temperatures. The calculated effective magnetic moment could be justified by the presence of high spin Fe3+ and Co2+ ions. The appearance of hysteresis loop in isothermal magnetisation at low temperature indicates the existence of the ferromagnetic component in all four samples, but only 0.5% of all magnetic ions are involved in this phase. EPR spectra recorded in high-temperature range (T > 90 K) consisted of a single broad line centred at ∼3.2 kG. The fitting of observed spectra with two Gaussian lineshape functions allowed to study the temperature dependence of EPR parameters (resonance field, linewidth, integrated intensity). This analysis suggests that EPR signal arises from two spin subsystems: paramagnetic Fe3+ ions subjected to AFM interaction and AFM spin pairs/clusters of iron/cobalt visible only at high temperatures. At low temperatures two transitions to AFM states, due to the mixture of two structural phases, are registered in magnetic susceptibility measurements.
Electric field induced metal-insulator transition in VO2 thin film based on FTO/VO2/FTO structure
NASA Astrophysics Data System (ADS)
Hao, Rulong; Li, Yi; Liu, Fei; Sun, Yao; Tang, Jiayin; Chen, Peizu; Jiang, Wei; Wu, Zhengyi; Xu, Tingting; Fang, Baoying
2016-03-01
A VO2 thin film has been prepared using a DC magnetron sputtering method and annealing on an F-doped SnO2 (FTO) conductive glass substrate. The FTO/VO2/FTO structure was fabricated using photolithography and a chemical etching process. The temperature dependence of the I-V hysteresis loop for the FTO/VO2/FTO structure has been analyzed. The threshold voltage decreases with increasing temperature, with a value of 9.2 V at 20 °C. The maximum transmission modulation value of the FTO/VO2/FTO structure is 31.4% under various temperatures and voltages. Optical modulation can be realized in the structure by applying an electric field.
NASA Astrophysics Data System (ADS)
Satiawati, L.; Majidi, M. A.
2017-07-01
A theory of high-energy optical conductivity of La0.7Ca0.3MnO3 has been proposed previously. The proposed theory works to explain the temperature-dependence of the optical conductivity for the photon energy region above ˜0.5 eV for up to ˜22 eV, but fails to capture the correct physics close to the dc limit in which metal-insulator transition occurs. The missing physics at the low energy has been acknowledged as mainly due to not incorporating phonon degree of freedom and electron-phonon interactions. In this study, we aim to complete the above theory by proposing a more complete Hamiltonian incorporating additional terms such as crystal field, two modes of Jahn-Teller vibrations, and coupling between electrons and the two Jahn-Teller vibrational modes. We solve the model by means of dynamical mean-field theory. At this stage, we aim to derive the analytical formulae involved in the calculation, and formulate the algorithmic implementation for the self-consistent calculation process. Our final goal is to compute the density of states and the optical conductivity for the complete photon energy range from 0 to 22 eV at various temperatures, and compare them with the experimental data. We expect that the improved model preserves the correct temperature-dependent physics at high photon energies, as already captured by the previous model, while it would also reveal ferromagnetic metal - paramagnetic insulator transition at the dc limit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antic, Bratislav; Perovic, Marija; Kremenovic, Aleksandar
2015-09-30
The evolution of the magnetic state, crystal structure and microstructure parameters of nanocrystalline zinc–ferrite, tuned by thermal annealing of ~4 nm nanoparticles, was systematically studied by complementary characterization methods. Structural analysis of neutron and synchrotron x-ray radiation data revealed a mixed cation distribution in the nanoparticle samples, with the degree of inversion systematically decreasing from 0.25 in an as-prepared nanocrystalline sample to a non-inverted spinel structure with a normal cation distribution in the bulk counterpart. The results of DC magnetization and Mossbauer spectroscopy experiments indicated a superparamagnetic relaxation in ~4 nm nanoparticles, albeit with different freezing temperatures T f ofmore » 27.5 K and 46 K, respectively. The quadrupole splitting parameter decreases with the annealing temperature due to cation redistribution between the tetrahedral and octahedral sites of the spinel structure and the associated defects. DC magnetization measurements indicated the existence of significant interparticle interactions among nanoparticles (‘superspins’). Additional confirmation for the presence of interparticle interactions was found from the fit of the T f(H) dependence to the AT line, from which a value of the anisotropy constant of K eff = 5.6 × 10 5 erg cm -3 was deduced. Further evidence for strong interparticle interactions was found from AC susceptibility measurements, where the frequency dependence of the freezing temperature T f(ƒ) was satisfactory described by both Vogel–Fulcher and dynamic scaling theory, both applicable for interacting systems. The parameters obtained from these fits suggest collective freezing of magnetic moments at T f .« less
NASA Astrophysics Data System (ADS)
Shen, Shida; Williamson, Morgan; Cao, Gang; Zhou, Jianshi; Goodenough, John; Tsoi, Maxim
2017-12-01
A non-destructive reversible resistive switching is demonstrated in single crystals of Cr-doped Mott insulator Ca2RuO4. An applied electrical bias was shown to reduce the DC resistance of the crystal by as much as 75%. The original resistance of the sample could be restored by applying an electrical bias of opposite polarity. We have studied this resistive switching as a function of the bias strength, applied magnetic field, and temperature. A combination of 2-, 3-, and 4-probe measurements provide a means to distinguish between bulk and interfacial contributions to the switching and suggests that the switching is mostly an interfacial effect. The switching was tentatively attributed to electric-field driven lattice distortions which accompany the impurity-induced Mott transition. This field effect was confirmed by temperature-dependent resistivity measurements which show that the activation energy of this material can be tuned by an applied DC electrical bias. The observed resistance switching can potentially be used for building non-volatile memory devices like resistive random access memory.
Rahmouni, H; Smari, M; Cherif, B; Dhahri, E; Khirouni, K
2015-06-14
This study presents the electrical properties, complex impedance analysis and dielectrical behavior of La0.5Ca0.5-xAgxMnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2). Transport measurements indicate that all the samples have a semiconductor-like behavior. The metal-semiconductor transition is not observed across the whole temperature range explored [80 K-700 K]. At a specific temperature, a saturation region was marked in the σ (T) curves. We obtained a maximum σdc value at ambient temperature with the introduction of 20% Ag content. Two hopping models were applied to study the conduction mechanism. We found that activation energy (Ea) related to ac-conductivity is lower than the Ea implicated in dc-conductivity. Complex impedance analysis confirms the contribution of grain boundary to conductivity and permits the attribution of grain boundary capacitance evolution to the temperature dependence of the barrier layer width. From the temperature dependence of the average normalized change (ANC), we deduce the temperature at which the available density of trapped charge states vanishes. Such a temperature is close to the temperature at which the saturation region appears in σ(T) curves. Moreover, complex impedance analysis (CIA) indicates the presence of electrical relaxation in materials. It is noteworthy that relaxation species such as defects may be responsible for electrical conduction. The dielectric behavior of La0.5Ca0.5-xAgxMnO3 manganites has a Debye-like relaxation with a sharp decrease in the real part of permittivity at a frequency where the imaginary part of permittivity (ε'') and tg δ plots versus frequency demonstrate a relaxation peak. The Debye-like relaxation is explained by Maxwell-Wagner (MW) polarization. Experimental results are found to be in good agreement with the Smit and Wijn theory.
Guzman, Efrain; Taylor, Geraldine; Hope, Jayne; Herbert, Rebecca; Cubillos-Zapata, Carolina; Charleston, Bryan
2016-10-01
Dendritic cells (DC) are central to the initiation of immune responses, and various approaches have been used to target vaccines to DC in order to improve immunogenicity. Cannulation of lymphatic vessels allows for the collection of DC that migrate from the skin. These migrating DC are involved in antigen uptake and presentation following vaccination. Human replication-deficient adenovirus (AdV) 5 is a promising vaccine vector for delivery of recombinant antigens. Although the mechanism of AdV attachment and penetration has been extensively studied in permissive cell lines, few studies have addressed the interaction of AdV with DC. In this study, we investigated the interaction of bovine skin-migrating DC and replication-deficient AdV-based vaccine vectors. We found that, despite lack of expression of Coxsackie B-Adenovirus Receptor and other known adenovirus receptors, AdV readily enters skin-draining DC via an actin-dependent endocytosis. Virus exit from endosomes was pH independent, and neutralizing antibodies did not prevent virus entry but did prevent virus translocation to the nucleus. We also show that combining adenovirus with adjuvant increases the absolute number of intracellular virus particles per DC but not the number of DC containing intracellular virus. This results in increased trans-gene expression and antigen presentation. We propose that, in the absence of Coxsackie B-Adenovirus Receptor and other known receptors, AdV5-based vectors enter skin-migrating DC using actin-dependent endocytosis which occurs in skin-migrating DC, and its relevance to vaccination strategies and vaccine vector targeting is discussed.
Quantitative measure of the variation in fault rheology due to fluid-rock interactions
Blanpied, M.L.; Marone, C.J.; Lockner, D.A.; Byerlee, J.D.; King, D.P.
1998-01-01
We analyze friction data from two published suites of laboratory tests on granite in order to explore and quantify the effects of temperature (T) and pore water pressure (Pp) on the sliding behavior of faults. Rate-stepping sliding tests were performed on laboratory faults in granite containing "gouge" (granite powder), both dry at 23?? to 845??C [Lockner et al., 1986], and wet (Pp = 100 MPa) at 23?? to 600??C [Blanpied et al., 1991, 1995]. Imposed slip velocities (V) ranged from 0.01 to 5.5 ??m/s, and effective normal stresses were near 400 MPa. For dried granite at all temperatures, and wet granite below -300??C, the coefficient of friction (??) shows low sensitivity to V, T, and Pp. For wet granite above -350??, ?? drops rapidly with increasing T and shows a strong, positive rate dependence and protracted strength transients following steps in V, presumably reflecting the activity of a water-aided deformation process. By inverting strength data from velocity stepping tests we determined values for parameters in three formulations of a rate- and state-dependent constitutive law. One or two state variables were used to represent slip history effects. Each velocity step yielded an independent set of values for the nominal friction level, five constitutive parameters (transient parameters a, b1, and b2 and characteristic displacements Dcl and Dc2), and the velocity dependence of steady state friction ?????ss/??? In V = a-b1-b2. Below 250??, data from dry and most wet tests are adequately modeled by using the "slip law" [Ruina, 1983] and one state variable (a = 0.003 to 0.018, b = 0.001 to +0.018, Dc ??? 1 to 20 ??m). Dried tests above 250?? can also be fitted with one state variable. In contrast, wet tests above 350?? require higher direct rate dependence (a = 0.03 to 0.12), plus a second state variable with large, negative amplitude (b2 = -0.03 to -0.14) and large characteristic displacement (Dc2 = 300 to >4000 ??m). Thus the parameters a, b1, and b2 for wet granite show a pronounced change in their temperature dependence in the range 270?? to 350??C, which may reflect a change in underlying deformation mechanism. We quantify the trends in parameter values from 25?? to 600??C by piecewise linear regressions, which provide a straightforward means to incorporate the full constitutive response of granite into numerical models of fault slip. The modeling results suggest that the succeptibility for unstable (stick-slip) sliding is maximized between 90?? and 360??C, in agreement with laboratory observations and consistent with the depth range of earthquakes on mature faults in the continental crust.
Cougoule, Céline; Lastrucci, Claire; Guiet, Romain; Mascarau, Rémi; Meunier, Etienne; Lugo-Villarino, Geanncarlo; Neyrolles, Olivier; Poincloux, Renaud; Maridonneau-Parini, Isabelle
2018-01-01
Dendritic cells (DC) are professional Antigen-Presenting Cells scattered throughout antigen-exposed tissues and draining lymph nodes, and survey the body for pathogens. Their ability to migrate through tissues, a 3D environment, is essential for an effective immune response. Upon infection, recognition of Pathogen-Associated Molecular Patterns (PAMP) by Toll-like receptors (TLR) triggers DC maturation. Mature DC (mDC) essentially use the protease-independent, ROCK-dependent amoeboid mode in vivo , or in collagen matrices in vitro . However, the mechanisms of 3D migration used by human immature DC (iDC) are still poorly characterized. Here, we reveal that human monocyte-derived DC are able to use two migration modes in 3D. In porous matrices of fibrillar collagen I, iDC adopted the amoeboid migration mode. In dense matrices of gelled collagen I or Matrigel, iDC used the protease-dependent, ROCK-independent mesenchymal migration mode. Upon TLR4 activation by LPS, mDC-LPS lose the capacity to form podosomes and degrade the matrix along with impaired mesenchymal migration. TLR2 activation by Pam 3 CSK 4 resulted in DC maturation, podosome maintenance, and efficient mesenchymal migration. Under all these conditions, when DC used the mesenchymal mode in dense matrices, they formed 3D podosomes at the tip of cell protrusions. Using PGE 2 , known to disrupt podosomes in DC, we observed that the cells remained in an immature status and the mesenchymal migration mode was abolished. We also observed that, while CCL5 (attractant of iDC) enhanced both amoeboid and mesenchymal migration of iDC, CCL19 and CCL21 (attractants of mDC) only enhanced mDC-LPS amoeboid migration without triggering mesenchymal migration. Finally, we examined the migration of iDC in tumor cell spheroids, a tissue-like 3D environment. We observed that iDC infiltrated spheroids of tumor cells using both migration modes. Altogether, these results demonstrate that human DC adopt the mesenchymal mode to migrate in 3D dense environments, which relies on their capacity to form podosomes independent of their maturation status, paving the way of further investigations on in vivo DC migration in dense tissues and its regulation during infections.
NASA Astrophysics Data System (ADS)
Prentice, Boone M.; McLuckey, Scott A.
2012-04-01
Applying dipolar DC (DDC) to the end-cap electrodes of a 3-D ion trap operated with a bath gas at roughly 1 mTorr gives rise to `rf-heating' and can result in collision-induced dissociation (CID). This approach to ion trap CID differs from the conventional single-frequency resonance excitation approach in that it does not rely on tuning a supplementary frequency to coincide with the fundamental secular frequeny of the precursor ion of interest. Simulations using the program ITSIM 5.0 indicate that application of DDC physically displaces ions solely in the axial (inter end-cap) dimension whereupon ion acceleration occurs via power absorption from the drive rf. Experimental data shows that the degree of rf-heating in a stretched 3-D ion trap is not dependent solely on the ratio of the dipolar DC voltage/radio frequency (rf) amplitude, as a model based on a pure quadrupole field suggests. Rather, ion temperatures are shown to increase as the absolute values of the dipolar DC and rf amplitude both decrease. Simulations indicate that the presence of higher order multi-pole fields underlies this unexpected behavior. These findings have important implications for the use of DDC as a broad-band activation approach in multi-pole traps.
Characteristics of a DC-Driven Atmospheric Pressure Air Microplasma Jet
NASA Astrophysics Data System (ADS)
Choi, Jaegu; Matsuo, Keita; Yoshida, Hidekazu; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori
2008-08-01
A dc-driven atmospheric pressure air plasma jet has been investigated for some applications, such as local dental treatment, the inner surface treatment of capillaries, stimuli for microorganisms, and the local cleaning of semiconductor devices. The main experimental results are as follows. The discharge in the pulsed mode occurs repetitively despite of the dc input, and the pulsed mode transfers to the continuous mode as the current exceeds a threshold. The measured emission spectrum from the arc column of the air discharge reveals that most energy of activated electrons is used for the excitation of N2 (second positive system bands) and part of the energy for the dissociation of O2. The length of the plasma torch depends on the tube length, inner gap distance, and flow rate. The maximum torch length of about 40 mm is obtained under certain conditions. The spatial distributions of plasma gas temperature are measured and confirmed by the visualization of the gas flow using Schlieren images. Furthermore, surface treatment and decolorization using the generated plasma torch are carried out, focusing on industrial applications.
Conformation and dynamics of polymer chains on dirty surfaces: A discrete-to-continuum approach
NASA Astrophysics Data System (ADS)
Foo, Grace M.; Pandey, R. B.
1998-07-01
A discrete-to-continuum (DC) simulation approach is introduced to study the statics and dynamics of polymer chains in two dimensions with quenched barriers, a dirty surface. In our DC hybrid approach, the large-scale relaxation of polymer chains on a discrete disordered lattice is followed by off-lattice simulation using a bead-spring chain model with a finitely extensible nonlinear elastic (FENE) potential for covalent bonds and Lennard-Jones (LJ) potential for nonbonded interactions. Segregation/folding of chains, which occurs at low temperatures (T=0.2, 1.0) with LJ interaction, becomes more difficult as the concentration of barriers increases, due to a screening effect of the barriers. In contrast to the chains' contraction at high temperature (i.e., T=5) and their collapse in athermal systems, chains are elongated on increasing the barrier concentration—a barrier-induced stretching. Variations of the root-mean-square (rms) displacements of the center of mass (Rcm) of the chains and their center node (Rcn) with time (t) show power-law behaviors (Rcm˜tν1, Rcn˜tν2) with nonuniversal exponents in the range ν1≃0.40-0.05 and ν2≃0.30-0.05, respectively, depending on temperature and barrier concentration. The radius of gyration (Rg) and the average bond length (
Studies of silicon quantum dots prepared at different substrate temperatures
NASA Astrophysics Data System (ADS)
Al-Agel, Faisal A.; Suleiman, Jamal; Khan, Shamshad A.
2017-03-01
In this research work, we have synthesized silicon quantum dots at different substrate temperatures 193, 153 and 123 K at a fixed working pressure 5 Torr. of Argon gas. The structural studies of these silicon quantum dots have been undertaken using X-ray diffraction, Field Emission Scanning Electron Microscopy (FESEM) and High Resolution Transmission Electron Microscopy (HRTEM). The optical and electrical properties have been studied using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Fluorescence spectroscopy and I-V measurement system. X-ray diffraction pattern of Si quantum dots prepared at different temperatures show the amorphous nature except for the quantum dots synthesized at 193 K which shows polycrystalline nature. FESEM images of samples suggest that the size of quantum dots varies from 2 to 8 nm. On the basis of UV-visible spectroscopy measurements, a direct band gap has been observed for Si quantum dots. FTIR spectra suggest that as-grown Si quantum dots are partially oxidized which is due exposure of as-prepared samples to air after taking out from the chamber. PL spectra of the synthesized silicon quantum dots show an intense peak at 444 nm, which may be attributed to the formation of Si quantum dots. Temperature dependence of dc conductivity suggests that the dc conductivity enhances exponentially by raising the temperature. On the basis above properties i.e. direct band gap, high absorption coefficient and high conductivity, these silicon quantum dots will be useful for the fabrication of solar cells.
Ge, Zhengwei; Wang, Wei; Yang, Chun
2015-02-09
This paper reports rapid microfluidic electrokinetic concentration of deoxyribonucleic acid (DNA) with the Joule heating induced temperature gradient focusing (TGF) by using our proposed combined AC and DC electric field technique. A peak of 480-fold concentration enhancement of DNA sample is achieved within 40s in a simple poly-dimethylsiloxane (PDMS) microfluidic channel of a sudden expansion in cross-section. Compared to a sole DC field, the introduction of an AC field can reduce DC field induced back-pressure and produce sufficient Joule heating effects, resulting in higher concentration enhancement. Within such microfluidic channel structure, negative charged DNA analytes can be concentrated at a location where the DNA electrophoretic motion is balanced with the bulk flow driven by DC electroosmosis under an appropriate temperature gradient field. A numerical model accounting for a combined AC and DC field and back-pressure driven flow effects is developed to describe the complex Joule heating induced TGF processes. The experimental observation of DNA concentration phenomena can be explained by the numerical model. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Edie, P. C.
1981-01-01
Both straight and chopped dc motor performance data for a General Electric 5BY436A1 motor with a General Electric EV-1 controller is presented in tabular and graphical formats. Effects of motor temperature and operating voltage are also shown. The maximum motor efficiency is approximately 85% at low operating temperatures in the straight dc mode. Chopper efficiency can be assumed to be 95% under all operating conditions. For equal speeds, the motor operated in the chopped mode develops slightly more torque and draws more current than it does in the straight mode.
NASA Astrophysics Data System (ADS)
Cao, Dong
Due the energy crisis and increased oil price, renewable energy sources such as photovoltaic panel, wind turbine, or thermoelectric generation module, are used more and more widely for vehicle and grid-connected applications. However, the output of these renewable energy sources varies according to different solar radiation, wind speed, or temperature difference, a power converter interface is required for the vehicle or grid-connected applications. Thermoelectric generation (TEG) module as a renewable energy source for automotive industry is becoming very popular recently. Because of the inherent characteristics of TEG modules, a low input voltage, high input current and high voltage gain dc-dc converters are needed for the automotive load. Traditional high voltage gain dc-dc converters are not suitable for automotive application in terms of size and high temperature operation. Switched-capacitor dc-dc converters have to be used for this application. However, high voltage spike and EMI problems exist in traditional switched-capacitor dc-dc converters. Huge capacitor banks have to be utilized to reduce the voltage ripple and achieve high efficiency. A series of zero current switching (ZCS) or zero voltage switching switched-capacitor dc-dc converters have been proposed to overcome the aforementioned problems of the traditional switched-capacitor dc-dc converters. By using the proposed soft-switching strategy, high voltage spike is reduced, high EMI noise is restricted, and the huge capacitor bank is eliminated. High efficiency, high power density and high temperature switched-capacitor dc-dc converters could be made for the TEG interface in vehicle applications. Several prototypes have been made to validate the proposed circuit and confirm the circuit operation. In order to apply PV panel for grid-connected application, a low cost dc-ac inverter interface is required. From the use of transformer and safety concern, two different solutions can be implemented, non-isolated or isolated PV inverter. For the non-isolated transformer-less solution, a semi-Z-source inverter for single phase photovoltaic systems has been proposed. The proposed semi-Z-source inverter utilizes only two switching devices with doubly grounded feature. The total cost have been reduced, the safety and EMI issues caused by the high frequency ground current are solved. For the transformer isolated solution, a boost half-bridge dc-ac micro-inverter has been proposed. The proposed boost half-bridge dc-dc converter utilizes only two switching devices with zero voltage switching features which is able to reduce the total system cost and power loss.
Quasiparticle tunneling in the lowest Landau level
NASA Astrophysics Data System (ADS)
Hennel, Szymon; Scheidegger, Patrick; Kellermeier, Max; Hofmann, Andrea; Krähenmann, Tobias; Reichl, Christian; Wegscheider, Werner; Ihn, Thomas; Ensslin, Klaus
2018-06-01
We measure quasiparticle tunneling across a constriction in the first Landau level. In the limit of weak backscattering, the dependence of the tunneling conductance on temperature and dc-bias is in qualitative disagreement with existing theories. For stronger backscattering, data obtained in the ν =1 /3 state can be fitted to weak backscattering theory with the predicted effective fractional charge of e*=e /3 . The scaling parameter g is however not universal and depends strongly on the gate voltage applied to the constriction. At ν =4 /3 , a more complex picture emerges. We propose an interpretation in terms of selective tunneling between the multiple modes present at the edge.
Weissinger, Daniel; Tagscherer, Katrin E; Macher-Göppinger, Stephan; Haferkamp, Axel; Wagener, Nina; Roth, Wilfried
2013-10-10
Overexpression of Decoy Receptor 3 (DcR3), a soluble member of the tumor necrosis factor receptor superfamily, is a common event in several types of cancer. In renal cell carcinoma (RCC), DcR3 overexpression is associated with lymph node and distant metastasis as well as a poor prognosis. However, the functional role and regulation of DcR3 expression in RCC is so far unknown. Modulation of DcR3 expression by siRNA and ectopic gene expression, respectively, was performed in ACHN and 769-P RCC cell lines. Functional effects of a modulated DcR3 expression were analyzed with regard to migration, invasion, adhesion, clonogenicity, and proliferation. Furthermore, quantitative RT-PCR and immunoblot analyses were performed to evaluate the expression of downstream mediators of DcR3. In further experiments, luciferase assays, quantitative RT-PCR and immunoblot analyses were applied to study the regulation of DcR3 expression in RCC. Additionally, an ex vivo tissue slice culture technique combined with immunohistochemistry was used to study the regulation of DcR3 expression in human RCC specimens. Here, we show that DcR3 promotes adhesion, migration and invasiveness of RCC cells. The DcR3-dependent increase in cellular invasiveness is accompanied with an up-regulation of integrin alpha 4, matrixmetalloproteinase 7 and urokinase plasminogen activator (uPA). Further, we identified a signaling pathway regulating DcR3 expression in RCC. Using in vitro experiments as well as an ex vivo RCC tissue slice culture model, we demonstrate that expression of DcR3 is regulated in a PI3K/AKT-dependent manner involving the transcription factor nuclear factor of activated T-cells (NFAT). Taken together, our results identify DcR3 as a key driver of tumor cell dissemination and suggest DcR3 as a promising target for rational therapy of RCC.
Time dependence of carbon film deposition on SnO{sub 2}/Si using DC unbalanced magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfiadi, H., E-mail: yudi@fi.itb.ac.id; Aji, A. S., E-mail: yudi@fi.itb.ac.id; Darma, Y., E-mail: yudi@fi.itb.ac.id
Carbon deposition on SnO{sub 2} layer has been demonstrated at low temperature using DC unbalanced magnetron-sputtering technique for various time depositions. Before carbon sputtering process, SnO{sub 2} thin layer is grown on silicon substrate by thermal evaporation method using high purity Sn wire and then fully oxidizes by dry O{sub 2} at 225°C. Carbon sputtering process was carried out at pressure of 4.6×10{sup −2} Torr by keeping the substrate temperature of 300 °C for sputtering deposition time of 1 to 4 hours. The properties of SnO{sub 2}/Si structure and carbon thin film on SnO{sub 2} is characterized using SEM, EDAX,more » XRD, FTIR, and Raman Spectra. SEM images and XRD spectra show that SnO2 thin film has uniformly growth on Si substrate and affected by annealing temperature. Raman and FTIR results confirm the formation of carbon-rich thin film on SnO{sub 2}. In addition, XRD spectra indicate that some structural change occur by increasing sputtering deposition time. Furthermore, the change of atomic structure due to the thermal annealing is analized by XRD spectra and Raman spectroscopy.« less
[Temperature measurement of DC argon plasma jet].
Yan, Jian-Hua; Pan, Xin-Chao; Ma, Zeng-Yi; Tu, Xin; Cen, Ke-Fa
2008-01-01
The electron temperature of DC arc plasma jet is an important parameter, which determines the characteristics of plasma jet. The measurement of emission spectrum was performed to obtain the spectral intensities of some Ar lines and the method of diagrammatic view of Boltzmann was adopted to calculate the electron temperature. The results indicated that the electron temperature dropped at different speed along with the axes of the plasma jet and rose rapidly when the current was increased, and it also rose when the flowrate of argon was increased.
NASA Astrophysics Data System (ADS)
Xu, Haoran; Chen, Bin; Zhang, Houcheng; Tan, Peng; Yang, Guangming; Irvine, John T. S.; Ni, Meng
2018-04-01
In this paper, 2D models for direct carbon solid oxide fuel cells (DC-SOFCs) with in situ catalytic steam-carbon gasification reaction are developed. The simulation results are found to be in good agreement with experimental data. The performance of DC-SOFCs with and without catalyst are compared at different operating potential, anode inlet gas flow rate and operating temperature. It is found that adding suitable catalyst can significantly speed up the in situ steam-carbon gasification reaction and improve the performance of DC-SOFC with H2O as gasification agent. The potential of syngas and electricity co-generation from the fuel cell is also evaluated, where the composition of H2 and CO in syngas can be adjusted by controlling the anode inlet gas flow rate. In addition, the performance DC-SOFCs and the percentage of fuel in the outlet gas are both increased with increasing operating temperature. At a reduced temperature (below 800 °C), good performance of DC-SOFC can still be obtained with in-situ catalytic carbon gasification by steam. The results of this study form a solid foundation to understand the important effect of catalyst and related operating conditions on H2O-assisted DC-SOFCs.
NASA Astrophysics Data System (ADS)
Zuo, Xiao; Chen, Rende; Liu, Jingzhou; Ke, Peiling; Wang, Aiying
2018-01-01
The electrical characteristics and spectroscopic properties have been comprehensively investigated in a DC superimposed high power impulse magnetron sputtering (DC-HiPIMS) deposition system in this paper. The influence of superimposed DC current on the variation of target and substrate current waveforms, active species and electron temperatures with pulse voltages are focused. The peak target currents in DC-HiPIMS are lower than in HiPIMS. The time scales of the two main discharge processes like ionization and gas rarefaction in DC-HiPIMS are analyzed. When the pulse voltage is higher than 600 V, the gas rarefaction effect becomes apparent. Overall, the ionization process is found to be dominant in the initial ˜100 μs during each pulse. The active species of Ar and Cr in DC-HiPIMS are higher than in HiPIMS unless that the pulse voltage reaches 900 V. However, the ionization degree in HiPIMS exceeds that in DC-HiPIMS at around 600 V. The electron temperature calculated by modified Boltzmann plot method based on corona model has a precipitous increase from 0.87 to 25.0 eV in HiPIMS, but varies mildly after the introduction of the superimposed DC current. Additionally, the current from plasma flowing to the substrate is improved when a DC current is superimposed with HiPIMS.
Importance of finite-temperature exchange correlation for warm dense matter calculations.
Karasiev, Valentin V; Calderín, Lázaro; Trickey, S B
2016-06-01
The effects of an explicit temperature dependence in the exchange correlation (XC) free-energy functional upon calculated properties of matter in the warm dense regime are investigated. The comparison is between the Karasiev-Sjostrom-Dufty-Trickey (KSDT) finite-temperature local-density approximation (TLDA) XC functional [Karasiev et al., Phys. Rev. Lett. 112, 076403 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.076403] parametrized from restricted path-integral Monte Carlo data on the homogeneous electron gas (HEG) and the conventional Monte Carlo parametrization ground-state LDA XC [Perdew-Zunger (PZ)] functional evaluated with T-dependent densities. Both Kohn-Sham (KS) and orbital-free density-functional theories are used, depending upon computational resource demands. Compared to the PZ functional, the KSDT functional generally lowers the dc electrical conductivity of low-density Al, yielding improved agreement with experiment. The greatest lowering is about 15% for T=15 kK. Correspondingly, the KS band structure of low-density fcc Al from the KSDT functional exhibits a clear increase in interband separation above the Fermi level compared to the PZ bands. In some density-temperature regimes, the deuterium equations of state obtained from the two XC functionals exhibit pressure differences as large as 4% and a 6% range of differences. However, the hydrogen principal Hugoniot is insensitive to the explicit XC T dependence because of cancellation between the energy and pressure-volume work difference terms in the Rankine-Hugoniot equation. Finally, the temperature at which the HEG becomes unstable is T≥7200 K for the T-dependent XC, a result that the ground-state XC underestimates by about 1000 K.
Magnetic loss, permeability, and anisotropy compensation in CoO-doped Mn-Zn ferrites
NASA Astrophysics Data System (ADS)
Beatrice, Cinzia; Dobák, Samuel; Tsakaloudi, Vasiliki; Ragusa, Carlo; Fiorillo, Fausto; Martino, Luca; Zaspalis, Vassilis
2018-04-01
Mn-Zn ferrite samples prepared by conventional solid state reaction method and sintering at 1325 °C were Co-enriched by addition of CoO up to 6000 ppm and characterized versus frequency (DC - 1GHz), peak polarization (2 mT - 200 mT), and temperature (23 °C - 120 °C). The magnetic losses at room temperature are observed to pass through a deep minimum value around 4000 ppm CoO at all polarizations values. This trend is smoothed out either by approaching the MHz range or by increasing the temperature. Conversely, the initial permeability attains its maximum value around the same CoO content, while showing moderate monotonical decrease with increasing CoO at the typical working temperatures of 80 - 100 °C. The energy losses, measured by a combination of fluxmetric and transmission line methods, are affected by the eddy currents, on the conventional 5 mm thick ring samples, only beyond a few MHz. Their assessment relies on the separation of rotational and domain wall processes, which can be done by analysis of the complex permeability and its frequency behavior. This permits one, in particular, to calculate the magnetic anisotropy and its dependence on CoO content and temperature and bring to light its decomposition into the host lattice and Co2+ temperature dependent contributions. The temperature and doping dependence of initial permeability and magnetic losses can in this way be qualitatively justified, without invoking the passage through zero value of the effective anisotropy constant upon doping.
Physical properties of glasses in the Ag2GeS3-AgBr system
NASA Astrophysics Data System (ADS)
Moroz, M. V.; Demchenko, P. Yu.; Prokhorenko, S. V.; Moroz, V. M.
2013-08-01
Glasses have been prepared by quenching melts in the Ag2GeS3-AgBr system in a range of 0-53 mol % AgBr. The concentration dependences of density, microhardness, glass transition temperatures, and crystallization of alloys have been established. The conductivity of glasses has been investigated by the dc probe method in a range of 240-420 K. The models of the drift motion of silver and halogen ions have been proposed.
Plasma processing of superconducting radio frequency cavities
NASA Astrophysics Data System (ADS)
Upadhyay, Janardan
The development of plasma processing technology of superconducting radio frequency (SRF) cavities not only provides a chemical free and less expensive processing method, but also opens up the possibility for controlled modification of the inner surfaces of the cavity for better superconducting properties. The research was focused on the transition of plasma etching from two dimensional flat surfaces to inner surfaces of three dimensional (3D) structures. The results could be applicable to a variety of inner surfaces of 3D structures other than SRF cavities. Understanding the Ar/Cl2 plasma etching mechanism is crucial for achieving the desired modification of Nb SRF cavities. In the process of developing plasma etching technology, an apparatus was built and a method was developed to plasma etch a single cell Pill Box cavity. The plasma characterization was done with the help of optical emission spectroscopy. The Nb etch rate at various points of this cavity was measured before processing the SRF cavity. Cylindrical ring-type samples of Nb placed on the inner surface of the outer wall were used to measure the dependence of the process parameters on plasma etching. The measured etch rate dependence on the pressure, rf power, dc bias, temperature, Cl2 concentration and diameter of the inner electrode was determined. The etch rate mechanism was studied by varying the temperature of the outer wall, the dc bias on the inner electrode and gas conditions. In a coaxial plasma reactor, uniform plasma etching along the cylindrical structure is a challenging task due to depletion of the active radicals along the gas flow direction. The dependence of etch rate uniformity along the cylindrical axis was determined as a function of process parameters. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the asymmetry was studied by changing the contour of the inner electrode. The optimized contour of the electrode based on these measurements was chosen for SRF cavity processing.
Structural and magnetic investigations of single-crystalline neodymium zirconate pyrochlore Nd2Zr2O7
NASA Astrophysics Data System (ADS)
Hatnean, M. Ciomaga; Lees, M. R.; Petrenko, O. A.; Keeble, D. S.; Balakrishnan, G.; Gutmann, M. J.; Klekovkina, V. V.; Malkin, B. Z.
2015-05-01
We report structural and magnetic properties studies of large high-quality single crystals of the frustrated magnet Nd2Zr2O7 . Powder x-ray diffraction analysis confirms that Nd2Zr2O7 adopts the pyrochlore structure. Room-temperature x-ray diffraction and time-of-flight neutron-scattering experiments show that the crystals are stoichiometric in composition with no measurable site disorder. The temperature dependence of the magnetic susceptibility shows no magnetic ordering at temperatures down to 0.5 K. Fits to the magnetic susceptibility data using a Curie-Weiss law reveal a ferromagnetic coupling between the Nd moments. Magnetization versus field measurements show a local Ising anisotropy along the <111 > axes of the Nd3 + ions in the ground state. Specific heat versus temperature measurements in zero applied magnetic field indicate the presence of a thermal anomaly below T ˜7 K, but no evidence of magnetic ordering is observed down to 0.5 K. The experimental temperature dependence of the single-crystal bulk dc susceptibility and isothermal magnetization are analyzed using crystal field theory and the crystal field parameters and exchange coupling constants determined.
Schottky-type grain boundaries in CCTO ceramics
NASA Astrophysics Data System (ADS)
Felix, A. A.; Orlandi, M. O.; Varela, J. A.
2011-10-01
In this work we studied electrical barriers existing at CaCu 3Ti 4O 12 (CCTO) ceramics using dc electrical measurements. CCTO pellets were produced by solid state reaction method and X-ray diffractograms showed which single phase polycrystalline samples were obtained. The samples were electrically characterized by dc and ac measurements as a function of temperature, and semiconductor theory was applied to analyze the barrier at grain boundaries. The ac results showed the sample's permittivity is almost constant ( 104) as function of temperature at low frequencies and it changes from 100 to 104 as the temperature increases at high frequencies. Using dc measurements as a function of temperature, the behavior of barriers was studied in detail. Comparison between Schottky and Poole-Frenkel models was performed, and results prove that CCTO barriers are more influenced by temperature than by electric field (Schottky barriers). Besides, the behavior of barrier width as function of temperature was also studied and experimental results confirm the theoretical assumptions.
Advanced DC/DC Converters Towards Higher Volumetric Efficiencies For Space Applications
NASA Technical Reports Server (NTRS)
Shaw, Harry; Shue, Jack; Liu, David; Wang, Bright; Plante, Jeanette
2005-01-01
A new emphasis on planetary exploration by NASA drives the need for small, high power DC/DC converters which are functionally modular. NASA GSFC and other government space organizations are supporting technology development in the DC/DC converter area to both meet new needs and to promote more sources of supply. New technologies which enable miniaturization such as embedded passive technologies and thermal management using high thermal conductivity materials are features of the new designs. Construction of some simple DC/DC converter core circuits using embedded components was found to be successful for increasing volumetric efficiency to 37 W/inch. The embedded passives were also able to perform satisfactorily in this application in cryogenic temperatures.
Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments
Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.
2018-04-10
We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb 2Pt 2Pb, a metal where itinerant electrons coexist with localized moments of Yb-ions which can be described in terms of effective S = 1/2 spins with dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the twomore » interacting subsystems. Lastly, we characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasi linear temperature dependence.« less
Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.
We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb 2Pt 2Pb, a metal where itinerant electrons coexist with localized moments of Yb-ions which can be described in terms of effective S = 1/2 spins with dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the twomore » interacting subsystems. Lastly, we characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasi linear temperature dependence.« less
Relaxation and anomalous T- and H-dependence of the μ coefficient in (K,Ba)BiO3 superconductors
NASA Astrophysics Data System (ADS)
Klein, T.; Harneit, W.; Joumard, I.; Marcus, J.; Escribe-Filippini, C.; Feinberg, D.
1998-04-01
Ac shielding and classical dc relaxation experiments have been used to study the flux creep phenomena in the cubic (K,Ba)BiO3 superconductor (Tc ~ 30 K). The relaxation rate is found to be constant (S ~ 1.5%) at low temperature and magnetic field and increases sharply as the vortex-glass transition line is approached. This behavior can be attributed to an anomalous decrease of the μ exponent (U(J) = U0(J0/J)μ) close to Tg(H). In this regime, the temperature dependence of the apparent critical current J is then directly related to μ(T) as J(T) = J0/[kT/U0·ln (1/ωτ)]μ(T). A similar analysis can be made on the J(B) data recently published by Abulafia et al. (Phys. Rev. Lett., 77 (1996) 1597) on YBaCuO single crystals.
Notched bar Izod impact properties of zinc die castings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrems, K.K.; Dogan, O.N.; Goodwin, F.E.
2007-03-01
Notched bar Izod impact testing of zinc die cast Alloy 3, Alloy 5, ZA-8, and AcuZinc 5 was performed at five temperatures between -40\\mDC and room temperature in accordance with ASTM E23 for impact testing of metallic materials. A direct comparison between ASTM D256 for impact testing of plastics and ASTM E23 was performed using continuously cast zinc specimens of Alloy 5 and ZA-8 at -40\\mDC and room temperature. There are differences in sample sizes, impact velocity, and striker geometry between the two tests. Bulk zinc tested according to ASTM E23 resulted in higher impact energies at -40\\mDC and lowermore » impact energies at room temperature then did the same alloys when tested according to ASTM D256.« less
Analysis of DC control in double-inlet GM type pulse tube refrigerators for detectors
NASA Astrophysics Data System (ADS)
Du, B. Y.
