Sample records for temperature dependent parameters

  1. Speed-dependent Voigt lineshape parameter database from dual frequency comb measurements up to 1305 K. Part I: Pure H2O absorption, 6801-7188 cm-1

    NASA Astrophysics Data System (ADS)

    Schroeder, Paul J.; Cich, Matthew J.; Yang, Jinyu; Giorgetta, Fabrizio R.; Swann, William C.; Coddington, Ian; Newbury, Nathan R.; Drouin, Brian J.; Rieker, Gregory B.

    2018-05-01

    We measure speed-dependent Voigt lineshape parameters with temperature-dependence exponents for several hundred spectroscopic features of pure water spanning 6801-7188 cm-1. The parameters are extracted from broad bandwidth, high-resolution dual frequency comb absorption spectra with multispectrum fitting techniques. The data encompass 25 spectra ranging from 296 K to 1305 K and 1 to 17 Torr of pure water vapor. We present the extracted parameters, compare them to published data, and present speed-dependence, self-shift, and self-broadening temperature-dependent parameters for the first time. Lineshape data is extracted using a quadratic speed-dependent Voigt profile and a single self-broadening power law temperature-dependence exponent over the entire temperature range. The results represent an important step toward a new high-temperature database using advanced lineshape profiles.

  2. Measurement of thermal radiation scattering characteristics of submicron refractory particles.

    NASA Technical Reports Server (NTRS)

    Jacobs, W. R.; Williams, J. R.

    1971-01-01

    The differential scattering parameter has been measured for 0.04-micron tungsten particles in hydrogen and nitrogen at temperatures to 1080 K. The differential scattering parameter has also been measured for 0.1 micron tungsten, three types of carbon particles, and fly ash in nitrogen at temperatures to 1000 K. The 0.04 micron tungsten shows a temperature dependent total scattering parameter varying from around 4000 sq cm per g at room temperature to 7000 sq cm per g at 1088 K. The temperatures over which data were obtained are not high enough to confirm the temperature dependence of the total scattering parameter of tungsten.

  3. Report on Contract W911NF-05-1-0339 (Clarkson University)

    DTIC Science & Technology

    2012-11-30

    voltammetry and impedance spectroscopy: voltage dependent parameters of a silicon solar cell under controlled illumination and temperature, Energy...voltammetry for quantitative evaluation of temperature and voltage dependent parameters of a silicon solar cell , Solar Energy, (11 2011): 0. doi: 10.1016...characterization of silicon solar cells in the electro-analytical approach: Combined measurements of temperature and voltage dependent electrical

  4. Inferring the temperature dependence of population parameters: the effects of experimental design and inference algorithm

    PubMed Central

    Palamara, Gian Marco; Childs, Dylan Z; Clements, Christopher F; Petchey, Owen L; Plebani, Marco; Smith, Matthew J

    2014-01-01

    Understanding and quantifying the temperature dependence of population parameters, such as intrinsic growth rate and carrying capacity, is critical for predicting the ecological responses to environmental change. Many studies provide empirical estimates of such temperature dependencies, but a thorough investigation of the methods used to infer them has not been performed yet. We created artificial population time series using a stochastic logistic model parameterized with the Arrhenius equation, so that activation energy drives the temperature dependence of population parameters. We simulated different experimental designs and used different inference methods, varying the likelihood functions and other aspects of the parameter estimation methods. Finally, we applied the best performing inference methods to real data for the species Paramecium caudatum. The relative error of the estimates of activation energy varied between 5% and 30%. The fraction of habitat sampled played the most important role in determining the relative error; sampling at least 1% of the habitat kept it below 50%. We found that methods that simultaneously use all time series data (direct methods) and methods that estimate population parameters separately for each temperature (indirect methods) are complementary. Indirect methods provide a clearer insight into the shape of the functional form describing the temperature dependence of population parameters; direct methods enable a more accurate estimation of the parameters of such functional forms. Using both methods, we found that growth rate and carrying capacity of Paramecium caudatum scale with temperature according to different activation energies. Our study shows how careful choice of experimental design and inference methods can increase the accuracy of the inferred relationships between temperature and population parameters. The comparison of estimation methods provided here can increase the accuracy of model predictions, with important implications in understanding and predicting the effects of temperature on the dynamics of populations. PMID:25558365

  5. Investigation on the effects of temperature dependency of material parameters on a thermoelastic loading problem

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Mukhopadhyay, Santwana

    2017-08-01

    The present work is concerned with the investigation of thermoelastic interactions inside a spherical shell with temperature-dependent material parameters. We employ the heat conduction model with a single delay term. The problem is studied by considering three different kinds of time-dependent temperature and stress distributions applied at the inner and outer surfaces of the shell. The problem is formulated by considering that the thermal properties vary as linear function of temperature that yield nonlinear governing equations. The problem is solved by applying Kirchhoff transformation along with integral transform technique. The numerical results of the field variables are shown in the different graphs to study the influence of temperature-dependent thermal parameters in various cases. It has been shown that the temperature-dependent effect is more prominent in case of stress distribution as compared to other fields and also the effect is significant in case of thermal shock applied at the two boundary surfaces of the spherical shell.

  6. Determination of the glass-transition temperature of proteins from a viscometric approach.

    PubMed

    Monkos, Karol

    2015-03-01

    All fully hydrated proteins undergo a distinct change in their dynamical properties at glass-transition temperature Tg. To determine indirectly this temperature for dry albumins, the viscosity measurements of aqueous solutions of human, equine, ovine, porcine and rabbit serum albumin have been conducted at a wide range of concentrations and at temperatures ranging from 278 K to 318 K. Viscosity-temperature dependence of the solutions is discussed on the basis of the three parameters equation resulting from Avramov's model. One of the parameter in the Avramov's equation is the glass-transition temperature. For all studied albumins, Tg of a solution monotonically increases with increasing concentration. The glass-transition temperature of a solution depends both on Tg for a dissolved dry protein Tg,p and water Tg,w. To obtain Tg,p for each studied albumin the modified Gordon-Taylor equation was applied. This equation describes the dependence of Tg of a solution on concentration, and Tg,p and a parameter depending on the strength of the protein-solvent interaction are the fitting parameters. Thus determined the glass-transition temperature for the studied dry albumins is in the range (215.4-245.5)K. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Re-estimating temperature-dependent consumption parameters in bioenergetics models for juvenile Chinook salmon

    USGS Publications Warehouse

    Plumb, John M.; Moffitt, Christine M.

    2015-01-01

    Researchers have cautioned against the borrowing of consumption and growth parameters from other species and life stages in bioenergetics growth models. In particular, the function that dictates temperature dependence in maximum consumption (Cmax) within the Wisconsin bioenergetics model for Chinook Salmon Oncorhynchus tshawytscha produces estimates that are lower than those measured in published laboratory feeding trials. We used published and unpublished data from laboratory feeding trials with subyearling Chinook Salmon from three stocks (Snake, Nechako, and Big Qualicum rivers) to estimate and adjust the model parameters for temperature dependence in Cmax. The data included growth measures in fish ranging from 1.5 to 7.2 g that were held at temperatures from 14°C to 26°C. Parameters for temperature dependence in Cmax were estimated based on relative differences in food consumption, and bootstrapping techniques were then used to estimate the error about the parameters. We found that at temperatures between 17°C and 25°C, the current parameter values did not match the observed data, indicating that Cmax should be shifted by about 4°C relative to the current implementation under the bioenergetics model. We conclude that the adjusted parameters for Cmax should produce more accurate predictions from the bioenergetics model for subyearling Chinook Salmon.

  8. Temperature-dependence laws of absorption line shape parameters of the CO2 ν3 band

    NASA Astrophysics Data System (ADS)

    Wilzewski, J. S.; Birk, M.; Loos, J.; Wagner, G.

    2018-02-01

    To improve the understanding of temperature-dependence laws of spectral line shape parameters, spectra of the ν3 rovibrational band of CO2 perturbed by 10, 30, 100, 300 and 1000 mbar of N2 were recorded at nine temperatures between 190 K and 330 K using a 22 cm long single-pass absorption cell in a Bruker IFS125 HR Fourier Transform spectrometer. The spectra were fitted employing a quadratic speed-dependent hard collision model in the Hartmann-Tran implementation extended to account for line mixing in the Rosenkranz approximation by means of a multispectrum fitting approach developed at DLR. This enables high accuracy parameter retrievals to reproduce the spectra down to noise level and we present the behavior of line widths, shifts, speed-dependence-, collisional narrowing- and line mixing-parameters over this 140 K temperature range.

  9. Electrode performance parameters for a radioisotope-powered AMTEC for space power applications

    NASA Technical Reports Server (NTRS)

    Underwood, M. L.; O'Connor, D.; Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Bankston, C. P.

    1992-01-01

    The alkali metal thermoelastic converter (AMTEC) is a device for the direct conversion of heat to electricity. Recently a design of an AMTEC using a radioisotope heat source was described, but the optimum condenser temperature was hotter than the temperatures used in the laboratory to develop the electrode performance model. Now laboratory experiments have confirmed the dependence of two model parameters over a broader range of condenser and electrode temperatures for two candidate electrode compositions. One parameter, the electrochemical exchange current density at the reaction interface, is independent of the condenser temperature, and depends only upon the collision rate of sodium at the reaction zone. The second parameter, a morphological parameter, which measures the mass transport resistance through the electrode, is independent of condenser and electrode temperatures for molybdenum electrodes. For rhodium-tungsten electrodes, however, this parameter increases for decreasing electrode temperature, indicating an activated mass transport mechanism such as surface diffusion.

  10. Towards adjoint-based inversion of time-dependent mantle convection with nonlinear viscosity

    NASA Astrophysics Data System (ADS)

    Li, Dunzhu; Gurnis, Michael; Stadler, Georg

    2017-04-01

    We develop and study an adjoint-based inversion method for the simultaneous recovery of initial temperature conditions and viscosity parameters in time-dependent mantle convection from the current mantle temperature and historic plate motion. Based on a realistic rheological model with temperature-dependent and strain-rate-dependent viscosity, we formulate the inversion as a PDE-constrained optimization problem. The objective functional includes the misfit of surface velocity (plate motion) history, the misfit of the current mantle temperature, and a regularization for the uncertain initial condition. The gradient of this functional with respect to the initial temperature and the uncertain viscosity parameters is computed by solving the adjoint of the mantle convection equations. This gradient is used in a pre-conditioned quasi-Newton minimization algorithm. We study the prospects and limitations of the inversion, as well as the computational performance of the method using two synthetic problems, a sinking cylinder and a realistic subduction model. The subduction model is characterized by the migration of a ridge toward a trench whereby both plate motions and subduction evolve. The results demonstrate: (1) for known viscosity parameters, the initial temperature can be well recovered, as in previous initial condition-only inversions where the effective viscosity was given; (2) for known initial temperature, viscosity parameters can be recovered accurately, despite the existence of trade-offs due to ill-conditioning; (3) for the joint inversion of initial condition and viscosity parameters, initial condition and effective viscosity can be reasonably recovered, but the high dimension of the parameter space and the resulting ill-posedness may limit recovery of viscosity parameters.