2016-10-01
Pulse tube refrigerators have demonstrated many advantages with respect to temperature stability, vibration, reliability and lifetime among cryo-coolers for detectors. Double-inlet type pulse tube refrigerators are popular in GM type pulse tube refrigerators. The single double-inlet valve may introduce DC flow in refrigerator, which deteriorates the performance of pulse tube refrigerator. One new type of DC control mode is introduced in this paper. Two parallel-placed needle valves with opposite direction named double-valve configuration, instead of single double-inlet valve, are used in our experiment to reduce the DC flow. With two double-inlet operating, the lowest cold end temperature of 18.1K and a coolant of 1.2W@20K have been obtained. It has proved that this method is useful for controlling DC flow of the pulse tube refrigerators, which is very important to understand the characters of pulse tube refrigerators for detectors.
NASA Astrophysics Data System (ADS)
Gupta, Surbhi; Deshpande, S. K.; Sathe, V. G.; Siruguri, V.
2018-04-01
We present dielectric, complex impedance, modulus spectroscopy and AC conductivity studies of the compound BaFe10Sc2O19 as a function of temperature and frequency to understand the conduction mechanism. The variation in complex dielectric constant with frequency and temperature were analyzed on the basis of Maxwell-Wagner-Koop's theory and charge hopping between ferrous and ferric ions. The complex impedance spectroscopy study shows only grain contribution whereas complex modulus plot shows two semicircular arcs which indicate both grain and grain boundary contributions in conduction mechanism. AC conductivity has also been evaluated which follows the Jonscher's law. The activation energy calculated from temperature dependence of DC conductivity comes out to be Ea˜ 0.31eV.
Magnetic properties of Y3+ doped Bi4-xTi2FeO12 aurivillius phase ceramics
NASA Astrophysics Data System (ADS)
Tirupathi, Patri; Reddy, H. Satish Kumar; Babu, P. D.
2018-05-01
In the present paper reports a comprehensive investigation of structural, microstructural and magnetic phase transition in Y3+ doped BITF Aurivillius phase compounds. The study of surface morphology by scanning electron microscope reveals the growth of plate-like grains and further the grain size increase with increasing Y3+ composition. Low temperature magnetic studies reveals enhanced magnetic property with doping of Y3+ in BITF. It was explained by considering exchange interaction between the neighboring Fe+3 ions via electron trapped electrons at oxygen vacancies. Temperature dependent dc-magnetic studies exhibit a magnetic transitions TC = 750 K for x=0.0 TC ˜ 674 K for x=1.0 & TC ˜ 645 K for x=1.50 ceramics respectively in high temperature magnetization studies
Temperature increase and charging current in polyethylene film during application of high voltage
NASA Astrophysics Data System (ADS)
Zhang, Chao; Kaneko, Kazue; Mizutani, Teruyoshi
2001-12-01
Temperature increase in a low density polyethylene film during the application of high dc voltage was estimated by measuring the sound velocity with a pulsed electroacoustic method. The temperature shows no change under the electric field of 50 MVm-1 at ambient temperature of 30 °C. However, the temperature increases with time, and rises to 63.7 °C in 90 min of the voltage application at ambient temperature of 60 °C. The temperature increase was caused by Joule heating and it resulted in the increase of charging current during the application of high dc voltage. The increase in charging current calculated from the temperature increase agreed well with the experimental one.
Universal DC Hall conductivity of Jain's state ν = N/2N +/- 1
NASA Astrophysics Data System (ADS)
Nguyen, Dung; Son, Dam
We present the Fermi-liquid theory of the fractional quantum Hall effect to describe Jain's states with filling fraction ν =N/2 N +/- 1 , that are near half filling. We derive the DC Hall conductivity σH (t) in closed form within the validity of our model. The results show that, without long range interaction, DC Hall conductivity has the universal form which doesn't depend on the detail of short range Landau's parameters Fn. When long range interaction is included, DC Hall conductivity depends on both long range interaction and Landau's parameters. We also analyze the relation between DC Hall conductivity and static structure factor. This work was supported by the Chicago MRSEC, which is funded by NSF through Grant DMR-1420709.
NASA Astrophysics Data System (ADS)
Albagami, Abdullah Mohamed
In this Thesis project, an experimental study on the magnetic and exchange bias properties of a series of polycrystalline Ni1.7-xMn1.7+x Ga0.6 alloys have been investigated by x-ray diffraction, dc magnetization, and ac susceptibility measurements. X-ray diffraction measurement showed that all prepared samples have a tetragonal L10 martensitic structure at room temperature. Scanning electron microscopy measurements show that the compounds are single phase. With increasing Mn concentration x, the lattice parameters marginally increases. The temperature dependence of magnetization data show two distinct transitions in the alloys. At lower temperatures, a peak in the data is observed while the ferromagnetic to paramagnetic transition occurs at higher temperatures. With increasing Mn concentration, the temperature of both transitions increases. Thermomagnetic irreversibility is observed in the magnetization data of all alloys. The ac susceptibility measurements on the materials show the existence of frequency dependence, which suggest that the thermomagnetic irreversibility in the magnetization data is due to the spin glass like ground state in the alloys. The spin glass like ground state with competing magnetic interactions result in the observation of double-shifted hysteresis loop and exchange bias effects in the alloys. The magnitude of the exchange bias field is strongly dependent on the cooling field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nefzi, H.; Sediri, F., E-mail: faouzi.sediri@ipeit.rnu.tn; Faculté des Sciences de Tunis, Université Tunis El Manar, 2092 El Manar, Tunis
2013-05-15
Highlights: ► Plate-like crystals (H{sub 3}N(CH{sub 2}){sub 3}NH{sub 3})[V{sub 4}O{sub 10}] were synthesized. ► Frequency and temperature dependence of AC conductivity indicate CBH model. ► The temperature dependence of DC conductivity exhibits two conduction mechanisms. - Abstract: Layered hybrid compound (H{sub 3}N(CH{sub 2}){sub 3}NH{sub 3})[V{sub 4}O{sub 10}] has been synthesized via hydrothermal method. Techniques X-ray powder diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and impedance spectroscopy have been used to characterize the hybrid material. Electrical and dielectric properties dependence on both temperature and frequency of the compound have been reported. The direct current conductivity process is thermally activated andmore » it is found to be 12.67 × 10{sup −4} Ω{sup −1} m{sup −1} at 523 K. The spectra follow the Arrhenius law with two activation energy 0.25 eV for T < 455 K and 0.5 eV for T > 455 K.« less
Beev, Nikolai; Kiviranta, Mikko
2012-06-01
Silicon-germanium heterojunction bipolar transistors can be used to construct low-noise cryogenic amplifiers. We present a dc-coupled differential amplifier capable of operating down to 10 K. In this temperature regime it has bandwidth of 15 MHz and noise temperature as low as 1.3 K. When operated at liquid nitrogen temperature of 77 K, the measured noise temperature is lower than 3 K. The amplifier is based on the commercially available transistors NESG3031 and operational amplifier OPA836 and is capable of standalone operation without any additional stages at room temperature.
operation in a DC-DC power converter switching at a frequency of up to 15 kHz. Calculations also estimated the effect of solder layers on temperature in the device....Thermal simulations were used to calculate temperatures in a silicon carbide (SiC) Insulated -Gate Bipolar Transistor (IGBT),simulating device
NASA Astrophysics Data System (ADS)
Revanasiddappa, M.; Swamy, D. Siddalinga; Vinay, K.; Ravikiran, Y. T.; Raghavendra, S. C.
2018-05-01
The present work is an investigation of dc conduction behaviour of conducting polyaniline/fly ash nano particles blended in polyvinyl Alcohol (PANI/PVA/FA) synthesized via in-situ polymerization technique using (NH4)2S2O8 as an oxidising agent with varying fly ash cenosphere by 10, 20, 30, 40 and 50 wt%. The structural characterization of the synthesised polymer composites was examined using FT-IR, XRD and SEM techniques. Dc conductivity as a function of temperature has been measured in the temperature range from 302K - 443K. The increase of conductivity with increasing temperature reveals semiconducting behaviour of the composites and shows an evidence for the transport properties of the composites.
A novel method for synthesizing nanoscale superionic MF-Sn2F5 (M = K, Cs) solid electrolytes
NASA Astrophysics Data System (ADS)
Podgorbunsky, Anatoly B.; Usolseva, T. I.; Sokolov, Alexander A.; Gnedenkov, S. V.; Sinebryukhov, S. L.
2017-09-01
Cesium and potassium pentafluorodistannites have been synthesized through "wet" high-energy ball milling and characterized through XRD, SEM techniques. The electrical conductivity of the systems have been investigated in the temperature range from 373 K to 513 K by means of impedance spectroscopy. It has been shown that the frequency dependent conductivity of the present system shows the power law feature. Thermally induced phase transitions has been confirmed as well as activation energy calculated from temperature variation of dc conductivity. It has been shown that synthesis in a wet medium enables one to obtain nanoparticles much smaller than in the case of "dry" milling.
França, Flávio Álvares; Oliveira, Michele de; Rodrigues, José Augusto; Arrais, César Augusto Galvão
2011-01-01
This study evaluated the degree of conversion (DC) and ultimate tensile strength (UTS) of dual-cured resin cements heated to 50º C prior to and during polymerization. Disc- and hourglass-shaped specimens of Rely X ARC (RX) and Variolink II (VII) were obtained using addition silicon molds. The products were manipulated at 25º C or 50º C and were subjected to 3 curing conditions: light-activation through a glass slide or through a pre-cured 2-mm thick resin composite disc, or they were allowed to self-cure (SC). All specimens were dark-stored dry for 15 days. For DC analysis, the resin cements were placed into the mold located on the center of a horizontal diamond on the attenuated total reflectance element in the optical bench of a Fourier Transformed Infrared spectrometer. Infrared spectra (n = 6) were collected between 1680 and 1500 cm-1, and DC was calculated by standard methods using changes in ratios of aliphatic-to-aromatic C=C absorption peaks from uncured and cured states. For UTS test, specimens (n = 10) were tested in tension in a universal testing machine (crosshead speed of 1 mm/min) until failure. DC and UTS data were submitted to 2-way ANOVA, followed by Tukey's test (α= 5%). Both products showed higher DC at 50º C than at 25º C in all curing conditions. No significant difference in UTS was noted between most light-activated groups at 25º C and those at 50º C. VII SC groups showed higher UTS at 50º C than at 25º C (p < 0.05). Increased temperature led to higher DC, but its effects on resin cement UTS depended on the curing condition.
NASA Astrophysics Data System (ADS)
Pelegrina, J. L.; Guillermet, A. Fernández
2018-03-01
The theme of the present work is the procedure for evaluating the minimum size for the stability of a crystalline particle with respect to the same group of atoms but in the amorphous state. A key goal of the study is the critical analysis of an extensively quoted paper by F.G. Shi [J. Mater. Res. 9 (1994) 1307-1313], who presented a criterion for evaluating a "crystallinity distance" (h) through its relation with the "critical diameter" (dC) of a particle, i.e., the diameter below which no particles with the crystalline structure are expected to exist at finite temperatures. Key assumptions of Shi's model are a direct proportionality relation between h and dC , and a prescription for estimating h from crystallographic information. In the present work the accuracy of the Shi model is assessed with particular reference to nanoparticles of the elements. To this end, an alternative way to obtain h, that better realizes Shi's idea of this quantity as "the height of a monolayer of atoms on the bulk crystal surface", is explored. Moreover, a thermodynamic calculation of dC , which involves a description of the bulk- and the surface contributions to the crystalline/amorphous relative phase stability for nanoparticles, is performed. It is shown that the Shi equation does not account for the key features of the h vs. dC relation established in the current work. Consequently, it is concluded that the parameter h obtained only from information about the structure of the crystalline phase, does not provide an accurate route to estimate the quantity dC . In fact, a key result of the current study is that dC crucially depends on the relation between bulk- and surface contributions to the crystalline/amorphous relative thermodynamic stability.
Simulation of the dc Plasma in Carbon Nanotube Growth
NASA Technical Reports Server (NTRS)
Hash, David; Bose, Deepak; Govindan, T. R.; Meyyappan, M.; Biegel, Bryan (Technical Monitor)
2003-01-01
A model for the dc plasma used in carbon nanotube growth is presented, and one-dimensional simulations of an acetylene/ammonia/argon system are performed. The effect of dc bias is illustrated by examining electron temperature, electron and ion densities, and neutral densities. Introducing a tungsten filament in the dc plasma, as in hot filament chemical vapor deposition with plasma assistance, shows negligible influence on the system characteristics.
Electrical Conductivity, Relaxation and the Glass Transition: A New Look at a Familiar Phenomenon
NASA Technical Reports Server (NTRS)
Angel, Paul W.; Cooper, Alfred R.; DeGuire, Mark R.
1996-01-01
Annealed samples from a single melt of a 10 mol% K2O-90SiO2 glass were reheated to temperatures ranging from 450 to 800 C, held isothermally for 20 min, and then quenched in either air or a silicon oil bath. The complex impedance of both the annealed and quenched samples was measured as a function of temperature from 120 to 250 C using ac impedance spectroscopy from 1 Hz to 1 MHz. The dc conductivity, sigma(sub dc), was measured from the low frequency intercept of depressed semicircle fits to the complex impedance data. When the sigma(sub dc) at 150 C was plotted against soak temperature, the results fell into three separate regions that are explained in terms of the glass structural relaxation time, tau(sub S). This sigma(sub dc) plot provides a new way to look the glass transition range, Delta T(sub r). In addition, sigma(sub dc) was measured for different soak times at 550 C, from which an average relaxation time of 7.3 min was calculated. It was found that the size and position of the Delta T(sub r) is controlled by both the soak time and cooling rate.
NASA Astrophysics Data System (ADS)
Punia, R.; Kundu, R. S.; Dult, Meenakshi; Murugavel, S.; Kishore, N.
2012-10-01
The ac conductivity of bismuth zinc vanadate glasses with compositions 50V2O5. xBi2O3. (50-x) ZnO has been studied in the frequency range 10-1 Hz to 2 MHz and in temperature range 333.16 K to 533.16 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of bismuth zinc vanadate glass system. The dc conductivity (σdc), crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (Hf) and enthalpy of migration (Hm) have also been estimated. It has been observed that mobility of charge carriers and ac conductivity in case of zinc vanadate glass system increases with increase in Bi2O3 content. In order to determine the conduction mechanism, the ac conductivity and its frequency exponent have been analyzed in the frame work of various theoretical models based on classical hopping over barriers and quantum mechanical tunneling. The ac conduction takes place via tunneling of overlapping large polarons in all the compositions of presently studied vanadate glasses. The fitting of experimental data of ac conductivity with overlapping large polarons tunneling model has also been done. The parameters; density of states at Fermi level (N(EF)), activation energy associated with charge transfer between the overlapping sites (WHO), inverse localization length (α) and polaron radius (rp) obtained from fitting of this model with experimental data are reasonable.
NASA Astrophysics Data System (ADS)
Tsuji, Kosuke; Chen, Wei-Ting; Guo, Hanzheng; Lee, Wen-Hsi; Guillemet-Fritsch, Sophie; Randall, Clive A.
2017-02-01
The d.c. conduction is investigated in the two different types of internal barrier layer capacitors, namely, (Mn, Nb)-doped SrTiO3 (STO) and CaCu3Ti4O12 (CCTO). Scanning electron microscopy (SEM) and Capacitance - Voltage (C-V) analysis are performed to estimate the effective electric field at a grain boundary, EGB. Then, the d.c. conduction mechanism is discussed based on the J (Current density)-EGB characteristics. Three different conduction mechanisms are successively observed with the increase of EGB in both systems. In (Mn, Nb)-doped STO, non-linear J-EGB characteristics is temperature dependent at the intermediate EGB and becomes relatively insensitive to the temperature at the higher EGB. The J- EGB at each regime is explained by the Schottky emission (SE) followed by Fowler-Nordheim (F-N) tunneling. Based on the F-N tunneling, the breakdown voltage is then scaled by the function of the depletion layer thickness and Schottky barrier height at the average grain boundary. The proposed function shows a clear linear relationship with the breakdown. On the other hand, F-N tunneling was not observed in CCTO in our measurement. Ohmic, Poole-Frenkel (P-F), and SE are successively observed in CCTO. The transition point from P-F and SE depends on EGB and temperature. A charge-based deep level transient spectroscopy study reveals that 3 types of trap states exist in CCTO. The trap one with Et ˜ 0.65 eV below the conduction band is found to be responsible for the P-F conduction.
Hwang, In Sun; Choi, Du Seok; Kim, Nak Hyun; Kim, Dae Sung; Hwang, Byung Kook
2014-01-01
Plant defense against microbial pathogens is coordinated by a complex regulatory network. Cysteine/histidine-rich DC1 domain proteins mediate a variety of cellular processes involved in plant growth, development and stress responses. We identified a pepper (Capsicum annuum) cysteine/histidine-rich DC1 domain protein gene, CaDC1, which positively regulates plant defense during microbial infection, based on gene silencing and transient expression in pepper, as well as ectopic expression in Arabidopsis. Induction of CaDC1 by avirulent Xanthomonas campestris pv vesicatoria (Xcv) infection was pronounced at both transcriptional and translational levels in pepper leaves. Purified CaDC1 protein bound to both DNA and RNA in vitro, especially in the presence of Zn(2+). CaDC1 was localized to both the nucleus and the cytoplasm, which was required for plant cell death signaling. The nuclear localization of CaDC1 was dependent on the divergent C1 (DC1) domain. CaDC1 silencing in pepper conferred increased susceptibility to Xcv infection, which was accompanied by reduced salicylic acid accumulation and defense-related gene expression. Ectopic expression of CaDC1 in Arabidopsis enhanced resistance to Hyaloperonospora arabidopsidis. CaDC1 binds both RNA and DNA and functions as a positive regulator of plant cell death and SA-dependent defense responses. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Takenaka, Kosuke; Satake, Yoshikatsu; Uchida, Giichiro; Setsuhara, Yuichi
2018-01-01
The low-temperature formation of c-axis-oriented aluminum nitride thin films was demonstrated by plasma-assisted reactive pulsed-DC magnetron sputtering. The effects of the duty cycle at the pulsed-DC voltage applied to the Al target on the properties of AlN films formed via inductively coupled plasma (ICP)-enhanced pulsed-DC magnetron sputtering deposition were investigated. With decreasing duty cycle at the target voltage, the peak intensity of AlN(0002) increased linearly. The surface roughness of AlN films decreased since there was an increase in film density owing to the impact of energetic ions on the films together with the enhancement of nitriding associated with the relative increase in N radical flux. The improvement of both the crystallinity and surface morphology of AlN films at low temperatures is considered to be caused by the difference between the relative flux values of ions and sputtered atoms.
NASA Astrophysics Data System (ADS)
Kataria, V.; Mehta, D. S.
2018-04-01
Erbium (Er3+)-ytterbium (Yb3+) doped gadolinium oxysulphide (Gd2O2S) phosphor has been developed via a facile method of solid-state flux fusion, and offers two-fold spectrum modification with highly intense Stokes and anti-Stokes shift. The effect of the firing cycle on the photoluminescent response and morphology of Gd2O2S:Er,Yb is scrutinized, wherein the firing temperature was varied (1000 °C-1250 °C), keeping firing time and all other parameters constant. Interestingly, the nanostructures fired below 1150 °C showed nanorods of diameter ~200 nm and length ~1-2 µm, whereas firing at 1150 °C and above rendered nanospheres with small diameter, ~350 nm. Highly bright upconversion (UC) emission was achieved even under an extremely low excitation power density of 800 µW cm-2 from a 980 nm laser, and was comfortably visible to the naked eye. The incident power dependent studies disclosed increase in UC-emission intensity with increasing excitation power and a quasi-linear dependence on excitation power density. Intense characteristic UC-emission of Er3+ excited states at 525 nm, 556 nm and 668 nm were observed, and the green emission band was found to be dominant over the red band in intensity. Concurrently, downconversion (DC) emission at 556 nm and 669 nm was also exhibited under ultraviolet excitation (285 nm and 380 nm), with the red band being more powerful than the green, unlike UC-emission. Firing temperature dependent studies divulged the dependence of luminescence intensity on the firing cycle of the luminophore and formation of the respective luminescent phase. The UC-emission intensity was found to be maximum for samples fired at 1150 °C, whereas samples fired at 1000 °C showed the highest DC-emission intensity. The excitation and emission profile of single Gd2O2S:Er,Yb phosphor lying in the desired spectral region and as a dual spectral converter marks its possible application for enhanced harvesting of sunlight.
Lifetime testing UV LEDs for use in the LISA charge management system
NASA Astrophysics Data System (ADS)
Hollington, D.; Baird, J. T.; Sumner, T. J.; Wass, P. J.
2017-10-01
As a future charge management light source, UV light-emitting diodes (UV LEDs) offer far superior performance in a range of metrics compared to the mercury lamps used in the past. As part of a qualification program a number of short wavelength UV LEDs have been subjected to a series of lifetime tests for potential use on the laser interferometer space antenna (LISA) mission. These tests were performed at realistic output levels for both fast and continuous discharging in either a DC or pulsed mode of operation and included a DC fast discharge test spanning 50 days, a temperature dependent pulsed fast discharge test spanning 21 days and a pulsed continuous discharge test spanning 507 days. Two types of UV LED have demonstrated lifetimes equivalent to over 25 years of realistic mission usage with one type providing a baseline for LISA and the other offering a backup solution.
Gigley, Jason P.; Khan, Imtiaz A.
2011-01-01
Age associated impairment of immune function results in inefficient vaccination, tumor surveillance and increased severity of infections. Several alterations in adaptive immunity have been observed and recent studies report age related declines in innate immune responses to opportunistic pathogens including Encephalitozoon cuniculi. We previously demonstrated that conventional dendritic cells (cDC) from 9-month-old animals exhibit sub-optimal response to E. cuniculi infection, suggesting that age associated immune senescence begins earlier than expected. We focused this study on how age affects plasmacytoid DC (pDC) function. More specifically how aged pDC affect cDC function as we observed that the latter are the predominant activators of CD8 T cells during this infection. Our present study demonstrates that pDC from middle-aged mice (12 months) suppress young (8 week old) cDC driven CD8 T cell priming against E. cuniculi infection. The suppressive effect of pDC from older mice decreased maturation of young cDC via cell contact. Aged mouse pDC exhibited higher expression of PD-L1 and blockade of their interaction with cDC via this molecule restored cDC maturation and T cell priming. Furthermore, the PD-L1 dependent suppression of cDC T cell priming was restricted to effector function of antigen-specific CD8 T cells not their expansion. To the best of our knowledge, the data presented here is the first report highlighting a cell contact dependent, PD-L1 regulated, age associated defect in a DC subpopulation that results in a sub-optimal immune response against E. cuniculi infection. These results have broad implications for design of immunotherapeutic approaches to enhance immunity for aging populations. PMID:21695169
Gigley, Jason P; Khan, Imtiaz A
2011-01-01
Age associated impairment of immune function results in inefficient vaccination, tumor surveillance and increased severity of infections. Several alterations in adaptive immunity have been observed and recent studies report age related declines in innate immune responses to opportunistic pathogens including Encephalitozoon cuniculi. We previously demonstrated that conventional dendritic cells (cDC) from 9-month-old animals exhibit sub-optimal response to E. cuniculi infection, suggesting that age associated immune senescence begins earlier than expected. We focused this study on how age affects plasmacytoid DC (pDC) function. More specifically how aged pDC affect cDC function as we observed that the latter are the predominant activators of CD8 T cells during this infection. Our present study demonstrates that pDC from middle-aged mice (12 months) suppress young (8 week old) cDC driven CD8 T cell priming against E. cuniculi infection. The suppressive effect of pDC from older mice decreased maturation of young cDC via cell contact. Aged mouse pDC exhibited higher expression of PD-L1 and blockade of their interaction with cDC via this molecule restored cDC maturation and T cell priming. Furthermore, the PD-L1 dependent suppression of cDC T cell priming was restricted to effector function of antigen-specific CD8 T cells not their expansion. To the best of our knowledge, the data presented here is the first report highlighting a cell contact dependent, PD-L1 regulated, age associated defect in a DC subpopulation that results in a sub-optimal immune response against E. cuniculi infection. These results have broad implications for design of immunotherapeutic approaches to enhance immunity for aging populations.
Electrical and optical properties of warm dense beryllium along the principal Hugoniot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chuan-Ying; Wu, Ze-Qing; Li, Zi
2015-09-15
The electrical and optical properties of warm dense beryllium along the principal Hugoniot for temperatures from 0.95 eV to 10.65 eV and densities from 3.8 to 6.0 g/cm{sup 3} are investigated by using quantum molecular dynamics (QMD) simulations combined with the Kubo-Greenwood formulation. The dc conductivity σ{sub dc} and the ionization fraction are yielded by fitting the optical conductivity with the Drude-Smith model. The first-principles transport coefficients are compared with results of the Lee-More model and the Brysk model [Plasma Phys. 17, 473 (1975)]. Compared with the QMD result, the Lee-More model underestimates σ{sub dc} by 87% at low temperatures, approaches the QMDmore » result gradually with the temperature rising, yet still underestimates σ{sub dc} by 49% corresponding to the temperature 10.65 eV. In the whole temperature range under investigation, the Brysk model overestimates the electronic thermal conductivity κ while the Lee-More model underestimates κ. The differences are reduced with the temperature increasing. At the temperature 10.65 eV, the Brysk κ is still around twice as large as the QMD result, and the Lee-More κ is smaller than the QMD data by about 40%. In addition, QMD Rosseland mean opacities are shown to be three orders of magnitude larger than results of the average-atom model.« less
Pilch, D S; Brousseau, R; Shafer, R H
1990-01-01
We have stabilized the d(A)10.2d(T)10 and d(C+LT4C+3).d(G3A4G3).d(C3T4C3) triple helices with either NaCl or MgCl2 at pH 5.5. UV mixing curves demonstrate a 1:2 stoichiometry of purine to pyrimidine strands under the appropriate conditions of pH and ionic strength. Circular dichroic titrations suggest a possible sequence-independent spectral signature for triplex formation. Thermal denaturation profiles indicate the initial loss of the third strand followed by dissociation of the underlying duplex with increasing temperature. Depending on the base sequence and ionic conditions, the binding affinity of the third strand for the duplex at 25 degrees C is two to five orders of magnitude lower than that of the two strands forming the duplex. Thermodynamic parameters for triplex formation were determined for both sequences in the presence of 50 mM MgCl2 and/or 2.0 M NaCl. Hoogsteen base pairs are 0.22-0.64 kcal/mole less stable than Watson-Crick base pairs, depending on ionic conditions and base composition. C+.G and T.A Hoogsteen base pairs appear to have similar stability in the presence of Mg2+ ions at low pH. PMID:2216768
NASA Astrophysics Data System (ADS)
Ge, Wenwei; Li, Jiefang; Viehland, D.; Chang, Yunfei; Messing, Gary L.
2011-06-01
The structure, ferroelectric and piezoelectric properties of <001> textured (K0.5Na0.5)0.98Li0.02NbO3 ceramics were investigated as a function of temperature and dc bias E. X-ray diffraction revealed an orthorhombic (O) → tetragonal (T) polymorphic phase boundary (PPB). Phase coexistence was found near the PPB over a 30 °C temperature range, where the relative phase volume fractions changed with temperature. Furthermore, increasing E applied along the <001> texture direction resulted in a notable increase in the volume fraction of the T phase at the expense of the O phase, effectively shifting the O → T boundary to lower temperature. An enhancement in the piezoelectric properties was found to accompany this increase in the T volume fraction.
Electrical and thermoluminescence properties of γ-irradiated La2CuO4 crystals
NASA Astrophysics Data System (ADS)
El-Kolaly, M. A.; Abd El-Kader, H. I.; Kassem, M. E.
1994-12-01
Measurements of the electrical properties of unirradiated as well as ?-irradiated La2CuO4 crystals were carried out at different temperatures in the frequency range of 0.1-100 kHz. Thermoluminescence (TL) studies were also performed on such crystals in the temperature range of 300-600K. The conductivity of the unirradiated La2CuO4 crystals were found to obey the power law frequency dependence at each measured temperature below the transition temperature (Tc = 450K). The activation energies for conduction and dielectric relaxation time have been calculated. The TL response and the dc resistance were found to increase with ?-irradiation dose up to 9-10 kGy. The results showed that the ferroelastic domain walls of La2CuO4 crystal as well as its TL traps are sensitive to ?-raditaion. This material can be used in radiation measurements in the range 225 Gy-10 kGy.
Large optical second-order nonlinearity of poled WO3-TeO2 glass.
Tanaka, K; Narazaki, A; Hirao, K
2000-02-15
Second-harmonic generation, one of the second-order nonlinear optical properties of thermally and electrically poled WO>(3)-TeO>(2) glasses, has been examined. We poled glass samples with two thicknesses (0.60 and 0.86 mm) at various temperatures to explore the effects of external electric field strength and poling temperature on second-order nonlinearity. The dependence of second-harmonic intensity on the poling temperature is maximum at a specific poling temperature. A second-order nonlinear susceptibility of 2.1 pm/V was attained for the 0.60-mm-thick glass poled at 250 degrees C. This value is fairly large compared with those for poled silica and tellurite glasses reported thus far. We speculate that the large third-order nonlinear susceptibility of WO>(3)- TeO>(2) glasses gives rise to the large second-order nonlinearity by means of a X((2)) = 3X((3)) E(dc) process.
Superconducting properties of Nb-Cu nano-composites and nano-alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parab, Pradnya, E-mail: pradnyaprb@gmail.com; Kumar, Sanjeev; Bhui, Prabhjyot
The evolution of the superconducting transition temperature (T{sub c}) in nano-composite and nano-alloys of Nb-Cu, grown by DC magnetron co-sputtering are investigated. Microstructure of these films depends less strongly on the ratio of Nb:Cu but more on the growth temperature. At higher growth temperature, phase separated granular films of Nb and Cu were formed which showed superconducting transition temperatures (T{sub c}) of ~ 7.2±0.5 K, irrespective of the composition. Our results show that this is primarily influenced by the microstructure of the films determined during growth which rules out the superconducting proximity effect expected in these systems. At room temperaturemore » growth, films with nano-scale alloying were obtained at the optimal compositional range of 45-70 atomic% (At%) of Nb. These were also superconducting with a T{sub c} of 3.2 K.« less
Lu, Bin [Kenosha, WI; Luebke, Charles John [Sussex, WI; Habetler, Thomas G [Snellville, GA; Zhang, Pinjia [Atlanta, GA; Becker, Scott K [Oak Creek, WI
2011-12-27
A system and method for measuring and controlling stator winding temperature in an AC motor while idling is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of a multi-phase AC motor. The circuit further includes a plurality of switching devices to control current flow and terminal voltages in the multi-phase AC motor and a controller connected to the circuit. The controller is configured to activate the plurality of switching devices to create a DC signal in an output of the motor control device corresponding to an input to the multi-phase AC motor, determine or estimate a stator winding resistance of the multi-phase AC motor based on the DC signal, and estimate a stator temperature from the stator winding resistance. Temperature can then be controlled and regulated by DC injection into the stator windings.
NASA Technical Reports Server (NTRS)
Edie, P. C.
1981-01-01
Performance data on the Prestolite MTC-4001 series wound dc motor and General Electric EV-1 Chopper Controller is supplied for the electric vehicle manufacturer. Data are provided for both straight and chopped dc input to the motor, at 2 motor temperature levels. Testing was done at 6 voltage increments to the motor, and 2 voltage increments to the controller. Data results are presented in both tabular and graphical forms. Tabular information includes motor voltage and current input data, motor speed and torque output data, power data and temperature data. Graphical information includes torque-speed, motor power output-speed, torque-current, and efficiency-speed plots under the various operating conditions. The data resulting from this testing show the speed-torque plots to have the most variance with operating temperature. The maximum motor efficiency is between 76% and 82%, regardless of temperature or mode of operation.
Electric field modulated ferromagnetism in ZnO films deposited at room temperature
NASA Astrophysics Data System (ADS)
Bu, Jianpei; Liu, Xinran; Hao, Yanming; Zhou, Guangjun; Cheng, Bin; Huang, Wei; Xie, Jihao; Zhang, Heng; Qin, Hongwei; Hu, Jifan
2018-04-01
The ZnO film deposited at room temperature, which is composed of the amorphous-phase background plus a few nanograins or nanoclusters (about 1-2 nm), exhibits room temperature ferromagnetism (FM). Such FM is found to be connected with oxygen vacancies. For the Ta/ZnO/Pt device based on the medium layer ZnO deposited at room temperature, the saturation magnetization not only is modulated between high and low resistive states by electric voltage with DC loop electric current but also increases/decreases through adjusting the magnitudes of positive/negative DC sweeping voltage. Meanwhile, the voltage-controlled conductance quantization is observed in Ta/ZnO/Pt, accompanying the voltage-controlled magnetization. However, the saturation magnetization of the Ta/ZnO/Pt device becomes smaller under positive electric voltage and returns in some extent under negative electric voltage, when the DC loop electric current is not applied.
Material design of two-phase-coexisting niobate dielectrics by electrostatic adsorption
NASA Astrophysics Data System (ADS)
Fuchigami, Teruaki; Yoshida, Katsuya; Kakimoto, Ken-ichi
2017-10-01
A material design process using electrostatic adsorption was proposed to synthesize composite ceramics with a two-phase-coexisting structure. Supported particles were fabricated by the electrostatic adsorption of (Na,K)NbO3-SrTiO3 (NKN-ST) nanoparticles on (Na,K)NbO3-Ba2NaNb5O15 (NKN-BNN) particles. NKN-ST and NKN-BNN were well dispersed with no aggregate in NKN-ST/NKN-BNN ceramics synthesized using the supported particles in comparison with ceramics synthesized using a mixture obtained by simply mixing NKN-ST and NKN-BNN powder. The temperature dependence of dielectric constant is closely related to the composite structure and the dielectric constant was stable in a wide temperature range from room temperature to 400 °C. Capacitance for DC bias was also insensitive to temperature in the range of 0-2 kV/mm, and the change rate of the capacitance was within ±5% in the temperature range from room temperature to 200 °C.
NASA Astrophysics Data System (ADS)
Rogti, F.
2015-12-01
Space-charge behavior at dielectric interfaces in multilayer low-density polyethylene (LDPE) and fluorinated ethylene propylene (FEP) subjected to a direct-current (DC) field has been investigated as a function of temperature using the pulsed electroacoustic technique. A sandwich structure constituted by two nonidentical LDPE/FEP dielectric films was used to study the charging propensity of electrode/dielectric and dielectric/dielectric interfaces. The time dependence of the space-charge distribution was subsequently recorded at four temperatures, 20°C, 25°C, 40°C, and 60°C, under field (polarization) and short-circuit (depolarization) conditions. The experimental results demonstrate that temperature plays a significant role in the space-charge dynamics at the dielectric interface. It affects the charge injection, increases the charge mobility and electrical conductivity, and increases the density of shallow traps and trap filling. It is found that traps formed during polarization at high temperature do not remain stable after complete discharge of the multidielectric structure and when poled at low temperatures.
NASA Astrophysics Data System (ADS)
Bid, Aveek; Guha, Ayan; Raychaudhuri, A. K.
2003-05-01
We have studied low-frequency resistance fluctuations (noise) in a single crystal of the rare-earth perovskite manganite Pr0.63Ca0.37MnO3, which shows a charge-ordering transition at a temperature TCO≈245 K. The measurements were made across the charge-ordering transition covering the temperature range 200 K
Zhang, Yi; Chen, Guo; Liu, Zuqiang; Tian, Shenghe; Zhang, Jiying; Carey, Cara D; Murphy, Kenneth M; Storkus, Walter J; Falo, Louis D; You, Zhaoyang
2015-06-15
The development of effective cancer vaccines remains an urgent, but as yet unmet, clinical need. This deficiency is in part due to an incomplete understanding of how to best invoke dendritic cells (DC) that are crucial for the induction of tumor-specific CD8(+) T cells capable of mediating durable protective immunity. In this regard, elevated expression of the transcription factor X box-binding protein 1 (XBP1) in DC appears to play a decisive role in promoting the ability of DC to cross-present Ags to CD8(+) T cells in the therapeutic setting. Delivery of DNA vaccines encoding XBP1 and tumor Ag to skin DC resulted in increased IFN-α production by plasmacytoid DC (pDC) from skin/tumor draining lymph nodes and the cross-priming of Ag-specific CD8(+) T cell responses associated with therapeutic benefit. Antitumor protection was dependent on cross-presenting Batf3(+) DC, pDC, and CD8(+) T cells. CD103(+) DC from the skin/tumor draining lymph nodes of the immunized mice appeared responsible for activation of Ag-specific naive CD8(+) T cells, but were dependent on pDC for optimal effectiveness. Similarly, human XBP1 improved the capacity of human blood- and skin-derived DC to activate human T cells. These data support an important intrinsic role for XBP1 in DC for effective cross-priming and orchestration of Batf3(+) DC-pDC interactions, thereby enabling effective vaccine induction of protective antitumor immunity. Copyright © 2015 by The American Association of Immunologists, Inc.
Electrical properties of lunar soil sample 15301,38
NASA Technical Reports Server (NTRS)
Olhoeft, G. R.; Frisillo, A. L.; Strangway, D. W.
1974-01-01
Electrical property measurements have been made on an Apollo 15 lunar soil sample in ultrahigh vacuum from room temperature to 827 C for the frequency spectrum from 100 Hz through 1 MHz. The dielectric constant, the total ac loss tangent, and the dc conductivity were measured. The dc conductivity showed no thermal hysteresis, but an irreversible (in vacuum) thermal effect was found in the dielectric loss tangent on heating above 700 C and during the subsequent cooling. This appears to be related to several effects associated with lunar glass above 700 C. The sample also showed characteristic low-frequency dispersion in the dielectric constant with increasing temperature, presumably due to Maxwell-Wagner intergranular effects. The dielectric properties may be fitted to a model involving a Cole-Cole frequency distribution that is relatively temperature-independent below 200 C and follows a Boltzmann temperature distribution with an activation energy of 2.5 eV above 200 C. The dc conductivity is fitted by an exponential temperature distribution and becomes the dominant loss above 700 C.
NASA Astrophysics Data System (ADS)
Xu, C.; Gao, Z. W.; Lan, S.; Guo, H. X.; Gong, M. C.
2018-01-01
In the paper, existing research and operating experience was summarized. On the basis, the particularity of oil-paper insulation operation condition for converter transformer was combined for studying the influence of temperature on oil-paper insulation field intensity distribution of converter transformers under different AC contents within wide temperature scope (-40°C∼105°C). The law of temperature gradients on space charge accumulation was analyzed. The breakdown or flashover characteristics of typical oil-paper compound insulation structure under the action of DC, AC and AC-DC superposition voltage at different temperatures were explored. The design principles of converter transformer oil-paper insulation structures in alpine region was proposed. The principle was adjusted and optimized properly according to the operation temperature scope and withstood AC-DC proportion. The reliability of transformer operation was improved on the one hand, and the insulating medium can be rationally utilized for reducing the manufacturing cost of the transformer on the other hand.
Kokolus, Kathleen M.; Spangler, Haley M.; Povinelli, Benjamin J.; Farren, Matthew R.; Lee, Kelvin P.; Repasky, Elizabeth A.
2013-01-01
The ability of dendritic cells (DCs) to stimulate and regulate T cells is critical to effective anti-tumor immunity. Therefore, it is important to fully recognize any inherent factors which may influence DC function under experimental conditions, especially in laboratory mice since they are used so heavily to model immune responses. The goals of this report are to 1) briefly summarize previous work revealing how DCs respond to various forms of physiological stress and 2) to present new data highlighting the potential for chronic mild cold stress inherent to mice housed at the required standard ambient temperatures to influence baseline DCs properties in naïve and tumor-bearing mice. As recent data from our group shows that CD8+ T cell function is significantly altered by chronic mild cold stress and since DC function is crucial for CD8+ T cell activation, we wondered whether housing temperature may also be influencing DC function. Here we report that there are several significant phenotypical and functional differences among DC subsets in naïve and tumor-bearing mice housed at either standard housing temperature or at a thermoneutral ambient temperature, which significantly reduces the extent of cold stress. The new data presented here strongly suggests that, by itself, the housing temperature of mice can affect fundamental properties and functions of DCs. Therefore differences in basal levels of stress due to housing should be taken into consideration when interpreting experiments designed to evaluate the impact of additional variables, including other stressors on DC function. PMID:24575090
Kokolus, Kathleen M; Spangler, Haley M; Povinelli, Benjamin J; Farren, Matthew R; Lee, Kelvin P; Repasky, Elizabeth A
2014-01-01
The ability of dendritic cells (DCs) to stimulate and regulate T cells is critical to effective anti-tumor immunity. Therefore, it is important to fully recognize any inherent factors which may influence DC function under experimental conditions, especially in laboratory mice since they are used so heavily to model immune responses. The goals of this report are to 1) briefly summarize previous work revealing how DCs respond to various forms of physiological stress and 2) to present new data highlighting the potential for chronic mild cold stress inherent to mice housed at the required standard ambient temperatures to influence baseline DCs properties in naïve and tumor-bearing mice. As recent data from our group shows that CD8(+) T cell function is significantly altered by chronic mild cold stress and since DC function is crucial for CD8(+) T cell activation, we wondered whether housing temperature may also be influencing DC function. Here we report that there are several significant phenotypical and functional differences among DC subsets in naïve and tumor-bearing mice housed at either standard housing temperature or at a thermoneutral ambient temperature, which significantly reduces the extent of cold stress. The new data presented here strongly suggests that, by itself, the housing temperature of mice can affect fundamental properties and functions of DCs. Therefore differences in basal levels of stress due to housing should be taken into consideration when interpreting experiments designed to evaluate the impact of additional variables, including other stressors on DC function.
Electrical conductivity and modulus formulation in zinc modified bismuth boro-tellurite glasses
NASA Astrophysics Data System (ADS)
Dhankhar, Sunil; Kundu, R. S.; Dult, Meenakshi; Murugavel, S.; Punia, R.; Kishore, N.
2016-09-01
The ac conductivity of zinc modified tellurium based quaternary glasses having composition 60 TeO2-10 B2O3-(30 - x) Bi2O3-x ZnO; x = 10, 15, 20, 25 and 30 has been investigated in the frequency range 10-1-105 Hz and in temperature range 483-593 K. Frequency and temperature dependent ac conductivity found to obey Jonscher power law modified by Almond-West. DC conductivity, crossover frequency and frequency exponent have been estimated from the fitting of the experimental data of conductivity with Jonscher power law modified by Almond-West. The ac conductivity and its frequency exponent have been analyzed by various theoretical models. In presently studied glasses ac conduction takes place via tunneling of overlapping large polaron tunneling. Activation energy is found to be increased with increase in zinc content and dc conduction takes place via variable range hopping proposed by Mott with some modification suggested by Punia et al. The value of the stretched exponent ( β) obtained by fitting of M^' ' }} reveals the presence of non-Debye type relaxation. Scaling spectra of ac conductivity and electric modulus collapse into a single master curve for all compositions and temperatures, reveals the presence of composition and temperature independent conduction and relaxation process in these glasses. Activation energy of conduction ( W) and electric modulus ( E R ) are nearly equal, indicating that polaron have to overcome the same energy barrier during conduction as well as relaxation processes.
Antiferromagnetic exchange coupling measurements on single Co clusters
NASA Astrophysics Data System (ADS)
Wernsdorfer, W.; Leroy, D.; Portemont, C.; Brenac, A.; Morel, R.; Notin, L.; Mailly, D.
2009-03-01
We report on single-cluster measurements of the angular dependence of the low-temperature ferromagnetic core magnetization switching field in exchange-coupled Co/CoO core-shell clusters (4 nm) using a micro-bridge DC superconducting quantum interference device (μ-SQUID). It is observed that the coupling with the antiferromagnetic shell induces modification in the switching field for clusters with intrinsic uniaxial anisotropy depending on the direction of the magnetic field applied during the cooling. Using a modified Stoner-Wohlfarth model, it is shown that the core interacts with two weakly coupled and asymmetrical antiferromagnetic sublattices. Ref.: C. Portemont, R. Morel, W. Wernsdorfer, D. Mailly, A. Brenac, and L. Notin, Phys. Rev. B 78, 144415 (2008)
Retinoic acid: an educational "vitamin elixir" for gut-seeking T cells.
Mora, J Rodrigo; von Andrian, Ulrich H
2004-10-01
T cell priming by dendritic cells (DC) from gut-associated lymphoid tissues gives rise to effector cells with pronounced gut tropism. The mechanism for DC-dependent imprinting of gut specificity has remained unknown. New findings point to retinoic acid, which is uniquely produced by intestinal DC, but not by DC from other lymphoid organs.
Plasma characteristics of direct current enhanced cylindrical inductively coupled plasma source
NASA Astrophysics Data System (ADS)
Yue, HUA; Jian, SONG; Zeyu, HAO; Chunsheng, REN
2018-06-01
Experimental results of a direct current enhanced inductively coupled plasma (DCE-ICP) source which consists of a typical cylindrical ICP source and a plate-to-grid DC electrode are reported. With the use of this new source, the plasma characteristic parameters, namely, electron density, electron temperature and plasma uniformity, are measured by Langmuir floating double probe. It is found that DC discharge enhances the electron density and decreases the electron temperature, dramatically. Moreover, the plasma uniformity is obviously improved with the operation of DC and radio frequency (RF) hybrid discharge. Furthermore, the nonlinear enhancement effect of electron density with DC + RF hybrid discharge is confirmed. The presented observation indicates that the DCE-ICP source provides an effective method to obtain high-density uniform plasma, which is desirable for practical industrial applications.
An adaptive scale factor based MPPT algorithm for changing solar irradiation levels in outer space
NASA Astrophysics Data System (ADS)
Kwan, Trevor Hocksun; Wu, Xiaofeng
2017-03-01
Maximum power point tracking (MPPT) techniques are popularly used for maximizing the output of solar panels by continuously tracking the maximum power point (MPP) of their P-V curves, which depend both on the panel temperature and the input insolation. Various MPPT algorithms have been studied in literature, including perturb and observe (P&O), hill climbing, incremental conductance, fuzzy logic control and neural networks. This paper presents an algorithm which improves the MPP tracking performance by adaptively scaling the DC-DC converter duty cycle. The principle of the proposed algorithm is to detect the oscillation by checking the sign (ie. direction) of the duty cycle perturbation between the current and previous time steps. If there is a difference in the signs then it is clear an oscillation is present and the DC-DC converter duty cycle perturbation is subsequently scaled down by a constant factor. By repeating this process, the steady state oscillations become negligibly small which subsequently allows for a smooth steady state MPP response. To verify the proposed MPPT algorithm, a simulation involving irradiances levels that are typically encountered in outer space is conducted. Simulation and experimental results prove that the proposed algorithm is fast and stable in comparison to not only the conventional fixed step counterparts, but also to previous variable step size algorithms.
NASA Technical Reports Server (NTRS)
Mcnutt, Ralph L., Jr.
1988-01-01
The Voyager Plasma Science (PLS) instrument is capable of returning integral (DC) current measurements, similar in some respects to measurements made with a Langmuir probe or a retarding potential analyzer, although there are significant differences. The integral measurements were made during a calibration sequence in the solar wind, during Cruise Science Maneuvers, and within the magnetospheres of Jupiter and Saturn by Voyager 1. After the failure of the PLS experiment following the Saturn encounter, that instrument was placed in the DC return mode returning possibly usable data from early 1981 through early 1985. The DC return measurements are difficult to interpret and are above threshold values only for relatively large fluxes; the determination of the measured current level is dependent on the operating temperature of the preamplifiers which further complicates the interpretation. Nevertheless, these measurements can be used to determine the efficiency of the suppressor grid at preventing the loss of secondary electrons off the collector plate. Some DC return measurements have been invaluable in aiding in the interpretation of some electron plasma measurements not previously understood. It is found that electron spectra can be significantly modified by the presence of second generation secondary electrons produced by either first generation secondaries or photoelectrons on the support ring of the negative high voltage modulator grid within the instrument housing.
Energy Neutral Wireless Bolt for Safety Critical Fastening
Seyoum, Biruk B.
2017-01-01
Thermoelectric generators (TEGs) are now capable of powering the abundant low power electronics from very small (just a few degrees Celsius) temperature gradients. This factor along with the continuously lowering cost and size of TEGs, has contributed to the growing number of miniaturized battery-free sensor modules powered by TEGs. In this article, we present the design of an ambient-powered wireless bolt for high-end electro-mechanical systems. The bolt is equipped with a temperature sensor and a low power RF chip powered from a TEG. A DC-DC converter interfacing the TEG with the RF chip is used to step-up the low TEG voltage. The work includes the characterizations of different TEGs and DC-DC converters to determine the optimal design based on the amount of power that can be generated from a TEG under different loads and at temperature gradients typical of industrial environments. A prototype system was implemented and the power consumption of this system under different conditions was also measured. Results demonstrate that the power generated by the TEG at very low temperature gradients is sufficient to guarantee continuous wireless monitoring of the critical fasteners in critical systems such as avionics, motorsport and aerospace. PMID:28954432
Energy Neutral Wireless Bolt for Safety Critical Fastening.
Seyoum, Biruk B; Rossi, Maurizio; Brunelli, Davide
2017-09-26
Thermoelectric generators (TEGs) are now capable of powering the abundant low power electronics from very small (just a few degrees Celsius) temperature gradients. This factor along with the continuously lowering cost and size of TEGs, has contributed to the growing number of miniaturized battery-free sensor modules powered by TEGs. In this article, we present the design of an ambient-powered wireless bolt for high-end electro-mechanical systems. The bolt is equipped with a temperature sensor and a low power RF chip powered from a TEG. A DC-DC converter interfacing the TEG with the RF chip is used to step-up the low TEG voltage. The work includes the characterizations of different TEGs and DC-DC converters to determine the optimal design based on the amount of power that can be generated from a TEG under different loads and at temperature gradients typical of industrial environments. A prototype system was implemented and the power consumption of this system under different conditions was also measured. Results demonstrate that the power generated by the TEG at very low temperature gradients is sufficient to guarantee continuous wireless monitoring of the critical fasteners in critical systems such as avionics, motorsport and aerospace.
EBI1/CCR7 is a new member of dendritic cell chemokine receptor that is up-regulated upon maturation.
Yanagihara, S; Komura, E; Nagafune, J; Watarai, H; Yamaguchi, Y
1998-09-15
Dendritic cells (DC) that are stimulated with inflammatory mediators can maturate and migrate from nonlymphoid tissues to lymphoid organs to initiate T cell-mediated immune responses. This migratory step is closely related to the maturation of the DC. In an attempt to identify chemokine receptors that might influence migration and are selectively expressed in mature DC, we have discovered that the chemokine receptor, EBI1/CCR7, is strikingly up-regulated upon maturation in three distinct culture systems: 1) mouse bone marrow-derived DC, 2) mouse epidermal Langerhans cells, and 3) human monocyte-derived DC. The EBI1/CCR7 expressed in mature DC is functional because ELC/MIP-3beta, recently identified as a ligand of EBI1/CCR7, induces a rise in intracellular free calcium concentrations and directional migration of human monocyte-derived mature DC (HLA-DRhigh, CD1a(low), CD14-, CD25+, CD83+, and CD86high) in a dose-dependent manner, but not of immature DC (HLA-DRlow, CD1a(high), CD14-, CD25-, CD83-, and CD86-). In contrast, macrophage inflammatory protein-1alpha (MIP-1alpha), monocyte chemotactic protein-3 (MCP-3), and RANTES are active on immature DC but not on mature DC. Thus, it seems likely that MIP-1alpha, MCP-3, and RANTES can mediate the migration of immature DC located in peripheral sites, whereas ELC/MIP-3beta can direct the migration of Ag-carrying DC from peripheral inflammatory sites, where DC are stimulated to up-regulate the expression of EBI1/CCR7, to lymphoid organs. It is postulated that different chemokines and chemokine receptors are involved in DC migration in vivo, depending on the maturation state of DC.
Advanced Power Conditioning System
NASA Technical Reports Server (NTRS)
Johnson, N. L.
1971-01-01
The second portion of the advanced power conditioning system development program is reported. Five 100-watt parallel power stages with majority-vote-logic feedback-regulator were breadboarded and tested to the design goals. The input voltage range was 22.1 to 57.4 volts at loads from zero to 500 watts. The maximum input ripple current was 200 mA pk-pk (not including spikes) at 511 watts load; the output voltage was 56V dc with a maximum change of 0.89 volts for all variations of line, load, and temperature; the maximum output ripple was 320 mV pk-pk at 512 watts load (dependent on filter capacitance value); the maximum efficiency was 93.9% at 212 watts and 50V dc input; the minimum efficiency was 87.2% at 80-watt load and 50V dc input; the efficiency was above 90% from 102 watts to 372 watts; the maximum excursion for an 80-watt load change was 2.1 volts with a recovery time of 7 milliseconds; and the unit performed within regulation limits from -20 C to +85 C. During the test sequence, margin tests and failure mode tests were run with no resulting degradation in performance.
Characteristics of dielectric properties and conduction mechanism of TlInS2:Cu single crystals
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Ali, H. A. M.; El-Zaidia, E. F. M.
2013-12-01
Single crystals of TlInS2:Cu were grown by the modified Bridgman method. The dielectric behavior of TlInS2:Cu was investigated using the impedance spectroscopy technique. The real (ε1), imaginary (ε2) parts of complex dielectric permittivity and ac conductivity were measured in the frequency range (42-2×105) Hz with a variation of temperature in the range from 291 K to 483 K. The impedance data were presented in Nyquist diagrams for different temperatures. The frequency dependence of σtot (ω) follows the Jonscher's universal dynamic law with the relation σtot (ω)=σdc+Aωs, (where s is the frequency exponent). The mechanism of the ac charge transport across the layers of TlInS2:Cu single crystals was referred to the hopping over localized states near the Fermi level. The examined system exhibits temperature dependence of σac (ω), which showed a linear increase with the increase in temperature at different frequencies. Some parameters were calculated as: the density of localized states near the Fermi level, NF, the average time of charge carrier hopping between localized states, τ, and the average hopping distance, R.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LEWIS,L.H.; HARLAND,C.L.
2002-08-18
Insight into the anisotropy behavior of Nd{sub 2}Fe{sub 14}B may be obtained by measurements of the spin reorientation temperature T{sub S} where the overall magnetocrystalline anisotropy changes to allow the magnetic moment to relax from an easy axis to an easy cone configuration. DC magnetization measurements made at various applied fields on sintered and nanocrystalline forms of Nd{sub 2}Fe{sub 14}B indicate a T{sub S} that remains constant for the sintered sample but is strongly field-dependent for the nanocrystalline forms of the material. Specifically, T{sub S} decreases with decreasing applied fields of strengths 5 T, 1 T and 0.01 T. Amore » simple model that minimizes the total energy of the system leads to the conclusion that the spin reorientation temperature is insensitive to applied field. Therefore it is concluded that the apparent decrease in the system's spin reorientation temperatures with decrease in measuring field can be attributed to the nanoscale structure of the system and a difference in the anisotropy constants compared to their bulk values.« less
NASA Astrophysics Data System (ADS)
Gmati, Fethi; Fattoum, Arbi; Bohli, Nadra; Dhaoui, Wadia; Belhadj Mohamed, Abdellatif
2007-08-01
We report the results of studies on two series of polyaniline (PANI), doped with dichloroacetic (DCA) and trichloroacetic (TCA) acids, respectively, at various doping rates and obtained by the in situ polymerization method. Samples were characterized by x-ray diffraction, scanning electron microscopy and conductivity measurements. The direct current (dc) and alternating current (ac) electrical conductivities of PANI salts have been investigated in the temperature range 100-310 K and frequency range 7-106 Hz. The results of this study indicate better chain ordering and higher conductivity for PANI doped with TCA. The dc conductivity of all samples is suitably fitted to Mott's three-dimensional variable-range hopping (VRH) model. Different Mott parameters such as characteristic temperature T0, density of states at the Fermi level (N(EF)), average hopping energy (W) and the average hopping distance (R) have been evaluated. The dependence of such values on the dopant acid used is discussed. At high frequencies, the ac conductivity follows the power law σac(ω,T) = A(T)ωs(T,ω), which is characteristic for charge transport in disordered materials by hopping or tunnelling processes. The observed increase in the frequency exponent s with temperature suggests that the small-polaron tunnelling model best describes the dominant ac conduction mechanism. A direct correlation between conductivity, structure and morphology was obtained in our systems.
NASA Astrophysics Data System (ADS)
Spietz, Lafe Frederick
This thesis describes the development and testing of the shot noise thermometer, or SNT, a new kind of noise thermometer based on the combined thermal and shot noise of a tunnel junction in the non-superconducting state. In the shot noise thermometer, the noise power from a tunnel junction is measured as a function of the DC voltage across the junction, and the temperature is determined from the voltage dependence of the noise. This voltage dependence follows directly from the Fermi statistics of electrons in a metal, and is independent of the gain or noise temperature of the microwave amplifiers and detector used to measure the noise. Since the shot noise thermometer requires no calibration from an external temperature standard, it is a primary thermometer. In this thesis I demonstrate the operation of the shot noise thermometer over four orders of magnitude in temperature, from the base temperature of a dilution refrigerator to room temperature. Because of its wide range and the fact that it requires no outside calibration (it is a primary thermometer), the SNT is useful as a thermometer for general use in dilution refrigerators. In addition, the shot noise thermometer has sufficient accuracy to be useful as a potential temperature standard. This thesis discusses both of these applications as well as basic physics questions about the operation of the SNT and prospects for future development of the SNT technology.
Megawatt low-temperature DC plasma generator with divergent channels of gas-discharge tract
NASA Astrophysics Data System (ADS)
Gadzhiev, M. Kh.; Isakaev, E. Kh.; Tyuftyaev, A. S.; Yusupov, D. I.; Sargsyan, M. A.
2017-04-01
We have developed and studied a new effective megawatt double-unit generator of low-temperature argon plasma, which belongs to the class of dc plasmatrons and comprises the cathode and anode units with divergent gas-discharge channels. The generator has an efficiency of about 80-85% and ensures a long working life at operating currents up to 4000 A.
REPORT OF THE QUALIFICATION TESTING OF SNAP 10A FUSISTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holtwick, J.S. III; Nowell, V.P.
1963-07-31
Qualification testing of SNAP 10A fusistors was performed. Test operations included: visual inspection, insulation resistance, dielectric strength, and d-c resistance testing prior to subjecting the fusisters to environmental testing; opening-time testing prior to, during, and following vacuum and temperature testing; and insulation resistance, dielectric strength, and d-c resistance testing following environmental applications of temperature, vacuum, and sinusoidal vibration. (auth)
Exploring DC-Kerr effect of impurity doped quantum dots under the aegis of noise
NASA Astrophysics Data System (ADS)
Arif, Sk. Md.; Bera, Aindrila; Ghosh, Anuja; Ghosh, Manas
2018-02-01
Present study performs an extensive exploration of the profiles of DC-Kerr effect (DCKE) of doped GaAs quantum dot (QD) under the control of Gaussian white noise. A large number of important physical parameters have been varied over a range and the resultant changes in the DCKE profiles have been thoroughly analyzed. The said physical parameters comprise of electric field, magnetic field, confinement potential, dopant location, dopant potential, noise strength, aluminium concentration (only for Alx Ga1 - x As alloy QD), carrier density, relaxation time, position-dependent effective mass (PDEM), position-dependent dielectric screening function (PDDSF), anisotropy, hydrostatic pressure (HP) and temperature. The particular physical quantity being varied, presence of noise and its pathway of application, in combination, lead to emergence of diverse features in the DCKE profiles. As a technologically significant aspect we often find maximization of DCKE for some typical combinations as mentioned above. Presence of multiplicative noise, in general, causes greater shift and greater augmentation of DCKE profiles from a noise-free condition than its additive counterpart. The outcomes of the study indicate ample scope of tailoring DCKE of doped QD systems in presence of noise by minute adjustment of several control parameters.
Evidence for Jahn-Teller distortions at the antiferromagnetic transition in LaTiO3.
Hemberger, J; Krug von Nidda, H-A; Fritsch, V; Deisenhofer, J; Lobina, S; Rudolf, T; Lunkenheimer, P; Lichtenberg, F; Loidl, A; Bruns, D; Büchner, B
2003-08-08
LaTiO3 is known as a Mott insulator which orders antiferromagnetically at T(N)=146 K. We report on results of thermal expansion and temperature dependent x-ray diffraction together with measurements of the heat capacity, electrical transport measurements, and optical spectroscopy in untwinned single crystals. At T(N) significant structural changes appear, which are volume conserving. Concomitant anomalies are also observed in the dc resistivity, in bulk modulus, and optical reflectivity spectra. We interpret these experimental observations as evidence of orbital order.
AC Loss Minimization in High Temperature Superconductors - U.K.
2003-11-07
high currents in high magnetic fields. The DC properties are very attractive, but to reduce the AC losses it is necessary to use a narrow conductor... NiFe in the whole magnetic field region (goHext=0.01 T - 6 T) roughly by a factor of 2, reflecting the sample Jc(B) dependencies. Also the magnetic ...ratio of the tape, there is no visible effect in a parallel magnetic field. Hysteresis losses in metallic substrates - CeO2:Pd/ NiFe and CeO2:Pd/NiCrW
Film-Evaporation MEMS Tunable Array for Picosat Propulsion and Thermal Control
NASA Technical Reports Server (NTRS)
Alexeenko, Alina; Cardiff, Eric; Martinez, Andres; Petro, Andrew
2015-01-01
The Film-Evaporation MEMS Tunable Array (FEMTA) concept for propulsion and thermal control of picosats exploits microscale surface tension effect in conjunction with temperature- dependent vapor pressure to realize compact, tunable and low-power thermal valving system. The FEMTA is intended to be a self-contained propulsion unit requiring only a low-voltage DC power source to operate. The microfabricated thermal valving and very-high-integration level enables fast high-capacity cooling and high-resolution, low-power micropropulsion for picosats that is superior to existing smallsat micropropulsion and thermal management alternatives.
The Orai-1 and STIM-1 Complex Controls Human Dendritic Cell Maturation
Félix, Romain; Crottès, David; Delalande, Anthony; Fauconnier, Jérémy; Lebranchu, Yvon; Le Guennec, Jean-Yves; Velge-Roussel, Florence
2013-01-01
Ca2+ signaling plays an important role in the function of dendritic cells (DC), the professional antigen presenting cells. Here, we described the role of Calcium released activated (CRAC) channels in the maturation and cytokine secretion of human DC. Recent works identified STIM1 and Orai1 in human T lymphocytes as essential for CRAC channel activation. We investigated Ca2+ signaling in human DC maturation by imaging intracellular calcium signaling and pharmalogical inhibitors. The DC response to inflammatory mediators or PAMPs (Pathogen-associated molecular patterns) is due to a depletion of intracellular Ca2+ stores that results in a store-operated Ca2+ entry (SOCE). This Ca2+ influx was inhibited by 2-APB and exhibited a Ca2+permeability similar to the CRAC (Calcium-Released Activated Calcium), found in T lymphocytes. Depending on the PAMPs used, SOCE profiles and amplitudes appeared different, suggesting the involvement of different CRAC channels. Using siRNAi, we identified the STIM1 and Orai1 protein complex as one of the main pathways for Ca2+ entry for LPS- and TNF-α-induced maturation in DC. Cytokine secretions also seemed to be SOCE-dependent with profile differences depending on the maturating agents since IL-12 and IL10 secretions appeared highly sensitive to 2-APB whereas IFN-γ was less affected. Altogether, these results clearly demonstrate that human DC maturation and cytokine secretions depend on SOCE signaling involving STIM1 and Orai1 proteins. PMID:23700407
Conduction in Carbon Nanotubes Through Metastable Resonant States
NASA Astrophysics Data System (ADS)
Zhang, Zhengfan; Chandrasekhar, Venkat; Dikin, Dmitriy A.; Ruoff, Rodney S.
2004-03-01
We have made transport measurements on individual multi-walled carbon nanotubes [1]. The measurements show that the presence or movement of impurities or defects in the carbon nanotube can radically change its low temperature transport characteristics. The low temperature conductance can either decrease monotonically with decreasing temperature, or show a sudden increase at very low temperatures, sometimes in the same sample. This unusual behavior of the temperature dependence of the conductance is correlated with large variations in the differential conductance as a function of the dc voltage across the wire. The effect is well described as arising from quantum interference of conduction channels corresponding to direct transmission through the nanotube and resonant transmission through a discrete electron state, the so-called Fano resonance. We thank the group of R. P. H. Chang for providing us the nanotubes used in these experiments. Funding for this work was provided by a NASA/MSFC Phase II SBIR, Contract No. NAS8-02102, through a subcontract from Lytec, LLC. [1] Z. Zhang et al., cond-mat/0311360.
Yu, Xiudao; Gowda, Siddarame; Killiny, Nabil
2017-09-01
Asian citrus psyllid, Diaphorina citri Kuwayama, is the most important economic pest of citrus because it transmits Candidatus Liberibacter asiaticus (CLas), the causal agent of huanglongbing (HLB). Silencing genes by RNA interference (RNAi) is a promising approach for controlling D. citri. RNAi-based insect management strategies depend on the selection of suitable target genes. The muscle protein 20 gene DcMP20 was characterized from D. citri in an effort to impair proper muscle development through RNAi. Phylogenetic analysis showed that DcMP20 was more closely related to MP20 from Drosophila compared with its counterpart from other insect species. Developmental expression analysis revealed that transcription of DcMP20 was development dependent and reached a maximum level in the last instar (fourth-fifth) of the nymphal stage. The extent of RNAi in D. citri was dose dependent, with dsRNA-DcMP20 at 75 ng µL -1 being sufficient to knock down endogenous DcMP20 expression, which resulted in significant mortality and reduced body weight that positively correlated with the silencing of DcMP20. No effect was found when dsRNA-GFP or water was used, indicating the specific effect of dsRNA-DcMP20. Our results suggest that dsRNA can be delivered to D. citri through soaking, and DcMP20 is an effective RNAi target to be used in the management of D. citri. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Lee, Kyung Min; Tondiglia, Vincent P.; Bunning, Timothy J.; White, Timothy J.
2017-02-01
Recently, we reported direct current (DC) field controllable electro-optic (EO) responses of negative dielectric anisotropy polymer stabilized cholesteric liquid crystals (PSCLCs). A potential mechanism is: Ions in the liquid crystal mixtures are trapped in/on the polymer network during the fast photopolymerization process, and the movement of ions by the application of the DC field distorts polymer network toward the negative electrode, inducing pitch variation through the cell thickness, i.e., pitch compression on the negative electrode side and pitch expansion on positive electrode side. As the DC voltage is directly applied to a target voltage, charged polymer network is deformed and the reflection band is tuned. Interestingly, the polymer network deforms further (red shift of reflection band) with time when constantly applied DC voltage, illustrating DC field induced time dependent deformation of polymer network (creep-like behavior). This time dependent reflection band changes in PSCLCs are investigated by varying the several factors, such as type and concentration of photoinitiators, liquid crystal monomer content, and curing condition (UV intensity and curing time). In addition, simple linear viscoelastic spring-dashpot models, such as 2-parameter Kelvin and 3-parameter linear models, are used to investigate the time-dependent viscoelastic behaviors of polymer networks in PSCLC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudheesh, V. D.; Vinesh, A.; Lakshmi, N.
Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} has been prepared by self combustion method and studied using X-ray diffraction, Moessbauer spectroscopy and DC magnetization techniques. X-ray diffractogram shows highly crystalline nano sized sample with no impurity phases. The room temperature Moessbauer and magnetization measurements show the co-existence of superparamagnetic and ferrimagnetic particles in the sample. The presence of inter particle interaction is confirmed from the {delta}M(H) curve at 20K. The dependence of magnetic moment below blocking temperature in the field cooling curve indicates that the inter particle interaction is weak in the as prepared sample.
Kitagaki, Hiroshi; Ito, Kiyoshi; Shimoi, Hitoshi
2004-10-01
Dcw1p and Dfg5p in Saccharomyces cerevisiae are homologous proteins that were previously shown to be involved in cell wall biogenesis and to be essential for growth. Dcw1p was found to be a glycosylphosphatidylinositol-anchored membrane protein. To investigate the roles of these proteins in cell wall biogenesis and cell growth, we constructed mutant alleles of DCW1 by random mutagenesis, introduced them into a Deltadcw1 Deltadfg5 background, and isolated a temperature-sensitive mutant, DC61 (dcw1-3 Deltadfg5). When DC61 cells were incubated at 37 degrees C, most cells had small buds, with areas less than 20% of those of the mother cells. This result indicates that DC61 cells arrest growth with small buds at 37 degrees C. At 37 degrees C, fewer DC61 cells had 1N DNA content and most of them still had a single nucleus located apart from the bud neck. In addition, in DC61 cells incubated at 37 degrees C, bipolar spindles were not formed. These results indicate that DC61 cells, when incubated at 37 degrees C, are cell cycle arrested after DNA replication and prior to the separation of spindle pole bodies. The small buds of DC61 accumulated chitin in the bud cortex, and some of them were lysed, which indicates that they had aberrant cell walls. A temperature-sensitive dfg5 mutant, DF66 (Deltadcw1 dfg5-29), showed similar phenotypes. DCW1 and DFG5 mRNA levels peaked in the G1 and S phases, respectively. These results indicate that Dcw1p and Dfg5p are involved in bud formation through their involvement in biogenesis of the bud cell wall.
2007-08-15
thermophilic ) and low (psychrophilic). A model protein used in this study, S- adenosyl-methionine decarboxylase (AdoMetDC), is a key enzyme in the polyamine...experimental characterization of the thermophilic AdoMtDC from Termatoga maritima. The processing of TmAdoMetDC that leads to catalytically active enzyme is... thermophilic organisms. One of the open questions of structural biology is the understanding of the mechanisms by which enzymes adapt to extreme temperatures
Bernal, Carmen E.; Zorro, Maria M.; Sierra, Jelver; Gilchrist, Katherine; Botero, Jorge H.; Baena, Andres; Ramirez-Pineda, Jose R.
2016-01-01
Microsporidia are a group of intracellular pathogens causing self-limited and severe diseases in immunocompetent and immunocompromised individuals, respectively. A cellular type 1 adaptive response, mediated by IL-12, IFNγ, CD4+, and CD8+ T cells has been shown to be essential for host resistance, and dendritic cells (DC) play a key role at eliciting anti-microsporidial immunity. We investigated the in vitro response of DC and DC precursors/progenitors to infection with Encephalitozoon intestinalis (Ei), a common agent of human microsporidosis. Ei-exposed DC cultures up-regulated the surface expression of MHC class II and the costimulatory molecules CD86 and CD40, only when high loads of spores were used. A vigorous secretion of IL-6 but not of IL-1β or IL-12p70 was also observed in these cultures. Ei-exposed DC cultures consisted of immature infected and mature bystander DC, as assessed by MHC class II and costimulatory molecules expression, suggesting that intracellular Ei spores deliver inhibitory signals in DC. Moreover, Ei selectively inhibited the secretion of IL-12p70 in LPS-stimulated DC. Whereas Ei-exposed DC promoted allogeneic naïve T cell proliferation and IL-2 and IFNγ secretion in DC-CD4+ T cell co-cultures, separated co-cultures with bystander or infected DCs showed stimulation or inhibition of IFNγ secretion, respectively. When DC precursors/progenitors were exposed to Ei spores, a significant inhibition of DC differentiation was observed without shifting the development toward cells phenotypically or functionally compatible with myeloid-derived suppressor cells. Neutralization experiments demonstrated that this inhibitory effect is IL-6-dependent. Altogether this investigation reveals a novel potential mechanism of immune escape of microsporidian parasites through the modulation of DC differentiation and maturation. PMID:26870700
Matta, Benjamin M.; Raimondi, Giorgio; Rosborough, Brian R.; Sumpter, Tina L.; Thomson, Angus W.
2012-01-01
Plasmacytoid (p) dendritic cells (DC) are highly-specialized APC that, in addition to their well-recognized role in anti-viral immunity, also regulate immune responses. Liver-resident pDC are considerably less immunostimulatory than those from secondary lymphoid tissues and are equipped to promote immune tolerance/regulation through various mechanisms. IL-27 is an IL-12-family cytokine that regulates the function of both APC and T cells, although little is known about its role in pDC immunobiology. In this study, we show that mouse liver pDC express higher levels of IL-27p28 and EBV-induced protein (Ebi)3 compared to splenic pDC. Both populations of pDC express the IL-27Rα/WSX-1; however, only liver pDC significantly upregulate expression of the co-regulatory molecule B7 homolog-1 (B7-H1) in response to IL-27. Inhibition of STAT3 activation completely abrogates IL-27-induced upregulation of B7-H1 expression on liver pDC. Liver pDC treated with IL-27 increase the percentage of CD4+Foxp3+ T cells in MLR, which is dependent upon expression of B7-H1. pDC from Ebi3-deficient mice lacking functional IL-27, show increased capacity to stimulate allogeneic T cell proliferation and IFN-γ production in MLR. Liver but not spleen pDC suppress delayed-type hypersensitivity responses to OVA, an effect that is lost with Ebi3−/− and B7-H1−/− liver pDC compared to wild-type (WT) liver pDC. These data suggest that IL-27 signaling in pDC promotes their immunoregulatory function and that IL-27 produced by pDC contributes to their capacity to regulate immuneresponses in vitro and in vivo. PMID:22508931
NASA Astrophysics Data System (ADS)
Jiang, C.; Rumyantsev, S. L.; Samnakay, R.; Shur, M. S.; Balandin, A. A.
2015-02-01
We report on fabrication of MoS2 thin-film transistors (TFTs) and experimental investigations of their high-temperature current-voltage characteristics. The measurements show that MoS2 devices remain functional to temperatures of at least as high as 500 K. The temperature increase results in decreased threshold voltage and mobility. The comparison of the direct current (DC) and pulse measurements shows that the direct current sub-linear and super-linear output characteristics of MoS2 thin-films devices result from the Joule heating and the interplay of the threshold voltage and mobility temperature dependences. At temperatures above 450 K, a kink in the drain current occurs at zero gate voltage irrespective of the threshold voltage value. This intriguing phenomenon, referred to as a "memory step," was attributed to the slow relaxation processes in thin films similar to those in graphene and electron glasses. The fabricated MoS2 thin-film transistors demonstrated stable operation after two months of aging. The obtained results suggest new applications for MoS2 thin-film transistors in extreme-temperature electronics and sensors.
Multiferroic properties of Indian natural ilmenite
NASA Astrophysics Data System (ADS)
Acharya, Truptimayee; Choudhary, R. N. P.
2017-03-01
In this communication, the main results and analysis of extensive studies of electric and magnetic characteristics (relative dielectric constant, tangent loss, electric polarization, electric transport, impedance, magnetic polarization and magneto-electric coupling coefficient) of Indian natural ilmenite (NI) have been presented. Preliminary structural analysis was studied by Rietveld refinement of room temperature XRD data, which suggests the rhombohedral crystal system of NI. Maxwell-Wagner mechanism was used to explain the nature of the frequency dependence of the relative dielectric constant. The impedance analysis reveals that below 270 °C, only the bulk contributes, whereas at higher temperature, both grain boundary and the bulk contribute to the resistive characteristics of the material. The magnitude of the depression angles of the semicircles in the Nyquist plot has been estimated. The correlated barrier hopping model has been used to explain the frequency dependence of ac conductivity of the material. The activation energy of the compound has been estimated using the temperature dependence of dc conductivity plot. The obtained polarization hysteresis loops manifest improper ferroelectric behavior of NI. The existence M-H hysteresis loop supports anti-ferromagnetism in the studied material. The magneto-electric voltage coupling coefficient is found to be 0.7 mV/cm Oe. Hence, other than dielectric constant, electric polarization, magnetization and magneto-electric studies support the existence of multiferroic properties in NI.
Characterization testing of Lockheed Martin high-power micro pulse tube cryocooler
NASA Astrophysics Data System (ADS)
McKinley, I. M.; Hummel, C. D.; Johnson, D. L.; Rodriguez, J. I.
2017-12-01
This paper describes the thermal vacuum, microphonics, magnetics, and radiation testing and results of a Lockheed Martin high-power micro pulse tube cryocooler. The thermal performance of the microcooler was measured in vacuum for heat reject temperatures between 185 and 300 K. The cooler was driven with a Chroma 61602 AC power source for input powers ranging from 10 to 60 W and drive frequency between 115 and 140 Hz during thermal performance testing. The optimal drive frequency was dependent on both input power and heat reject temperature. In addition, the microphonics of the cooler were measured with the cooler driven by Iris Technologies LCCE-2 and HP-LCCE drive electronics for input powers ranging from 10 to 60 W and drive frequency between 135 and 145 Hz. The exported forces were strongly dependent on input power while only weakly dependent on the drive frequency. Moreover, the exported force in the compressor axis was minimized by closed loop control with the HP-LCCE. The cooler also survived a 500 krad radiation dose while being continuously operated with 30 W of input power at 220 K heat rejection temperature in vacuum. Finally, the DC and AC magnetic fields around the cooler were measured at various locations.
Campos, M. Doroteia; Nogales, Amaia; Cardoso, Hélia G.; Kumar, Sarma R.; Nobre, Tânia; Sathishkumar, Ramalingam; Arnholdt-Schmitt, Birgit
2016-01-01
Stress-adaptive cell plasticity in target tissues and cells for plant biomass growth is important for yield stability. In vitro systems with reproducible cell plasticity can help to identify relevant metabolic and molecular events during early cell reprogramming. In carrot, regulation of the central root meristem is a critical target for yield-determining secondary growth. Calorespirometry, a tool previously identified as promising for predictive growth phenotyping has been applied to measure the respiration rate in carrot meristem. In a carrot primary culture system (PCS), this tool allowed identifying an early peak related with structural biomass formation during lag phase of growth, around the 4th day of culture. In the present study, we report a dynamic and correlated expression of carrot AOX genes (DcAOX1 and DcAOX2a) during PCS lag phase and during exponential growth. Both genes showed an increase in transcript levels until 36 h after explant inoculation, and a subsequent down-regulation, before the initiation of exponential growth. In PCS growing at two different temperatures (21°C and 28°C), DcAOX1 was also found to be more expressed in the highest temperature. DcAOX genes’ were further explored in a plant pot experiment in response to chilling, which confirmed the early AOX transcript increase prior to the induction of a specific anti-freezing gene. Our findings point to DcAOX1 and DcAOX2a as being reasonable candidates for functional marker development related to early cell reprogramming. While the genomic sequence of DcAOX2a was previously described, we characterize here the complete genomic sequence of DcAOX1. PMID:26858746
Tokita, Daisuke; Sumpter, Tina L.; Raimondi, Giorgio; Zahorchak, Alan F.; Wang, Zhiliang; Nakao, Atsunori; Mazariegos, George V.; Abe, Masanori; Thomson, Angus W.
2008-01-01
Background/Aims The liver is comparatively rich in plasmacytoid (p) dendritic cells (DC),- innate immune effector cells that are also thought to play key roles in the induction and regulation of adaptive immunity. Methods Liver and spleen pDC were purified from fms-like tyrosine kinase ligand-reated control or lipopolysaccharide-injected C57BL/10 mice. Flow cytometric and molecular biologic assays were used to characterize their function and interaction with naturally-occurring regulatory T cells (Treg). Results While IL-10 production was greater for freshly-isolated liver compared with splenic pDC, the former produced less bioactive IL-12p70. Moreover, liver pDC expressed a low Delta4/Jagged1 Notch ligand ratio, skewed towards T helper 2 cell differentiation/cytokine production, and promoted allogeneic CD4+ T cell apoptosis. T cell proliferation in response to liver pDC was, however, enhanced by blocking IL-10 function at the initiation of cultures. In the absence of naturally occurring CD4+CD25+ regulatory T cells, similar levels of T cell proliferation were induced by liver and spleen pDC and the pro-apoptotic activity of liver pDC was reversed. Conclusion The inferior T cell allostimulatory activity of in vivo-stimulated liver pDC may depend on the presence and function of Treg, a property that may contribute to inherent liver tolerogenicity. PMID:18926588
NASA Technical Reports Server (NTRS)
Curren, A. N.