  11. Integrated optical devices based on sol – gel waveguides using the temperature dependence of the effective refractive index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlov, S V; Trofimov, N S; Chekhlova, T K

    2014-07-31

    A possibility of designing optical waveguide devices based on sol – gel SiO{sub 2} – TiO{sub 2} films using the temperature dependence of the effective refractive index is shown. The dependences of the device characteristics on the parameters of the film and opticalsystem elements are analysed. The operation of a temperature recorder and a temperature limiter with a resolution of 0.6 K mm{sup -1} is demonstrated. The film and output-prism parameters are optimised. (fibreoptic and nonlinear-optic devices)

  12. Refractive indices of liquid crystal E7 depending on temperature and wavelengths

    NASA Astrophysics Data System (ADS)

    Ma, Mingjian; Li, Shuguang; Jing, Xili; Chen, Hailiang

    2017-11-01

    The dependence of refractive indices of liquid crystal (LC) on temperature is represented by the Haller approximation model, and its dependence on the wavelength is expressed by the extended Cauchy model. We derived the refractive indices expressions of nematic LC E7 depending on temperature and wavelength simultaneously by combining these two models. Based on the obtained expressions, one can acquire the refractive indices of E7 at arbitrary temperature and wavelengths. The birefringence, variation rate of refractive indices, macroscopic order parameter Q, and orientational order parameter ⟨P2⟩ of E7 were then discussed based on the expressions.

  13. Spectral Line Parameters Including Temperature Dependences of Self- and Air-Broadening in the 2 (left arrow) 0 Band of CO at 2.3 micrometers

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Smith, M. A. H.; Mantz, A. W.; Sung, K.; Brown, L. R.; Predoi-Cross, A.

    2012-01-01

    Temperature dependences of pressure-broadened half-width and pressure-induced shift coefficients along with accurate positions and intensities have been determined for transitions in the 2<--0 band of C-12 O-16 from analyzing high-resolution and high signal-to-noise spectra recorded with two different Fourier transform spectrometers. A total of 28 spectra, 16 self-broadened and 12 air-broadened, recorded using high- purity (greater than or equal to 99.5% C-12-enriched) CO samples and CO diluted with dry air(research grade) at different temperatures and pressures, were analyzed simultaneously to maximize the accuracy of the retrieved parameters. The sample temperatures ranged from 150 to 298K and the total pressures varied between 5 and 700 Torr. A multispectrum nonlinear least squares spectrum fitting technique was used to adjust the rovibrational constants (G, B, D, etc.) and intensity parameters (including Herman-Wallis coefficients), rather than determining individual line positions and intensities. Self-and air-broadened Lorentz half-width coefficients, their temperature dependence exponents, self- and air-pressure-induced shift coefficients, their temperature dependences, self- and air-line mixing coefficients, their temperature dependences and speed dependence have been retrieved from the analysis. Speed-dependent line shapes with line mixing employing off-diagonal relaxation matrix element formalism were needed to minimize the fit residuals. This study presents a precise and complete set of spectral line parameters that consistently reproduce the spectrum of carbon monoxide over terrestrial atmospheric conditions.

  14. Temperature and pressure dependent thermodynamic behavior of 2H-CuInO2

    NASA Astrophysics Data System (ADS)

    Bhamu, K. C.

    2018-05-01

    Density functional theory and quasi-harmonic Debye model has been used to study the thermodynamic properties of 2H-CuInO2. At the optimized structural parameters, pressure (0 to 80 GPa) dependent variation in the various thermodynamic properties, i.e. unit cell volume (V), bulk modulus (B), specific heat (Cv), Debye temperature (θD), Grüneisen parameter (γ) and thermal expansion coefficient (α) are calculated for various temperature values. The results predict that the pressure has significant effect on unit cell volume and bulk modulus while the temperature shows negligible effect on both parameters. With increasing temperature thermal expansion coefficient increase while with increasing pressure it decreases. The specific heat remains close to zero for ambient pressure and temperature values and it increases with increasing temperature. It is observed that the pressure has high impact on Debye temperature and Grüneisen parameter instead of temperature. Debye temperature and Grüneisen parameter both remains almost constant for the temperature range (0-300K) while Grüneisen parameter decrease with increasing pressure at constant temperature and Debye temperature increases rapidly with increasing pressure. An increase in Debye temperature with respect to pressure shows that the thermal vibration frequency changes rapidly.

  15. Electrode performance parameters for a radioisotope-powered AMTEC for space power applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Underwood, M.L.; O'Connor, D.; Williams, R.M.

    1992-08-01

    The alkali metal thermoelastic converter (AMTEC) is a device for the direct conversion of heat to electricity. Recently a design of an AMTEC using a radioisotope heat source was described, but the optimum condenser temperature was hotter than the temperatures used in the laboratory to develop the electrode performance model. Now laboratory experiments have confirmed the dependence of two model parameters over a broader range of condenser and electrode temperatures for two candidate electrode compositions. One parameter, the electrochemical exchange current density at the reaction interface, is independent of the condenser temperature, and depends only upon the collision rate ofmore » sodium at the reaction zone. The second parameter, a morphological parameter, which measures the mass transport resistance through the electrode, is independent of condenser and electrode temperatures for molybdenum electrodes. For rhodium-tungsten electrodes, however, this parameter increases for decreasing electrode temperature, indicating an activated mass transport mechanism such as surface diffusion. 21 refs.« less

  16. Temperature dependence of conductivity measurement for conducting polymer

    NASA Astrophysics Data System (ADS)

    Gutierrez, Leandro; Duran, Jesus; Isah, Anne; Albers, Patrick; McDougall, Michael; Wang, Weining

    2014-03-01

    Conducting polymer-based solar cells are the newest generation solar cells. While research on this area has been progressing, the efficiency is still low because certain important parameters of the solar cell are still not well understood. It is of interest to study the temperature dependence of the solar cell parameters, such as conductivity of the polymer, open circuit voltage, and reverse saturation current to gain a better understanding on the solar cells. In this work, we report our temperature dependence of conductivity measurement using our in-house temperature-varying apparatus. In this project, we designed and built a temperature varying apparatus using a thermoelectric cooler module which gives enough temperature range as we need and costs much less than a cryostat. The set-up of the apparatus will be discussed. Temperature dependence of conductivity measurements for PEDOT:PSS films with different room-temperature conductivity will be compared and discussed. NJSGC-NASA Fellowship grant

  17. Temperature Dependence of Errors in Parameters Derived from Van't Hoff Studies.

    ERIC Educational Resources Information Center

    Dec, Steven F.; Gill, Stanley J.

    1985-01-01

    The method of Clarke and Glew is broadly applicable to studies of the temperature dependence of equilibrium constant measurements. The method is described and examples of its use in comparing calorimetric results and temperature dependent gas solubility studies are provided. (JN)

  18. Experimental Study of Temperature-Dependence Laws of Non-Voigt Absorption Line Shape Parameters

    NASA Astrophysics Data System (ADS)

    Wilzewski, Jonas; Birk, Manfred; Loos, Joep; Wagner, Georg

    2017-06-01

    To improve the understanding of temperature-dependence laws of spectral line shape parameters, spectra of the ν_3 rovibrational band of CO_2 perturbed by 10, 30, 100, 300 and 1000 mbar of N_2 were measured at nine temperatures between 190 K and 330 K using a 22 cm long single-pass absorption cell in a Bruker IFS125 HR Fourier Transform spectrometer. The spectra were fitted employing a quadratic speed-dependent hard collision model in the Hartmann-Tran implementation extended to account for line mixing in the Rosenkranz approximation by means of a multispectrum fitting approach developed at DLR This enables high accuracy parameter retrievals to reproduce the spectra down to noise level and we will present the behavior of line widths, shifts, speed-dependence-, collisional narrowing- and line mixing-parameters over this 140 K temperature range. Tran et al. JQSRT 129, 199-203 (2013); JQSRT 134, 104 (2014). Loos et al., 2014; http://doi.org/10.5281/zenodo.11156. Ngo et al. JQSRT 29, 89-100 (2013); JQSRT 134, 105 (2014).

  19. Semi-empirical calculations of line-shape parameters and their temperature dependences for the ν6 band of CH3D perturbed by N2

    NASA Astrophysics Data System (ADS)

    Dudaryonok, A. S.; Lavrentieva, N. N.; Buldyreva, J.

    2018-06-01

    (J, K)-line broadening and shift coefficients with their temperature-dependence characteristics are computed for the perpendicular (ΔK = ±1) ν6 band of the 12CH3D-N2 system. The computations are based on a semi-empirical approach which consists in the use of analytical Anderson-type expressions multiplied by a few-parameter correction factor to account for various deviations from Anderson's theory approximations. A mathematically convenient form of the correction factor is chosen on the basis of experimental rotational dependencies of line widths, and its parameters are fitted on some experimental line widths at 296 K. To get the unknown CH3D polarizability in the excited vibrational state v6 for line-shift calculations, a parametric vibration-state-dependent expression is suggested, with two parameters adjusted on some room-temperature experimental values of line shifts. Having been validated by comparison with available in the literature experimental values for various sub-branches of the band, this approach is used to generate massive data of line-shape parameters for extended ranges of rotational quantum numbers (J up to 70 and K up to 20) typically requested for spectroscopic databases. To obtain the temperature-dependence characteristics of line widths and line shifts, computations are done for various temperatures in the range 200-400 K recommended for HITRAN and least-squares fit procedures are applied. For the case of line widths strong sub-branch dependence with increasing K is observed in the R- and P-branches; for the line shifts such dependence is stated for the Q-branch.

  20. Assessment of the Thermodynamic Properties of DL-p-Mentha-1,8-diene, 4-Isopropyl-1-Methylcyclohexene (DL-limonene) by Inverse Gas Chromatography (IGC).

    PubMed

    Farshchi, Negin; Abbasian, Ali; Larijani, Kambiz

    2018-05-10

    Limonene is a colorless liquid hydrocarbon and had been investigated as a plasticizer for many plastics. Prediction of solubility between different materials is an advantage in many ways, one of the most convenient ways to know the compatibility of materials is to determine the degree of solubility of them in each other. The concept of "solubility parameter" can help practitioners in this way.In this study, inverse gas chromatography (IGC) method at infinite dilution was used for determination of the thermodynamic properties of DL-p-mentha-1,8-diene, 4-Isopropyl-1-methylcyclohexene (DL-limonene). The interaction between DL-limonene and 13 solvents were examined in the temperature range of 63-123°C through the assessment of the thermodynamic sorption parameters, the parameters of mixing at infinite dilution, the weight fraction activity coefficient and the Flory-Huggins interaction parameters. Additionally, the solubility parameter for DL-limonene and the temperature dependence of these parameters was investigated as well.Results show that there is a temperature dependence in solubility parameter, which increases by decreasing temperature. However, there were no specific dependence between interaction parameters and temperature, but chemical structure appeared to have a significant effect on them as well as on the type and strength of intermolecular interactions between DL-limonene and investigated solvents. The solubility parameter δ2 of DL-limonene determined to be 19.20 (J/cm3)0.5 at 25°C.

  1. Temperature dependence of positron annihilation parameters in Tl-Ba-Ca-Cu-O superconductors

    NASA Astrophysics Data System (ADS)

    Sundar, C. S.; Bharathi, A.; Ching, W. Y.; Jean, Y. C.; Hor, P. H.; Meng, R. L.; Huang, Z. J.; Chu, C. W.

    1990-08-01

    The results of positron lifetime and Doppler broadened line-shape parameter measurements as a function of temperature, across Tc, in the Tl-Ba-Ca-Cu-O superconductors are presented. The bulk lifetime in the normal state is found to decrease with the increase in the number of CuO2 layers. Different temperature dependencies of the annihilation parameters are observed in the various Tl systems containing different numbers of CuO2 layers. In the Tl2Ba2Ca2Cu3O10 system, an increase in lifetime is observed below Tc, whereas in Tl2Ba2CaCu2O8, a decrease in lifetime is seen below Tc. In the Tl2Ba2CuO6 system, the lifetime is observed to be temperature independent. The different temperature variations of positron annihilation parameters are discussed in the light of the positron density distribution, obtained with use of the results of the self-consistent orthogonalized linear combination of atomic orbitals band-structure calculations. It is argued that the different temperature dependencies of the annihilation parameters is related to the positron density distribution within the unit cell and arise due to local charge transfer in the vicinity of the CuO2 layer in the superconducting state.

  2. Investigation of second grade fluid through temperature dependent thermal conductivity and non-Fourier heat flux

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Ahmad, Salman; Khan, M. Ijaz; Alsaedi, A.; Waqas, M.

    2018-06-01

    Here we investigated stagnation point flow of second grade fluid over a stretchable cylinder. Heat transfer is characterized by non-Fourier law of heat flux and thermal stratification. Temperature dependent thermal conductivity and activation energy are also accounted. Transformations procedure is applying to transform the governing PDE's into ODE's. Obtained system of ODE's are solved analytically by HAM. Influence of flow variables on velocity, temperature, concentration, skin friction and Sherwood number are analyzed. Obtained outcome shows that velocity enhanced through curvature parameter, viscoelastic parameter and velocities ratio variable. Temperature decays for larger Prandtl number, thermal stratification, thermal relaxation and curvature parameter. Sherwood number and concentration field show opposite behavior for higher estimation of activation energy, reaction rate, curvature parameter and Schmidt number.

  3. Tunability of temperature dependent THz photonic band gaps in 1-D photonic crystals composed of graded index materials and semiconductor InSb

    NASA Astrophysics Data System (ADS)

    Singh, Bipin K.; Pandey, Praveen C.; Rastogi, Vipul

    2018-05-01

    Tunable temperature dependent terahertz photonic band gaps (PBGs) in one-dimensional (1-D) photonic crystal composed of alternating layers of graded index and semiconductor materials are demonstrated. Results show the influence of temperature, geometrical parameters, grading profile and material damping factor on the PBGs. Number of PBG increases with increasing the layer thickness and their bandwidth can be tuned with external temperature and grading parameters. Lower order band gap is more sensitive to the temperature which shows increasing trend with temperature, and higher order PBGs can also be tuned by controlling the external temperature. Band edges of PBGs are shifted toward higher frequency side with increasing the temperature. Results show that the operational frequencies of PBGs are unaffected when loss involved. This work enables to design tunable Temperature dependent terahertz photonic devices such as reflectors, sensors and filters etc.

  4. Thermodynamics of anisotropic antiferromagnetic Heisenberg chain in the presence of longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Rezania, H.

    2018-07-01

    We have addressed the specific heat and magnetization of one dimensional spin-1/2 anisotropic antiferromagnetic Heisenberg chain at finite magnetic field. We have investigated the thermodynamic properties by means of excitation spectrum in terms of a hard core Bosonic representation. The effect of in-plane anisotropy thermodynamic properties has also been studied via the Bosonic model by Green's function approach. This anisotropy is considered for exchange constants that couple spin components perpendicular to magnetic field direction. We have found the temperature dependence of the specific heat and longitudinal magnetization in the gapped field induced spin-polarized phase for various magnetic fields and anisotropy parameters. Furthermore we have studied the magnetic field dependence of specific heat and magnetization for various anisotropy parameters. Our results show temperature dependence of specific heat includes a peak so that its temperature position goes to higher temperature with increase of magnetic field. We have found the magnetic field dependence of specific heat shows a monotonic decreasing behavior for various magnetic fields due to increase of energy gap in the excitation spectrum. Also we have studied the temperature dependence of magnetization for different magnetic fields and various anisotropy parameters.

  5. Temperature-dependent internal photoemission probe for band parameters

    NASA Astrophysics Data System (ADS)

    Lao, Yan-Feng; Perera, A. G. Unil

    2012-11-01

    The temperature-dependent characteristic of band offsets at the heterojunction interface was studied by an internal photoemission (IPE) method. In contrast to the traditional Fowler method independent of the temperature (T), this method takes into account carrier thermalization and carrier/dopant-induced band-renormalization and band-tailing effects, and thus measures the band-offset parameter at different temperatures. Despite intensive studies in the past few decades, the T dependence of this key band parameter is still not well understood. Re-examining a p-type doped GaAs emitter/undoped AlxGa1-xAs barrier heterojunction system disclosed its previously ignored T dependency in the valence-band offset, with a variation up to ˜-10-4 eV/K in order to accommodate the difference in the T-dependent band gaps between GaAs and AlGaAs. Through determining the Fermi energy level (Ef), IPE is able to distinguish the impurity (IB) and valence bands (VB) of extrinsic semiconductors. One important example is to determine Ef of dilute magnetic semiconductors such as GaMnAs, and to understand whether it is in the IB or VB.

  6. Temporal variability and climatology of hydrodynamic, water property and water quality parameters in the West Johor Strait of Singapore.

    PubMed

    Behera, Manasa Ranjan; Chun, Cui; Palani, Sundarambal; Tkalich, Pavel

    2013-12-15

    The study presents a baseline variability and climatology study of measured hydrodynamic, water properties and some water quality parameters of West Johor Strait, Singapore at hourly-to-seasonal scales to uncover their dependency and correlation to one or more drivers. The considered parameters include, but not limited by sea surface elevation, current magnitude and direction, solar radiation and air temperature, water temperature, salinity, chlorophyll-a and turbidity. FFT (Fast Fourier Transform) analysis is carried out for the parameters to delineate relative effect of tidal and weather drivers. The group and individual correlations between the parameters are obtained by principal component analysis (PCA) and cross-correlation (CC) technique, respectively. The CC technique also identifies the dependency and time lag between driving natural forces and dependent water property and water quality parameters. The temporal variability and climatology of the driving forces and the dependent parameters are established at the hourly, daily, fortnightly and seasonal scales. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. A potential nuclear magnetic resonance imaging approach for noncontact temperature measurement

    NASA Technical Reports Server (NTRS)

    Manatt, Stanley L.

    1989-01-01

    It is proposed that in a nuclear magnetic resonance (NMR) imaging experiment that it should be possible to measure temperature through an extended volume. The basis for such a measurement would depend upon sensing a temperature dependent on NMR parameter in an inert, volatile molecule (or fluid) filling the volume of interest. Exploratory work suggest that one suitable candidate for such a purpose might be CH3Cl. Possible parameters, other inert gases and feasible measurement schemes that might provide such temperature measurement are discussed.

  8. TEMPERATURE-DEPENDENT VISCOELASTIC PROPERTIES OF THE HUMAN SUPRASPINATUS TENDON

    PubMed Central

    Huang, Chun-Yuh; Wang, Vincent M.; Flatow, Evan L.; Mow, Van C.

    2009-01-01

    Temperature effects on the viscoelastic properties of the human supraspinatus tendon were investigated using static stress-relaxation experiments and Quasi-Linear Viscoelastic (QLV) theory. Twelve supraspinatus tendons were randomly assigned to one of two test groups for tensile testing using the following sequence of temperatures: (1) 37°C, 27°C, and 17°C (Group I, n=6), or (2) 42°C, 32°C, and 22°C (Group II, n=6). QLV parameter C was found to increase at elevated temperatures, suggesting greater viscous mechanical behavior at higher temperatures. Elastic parameters A and B showed no significant difference among the six temperatures studied, implying that the viscoelastic stress response of the supraspinatus tendon is not sensitive to temperature over shorter testing durations. Using regression analysis, an exponential relationship between parameter C and test temperature was implemented into QLV theory to model temperature-dependent viscoelastic behavior. This modified approach facilitates the theoretical determination of the viscoelastic behavior of tendons at arbitrary temperatures. PMID:19159888

  9. Buckling of thermally fluctuating spherical shells: Parameter renormalization and thermally activated barrier crossing

    NASA Astrophysics Data System (ADS)

    Baumgarten, Lorenz; Kierfeld, Jan

    2018-05-01

    We study the influence of thermal fluctuations on the buckling behavior of thin elastic capsules with spherical rest shape. Above a critical uniform pressure, an elastic capsule becomes mechanically unstable and spontaneously buckles into a shape with an axisymmetric dimple. Thermal fluctuations affect the buckling instability by two mechanisms. On the one hand, thermal fluctuations can renormalize the capsule's elastic properties and its pressure because of anharmonic couplings between normal displacement modes of different wavelengths. This effectively lowers its critical buckling pressure [Košmrlj and Nelson, Phys. Rev. X 7, 011002 (2017), 10.1103/PhysRevX.7.011002]. On the other hand, buckled shapes are energetically favorable already at pressures below the classical buckling pressure. At these pressures, however, buckling requires to overcome an energy barrier, which only vanishes at the critical buckling pressure. In the presence of thermal fluctuations, the capsule can spontaneously overcome an energy barrier of the order of the thermal energy by thermal activation already at pressures below the critical buckling pressure. We revisit parameter renormalization by thermal fluctuations and formulate a buckling criterion based on scale-dependent renormalized parameters to obtain a temperature-dependent critical buckling pressure. Then we quantify the pressure-dependent energy barrier for buckling below the critical buckling pressure using numerical energy minimization and analytical arguments. This allows us to obtain the temperature-dependent critical pressure for buckling by thermal activation over this energy barrier. Remarkably, both parameter renormalization and thermal activation lead to the same parameter dependence of the critical buckling pressure on temperature, capsule radius and thickness, and Young's modulus. Finally, we study the combined effect of parameter renormalization and thermal activation by using renormalized parameters for the energy barrier in thermal activation to obtain our final result for the temperature-dependent critical pressure, which is significantly below the results if only parameter renormalization or only thermal activation is considered.

  10. Effects of temperature and electric field on order parameters in ferroelectric hexagonal manganites

    NASA Astrophysics Data System (ADS)

    Zhang, C. X.; Yang, K. L.; Jia, P.; Lin, H. L.; Li, C. F.; Lin, L.; Yan, Z. B.; Liu, J.-M.

    2018-03-01

    In Landau-Devonshire phase transition theory, the order parameter represents a unique property for a disorder-order transition at the critical temperature. Nevertheless, for a phase transition with more than one order parameter, such behaviors can be quite different and system-dependent in many cases. In this work, we investigate the temperature (T) and electric field (E) dependence of the two order parameters in improper ferroelectric hexagonal manganites, addressing the phase transition from the high-symmetry P63/mmc structure to the polar P63cm structure. It is revealed that the trimerization as the primary order parameter with two components: the trimerization amplitude Q and phase Φ, and the spontaneous polarization P emerging as the secondary order parameter exhibit quite different stability behaviors against various T and E. The critical exponents for the two parameters Q and P are 1/2 and 3/2, respectively. As temperature increases, the window for the electric field E enduring the trimerization state will shrink. An electric field will break the Z2 part of the Z2×Z3 symmetry. The present work may shed light on the complexity of the vortex-antivortex domain structure evolution near the phase transition temperature.

  11. Modeling of thermal lensing in a [1 1 1]-cut Nd:YAG rod with temperature-dependent parameters and different pumping profiles

    NASA Astrophysics Data System (ADS)

    Bričkus, D.; Dement'ev, A. S.