1978-01-01
A description of the methods used to measure component temperatures and heat-rejection rates in a simulated space environment on output stage tubes (OST's) developed for the Communications Technology Satellite is presented along with summaries of experimentally determined values. The OST's were operated over the entire anticipated operating drive range, from the dc beam (zero drive) condition to the 6-db overdrive condition. The baseplate temperature was varied from -10 to 58 C with emphasis placed on the testing done at 45 C, the normal anticipated operating temperature. The heat-rejection rate of the OST baseplate ranged from 7.6 W at the dc beam condition to 184.5 W at the 6-db overdrive condition; the heat-rejection rate of the multistage depressed collector (MDC) cover ranged from 192.2 to 155.9 W for the same conditions. The maximum OST temperature measured on the MDC cover was 227 C during a dc beam test. The minimum temperature measured, also on the MDC cover, was -67.5 C at the end of an extended simulated eclipse test period. No effects were observed on the OST thermal characteristics due to vibration testing or temperature-reversal cycle testing.
Method and device for ion mobility separations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Yehia M.; Garimella, Sandilya V. B.; Smith, Richard D.
2017-07-11
Methods and devices for ion separations or manipulations in gas phase are disclosed. The device includes a single non-planar surface. Arrays of electrodes are coupled to the surface. A combination of RF and DC voltages are applied to the arrays of electrodes to create confining and driving fields that move ions through the device. The DC voltages are static DC voltages or time-dependent DC potentials or waveforms.
Investigation of short-circuit failure mechanisms of SiC MOSFETs by varying DC bus voltage
NASA Astrophysics Data System (ADS)
Namai, Masaki; An, Junjie; Yano, Hiroshi; Iwamuro, Noriyuki
2018-07-01
In this study, the experimental evaluation and numerical analysis of short-circuit mechanisms of 1200 V SiC planar and trench MOSFETs were conducted at various DC bus voltages from 400 to 800 V. Investigation of the impact of DC bus voltage on short-circuit capability yielded results that are extremely useful for many existing power electronics applications. Three failure mechanisms were identified in this study: thermal runaway, MOS channel current following device turn-off, and rupture of the gate oxide layer (gate oxide layer damage). The SiC MOSFETs experienced lattice temperatures exceeding 1000 K during the short-circuit transient; as Si insulated gate bipolar transistors (IGBTs) are not typically subject to such temperatures, the MOSFETs experienced distinct failure modes, and the mode experienced was significantly influenced by the DC bus voltage. In conclusion, suggestions regarding the SiC MOSFET design and operation methods that would enhance device robustness are proposed.
Study of the physical discharge properties of a Ar/O2 DC plasma jet
NASA Astrophysics Data System (ADS)
Barkhordari, A.; Ganjovi, A.; Mirzaei, I.; Falahat, A.
2018-03-01
In this paper, the physical properties of plasma discharge in a manufactured DC plasma jet operating with the Ar/O2 gaseous mixture are studied. Moreover, the optical emission spectroscopy technique is used to perform the experimental measurements. The obtained emission spectra are analyzed and, the plasma density, rotational, vibrational and electronic temperature are calculated. The NO emission lines from {NO }γ( A2 Σ^{+} \\to {X}2 Πr ) electronic transition are observed. It is seen that, at the higher argon contributions in Ar/O2 gaseous mixture, the emission intensities from argon ions will increase. Moreover, while the vibrational and excitation temperatures are increased at the higher input DC currents, they will decrease at the higher Ar percentages in the Ar/O2 gaseous mixture. Furthermore, at the higher DC currents and Ar contributions, both the plasma electron density and dissociation fraction of oxygen atoms are increased.
Kim, Kyu Sik; Pham, Thanh Nhan Nguyen; Jin, Chun-Ji; Umeyama, Akemi; Shoji, Noboru; Hashimoto, Toshihiro; Lee, Je-Jung; Takei, Masao
2011-01-01
Uncarinic acid C (URC) is triterpene isolated from Uncaria rhynchophylla and is a pharmacologically active substance. The induction of dendritic cells (DC) is critical for the induction of Ag-specific T lymphocyte responses and may be essential for the development of human vaccines relying on T cell immunity. DC might be a potential target for URC. We demonstrate that URC activates human DC as documented by phenotypic and functional maturation, and altered cytokine production. The expression of CD1a, CD38, CD40, CD54, CD80, CD83, CD86, HLA-DR and CCR7 on URC-primed DC was enhanced. The production of IL-12p70 by URC-primed DC was higher than that of lipopolysaccharide (LPS)-primed DC. The production of IL-12p70 by URC-primed DC was inhibited by the anti-Toll-like receptor 4 (TLR4) monoclonal antibody (mAb), but partially abolished by anti-TLR2 mAb. mRNA coding for TLR2 and TLR4 was expressed in URC-primed DC. URC-primed DC induced the NF-κB transcription factor. Naïve T cells co-cultured with URC-primed DC turned into typical Th1 cells that produced large quantities of IFN-γ depending on IL-12 secretion. URC enhanced the T cell stimulatory capacity in an allo MLR. In the cytotoxic T-lymphocyte assay (CTL) assay, DNA fragmentation assay and 51Cr release on URC-primed DC were more augmented than that of TNF-α-primed DC. DC matured with URC had an intermediate migratory capacity towards CCL19 and CCL21. These results suggest that URC modulates DC function in a fashion that favors Th1 polarization via the activation of IL-12p70 dependent on TLR4 signaling, and may be used on DC-based vaccine for cancer immunotherapy. PMID:21499439
Kim, Kyu Sik; Pham, Thanh Nhan Nguyen; Jin, Chun-Ji; Umeyama, Akemi; Shoji, Noboru; Hashimoto, Toshihiro; Lee, Je-Jung; Takei, Masao
2011-02-28
Uncarinic acid C (URC) is triterpene isolated from Uncaria rhynchophylla and is a pharmacologically active substance. The induction of dendritic cells (DC) is critical for the induction of Ag-specific T lymphocyte responses and may be essential for the development of human vaccines relying on T cell immunity. DC might be a potential target for URC. We demonstrate that URC activates human DC as documented by phenotypic and functional maturation, and altered cytokine production. The expression of CD1a, CD38, CD40, CD54, CD80, CD83, CD86, HLA-DR and CCR7 on URC-primed DC was enhanced. The production of IL-12p70 by URC-primed DC was higher than that of lipopolysaccharide (LPS)-primed DC. The production of IL-12p70 by URC-primed DC was inhibited by the anti-Toll-like receptor 4 (TLR4) monoclonal antibody (mAb), but partially abolished by anti-TLR2 mAb. mRNA coding for TLR2 and TLR4 was expressed in URC-primed DC. URC-primed DC induced the NF-κB transcription factor. Naïve T cells co-cultured with URC-primed DC turned into typical Th1 cells that produced large quantities of IFN-γ depending on IL-12 secretion. URC enhanced the T cell stimulatory capacity in an allo MLR. In the cytotoxic T-lymphocyte assay (CTL) assay, DNA fragmentation assay and (51)Cr release on URC-primed DC were more augmented than that of TNF-α-primed DC. DC matured with URC had an intermediate migratory capacity towards CCL19 and CCL21. These results suggest that URC modulates DC function in a fashion that favors Th1 polarization via the activation of IL-12p70 dependent on TLR4 signaling, and may be used on DC-based vaccine for cancer immunotherapy.
Ion transport properties of magnesium bromide/dimethyl sulfoxide non-aqueous liquid electrolyte
Sheha, E.
2015-01-01
Nonaqueous liquid electrolyte system based dimethyl sulfoxide DMSO and magnesium bromide (MgBr2) is synthesized via ‘Solvent-in-Salt’ method for the application in magnesium battery. Optimized composition of MgBr2/DMSO electrolyte exhibits high ionic conductivity of 10−2 S/cm at ambient temperature. This study discusses different concentrations from 0 to 5.4 M of magnesium salt, representing low, intermediate and high concentrations of magnesium salt which are examined in frequency dependence conductivity studies. The temperature dependent conductivity measurements have also been carried out to compute activation energy (Ea) by least square linear fitting of Arrhenius plot: ‘log σ − 1/T. The transport number of Mg2+ ion determined by means of a combination of d.c. and a.c. techniques is ∼0.7. A prototype cell was constructed using nonaqueous liquid electrolyte with Mg anode and graphite cathode. The Mg/graphite cell shows promising cycling. PMID:26843967
Electrical resistivity of CuAlMo thin films grown at room temperature by dc magnetron sputtering
NASA Astrophysics Data System (ADS)
Birkett, Martin; Penlington, Roger
2016-07-01
We report on the thickness dependence of electrical resistivity of CuAlMo films grown by dc magnetron sputtering on glass substrates at room temperature. The electrical resistance of the films was monitored in situ during their growth in the thickness range 10-1000 nm. By theoretically modelling the evolution of resistivity during growth we were able to gain an insight into the dominant electrical conduction mechanisms with increasing film thickness. For thicknesses in the range 10-25 nm the electrical resistivity is found to be a function of the film surface roughness and is well described by Namba’s model. For thicknesses of 25-40 nm the experimental data was most accurately fitted using the Mayadas and Shatkes model which accounts for grain boundary scattering of the conduction electrons. Beyond 40 nm, the thickness of the film was found to be the controlling factor and the Fuchs-Sonheimer (FS) model was used to fit the experimental data, with diffuse scattering of the conduction electrons at the two film surfaces. By combining the Fuchs and Namba (FN) models a suitable correlation between theoretical and experimental resistivity can be achieved across the full CuAlMo film thickness range of 10-1000 nm. The irreversibility of resistance for films of thickness >200 nm, which demonstrated bulk conductivity, was measured to be less than 0.03% following subjection to temperature cycles of -55 and +125 °C and the temperature co-efficient of resistance was less than ±15 ppm °C-1.
NASA Astrophysics Data System (ADS)
Berendt, Artur; Domaszka, Magdalena; Mizeraczyk, Jerzy
2017-04-01
The electrical characteristics of a steady-state negative DC corona discharge in a two-phase fluid (air with suspended cigarette smoke particles) flowing along a chamber with a needle-to-plate electrode arrangement were experimentally investigated. The two-phase flow was transverse in respect to the needle-to-plate axis. The velocity of the transverse two-phase flow was limited to 0.8 m/s, typical of the electrostatic precipitators. We found that three discharge current modes of the negative corona exist in the two-phase (air + smoke particles) fluid: the Trichel pulses mode, the "Trichel pulses superimposed on DC component" mode and the DC component mode, similarly as in the corona discharge in air (a single-phase fluid). The shape of Trichel pulses in the air + suspended particles fluid is similar to that in air. However, the Trichel pulse amplitudes are higher than those in "pure" air while their repetition frequency is lower. As a net consequence of that the averaged corona discharge current in the two-phase fluid is lower than in "pure" air. It was also found that the average discharge current decreases with increasing suspended particle concentration. The calculations showed that the dependence of the average negative corona current (which is a macroscopic corona discharge parameter) on the particle concentration can be explained by the particle-concentration dependencies of the electric charge of Trichel pulse and the repetition frequency of Trichel pulses, both giving a microscopic insight into the electrical phenomena in the negative corona discharge. Our investigations showed also that the average corona discharge current in the two-phase fluid is almost unaffected by the transverse fluid flow up to a velocity of 0.8 m/s. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder
Nonaka, Motohiro; Ma, Bruce Yong; Imaeda, Hirotsugu; Kawabe, Keiko; Kawasaki, Nobuko; Hodohara, Keiko; Kawasaki, Nana; Andoh, Akira; Fujiyama, Yoshihide; Kawasaki, Toshisuke
2011-01-01
Dendritic cell (DC)-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is a type II transmembrane C-type lectin expressed on DCs such as myeloid DCs and monocyte-derived DCs (MoDCs). Recently, we have reported that DC-SIGN interacts with carcinoembryonic antigen (CEA) expressed on colorectal carcinoma cells. CEA is one of the most widely used tumor markers for gastrointestinal cancers such as colorectal cancer. On the other hand, other groups have reported that the level of Mac-2-binding protein (Mac-2BP) increases in patients with pancreatic, breast, and lung cancers, virus infections such as human immunodeficiency virus and hepatitis C virus, and autoimmune diseases. Here, we first identified Mac-2BP expressed on several colorectal carcinoma cell lines as a novel DC-SIGN ligand through affinity chromatography and mass spectrometry. Interestingly, we found that DC-SIGN selectively recognizes Mac-2BP derived from some colorectal carcinomas but not from the other ones. Furthermore, we found that the α1-3,4-fucose moieties of Le glycans expressed on DC-SIGN-binding Mac-2BP were important for recognition. DC-SIGN-dependent cellular interactions between immature MoDCs and colorectal carcinoma cells significantly inhibited MoDC functional maturation, suggesting that Mac-2BP may provide a tolerogenic microenvironment for colorectal carcinoma cells through DC-SIGN-dependent recognition. Importantly, Mac-2BP was detected as a predominant DC-SIGN ligand expressed on some primary colorectal cancer tissues from certain parts of patients in comparison with CEA from other parts, suggesting that DC-SIGN-binding Mac-2BP bearing tumor-associated Le glycans may become a novel potential colorectal cancer biomarker for some patients instead of CEA. PMID:21515679
NASA Astrophysics Data System (ADS)
Yao, Mengliang
Thermoelectric (TE) materials are of great interest to contemporary scientists because of their ability to directly convert temperature differences into electricity, and are regarded as a promising mode of alternative energy. The TE conversion efficiency is determined by the Carnot efficiency, eta C and is relevant to a commonly used figure of merit ZT of a material. Improving the value of ZT is presently a core mission within the TE field. In order to advance our understanding of thermoelectric materials and improve their efficiency, this dissertation investigates the low-temperature behavior of the p-type thermoelectric Cu 2Se through chemical doping and nanostructuring. It demonstrates a method to separate the electronic and lattice thermal conductivities in single crystal Bi2Te3, Cu, Al, Zn, and probes the electrical transport of quasi 2D bismuth textured thin films. Cu2Se is a good high temperature TE material due to its phonon-liquid electron-crystal (PLEC) properties. It shows a discontinuity in transport coefficients and ZT around a structural transition. The present work on Cu2Se at low temperatures shows that it is a promising p-type TE material in the low temperature regime and investigates the Peierls transition and charge-density wave (CDW) response to doping [1]. After entering the CDW ground state, an oscillation (wave-like fluctuation) was observed in the dc I-V curve near 50 K; this exhibits a periodic negative differential resistivity in an applied electric field due to the current. An investigation into the doping effect of Zn, Ni, and Te on the CDW ground state shows that Zn and Ni-doped Cu2Se produces an increased semiconducting energy gap and electron-phonon coupling constant, while the Te doping suppresses the Peierls transition. A similar fluctuating wave-like dc I-V curve was observed in Cu1.98Zn 0.02Se near 40 K. This oscillatory behavior in the dc I-V curve was found to be insensitive to magnetic field but temperature dependent [2]. Understanding reducing thermal conductivity in TE materials is an important facet of increasing TE efficiency and potential applications. In this dissertation, a magnetothermal (MTR) resistance method is used to measure the lattice thermal conductivity, kappaph of single crystal Bi2Te 3 from 5 to 60 K. A large transverse magnetic field is applied to suppress the electronic thermal conduction while measuring thermal conductivity and electrical resistivity. The lattice thermal conductivity is then calculated by extrapolating the thermal conductivity versus electrical conductivity curve to a zero electrical conductivity value. The results show that the measured phonon thermal conductivity follows the eDeltamin/T temperature dependence and the Lorenz ratio corresponds to the modified Sommerfeld value in the intermediate temperature range. These low-temperature experimental data and analysis on Bi2Te3 are important compliments to previous measurements and theoretical calculations at higher temperatures, 100 - 300 K. The MTR method on Bi2Te3 provides data necessary for first-principles calculations [4]. A parallel study on single crystal Cu, Al and Zn shows the applicability of the MTR method for separating kappae and kappaph in metals and indicates a significant deviation of the Lorenz ratio between 5 K and 60 K [3]. Elemental bismuth is a component of many TE compounds and in this dissertation magnetoresistance measurements are used investigate the effect of texturing in polycrystalline bismuth thin films. Electrical current in bismuth films with texturing such that all grains are oriented with the trigonal axis normal to the film plane is found to flow in an isotropic manner. By contrast, bismuth films with no texture such that not all grains have the same crystallographic orientation exhibit anisotropic current flow, giving rise to preferential current flow pathways in each grain depending on its orientation. Textured and non-textured bismuth thin films are examined by measuring their angle-dependent magnetoresistance at different temperatures (3 - 300 K) and applied magnetic fields (0 - 90 kOe). Experimental evidence shows that the anisotropic conduction is due to the large mass anisotropy of bismuth and is confirmed by a parallel study on an antimony thin film [5].
NASA Astrophysics Data System (ADS)
Konishi, Takeshi; Nakamura, Taketsune; Amemiya, Naoyuki
Induction motor instead of dc one has been applied widely for dc electric rolling stock because of the advantage of its utility and efficiency. However, further improvement of motor characteristics will be required to realize environment-friendly dc railway system in the future. It is important to study more efficient machine applying dc electric rolling stock for next generation high performance system. On the other hand, the methods to reuse regenerative energy produced by motors effectively are also important. Therefore, we carried out fundamental study on saving energy for electrified railway system. For the first step, we introduced the energy storage system applying electric double-layer capacitors (EDLC), and its control system. And then, we tried to obtain the specification of high temperature superconductor induction/synchronous motor (HTS-ISM), which performance is similar with that of the conventional induction motors. Furthermore, we tried to evaluate an electrified railway system applying energy storage system and HTS-ISM based on simulation. We succeeded in showing the effectiveness of the introductions of energy storage system and HTS-ISM in DC electrified railway system.
Biased four-point probe resistance
NASA Astrophysics Data System (ADS)
Garcia-Vazquez, Valentin
2017-11-01
The implications of switching the current polarity in a four-point probe resistance measurement are presented. We demonstrate that, during the inversion of the applied current, any change in the voltage V produced by a continuous drop of the sample temperature T will induce a bias in the temperature-dependent DC resistance. The analytical expression for the bias is deduced and written in terms of the variations of the measured voltages with respect to T and by the variations of T with respect to time t. Experimental data measured on a superconducting Nb thin film confirm that the bias of the normal-state resistance monotonically increases with the cooling rate dT/dt while keeping fixed dV/dT; on the other hand, the bias increases with dV/dT, reaching values up to 13% with respect to the unbiased resistance obtained at room temperature.
NASA Technical Reports Server (NTRS)
Snyder, A.; Patch, R. W.; Lauver, M. R.
1980-01-01
Hot-ion plasma experiments were conducted in the NASA Lewis SUMMA facility. A steady-state modified Penning discharge was formed by applying a radially inward dc electric field of several kilovolts near the magnetic mirror maxima. Results are reported for a hydrogen plasma covering a wide range in midplane magnetic flux densities from 0.5 to 3.37 T. Input power greater than 45 kW was obtained with water-cooled cathodes. Steady-state plasmas with ion kinetic temperatures from 18 to 830 eV were produced and measured spectroscopically. These ion temperatures were correlated with current, voltage, and magnetic flux density as the independent variables. Electron density measurements were made using an unusually sensitive Thomson scattering apparatus. The measured electron densities range from 2.1 x 10 to the 11th to 6.8 x 10 to the 12th per cu cm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Shifeng; Wang, Shuyu; Lu, Ming
In this paper, vanadium thin films were deposited on sapphire substrates by DC magnetron sputtering and then oxidized in a tube furnace filled with oxygen under different temperatures and oxygen flow rates. The significant influence of the oxygen flow rate and oxidation temperature on the electrical and structural properties of the vanadium oxide thin films were investigated systematically. It shows the pure vanadium dioxide (VO 2) state can only be obtained in a very narrow temperature and oxygen flow rate range. The resistivity change during the metal-insulator transition varies from 0.2 to 4 orders of magnitude depending on the oxidationmore » condition. Large thermal hysteresis during the metal-insulator phase transition was observed during the transition compared to the results in literature. Proper oxidation conditions can significantly reduce the thermal hysteresis. Finally, the fabricated VO 2 thin films showed the potential to be applied in the development of electrical sensors and other smart devices.« less
Ge, Zhengwei; Wang, Wei; Yang, Chun
2011-04-07
It is challenging to continuously concentrate sample solutes in microfluidic channels. We present an improved electrokinetic technique for enhancing microfluidic temperature gradient focusing (TGF) of sample solutes using combined AC and DC field induced Joule heating effects. The introduction of an AC electric field component services dual functions: one is to produce Joule heat for generating temperature gradient; the other is to suppress electroosmotic flow. Consequently the required DC voltages for achieving sample concentration by Joule heating induced TGF are reduced, thereby leading to smaller electroosmotic flow (EOF) and thus backpressure effects. As a demonstration, the proposed technique can lead to concentration enhancement of sample solutes of more than 2500-fold, which is much higher than the existing literature reported microfluidic concentration enhancement by utilizing the Joule heating induced TGF technique.
AC and DC conductivity due to hopping mechanism in double ion doped ceramics
NASA Astrophysics Data System (ADS)
Rizwana, Mahboob, Syed; Sarah, P.
2018-04-01
Sr1-2xNaxNdxBi4Ti4O15 (x = 0.1, 0.2 and 0.4) system is prepared by sol gel method involving Pechini process of modified polymeric precursor method. Phase identification is done using X-ray diffraction. Conduction in prepared materials involves different mechanisms and is explained through detailed AC and DC conductivity studies. AC conductivity studies carried out on the samples at different frequencies and different temperatures gives more information about electrical transport. Exponents used in two term power relation helps us to understand the different hopping mechanism involved at low as well as high frequencies. Activation energies calculated from the Arrhenius plots are used to calculate activation energies at different temperatures and frequencies. Hopping frequency calculated from the measured data explains hopping of charge carriers at different temperatures. DC conductivity studies help us to know the role of oxygen vacancies in conduction.
Bowen, Anjanette K.; Weisser, John W.; Bergstedt, Roger A.; Famoye, Felix
2003-01-01
Four electrical factors that are used in pulsed DC electrofishing for larval sea lampreys (Petromyzon marinus) were evaluated in two laboratory studies to determine the optimal values to induce larval emergence over a range of water temperatures and conductivities. Burrowed larvae were exposed to combinations of pulsed DC electrical factors including five pulse frequencies, three pulse patterns, and two levels of duty cycle over a range of seven voltage gradients in two separate studies conducted at water temperatures of 10, 15, and 20°C and water conductivities of 25, 200, and 900 μS/cm. A four-way analysis of variance was used to determine significant (α = 0.05) influences of each electrical factor on larval emergence. Multiple comparison tests with Bonferroni adjustments were used to determine which values of each factor resulted in significantly higher emergence at each temperature and conductivity. Voltage gradient and pulse frequency significantly affected emergence according to the ANOVA model at each temperature and conductivity tested. Duty cycle and pulse pattern generally did not significantly influence the model. Findings suggest that a setting of 2.0 V/cm, 3 pulses/sec, 10% duty, and 2:2 pulse pattern seems the most promising in waters of medium conductivity and across a variety of temperatures. This information provides a basis for understanding larval response to pulsed DC electrofishing gear factors and identifies electrofisher settings that show promise to increase the efficiency of the gear during assessments for burrowed sea lamprey larvae.
Atmospheric Science Data Center
2015-11-25
... FSSP Gust Probe Hot-Wire Hygrometer Platinum Resistance PMS 2D-C Probe PRT-4 Pyranometer Pyrgeometer ... Parameters: Barometric Altitude Cloud Top Temperature Deiced Temperature Dew/Frost Point Temperature Droplet ...
NASA Astrophysics Data System (ADS)
Dutta, Papia; Mandal, S. K.; Nath, A.
2018-05-01
Nanocrystalline BaFe2O4 has been prepared through low temperature pyrophoric reaction method. The structural, dielectric and electrical transport properties of BaFe2O4 are investigated in detail. AC electrical properties have been studied over the wide range of frequencies with applied dc magnetic fields and temperatures. The value of impedance is found to increase with increase in magnetic field attributing the magnetostriction property of the sample. The observed value of magneto-impedance and magnetodielectric is found to ∼32% and ∼33% at room temperature. Nyquist plots have been fitted using resistance-capacitor circuits at different magnetic fields and temperatures showing the dominant role of grain and grain boundaries of the sample. Metal-semiconductor transition ∼403 K has been discussed in terms of delocalized and localized charge carrier.We have estimated activation energy using Arrhenius relation indicating temperature dependent electrical relaxation process in the system. Ac conductivity follow a Jonscher’s single power law indicating the large and small polaronic hopping conduction mechanism in the system.
Zhang, Peng; Lau, Y. Y.
2016-01-01
Laser-driven ultrafast electron emission offers the possibility of manipulation and control of coherent electron motion in ultrashort spatiotemporal scales. Here, an analytical solution is constructed for the highly nonlinear electron emission from a dc biased metal surface illuminated by a single frequency laser, by solving the time-dependent Schrödinger equation exactly. The solution is valid for arbitrary combinations of dc electric field, laser electric field, laser frequency, metal work function and Fermi level. Various emission mechanisms, such as multiphoton absorption or emission, optical or dc field emission, are all included in this single formulation. The transition between different emission processes is analyzed in detail. The time-dependent emission current reveals that intense current modulation may be possible even with a low intensity laser, by merely increasing the applied dc bias. The results provide insights into the electron pulse generation and manipulation for many novel applications based on ultrafast laser-induced electron emission. PMID:26818710
Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei
2018-01-01
High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (H c2 ) and critical temperature (T c ). The critical current (I c ) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new I c measurement system that can carry out accurate I c measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The I c measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa 2 Cu 3 O 7-x (YBCO) tapes I c determination with different temperatures and magnetic fields.
NASA Astrophysics Data System (ADS)
Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei
2018-01-01
High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (Hc2) and critical temperature (Tc). The critical current (Ic) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new Ic measurement system that can carry out accurate Ic measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The Ic measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa2Cu3O7-x(YBCO) tapes Ic determination with different temperatures and magnetic fields.
Impacts of auroral current systems on ionospheric upflow/outflow
NASA Astrophysics Data System (ADS)
Burleigh, M.; Zettergren, M. D.; Lynch, K. A.; Lessard, M.; Harrington, M.; Varney, R. H.; Reimer, A.
2017-12-01
The downward current region of an auroral current system often contains large perpendicular DC electric fields. These DC electric fields frictionally heat the local ion population resulting in anisotropic increases in ion temperature that cause large pressure gradients which push the ions outward and upward. These ions may undergo further acceleration from transverse heating by broadband ELF waves and at high altitudes the mirror force can propel ions to escape velocities, resulting in outflow to the magnetosphere. Despite these processes being generally well-known, ion outflow remains difficult to predict due to the myriad of processes acting over a large range of altitudes and physical regimes. The resulting temperature anisotropies, which are known to be able to affect upflow, have an unclear degree of impact in highly variable situations like substorm expansions on the nightside or PMAFs/FTEs on the dayside.In this study we use an anisotropic fluid model, GEMINI-TIA, to examine detailed features of temperature anisotropies and resulting ion downflows/upflows/outflows occurring during the ISINGLASS and RENU2 sounding rocket campaigns. GEMINI-TIA is a 2D ionospheric model is based on a truncated 16-moment description and solves the conservation of mass, momentum, parallel energy, and perpendicular energy for species relevant to the E, F, and topside ionospheric regions. This model encapsulates ionospheric upflow and outflow processes through the inclusion of DC electric fields, and empirical descriptions of heating by soft electron precipitation and BBELF waves. The fluid transport equations are accompanied by an electrostatic current continuity equation to self-consistently describe auroral electric fields. Data used to constrain the model can include perpendicular electric fields, characteristic energy, and total energy flux from incoherent scatter radar, any available neutral density and wind measurements, and precipitating electron fluxes. Results from these constrained simulations are compared against in-situ observations. This allows for the ionospheric temperature anisotropies, which are notoriously difficult to observe, and their impacts on ion upflow response due to auroral drivers to be evaluated by enforcing realistic temporal and spatial dependencies on the drivers.
Plasmacytoid pre-dendritic cells (pDC): from molecular pathways to function and disease association.
Alculumbre, Solana; Raieli, Salvatore; Hoffmann, Caroline; Chelbi, Rabie; Danlos, François-Xavier; Soumelis, Vassili
2018-02-19
Plasmacytoid pre-dendritic cells (pDC) are a specialized DC population with a great potential to produce large amounts of type I interferon (IFN). pDC are involved in the initiation of antiviral immune responses through their interaction with innate and adaptive immune cell populations. In a context-dependent manner, pDC activation can induce their differentiation into mature DC able to induce both T cell activation or tolerance. In this review, we described pDC functions during immune responses and their implication in the clearance or pathogenicity of human diseases during infection, autoimmunity, allergy and cancer. We discuss recent advances in the field of pDC biology and their implication for future studies. Copyright © 2018 Elsevier Ltd. All rights reserved.
On the wide-range bias dependence of transistor d.c. and small-signal current gain factors.
NASA Technical Reports Server (NTRS)
Schmidt, P.; Das, M. B.
1972-01-01
Critical reappraisal of the bias dependence of the dc and small-signal ac current gain factors of planar bipolar transistors over a wide range of currents. This is based on a straightforward consideration of the three basic components of the dc base current arising due to emitter-to-base injected minority carrier transport, base-to-emitter carrier injection, and emitter-base surface depletion layer recombination effects. Experimental results on representative n-p-n and p-n-p silicon devices are given which support most of the analytical findings.
Observation of high-spin mixed oxidation state of cobalt in ceramic Co3TeO6
NASA Astrophysics Data System (ADS)
Singh, Harishchandra; Ghosh, Haranath; Chandrasekhar Rao, T. V.; Sinha, A. K.; Rajput, Parasmani
2014-12-01
We report coexistence of high spin Co3+ and Co2+ in ceramic Co3TeO6 using X-ray Absorption Near Edge Structure (XANES), DC magnetization, and first principles ab-initio calculations. The main absorption line of cobalt Co K-edge XANES spectra, along with a linear combination fit, led us to estimate relative concentration of Co2+ and Co3+as 60:40. The pre edge feature of XANES spectrum shows crystal field splitting of ˜1.26 eV between eg and t2g states, suggesting a mixture of high spin states of both Co2+ and Co3+. Temperature dependent high field DC magnetization measurements reveal dominant antiferromagnetic order with two Neel temperatures (TN1 ˜ 29 K and TN2 ˜ 18 K), consistent with single crystal study. A larger effective magnetic moment is observed in comparison to that reported for single crystal (which contains only Co2+), supports our inference that Co3+ exists in high spin state. Furthermore, we show that both Co2+ and Co3+ being in high spin states constitute a favorable ground state through first principles ab-initio calculations, where Rietveld refined synchrotron X-ray diffraction data are used as input.
NASA Astrophysics Data System (ADS)
Giner-Sanz, J. J.; Ortega, E. M.; Pérez-Herranz, V.
2018-03-01
The internal resistance of a PEM fuel cell depends on the operation conditions and on the current delivered by the cell. This work's goal is to obtain a semiempirical model able to reproduce the effect of the operation current on the internal resistance of an individual cell of a commercial PEM fuel cell stack; and to perform a statistical analysis in order to study the effect of the operation temperature and the inlet humidities on the parameters of the model. First, the internal resistance of the individual fuel cell operating in different operation conditions was experimentally measured for different DC currents, using the high frequency intercept of the impedance spectra. Then, a semiempirical model based on Springer and co-workers' model was proposed. This model is able to successfully reproduce the experimental trends. Subsequently, the curves of resistance versus DC current obtained for different operation conditions were fitted to the semiempirical model, and an analysis of variance (ANOVA) was performed in order to determine which factors have a statistically significant effect on each model parameter. Finally, a response surface method was applied in order to obtain a regression model.
Meihaus, Katie R; Long, Jeffrey R
2013-11-27
The structures and magnetic properties of [K(18-crown-6)](+) (1) and [K(18-crown-6)(THF)2](+) (2) salts of the η(8)-cyclooctatetraenide sandwich complex [Er(COT)2](-) (COT(2-) = cyclooctatetraene dianion) are reported. Despite slight differences in symmetry, both compounds exhibit slow magnetic relaxation under zero applied dc field with relaxation barriers of ∼150 cm(-1) and waist-restricted magnetic hysteresis. Dc relaxation and dilution studies suggest that the drop in the magnetic hysteresis near zero field is influenced by a bulk magnetic avalanche effect coupled with tunneling of the magnetization. Through dilution with [K(18-crown-6)(THF)2][Y(COT)2] (3), these phenomena are substantially quenched, resulting in an open hysteresis loop to 10 K. Importantly, this represents the highest blocking temperature yet observed for a mononuclear complex and the second highest for any single-molecule magnet. A comprehensive comparative analysis of the magnetism of [K(18-crown-6)][Ln(COT)2] (Ln = Sm, Tb, Dy, Ho, Yb) reveals slow relaxation only for [K(18-crown-6)][Dy(COT)2] (4) with weak temperature dependence. Collectively, these results highlight the utility of an equatorial ligand field for facilitating slow magnetic relaxation in the prolate Er(III) ion.
Barone, C; Romeo, F; Pagano, S; Adamo, M; Nappi, C; Sarnelli, E; Kurth, F; Iida, K
2014-08-22
An important step forward for the understanding of high-temperature superconductivity has been the discovery of iron-based superconductors. Among these compounds, iron pnictides could be used for high-field magnet applications, resulting more advantageous over conventional superconductors, due to a high upper critical field as well as its low anisotropy at low temperatures. However, the principal obstacle in fabricating high quality superconducting wires and tapes is given by grain boundaries. In order to study these effects, the dc transport and voltage-noise properties of Co-doped BaFe₂As₂ superconducting films with artificial grain boundary junctions have been investigated. A specific procedure allows the separation of the film noise from that of the junction. While the former shows a standard 1/f behaviour, the latter is characterized by an unconventional temperature-dependent multi-Lorentzian voltage-spectral density. Moreover, below the film superconducting critical temperature, a peculiar noise spectrum is found for the grain boundary junction. Possible theoretical interpretation of these phenomena is proposed.
Neutron diffraction study of Tb0.5Ho0.5Mn2Si2
NASA Astrophysics Data System (ADS)
Pandey, Swati; Siruguri, Vasudeva; Rawat, Rajeev
2018-02-01
The magnetic properties of tetragonal polycrystalline intermetallic compound Tb0.5Ho0.5Mn2Si2 have been investigated using temperature dependent dc magnetic susceptibility and neutron powder diffraction studies. Results of high temperature susceptibility data shows anomaly at TN = 510 K while low temperature susceptibility data indicate two successive anomalies at T1 = 11 K and T2 = 25 K. Metamagnetic transition is observed in magnetization versus field curves. Our neutron diffraction results indicate three different magnetic regions with different magnetic structures. Neutron diffraction data shows that below T2, the intensities of some of the nuclear peaks get enhanced indicating ferromagnetic ordering, while additional magnetic reflections are observed below T1, indicating antiferromagnetic order. Ordering of rare earth sublattice at low temperature rearranges the ordering of Mn sublattice and results in reorientation of Mn spins at T1. At 2 K Tb/Ho moments are aligned along c-axis while Mn moments are aligned perpendicular to c-axis.
High-kinetic inductance additive manufactured superconducting microwave cavity
NASA Astrophysics Data System (ADS)
Holland, Eric T.; Rosen, Yaniv J.; Materise, Nicholas; Woollett, Nathan; Voisin, Thomas; Wang, Y. Morris; Torres, Sharon G.; Mireles, Jorge; Carosi, Gianpaolo; DuBois, Jonathan L.
2017-11-01
Investigations into the microwave surface impedance of superconducting resonators have led to the development of single photon counters that rely on kinetic inductance for their operation, while concurrent progress in additive manufacturing, "3D printing," opens up a previously inaccessible design space for waveguide resonators. In this manuscript, we present results from the synthesis of these two technologies in a titanium, aluminum, vanadium (Ti-6Al-4V) superconducting radio frequency resonator which exploits a design unattainable through conventional fabrication means. We find that Ti-6Al-4V has two distinct superconducting transition temperatures observable in heat capacity measurements. The higher transition temperature is in agreement with DC resistance measurements, while the lower transition temperature, not previously known in the literature, is consistent with the observed temperature dependence of the superconducting microwave surface impedance. From the surface reactance, we extract a London penetration depth of 8 ± 3 μm—roughly an order of magnitude larger than other titanium alloys and several orders of magnitude larger than other conventional elemental superconductors.
NASA Technical Reports Server (NTRS)
McGee, Thomas J.; Twigg, Laurence; Sumnicht, Grant; Hoegy, Walter; Burris, John; Silbert, Donald; Heaps, William; Neuber, R.; Trepte, C. R.
2004-01-01
The AROTAL instrument (Airborne Raman Ozone Temperature and Aerosol Lidar) - a collaboration between scientists at NASA Goddard Space Flight Center, and Langley Research Center - was flown on the NASA DC-8 during the SOLVE II Campaign during January and February, 2003. The flights were flown from the Arena Arctica in Kiruna, Sweden. We report measurements of temperature and ozone profiles showing approximately a 600 ppbv loss in ozone near 17.5 km, over the time frame of the aircraft campaign. Comparisons of ozone profiles from AROTAL are made with the SAGE III instrument.
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Chen, Liangyu; Spry, David J.; Beheim, Glenn M.; Chang, Carl W.
2014-01-01
This work reports DC electrical characterization of a 76 mm diameter 4H-SiC JFET test wafer fabricated as part of NASA's on-going efforts to realize medium-scale ICs with prolonged and stable circuit operation at temperatures as high as 500 degC. In particular, these measurements provide quantitative parameter ranges for use in JFET IC design and simulation. Larger than expected parameter variations were observed both as a function of position across the wafer as well as a function of ambient testing temperature from 23 degC to 500 degC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreno, Gilbert
The objective for this project is to develop thermal management strategies to enable efficient and high-temperature wide-bandgap (WBG)-based power electronic systems (e.g., emerging inverter and DC-DC converter). Device- and system-level thermal analyses are conducted to determine the thermal limitations of current automotive power modules under elevated device temperature conditions. Additionally, novel cooling concepts and material selection will be evaluated to enable high-temperature silicon and WBG devices in power electronics components. WBG devices (silicon carbide [SiC], gallium nitride [GaN]) promise to increase efficiency, but will be driven as hard as possible. This creates challenges for thermal management and reliability.
Sowers, L C; Sedwick, W D; Shaw, B R
1989-11-01
Protonation of cytosine residues at physiological pH may occur in DNA as a consequence of both alkylation and aberrant base-pair formation. When cytosine derivatives are protonated, they undergo hydrolysis reactions at elevated rates and can either deaminate to form the corresponding uracil derivatives or depyrimidinate generating abasic sites. The kinetic parameters for reaction of protonated cytosine are derived by studying the hydrolysis of N3-methyl-2'-deoxycytidine (m3dC), a cytosine analogue which is predominantly protonated at physiological pH. Both deamination and depyrimidimation reaction rates are shown to be linearly dependent upon the fraction of protonated molecules. We present here thermodynamic parameters which allow determination of hydrolysis rates of m3dC as functions of pH and temperature. Protonation of cytosine residues in DNA, as induced by aberrant base-pair formation or base modification, may accelerate the rate of both deamination and depyrimidation up to several thousand-fold under physiological conditions.
Investigation of the Feasibility of a Superconducting Self-Healing DC Grid on a LNG Carrier
2015-06-21
art in High Temperature Superconductor technology is reviewed and an analytical approach of Superconducting DC Power Distribution on a power... Superconductors . I. INTRODUCTION During recent years, the usage of electrical power on- board vessels has grown exponentially. This fact, led...grid. When carrying DC current superconductors are perfectly lossless regardless of the cable length and the power rating of the line [1]. Also
de Kivit, Sander; Kostadinova, Atanaska I; Kerperien, JoAnn; Ayechu Muruzabal, Veronica; Morgan, Mary E; Knippels, Leon M J; Kraneveld, Aletta D; Garssen, Johan; Willemsen, Linette E M
2017-01-01
Intestinal epithelial cells (IEC) drive regulatory T cell (Treg) responses by promoting the differentiation of aldehyde dehydrogenase (ALDH)-expressing CD103+ dendritic cells (DC). Apical stimulation of TLR9 by CpG DNA on IEC supports galectin-9 expression by IEC, which is promoted by short-chain galacto-oligosaccharides and long-chain fructo-oligosaccharides (GF). While galectin-9 can induce the maturation of monocyte-derived DC (moDC), the contribution of galectin-9 on the induction of ALDH activity in DC is not known. To this end, DC were stimulated with galectin-9, and ALDH activity and the expression of CD103 were assessed. ALDH activity was increased by moDC exposed to galectin-9, while the expression of CD103 remained unaltered. Galectin-9 secreted by IEC apically exposed to CpG DNA and GF enhanced ALDH activity, but not CD103 expression by moDC, which was abrogated upon galectin-9 neutralization. Similar observations were found in murine GM-CSF-cultured bone marrow-derived DC (BMDC). Using Flt3L-cultured BMDC and ex vivo murine splenic DC, it was observed that galectin-9 only enhanced ALDH activity in the presence of GM-CSF in CD103- cells. The induction of ALDH activity in BMDC was dependent on p38 and PI3K signaling. These data indicate a novel role for galectin-9 in modulating innate immunity by inducing ALDH activity in DC. © 2017 S. Karger AG, Basel.