    2017-05-01

    Temperature dependences of the thermo-optical coefficients of YAG crystals are often neglected when thermal lensing in laser rods is investigated, though their influence is very significant. It is especially significant for transversally non-uniform thermal loading. An analytical solution of the heat transfer equation with only the radial heat flow is found in the integral form, which is very convenient for numerical simulations. Uniform, top-hat, parabolic, Gaussian, super-Gaussian and annular heat source distributions are used in the calculations. The generalization of the thermally-induced refractive index change for long enough [1 1 1]-cut YAG rods to the case of temperature-dependent YAG parameters is developed and applied to the calculation of the corresponding optical path differences. Different definitions of the optical power of the aberrated thermal lens (TL) are discussed in detail. It is shown that for each of the heat source distributions, the temperature dependences of the YAG parameters significantly increase (1.5-1.8 times) the paraxial optical power of the induced TL.

  12. Role of temperature-dependent O-p-Fe-d hybridization parameter in the metal-insulator transition of Fe3O4: a theoretical study

    NASA Astrophysics Data System (ADS)

    Fauzi, A. D.; Majidi, M. A.; Rusydi, A.

    2017-04-01

    We propose a simple tight-binding based model for Fe3O4 that captures the preference of ferrimagnetic over ferromagnetic spin configuration of the system. Our model is consistent with previous theoretical and experimental studies suggesting that the system is half metallic, in which spin polarized electrons hop only among the Fe B sites. To address the metal-insulator transition (MIT) we propose that the strong correlation among electrons, which may also be influenced by the electron-phonon interactions, manifest as the temperature-dependence of the O-p-Fe-d hybridization parameter, particularly Fe-d belonging to one of the Fe B sites (denoted as {t}{{FeB}-{{O}}}(2)). By proposing that this parameter increases as the temperature decreases, our density-of-states calculation successfully captures a gap opening at the Fermi level, transforming the system from half metal to insulator. Within this model along with the corresponding choice of parameters and a certain profile of the temperature dependence of {t}{{FeB}-{{O}}}(2), we calculate the resistivity of the system as a function of temperature. Our calculation result reveals the drastic uprising trend of the resistivity profile as the temperature decreases, with the MIT transition temperature located around 100 K, which is in agreement with experimental data.

  13. Synthesis and Characterization of Liquid Crystalline Epoxy Resins

    DTIC Science & Technology

    2014-01-01

    Temperature dependence of the four parameters in the Burgers model. ......... 81 Figure 4.7 Dependence of creep compliance on creep time at different...Kinetic parameters for LCERs. ......................................................................... 65 Table 3.4 Kinetic parameters for non-LCERs...curing in a high strength magnetic field. The orientation was quantified by an orientation parameter determined with two-dimensional X-ray diffraction

  14. Temperature-dependent thermal properties of ex vivo liver undergoing thermal ablation.

    PubMed

    Guntur, Sitaramanjaneya Reddy; Lee, Kang Il; Paeng, Dong-Guk; Coleman, Andrew John; Choi, Min Joo

    2013-10-01

    Thermotherapy uses a heat source that raises temperatures in the target tissue, and the temperature rise depends on the thermal properties of the tissue. Little is known about the temperature-dependent thermal properties of tissue, which prevents us from accurately predicting the temperature distribution of the target tissue undergoing thermotherapy. The present study reports the key thermal parameters (specific heat capacity, thermal conductivity and heat diffusivity) measured in ex vivo porcine liver while being heated from 20 ° C to 90 ° C and then naturally cooled down to 20 ° C. The study indicates that as the tissue was heated, all the thermal parameters resulted in plots with asymmetric quasi-parabolic curves with temperature, being convex downward with their minima at the turning temperature of 35-40 ° C. The largest change was observed for thermal conductivity, which decreased by 9.6% from its initial value (at 20 ° C) at the turning temperature (35 ° C) and rose by 45% at 90 ° C from its minimum (at 35 ° C). The minima were 3.567 mJ/(m(3) ∙ K) for specific heat capacity, 0.520 W/(m.K) for thermal conductivity and 0.141 mm(2)/s for thermal diffusivity. The minimum at the turning temperature was unique, and it is suggested that it be taken as a characteristic value of the thermal parameter of the tissue. On the other hand, the thermal parameters were insensitive to temperature and remained almost unchanged when the tissue cooled down, indicating that their variations with temperature were irreversible. The rate of the irreversible rise at 35 ° C was 18% in specific heat capacity, 40% in thermal conductivity and 38.3% in thermal diffusivity. The study indicates that the key thermal parameters of ex vivo porcine liver vary largely with temperature when heated, as described by asymmetric quasi-parabolic curves of the thermal parameters with temperature, and therefore, substantial influence on the temperature distribution of the tissue undergoing thermotherapy is expected. 2013. Published by Elsevier Inc

  15. Plasmon and exciton superconductivity mechanisms in layered structures

    NASA Technical Reports Server (NTRS)

    Gabovich, A. M.; Pashitskiy, E. A.; Uvarova, S. K.

    1977-01-01

    Plasmon and exciton superconductivity mechanisms are discussed. Superconductivity in a three layer metal semiconductor metal and insulator semimetal insulator sandwich structure was described in terms of the temperature dependent Green function of the longitudinal (Coulomb) field. The dependences of the superconducting transition temperature on structure parameters were obtained. In a semiconducting film, as a result of interactions of degenerate free carriers with excitons, superconductivity exists only in a certain range of parameter values, and the corresponding critical temperature is much lower than in the plasmon mechanism of superconductivity.

  16. Influence of Layer Thickness, Raster Angle, Deformation Temperature and Recovery Temperature on the Shape-Memory Effect of 3D-Printed Polylactic Acid Samples

    PubMed Central

    Wu, Wenzheng; Ye, Wenli; Wu, Zichao; Geng, Peng; Wang, Yulei; Zhao, Ji

    2017-01-01

    The success of the 3D-printing process depends upon the proper selection of process parameters. However, the majority of current related studies focus on the influence of process parameters on the mechanical properties of the parts. The influence of process parameters on the shape-memory effect has been little studied. This study used the orthogonal experimental design method to evaluate the influence of the layer thickness H, raster angle θ, deformation temperature Td and recovery temperature Tr on the shape-recovery ratio Rr and maximum shape-recovery rate Vm of 3D-printed polylactic acid (PLA). The order and contribution of every experimental factor on the target index were determined by range analysis and ANOVA, respectively. The experimental results indicated that the recovery temperature exerted the greatest effect with a variance ratio of 416.10, whereas the layer thickness exerted the smallest effect on the shape-recovery ratio with a variance ratio of 4.902. The recovery temperature exerted the most significant effect on the maximum shape-recovery rate with the highest variance ratio of 1049.50, whereas the raster angle exerted the minimum effect with a variance ratio of 27.163. The results showed that the shape-memory effect of 3D-printed PLA parts depended strongly on recovery temperature, and depended more weakly on the deformation temperature and 3D-printing parameters. PMID:28825617

  17. Dependence of average inter-particle distance upon the temperature of neutrals in dusty plasma crystals

    NASA Astrophysics Data System (ADS)

    Nikolaev, V. S.; Timofeev, A. V.

    2018-01-01

    It is often suggested that inter-particle distance in stable dusty plasma structures decreases with cooling as a square root of neutral gas temperature. Deviations from this dependence (up to the increase at cryogenic temperatures) found in the experimental results for the pressures range 0.1-8.0 mbar and for the currents range 0.1-1.0 mA are given. Inter-particle distance dependences on the charge of particles, parameter of the trap and the screening length in surrounding plasma are obtained for different conditions from molecular dynamics simulations. They are well approximated by power functions in the mentioned range of parameters. It is found that under certain assumptions thermophoretical force is responsible for inter-particle distance increase at cryogenic temperatures.

  18. Luminescent high temperature sensor based on the CdSe/ZnS quantum dot thin film

    NASA Astrophysics Data System (ADS)

    Wang, He-lin; Yang, Ai-jun; Sui, Cheng-hua

    2013-11-01

    A high temperature sensor based on the multi-parameter temperature dependent characteristic of photoluminescence (PL) of quantum dot (QD) thin film is demonstrated by depositing the CdSe/ZnS core/shell QDs on the SiO2 glass substrates. The variations of the intensity, the peak wavelength and the full width at half maximum (FWHM) of PL spectra with temperature are studied experimentally and theoretically. The results indicate that the peak wavelength of the PL spectra changes linearly with temperature, while the PL intensity and FWHM vary exponentially for the temperature range from 30 °C to 180 °C. Using the obtained temperature dependent optical parameters, the resolution of the designed sensor can reach 0.1 nm/°C.

  19. The growth temperature and measurement temperature dependences of soft magnetic properties and effective damping parameter of (FeCo)-Al alloy thin films

    NASA Astrophysics Data System (ADS)

    Ariake, Yusuke; Wu, Shuang; Kanada, Isao; Mewes, Tim; Tanaka, Yoshitomo; Mankey, Gary; Mewes, Claudia; Suzuki, Takao

    2018-05-01

    The soft magnetic properties and effective damping parameters of Fe73Co25Al2 alloy thin films are discussed. The effective damping parameter αeff measured by ferromagnetic resonance for the 10 nm-thick sample is nearly constant (≈0.004 ± 0.0008) for a growth temperature Ts from ambient to 200 °C, and then tends to decrease for higher temperatures and αeff is 0.002 ± 0.0004 at Ts = 300 °C. For the 80 nm-thick sample, the αeff seems to increase with Ts from αeff = 0.001 ± 0.0002 at Ts = ambient to αeff = 0.002 ± 0.0004. The αeff is found nearly constant (αeff = 0.004 ± 0.0008) over a temperature range from 10 to 300 K for the 10 nm films with the different Ts (ambient, 100 and 200 °C). Together with an increasing non-linearity of the frequency dependence of the linewidth at low Ts, extrinsic contributions such as two-magnon scattering dominate the observed temperature dependence of effective damping and linewidth.

  20. Long-term variations and trends in the polar E-region

    NASA Astrophysics Data System (ADS)

    Bjoland, L. M.; Ogawa, Y.; Hall, C.; Rietveld, M.; Løvhaug, U. P.; La Hoz, C.; Miyaoka, H.

    2017-10-01

    As the EISCAT UHF radar system in Northern Scandinavia started its operations in the early 1980s, the collected data cover about three solar cycles. These long time-series provide us the opportunity to study long-term variations and trends of ionospheric parameters in the high latitude region. In the present study we have used the EISCAT Tromsø UHF data to investigate variations of the Hall conductivity and ion temperatures in the E-region around noon. Both the ion temperature and the peak altitude of the Hall conductivity are confirmed to depend strongly on solar zenith angle. However, the dependence on solar activity seems to be weak. In order to search for trends in these parameters, the ion temperature and peak altitude of the Hall conductivity data were adjusted for their seasonal and solar cycle dependence. A very weak descent (∼0.2 km/ decade) was seen in the peak altitude of the Hall conductivity. The ion temperature at 110 km shows a cooling trend (∼10 K/ decade). However, other parameters than solar zenith angle and solar activity seem to affect the ion temperature at this altitude, and a better understanding of these parameters is necessary to derive a conclusive trend. In this paper, we discuss what may cause the characteristics of the variations in the electric conductivities and ion temperatures in the high latitude region.

  1. Origins of the temperature dependence of hammerhead ribozyme catalysis.

    PubMed Central

    Peracchi, A

    1999-01-01

    The difficulties in interpreting the temperature dependence of protein enzyme reactions are well recognized. Here, the hammerhead ribozyme cleavage was investigated under single-turnover conditions between 0 and 60 degrees C as a model for RNA-catalyzed reactions. Under the adopted conditions, the chemical step appears to be rate-limiting. However, the observed rate of cleavage is affected by pre-catalytic equilibria involving deprotonation of an essential group and binding of at least one low-affinity Mg2+ion. Thus, the apparent entropy and enthalpy of activation include contributions from the temperature dependence of these equilibria, precluding a simple physical interpretation of the observed activation parameters. Similar pre-catalytic equilibria likely contribute to the observed activation parameters for ribozyme reactions in general. The Arrhenius plot for the hammerhead reaction is substantially curved over the temperature range considered, which suggests the occurrence of a conformational change of the ribozyme ground state around physiological temperatures. PMID:10390528

  2. Temperature and velocity conditions of air flow in vertical channel of hinged ventilated facade of a multistory building.

    NASA Astrophysics Data System (ADS)

    Statsenko, Elena; Ostrovaia, Anastasia; Pigurin, Andrey

    2018-03-01

    This article considers the influence of the building's tallness and the presence of mounting grooved lines on the parameters of heat transfer in the gap of a hinged ventilated facade. A numerical description of the processes occurring in a heat-gravitational flow is given. The average velocity and temperature of the heat-gravitational flow of a structure with open and sealed rusts are determined with unchanged geometric parameters of the gap. The dependence of the parameters influencing the thermomechanical characteristics of the enclosing structure is derived depending on the internal parameters of the system. Physical modeling of real multistory structures is performed by projecting actual parameters onto a reduced laboratory model (scaling).

  3. Temperature and depth dependence of positron annihilation parameters in YBa2Cu3O7-x and La1.85Sr0.15CuO4

    NASA Astrophysics Data System (ADS)

    Lynn, K. G.; Usmar, S. G.; Nielsen, B.; van der Kolk, G. J.; Kanazawa, I.; Sferlazzo, P.; Moodenbaugh, A. R.

    1988-02-01

    The temperature dependence of the positron annihilation parameters for YBa2Cu3O7-x x=0.7, 0.4 and 0.0 and La1.85Sr0.15CuO4 were measured. The depth dependence of the YBa2Cu3O7 was studied using a variable-energy positron beam showing a strong depth dependence in the Doppler line-shape extending up to an average depth of ˜5.0 μm. It was found that a transition in the Doppler line-shape parameter, ``S'', was associated with the superconducting transition temperature (Tc) in YBa2Cu3O7-x x=0.4 and 0.0 while no transition was observed in the nonsuperconducting YBa2Cu3O6.3. Positron lifetime parameters in YBa2Cu3O7 were found to be consistent with positrons localized at open volume regions (probably unoccupied crystallographic sites) in this material with a lifetime of 210 psec at 300 K. These results indicate that the electron density at these unoccupied sites increases, using a free electron model, approximately 9% between 100 and 12 K.

  4. Wave propagation in embedded inhomogeneous nanoscale plates incorporating thermal effects

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Barati, Mohammad Reza; Dabbagh, Ali

    2018-04-01

    In this article, an analytical approach is developed to study the effects of thermal loading on the wave propagation characteristics of an embedded functionally graded (FG) nanoplate based on refined four-variable plate theory. The heat conduction equation is solved to derive the nonlinear temperature distribution across the thickness. Temperature-dependent material properties of nanoplate are graded using Mori-Tanaka model. The nonlocal elasticity theory of Eringen is introduced to consider small-scale effects. The governing equations are derived by the means of Hamilton's principle. Obtained frequencies are validated with those of previously published works. Effects of different parameters such as temperature distribution, foundation parameters, nonlocal parameter, and gradient index on the wave propagation response of size-dependent FG nanoplates have been investigated.

  5. Temperature and field dependence of critical currents in V/sub 3/Ga wire produced by the MJR technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francavilla, T.L.; Gubser, D.U.; Pande, C.S.

    1985-03-01

    The temperature dependence of V/sub 3/Ga multifilamentary wire produced by the modified jelly roll technique is reported as a function of applied magnetic field in the range 10K - 14K and 0-13T. Parameters which relate J /SUB c/ to H at 4.2K were found to apply at these temperatures and fields. The form of the temperature dependence of the critical current density is compared with theory.

  6. Determining Experimental Parameters for Thermal-Mechanical Forming Simulation considering Martensite Formation in Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Schmid, Philipp; Liewald, Mathias

    2011-08-01

    The forming behavior of metastable austenitic stainless steel is mainly dominated by the temperature-dependent TRIP effect (transformation induced plasticity). Of course, the high dependency of material properties on the temperature level during forming means the temperature must be considered during the FE analysis. The strain-induced formation of α'-martensite from austenite can be represented by using finite element programs utilizing suitable models such as the Haensel-model. This paper discusses the determination of parameters for a completely thermal-mechanical forming simulation in LS-DYNA based on the material model of Haensel. The measurement of the martensite evolution in non-isothermal tensile tests was performed with metastable austenitic stainless steel EN 1.4301 at different rolling directions between 0° and 90 °. This allows an estimation of the influence of the rolling direction to the martensite formation. Of specific importance is the accuracy of the martensite content measured by magnetic induction methods (Feritscope). The observation of different factors, such as stress dependence of the magnetisation, blank thickness and numerous calibration curves discloses a substantial important influence on the parameter determination for the material models. The parameters obtained for use of Haensel model and temperature-dependent friction coefficients are used to simulate forming process of a real component and to validate its implementation in the commercial code LS-DYNA.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagayama, K., E-mail: nagayama@aero.kyushu-u.ac.jp

    The dimensionless material parameter R introduced by Wu and Jing into the Rice-Walsh equation of state (EOS) has been deduced from the LASL shock Hugoniot data for porous Al and Cu. It was found that the parameter R/p decays smoothly with shock pressure p and displays small experimental scatter in the high pressure region. This finding led to the conclusion that the parameter has only a weak temperature dependence and is well approximated by a function of pressure alone, and the Grüneisen parameter should be temperature dependent under compression. The thermodynamic formulation of the Rice-Walsh EOS for Al and Cumore » was realized using the empirically determined function R(p) for each material and their known shock Hugoniot. It was then possible to reproduce porous shock Hugoniot for these metals. For most degrees of porosity, agreement between the porous data and the calculated Hugoniots using the empirical function described was very good. However, slight discrepancies were seen for Hugoniots with very high porosity. Two new thermal variables were introduced after further analysis, which enabled the calculation of the cold compression curve for these metals. The Grüneisen parameters along full-density and porous Hugoniot curve were calculated using a thermodynamic identity connecting R and the Grüneisen parameter. It was shown that the Grüneisen parameter is strongly temperature dependent. The present analysis suggested that the Rice-Walsh type EOS is a preferable choice for the analysis with its simple form, pressure-dependent empirical Wu-Jing parameter, and its compatibility with porous shock data.« less

  8. Defects level evaluation of LiTiZn ferrite ceramics using temperature dependence of initial permeability

    NASA Astrophysics Data System (ADS)

    Malyshev, A. V.; Petrova, A. B.; Sokolovskiy, A. N.; Surzhikov, A. P.

    2018-06-01

    The method for evaluating the integral defects level and chemical homogeneity of ferrite ceramics based on temperature dependence analysis of initial permeability is suggested. A phenomenological expression for the description of such dependence was suggested and an interpretation of its main parameters was given. It was shown, that the main criterion of the integral defects level of ferrite ceramics is relation of two parameters correlating with elastic stress value in a material. An indicator of structural perfection can be a maximum value of initial permeability close to Curie point as well. The temperature dependences of initial permeability have analyzed for samples sintered in laboratory conditions and for the ferrite industrial product. The proposed method allows controlling integral defects level of the soft ferrite products and has high sensitivity compare to typical X-ray methods.

  9. TRPM8-Dependent Dynamic Response in a Mathematical Model of Cold Thermoreceptor

    PubMed Central

    Olivares, Erick; Salgado, Simón; Maidana, Jean Paul; Herrera, Gaspar; Campos, Matías; Madrid, Rodolfo; Orio, Patricio

    2015-01-01

    Cold-sensitive nerve terminals (CSNTs) encode steady temperatures with regular, rhythmic temperature-dependent firing patterns that range from irregular tonic firing to regular bursting (static response). During abrupt temperature changes, CSNTs show a dynamic response, transiently increasing their firing frequency as temperature decreases and silencing when the temperature increases (dynamic response). To date, mathematical models that simulate the static response are based on two depolarizing/repolarizing pairs of membrane ionic conductance (slow and fast kinetics). However, these models fail to reproduce the dynamic response of CSNTs to rapid changes in temperature and notoriously they lack a specific cold-activated conductance such as the TRPM8 channel. We developed a model that includes TRPM8 as a temperature-dependent conductance with a calcium-dependent desensitization. We show by computer simulations that it appropriately reproduces the dynamic response of CSNTs from mouse cornea, while preserving their static response behavior. In this model, the TRPM8 conductance is essential to display a dynamic response. In agreement with experimental results, TRPM8 is also needed for the ongoing activity in the absence of stimulus (i.e. neutral skin temperature). Free parameters of the model were adjusted by an evolutionary optimization algorithm, allowing us to find different solutions. We present a family of possible parameters that reproduce the behavior of CSNTs under different temperature protocols. The detection of temperature gradients is associated to a homeostatic mechanism supported by the calcium-dependent desensitization. PMID:26426259

  10. SiC JFET Transistor Circuit Model for Extreme Temperature Range

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    2008-01-01

    A technique for simulating extreme-temperature operation of integrated circuits that incorporate silicon carbide (SiC) junction field-effect transistors (JFETs) has been developed. The technique involves modification of NGSPICE, which is an open-source version of the popular Simulation Program with Integrated Circuit Emphasis (SPICE) general-purpose analog-integrated-circuit-simulating software. NGSPICE in its unmodified form is used for simulating and designing circuits made from silicon-based transistors that operate at or near room temperature. Two rapid modifications of NGSPICE source code enable SiC JFETs to be simulated to 500 C using the well-known Level 1 model for silicon metal oxide semiconductor field-effect transistors (MOSFETs). First, the default value of the MOSFET surface potential must be changed. In the unmodified source code, this parameter has a value of 0.6, which corresponds to slightly more than half the bandgap of silicon. In NGSPICE modified to simulate SiC JFETs, this parameter is changed to a value of 1.6, corresponding to slightly more than half the bandgap of SiC. The second modification consists of changing the temperature dependence of MOSFET transconductance and saturation parameters. The unmodified NGSPICE source code implements a T(sup -1.5) temperature dependence for these parameters. In order to mimic the temperature behavior of experimental SiC JFETs, a T(sup -1.3) temperature dependence must be implemented in the NGSPICE source code. Following these two simple modifications, the Level 1 MOSFET model of the NGSPICE circuit simulation program reasonably approximates the measured high-temperature behavior of experimental SiC JFETs properly operated with zero or reverse bias applied to the gate terminal. Modification of additional silicon parameters in the NGSPICE source code was not necessary to model experimental SiC JFET current-voltage performance across the entire temperature range from 25 to 500 C.

  11. From boiling point to glass transition temperature: transport coefficients in molecular liquids follow three-parameter scaling.