Electrical conductivity and dielectric properties of TlInS2 single crystals
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Youssef, S. B.; Ali, H. A. M.; Hassan, A.
2011-07-01
TlInS2 single crystals were grown by using Bridgman-Stockbauer technique. Measurements of DC conductivity were carried out in parallel (σ//) and perpendicular (σ⊥) directions to the c-axis over a temperature range from 303 to 463 K. The anisotropic behaviour of the electrical conductivity was also detected. AC conductivity and dielectric measurements were studied as a function of both frequency (102-106 Hz) and temperature (297-375 K). The frequency dependence of the AC conductivity revealed that σac(ω) obeys the universal law: σac(ω) = Aωs. The mechanism of the ac charge transport across the layers of TlInS2 single crystals was referred to the hopping over localized states near the Fermi level in the frequency range >3.5 × 103 Hz. The temperature dependence of σac(ω) for TlInS2 showed that σac is thermally activated process. Both of ɛ1 and ɛ2 decrease by increasing frequency and increase by increasing temperature. Some parameters were calculated as: the density of localized states near the Fermi level NF = 1.5 × 1020 eV-1 cm-3, the average time of charge carrier hoping between localized states τ = 3.79 μs and the average hopping distance R = 6.07 nm.
Thermoelectric as recovery and harvesting of waste heat from portable generator
NASA Astrophysics Data System (ADS)
Mustafa, S. N.; Kamarrudin, N. S.; Hashim, M. S. M.; Bakar, S. A.; Razlan, Z. M.; Harun, A.; Ibrahim, I.; Faizi, M. K.; Saad, M. A. M.; Zunaidi, I.; Wan, W. K.; Desa, H.
2017-10-01
Generation of waste heat was ineluctable especially during energy producing process. Waste heat falls into low temperature grade make it complicated to utilize. Thermoelectric generator (TEG) offers opportunity to harvest any temperature grade heat into useful electricity. This project is covered about recovery and utilizing waste heat from portable electric generator by using a TEG which placed at exhaust surface. Temperature difference at both surfaces of TEG was enhanced with supplying cold air from a wind blower. It is found that, even at low air speed, the TEG was successfully produced electricity with aid from DC-DC booster. Results shows possibility to harvest low temperature grade heat and still exist areas for continual improvement.
Liquid Nitrogen Temperature Operation of a Switching Power Converter
NASA Technical Reports Server (NTRS)
Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.
1995-01-01
The performance of a 42/28 V, 175 W, 50 kHz pulse-width modulated buck dc/dc switching power converter at liquid nitrogen temperature (LNT) is compared with room temperature operation. The power circuit as well as the control circuit of the converter, designed with commercially available components, were operated at LNT and resulted in a slight improvement in converter efficiency. The improvement in power MOSFET operation was offset by deteriorating performance of the output diode rectifier at LNT. Performance of the converter could be further improved at low temperatures by using only power MOSFET's as switches. The use of a resonant topology will further improve the circuit performance by reducing the switching noise and loss.
NASA Astrophysics Data System (ADS)
Veena, G.; Lobo, Blaise
2018-04-01
Potassium permanganate (KMnO4) doped polyvinyl alcohol (PVA) - polyvinyl pyrrolidone (PVP) blend films were prepared by solution casting technique, in the doping range varying from 0.01 wt % up to 4.70 wt %. The microstructural changes caused by doping, and the modified properties of these films were studied using Atomic Force Microscope (AFM) and temperature dependent direct current (DC) electrical measurements. Temperature variation of electrical resistivity was found to obey Arrhenius relation, from which activation energy was determined. The study was supported by AFM scans, which showed an increase in surface roughness and the presence of spike-like structures, due to interaction of dopant with the polymeric blend. Differential Scanning Calorimetry (DSC) scans revealed two stages of degradation in KMnO4 doped PVA - PVP blend films.
Electrical transport in AZO nanorods
NASA Astrophysics Data System (ADS)
Yildiz, A.; Cansizoglu, H.; Karabacak, T.
2015-10-01
Al-doped ZnO (AZO) nanorods (NRs) with different lengths were deposited by utilizing glancing angle deposition (GLAD) technique in a DC sputter system at room temperature. The structural and optical characteristics of the NRs were investigated by the X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-vis-NIR spectroscopy measurements. A band gap of about 3.5 eV was observed for the NRs. A novel capping process utilizing varying deposition angles was used to introduce a blanket metal top contact for the electrical characterization of NRs. Current-voltage (I-V) measurements were used to properly evaluate the approximate resistivity of a single NR. The electrical conduction was found to be governed by the thermally activated transport mechanism. Activation energy was determined as 0.14 eV from temperature dependent resistivity data.
Spin accumulation in permalloy-ZnO heterostructures from both electrical injection and spin pumping
NASA Astrophysics Data System (ADS)
Wang, Xiaowei; Yang, Yumeng; Wang, Ying; Luo, Ziyan; Xie, Hang; Wu, Yihong
2017-11-01
We report the results of room temperature spin injection and detection studies in ZnO using both electrical injection and spin pumping. At ferromagnetic resonance, an interfacial voltage with a constant polarity upon magnetization reversal is observed in permalloy-ZnO heterostructures, which is attributed to spin accumulation after ruling out other origins. Simultaneous electrical injection during spin pumping is achieved in samples with large interface resistance or insertion of a thin MgO layer at the interface of permalloy and ZnO. From the pumping frequency dependence of detected voltage, a spin lifetime of 32 ps is extracted for ZnO at room temperature, despite the fact that there was no Hanle effect observed in the same device using the conventional three-terminal DC measurement.
Multilayer Piezoelectric Stack Actuator Characterization
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph
2008-01-01
Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.
Nanometric Integrated Temperature and Thermal Sensors in CMOS-SOI Technology.
Malits, Maria; Nemirovsky, Yael
2017-07-29
This paper reviews and compares the thermal and noise characterization of CMOS (complementary metal-oxide-semiconductor) SOI (Silicon on insulator) transistors and lateral diodes used as temperature and thermal sensors. DC analysis of the measured sensors and the experimental results in a broad (300 K up to 550 K) temperature range are presented. It is shown that both sensors require small chip area, have low power consumption, and exhibit linearity and high sensitivity over the entire temperature range. However, the diode's sensitivity to temperature variations in CMOS-SOI technology is highly dependent on the diode's perimeter; hence, a careful calibration for each fabrication process is needed. In contrast, the short thermal time constant of the electrons in the transistor's channel enables measuring the instantaneous heating of the channel and to determine the local true temperature of the transistor. This allows accurate "on-line" temperature sensing while no additional calibration is needed. In addition, the noise measurements indicate that the diode's small area and perimeter causes a high 1/ f noise in all measured bias currents. This is a severe drawback for the sensor accuracy when using the sensor as a thermal sensor; hence, CMOS-SOI transistors are a better choice for temperature sensing.
High temperature superconductor dc SQUID micro-susceptometer for room temperature objects
NASA Astrophysics Data System (ADS)
Faley, M. I.; Pratt, K.; Reineman, R.; Schurig, D.; Gott, S.; Atwood, C. G.; Sarwinski, R. E.; Paulson, D. N.; Starr, T. N.; Fagaly, R. L.
2004-05-01
We have developed a scanning magnetic microscope (SMM) with 25 µm resolution in spatial position for the magnetic features of room temperature objects. The microscope consists of a high-temperature superconductor (HTS) dc SQUID sensor, suspended in vacuum with a self-adjusting standoff, close spaced liquid nitrogen Dewar, X-Y scanning stage and a computer control system. The HTS SQUIDs were optimized for better spatial and field resolutions for operation at liquid nitrogen temperature. Measured inside a magnetic shield, the 10 pT Hz-1/2 typical noise of the SQUIDs is white down to frequencies of about 10 Hz, increasing up to about 20 pT Hz-1/2 at 1 Hz. The microscope is mounted on actively damped platforms, which negate vibrations from the environment as well as damping internal stepper motor noises. A high-resolution video telescope and a 1 µm precision z-axis positioning system allow a close positioning of the sample under the sensor. The ability of the sensors to operate in unshielded environmental conditions with magnetic fields up to about 15 G allowed us to perform 2D mapping of the local ac and dc susceptibility of the objects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Ali, Zeina
Dendritic cells (DC) are known to play a major role during contact allergy induced by contact sensitizers (CS). Our previous studies showed that Nrf2 was induced in DC and controlled allergic skin inflammation in mice in response to chemicals. In this work, we raised the question of the role of Nrf2 in response to a stress provoked by chemical sensitizers in DC. We used two well-described chemical sensitizers, dinitrochlorobenzene (DNCB) and cinnamaldehyde (CinA), known to have different chemical reactivity and mechanism of action. First, we performed a RT-qPCR array showing that CinA was a higher inducer of immune and detoxificationmore » genes compared to DNCB. Interestingly, in the absence of Nrf2, gene expression was dramatically affected in response to DNCB but was slightly affected in response to CinA. These observations prompted us to study DC's cell death in response to both chemicals. DNCB and CinA increased apoptotic cells and decreased living cells in the absence of Nrf2. The characterization of DC apoptosis induced by both CS involved the mitochondrial-dependent caspase pathway and was regulated via Nrf2 in response to both chemicals. Oxidative stress induced by DNCB, and leading to cell death, was regulated by Nrf2. Unlike CinA, DNCB treatment provoked a significant reduction of intracellular GSH levels and up-regulated bcl-2 gene expression, under the control of Nrf2. This work underlies that chemical reactivity may control Nrf2-dependent gene expression leading to different cytoprotective mechanisms in DC. - Highlights: • Nrf2 controls cell death induced by contact sensitizers in dendritic cells. • DNCB reduced GSH levels and up-regulated bcl-2 gene expression unlike CinA. • Chemical reactivity controls Nrf2-dependent genes having protective effect in DC.« less
Tu, Juan; Ha Hwang, Joo; Chen, Tao; Fan, Tingbo; Guo, Xiasheng; Crum, Lawrence A.; Zhang, Dong
2012-01-01
High intensity focused ultrasound (HIFU)-induced hyperthermia is a promising tool for cancer therapy. Three-dimensional nonlinear acoustic-bioheat transfer-blood flow-coupling model simulations and in vivo thermocouple measurements were performed to study hyperthermia effects in rabbit auricular vein exposed to pulsed HIFU (pHIFU) at varied duty cycles (DCs). pHIFU-induced temperature elevations are shown to increase with increasing DC. A critical DC of 6.9% is estimated for temperature at distal vessel wall exceeding 44 °C, although different tissue depths and inclusions could affect the DC threshold. The results demonstrate clinic potentials of achieving controllable hyperthermia by adjusting pHIFU DCs, while minimizing perivascular thermal injury. PMID:23112347
Temperature Inversions Have Cold Bottoms.
ERIC Educational Resources Information Center
Bohren, Craig F.; Brown, Gail M.
1982-01-01
Uses discussion and illustrations of several demonstrations on air temperature differences and atmospheric stability to explain the phenomena of temperature inversions. Relates this to the smog in Los Angeles and discusses the implications. (DC)
Free-standing nanocomposites with high conductivity and extensibility.
Chun, Kyoung-Yong; Kim, Shi Hyeong; Shin, Min Kyoon; Kim, Youn Tae; Spinks, Geoffrey M; Aliev, Ali E; Baughman, Ray H; Kim, Seon Jeong
2013-04-26
The prospect of electronic circuits that are stretchable and bendable promises tantalizing applications such as skin-like electronics, roll-up displays, conformable sensors and actuators, and lightweight solar cells. The preparation of highly conductive and highly extensible materials remains a challenge for mass production applications, such as free-standing films or printable composite inks. Here we present a nanocomposite material consisting of carbon nanotubes, ionic liquid, silver nanoparticles, and polystyrene-polyisoprene-polystyrene having a high electrical conductivity of 3700 S cm(-1) that can be stretched to 288% without permanent damage. The material is prepared as a concentrated dispersion suitable for simple processing into free-standing films. For the unstrained state, the measured thermal conductivity for the electronically conducting elastomeric nanoparticle film is relatively high and shows a non-metallic temperature dependence consistent with phonon transport, while the temperature dependence of electrical resistivity is metallic. We connect an electric fan to a DC power supply using the films to demonstrate their utility as an elastomeric electronic interconnect. The huge strain sensitivity and the very low temperature coefficient of resistivity suggest their applicability as strain sensors, including those that operate directly to control motors and other devices.
NASA Astrophysics Data System (ADS)
Tateiwa, Naoyuki; Haga, Yoshinori; Matsuda, Tatsuma D.; Yamamoto, Etsuji; Ōnuki, Yoshichika; Fisk, Zachary
2013-08-01
We have studied the high-pressure magnetic property in UGe2 where ferromagnetic superconductivity appears under high pressure. In this study, we focus on the magnetic property at pressures above the ferromagnetic critical pressure P c =1.6 GPa. The temperature and magnetic field dependences of the dc-magnetization have been measured under high pressures up to 5.1 GPa by using a ceramic anvil high pressure cell. At pressures above P c , the magnetic susceptibility x shows a broad maximum around T χmax and the magnetization at 2.0 K shows an abrupt increase (metamagnetic transition) at H c . With increasing pressure, the peak structure in x becomes broader, and the peak position T χmax moves to the higher temperature region. The metamagnetic field H c increases rapidly with increasing pressure. At pressures above 4.1 GPa, x shows a simple temperature dependence, and the magnetization increases linearly with increasing field. These phenomena in UGe2 resemble to those in the intermetallic compounds of 3 d transition metals such as Co(S1- x Se x ) and YCo2. We discuss the experimental results by using the phenomenological spin-fluctuation theory.
Dynamics of Li+ ions in Li2O-TeO2-P2O5 glasses
NASA Astrophysics Data System (ADS)
Chatterjee, A.; Ghosh, A.
2018-04-01
In the present work we have studied transport properties of lithium ions in 0.3Li2O-0.7[xTeO2-(1-x)P2O5] glasses, where x=0.5, 0.6, 0.7. We have measured acconductivity for a wide range offrequency and temperature. The real part of the conductivity spectra has been analyzed by the power law in Almond-West formalism. The dc conductivity has been obtained from the complex impedance plots. We have found that dc conductivity increases and activation energy decreases on increase of TeO2 for a particular Li2O content. We have also found that the dc conductivity and crossover frequency obey Arrhenius relation. The time temperature superposition has been verified using the scaling formalism of the conductivity spectra. We have found that the conductivity isotherms scaled to a single master curve with suitable scaling parameters for a particular composition at different temperatures. However the scaling to a single master curve fails for different compositions at a particular temperature.
NASA Technical Reports Server (NTRS)
Edie, P. C.
1981-01-01
Performance data on the General Electric 5BT 2366C10 series wound dc motor and EV-1 Chopper Controller is supplied for the electric vehicle manufacturer. Data is provided for both straight and chopped dc input to the motor, at 2 motor temperature levels. Testing was done at 6 voltage increments to the motor, and 2 voltage increments to the controller. Data results are presented in both tabular and graphical forms. Tabular information includes motor voltage and current input data, motor speed and torque output data, power data and temperature data. Graphical information includes torque-speed, motor power output-speed, torque-current, and efficiency-speed plots under the various operating conditions. The data resulting from this testing shows the speed-torque plots to have the most variance with operating temperature. The maximum motor efficiency is between 86% and 87%, regardless of temperature or mode of operation. When the chopper is utilized, maximum motor efficiency occurs when the chopper duty cycle approaches 100%.
Phoretic Force Measurement for Microparticles Under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Davis, E. J.; Zheng, R.
1999-01-01
This theoretical and experimental investigation of the collisional interactions between gas molecules and solid and liquid surfaces of microparticles involves fundamental studies of the transfer of energy, mass and momentum between gas molecules and surfaces. The numerous applications include particle deposition on semiconductor surfaces and on surfaces in combustion processes, containerless processing, the production of nanophase materials, pigments and ceramic precursors, and pollution abatement technologies such as desulfurization of gaseous effluents from combustion processes. Of particular emphasis are the forces exerted on microparticles present in a nonuniform gas, that is, in gaseous surroundings involving temperature and concentration gradients. These so-called phoretic forces become the dominant forces when the gravitational force is diminished, and they are strongly dependent on the momentum transfer between gas molecules and the surface. The momentum transfer, in turn, depends on the gas and particle properties and the mean free path and kinetic energy of the gas molecules. The experimental program involves the particle levitation system shown. A micrometer size particle is held between two heat exchangers enclosed in a vacuum chamber by means of ac and dc electric fields. The ac field keeps the particle centered on the vertical axis of the chamber, and the dc field balances the gravitational force and the thermophoretic force. Some measurements of the thermophoretic force are presented in this paper.
Cramer, Joel; Seifert, Tom; Kronenberg, Alexander; Fuhrmann, Felix; Jakob, Gerhard; Jourdan, Martin; Kampfrath, Tobias; Kläui, Mathias
2018-02-14
We measure the inverse spin Hall effect of Cu 1-x Ir x thin films on yttrium iron garnet over a wide range of Ir concentrations (0.05 ⩽ x ⩽ 0.7). Spin currents are triggered through the spin Seebeck effect, either by a continuous (dc) temperature gradient or by ultrafast optical heating of the metal layer. The spin Hall current is detected by electrical contacts or measurement of the emitted terahertz radiation. With both approaches, we reveal the same Ir concentration dependence that follows a novel complex, nonmonotonous behavior as compared to previous studies. For small Ir concentrations a signal minimum is observed, whereas a pronounced maximum appears near the equiatomic composition. We identify this behavior as originating from the interplay of different spin Hall mechanisms as well as a concentration-dependent variation of the integrated spin current density in Cu 1-x Ir x . The coinciding results obtained for dc and ultrafast stimuli provide further support that the spin Seebeck effect extends to terahertz frequencies, thus enabling a transfer of established spintronic measurement schemes into the terahertz regime. Our findings also show that the studied material allows for efficient spin-to-charge conversion even on ultrafast time scales.
Design of DC-contact RF MEMS switch with temperature stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Junfeng; Nanjing Electronic Devices Institute, Nanjing, 210016; Li, Zhiqun, E-mail: zhiqunli@seu.edu.cn
In order to improve the temperature stability of DC-contact RF MEMS switch, a thermal buckle-beam structure is implemented. The stability of the switch pull-in voltage versus temperature is not only improved, but also the impact of stress and stress gradient on the drive voltage is suppressed. Test results show that the switch pull-in voltage is less sensitive to temperature between -20 °C and 100 °C. The variable rate of pull-in voltage to temperature is about -120 mV/°C. The RF performance of the switch is stable, and the isolation is almost independent of temperature. After being annealed at 280 °C formore » 12 hours, our switch samples, which are suitable for packaging, have less than 1.5% change in the rate of pull-in voltage.« less
[Spectroscopic diagnostics of DC argon plasma at atmospheric pressure].
Tu, Xin; Lu, Sheng-yong; Yan, Jian-hua; Ma, Zeng-yi; Pan, Xin-chao; Cen, Ke-fa; Cheron, Bruno
2006-10-01
The optical emission spectra of DC argon plasma at atmospheric pressure were measured inside and outside the arc chamber. The electron temperature was determined from the Boltzmann plot, and the electron density was derived from Stark broadening of Ar I lines. The criteria for the existence of local thermodynamic equilibrium (LTE)in the plasma was discussed. The results indicate that the DC argon plasma at atmospheric pressure under our experimental conditions is in LTE.
NASA Astrophysics Data System (ADS)
Campuzano Jost, P.; Hu, W.; Palm, B. B.; Day, D. A.; Jimenez, J. L.; Rivera, J. C.; Keutsch, F. N.; Zhao, R.; Lee, A.; Abbatt, J.; Marais, E. A.; Liao, J.; Froyd, K. D.; Pollack, I. B.; Peischl, J.; Ryerson, T. B.; St Clair, J. M.; Crounse, J. D.; Wennberg, P. O.; Mikoviny, T.; Armin, W.; Scarino, A. J.; Hair, J. W.; Ferrare, R. A.
2017-12-01
Secondary Organic Aerosol (SOA) formed by uptake of isoprene epoxide (IEPOX), a key isoprene oxidation product under low-NO conditions (<100 pptv), has been recently shown to be a major contributor to the total aerosol burden in many regions of the world with high isoprene emissions, such as the SE US or Amazonia. In the present study, we have used Positive Matrix Factorization (PMF) to extract and identify IEPOX-SOA factors from data recorded by the CU High-Resolution Aerosol Mass Spectrometer (AMS) during the DC3 and SEAC4RS aircraft missions on the NASA DC-8. These campaigns sampled the continental US over the Spring of 2012 and the Summer of 2013, respectively. The contribution of IEPOX-SOA to total OA mass in the SE US was substantial for both DC3 (28% on average) and SEAC4RS flights (26%). IEPOX-SOA was observed in isoprene-rich areas in the W US, albeit with smaller contributions (up to 10% of OA). Highest concentrations of IEPOX-SOA were mostly found downwind and/or aloft of source regions, where IEPOX was already depleted but both inorganic sulfate and particle water/relative humidity were higher. IEPOX sulfate, a specific product of IEPOX uptake, correlates reasonably well with total IEPOX-SOA close to sources at low RH, with an observed contribution between 1-10% to total IEPOX-SOA in the SEUS. While the IEPOX-SOA mass spectrum near the ground was very similar to other ground studies in the SEUS, at higher altitudes differences were observed, likely reflecting aging chemistry aloft. In particular we identify, near the top of the boundary layer/cloud deck, a new OA factor likely resulting from aqueous oxidation of IEPOX-SOA. This factor closely matches the spectrum obtained in recent laboratory experiments simulating aqueous IEPOX-SOA aging, and contributed about 25% to total IEPOX-SOA during SEAC4RS; modeling of this new factor in GEOS-Chem will be presented. Measured IEPOX-SOA concentrations and their overall contribution to the total OA burden were substantially higher for SEAC4RS than those measured at the SOAS ground site the same summer (both total and site overflights). Average daily ground temperatures were substantially higher during the SEAC4RS period, with the overall dependence of concentrations of IEPOX-SOA closely following the isoprene source temperature dependence used in the MEGAN inventory.
Evolution of ferromagnetism in two-dimensional electron gas of LaTiO3/SrTiO3
NASA Astrophysics Data System (ADS)
Wen, Fangdi; Cao, Yanwei; Liu, Xiaoran; Pal, B.; Middey, S.; Kareev, M.; Chakhalian, J.
2018-03-01
Understanding, creating, and manipulating spin polarization of two-dimensional electron gases at complex oxide interfaces present an experimental challenge. For example, despite almost a decade long research effort, the microscopic origin of ferromagnetism in LaAlO3/SrTiO3 heterojunctions is still an open question. Here, by using a prototypical two-dimensional electron gas (2DEG) which emerges at the interface between band insulator SrTiO3 and antiferromagnetic Mott insulator LaTiO3, the experiment reveals the evidence for magnetic phase separation in a hole-doped Ti d1 t2g system, resulting in spin-polarized 2DEG. The details of electronic and magnetic properties of the 2DEG were investigated by temperature-dependent d.c. transport, angle-dependent X-ray photoemission spectroscopy, and temperature-dependent magnetoresistance. The observation of clear hysteresis in magnetotransport at low magnetic fields implies spin-polarization from magnetic islands in the hole rich LaTiO3 near the interface. These findings emphasize the role of magnetic instabilities in doped Mott insulators, thus providing another path for designing all-oxide structures relevant to spintronic applications.
Study of the Dependency on Magnetic Field and Bias Voltage of an AC-Biased TES Microcalorimeter
NASA Technical Reports Server (NTRS)
Gottardi, L.; Bruijn, M.; denHartog, R.; Hoevers, H.; deKorte, P.; vanderKuur, J.; Linderman, M.; Adams, J.; Bailey, C.; Bandler, S.;
2012-01-01
At SRON we are studying the performance of a Goddard Space Flight Center single pixel TES microcalorimeter operated in an AC bias configuration. For x-ray photons at 6 keV the pixel shows an x-ray energy resolution Delta E(sub FWHM) = 3.7 eV, which is about a factor 2 worse than the energy resolution observed in an identical DC-biased pixel. In order to better understand the reasons for this discrepancy we characterized the detector as a function of temperature, bias working point and applied perpendicular magnetic field. A strong periodic dependency of the detector noise on the TES AC bias voltage is measured. We discuss the results in the framework of the recently observed weak-link behaviour of a TES microcalorimeter.
Study of the Dependence on Magnetic Field and Bias Voltage of an AC-Biased TES Microcalorimeter
NASA Technical Reports Server (NTRS)
Bandler, Simon
2011-01-01
At SRON we are studying the performance of a Goddard Space Flight Center single pixel TES microcalorimeter operated in the AC bias configuration. For x-ray photons at 6keV the AC biased pixel shows a best energy resolution of 3.7eV, which is about a factor of 2 worse than the energy resolution observed in identical DC-biased pixels. To better understand the reasons of this discrepancy, we investigated the detector performance as a function of temperature, bias working point and applied magnetic field. A strong periodic dependence of the detector noise on the TES AC bias voltage is measured. We discuss the results in the framework of the recent weak-link behaviour observed inTES microcalorimeters.
NASA Astrophysics Data System (ADS)
Al-Taie, A.; Graber, L.; Pamidi, S. V.
2017-12-01
Opportunities for applications of high temperature superconducting (HTS) DC power cables for long distance power transmission in increasing the reliability of the electric power grid and to enable easier integration of distributed renewable sources into the grid are discussed. The gaps in the technology developments both in the superconducting cable designs and cryogenic systems as well as power electronic devices are identified. Various technology components in multi-terminal high voltage DC power transmission networks and the available options are discussed. The potential of ongoing efforts in the development of superconducting DC transmission systems is discussed.
Matsuba, Yuki; Sasaki, Nobuhiro; Tera, Masayuki; Okamura, Masachika; Abe, Yutaka; Okamoto, Emi; Nakamura, Haruka; Funabashi, Hisakage; Takatsu, Makoto; Saito, Mikako; Matsuoka, Hideaki; Nagasawa, Kazuo; Ozeki, Yoshihiro
2010-01-01
Glucosylation of anthocyanin in carnations (Dianthus caryophyllus) and delphiniums (Delphinium grandiflorum) involves novel sugar donors, aromatic acyl-glucoses, in a reaction catalyzed by the enzymes acyl-glucose–dependent anthocyanin 5(7)-O-glucosyltransferase (AA5GT and AA7GT). The AA5GT enzyme was purified from carnation petals, and cDNAs encoding carnation Dc AA5GT and the delphinium homolog Dg AA7GT were isolated. Recombinant Dc AA5GT and Dg AA7GT proteins showed AA5GT and AA7GT activities in vitro. Although expression of Dc AA5GT in developing carnation petals was highest at early stages, AA5GT activity and anthocyanin accumulation continued to increase during later stages. Neither Dc AA5GT expression nor AA5GT activity was observed in the petals of mutant carnations; these petals accumulated anthocyanin lacking the glucosyl moiety at the 5 position. Transient expression of Dc AA5GT in petal cells of mutant carnations is expected to result in the transfer of a glucose moiety to the 5 position of anthocyanin. The amino acid sequences of Dc AA5GT and Dg AA7GT showed high similarity to glycoside hydrolase family 1 proteins, which typically act as β-glycosidases. A phylogenetic analysis of the amino acid sequences suggested that other plant species are likely to have similar acyl-glucose–dependent glucosyltransferases. PMID:20971893
DC Characteristics of InAs/AlSb HEMTs at Cryogenic Temperatures
2009-05-01
Molecular Beam Epitaxy - MBE XIV, April 2007, Volumes 301- 302, Pages 1025-1029 Fig. 5: SEM image showing the 2x50μm InAs/AlSb HEMT . 325 ...started with a heterostructure grown by molecular beam epitaxy on a semi- insulating InP substrate. The heterostructure is shown in Fig. 1. Mesa isolation...DC characteristics of InAs/AlSb HEMTs at cryogenic temperatures G. Moschetti, P-Å Nilsson, N. Wadefalk, M. Malmkvist, E. Lefebvre, J. Grahn
The Radar Effects of Perchlorate-Doped Ice in the Martian Polar Layered Deposits
NASA Astrophysics Data System (ADS)
Stillman, D.; Winebrenner, D. P.; Grimm, R. E.; Pathare, A.
2010-12-01
The presence of perchlorate in soil at near-polar latitudes on Mars suggests that dust in the ice of the North Polar Layered Deposits (NPLD) may introduce perchlorate impurities to that ice. Because eutectic temperatures of perchlorate salts range as low as 206 K (for magnesium perchlorate), perchlorate doping of NPLD ice may result in grain-scale liquid veins and softening of ice rheology at temperatures comparable to those computed for the base of the NPLD in the present climate. Any such softening would be important for understanding how processes including ice flow have shaped the NPLD. Observable consequences of such softening, or of the combination of perchlorate doping and temperatures that could cause softening, are thus similarly important. In particular, the dielectric properties of perchlorate-laden ice in a temperature gradient will change relatively rapidly at the point in the gradient near the eutectic temperature. Here we investigate the radar reflectivity of such a eutectic transition in ice with a model in which perchlorate concentration is constant and temperature varies linearly with depth in the ice. We have conducted measurements of the complex permittivity of Mg and Na perchlorate-doped ice over a range of temperatures (183 - 273 K) and concentrations. Below the eutectic temperature, the perchlorate-doped ice has electrical properties similar to that of choride-doped ice. However, above the eutectic temperature, some of the ice melts forming liquid at triple junctions. At concentrations above 3 mM, the liquid at triple junctions become connected forming brine channels, which greatly increase the dc conductivity and radar attenuation. At concentrations below 3 mM, the liquid at triple junctions are not connected and do not affect the dc conductivity. However, the liquid H2O molecules are able to rotate their permanent dipole at radar frequencies, thus causing an increase in radar attenuation. The MARSIS and SHARAD attenuation rates increase with temperature as the strength of the loss increases with a greater amount of liquid water even though the relaxation frequency (maximum loss) shifts to higher frequencies. We combine our electrical property measurements with a model for radar reflection from a continuously-varying dielectric profile. Because the change in permittivity occurs over a range of depths depending on the value of the temperature gradient, radar detectability of the eutectic transition depends on the radar frequency as well as gradient and concentration values. We compute expected radar echo strengths for MARSIS and SHARAD and depths relative to the bed at which transitions may be expected, to address whether information of direct rheological relevance may be available from those instruments.
Superconducting dc Current Limiting Vacuum Circuit Breaker
NASA Astrophysics Data System (ADS)
Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Bunin, R. A.; Voloshin, I. F.; Degtyarenko, P. N.; Yevsin, D. V.; Ivanov, V. P.; Sidorov, V. A.; Fisher, L. M.; Tshai, E. V.
Acircuitofadc superconductingfault current limiter witha direct current circuit-breaker fora nominal current 300A is proposed. It includes the 2G high temperature superconducting (HTS) tapes and the high-speed dc vacuum circuit breaker.Thetestresultsof current-limitingcapacityandrecoverytimeof superconductivityafter currentfaultatvoltage upto3 kV are presented.
Calorimetric system and method
Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.; Moorman, Jack O.
1998-09-15
Apparatus for measuring heat capacity of a sample where a series of measurements are taken in succession comprises a sample holder in which a sample to be measured is disposed, a temperature sensor and sample heater for providing a heat pulse thermally connected to the sample, and an adiabatic heat shield in which the sample holder is positioned and including an electrical heater. An electrical power supply device provides an electrical power output to the sample heater to generate a heat pulse. The electrical power from a power source to the heat shield heater is adjusted by a control device, if necessary, from one measurement to the next in response to a sample temperature-versus-time change determined before and after a previous heat pulse to provide a subsequent sample temperature-versus-time change that is substantially linear before and after the subsequent heat pulse. A temperature sensor is used and operable over a range of temperatures ranging from approximately 3K to 350K depending upon the refrigerant used. The sample optionally can be subjected to dc magnetic fields such as from 0 to 12 Tesla (0 to 120 kOe).
Improved Readout Scheme for SQUID-Based Thermometry
NASA Technical Reports Server (NTRS)
Penanen, Konstantin
2007-01-01
An improved readout scheme has been proposed for high-resolution thermometers, (HRTs) based on the use of superconducting quantum interference devices (SQUIDs) to measure temperature- dependent magnetic susceptibilities. The proposed scheme would eliminate counting ambiguities that arise in the conventional scheme, while maintaining the superior magnetic-flux sensitivity of the conventional scheme. The proposed scheme is expected to be especially beneficial for HRT-based temperature control of multiplexed SQUIDbased bolometer sensor arrays. SQUID-based HRTs have become standard for measuring and controlling temperatures in the sub-nano-Kelvin temperature range in a broad range of low-temperature scientific and engineering applications. A typical SQUIDbased HRT that utilizes the conventional scheme includes a coil wound on a core made of a material that has temperature- dependent magnetic susceptibility in the temperature range of interest. The core and the coil are placed in a DC magnetic field provided either by a permanent magnet or as magnetic flux inside a superconducting outer wall. The aforementioned coil is connected to an input coil of a SQUID. Changes in temperature lead to changes in the susceptibility of the core and to changes in the magnetic flux detected by the SQUID. The SQUID readout instrumentation is capable of measuring magnetic-flux changes that correspond to temperature changes down to a noise limit .0.1 nK/Hz1/2. When the flux exceeds a few fundamental flux units, which typically corresponds to a temperature of .100 nK, the SQUID is reset. The temperature range can be greatly expanded if the reset events are carefully tracked and counted, either by a computer running appropriate software or by a dedicated piece of hardware.
Design of conduction cooling system for a high current HTS DC reactor
NASA Astrophysics Data System (ADS)
Dao, Van Quan; Kim, Taekue; Le Tat, Thang; Sung, Haejin; Choi, Jongho; Kim, Kwangmin; Hwang, Chul-Sang; Park, Minwon; Yu, In-Keun
2017-07-01
A DC reactor using a high temperature superconducting (HTS) magnet reduces the reactor’s size, weight, flux leakage, and electrical losses. An HTS magnet needs cryogenic cooling to achieve and maintain its superconducting state. There are two methods for doing this: one is pool boiling and the other is conduction cooling. The conduction cooling method is more effective than the pool boiling method in terms of smaller size and lighter weight. This paper discusses a design of conduction cooling system for a high current, high temperature superconducting DC reactor. Dimensions of the conduction cooling system parts including HTS magnets, bobbin structures, current leads, support bars, and thermal exchangers were calculated and drawn using a 3D CAD program. A finite element method model was built for determining the optimal design parameters and analyzing the thermo-mechanical characteristics. The operating current and inductance of the reactor magnet were 1,500 A, 400 mH, respectively. The thermal load of the HTS DC reactor was analyzed for determining the cooling capacity of the cryo-cooler. The study results can be effectively utilized for the design and fabrication of a commercial HTS DC reactor.
Dendritic cell reprogramming by endogenously produced lactic acid.
Nasi, Aikaterini; Fekete, Tünde; Krishnamurthy, Akilan; Snowden, Stuart; Rajnavölgyi, Eva; Catrina, Anca I; Wheelock, Craig E; Vivar, Nancy; Rethi, Bence
2013-09-15
The demand for controlling T cell responses via dendritic cell (DC) vaccines initiated a quest for reliable and feasible DC modulatory strategies that would facilitate cytotoxicity against tumors or tolerance in autoimmunity. We studied endogenous mechanisms in developing monocyte-derived DCs (MoDCs) that can induce inflammatory or suppressor programs during differentiation, and we identified a powerful autocrine pathway that, in a cell concentration-dependent manner, strongly interferes with inflammatory DC differentiation. MoDCs developing at low cell culture density have superior ability to produce inflammatory cytokines, to induce Th1 polarization, and to migrate toward the lymphoid tissue chemokine CCL19. On the contrary, MoDCs originated from dense cultures produce IL-10 but no inflammatory cytokines upon activation. DCs from high-density cultures maintained more differentiation plasticity and can develop to osteoclasts. The cell concentration-dependent pathway was independent of peroxisome proliferator-activated receptor γ (PPARγ), a known endogenous regulator of MoDC differentiation. Instead, it acted through lactic acid, which accumulated in dense cultures and induced an early and long-lasting reprogramming of MoDC differentiation. Our results suggest that the lactic acid-mediated inhibitory pathway could be efficiently manipulated in developing MoDCs to influence the immunogenicity of DC vaccines.
Julian, Mark W; Shao, Guohong; Bao, Shengying; Knoell, Daren L; Papenfuss, Tracey L; VanGundy, Zachary C; Crouser, Elliott D
2012-07-01
Plasmacytoid dendritic cells (pDC) are potent APCs known to regulate immune responses to self-Ags, particularly DNA. The mitochondrial fraction of necrotic cells was found to most potently promote human pDC activation, as reflected by type I IFN release, which was dependent upon the presence of mitochondrial DNA and involved TLR9 and receptors for advanced glycation end products. Mitochondrial transcription factor A (TFAM), a highly abundant mitochondrial protein that is functionally and structurally homologous to high mobility group box protein 1, was observed to synergize with CpG-containing oligonucleotide, type A, DNA to promote human pDC activation. pDC type I IFN responses to TFAM and CpG-containing oligonucleotide, type A, DNA indicated their engagement with receptors for advanced glycation end products and TLR9, respectively, and were dependent upon endosomal processing and PI3K, ERK, and NF-κB signaling. Taken together, these results indicate that pDC contribute to sterile immune responses by recognizing the mitochondrial component of necrotic cells and further incriminate TFAM and mitochondrial DNA as likely mediators of pDC activation under these circumstances.
NASA Astrophysics Data System (ADS)
Gyuráki, Roland; Sirois, Frédéric; Grilli, Francesco
2018-07-01
Fluorescent microthermographic imaging, a method using rare-earth fluorescent coatings with temperature dependent light emission, was used for quench investigation in high temperature superconductors (HTS). A fluorophore was embedded in a polymer matrix and used as a coating on top of an HTS tape, while being excited with UV light and recorded with a high-speed camera. Simultaneously, the tape was pulsed with high amplitude, short duration DC current, and brought to quench with the help of a localised defect. The Joule heating during a quench influences the fluorescent light intensity emitted from the coating, and by recording the local variations in this intensity over time, the heating of the tape can be visualised and the developed temperatures can be calculated. In this paper, the fluorophore europium tris[3-(trifluoromethylhydroxymethylene)-(+)-camphorate] (EuTFC) provided sufficient temperature sensitivity and a usable temperature range from 77-260 K. With the help of 2500 image captures per second, the normal zone development was imaged in a 20 μm copper stabilised HTS tape held in a liquid nitrogen bath, and using a calibration curve, the temperatures reached during the quench have been calculated.
Quasiclassical description of a superconductor with a spin density wave
NASA Astrophysics Data System (ADS)
Moor, A.; Volkov, A. F.; Efetov, K. B.
2011-04-01
We derive equations for the quasiclassical Green’s functions ǧ within a simple model of a two-band superconductor with a spin density wave (SDW). The elements of the matrix ǧ are the retarded, advanced, and Keldysh functions, each of which is an 8×8 matrix in the Gor’kov-Nambu, the spin, and the band space. In equilibrium, these equations are a generalization of the Eilenberger equation. On the basis of the derived equations, we analyze the Knight shift, the proximity, and the dc Josephson effects in the superconductors under consideration. The Knight shift is shown to depend on the orientation of the external magnetic field with respect to the direction of the vector of the magnetization of the SDW. The proximity effect is analyzed for an interface between a superconductor with the SDW and a normal metal. The function describing both superconducting and magnetic correlations is shown to penetrate the normal metal or a metal with the SDW due to the proximity effect. The dc Josephson current in an SSDW/N/SSDW junction is also calculated as a function of the phase difference φ. It is shown that in our model, the Josephson current does not depend on the mutual orientation of the magnetic moments in the superconductors SSDW and is proportional to sinφ. The dissipationless spin current jsp depends on the angle α between the magnetization vectors in the same way (jsp~sinα) and is not zero above the superconducting transition temperature.