    PubMed

    Schmidtke, B; Petzold, N; Kahlau, R; Hofmann, M; Rössler, E A

    2012-10-01

    The phenomenon of the glass transition is an unresolved problem in condensed matter physics. Its prominent feature, the super-Arrhenius temperature dependence of the transport coefficients, remains a challenge to be described over the full temperature range. For a series of molecular glass formers, we combined τ(T) collected from dielectric spectroscopy and dynamic light scattering covering a range 10(-12) s < τ(T) < 10(2) s. Describing the dynamics in terms of an activation energy E(T), we distinguish a high-temperature regime characterized by an Arrhenius law with a constant activation energy E(∞) and a low-temperature regime for which E(coop)(T) ≡ E(T)-E(∞) increases exponentially while cooling. A scaling is introduced, specifically E(coop)(T)/E(∞) [proportionality] exp[-λ(T/T(A)-1)], where λ is a fragility parameter and T(A) a reference temperature proportional to E(∞). In order to describe τ(T) still the attempt time τ(∞) has to be specified. Thus, a single interaction parameter E(∞) describing the high-temperature regime together with λ controls the temperature dependence of low-temperature cooperative dynamics.

  12. Temperature dependence of photoluminescence peaks of porous silicon structures

    NASA Astrophysics Data System (ADS)

    Brunner, Róbert; Pinčík, Emil; Kučera, Michal; Greguš, Ján; Vojtek, Pavel; Zábudlá, Zuzana

    2017-12-01

    Evaluation of photoluminescence spectra of porous silicon (PS) samples prepared by electrochemical etching is presented. The samples were measured at temperatures 30, 70 and 150 K. Peak parameters (energy, intensity and width) were calculated. The PL spectrum was approximated by a set of Gaussian peaks. Their parameters were fixed using fitting a procedure in which the optimal number of peeks included into the model was estimated using the residuum of the approximation. The weak thermal dependence of the spectra indicates the strong influence of active defects.

  13. Modeling and Compensating Temperature-Dependent Non-Uniformity Noise in IR Microbolometer Cameras

    PubMed Central

    Wolf, Alejandro; Pezoa, Jorge E.; Figueroa, Miguel

    2016-01-01

    Images rendered by uncooled microbolometer-based infrared (IR) cameras are severely degraded by the spatial non-uniformity (NU) noise. The NU noise imposes a fixed-pattern over the true images, and the intensity of the pattern changes with time due to the temperature instability of such cameras. In this paper, we present a novel model and a compensation algorithm for the spatial NU noise and its temperature-dependent variations. The model separates the NU noise into two components: a constant term, which corresponds to a set of NU parameters determining the spatial structure of the noise, and a dynamic term, which scales linearly with the fluctuations of the temperature surrounding the array of microbolometers. We use a black-body radiator and samples of the temperature surrounding the IR array to offline characterize both the constant and the temperature-dependent NU noise parameters. Next, the temperature-dependent variations are estimated online using both a spatially uniform Hammerstein-Wiener estimator and a pixelwise least mean squares (LMS) estimator. We compensate for the NU noise in IR images from two long-wave IR cameras. Results show an excellent NU correction performance and a root mean square error of less than 0.25 ∘C, when the array’s temperature varies by approximately 15 ∘C. PMID:27447637

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yujie; Gong, Sha; Wang, Zhen

    The thermodynamic and kinetic parameters of an RNA base pair were obtained through a long-time molecular dynamics simulation of the opening-closing switch process of the base pair near its melting temperature. The thermodynamic parameters were in good agreement with the nearest-neighbor model. The opening rates showed strong temperature dependence, however, the closing rates showed only weak temperature dependence. The transition path time was weakly temperature dependent and was insensitive to the energy barrier. The diffusion constant exhibited super-Arrhenius behavior. The free energy barrier of breaking a single base stack results from the enthalpy increase, ΔH, caused by the disruption ofmore » hydrogen bonding and base-stacking interactions. The free energy barrier of base pair closing comes from the unfavorable entropy loss, ΔS, caused by the restriction of torsional angles. These results suggest that a one-dimensional free energy surface is sufficient to accurately describe the dynamics of base pair opening and closing, and the dynamics are Brownian.« less

  15. Exploring the importance of within-canopy spatial temperature variation on transpiration predictions

    PubMed Central

    Bauerle, William L.; Bowden, Joseph D.; Wang, G. Geoff; Shahba, Mohamed A.

    2009-01-01

    Models seldom consider the effect of leaf-level biochemical acclimation to temperature when scaling forest water use. Therefore, the dependence of transpiration on temperature acclimation was investigated at the within-crown scale in climatically contrasting genotypes of Acer rubrum L., cv. October Glory (OG) and Summer Red (SR). The effects of temperature acclimation on intracanopy gradients in transpiration over a range of realistic forest growth temperatures were also assessed by simulation. Physiological parameters were applied, with or without adjustment for temperature acclimation, to account for transpiration responses to growth temperature. Both types of parameterization were scaled up to stand transpiration (expressed per unit leaf area) with an individual tree model (MAESTRA) to assess how transpiration might be affected by spatial and temporal distributions of foliage properties. The MAESTRA model performed well, but its reproducibility was dependent on physiological parameters acclimated to daytime temperature. Concordance correlation coefficients between measured and predicted transpiration were higher (0.95 and 0.98 versus 0.87 and 0.96) when model parameters reflected acclimated growth temperature. In response to temperature increases, the southern genotype (SR) transpiration responded more than the northern (OG). Conditions of elevated long-term temperature acclimation further separate their transpiration differences. Results demonstrate the importance of accounting for leaf-level physiological adjustments that are sensitive to microclimate changes and the use of provenance-, ecotype-, and/or genotype-specific parameter sets, two components likely to improve the accuracy of site-level and ecosystem-level estimates of transpiration flux. PMID:19561047

  16. Energy and contact of the one-dimensional Fermi polaron at zero and finite temperature.

    PubMed

    Doggen, E V H; Kinnunen, J J

    2013-07-12

    We use the T-matrix approach for studying highly polarized homogeneous Fermi gases in one dimension with repulsive or attractive contact interactions. Using this approach, we compute ground state energies and values for the contact parameter that show excellent agreement with exact and other numerical methods at zero temperature, even in the strongly interacting regime. Furthermore, we derive an exact expression for the value of the contact parameter in one dimension at zero temperature. The model is then extended and used for studying the temperature dependence of ground state energies and the contact parameter.

  17. Soil and vegetation parameter uncertainty on future terrestrial carbon sinks

    NASA Astrophysics Data System (ADS)

    Kothavala, Z.; Felzer, B. S.

    2013-12-01

    We examine the role of the terrestrial carbon cycle in a changing climate at the centennial scale using an intermediate complexity Earth system climate model that includes the effects of dynamic vegetation and the global carbon cycle. We present a series of ensemble simulations to evaluate the sensitivity of simulated terrestrial carbon sinks to three key model parameters: (a) The temperature dependence of soil carbon decomposition, (b) the upper temperature limits on the rate of photosynthesis, and (c) the nitrogen limitation of the maximum rate of carboxylation of Rubisco. We integrated the model in fully coupled mode for a 1200-year spin-up period, followed by a 300-year transient simulation starting at year 1800. Ensemble simulations were conducted varying each parameter individually and in combination with other variables. The results of the transient simulations show that terrestrial carbon uptake is very sensitive to the choice of model parameters. Changes in net primary productivity were most sensitive to the upper temperature limit on the rate of photosynthesis, which also had a dominant effect on overall land carbon trends; this is consistent with previous research that has shown the importance of climatic suppression of photosynthesis as a driver of carbon-climate feedbacks. Soil carbon generally decreased with increasing temperature, though the magnitude of this trend depends on both the net primary productivity changes and the temperature dependence of soil carbon decomposition. Vegetation carbon increased in some simulations, but this was not consistent across all configurations of model parameters. Comparing to global carbon budget observations, we identify the subset of model parameters which are consistent with observed carbon sinks; this serves to narrow considerably the future model projections of terrestrial carbon sink changes in comparison with the full model ensemble.

  18. Prediction of operating parameters range for ammonia removal unit in coke making by-products

    NASA Astrophysics Data System (ADS)

    Tiwari, Hari Prakash; Kumar, Rajesh; Bhattacharjee, Arunabh; Lingam, Ravi Kumar; Roy, Abhijit; Tiwary, Shambhu

    2018-02-01

    Coke oven gas treatment plants are well equipped with distributed control systems (DCS) and therefore recording the vast amount of operational data efficiently. Analyzing the stored information manually from historians is practically impossible. In this study, data mining technique was examined for lowering the ammonia concentration in clean coke oven gas. Results confirm that concentration of ammonia in clean coke oven gas depends on the average PCDC temperature; gas scrubber temperatures stripped liquor flow, stripped liquor concentration and stripped liquor temperature. The optimum operating ranges of the above dependent parameters using data mining technique for lowering the concentration of ammonia is described in this paper.

  19. q-deformed Einstein's model to describe specific heat of solid

    NASA Astrophysics Data System (ADS)

    Guha, Atanu; Das, Prasanta Kumar

    2018-04-01

    Realistic phenomena can be described more appropriately using generalized canonical ensemble, with proper parameter sets involved. We have generalized the Einstein's theory for specific heat of solid in Tsallis statistics, where the temperature fluctuation is introduced into the theory via the fluctuation parameter q. At low temperature the Einstein's curve of the specific heat in the nonextensive Tsallis scenario exactly lies on the experimental data points. Consequently this q-modified Einstein's curve is found to be overlapping with the one predicted by Debye. Considering only the temperature fluctuation effect(even without considering more than one mode of vibration is being triggered) we found that the CV vs T curve is as good as obtained by considering the different modes of vibration as suggested by Debye. Generalizing the Einstein's theory in Tsallis statistics we found that a unique value of the Einstein temperature θE along with a temperature dependent deformation parameter q(T) , can well describe the phenomena of specific heat of solid i.e. the theory is equivalent to Debye's theory with a temperature dependent θD.

  20. Port wine oxidation management: a multiparametric kinetic approach.

    PubMed

    Martins, Rui Costa; Monforte, Ana Rita; Silva Ferreira, António

    2013-06-05

    Port wine is a flagship fortified wine of Portugal, which undergoes a particularly long aging period, developing a dynamic sensory profile over time, responsible for several wine categories, which is dependent upon the type of aging (bottle or barrel). Therefore, the quality of the product is dependent upon the chemical mechanisms occurring during the aging process, such as oxidation or Maillard reactions. To attain the desired quality management, it is necessary to understand how technological parameters, such as temperature or oxygen exposure, affect the kinetics of the formation of key odorants, such as sotolon. There is a lack of information about the impact of the storage conditions (oxygen and temperature) on Port wine quality. In this study, the effect of these two parameters were investigated to increase the knowledge database concerning aging management of Port wines. It was found that sotolon formation is highly dependent upon oxygen and temperature. There is however a synergistic effect between these two parameters that could significantly increase the concentration. The kinetic parameters of oxygen, sotolon, and other compounds related to Port aging (cis- and trans-5-hydroxy-2-methyl-1,3-dioxan, 2-furfural, 5-hydroxy-methyl-furfural, and 5-methyl-furfural) are also reported. Kinetic models with Monte Carlo simulations, where the oxygen permeability dispersion and temperature are the parameters under evaluation, were applied. On the basis of the modeling predictions, it would seem that the temperature of a cellar would have a more significant impact on the Port wines stored in containers where the oxygen intake is higher (barrels) when compared to containers with low oxygen permeability (bottles using cork stoppers).