NASA Astrophysics Data System (ADS)
Kim, Tae Kyoung; Yoon, Yeo Jin; Oh, Seung Kyu; Lee, Yu Lim; Cha, Yu-Jung; Kwak, Joon Seop
2018-02-01
The dependence of the electrical and optical properties of radio frequency (RF) superimposed direct current (DC) sputtered-indium tin oxide (ITO) on the tin oxide (Sn2O3) content of the ITO is investigated, in order to elucidate an ohmic contact mechanism for the sputtered-ITO transparent electrodes on p-type gallium nitride (p-GaN). Contact resistivity of the RF superimposed DC sputtered-ITO on p-GaN in LEDs decreased when Sn2O3 content was increased from 3 wt% to 7 wt% because of the reduced sheet resistance of the sputtered-ITO with the increasing Sn2O3 content. Further increases in Sn2O3 content from 7 wt% to 15 wt% resulted in deterioration of the contact resistivity, which can be attributed to reduction of the work function of the ITO with increasing Sn2O3 content, followed by increasing Schottky barrier height at the sputtered ITO/p-GaN interface. Temperature-dependent contact resistivity of the sputtered-ITO on p-GaN also revealed that the ITO contacts with 7 wt% Sn2O3 yielded the lowest effective barrier height of 0.039 eV. Based on these results, we devised sputtered-ITO transparent p-electrodes having dual compositions of Sn2O3 content (7/10 wt%). The radiant intensity of LEDs having sputtered-ITO transparent p-electrodes with the dual compositions (7/10 wt%) was enhanced by 13% compared to LEDs having ITO with Sn2O3 content of 7 wt% only.
Development of a pepper pot emittance probe and its application for ECR ion beam studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondrashev, S.; Barcikowski, A.; Mustapha, B.
2009-07-21
A pepper pot-scintillator screen system has been developed and used to measure the emittance of DC ion beams extracted from a high-intensity permanent magnet ECR ion source. The system includes a fast beam shutter with a minimum dwell time of 18 ms to reduce the degradation of the CsI(Tl) scintillator by DC ion beam irradiation and a CCD camera with a variable shutter speed in the range of 1 {micro}s-65 s. On-line emittance measurements are performed by an application code developed on a LabVIEW platform. The sensitivity of the device is sufficient to measure the emittance of DC ion beamsmore » with current densities down to about 100 nA/cm{sup 2}. The emittance of all ion species extracted from the ECR ion source and post-accelerated to an energy of 75-90 keV/charge have been measured downstream of the LEBT. As the mass-to-charge ratio of ion species increases, the normalized RMS emittances in both transverse phase planes decrease from 0.5-1.0 {pi} mm mrad for light ions to 0.05-0.09 {pi} mm mrad for highly charged {sup 209}Bi ions. The dependence of the emittance on ion's mass-to-charge ratio follows very well the dependence expected from beam rotation induced by decreasing ECR axial magnetic field. The measured emittance values cannot be explained by only ion beam rotation for all ion species and the contribution to emittance of ion temperature in plasma, non-linear electric fields and non-linear space charge is comparable or even higher than the contribution of ion beam rotation.« less
NASA Technical Reports Server (NTRS)
Shie, C.-L.; Shie, C.-L.; Tao, W.-K.; Simpson, J.; Sui, C.-H.
2005-01-01
An ideal and simple formulation is successfully derived that well represents a quasi-linear relationship found between the domain-averaged water vapor, q (mm), and temperature, T (K), fields obtained from a series of quasi-equilibrium (long-term) simulations for the Tropics using the two-dimensional Goddard Cumulus Ensemble (GCE) model. Earlier model work showed that the forced maintenance of two different wind profiles in the Tropics leads to two different equilibrium states. Investigating this finding required investigation of the slope of the moisture-temperature relations, which turns out to be linear in the Tropics. The extra-tropical climate equilibriums become more complex, but insight on modeling sensitivity can be obtained by linear stepwise regression of the integrated temperature and humidity. A globally curvilinear moisture-temperature distribution, similar to the famous Clausius-Clapeyron curve (i.e., saturated water vapor pressure versus temperature), is then found in this study. Such a genuine finding clarifies that the dynamics are crucial to the climate (shown in the earlier work) but the thermodynamics adjust. The range of validity of this result is further examined herein. The GCE-modeled tropical domain-averaged q and T fields form a linearly-regressed "q-T" slope that genuinely resides within an ideal range of slopes obtained from the aforementioned formulation. A quantity (denoted as dC2/dC1) representing the derivative between the static energy densities due to temperature (C2) and water vapor (C1) for various quasi-equilibrium states can also be obtained. A dC2/dC1 value near unity obtained for the GCE-modeled tropical simulations implies that the static energy densities due to moisture and temperature only differ by a pure constant for various equilibrium states. An overall q-T relation also including extra-tropical regions is, however, found to have a curvilinear relationship. Accordingly, warm/moist regions favor change in water vapor faster than temperature, while cold/dry regions favor an increase in temperature quicker than water vapor.
NASA Astrophysics Data System (ADS)
Kumagai, Daisuke; Ohsaki, Hiroyuki; Tomita, Masaru
2016-12-01
A superconducting power cable has merits of a high power transmission capacity, transmission losses reduction, a compactness, etc., therefore, we have been studying the feasibility of applying superconducting power cables to DC electric railway feeding systems. However, a superconducting power cable is required to be cooled down and kept at a very low temperature, so it is important to reveal its thermal and cooling characteristics. In this study, electric circuit analysis models of the system and thermal analysis models of superconducting cables were constructed and the system behaviors were simulated. We analyzed the heat generation by a short circuit accident and transient temperature distribution of the cable to estimate the value of temperature rise and the time required from the accident. From these results, we discussed a feasibility of superconducting cables for DC electric railway feeding systems. The results showed that the short circuit accident had little impact on the thermal condition of a superconducting cable in the installed system.
NASA Astrophysics Data System (ADS)
Sorokin, N. I.
2018-05-01
The characteristics of Li+-ion conductivity σdc of structural γ modifications of Li3R2(PO4)3 compounds (R = Fe, Sc) existing in the superionic state have been investigated by impedance spectroscopy. The type of structural framework [R2P3O12]∞ 3- affects the σdc value and the σdc activation enthalpy in these compounds. The ion transport activation enthalpy in γ-Li3R2(PO4)3 (Δ H σ = 0.31 ± 0.03 eV) is lower than in γ-Li3Fe2(PO4)3 (Δ H σ = 0.36 ± 0.03 eV). The conductivity of γ-Li3Fe2(PO4)3 (σdc = 0.02 S/cm at 573 K) is twice as high as that of γ-Li3R2(PO4)3. A decrease in temperature causes a structural transformation of Li3R2(PO4)3 from the superionic γ modification (space group Pcan) through the intermediate metastable β modification (space group P21/ n) into the "dielectric" α modification (space group P21/ n). Upon cooling, σdc for both phosphates decreases by a factor of about 100 at the superionic TSIC transition. In Li3Fe2(PO4)3 σdc gradually decreases in the temperature range T SIC = 430-540 K, whereas in Li3R2(PO4)3 σdc undergoes a jump at T SIC = 540 ± 25 K. Possible crystallochemical factors responsible for the difference in the σdc and Δ H σ values and the thermodynamics and kinetics of the superionic transition for Li3R2(PO4)3 are discussed.
NASA Technical Reports Server (NTRS)
Mckenna, D. S.; Jones, R. L.; Buckland, A. T.; Austin, J.; Tuck, A. F.; Winkler, R. H.; Chan, K. R.
1989-01-01
This paper presents a series of meteorological analyses used to aid the interpretation of the in situ Airborne Antarctic Ozone Experiment (AAOE) observations obtained aboard the ER-2 and DC-8 aircraft and examines the basis and accuracy of the analytical procedure. Maps and sections of meteorological variables derived from the UK Meteorological Office Global Model are presented for ER-2 and DC-8 flight days. It is found that analyzed temperatures and winds are generally in good agreement with AAOE observations at all levels; minor discrepancies were evident only at DC-8 altitudes. Maps of potential vorticity presented on the 428-K potential temperature surface show that the vortex is essentially circumpolar, although there are periods when major distortions are apparent.
Optimization of spin-torque switching using AC and DC pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, Tom; Kamenev, Alex; Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, Minnesota 55455
2014-06-21
We explore spin-torque induced magnetic reversal in magnetic tunnel junctions using combined AC and DC spin-current pulses. We calculate the optimal pulse times and current strengths for both AC and DC pulses as well as the optimal AC signal frequency, needed to minimize the Joule heat lost during the switching process. The results of this optimization are compared against numeric simulations. Finally, we show how this optimization leads to different dynamic regimes, where switching is optimized by either a purely AC or DC spin-current, or a combination AC/DC spin-current, depending on the anisotropy energies and the spin-current polarization.
Melki, Marie-Thérèse; Saïdi, Héla; Dufour, Alexandre; Olivo-Marin, Jean-Christophe; Gougeon, Marie-Lise
2010-04-15
Early stages of Human Immunodeficiency Virus-1 (HIV-1) infection are associated with local recruitment and activation of important effectors of innate immunity, i.e. natural killer (NK) cells and dendritic cells (DCs). Immature DCs (iDCs) capture HIV-1 through specific receptors and can disseminate the infection to lymphoid tissues following their migration, which is associated to a maturation process. This process is dependent on NK cells, whose role is to keep in check the quality and the quantity of DCs undergoing maturation. If DC maturation is inappropriate, NK cells will kill them ("editing process") at sites of tissue inflammation, thus optimizing the adaptive immunity. In the context of a viral infection, NK-dependent killing of infected-DCs is a crucial event required for early elimination of infected target cells. Here, we report that NK-mediated editing of iDCs is impaired if DCs are infected with HIV-1. We first addressed the question of the mechanisms involved in iDC editing, and we show that cognate NK-iDC interaction triggers apoptosis via the TNF-related apoptosis-inducing ligand (TRAIL)-Death Receptor 4 (DR4) pathway and not via the perforin pathway. Nevertheless, once infected with HIV-1, DC(HIV) become resistant to NK-induced TRAIL-mediated apoptosis. This resistance occurs despite normal amounts of TRAIL released by NK cells and comparable DR4 expression on DC(HIV). The escape of DC(HIV) from NK killing is due to the upregulation of two anti-apoptotic molecules, the cellular-Flice like inhibitory protein (c-FLIP) and the cellular inhibitor of apoptosis 2 (c-IAP2), induced by NK-DC(HIV) cognate interaction. High-mobility group box 1 (HMGB1), an alarmin and a key mediator of NK-DC cross-talk, was found to play a pivotal role in NK-dependent upregulation of c-FLIP and c-IAP2 in DC(HIV). Finally, we demonstrate that restoration of DC(HIV) susceptibility to NK-induced TRAIL killing can be obtained either by silencing c-FLIP and c-IAP2 by specific siRNA, or by inhibiting HMGB1 with blocking antibodies or glycyrrhizin, arguing for a key role of HMGB1 in TRAIL resistance and DC(HIV) survival. These findings provide evidence for a new strategy developed by HIV to escape immune attack, they challenge the question of the involvement of HMGB1 in the establishment of viral reservoirs in DCs, and they identify potential therapeutic targets to eliminate infected DCs.
Power Electronics Thermal Management Research: Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreno, Gilberto
The objective for this project is to develop thermal management strategies to enable efficient and high-temperature wide-bandgap (WBG)-based power electronic systems (e.g., emerging inverter and DC-DC converter). Reliable WBG devices are capable of operating at elevated temperatures (≥ 175 °Celsius). However, packaging WBG devices within an automotive inverter and operating them at higher junction temperatures will expose other system components (e.g., capacitors and electrical boards) to temperatures that may exceed their safe operating limits. This creates challenges for thermal management and reliability. In this project, system-level thermal analyses are conducted to determine the effect of elevated device temperatures on invertermore » components. Thermal modeling work is then conducted to evaluate various thermal management strategies that will enable the use of highly efficient WBG devices with automotive power electronic systems.« less
NASA Technical Reports Server (NTRS)
Hoegy, Walter R.; McGee, Thomas J.; Burris, John F.; Heaps, William; Silbert, Donald; Sumnicht, Grant; Twigg, Laurence; Neuber, Roland
2000-01-01
The AROTEL instrument, deployed on the NASA DC-8 at Kiruna, Sweden for the SAGE III Ozone Loss and Validation Experiment (SOLVE), flew over the NDSC station operated by the Alfred Wegner Institute at Ny Aalesund, Spitsbergen. AROTEL ozone and temperature measurements made during near overflights of Ny Aalesund are compared with sonde ozone and temperature, and lidar ozone measurements from the NDSC station. Nine of the seventeen science flights during the December through March measurement period overflew near Ny Aalesund. Agreement of AROTEL with the ground-based temperature and ozone values at altitudes from just above the aircraft to about 30 km gives strong confidence in using AROTEL temperature and ozone mixing ratio to study the mechanisms of ozone loss in the winter arctic polar region.
Tu, Xin; Yan, Jian-hua; Ma, Zeng-yi; Li, Xiao-dong; Pan, Xin-chao; Cen, Ke-fa; Cheron, Bruno
2006-12-01
The molecular emission spectra lines of the first negative system N2+ (B(2) sigma--> X(2) sigma ) are frequently observed in the plasma source containing nitrogen. (0-0) and (1--1) N2+ first negative system molecular bands around 391. 4 nm can be used to the measure the rotational and vibrational temperatures in a DC argon-nitrogen plasma at atmospheric pressure. The proposed method based on the comparison between this experimental emission spectrum and the computer simulated one is presented. The effect of the apparatus function, vibrational temperature and rotational temperatures on the line structure of numerical simulated spectrum is discussed. The results show that the electron temperature, rotational temperature, vibrational temperature and kinetic temperature of plasma arc are almost the same, which can be interpreted as that DC argon-nitrogen arc plasma at atmospheric pressure is in LTE under their experimental conditions.
NASA Astrophysics Data System (ADS)
Wang, Wei; Liu, Ying; Gao, Zhong-yue; Zhao, Xue-ru; Yang, Yi; Yang, Sen
2018-07-01
Compensation temperature Tcomp and transition temperature TC have significant applications for the experimental realization of magnetic nanotube structure in the field of thermal magnetic recording. In this work, we use the Monte Carlo simulation to investigate the phase diagrams, magnetizations, susceptibilities, internal energies, specific heats and hysteresis behaviors of a cylindrical ferrimagnetic nanotube with core-shell structure. The effects of the single-ion anisotropies (DC, DS) and the exchange couplings (Jint, JS) on the magnetic and thermodynamic properties of the system are examined. A number of characteristic behaviors are discovered in the thermal variations, depending on different physical parameters. In particular, the triple hysteresis loops behavior has been found for appropriate physical parameters. These findings are qualitatively in good agreement with related experimental and the other theoretical results.
Improved thermal stability of Mn-Ir-based magnetic tunnel junction with nano-oxide layer
NASA Astrophysics Data System (ADS)
Yoon, S. Y.; Kim, Y. I.; Lee, D. H.; Kim, Y. S.; Suh, S. J.
2004-06-01
Si/SiO2/Ta/NiFe/Mn-Ir/CoFe/NOL/CoFe/Al-O/CoFe/NiFe/Ta bottom conventional (without nano-oxide layer, NOL) and specular (with NOL) MTJs were prepared by DC magnetron sputtering methods. In the case of a conventional MTJ, the TMR ratio increased up to 300 °C but the TMR ratio of a specular MTJ increased up to 400 °C. The highest TMR ratios of two samples after annealing at each optimal temperature were 21.6% (conventional MTJ) and 22.7% (specular MTJ), respectively, This improved thermal property of the specular MTJ is due to the NOL, which could act as a diffusion barrier for Mn. The bias-voltage dependence of both samples was vastly improved after annealing at each optimal temperature.
Magnetization reversal properties of Pr{sub 1-x}(Gd/Nd){sub x}MnO{sub 3} (x=0.3, 0.5, 0.7)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Sanjay; Pal, Sudipta, E-mail: sudipta.pal@rediffmail.com; Bose, Esa
2015-06-24
We report measurements of the temperature dependent magnetic properties of single phase orthorhombic perovskites system associated with space group Pbnm compounds Pr{sub 1-x}(Gd/Nd){sub x}MnO{sub 3} (x=0.3, 0.5, 0.7). Magnetic properties radically changes with the doping of Gd or Nd. A magnetization reversal is observed below the Neel temperature (T{sub N}), in DC magnetization measurements (at 50 Oe) in the doped compounds. The reversal of magnetization may be due to the antiparallel coupling between the two magnetic sublattices (|Pr+ Gd/ Nd | and Mn). The hysteresis plot taken at 50K indicates a ferrimagnetic characteristic and existence of spin canting of ionsmore » in the magnetic sublattices.« less
Tissue-specific differentiation of a circulating CCR9- pDC-like common dendritic cell precursor.
Schlitzer, Andreas; Heiseke, Alexander F; Einwächter, Henrik; Reindl, Wolfgang; Schiemann, Matthias; Manta, Calin-Petru; See, Peter; Niess, Jan-Hendrik; Suter, Tobias; Ginhoux, Florent; Krug, Anne B
2012-06-21
The ontogenic relationship between the common dendritic cell (DC) progenitor (CDP), the committed conventional DC precursor (pre-cDC), and cDC subpopulations in lymphoid and nonlymphoid tissues has been largely unraveled. In contrast, the sequential steps of plasmacytoid DC (pDC) development are less defined, and it is unknown at which developmental stage and location final commitment to the pDC lineage occurs. Here we show that CCR9(-) pDCs from murine BM which enter the circulation and peripheral tissues have a common DC precursor function in vivo in the steady state, in contrast to CCR9(+) pDCs which are terminally differentiated. On adoptive transfer, the fate of CCR9(-) pDC-like precursors is governed by the tissues they enter. In the BM and liver, most transferred CCR9(-) pDC-like precursors differentiate into CCR9(+) pDCs, whereas in peripheral lymphoid organs, lung, and intestine, they additionally give rise to cDCs. CCR9(-) pDC-like precursors which are distinct from pre-cDCs can be generated from the CDP. Thus, CCR9(-) pDC-like cells are novel CDP-derived circulating DC precursors with pDC and cDC potential. Their final differentiation into functionally distinct pDCs and cDCs depends on tissue-specific factors allowing adaptation to local requirements under homeostatic conditions.
NASA Astrophysics Data System (ADS)
Jilani, Asim; Abdel-wahab, M. Sh; Al-ghamdi, Attieh A.; Dahlan, Ammar sadik; Yahia, I. S.
2016-01-01
The 2.2 wt% of aluminum (Al)-doped zinc oxide (AZO) transparent and preferential c-axis oriented thin films were prepared by using radio frequency (DC/RF) magnetron sputtering at different substrate temperature ranging from room temperature to 200 °C. For structural analysis, X-ray Diffraction (XRD) and Atomic Force Electron Microscope (AFM) was used for morphological studies. The optical parameters such as, optical energy gap, refractive index, extinction coefficient, dielectric loss, tangent loss, first and third order nonlinear optical properties of transparent films were investigated. High transmittance above 90% and highly homogeneous surface were observed in all samples. The substrate temperature plays an important role to get the best transparent conductive oxide thin films. The substrate temperature at 150 °C showed the growth of highly transparent AZO thin film. Energy gap increased with the increased in substrate temperature of Al doped thin films. Dielectric constant and loss were found to be photon energy dependent with substrate temperature. The change in substrate temperature of Al doped thin films also affect the non-liner optical properties of thin films. The value of χ(3) was found to be changed with the grain size of the thin films that directly affected by the substrate temperature of the pure and Al doped ZnO thin films.
Wang, Guanglong; Huang, Wei; Li, Mengyao; Xu, Zhisheng; Wang, Feng; Xiong, Aisheng
2016-09-01
Jasmonates (JAs) are recognized as essential regulators in response to environmental stimuli and plant development. Carrot is an Apiaceae vegetable with great value and undergoes significant size changes over the course of plant growth. However, JA accumulation and its potential roles in carrot growth remain unclear. Here, methyl JA (MeJA) levels and expression profiles of JA-related genes were analyzed in carrot roots and leaves at five developmental stages. MeJA levels in the roots and leaves were the highest at the first stage and decreased as carrot growth proceeded. Transcript levels of several JA-related genes (Dc13-LOX1, Dc13-LOX2, DcAOS, DcAOC, DcOPR2, DcOPR3, DcOPCL1, DcJAR1, DcJMT, DcCOI1, DcJAZ1, DcJAZ2, DcMYC2, DcCHIB/PR3, DcLEC, and DcVSP2) were not well correlated with MeJA accumulation during carrot root and leaf development. In addition, some JA-related genes (DcJAR1, DcJMT, DcCOI1, DcMYC2, and DcVSP2) showed differential expression between roots and leaves. These results suggest that JAs may regulate carrot plant growth in stage-dependent and organ-specific manners. Our work provides novel insights into JA accumulation and its potential roles during carrot growth and development. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Keech, Ryan; Morandi, Carl; Wallace, Margeaux; ...
2017-04-11
Continued reduction in length scales associated with many ferroelectric film-based technologies is contingent on retaining the functional properties as the film thickness is reduced. Epitaxial and polycrystalline lead magnesium niobate - lead titanate (70PMN-30PT) thin films were studied over the thickness range of 100-350 nm for the relative contributions to property thickness dependence from interfacial and grain boundary low permittivity layers. Epitaxial PMN-PT films were grown on SrRuO 3 /(001)SrTiO 3, while polycrystalline films with {001}-Lotgering factors >0.96 were grown on Pt/TiO 2/SiO 2/Si substrates via chemical solution deposition. Both film types exhibited similar relative permittivities of ~300 at highmore » fields at all measured thicknesses with highly crystalline electrode/dielectric interfaces. These results, with the DC-biased and temperature dependent dielectric characterization, suggest irreversible domain wall mobility is the major contributor to the overall dielectric response and its thickness dependence. In epitaxial films, the irreversible Rayleigh coefficients reduced 85% upon decreasing thickness from 350 to 100 nm. The temperature at which a peak in the relative permittivity is observed was the only measured small signal quantity which was more thickness dependent in polycrystalline than epitaxial films. This is attributed to the relaxor nature present in the films, potentially stabilized by defect concentrations, and/or chemical inhomogeneity. Finally, the effective interfacial layers are found to contribute to the measured thickness dependence in the longitudinal piezoelectric coefficient.« less
Y1Ba2Cu3O(7-delta) thin film dc SQUIDs (superconducting quantum interference device)
NASA Astrophysics Data System (ADS)
Racah, Daniel
1991-03-01
Direct current superconducting quantum interferometers (SQUIDs) based on HTSC thin films have been measured and characterized. The thin films used were of different quality: (1) Granular films on Sapphire substrates, prepared either by e-gun evaporation, by laser ablation or by MOCVD (metal oxide chemical vapor deposition), (2) Epitaxial films on MgO substrates. Modulations of the voltage on the SQUIDs as a function of the applied flux have been observed in a wide range of temperatures. The nature of the modulation was found to be strongly dependent on the morphology of the film and on its critical current. The SQUIDs based on granular films were relatively noisy, hysteretic and with a complicated V-phi shape. Those devices based on low quality (lowIc) granular films could be measured only at low temperatures (much lower than 77 K). While those of higher quality (granular films with high Ic) could be measured near to the superconductive transition. The SQUID based on high quality epitaxial film was measured near Tc and showed an anomalous, time dependent behavior.
Nonthermal response of YBa2Cu3O7-δ thin films to picosecond THz pulses
NASA Astrophysics Data System (ADS)
Probst, P.; Semenov, A.; Ries, M.; Hoehl, A.; Rieger, P.; Scheuring, A.; Judin, V.; Wünsch, S.; Il'in, K.; Smale, N.; Mathis, Y.-L.; Müller, R.; Ulm, G.; Wüstefeld, G.; Hübers, H.-W.; Hänisch, J.; Holzapfel, B.; Siegel, M.; Müller, A.-S.
2012-05-01
The photoresponse of YBa2Cu3O7-δ thin film microbridges with thicknesses between 15 and 50 nm was studied in the optical and terahertz frequency range. The voltage transients in response to short radiation pulses were recorded in real time with a resolution of a few tens of picoseconds. The bridges were excited by either femtosecond pulses at a wavelength of 0.8 μm or broadband (0.1-1.5 THz) picosecond pulses of coherent synchrotron radiation. The transients in response to optical radiation are qualitatively well explained in the framework of the two-temperature model with a fast component in the picosecond range and a bolometric nanosecond component whose decay time depends on the film thickness. The transients in the THz regime showed no bolometric component and had amplitudes up to three orders of magnitude larger than the two-temperature model predicts. Additionally THz field-dependent transients in the absence of DC bias were observed. We attribute the response in the THz regime to a rearrangement of vortices caused by high-frequency currents.
Study of electron mobility in small molecular SAlq by transient electroluminescence method
NASA Astrophysics Data System (ADS)
Kumar, Pankaj; Jain, S. C.; Kumar, Vikram; Chand, Suresh; Kamalasanan, M. N.; Tandon, R. P.
2007-12-01
The study of electron mobility of bis(2-methyl 8-hydroxyquinoline) (triphenyl siloxy) aluminium (SAlq) by transient electroluminescence (EL) is presented. An EL device is fabricated in bilayer, ITO/N,N'-diphenyl-N, N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD)/SAlq/LiF/Al configuration. The temporal evaluation of the EL with respect to the step voltage pulse is characterized by a delay time followed by a fast initial rise, which is followed by a slower rise. The delay time between the applied electrical pulse and the onset of EL is correlated with the carrier mobility (electron in our case). Transient EL studies for SAlq have been carried out at different temperatures and different applied electric fields. The electron mobility in SAlq is found to be field and temperature dependent and calculated to be 6.9 × 10-7 cm2 V-1 s-1 at 2.5 × 106 V cm-1 and 308 K. The EL decays immediately as the voltage is turned off and does not depend on the amplitude of the applied voltage pulse or dc offset.
van Helden, Suzanne F G; van den Dries, Koen; Oud, Machteld M; Raymakers, Reinier A P; Netea, Mihai G; van Leeuwen, Frank N; Figdor, Carl G
2010-02-01
Chronic infections are caused by microorganisms that display effective immune evasion mechanisms. Dendritic cell (DC)-dependent T cell-mediated adaptive immunity is one of the mechanisms that have evolved to prevent the occurrence of chronic bacterial infections. In turn, bacterial pathogens have developed strategies to evade immune recognition. In this study, we show that gram-negative and gram-positive bacteria differ in their ability to activate DCs and that gram-negative bacteria are far more effective inducers of DC maturation. Moreover, we observed that only gram-negative bacteria can induce loss of adhesive podosome structures in DCs, a response necessary for the induction of effective DC migration. We demonstrate that the ability of gram-negative bacteria to trigger podosome turnover and induce DC migration reflects their capacity to selectively activate TLR4. Examining mice defective in TLR4 signaling, we show that this DC maturation and migration are mainly Toll/IL-1 receptor domain-containing adaptor-inducing IFNbeta-dependent. Furthermore, we show that these processes depend on the production of PGs by these DCs, suggesting a direct link between TLR4-mediated signaling and arachidonic metabolism. These findings demonstrate that gram-positive and gram-negative bacteria profoundly differ in their capacity to activate DCs. We propose that this inability of gram-positive bacteria to induce DC maturation and migration is part of the armamentarium necessary for avoiding the induction of an effective cellular immune response and may explain the frequent involvement of these pathogens in chronic infections.
NASA Astrophysics Data System (ADS)
Biermann, Horst; Glage, Alexander; Droste, Matthias
2016-01-01
Metastable austenitic steels can exhibit a fatigue-induced martensitic phase transformation during cyclic loading. It is generally agreed that a certain strain amplitude and a threshold of the cumulated plastic strain must be exceeded to trigger martensitic phase transformation under cyclic loading. With respect to monotonic loading, the martensitic phase transformation takes place up to a critical temperature—the so-called M d temperature. The goal of the present investigation is to determine an M d,c temperature which would be the highest temperature at which a fatigue-induced martensitic phase transformation can take place. For this purpose, fatigue tests controlled by the total strain were performed at different temperatures. The material investigated was a high-alloy metastable austenitic steel X3CrMnNi16.7.7 (16.3Cr-7.2Mn-6.6Ni-0.03C-0.09N-1.0Si) produced using the hot pressing technique. The temperatures were set in the range of 283 K (10 °C) ≤ T ≤ 473 K (200 °C). Depending on the temperature and strain amplitude, the onset of the martensitic phase transformation shifted to different values of the cumulated plastic strain, or was inhibited completely. Moreover, it is known that metastable austenitic CrMnNi steels with higher nickel contents can exhibit the deformation-induced twinning effect. Thus, at higher temperatures and strain amplitudes, a transition from the deformation-induced martensitic transformation to deformation-induced twinning takes place. The fatigue-induced martensitic phase transformation was monitored during cyclic loading using a ferrite sensor. The microstructure after the fatigue tests was examined using the back-scattered electrons, the electron channeling contrast imaging and the electron backscatter diffraction techniques to study the temperature-dependent dislocation structures and phase transformations.
Solar Photovoltaic DC Systems: Basics and Safety: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNutt, Peter F; Sekulic, William R; Dreifuerst, Gary
Solar Photovoltaic (PV) systems are common and growing with 42.4 GW installed capacity in U.S. (almost 15 GW added in 2016). This paper will help electrical workers, and emergency responders understand the basic operating principles and hazards of PV DC arrays. We briefly discuss the following aspects of solar photovoltaic (PV) DC systems: the effects of solar radiation and temperature on output power; PV module testing standards; common system configurations; a simple PV array sizing example; NEC guidelines and other safety features; DC array commissioning, periodic maintenance and testing; arc-flash hazard potential; how electrical workers and emergency responders can andmore » do work safely around PV arrays; do moonlight and artificial lighting pose a real danger; typical safe operating procedures; and other potential DC-system hazards to be aware of. We also present some statistics on PV DC array electrical incidents and injuries. Safe PV array operation is possible with a good understanding of PV DC arrays basics and having good safe operating procedures in place.« less
Effects of DC bias on magnetic performance of high grades grain-oriented silicon steels
NASA Astrophysics Data System (ADS)
Ma, Guang; Cheng, Ling; Lu, Licheng; Yang, Fuyao; Chen, Xin; Zhu, Chengzhi
2017-03-01
When high voltage direct current (HVDC) transmission adopting mono-polar ground return operation mode or unbalanced bipolar operation mode, the invasion of DC current into neutral point of alternating current (AC) transformer will cause core saturation, temperature increasing, and vibration acceleration. Based on the MPG-200D soft magnetic measurement system, the influence of DC bias on magnetic performance of 0.23 mm and 0.27 mm series (P1.7=0.70-1.05 W/kg, B8>1.89 T) grain-oriented (GO) silicon steels under condition of AC / DC hybrid excitation were systematically realized in this paper. For the high magnetic induction GO steels (core losses are the same), greater thickness can lead to stronger ability of resisting DC bias, and the reasons for it were analyzed. Finally, the magnetostriction and A-weighted magnetostriction velocity level of GO steel under DC biased magnetization were researched.
Humbert, Marion; Guery, Leslie; Brighouse, Dale; Lemeille, Sylvain; Hugues, Stephanie
2018-03-27
Cancer immunotherapies utilize distinct mechanisms to harness the power of the immune system to eradicate cancer cells. Therapeutic vaccines, aimed at inducing active immune responses against an existing cancer, are highly dependent on the immunological microenvironment, where many immune cell types display high levels of plasticity and, depending on the context, promote very different immunological outcomes. Among them, plasmacytoid dendritic cells (pDC), known to be highly immunogenic upon inflammation, are maintained in a tolerogenic state by the tumor microenvironment. Here we report that intratumoral (i.t.) injection of established solid tumors with CpG oligonucleotides-B (CpG-B) inhibits tumor growth. Interestingly, control of tumor growth was independent of tumor-associated (TA) pDC, which remained refractory to CpG-B stimulation and whose depletion did not alter the efficacy of the treatment. Instead, tumor growth inhibition subsequent to i.t. CpG-B injection depended on the recruitment of neutrophils into the milieu, resulting in the activation of conventional dendritic cells (cDC), subsequent increased anti-tumor T cell priming in draining lymph nodes, and enhanced effector T cell infiltration in the tumor microenvironment. These results reinforce the concept that intratumoral delivery of TLR9 agonists alters the tumor microenvironment by improving the anti-tumor activity of both innate and adaptive immune cells. Copyright ©2018, American Association for Cancer Research.
NASA Technical Reports Server (NTRS)
Russell, P. B.; Pueschel, R. F.; Livingston, J. M.; Bergstrom, R.; Hamill, P.
1994-01-01
This paper brings together experimental evidence required to build realistic models of the global evolution of physical, chemical, and optical properties of the aerosol resulting from the 1991 Pinatubo volcanic eruption. Such models are needed to compute the effects of the aerosol on atmospheric chemistry, dynamics, radiation, and temperature. Whereas there is now a large and growing body of post-Pinatubo measurements by a variety of techniques, some results are in conflict, and a self-consistent, unified picture is needed, along with an assessment of remaining uncertainties. This paper examines data from photometers, radiometers, impactors, optical counters/sizers, and lidars operated on the ground, aircraft, balloons, and spacecraft. Example data sources include: - Tracking sunphotometers and lidars at Mauna Loa Observatory (MLO) and on the DC-8 - Particle spectrometers and wire impactors on the ER-2 and DC-8 - Dustsondes (particle counters/sizers on balloons) - SAGE II, SAM II, AVHRR, CLAES, and ISAMS sensors on a variety of satellites. We assess the mutual consistency of these disparate data sets and recommend 'consensus" properties and uncertainties in the process of developing a composite data set. Recommended properties include the spatial and temporal evolution of particle chemical composition, shape, wavelength and temperature-dependent refractive index, size distribution, and optical depth spectra. Supporting references are cited and representative data shown.
NASA Technical Reports Server (NTRS)
Russell, Philip B.; Pueschel, R. F.; Livingston, J. M.; Bergstrom, R.; Hamill, P.; Lawless, James G. (Technical Monitor)
1994-01-01
This paper brings together experimental evidence required to build realistic models of the global evolution of physical, chemical, and optical properties of the aerosol resulting from the 1991 Pinatubo volcanic eruption. Such models are needed to compute the effects of the aerosol on atmospheric chemistry, dynamics, radiation, and temperature. Whereas there is now a large and crowing body of post-Pinatubo measurements by a variety of techniques, some results are in conflict, and a self-consistent, unified picture is needed, along with an assessment of remaining uncertainties. This paper examines, data from photometers, radiometers, impactors, optical counter/sizers, and lidars operated on the ground, aircraft, balloons, and spacecraft. Example data sources include: (1) Tracking sunphotometers and lidars at Mauna Loa Observatory (MLO) and on the DC-8. (2) Particle spectrometers and wire impactors on the ER-2 and DC-8. (3) Dustsondes (particle counter/sizers on balloons). and (3) SAGE II, SAM II, AVHRR, CLAES, and ISAMS sensors on a variety of satellites. We assess the mutual consistency of these disparate data sets and recommend 'consensus' properties and uncertainties in the process of developing a composite data set. Recommended properties include the spatial and temporal evolution of particle chemical composition, shape, wavelength-and temperature-dependent refractive index, size distribution, and optical depth spectra. Supporting references are cited and representative data shown.
An analytic current-voltage model for quasi-ballistic III-nitride high electron mobility transistors
NASA Astrophysics Data System (ADS)
Li, Kexin; Rakheja, Shaloo
2018-05-01
We present an analytic model to describe the DC current-voltage (I-V) relationship in scaled III-nitride high electron mobility transistors (HEMTs) in which transport within the channel is quasi-ballistic in nature. Following Landauer's transport theory and charge calculation based on two-dimensional electrostatics that incorporates negative momenta states from the drain terminal, an analytic expression for current as a function of terminal voltages is developed. The model interprets the non-linearity of access regions in non-self-aligned HEMTs. Effects of Joule heating with temperature-dependent thermal conductivity are incorporated in the model in a self-consistent manner. With a total of 26 input parameters, the analytic model offers reduced empiricism compared to existing GaN HEMT models. To verify the model, experimental I-V data of InAlN/GaN with InGaN back-barrier HEMTs with channel lengths of 42 and 105 nm are considered. Additionally, the model is validated against numerical I-V data obtained from DC hydrodynamic simulations of an unintentionally doped AlGaN-on-GaN HEMT with 50-nm gate length. The model is also verified against pulsed I-V measurements of a 150-nm T-gate GaN HEMT. Excellent agreement between the model and experimental and numerical results for output current, transconductance, and output conductance is demonstrated over a broad range of bias and temperature conditions.
Critical behavior and dimension crossover of pion superfluidity
NASA Astrophysics Data System (ADS)
Wang, Ziyue; Zhuang, Pengfei
2016-09-01
We investigate the critical behavior of pion superfluidity in the framework of the functional renormalization group (FRG). By solving the flow equations in the SU(2) linear sigma model at finite temperature and isospin density, and making comparison with the fixed point analysis of a general O (N ) system with continuous dimension, we find that the pion superfluidity is a second order phase transition subject to an O (2 ) universality class with a dimension crossover from dc=4 to dc=3 . This phenomenon provides a concrete example of dimension reduction in thermal field theory. The large-N expansion gives a temperature independent critical exponent β and agrees with the FRG result only at zero temperature.
NASA Astrophysics Data System (ADS)
Shinde, Manish; Pawar, Amol; Karmakar, Soumen; Seth, Tanay; Raut, Varsha; Rane, Sunit; Bhoraskar, Sudha; Amalnerkar, Dinesh
2009-11-01
Uncapped silver nanoparticles were synthesized by DC arc thermal plasma technique. The synthesized nanoparticles were structurally cubic and showed wide particle size variation (between 20-150 nm). Thick film paste formulated from such uncapped silver nanoparticles was screen-printed on alumina substrates and the resultant `green' films were fired at different firing temperatures. The films fired at 600 °C revealed better microstructure properties and also yielded the lowest value of sheet resistance in comparison to those corresponding to conventional peak firing temperature of 850 °C. Our findings directly support the role of silver nanoparticles in substantially depressing the operative peak firing temperature involved in traditional conductor thick films technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ram, Mast, E-mail: mastram1999@yahoo.com; Bala, Kanchan; Sharma, Hakikat
In the present study, nanoparticles of Fe doped zinc oxide (ZnO) [Zn{sub 1-x}Fe{sub x}O where x=0.0, 0.01, 0.02, 0.03 and 0.05] were prepared by cost effective solution combustion method. The powder X-ray diffractometry confirms the formation of single phase wurtzite structure. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to investigate the micrsostructure of Fe-doped ZnO nanoparticles. The DC electrical conductivity was found to increase with temperature and measurement was carried out in the temperature range of 300-473K. DC electrical conductivity increases with temperature and decreases with Fe doping concentration.
A modulation technique for the measurement of the DC longitudinal Faraday effect
NASA Astrophysics Data System (ADS)
Hunte, Carlos
2018-03-01
A modulation of light technique, using a lock-in amplifier, is described and tested to investigate the longitudinal Faraday effect in isotropic media. The Faraday rotation is measured directly from the lock-in amplifier. The Verdet constant and dispersion of lead-silica SF-59 Schott glass, at room temperature of 25 °C, were determined for varying wavelengths and expressions for their wavelength dependence were determined. The Verdet constant of water is also investigated. The results compare extremely well with other studies. The technique is suited to measure very small Verdet constants and can be easily conducted in an upper-level undergraduate laboratory.
NASA Astrophysics Data System (ADS)
Shanmugam, G.; Krishnakumar, V.
2018-05-01
Polymer composite films based on PVA-PVP with AlCl3 as the dopant at different concentrations were prepared using solution casting technique. XRD patterns reveal the increase in amorphousity of the films with AlCl3 doping. Optical absorption studies exhibit that the values of optical absorption coefficient, direct and indirect optical band gaps are found to decrease with increase in AlCl3 concentration. It confirms the charge transfer in complexes between the polymer and the dopant. The dielectric studies show the increase in dielectric constant at low frequency with increasing AlCl3 concentration and temperature. The ac conductivity and ionic conductivity increase with the AlCl3 content and the maximum value at room temperature is found to be 6.89 × 10-4 and 8.05 × 10-5 S/cm for higher AlCl3 doped PVA-PVP film. The estimated ionic conductivity value is three or four orders of magnitude greater than those obtained in the certain representative polymer-salt complexes as reported earlier. Electrical modulus plots confirm the removal of electrode polarization and the low conductivity relaxation time with Al doping. The activation energy estimated from the temperature dependent dc conductivity plot is agreed well with the migration energy calculated from the temperature dependent electric modulus plot.
Highly Conducting Molecular Crystals.
NASA Astrophysics Data System (ADS)
Whitehead, Roger James
Available from UMI in association with The British Library. Requires signed TDF. As the result of a wide ranging effort towards the preparation of new electrically conducting molecular crystals, high quality samples were prepared of the organic radical-ion salt (TMTSF)_2SbCl _2F_4 {bis-tetramethyltetraselenafulvalene-dichlorotetrafluoroantimonate(V) }. A collaborative effort to investigate the electronic and structural properties of this material has yielded the necessary depth of information required to give a satisfactory understanding of its rather complicated behaviour. The combination of x-ray structural studies with d.c. transport, reflectance and magnetic measurements has served to underline the importance of crystalline perfection, electronic dimensionality and conduction electron correlation in determining the materials overall behaviour. This thesis describes the method of preparation and characterization of (TMTSF)_2SbCl _2F_4 and the experimental arrangements used to determine the temperature dependence of its ambient pressure electrical conductivity, thermopower and electron spin resonance spectra. The crystal structure and optical reflectance measurements at room temperature are also presented. The results into a study of the low temperature diffraction pattern are described along with the temperature dependence in the static magnetic susceptibility and in the conductivity behaviour under elevated hydrostatic pressures. These findings are rationalized by reference to other materials which show similar behaviour in their electronic and/or structural properties, and also to the various theoretical models currently enjoying favour.
Dielectric properties of (CuO, CaO2, and BaO)y/CuTl-1223 composites
NASA Astrophysics Data System (ADS)
Mumtaz, M.; Kamran, M.; Nadeem, K.; Jabbar, Abdul; Khan, Nawazish A.; Saleem, Abida; Tajammul Hussain, S.; Kamran, M.
2013-07-01
We synthesized (CuO, CaO2, and BaO)y/Cu0.5Tl0.5Ba2Ca2Cu3O10-δ (y = 0, 5%, 10%, 15%) composites by solid-state reaction and characterized them by x-ray diffraction, scanning electron microscopy, dc-resistivity, and Fourier transform infrared spectroscopy. Frequency and temperature dependent dielectric properties, such as real and imaginary parts of the dielectric constant, dielectric loss, and ac-conductivity of these composites were studied by capacitance and conductance measurements as a function of frequency (10 kHz to 10 MHz) and temperature (78 to 300 K). X-ray diffraction analysis reveals that the characteristic behavior of the superconductor phase and the structure of Cu0.5Tl0.5Ba2Ca2Cu3O10-δ are nearly undisturbed by doping with nanoparticles. Scanning electron microscopy images show the improvement in the intergranular linking between the superconducting grains occurring with increasing nanoparticle concentration. Microcracks are healed up with these nanoparticles, and superconducting volume fraction is also increased. Dielectric properties of these composites strongly depend on the frequency and temperature. Zero resistivity critical temperature and dielectric properties show opposite trends with the addition of nanoparticles to the Cu0.5Tl0.5Ba2Ca2Cu3O10-δ superconductor matrix.
NASA Astrophysics Data System (ADS)
Lu, Wen-Ting; Zhao, Hong-Kang; Wang, Jian
2018-03-01
Photon heat current tunneling through a series coupled two mesoscopic Josephson junction (MJJ) system biased by dc voltages has been investigated by employing the nonequilibrium Green’s function approach. The time-oscillating photon heat current is contributed by the superposition of different current branches associated with the frequencies of MJJs ω j (j = 1, 2). Nonlinear behaviors are exhibited to be induced by the self-inductance, Coulomb interaction, and interference effect relating to the coherent transport of Cooper pairs in the MJJs. Time-oscillating pumping photon heat current is generated in the absence of temperature difference, while it becomes zero after time-average. The combination of ω j and Coulomb interactions in the MJJs determines the concrete heat current configuration. As the external and intrinsic frequencies ω j and ω 0 of MJJs match some specific combinations, resonant photon heat current exhibits sinusoidal behaviors with large amplitudes. Symmetric and asymmetric evolutions versus time t with respect to ω 1 t and ω 2 t are controlled by the applied dc voltages of V 1 and V 2. The dc photon heat current formula is a special case of the general time-dependent heat current formula when the bias voltages are settled to zero. The Aharonov-Bohm effect has been investigated, and versatile oscillation structures of photon heat current can be achieved by tuning the magnetic fluxes threading through separating MJJs.
Easton, Caroline J; Crane, Cory A; Mandel, Dolores
2017-11-06
The current study evaluates a therapy for substance-dependent perpetrators of partner violence. Sixty-three males arrested for partner violence within the past year were randomized to a cognitive behavioral substance abuse-domestic violence (SADV; n = 29) or a drug counseling (DC; n = 34) condition. Seventy percent of offenders completed eight core sessions with no differences between SADV and DC conditions in the amount of substance or aggression at pretreatment. SADV participants had fewer cocaine-positive toxicology screens and breathalyzer results during treatment, were less likely to engage in aggressive behavior proximal to a drinking episode, and reported fewer episodes of violence than DC participants at posttreatment follow-up. SADV shows promise in decreasing addiction and partner violence among substance-dependent male offenders. © 2017 American Association for Marriage and Family Therapy.
NASA Astrophysics Data System (ADS)
Kim, Sung-Kyu; Kim, Kwangmin; Park, Minwon; Yu, In-Keun; Lee, Sangjin
2015-11-01
High temperature superconducting (HTS) devices are being developed due to their advantages. Most line commutated converter based high voltage direct current (HVDC) transmission systems for long-distance transmission require large inductance of DC reactor; however, generally, copper-based reactors cause a lot of electrical losses during the system operation. This is driving researchers to develop a new type of DC reactor using HTS wire. The authors have developed a 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC system and applied the HTS DC reactor to the HVDC system to investigate their operating characteristics. The 400 mH class HTS DC reactor is designed using a toroid type magnet. The HVDC system is designed in the form of a mono-pole system with thyristor-based 12-pulse power converters. In this paper, the investigation results of the HTS DC reactor in connection with the HVDC system are described. The operating characteristics of the HTS DC reactor are analyzed under various operating conditions of the system. Through the results, applicability of an HTS DC reactor in an HVDC system is discussed in detail.
NASA Astrophysics Data System (ADS)
Ullah, Amir; Rahman, Muneeb-ur; Iqbal, Muhammad Javid; Ahn, Chang Won; Kim, Ill Won; Ullah, Aman
2016-06-01
The electrical properties of the 0.925(Bi0.5(Na0.40K0.10)TiO3-0.075(Ba0.70Sr0.30)TiO3 (0.925BNKT-0.075BST) ceramic were investigated by using AC impedance spectroscopy over a wide range of frequencies (10 -2 ~ 105 Hz). The X-ray diffraction patterns confirmed the formation of a single-phase compound. A single semicircular arc in the impedance spectrum indicates that the main contribution of the bulk resistance ( R b ) were due to grain effects, with Rb decreasing with increasing temperature. The conductivity of the ceramics increased with increasing temperature, and the activation energy resulting from the DC conductivity was 0.86 eV. The ceramic displayed a typical negative temperature coefficient of resistance (NTCR) behavior, like that of a semiconductor.
Probing the nature and resistance of the molecule-electrode contact in SAM-based junctions.
Sangeeth, C S Suchand; Wan, Albert; Nijhuis, Christian A
2015-07-28
It is challenging to quantify the contact resistance and to determine the nature of the molecule-electrode contacts in molecular two-terminal junctions. Here we show that potentiodynamic and temperature dependent impedance measurements give insights into the nature of the SAM-electrode interface and other bottlenecks of charge transport (the capacitance of the SAM (C(SAM)) and the resistance of the SAM (R(SAM))), unlike DC methods, independently of each other. We found that the resistance of the top-electrode-SAM contact for junctions with the form of Ag(TS)-SC(n)//GaO(x)/EGaIn with n = 10, 12, 14, 16 or 18 is bias and temperature independent and hence Ohmic (non-rectifying) in nature, and is orders of magnitude smaller than R(SAM). The C(SAM) and R(SAM) are independent of the temperature, indicating that the mechanism of charge transport in these SAM-based junctions is coherent tunneling and the charge carrier trapping at the interfaces is negligible.
NASA Technical Reports Server (NTRS)
Snyder, A.; Lauver, M. R.; Patch, R. W.
1976-01-01
Further hot-ion plasma experiments were conducted in the SUMMA superconducting magnetic mirror facility. A steady-state ExB plasma was formed by applying a strong radially inward dc electric field between cylindrical anodes and hollow cathodes located near the magnetic mirror maxima. Extending the use of water cooling to the hollow cathodes, in addition to the anodes, resulted in higher maximum power input to the plasma. Steady-state hydrogen plasmas with ion kinetic temperatures as high as 830 eV were produced. Functional relations were obtained empirically among the plasma current, voltage, magnetic flux density, ion temperature, and relative ion density. The functional relations were deduced by use of a multiple correlation analysis. Data were obtained for midplane magnetic fields from 0.5 to 3.37 tesla and input power up to 45 kW. Also, initial absolute electron density measurements are reported from a 90 deg Thomson scattering laser system.
NASA Astrophysics Data System (ADS)
Bhunia, Amit; Singh, Mohit Kumar; Galvão Gobato, Y.; Henini, Mohamed; Datta, Shouvik
2018-01-01
We investigated excitonic absorptions in a GaAs/AlAs/GaAs single barrier heterostructure using both photocapacitance and photocurrent spectroscopies at room temperature. Photocapacitance spectra show well defined resonance peaks of indirect excitons formed around the Γ-AlAs barrier. Unlike DC-photocurrent spectra, frequency dependent photocapacitance spectra interestingly red shift, sharpen up, and then decrease with increasing tunneling at higher biases. Such dissimilarities clearly point out that different exciton dynamics govern these two spectral measurements. We also argue why such quantum confined dipoles of indirect excitons can have thermodynamically finite probabilities to survive even at room temperature. Finally, our observations demonstrate that the photocapacitance technique, which was seldom used to detect excitons in the past, is useful for selective detection and experimental tuning of relatively small numbers (˜1011/cm2) of photo-generated indirect excitons having large effective dipole moments in this type of quasi-two dimensional heterostructures.
Voltage-induced switching dynamics based on an AZO/VO2/AZO sandwiched structure
NASA Astrophysics Data System (ADS)
Xiao, Han; Li, Yi; Fang, Baoying; Wang, Xiaohua; Liu, Zhimin; Zhang, Jiao; Li, Zhengpeng; Huang, Yaqin; Pei, Jiangheng
2017-11-01
A vanadium dioxide (VO2) thin film was prepared on an Al-doped ZnO (AZO) conductive glass substrate by DC magnetron sputtering and a post-annealing process. The AZO/VO2/AZO sandwiched structure was fabricated on the VO2/AZO composite film using photolithography and a chemical etching process. The composition, microstructure and optical properties of the VO2/AZO composite film were tested. The results showed that the VO2/AZO composite film was poly-crystalline and the AZO layer did not change the preferred growth orientation of VO2. When the voltage was applied on both of the transparent conductive layers of the AZO/VO2/AZO sandwiched structure, an abrupt change in the current was observed at different temperatures. The temperature dependence of I-V characteristic curves for the AZO/VO2/AZO sandwiched structure was analyzed. The phase transition voltage value is 7.5 V at 20 °C and decreases with increasing temperature.
A metal-insulator transition study of VO 2 thin films grown on sapphire substrates
Yu, Shifeng; Wang, Shuyu; Lu, Ming; ...
2017-12-15
In this paper, vanadium thin films were deposited on sapphire substrates by DC magnetron sputtering and then oxidized in a tube furnace filled with oxygen under different temperatures and oxygen flow rates. The significant influence of the oxygen flow rate and oxidation temperature on the electrical and structural properties of the vanadium oxide thin films were investigated systematically. It shows the pure vanadium dioxide (VO 2) state can only be obtained in a very narrow temperature and oxygen flow rate range. The resistivity change during the metal-insulator transition varies from 0.2 to 4 orders of magnitude depending on the oxidationmore » condition. Large thermal hysteresis during the metal-insulator phase transition was observed during the transition compared to the results in literature. Proper oxidation conditions can significantly reduce the thermal hysteresis. Finally, the fabricated VO 2 thin films showed the potential to be applied in the development of electrical sensors and other smart devices.« less
NASA Astrophysics Data System (ADS)
Maruyama, Keisuke; Hanafusa, Hiroaki; Ashihara, Ryuhei; Hayashi, Shohei; Murakami, Hideki; Higashi, Seiichiro
2015-06-01
We have investigated high-temperature and rapid annealing of a silicon carbide (SiC) wafer by atmospheric pressure thermal plasma jet (TPJ) irradiation for impurity activation. To reduce the temperature gradient in the SiC wafer, a DC current preheating system and the lateral back-and-forth motion of the wafer were introduced. A maximum surface temperature of 1835 °C within 2.4 s without sample breakage was achieved, and aluminum (Al), phosphorus (P), and arsenic (As) activations in SiC were demonstrated. We have investigated precise control of heating rate (Rh) and cooling rate (Rc) during rapid annealing of P+-implanted 4H-SiC and its impact on impurity activation. No dependence of resistivity on Rh was observed, while increasing Rc significantly decreased resistivity. A minimum resistivity of 0.0025 Ω·cm and a maximum carrier concentration of 2.9 × 1020 cm-3 were obtained at Rc = 568 °C/s.
Mudryk, Y.; Paudyal, D.; Pathak, A. K.; ...
2016-04-13
The nature of multiple magnetostructural transformations in HoCo 2 has been studied by employing magnetic and specific heat measurements, temperature and magnetic field dependent X-ray powder diffraction, and first-principles calculations. Unexpected increase of magnetization observed below the spin-reorientation temperature (T SR) suggests that the low-temperature transition involves a reduction of Co moment. First principles calculations confirm that the paramagnetic cubic to ferrimagnetic tetragonal transformation at T C is assisted by itinerant electron metamagnetism, and that the reduction of Co moment in HoCo 2 occurs in parallel with the ferrimagnetic tetragonal to the nearly ferromagnetic orthorhombic transformation at T SRvia themore » rearrangement of both 3d states of Co and 5d states of Ho. The ac magnetic susceptibility measurements show significant magnetic frustration below T C. Furthermore, in contrast to earlier reports neither ac nor dc magnetic susceptibilities show anomalies in the paramagnetic region obeying the Curie–Weiss law.« less
Superconducting fluctuations at arbitrary disorder strength
NASA Astrophysics Data System (ADS)
Stepanov, Nikolai A.; Skvortsov, Mikhail A.
2018-04-01
We study the effect of superconducting fluctuations on the conductivity of metals at arbitrary temperatures T and impurity scattering rates τ-1. Using the standard diagrammatic technique but in the Keldysh representation, we derive the general expression for the fluctuation correction to the dc conductivity applicable for any space dimensionality and analyze it in the case of the film geometry. We observe that the usual classification in terms of the Aslamazov-Larkin, Maki-Thompson, and density-of-states diagrams is to some extent artificial since these contributions produce similar terms, which partially cancel each other. In the diffusive limit, our results fully coincide with recent calculations in the Keldysh technique. In the ballistic limit near the transition, we demonstrate the absence of a divergent term (Tτ ) 2 attributed previously to the density-of-states contribution. In the ballistic limit far above the transition, the temperature-dependent part of the conductivity correction is shown to grow as T τ /ln(T /Tc) , where Tc is the critical temperature.
Study of the Dependency on Magnetic Field and Bias Voltage of an AC-Biased TES Microcalorimeter.
Gottardi, L; Adams, J; Bailey, C; Bandler, S; Bruijn, M; Chervenak, J; Eckart, M; Finkbeiner, F; den Hartog, R; Hoevers, H; Kelley, R; Kilbourne, C; de Korte, P; van der Kuur, J; Lindeman, M; Porter, F; Sadlier, J; Smith, S
At SRON we are studying the performance of a Goddard Space Flight Center single pixel TES microcalorimeter operated in an AC bias configuration. For x-ray photons at 6 keV the pixel shows an x-ray energy resolution Δ E FWHM =3.7 eV, which is about a factor 2 worse than the energy resolution observed in an identical DC-biased pixel. In order to better understand the reasons for this discrepancy we characterised the detector as a function of temperature, bias working point and applied perpendicular magnetic field. A strong periodic dependency of the detector noise on the TES AC bias voltage is measured. We discuss the results in the framework of the recently observed weak-link behaviour of a TES microcalorimeter.
Velan, Baruch; Bar-Haim, Erez; Zauberman, Ayelet; Mamroud, Emanuelle; Shafferman, Avigdor; Cohen, Sara
2006-11-01
The encounter between invading microorganisms and dendritic cells (DC) triggers a series of events which include uptake and degradation of the microorganism, induction of a maturation process, and enhancement of DC migration to the draining lymph nodes. Various pathogens have developed strategies to counteract these events as a measure to evade the host defense. In the present study we found that interaction of the Yersinia pestis EV76 strain with DC has no effect on cell viability and is characterized by compliance with effective maturation, which is manifested by surface display of major histocompatibility complex class II, of costimulatory markers, and of the chemokine receptor CCR7. This is in contrast to maturation inhibition and cell death induction exerted by the related species Yersinia enterocolitica WA O:8. Y. pestis interactions with DC were found, however, to impair functions related to cytoskeleton rearrangement. DC pulsed with Y. pestis failed to adhere to solid surfaces and to migrate toward the chemokine CCL19 in an in vitro transmembrane assay. Both effects were dependent on the presence of the pCD1 virulence plasmid and on a bacterial growth shift to 37 degrees C prior to infection. Moreover, while instillation of a pCD1-cured Y. pestis strain into mouse airways triggered effective transport of alveolar DC to the mediastinal lymph node, instillation of Y. pestis harboring the plasmid failed to do so. Taken together, these results suggest that virulence plasmid-dependent impairment of DC migration is the major mechanism utilized by Y. pestis to subvert DC function.
Mansour, Nassir M; Bernal, Giovanna M; Wu, Longtao; Crawley, Clayton D; Cahill, Kirk E; Voce, David J; Balyasnikova, Irina V; Zhang, Wei; Spretz, Ruben; Nunez, Luis; Larsen, Gustavo F; Weichselbaum, Ralph R; Yamini, Bakhtiar
2015-05-15
Temozolomide is used widely to treat malignant glioma, but the overall response to this agent is generally poor. Resistance to DNA-damaging drugs such as temozolomide has been related to the induction of antiapoptotic proteins. Specifically, the transcription factor NF-κB has been suggested to participate in promoting the survival of cells exposed to chemotherapy. To identify factors that modulate cytotoxicity in the setting of DNA damage, we used an unbiased strategy to examine the NF-κB-dependent expression profile induced by temozolomide. By this route, we defined the decoy receptor DcR1 as a temozolomide response gene induced by a mechanism relying upon p50/NF-κB1. A conserved NF-κB-binding sequence (κB-site) was identified in the proximal promoter and was demonstrated to be required for DcR1 induction by temozolomide. Loss-of-function and gain-of-function studies reveal that the atypical IκB protein, Bcl3, is also required for induction of DcR1 by temozolomide. Mechanistically, DcR1 attenuates temozolomide efficacy by blunting activation of the Fas receptor pathway in p53(+/+) glioma cells. Intracranial xenograft studies show that DcR1 depletion in glioma cells enhances the efficacy of temozolomide. Taken together, our results show how DcR1 upregulation mediates temozolomide resistance and provide a rationale for DcR1 targeting as a strategy to sensitize gliomas to this widely used chemotherapy. ©2015 American Association for Cancer Research.
;Back-of-Module Temperature Measurement Methods." Solar Pro, 4.6, Nov/Dec 2014; NREL/JA-5200-52213 -temperature-measurement-methods. Sekulic, B. 2004. DC Current Transducer Environmental Drift Test (Technical
Nanometric Integrated Temperature and Thermal Sensors in CMOS-SOI Technology
Malits, Maria; Nemirovsky, Yael
2017-01-01
This paper reviews and compares the thermal and noise characterization of CMOS (complementary metal-oxide-semiconductor) SOI (Silicon on insulator) transistors and lateral diodes used as temperature and thermal sensors. DC analysis of the measured sensors and the experimental results in a broad (300 K up to 550 K) temperature range are presented. It is shown that both sensors require small chip area, have low power consumption, and exhibit linearity and high sensitivity over the entire temperature range. However, the diode’s sensitivity to temperature variations in CMOS-SOI technology is highly dependent on the diode’s perimeter; hence, a careful calibration for each fabrication process is needed. In contrast, the short thermal time constant of the electrons in the transistor’s channel enables measuring the instantaneous heating of the channel and to determine the local true temperature of the transistor. This allows accurate “on-line” temperature sensing while no additional calibration is needed. In addition, the noise measurements indicate that the diode’s small area and perimeter causes a high 1/f noise in all measured bias currents. This is a severe drawback for the sensor accuracy when using the sensor as a thermal sensor; hence, CMOS-SOI transistors are a better choice for temperature sensing. PMID:28758932
NASA Astrophysics Data System (ADS)
Tsai, Jui-Hsuan; Cheng, I.-Chun; Hsu, Cheng-Che; Chen, Jian-Zhang
2018-01-01
Nitrogen DC-pulse atmospheric-pressure plasma jet (APPJ) and nitrogen dielectric barrier discharge (DBD) were applied to pre-treat fluorine-doped tin oxide (FTO) glass substrates for perovskite solar cells (PSCs). Nitrogen DC-pulse APPJ treatment (substrate temperature: ~400 °C) for 10 s can effectively increase the wettability, whereas nitrogen DBD treatment (maximum substrate temperature: ~140 °C) achieved limited improvement in wettability even with increased treatment time of 60 s. XPS results indicate that 10 s APPJ, 60 s DBD, and 15 min UV-ozone treatment of FTO glass substrates can decontaminate the surface. A PSC fabricated on APPJ-treated FTO showed the highest power conversion efficiency (PCE) of 14.90%; by contrast, a PSC with nitrogen DBD-treated FTO shows slightly lower PCE of 12.57% which was comparable to that of a PSC on FTO treated by a 15 min UV-ozone process. Both nitrogen DC-pulse APPJ and nitrogen DBD can decontaminate FTO substrates and can be applied for the substrate cleaning step of PSC.
NASA Astrophysics Data System (ADS)
Bukhanko, F. N.; Bukhanko, A. F.
2016-10-01
Characteristic signs of the universal Nelson-Kosterlitz jump of the superconducting liquid density in the temperature dependences of the magnetization of La1- y Sm y MnO3 + δ samples with samarium concentrations y = 0.85 and 1.0, which are measured in magnetic fields 100 Oe ≤ H ≤ 3.5 kOe, are detected. As the temperature increases, the sample with y = 0.85 exhibits a crescent-shaped singularity in the dc magnetization curve near the critical temperature of decoupling vortex-antivortex pairs ( T KT ≡ T c ≈ 43 K), which is independent of measuring magnetic field H and is characteristic of the dissociation of 2D vortex pairs. A similar singularity is also detected in the sample with a samarium concentration y = 1.0 at a significantly lower temperature ( T KT ≈ 12 K). The obtained experimental results are explained in terms of the topological Kosterlitz-Thouless phase transition of dissociation of 2D vortex pairs in a quasi-two-dimensional weak Josephson coupling network.
Barone, C.; Romeo, F.; Pagano, S.; Adamo, M.; Nappi, C.; Sarnelli, E.; Kurth, F.; Iida, K.
2014-01-01
An important step forward for the understanding of high-temperature superconductivity has been the discovery of iron-based superconductors. Among these compounds, iron pnictides could be used for high-field magnet applications, resulting more advantageous over conventional superconductors, due to a high upper critical field as well as its low anisotropy at low temperatures. However, the principal obstacle in fabricating high quality superconducting wires and tapes is given by grain boundaries. In order to study these effects, the dc transport and voltage-noise properties of Co-doped BaFe2As2 superconducting films with artificial grain boundary junctions have been investigated. A specific procedure allows the separation of the film noise from that of the junction. While the former shows a standard 1/f behaviour, the latter is characterized by an unconventional temperature-dependent multi-Lorentzian voltage-spectral density. Moreover, below the film superconducting critical temperature, a peculiar noise spectrum is found for the grain boundary junction. Possible theoretical interpretation of these phenomena is proposed. PMID:25145385
High-kinetic inductance additive manufactured superconducting microwave cavity
Holland, Eric T.; Rosen, Yaniv J.; Materise, Nicholas; ...
2017-11-13
We present that investigations into the microwave surface impedance of superconducting resonators have led to the development of single photon counters that rely on kinetic inductance for their operation, while concurrent progress in additive manufacturing, “3D printing,” opens up a previously inaccessible design space for waveguide resonators. In this manuscript, we present results from the synthesis of these two technologies in a titanium, aluminum, vanadium (Ti-6Al-4V) superconducting radio frequency resonator which exploits a design unattainable through conventional fabrication means. Additionally, we find that Ti-6Al-4V has two distinct superconducting transition temperatures observable in heat capacity measurements. The higher transition temperature ismore » in agreement with DC resistance measurements, while the lower transition temperature, not previously known in the literature, is consistent with the observed temperature dependence of the superconducting microwave surface impedance. From the surface reactance, we extract a London penetration depth of 8 ± 3 μm—roughly an order of magnitude larger than other titanium alloys and several orders of magnitude larger than other conventional elemental superconductors.« less
High-kinetic inductance additive manufactured superconducting microwave cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, Eric T.; Rosen, Yaniv J.; Materise, Nicholas
We present that investigations into the microwave surface impedance of superconducting resonators have led to the development of single photon counters that rely on kinetic inductance for their operation, while concurrent progress in additive manufacturing, “3D printing,” opens up a previously inaccessible design space for waveguide resonators. In this manuscript, we present results from the synthesis of these two technologies in a titanium, aluminum, vanadium (Ti-6Al-4V) superconducting radio frequency resonator which exploits a design unattainable through conventional fabrication means. Additionally, we find that Ti-6Al-4V has two distinct superconducting transition temperatures observable in heat capacity measurements. The higher transition temperature ismore » in agreement with DC resistance measurements, while the lower transition temperature, not previously known in the literature, is consistent with the observed temperature dependence of the superconducting microwave surface impedance. From the surface reactance, we extract a London penetration depth of 8 ± 3 μm—roughly an order of magnitude larger than other titanium alloys and several orders of magnitude larger than other conventional elemental superconductors.« less
Prolactin, dendritic cells, and systemic lupus erythematosus.
Jara, Luis J; Benitez, Gamaliel; Medina, Gabriela
2008-01-01
Dendritic cells (DC) play a central role in the induction of autoimmunity in T and B cells. DC express a high level of the major histocompatibility complex that interact with the receptors on T cells. Immature DC present antigens efficiently. Prolactin (PRL) participates in DC maturation. Systemic lupus erythematosus (SLE) is characterized by a loss of tolerance to self-antigens and persistent production of autoantibodies. Serum from SLE patients induces normal monocytes to differentiate into DC in correlation with disease activity depending on the actions of interferon-alpha, immune complexes, PRL, etc. High serum PRL levels have been found in a subset of SLE patients associated with active disease and organ involvement. It is possible that PRL interacts with DC, skewing its function from antigen presentation to a proinflammatory phenotype with high interferon-alpha production. Therefore, SLE is characterized by deficiency of DC functions and abnormal PRL secretion. The relationships between PRL and DC may have a role in the pathogenesis of SLE.
NASA Astrophysics Data System (ADS)
Günther, A.; Hochleitner, R.; Lohringer, H.; Schmidbauer, E.; Schöttler-Himmel, A.; Volk, M.
2017-05-01
Electrical and dielectric properties were measured on rutile-type FeNbTiO6, sintered in air, CO2 or 5%H2/CO2 atmosphere between temperatures of 1423 and 1573 K. The individual samples show characteristic differences in DC and AC conductivity, dielectric constant ε(ω) (ω is angular frequency), dielectric loss and dissipation factor. Attempts were made to distinguish between bulk, grain boundary (GB) and sample-electrode (SE) processes. Samples show very high relaxor-like ε(ω) peaks at 500-600 K using Ag-paint contacts as expected from previous studies during preparation in air that is of interest for industrial application; utilizing Pt-paint and using slightly reducing sintering conditions, a clear variation was observed. These findings point to a notable influence of GB and/or SE effects on the experimental ε(ω), in addition to the intrinsic origin by polar nanoregions, as suggested earlier. Complex plane impedance plots are characterized by semicircular arcs due to bulk, GB and/or SE charge transport. The derived DC conductivity σDC shows Arrhenius behavior with activation energy of EA≈0.27-0.37 eV and σDC(300 K) ≈1×10-6-3×10-4 Ω-1cm-1 for the bulk, EA≈0.7-0.9 eV and σDC(300 K)≈5×10-10-1×10-4 Ω-1cm-1 for GB and/or SE processes, depending on the preparation conditions. The thermopower is small and negative, hence n-type conduction occurs and the charge carriers are electrons or electron polarons. 57Fe Mössbauer spectroscopy enabled to gain knowledge of local nonstoichiometry in the environment of Fe cations, presumably affecting electrical conduction in the bulk and GBs; after sample preparation in reducing conditions, apart from Fe3+ also the presence of Fe2+ ions was established.
Magnetization and transport properties of silver-sheathed (Hg, Re)Ba2Ca2Cu3O8+delta tapes
NASA Astrophysics Data System (ADS)
Su, J. H.; Sastry, P. V. P. S. S.; Schwartz, J.
2003-10-01
(Hg, Re)Ba2Ca2Cu3O8+delta ((Hg, Re)-1223) samples have been fabricated by wrapping Re0.2Ba2Ca2Cu3Oy precursor powder within Ag foil and pressing or rolling. The Ag/precursor composite is then reacted with CaHgO2 in sealed reaction tubes. X-ray diffraction (XRD) patterns showed only one superconducting phase, (Hg, Re)-1223, in agreement with magnetization measurements showing an onset critical temperature (Tc) of 132 K. The magnetization properties were studied by dc magnetic measurements. The irreversibility line (Hirr), deduced from magnetization hysteresis loops, is approximated by a power law, Hirr ~ (1 - T/Tc)n, with n ~ 2.5, indicating moderate coupling between CuO2 layers compared to YBa2Cu3O7 (n ~ 1.5) and Bi/Tl-based superconductors (n ~ 5.5). The temperature dependence of the magnetization hysteresis loop width DeltaM showed three regimes, dominated by weak links at low temperature (regime I), thermally activated depinning of vortices at intermediate temperature (regime II) and giant flux creep at high temperature (regime III), respectively. Two field dependences were found in the intragrain critical current density (Jmagc) versus applied field at various temperatures: a weak one at lower temperature (leq50 K) and a stronger one at high temperature (geq65 K), indicating a transition from vortex lattice to vortex liquid in the tapes. The transport critical current density (Jtranc) of ~3 × 103 A cm-2 at 4.2 K and self-field was comparable to those for bulk Hg-based superconductors, indicating granular nature of the samples, which was confirmed further by XRD, scanning electron microscopy (SEM) and magneto-optical imaging (MOI).
Grys, Maciej; Madeja, Zbigniew; Korohoda, Włodzimierz
2017-01-01
The harmful side effects of electroporation to cells due to local changes in pH, the appearance of toxic electrode products, temperature increase, and the heterogeneity of the electric field acting on cells in the cuvettes used for electroporation were observed and discussed in several laboratories. If cells are subjected to weak electric fields for prolonged periods, for example in experiments on cell electrophoresis or galvanotaxis the same effects are seen. In these experiments investigators managed to reduce or eliminate the harmful side effects of electric current application. For the experiments, disposable 20 μl cuvettes with two walls made of dialysis membranes were constructed and placed in a locally focused electric field at a considerable distance from the electrodes. Cuvettes were mounted into an apparatus for horizontal electrophoresis and the cells were subjected to direct current electric field (dcEF) pulses from a commercial pulse generator of exponentially declining pulses and from a custom-made generator of double and single rectangular pulses. More than 80% of the electroporated cells survived the dcEF pulses in both systems. Side effects related to electrodes were eliminated in both the flow through the dcEF and in the disposable cuvettes placed in the focused dcEFs. With a disposable cuvette system, we also confirmed the sensitization of cells to a dcEF using procaine by observing the loading of AT2 cells with calceine and using a square pulse generator, applying 50 ms single rectangular pulses. We suggest that the same methods of avoiding the side effects of electric current pulse application as in cell electrophoresis and galvanotaxis should also be used for electroporation. This conclusion was confirmed in our electroporation experiments performed in conditions assuring survival of over 80% of the electroporated cells. If the amplitude, duration, and shape of the dcEF pulse are known, then electroporation does not depend on the type of pulse generator. This knowledge of the characteristics of the pulse assures reproducibility of electroporation experiments using different equipment.
NASA Astrophysics Data System (ADS)
Roychowdhury, A.; Pati, S. P.; Mishra, A. K.; Kumar, S.; Das, D.
2013-06-01
Fe3O4/ZnO nanocomposites (NCs) are prepared by a wet chemical route. X-ray diffraction, transmission electron microscopy and Fourier transform infrared spectroscopy studies confirm the coexistence of Fe3O4 and ZnO phases in the NCs. The UV-vis absorption spectra show a red shift of the absorption peak with increase in Fe3O4 content indicating a modification of the band structure of ZnO in the NCs. Photoluminescence emission spectra of the NCs display strong excitonic emission in the UV region along with weak emission bands in the visible range caused by electronic transitions involving defect-related energy levels in the band gap of ZnO. Positron annihilation lifetimes indicate that cation vacancies in the ZnO structure are the strong traps for positrons and the overall defect concentration in the NCs decreases with increase in Fe3O4 content. Dc magnetization measurements reveal an anomalous temperature dependence of the coercivity of the NCs that is argued to be due to the anomalous variation of magnetocrystalline anisotropy at lower temperature. The irreversibility observed in the temperature dependent ZFC-FC magnetization points to the presence of a spin-glass phase in the NCs.
Handeland, S.O.; Wilkinson, E.; Sveinsbo, B.; McCormick, S.D.; Stefansson, S.O.
2004-01-01
Development of hypo-osmoregulatory ability, gill Na+,K +-ATPase activity, condition factor and growth in Atlantic salmon during parr-smolt transformation was studied in a 2??3 factorial design with three temperatures (12.0, 8.9??C and ambient, 2.4-11.9??C, mean: 6.0??C) and two farmed strains of smolts (Mowi and AquaGen). The development of hypo-osmoregulatory ability and gill Na+,K+-ATPase activity were significantly influenced by freshwater temperature. In smolts raised at 12.0??C, maximum gill Na+,K+-ATPase activity was reached in late April, compared with late May and mid-June in the 8.9??C and ambient groups, respectively. In all groups, peak gill Na+,K +-ATPase activity was seen 350 degree days (d??C) after the onset of the smolt-related increase in enzyme activity (30 March) The period of high enzyme activity (>90% of maximum) lasted approximately 250 d??C. No distinct peak level in gill Na+,K+-ATPase activity was seen in the AquaGen strain at ambient temperature. Elevated temperatures also accelerated the loss of hypo-osmoregulatory capacity. In all groups, gill Na+,K+-ATPase activity reached pre-smolt levels approximately 500 d??C after the calculated peak level. Growth rate in freshwater was influenced by strain, temperature and their interaction, with the Mowi strain showing a higher growth rate than the AquaGen strain at 8.9??C and ambient temperatures. Following transfer to seawater, a higher growth rate was recorded in smolts from the Mowi strain than the AquaGen strain from the ambient temperature regime. Temperature influences the development and loss of smolt characteristics in both strains, and has long-term effects on post-smolt performance in seawater. ?? 2004 Elsevier B.V. All rights reserved.
Antenna-coupled unbiased detectors for LW-IR regime
NASA Astrophysics Data System (ADS)
Tiwari, Badri Nath
At room temperature (300K), the electromagnetic (EM) radiation emitted by humans and other living beings peaks mostly in the long-wavelength infrared (LW-IR) regime. And since the atmosphere shows relatively little absorption in this band, applications such as target detection, tracking, active homing, and navigation in autonomous vehicles extensively use the LW-IR frequency range. The present research work is focused on developing antenna-based, uncooled, and unbiased detectors for the LW-IR regime. In the first part of this research, antenna-coupled metal-oxide-metal diodes (ACMOMD) are investigated. In response to the EM radiation, high-frequency antenna currents are induced in the antenna. An asymmetric-barrier Al-Al2O3-Pt MOM diode rectifies the antenna currents. Two different types of fabrication processes have been developed for ACMOMDs namely one-step lithography and two-step lithography. The major drawbacks of MOM-based devices include hard-to-control fabrication processes, generally very high zero-biased resistances, and vulnerability to electrostatic discharges, leading to unstable electrical characteristics. The second part of this research focuses on the development of unbiased LW-IR sensors based on the Seebeck effect. If two different metals are joined together at one end and their other ends are open-circuited, and if a non-zero temperature difference exists between the joined end and the open ends, then a non-zero open-circuit voltage can be measured between the open ends of the wires. Based on this effect, we have developed antenna-coupled nano-thermocouples (ACNTs) in which radiation-induced antenna currents produce polarization-dependent heating of the joined end of the two metals whereas the open ends remain at substrate temperature. This polarization-dependent heating induces polarization-dependent temperature difference between the joined end and the open ends of the metals leading to a polarization-dependent open-circuit voltage between the open ends of the metals. A CW CO2 laser tuned at 10.6 mum wavelength has been used for infrared characterization of these sensors. For these sensors, average responsivity of 22.7 mV/W, signal-to-noise (SNR) ratio of 29 dB, noise equivalent power (NEP) of 1.55 nW, and specific detectivity (D*) of 1.77x105 cm. Hz .W--1 were measured. ACNTs are expected to operate at frequencies much beyond 400 KHz. The third part of this research focuses on the effect of DC read-out interconnects on polarization characteristics of the planar dipole antennas. Different geometries of the interconnects present different electromagnetic boundary conditions to the antenna, and thus affect the far-field polarization characteristics of the antenna. Four designs of DC read-out interconnects are fabricated and their polarization-dependent IR responses are experimentally measured. The High Frequency Structure Simulator (HFSS) from ANSYS is used to simulate the polarization characteristics of the antenna with different read-out geometries.
Wang, Yongsen; Sun, Jing; Zhang, Kun; Hu, Xin; Sun, Yuchu; Sheng, Jun; Fu, Xueqi
2018-01-01
In recent years, phytoestrogens have been shown as useful selective estrogen receptor modulators. The estrogen-like effects of black tea (BT) and D. candidum (DC), as well as the combination of the two herbs, have remained largely elusive. This study aims to investigate the phytoestrogenic effect of BT and DC extract, and the possible mechanism. The effects on T47D (ER+ cell line) proliferation were evaluated by using MTT assay. The S phase proportion of ER+ cells was determined by using flow cytometry. The estrogen antagonist ICI 182,780 was applied to block the ER function. The activation of ER-mediated PI3K/AKT and ERK signal pathways were observed by using western blot. Expression of ERα and PGR, as well as PS2 and Cyclin D1 were detected by using western blot and real-time quantitative PCR. Firstly, our results found that BT and DC extracts promoted cell proliferation in ER-positive cells, and this effect was ER-dependent. Besides, BT and DC extracts increased the S-phase cell number. Next, PI3K, AKT and ERK pathways below ER were activated by phytoestrogen treatment, and this activation was blocked by the ER antagonist. Moreover, prolonged BT and DC treatments increased the expression of ESR1 and PGR. Consistently, the mRNA levels of not only ESR1 and PGR but also estrogen-dependent effectors ps2 and cyclin D1, were increased by phytoestrogens and blocked by ICI 182,780. Taken Together, BT and DC extracts have phytoestrogenic effects, and this may provide new ideas and experimental basis for the development and application of phytoestrogens. PMID:29422998
High-frequency response to millimeter wave irradiation of YBaCuO thin film and ceramic
NASA Astrophysics Data System (ADS)
Velichko, A. V.; Cherpak, N. T.; Izhyk, E. V.; Kirichenko, A. Ya.; Chukanova, I. N.