  1. Positron Annihilation Measurements of High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Jung, Kang

    1995-01-01

    The temperature dependence of positron annihilation parameters has been measured for basic YBCO, Dy-doped, and Pr-doped superconducting compounds. The physical properties, such as crystal structure, electrical resistance, and critical temperature, have been studied for all samples. In the basic YBCO and Dy-doped samples, the defect -related lifetime component tau_{2 } was approximately constant from room temperature to above the critical temperature and then showed a step -like decrease in the temperature range 90K { ~} 40K. No significant temperature dependence was found in the short- and long-lifetime components, tau_{1} and tau_{3}. The x-ray diffraction data showed that the crystal structure of these two samples was almost the same. These results indicated that the electronic structure changed below the critical temperature. No transition was observed in the Pr-doped YBCO sample. The advanced computer program "PFPOSFIT" for positron lifetime analysis was modified to run on the UNIX system of the University of Utah. The destruction of superconductivity with Pr doping may be due to mechanisms such as hole filling or hole localization of the charge carriers and may be related to the valence state of the Pr ion. One-parameter analyses like the positron mean lifetime parameter and the Doppler line shape parameter S also have been studied. It was found that a transition in Doppler line shape parameter S was associated with the superconducting transition temperature in basic YBCO, Dy -doped, and 0.5 Pr-doped samples, whereas no transition was observed in the nonsuperconducting Pr-doped sample. The Doppler results indicate that the average electron momentum at the annihilation sites increases as temperature is lowered across the superconducting transition range and that electronic structure change plays an important role in high temperature superconductivity.

  2. A variable temperature EPR study of Mn(2+)-doped NH(4)Cl(0.9)I(0.1) single crystal at 170 GHz: zero-field splitting parameter and its absolute sign.

    PubMed

    Misra, Sushil K; Andronenko, Serguei I; Chand, Prem; Earle, Keith A; Paschenko, Sergei V; Freed, Jack H

    2005-06-01

    EPR measurements have been carried out on a single crystal of Mn(2+)-doped NH(4)Cl(0.9)I(0.1) at 170-GHz in the temperature range of 312-4.2K. The spectra have been analyzed (i) to estimate the spin-Hamiltonian parameters; (ii) to study the temperature variation of the zero-field splitting (ZFS) parameter; (iii) to confirm the negative absolute sign of the ZFS parameter unequivocally from the temperature-dependent relative intensities of hyperfine sextets at temperatures below 10K; and (iv) to detect the occurrence of a structural phase transition at 4.35K from the change in the structure of the EPR lines with temperature below 10K.

  3. (abstract) Ulysses Solar Wind Ion Temperatures: Radial, Latitudinal, and Dynamical Dependencies

    NASA Technical Reports Server (NTRS)

    Goldstein, B. E.; Smith, E. J.; Gosling, J. T.; McComas, D. J.; Balogh, A.

    1996-01-01

    Observations of the Ulysses SWOOPS plasma experiment are used to determine the dependencies of solar wind ion temperatures upon radial distance, speed, and other parameters, and to estimate solar wind heating. Comparisons with three dimensional temperature estimates determined from the ion spectra by a least squares fitting program will be provided (only small samples of data have been reduced with this program).

  4. Polymer/Solvent and Polymer/Polymer Interaction Studies

    DTIC Science & Technology

    1980-09-01

    temperatures up to 450 12 before serious degradation occurs. They have good hydrolytic stability, good solvent resistance, and excellent thermo- oxidative ...Concentration for Sorption in Glassy PVC 5 Temperature Dependence of the Flory-Huggins Interaction Parameters 115 6 Solubility of Dichloromethane in Polysulfone...116 7 Test of Applicability of the Langmuir Equation for Describing Sorption Data 117 8 Temperature Dependence of the Specific Volume of an Amorphous

  5. Temperature dependent electrical properties of rare-earth metal Er Schottky contact on p-type InP

    NASA Astrophysics Data System (ADS)

    Rao, L. Dasaradha; Reddy, N. Ramesha; Kumar, A. Ashok; Reddy, V. Rajagopal

    2013-06-01

    The current-voltage (I-V) characteristics of the Er/p-InP Schottky barrier diodes (SBDs) have been investigated in the temperature range of 300-400K in steps of 25K. The electrical parameters such as ideality factor (n) and zero-bias barrier height (Φbo) are found to be strongly temperature dependent. It is observed that ΦI-V decreases whereas n increases with decreasing temperature. The series resistance is also calculated from the forward I-V characteristics of Er/p-InP SBD and it is found to be strongly dependent on temperature. Further, the temperature dependence of energy distribution of interface state density (NSS) profiles is determined from the forward I-V measurements by taking into account the bias dependence of the effective barrier height and ideality factor. It is observed that the NSS values increase with a decrease in temperature.

  6. Phonon anharmonicity of monoclinic zirconia and yttrium-stabilized zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chen W.; Smith, Hillary L.; Lan, Tian

    2015-04-13

    Inelastic neutron scattering measurements on monoclinic zirconia (ZrO 2) and 8 mol% yttrium-stabilized zirconia were performed at temperatures from 300 to 1373 ωK. We reported temperature-dependent phonon densities of states (DOS) and Raman spectra obtained at elevated temperatures. First-principles lattice dynamics calculations with density functional theory gave total and partial phonon DOS curves and mode Grüneisen parameters. These mode Grüneisen parameters were used to predict the experimental temperature dependence of the phonon DOS with partial success. However, substantial anharmonicity was found at elevated temperatures, especially for phonon modes dominated by the motions of oxygen atoms. Yttrium-stabilized zirconia (YSZ) was somewhatmore » more anharmonic and had a broader phonon spectrum at low temperatures, owing in part to defects in its structure. YSZ also has a larger vibrational entropy than monoclinic zirconia.« less

  7. Calculation of Optical Parameters of Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Kumar, A.

    2007-12-01

    Validation of a modified four-parameter model describing temperature effect on liquid crystal refractive indices is being reported in the present article. This model is based upon the Vuks equation. Experimental data of ordinary and extraordinary refractive indices for two liquid crystal samples MLC-9200-000 and MLC-6608 are used to validate the above-mentioned theoretical model. Using these experimental data, birefringence, order parameter, normalized polarizabilities, and the temperature gradient of refractive indices are determined. Two methods: directly using birefringence measurements and using Haller's extrapolation procedure are adopted for the determination of order parameter. Both approches of order parameter calculation are compared. The temperature dependences of all these parameters are discussed. A close agreement between theory and experiment is obtained.

  8. Gradient Theory simulations of pure fluid interfaces using a generalized expression for influence parameters and a Helmholtz energy equation of state for fundamentally consistent two-phase calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahms, Rainer N.

    2014-12-31

    The fidelity of Gradient Theory simulations depends on the accuracy of saturation properties and influence parameters, and require equations of state (EoS) which exhibit a fundamentally consistent behavior in the two-phase regime. Widely applied multi-parameter EoS, however, are generally invalid inside this region. Hence, they may not be fully suitable for application in concert with Gradient Theory despite their ability to accurately predict saturation properties. The commonly assumed temperature-dependence of pure component influence parameters usually restricts their validity to subcritical temperature regimes. This may distort predictions for general multi-component interfaces where temperatures often exceed the critical temperature of vapor phasemore » components. Then, the calculation of influence parameters is not well defined. In this paper, one of the first studies is presented in which Gradient Theory is combined with a next-generation Helmholtz energy EoS which facilitates fundamentally consistent calculations over the entire two-phase regime. Illustrated on pentafluoroethane as an example, reference simulations using this method are performed. They demonstrate the significance of such high-accuracy and fundamentally consistent calculations for the computation of interfacial properties. These reference simulations are compared to corresponding results from cubic PR EoS, widely-applied in combination with Gradient Theory, and mBWR EoS. The analysis reveals that neither of those two methods succeeds to consistently capture the qualitative distribution of obtained key thermodynamic properties in Gradient Theory. Furthermore, a generalized expression of the pure component influence parameter is presented. This development is informed by its fundamental definition based on the direct correlation function of the homogeneous fluid and by presented high-fidelity simulations of interfacial density profiles. As a result, the new model preserves the accuracy of previous temperature-dependent expressions, remains well-defined at supercritical temperatures, and is fully suitable for calculations of general multi-component two-phase interfaces.« less

  9. Infrared emission spectra from operating elastohydrodynamic sliding contacts

    NASA Technical Reports Server (NTRS)

    Lauer, J. L.

    1976-01-01

    Infrared emission spectra from an operating EHD sliding contact were obtained through a diamond window for an aromatic polymer solute present in equal concentration in four different fluids. Three different temperature ranges, three different loads, and three different speeds for every load were examined. Very sensitive Fourier spectrophotometric (Interferometric) techniques were employed. Band Intensities and band intensity ratios found to depend both on the operating parameters and on the fluid. Fluid film and metal surface temperatures were calculated from the spectra and their dependence on the mechanical parameters plotted. The difference between these temperatures could be plotted against shear rate on one curve for all fluids. However, at the same shear rate the difference between bulk fluid temperature and diamond window temperature was much higher for one of the fluids, a traction fluid, than for the others.

  10. A micromechanical interpretation of the temperature dependence of Beremin model parameters for french RPV steel

    NASA Astrophysics Data System (ADS)

    Mathieu, Jean-Philippe; Inal, Karim; Berveiller, Sophie; Diard, Olivier

    2010-11-01

    Local approach to brittle fracture for low-alloyed steels is discussed in this paper. A bibliographical introduction intends to highlight general trends and consensual points of the topic and evokes debatable aspects. French RPV steel 16MND5 (equ. ASTM A508 Cl.3), is then used as a model material to study the influence of temperature on brittle fracture. A micromechanical modelling of brittle fracture at the elementary volume scale already used in previous work is then recalled. It involves a multiscale modelling of microstructural plasticity which has been tuned on experimental inter-phase and inter-granular stresses heterogeneities measurements. Fracture probability of the elementary volume can then be computed using a randomly attributed defect size distribution based on realistic carbides repartition. This defect distribution is then deterministically correlated to stress heterogeneities simulated within the microstructure using a weakest-link hypothesis on the elementary volume, which results in a deterministic stress to fracture. Repeating the process allows to compute Weibull parameters on the elementary volume. This tool is then used to investigate the physical mechanisms that could explain the already experimentally observed temperature dependence of Beremin's parameter for 16MND5 steel. It is showed that, assuming that the hypothesis made in this work about cleavage micro-mechanisms are correct, effective equivalent surface energy (i.e. surface energy plus plastically dissipated energy when blunting the crack tip) for propagating a crack has to be temperature dependent to explain Beremin's parameters temperature evolution.

  11. Leading temperature dependence of the conductance in Kondo-correlated quantum dots.

    PubMed

    Aligia, A A

    2018-04-18

    Using renormalized perturbation theory in the Coulomb repulsion, we derive an analytical expression for the leading term in the temperature dependence of the conductance through a quantum dot described by the impurity Anderson model, in terms of the renormalized parameters of the model. Taking these parameters from the literature, we compare the results with published ones calculated using the numerical renormalization group obtaining a very good agreement. The approach is superior to alternative perturbative treatments. We compare in particular to the results of a simple interpolative perturbation approach.

  12. Negative thermal expansion and anomalies of heat capacity of LuB 50 at low temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikov, V. V.; Zhemoedov, N. A.; Matovnikov, A. V.