1997-02-01
Microwave (35 GHz) and radiowave (9 MHz) responses of an YBaCuO thin film and a ceramic to millimeter (mm) wave irradiation (31.5 GHz) have been studied by means of a quasioptical dielectric resonator with whispering gallery modes and an inductive technique at micro- and radiowaves, respectively. The responses are shown to have a mixed nature including a sufficiently strong non-bolometric component. Relaxation of the surface resistance in time after the irradiation removal obeys the logarithmic law implying the nucleation and flux creep of vortices induced by the irradiation is a mechanism of the response at temperatures 3-10 K below the critical temperature Tc. Dependence of the microwave surface resistance Rsmw on the mm wave pump amplitude Hω is well described by Halbritter's theory of vortex motion inside weak links. A correlation between dependences of the radiowave (rw) response on Hω with that of Rsmw has been found. Thus the mechanism of rw-response is believed to arise from intergranular Josephson couplings. The latter conclusion is further confirmed by a comparison of the pump power dependence of the rw-response with that of conventional DC-response found for granular HTSC in other recent experiments on the response to the subgap radiation.
Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films
NASA Astrophysics Data System (ADS)
Hassanien, A. S.; Akl, Alaa A.
2016-01-01
Compositional dependence of optical and electrical properties of chalcogenide CdSxSe1-x (0.4 ≥ x ≥ 0.0 at. %) thin films was studied. Cadmium sulphoselenide films were deposited by thermal evaporation technique at vacuum (8.2 × 10-4 Pa) onto preheated glass substrates (523 K). The evaporation rate and film thickness were kept constant at 2.50 nm/s and 375 ± 5 nm, respectively. X-ray diffractograms showed that, the deposited films have the low crystalline nature. Energy dispersive analysis by X-ray (EDAX) was used to check the compositional elements of deposited films. The absorption coefficient was determined from transmission and reflection measurements at room temperature in the wavelength range 300-2500 nm. Optical density, skin depth, optical energy gap and Urbach's parameters of CdSSe thin films have also been estimated. The direct optical energy gap decreased from 2.248 eV to 1.749 eV when the ratio of Se-content was increased from 0.60 to 1.00 . Conduction band and valance band positions were evaluated. The temperature dependence of dc-electrical resistivity in the temperature range (293-450 K) has been reported. Three conduction regions due to different conduction mechanisms were detected. Electrical sheet resistance, activation energy and pre-exponential parameters were discussed. The estimated values of optical and electrical parameters were strongly dependent upon the Se-content in CdSSe matrix.
Im, Jintaek; Kim, Kyutae; Hergert, Polla; Nho, Richard Seonghun
2016-09-01
Idiopathic pulmonary fibrosis (IPF) is an irreversible lethal lung disease with an unknown etiology. IPF patients' lung fibroblasts express inappropriately high Akt activity, protecting them in response to an apoptosis-inducing type I collagen matrix. FasL, a ligand for Fas, is known to be increased in the lung tissues of patients with IPF, implicated with the progression of IPF. Expression of Decoy Receptor3 (DcR3), which binds to FasL, thereby subsequently suppressing the FasL-Fas-dependent apoptotic pathway, is frequently altered in various human disease. However, the role of DcR3 in IPF fibroblasts in regulating their viability has not been examined. We found that enhanced DcR3 expression exists in the majority of IPF fibroblasts on collagen matrices, resulting in the protection of IPF fibroblasts from FasL-induced apoptosis. Abnormally high Akt activity suppresses GSK-3β function, thereby accumulating the nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) in the nucleus, increasing DcR3 expression in IPF fibroblasts. This alteration protects IPF cells from FasL-induced apoptosis on collagen. However, the inhibition of Akt or NFATc1 decreases DcR3 mRNA and protein levels, which sensitizes IPF fibroblasts to FasL-mediated apoptosis. Furthermore, enhanced DcR3 and NFATc1 expression is mainly present in myofibroblasts in the fibroblastic foci of lung tissues derived from IPF patients. Our results showed that when IPF cells interact with collagen matrix, aberrantly activated Akt increases DcR3 expression via GSK-3β-NFATc1 and protects IPF cells from the FasL-dependent apoptotic pathway. These findings suggest that the inhibition of DcR3 function may be an effective approach for sensitizing IPF fibroblasts in response to FasL, limiting the progression of lung fibrosis. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Hardy, Andrew W; Graham, David R; Shearer, Gene M; Herbeuval, Jean-Philippe
2007-10-30
Plasmacytoid dendritic cells (pDC) are key players in viral immunity and produce IFN-alpha after HIV-1 exposure, which in turn regulates TNF-related apoptosis-inducing ligand (TRAIL) expression by CD4(+) T cells. We show here that infectious and noninfectious HIV-1 virions induce activation of pDC into TRAIL-expressing IFN-producing killer pDC (IKpDC). IKpDC expressed high levels of activation markers (HLA-DR, CD80, CD83, and CD86) and the migration marker CCR7. Surprisingly, CXCR4 and CCR5 were down-regulated on IKpDC. We also show that HIV-1-induced IKpDC depended on Toll-like receptor 7 (TLR7) activation. HIV-1 or TLR7 agonistexposed IKpDC induced apoptosis of the CD4(+) T cell line SupT1 via the TRAIL pathway. Furthermore, IFN-alpha produced after HIV-induced TLR7 stimulation was responsible for TRAIL expression and the down-regulation of both CXCR4 and CCR5 by IKpDC. In contrast, activation and migration markers were not regulated by IFN-alpha. Finally, IFN-alpha increased the survival of IKpDC. We characterized a subset of pDC with a killer activity that is activated by endosomal-associated viral RNA and not by infection.
Demachi, K; Yoshida, T; Kume, M; Tsuneoka, H
2012-07-01
To assess the effects of starting or stopping leg cooling on the thermoregulatory responses during exercise, 60 min of cycling exercise at 30% of maximal oxygen uptake was performed under 4 conditions using tube trouser perfused with water at 10 °C; no leg cooling (NC), starting of leg cooling after 30 min of exercise (delayed cooling, DC), continuous leg cooling (CC), and stopping of continuous leg cooling after 30 min of exercise (SC) at an environmental temperature of 28.5 °C. During exercise under the DC conditions, an instantaneous increase in the esophageal temperature (Tes), a suppression of the cutaneous vascular conductance at the forearm (%CVC), and a decrease in the mean skin temperature (Tsk) were observed after leg cooling. The total sweat loss (Δm sw,tot) was lower under the DC than the NC condition. In the SC study, however, the Tes remained constant, while the %CVC increased gradually after leg cooling was stopped, and the Δm sw,tot was greater than that under the CC condition. These results suggest that during exercise, rapid skin cooling of the leg may cause an increase in core temperature, while also enhancing thermal stress. However, stopping skin cooling did not significantly affect the core temperature long-term, because the skin blood flow and sweat rate subsequently increased. © Georg Thieme Verlag KG Stuttgart · New York.
Wide-Temperature Electronics for Thermal Control of Nanosats
NASA Technical Reports Server (NTRS)
Dickman, John Ellis; Gerber, Scott
2000-01-01
This document represents a presentation which examines the wide and low-temperature electronics required for NanoSatellites. In the past, larger spacecraft used Radioisotope Heating Units (RHU's). The advantage of the use of these electronics is that they could eliminate or reduce the requirement for RHU's, reduce system weight and simplify spacecraft design by eliminating containment/support structures for RHU's. The Glenn Research Center's Wide/Low Temperature Power Electronics Program supports the development of power systems capable of reliable, efficient operation over wide and low temperature ranges. Included charts review the successes and failures of various electronic devices, the IRF541 HEXFET, The NE76118n-Channel GaAS MESFET, the Lithium Carbon Monofluoride Primary Battery, and a COTS DC-DC converter. The preliminary result of wide/low temperature testing of CTS and custom parts and power circuit indicate that through careful selection of components and technologies it is possible to design and build power circuits which operate from room temperature to near 100K.
NASA Astrophysics Data System (ADS)
KInacI, BarIş; Özçelik, Süleyman
2013-06-01
The capacitance-voltage-temperature ( C- V- T) and the conductance/angular frequency-voltage-temperature ( G/ω- V- T) characteristics of Au/TiO2(rutile)/ n-Si Schottky barrier diodes (SBDs) were investigated over the temperature range from 200 K to 380 K by considering the series resistance effect. Titanium dioxide (TiO2) was deposited on n-type silicon (Si) substrate using a direct-current (DC) magnetron sputtering system at 200°C. To improve the crystal quality, the deposited film was annealed at 900°C to promote a phase transition from the amorphous to rutile phase. The C -2 versus V plots gave a straight line in the reverse-bias region. The main electrical parameters, such as the doping concentration ( N D), Fermi energy level ( E F), depletion layer width ( W D), barrier height ( ф CV), and series resistance ( R S), of Au/TiO2(rutile)/ n-Si SBDs were calculated from the C- V- T and the G/ω- V- T characteristics. The obtained results show that ф CV, R S, and W D values decrease, while E F and N D values increase, with increasing temperature.
Calorimetric system and method
Gschneidner, K.A. Jr.; Pecharsky, V.K.; Moorman, J.O.
1998-09-15
Apparatus is described for measuring heat capacity of a sample where a series of measurements are taken in succession comprises a sample holder in which a sample to be measured is disposed, a temperature sensor and sample heater for providing a heat pulse thermally connected to the sample, and an adiabatic heat shield in which the sample holder is positioned and including an electrical heater. An electrical power supply device provides an electrical power output to the sample heater to generate a heat pulse. The electrical power from a power source to the heat shield heater is adjusted by a control device, if necessary, from one measurement to the next in response to a sample temperature-versus-time change determined before and after a previous heat pulse to provide a subsequent sample temperature-versus-time change that is substantially linear before and after the subsequent heat pulse. A temperature sensor is used and operable over a range of temperatures ranging from approximately 3K to 350K depending upon the refrigerant used. The sample optionally can be subjected to dc magnetic fields such as from 0 to 12 Tesla (0 to 120 kOe). 18 figs.
Papetti, Adele; Mascherpa, Dora; Gazzani, Gabriella
2014-12-01
α-Dicarbonyl (α-DC) compounds were characterised in roasted (coffee, barley coffee) and in fermented (soy sauce) food matrices. Glyoxal (GO), methylglyoxal (MGO), diacetyl (DA) and 3-deoxyglucosone (3-DG) were found in all samples, and hydroxypyruvaldehyde and 5-hydroxypentane-2,3-dione in barley and soy. Cis and trans 3,4-dideoxyglucosone-3-ene (3,4-DGE) isomers and 4-glucosyl-5,6-dihydroxy-2-oxohexanal (4-G,3-DG) were found only in barley, and 3,4-DGE only in soy sauce with molasses. GO, MGO, and DA were quantified. Findings indicate that i) α-DC profiles depend on the food matrix and any technological treatments applied; ii) α-DC quantitation by HPLC requires matrix-specific, validated methods; iii) GO and MGO were the most abundant α-DCs; and iv) barley coffee was the matrix richest in α-DCs both qualitatively and quantitatively. In vitro simulated digestion reduced (coffee) or strongly increased (barley, soy sauce) free α-DC content. These findings suggest that α-DC bioavailability could actually depend not on food content but rather on reactions occurring during digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.
2008-07-01
the desired switching frequencies. * I Three- r1aL phase dc-ac ac-dc Vph converter # 4 convertr converter 1 # 2 # 3 * I r --- -- -- - 4I6l kV ACSIDE...J:-----------------.HWn.XEMEL ------- J WDC_ SI CEI.................... ... .. .. .............. .......... J . Fig. 4.1 Block diagram of a PCM4. Vph
Multilevel metallization method for fabricating a metal oxide semiconductor device
NASA Technical Reports Server (NTRS)
Hollis, B. R., Jr.; Feltner, W. R.; Bouldin, D. L.; Routh, D. E. (Inventor)
1978-01-01
An improved method is described of constructing a metal oxide semiconductor device having multiple layers of metal deposited by dc magnetron sputtering at low dc voltages and low substrate temperatures. The method provides multilevel interconnections and cross over between individual circuit elements in integrated circuits without significantly reducing the reliability or seriously affecting the yield.
Float Package and the Data Rack aboard the DC-9
NASA Technical Reports Server (NTRS)
1996-01-01
Ted Brunzie and Peter Mason observe the float package and the data rack aboard the DC-9 reduced gravity aircraft. The float package contains a cryostat, a video camera, a pump and accelerometers. The data rack displays and record the video signal from the float package on tape and stores acceleration and temperature measurements on disk.
Tuning metal-insulator transitions in epitaxial V2O3 thin films
NASA Astrophysics Data System (ADS)
Thorsteinsson, Einar B.; Shayestehaminzadeh, Seyedmohammad; Arnalds, Unnar B.
2018-04-01
We present a study of the synthesis of epitaxial V2O3 films on c-plane Al2O3 substrates by reactive dc-magnetron sputtering. The results reveal a temperature window, at substantially lower values than previously reported, wherein epitaxial films can be obtained when deposited on [0001] oriented surfaces. The films display a metal-insulator transition with a change in the resistance of up to four orders of magnitude, strongly dependent on the O2 partial pressure during deposition. While the electronic properties of the films show sensitivity to the amount of O2 present during deposition of the films, their crystallographic structure and surface morphology of atomically flat terraced structures with up to micrometer dimensions are maintained. The transition temperature, as well as the scale of the metal-insulator transition, is correlated with the stoichiometry and local strain in the films controllable by the deposition parameters.
NASA Astrophysics Data System (ADS)
Zeisberger, M.; Klupsch, Th.; Michalke, W.
1995-02-01
We report on a systematic mutual induction measurement of the complex AC penetration depth λ of a sputtered high-quality GdBa 2Cu 3O 7-δ film in the mixed state by a very small coil system arranged near the sample surface. The complex penetration depth λ( B, T, ω) for DC inductions B ⩽ 0.65 T (perpendicular to the film), for temperatures 36 K ⩽ T ⩽ 81 K, and for frequencies 1 kHz ⩽ ω/2 π ⩽ 500 kHz was determined from the measured signal by a novel inversion scheme. The results are consistent with theoretical predictions based upon single vortex pinning. The Labusch parameter α, the flux creep relaxation time τ, as well as the effective activation energy U are simulateneously determined.
Investigation of structural, optical and electrical properties of Co3O4 nanoparticles
NASA Astrophysics Data System (ADS)
Bhargava, Richa; Khan, Shakeel; Ahmad, Naseem; Ansari, Mohd Mohsin Nizam
2018-05-01
In the current work, we report the synthesis of Cobalt oxide (Co3O4) NPs (NPs) by co-precipitation method. The structural analysis was confirmed by using X-ray diffractometer (XRD) which shows that the Co3O4 NPs have cubic phase. The average crystallite size and the lattice parameter were calculated for Co3O4 NPs. The functional groups of the as-synthesized sample were examined by Fourier transform infrared spectroscopy (FTIR). The optical band gap of Co3O4 NPs was estimated by using UV diffuse reflectance spectroscopy and the Band gap was evaluated by using Tauc relation. The temperature dependence of dielectric constant and dielectric loss were studied over a range of temperature 50-300 °C. The DC electrical resistivity of Co3O4 NPs shows a semiconducting behaviour and the value of activation energy was calculated by using Arrhenius equation.
NASA Astrophysics Data System (ADS)
Pryadun, Vladimir
2005-03-01
Rectification of AC current has been observed in plain superconducting Nb films and in Nb/Ni films with symmetric periodic pinning centers. The rectified DC voltage appears for various sample geometries (cross or strip) both along and transverse to the alternating current direction, is nearly anti-symmetric with perpendicular magnetic field and strongly dependent on temperature below Tc. Analyses of the data at different temperatures, drive frequencies from 100kHz to 150MHz and at the different sample sides [1] shows that not far below Tc the rectification phenomena can be understood in terms of generation of electric fields due to local excess of critical current. Further below Tc anisotropic pinning effects could also contribute to the rectification. [1] F.G.Aliev, et al., Cond. Mat.405656. Supported by Comunidad Autonoma de Madrid -CAM/07N/0050/2002
Simultaneous Pressure-Induced Magnetic and Valence Transitions in Type-I Clathrate Eu8Ga16Ge30
NASA Astrophysics Data System (ADS)
Onimaru, Takahiro; Tsutsui, Satoshi; Mizumaki, Masaichiro; Kawamura, Naomi; Ishimatsu, Naoki; Avila, Marcos A.; Yamamoto, Shuhei; Yamane, Haruki; Suekuni, Koichiro; Umeo, Kazunori; Kume, Tetsuji; Nakano, Satoshi; Takabatake, Toshiro
2014-01-01
We have performed X-ray magnetic circular dichroism (XMCD) and X-ray absorption spectroscopy (XAS) measurements at pressures up to 17 GPa for the clathrate Eu8Ga16Ge30 (Curie temperature TC = 36 K). The temperature dependence of the XMCD spectra agrees well with that of the DC magnetization at ambient pressure. The TC is gradually enhanced with increasing pressures up to 13.3 GPa, and the divalent state of the Eu ions with J = 7/2 remains stable, but at 17 GPa the XMCD intensity is strongly suppressed and a spectral weight corresponding to the trivalent state of Eu ions (with no magnetic moment) appears in the XAS spectrum. The concurrent change from the type-I clathrate structure to an amorphous phase has been observed by X-ray diffraction experiment. We conclude that the amorphization of this compound induces the mixed valence state, which collapses the ferromagnetism.
Cr-doped TiSe 2 - A layered dichalcogenide spin glass
Luo, Huixia; Tao, Jing; Krizan, Jason W.; ...
2015-09-17
We report the magnetic characterization of the Cr-doped layered dichalcogenide TiSe 2. The temperature dependent magnetic susceptibilities are typical of those seen in geometrically frustrated insulating antiferromagnets. The Cr moment is close to the spin-only value, and the Curie–Weiss temperatures (θ cw) are between –90 and –230 K. Freezing of the spin system, which is glassy, characterized by peaks in the ac and dc susceptibility and specific heat, does not occur until below T/θ cw = 0.05. The CDW transition seen in the resistivity for pure TiSe 2 is still present for 3% Cr substitution but is absent by 10%more » substitution, above which the materials are metallic and p-type. Structural refinements, magnetic characterization, and chemical considerations indicate that the materials are of the type Ti 1–xCr xSe 2-x/2 for 0 ≤ x ≤ 0.6.« less
Laser absorption spectroscopy for measurement of He metastable atoms of a microhollow cathode plasma
NASA Astrophysics Data System (ADS)
Ueno, Keisuke; Kamebuchi, Kenta; Kakutani, Jiro; Matsuoka, Leo; Namba, Shinichi; Fujii, Keisuke; Shikama, Taiichi; Hasuo, Masahiro
2018-01-01
We generated a 0.3-mm-diameter DC, hollow-cathode helium discharge in a gas pressure range of 10-80 kPa. In discharge plasmas, we measured position-dependent laser absorption spectra for helium 23S1-23P0 transition with a spatial resolution of 55 µm. From the results of the analysis of the measured spectra using Voigt functions and including both the Doppler and collision broadening, we produced two-dimensional maps of the metastable 23S1 atomic densities and gas temperatures of the plasmas. We found that, at all pressures, the gas temperatures were approximately uniform in space with values in the range of 400-1500 K and the 23S1 atomic densities were ˜1019 m-3. We also found that the two-dimensional density distribution profiles became ring-shaped at high gas pressures, which is qualitatively consistent with the two-dimensional fluid simulation results.
Boron/aluminum skins for the DC-10 aft pylon
NASA Technical Reports Server (NTRS)
Elliott, S. Y.
1975-01-01
Boron/aluminum pylon boat tail skins were designed and fabricated and installed on the DC-10 aircraft for a 5-year flight service demonstration test. Inspection and tests of the exposed skins will establish the ability of the boron/aluminum composite to withstand long time flight service conditions, which include exposure to high temperatures, sonic fatigue, and flutter. The results of a preliminary testing program yield room temperature and elevated temperature data on the tension, compression, in-plane shear, interlaminar shear, bolt bearing, and tension fatigue properties of the boron/aluminum laminates. Present technology was used in the fabrication of the skins. Although maximum weight saving was not sought, weight of the constant thickness boron/aluminum skin is 26% less than the chemically milled titanium skin.
NASA Astrophysics Data System (ADS)
Bahadur, Birendra
The following sections are included: * INTRODUCTION * CELL DESIGNING * EXPERIMENTAL OBSERVATIONS IN NEMATICS RELATED WITH DYNAMIC SCATTERING * Experimental Observations at D.C. Field and Electrode Effects * Experimental Observation at Low Frequency A.C. Fields * Homogeneously Aligned Nematic Regime * Williams Domains * Dynamic Scattering * Experimental Observation at High Frequency A.C. Field * Other Experimental Observations * THEORETICAL INTERPRETATIONS * Felici Model * Carr-Helfrich Model * D.C. Excitation * Dubois-Violette, de Gennes and Parodi Model * Low Freqency or Conductive Regime * High Frequency or Dielectric Regime * DYNAMIC SCATTERING IN SMECRIC A PHASE * ELECTRO-OPTICAL CHARACTERISTICS AND LIMITATIONS * Contrast Ratio vs. Voltage, Viewing Angle, Cell Gap, Wavelength and Temperature * Display Current vs. Voltage, Cell Gap and Temperature * Switching Time * Effect of Alignment * Effect of Conductivity, Temperature and Frequency * Addressing of DSM LCDs * Limitations of DSM LCDs * ACKNOWLEDGEMENTS * REFERENCES
Radionuclide calorimeter system
Donohoue, Thomas P.; Oertel, Christopher P.; Tyree, William H.; Valdez, Joe L.
1991-11-26
A circuit for measuring temperature differentials in a calorimeter is disclosed. The temperature differential between the reference element and sample element containing a radioactive material is measured via a wheatstone bridge arrangement of thermistors. The bridge is driven with an alternating current on a pulsed basis to maintain the thermal floor of the calorimeter at a low reference value. A lock-in amplifier connected to the bridge phase locks a signal from the bridge to the input pulsed AC signal to provide a DC voltage. The DC voltage is sampled over time and provided to a digital computer. The digital computer, using curve fitting algorithms, will derive a function for the sample data. From the function, an equilibrium value for the temperature may be calculated.
Radionuclide calorimeter system
Donohoue, T.P.; Oertel, C.P.; Tyree, W.H.; Valdez, J.L.
1991-11-26
A circuit for measuring temperature differentials in a calorimeter is disclosed. The temperature differential between the reference element and sample element containing a radioactive material is measured via a Wheatstone bridge arrangement of thermistors. The bridge is driven with an alternating current on a pulsed basis to maintain the thermal floor of the calorimeter at a low reference value. A lock-in amplifier connected to the bridge phase locks a signal from the bridge to the input pulsed AC signal to provide a DC voltage. The DC voltage is sampled over time and provided to a digital computer. The digital computer, using curve fitting algorithms, will derive a function for the sample data. From the function, an equilibrium value for the temperature may be calculated. 7 figures.
An Inverter Packaging Scheme for an Integrated Segmented Traction Drive System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Gui-Jia; Tang, Lixin; Ayers, Curtis William
The standard voltage source inverter (VSI), widely used in electric vehicle/hybrid electric vehicle (EV/HEV) traction drives, requires a bulky dc bus capacitor to absorb the large switching ripple currents and prevent them from shortening the battery s life. The dc bus capacitor presents a significant barrier to meeting inverter cost, volume, and weight requirements for mass production of affordable EVs/HEVs. The large ripple currents become even more problematic for the film capacitors (the capacitor technology of choice for EVs/HEVs) in high temperature environments as their ripple current handling capability decreases rapidly with rising temperatures. It is shown in previous workmore » that segmenting the VSI based traction drive system can significantly decrease the ripple currents and thus the size of the dc bus capacitor. This paper presents an integrated packaging scheme to reduce the system cost of a segmented traction drive.« less
The 77 K operation of a multi-resonant power converter
NASA Technical Reports Server (NTRS)
Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.
1995-01-01
The liquid-nitrogen temperature (77 K) operation of a 55 W, 200 kHz, 48/28 V zero-voltage switching multi-resonant dc/dc converter designed with commercially available components is reported. Upon dipping the complete converter (power and control circuits) into liquid-nitrogen, the converter performance improved as compared to the room-temperature operation. The switching frequency, resonant frequency, and the characteristic impedance did not change significantly. Accordingly, the zero-voltage switching was maintained from no-load to full-load for the specified line variations. Cryoelectronics can provide high density power converters, especially for high power applications.
Experimental insight into the magnetic and electrical properties of amorphous Ge1-xMnx
NASA Astrophysics Data System (ADS)
Conta, Gianluca; Amato, Giampiero; Coïsson, Marco; Tiberto, Paola
2017-12-01
We present a study of the electrical and magnetic properties of the amorphous Ge1-xMnx.DMS, with 2% ≤ x ≤ 17%, by means of SQUID magnetometry and low temperature DC measurements. The thin films were grown by physical vapour deposition at 50°C in ultrahigh vacuum. The DC electrical characterizations show that variable range hopping is the main mechanism of charge transport below room temperature. Magnetic characterization reveals that a unique and smooth magnetic transition is present in our samples, which can be attributed to ferromagnetic percolation of bound magnetic polarons.
Dendritic cells exposed in vitro to TGF-β1 ameliorate experimental autoimmune myasthenia gravis
YARILIN, D; DUAN, R; HUANG, Y-M; XIAO, B-G
2002-01-01
Experimental autoimmune myasthenia gravis (EAMG) is an animal model for human myasthenia gravis (MG), characterized by an autoaggressive T-cell-dependent antibody-mediated immune response directed against the acetylcholine receptor (AChR) of the neuromuscular junction. Dendritic cells (DC) are unique antigen-presenting cells which control T- and B-cell functions and induce immunity or tolerance. Here, we demonstrate that DC exposed to TGF-β1 in vitro mediate protection against EAMG. Freshly prepared DC from spleen of healthy rats were exposed to TGF-β1 in vitro for 48 h, and administered subcutaneously to Lewis rats (2 × 106DC/rat) on day 5 post immunization with AChR in Freund’s complete adjuvant. Control EAMG rats were injected in parallel with untreated DC (naive DC) or PBS. Lewis rats receiving TGF-β1-exposed DC developed very mild symptoms of EAMG without loss of body weight compared with control EAMG rats receiving naive DC or PBS. This effect of TGF-β1-exposed DC was associated with augmented spontaneous and AChR-induced proliferation, IFN-γ and NO production, and decreased levels of anti-AChR antibody-secreting cells. Autologous DC exposed in vitro to TGF-β1 could represent a new opportunity for DC-based immunotherapy of antibody-mediated autoimmune diseases. PMID:11876742
Soilleux, Elizabeth J; Morris, Lesley S; Rushbrook, Simon; Lee, Benhur; Coleman, Nicholas
2002-06-01
DC-SIGNR is a human immunodeficiency virus (HIV)-binding C-type lectin that is expressed on endothelium in the hepatic sinusoids, lymph node sinuses and placenta. Like closely related DC-SIGN, DC-SIGNR can bind both ICAM-3 and HIV and can potentiate HIV infection of T lymphocytes in trans. In the present study we have investigated reasons underlying the restricted distribution of DC-SIGNR and have examined DC-SIGNR expression in relation to HIV entry receptors. We show that DC-SIGNR expression does not depend on endothelial cell specialization or on activation state. DC-SIGNR-positive endothelium continues to express DC-SIGNR in conditions of hyperplasia, whereas the molecule is lost after neoplastic transformation, most likely as a result of changes in the microenvironment of the endothelial cells. We have further shown that CCR5, but not CD4, is coexpressed with DC-SIGNR on hepatic sinusoidal and placental capillary endothelial cells. However, CD4-positive CCR5-positive cells, such as hepatic Kupffer cells, placental Hofbauer cells, and CD4-positive T lymphocytes in lymph nodes, can be found adjacent to DC-SIGNR-positive endothelium. Therefore, DC-SIGNR may be able to mediate HIV infection of these cells in trans. Finally, we demonstrate that DC-SIGN and DC-SIGNR can be coexpressed on lymph node sinus endothelial cells, which may lead to modulation of the function of both molecules. Copyright 2002, Elsevier Science (USA). All rights reserved.
Transient analysis of an HTS DC power cable with an HVDC system
NASA Astrophysics Data System (ADS)
Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun; Yang, Byeongmo
2013-11-01
The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system.
dc Arc Fault Effect on Hybrid ac/dc Microgrid
NASA Astrophysics Data System (ADS)
Fatima, Zahra
The advent of distributed energy resources (DER) and reliability and stability problems of the conventional grid system has given rise to the wide spread deployment of microgrids. Microgrids provide many advantages by incorporating renewable energy sources and increasing the reliability of the grid by isolating from the main grid in case of an outage. AC microgrids have been installed all over the world, but dc microgrids have been gaining interest due to the advantages they provide over ac microgrids. However the entire power network backbone is still ac and dc microgrids require expensive converters to connect to the ac power network. As a result hybrid ac/dc microgrids are gaining more attention as it combines the advantages of both ac and dc microgrids such as direct integration of ac and dc systems with minimum number of conversions which increases the efficiency by reducing energy losses. Although dc electric systems offer many advantages such as no synchronization and no reactive power, successful implementation of dc systems requires appropriate protection strategies. One unique protection challenge brought by the dc systems is dc arc faults. A dc arc fault is generated when there is a gap in the conductor due to insulation degradation and current is used to bridge the gap, resulting in an arc with very high temperature. Such a fault if it goes undetected and is not extinguished can cause damage to the entire system and cause fires. The purpose of the research is to study the effect of the dc arc fault at different locations in the hybrid ac/dc microgrid and provide insight on the reliability of the grid components when it is impacted by arc faults at various locations in the grid. The impact of dc arc fault at different locations on the performance of the PV array, wind generation, and constant power loads (CPL) interfaced with dc/dc converters is studied. MATLAB/Simulink is used to model the hybrid ac/dc microgrid and arc fault.
Nasi, Aikaterini; Amu, Sylvie; Göthlin, Mårten; Jansson, Marianne; Nagy, Noemi; Chiodi, Francesca; Réthi, Bence
2017-01-01
Dendritic cells (DCs) are potent antigen-presenting cells that might play contradictory roles during HIV-1 infection, contributing not only to antiviral immunity but also to viral dissemination and immune evasion. Although DCs are characterized by enormous functional diversity, it has not been analyzed how differentially programmed DCs interact with HIV-1. We have previously described the reprogramming of DC development by endogenously produced lactic acid that accumulated in a cell culture density-dependent manner and provided a long-lasting anti-inflammatory signal to the cells. By exploiting this mechanism, we generated immunostimulatory DCs characterized by the production of TH1 polarizing and inflammatory mediators or, alternatively, suppressed DCs that produce IL-10 upon activation, and we tested the interaction of these DC types with different HIV-1 strains. Cytokine patterns were monitored in HIV-1-exposed DC cultures. Our results showed that DCs receiving suppressive developmental program strongly upregulated their capacity to produce the TH1 polarizing cytokine IL-12 and the inflammatory chemokines CCL2 and CCL7 upon interaction with HIV-1 strains IIIB and SF162. On the contrary, HIV-1 abolished cytokine production in the more inflammatory DC types. Preincubation of the cells with the HIV-1 proteins gp120 and Nef could inhibit IL-12 production irrespectively of the tested DC types, whereas MyD88- and TRIF-dependent signals stimulated IL-12 production in the suppressed DC type only. Rewiring of DC cytokines did not require DC infections or ligation of the HIV-1 receptor CD209. A third HIV-1 strain, BaL, could not modulate DC cytokines in a similar manner indicating that individual HIV-1 strains can differ in their capacity to influence DCs. Our results demonstrated that HIV-1 could not induce definite and invariable modulatory programs in DCs. Instead, interaction with the virus triggered different responses in different DC types. Thus, the outcome of DC-HIV-1 interactions might be highly variable, shaped by endogenous features of the cells and diversity of the virus.
Nasi, Aikaterini; Amu, Sylvie; Göthlin, Mårten; Jansson, Marianne; Nagy, Noemi; Chiodi, Francesca; Réthi, Bence
2017-01-01
Dendritic cells (DCs) are potent antigen-presenting cells that might play contradictory roles during HIV-1 infection, contributing not only to antiviral immunity but also to viral dissemination and immune evasion. Although DCs are characterized by enormous functional diversity, it has not been analyzed how differentially programmed DCs interact with HIV-1. We have previously described the reprogramming of DC development by endogenously produced lactic acid that accumulated in a cell culture density-dependent manner and provided a long-lasting anti-inflammatory signal to the cells. By exploiting this mechanism, we generated immunostimulatory DCs characterized by the production of TH1 polarizing and inflammatory mediators or, alternatively, suppressed DCs that produce IL-10 upon activation, and we tested the interaction of these DC types with different HIV-1 strains. Cytokine patterns were monitored in HIV-1-exposed DC cultures. Our results showed that DCs receiving suppressive developmental program strongly upregulated their capacity to produce the TH1 polarizing cytokine IL-12 and the inflammatory chemokines CCL2 and CCL7 upon interaction with HIV-1 strains IIIB and SF162. On the contrary, HIV-1 abolished cytokine production in the more inflammatory DC types. Preincubation of the cells with the HIV-1 proteins gp120 and Nef could inhibit IL-12 production irrespectively of the tested DC types, whereas MyD88- and TRIF-dependent signals stimulated IL-12 production in the suppressed DC type only. Rewiring of DC cytokines did not require DC infections or ligation of the HIV-1 receptor CD209. A third HIV-1 strain, BaL, could not modulate DC cytokines in a similar manner indicating that individual HIV-1 strains can differ in their capacity to influence DCs. Our results demonstrated that HIV-1 could not induce definite and invariable modulatory programs in DCs. Instead, interaction with the virus triggered different responses in different DC types. Thus, the outcome of DC-HIV-1 interactions might be highly variable, shaped by endogenous features of the cells and diversity of the virus. PMID:28348557
Kaczmarek, D.; Ristikankare, J.
2017-01-01
Key points Trans‐spinal polarization was recently introduced as a means to improve deficient spinal functions. However, only a few attempts have been made to examine the mechanisms underlying DC actions. We have now examined the effects of DC on two spinal modulatory systems, presynaptic inhibition and post‐activation depression, considering whether they might weaken exaggerated spinal reflexes and enhance excessively weakened ones.Direct current effects were evoked by using local intraspinal DC application (0.3–0.4 μA) in deeply anaesthetized rats and were compared with the effects of trans‐spinal polarization (0.8–1.0 mA).Effects of local intraspinal DC were found to be polarity dependent, as locally applied cathodal polarization enhanced presynaptic inhibition and post‐activation depression, whereas anodal polarization weakened them. In contrast, both cathodal and anodal trans‐spinal polarization facilitated them.The results suggest some common DC‐sensitive mechanisms of presynaptic inhibition and post‐activation depression, because both were facilitated or depressed by DC in parallel. Abstract Direct current (DC) polarization has been demonstrated to alleviate the effects of various deficits in the operation of the central nervous system. However, the effects of trans‐spinal DC stimulation (tsDCS) have been investigated less extensively than the effects of transcranial DC stimulation, and their cellular mechanisms have not been elucidated. The main objectives of this study were, therefore, to extend our previous analysis of DC effects on the excitability of primary afferents and synaptic transmission by examining the effects of DC on two spinal modulatory feedback systems, presynaptic inhibition and post‐activation depression, in an anaesthetized rat preparation. Other objectives were to compare the effects of locally and trans‐spinally applied DC (locDC and tsDCS). Local polarization at the sites of terminal branching of afferent fibres was found to induce polarity‐dependent actions on presynaptic inhibition and post‐activation depression, as cathodal locDC enhanced them and anodal locDC depressed them. In contrast, tsDCS modulated presynaptic inhibition and post‐activation depression in a polarity‐independent fashion because both cathodal and anodal tsDCS facilitated them. The results show that the local presynaptic actions of DC might counteract both excessively strong and excessively weak monosynaptic actions of group Ia and cutaneous afferents. However, they indicate that trans‐spinally applied DC might counteract the exaggerated spinal reflexes but have an adverse effect on pathologically weakened spinal activity by additional presynaptic weakening. The results are also relevant for the analysis of the basic properties of presynaptic inhibition and post‐activation depression because they indicate that some common DC‐sensitive mechanisms contribute to them. PMID:27891626
BIM determines the number of merocytic dendritic cells, a cell type that breaks immune tolerance.
Audiger, Cindy; Lesage, Sylvie
2018-05-13
In contrast to conventional dendritic cells (cDC), when merocytic dendritic cells (mcDC) present antigens derived from apoptotic bodies, T-cell anergy is reversed rather than induced, a process that promotes autoimmunity. Interestingly, mcDC are present in higher proportion in type 1 diabetes-prone NOD mice than in autoimmune-resistant B6 and BALB/c mice, and the Insulin-dependent diabetes (Idd)13 locus is linked to mcDC proportion. Therefore, mcDC are notably associated with susceptibility to autoimmune diabetes. To identify which gene determines the proportion and absolute number of mcDC, we undertook a candidate gene approach by selecting relevant candidates within the Idd13 locus. We find that neither β2m nor Sirpa appear to influence the proportion of mcDC. Instead, we show that Bim effectively modulates mcDC number in a hematopoietic-intrinsic manner. We also demonstrate that Bim-deficiency does not impact other cDC subsets and appears to play a specific role in determining the proportion and absolute number of mcDC by promoting their survival. Together, these data demonstrate that Bim specifically modulates the number of mcDC. Identifying factors that facilitate apoptosis of mcDC by increasing BIM activity in a cell type-specific manner may help prevent autoimmunity. © 2018 Australasian Society for Immunology Inc.
Lambert, Henrik; Hitziger, Niclas; Dellacasa, Isabel; Svensson, Mattias; Barragan, Antonio
2006-10-01
The processes leading to systemic dissemination of the obligate intracellular parasite Toxoplasma gondii remain unelucidated. In vitro studies on human and murine dendritic cells (DC) revealed that active invasion of DC by Toxoplasma induces a state of hypermotility in DC, enabling transmigration of infected DC across endothelial cell monolayers in the absence of chemotactic stimuli. Infected DC exhibited upregulation of maturation markers and co-stimulatory molecules. While modulation of cell adhesion molecules CD11/CD18 was similar for Toxoplasma-infected DC and lipopolysaccharide (LPS)-matured DC, Toxoplasma-infected DC did not exhibit upregulation of CD54/ICAM-1. Induction of host cell migration in vitro required live intracellular parasite(s) and was inhibited by uncoupling the Gi-protein signalling pathway with pertussis toxin, but did not depend on CCR5, CCR7 or Toll/interleukin-1 receptor signalling. When migration of Toxoplasma-infected DC was compared with migration of LPS-stimulated DC in vivo, similar or higher numbers of Toxoplasma-infected DC reached the mesenteric lymph nodes and spleen respectively. Adoptive transfer of Toxoplasma-infected DC resulted in more rapid dissemination of parasites to distant organs and in exacerbation of infection compared with inoculation with free parasites. Altogether, these findings show that Toxoplasma is able to subvert the regulation of host cell motility and likely exploits the host's natural pathways of cellular migration for parasite dissemination.
Silicon nitride directional coupler interferometer for surface sensing
NASA Astrophysics Data System (ADS)
Okubo, Kyohei; Uchiyamada, Ken; Asakawa, Kiyoshi; Suzuki, Hiroaki
2017-01-01
A silicon nitride directional coupler (DC) used to create a biosensing device is presented. The DC detects changes in the refractive index of the cladding (nclad) as changes in the relative output intensity. The DC length (L), nclad-dependent sensitivities of the DC, and preferred dimensions of the single-mode DC waveguides are obtained through numerical simulations. The performance of the DC is evaluated through end-fire coupling measurements. The intensities measured after varying the nclad using air, water, and glycerol solutions agree well with the fitting for a wide range of L values between 60 and 600 μm, i.e., corresponding to 6 to 60 times the coupling length. The bulk refractive index sensitivity was investigated using glycerol solutions of different concentrations and was found to be 18.9 optical intensity units per refractive index unit (OIU/RIU). Biotin/streptavidin bindings were detected with a sensitivity of 60 OIU/RIU and a detection limit of 0.13 μM, suggesting the feasibility of the DC for immunosensing.