    2015-07-20

    Heat capacity and thermal expansion of LuB 50 boride were experimentally studied in the 2–300 K temperature range. The data reveal an anomalous contribution to the heat capacity at low temperatures. The value of this contribution is proportional to the first degree of temperature. It was identified that this anomaly in heat capacity is caused by the effect of disorder in the LuB 50 crystalline structure and it can be described in the soft atomic potential model (SAP). The parameters of the approximation were determined. The temperature dependence of LuB 50 heat capacity in the whole temperature range was approximatedmore » by the sum of SAP contribution, Debye and two Einstein components. The parameters of SAP contribution for LuB 50 were compared to the corresponding values for LuB 66, which was studied earlier. Negative thermal expansion at low temperatures was experimentally observed for LuB 50. The analysis of the experimental temperature dependence for the Gruneisen parameter of LuB 50 suggested that the low-frequency oscillations, described in SAP mode, are responsible for the negative thermal expansion. As a result, the glasslike character of the behavior of LuB 50 thermal characteristics at low temperatures was confirmed.« less

  13. Sensitivity of viscosity Arrhenius parameters to polarity of liquids

    NASA Astrophysics Data System (ADS)

    Kacem, R. B. H.; Alzamel, N. O.; Ouerfelli, N.

    2017-09-01

    Several empirical and semi-empirical equations have been proposed in the literature to estimate the liquid viscosity upon temperature. In this context, this paper aims to study the effect of polarity of liquids on the modeling of the viscosity-temperature dependence, considering particularly the Arrhenius type equations. To achieve this purpose, the solvents are classified into three groups: nonpolar, borderline polar and polar solvents. Based on adequate statistical tests, we found that there is strong evidence that the polarity of solvents affects significantly the distribution of the Arrhenius-type equation parameters and consequently the modeling of the viscosity-temperature dependence. Thus, specific estimated values of parameters for each group of liquids are proposed in this paper. In addition, the comparison of the accuracy of approximation with and without classification of liquids, using the Wilcoxon signed-rank test, shows a significant discrepancy of the borderline polar solvents. For that, we suggested in this paper new specific coefficient values of the simplified Arrhenius-type equation for better estimation accuracy. This result is important given that the accuracy in the estimation of the viscosity-temperature dependence may affect considerably the design and the optimization of several industrial processes.

  14. Laser-Induced Thermal-Mechanical Damage Characteristics of Cleartran Multispectral Zinc Sulfide with Temperature-Dependent Properties

    NASA Astrophysics Data System (ADS)

    Peng, Yajing; Jiang, Yanxue; Yang, Yanqiang

    2015-01-01

    Laser-induced thermal-mechanical damage characteristics of window materials are the focus problems in laser weapon and anti-radiation reinforcement technology. Thermal-mechanical effects and damage characteristics are investigated for cleartran multispectral zinc sulfide (ZnS) thin film window materials irradiated by continuous laser using three-dimensional (3D) thermal-mechanical model. Some temperature-dependent parameters are introduced into the model. The temporal-spatial distributions of temperature and thermal stress are exhibited. The damage mechanism is analyzed. The influences of temperature effect of material parameters and laser intensity on the development of thermal stress and the damage characteristics are examined. The results show, the von Mises equivalent stress along the thickness direction is fluctuant, which originates from the transformation of principal stresses from compressive stress to tensile stress with the increase of depth from irradiated surface. The damage originates from the thermal stress but not the melting. The thermal stress is increased and the damage is accelerated by introducing the temperature effect of parameters or the increasing laser intensity.

  15. Effects of activation energy and activation volume on the temperature-dependent viscosity of water.

    PubMed

    Kwang-Hua, Chu Rainer

    2016-08-01

    Water transport in a leaf is vulnerable to viscosity-induced changes. Recent research has suggested that these changes may be partially due to variation at the molecular scale, e.g., regulations via aquaporins, that induce reductions in leaf hydraulic conductance. What are the quantitative as well as qualitative changes in temperature-dependent viscosity due to the role of aquaporins in tuning activation energy and activation volume? Using the transition-state approach as well as the boundary perturbation method, we investigate temperature-dependent viscosity tuned by activation energy and activation volume. To validate our approach, we compare our numerical results with previous temperature-dependent viscosity measurements. The rather good fit between our calculations and measurements confirms our present approach. We have obtained critical parameters for the temperature-dependent (shear) viscosity of water that might be relevant to the increasing and reducing of leaf hydraulic conductance. These parameters are sensitive to temperature, activation energy, and activation volume. Once the activation energy increases, the (shear) viscosity of water increases. Our results also show that as the activation volume increases (say, 10^{-23}m^{3}), the (shear) viscosity of water decreases significantly and the latter induces the enhancing of leaf hydraulic conductance. Within the room-temperature regime, a small increase in the activation energy will increase the water viscosity or reduce the leaf hydraulic conductance. Our approach and results can be applied to diverse plant or leaf attributes.

  16. A temperature-dependent coarse-grained model for the thermoresponsive polymer poly(N-isopropylacrylamide).

    PubMed

    Abbott, Lauren J; Stevens, Mark J

    2015-12-28

    A coarse-grained (CG) model is developed for the thermoresponsive polymer poly(N-isopropylacrylamide) (PNIPAM), using a hybrid top-down and bottom-up approach. Nonbonded parameters are fit to experimental thermodynamic data following the procedures of the SDK (Shinoda, DeVane, and Klein) CG force field, with minor adjustments to provide better agreement with radial distribution functions from atomistic simulations. Bonded parameters are fit to probability distributions from atomistic simulations using multi-centered Gaussian-based potentials. The temperature-dependent potentials derived for the PNIPAM CG model in this work properly capture the coil-globule transition of PNIPAM single chains and yield a chain-length dependence consistent with atomistic simulations.

  17. Investigation of Laser Parameters in Silicon Pulsed Laser Conduction Welding

    NASA Astrophysics Data System (ADS)

    Shayganmanesh, Mahdi; Khoshnoud, Afsaneh

    2016-03-01

    In this paper, laser welding of silicon in conduction mode is investigated numerically. In this study, the effects of laser beam characteristics on the welding have been studied. In order to model the welding process, heat conduction equation is solved numerically and laser beam energy is considered as a boundary condition. Time depended heat conduction equation is used in our calculations to model pulsed laser welding. Thermo-physical and optical properties of the material are considered to be temperature dependent in our calculations. Effects of spatial and temporal laser beam parameters such as laser beam spot size, laser beam quality, laser beam polarization, laser incident angle, laser pulse energy, laser pulse width, pulse repetition frequency and welding speed on the welding characteristics are assessed. The results show that how the temperature dependent thermo-physical and optical parameters of the material are important in laser welding modeling. Also the results show how the parameters of the laser beam influence the welding characteristics.

  18. Elevated temperature dependence of the anisotropic visible-to-ultraviolet dielectric function of monoclinic β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Mock, A.; VanDerslice, J.; Korlacki, R.; Woollam, J. A.; Schubert, M.

    2018-01-01

    We report on the temperature dependence of the dielectric tensor elements of n-type conductive β-Ga2O3 from 22 °C to 550 °C in the spectral range of 1.5 eV-6.4 eV. We present the temperature dependence of the excitonic and band-to-band transition energy parameters using a previously described eigendielectric summation approach [A. Mock et al., Phys. Rev. B 96, 245205 (2017)]. We utilize a Bose-Einstein analysis of the temperature dependence of the observed transition energies and reveal electron coupling with average phonon temperature in excellent agreement with the average over all longitudinal phonon plasmon coupled modes reported previously [M. Schubert et al., Phys. Rev. B 93, 125209 (2016)]. We also report a linear temperature dependence of the wavelength independent Cauchy expansion coefficient for the anisotropic below-band-gap monoclinic dielectric tensor elements.

  19. Biaxial order parameter in the homologous series of orthogonal bent-core smectic liquid crystals

    NASA Astrophysics Data System (ADS)

    Sreenilayam, S.; Panarin, Y. P.; Vij, J. K.; Osipov, M.; Lehmann, A.; Tschierske, C.

    2013-07-01

    The fundamental parameter of the uniaxial liquid crystalline state that governs nearly all of its physical properties is the primary orientational order parameter (S) for the long axes of molecules with respect to the director. The biaxial liquid crystals (LCs) possess biaxial order parameters depending on the phase symmetry of the system. In this paper we show that in the first approximation a biaxial orthogonal smectic phase can be described by two primary order parameters: S for the long axes and C for the ordering of the short axes of molecules. The temperature dependencies of S and C are obtained by the Haller's extrapolation technique through measurements of the optical birefringence and biaxiality on a nontilted polar antiferroelectric (Sm-APA) phase of a homologous series of LCs built from the bent-core achiral molecules. For such a biaxial smectic phase both S and C, particularly the temperature dependency of the latter, are being experimentally determined. Results show that S in the orthogonal smectic phase composed of bent cores is higher than in Sm-A calamatic LCs and C is also significantly large.

  20. A versatile phenomenological model for the S-shaped temperature dependence of photoluminescence energy for an accurate determination of the exciton localization energy in bulk and quantum well structures

    NASA Astrophysics Data System (ADS)

    Dixit, V. K.; Porwal, S.; Singh, S. D.; Sharma, T. K.; Ghosh, Sandip; Oak, S. M.

    2014-02-01

    Temperature dependence of the photoluminescence (PL) peak energy of bulk and quantum well (QW) structures is studied by using a new phenomenological model for including the effect of localized states. In general an anomalous S-shaped temperature dependence of the PL peak energy is observed for many materials which is usually associated with the localization of excitons in band-tail states that are formed due to potential fluctuations. Under such conditions, the conventional models of Varshni, Viña and Passler fail to replicate the S-shaped temperature dependence of the PL peak energy and provide inconsistent and unrealistic values of the fitting parameters. The proposed formalism persuasively reproduces the S-shaped temperature dependence of the PL peak energy and provides an accurate determination of the exciton localization energy in bulk and QW structures along with the appropriate values of material parameters. An example of a strained InAs0.38P0.62/InP QW is presented by performing detailed temperature and excitation intensity dependent PL measurements and subsequent in-depth analysis using the proposed model. Versatility of the new formalism is tested on a few other semiconductor materials, e.g. GaN, nanotextured GaN, AlGaN and InGaN, which are known to have a significant contribution from the localized states. A quantitative evaluation of the fractional contribution of the localized states is essential for understanding the temperature dependence of the PL peak energy of bulk and QW well structures having a large contribution of the band-tail states.

  1. Hemispherical emissivity of V, Nb, Ta, Mo, and W from 300 to 1000 K

    NASA Technical Reports Server (NTRS)

    Cheng, S. X.; Hanssen, L. M.; Riffe, D. M.; Sievers, A. J.; Cebe, P.

    1987-01-01

    The hemispherical emissivities of five transition elements, V, Nb, Ta, Mo, and W, have been measured from 300 to 1000 K, complementing earlier higher-temperature results. These low-temperature data, which are similar, are fitted to a Drude model in which the room-temperature parameters have been obtained from optical measurements and the temperature dependence of the dc resistivity is used as input to calculate the temperature dependence of the emissivity. A frequency-dependent free-carrier relaxation rate is found to have a similar magnitude for all these elements. For temperatures larger than 1200 K the calculated emissivity is always greater than the measured value, indicating that the high-temperature interband features of transition elements are much weaker than those determined from room-temperature measurements.

  2. The effects of transverse magnetic field and local electronic interaction on thermoelectric properties of monolayer graphene

    NASA Astrophysics Data System (ADS)

    Rezania, Hamed; Azizi, Farshad

    2018-02-01

    We study the effects of a transverse magnetic field and electron doping on the thermoelectric properties of monolayer graphene in the context of Hubbard model at the antiferromagnetic sector. In particular, the temperature dependence of thermal conductivity and Seebeck coefficient has been investigated. Mean field approximation has been employed in order to obtain the electronic spectrum of the system in the presence of local electron-electron interaction. Our results show the peak in thermal conductivity moves to higher temperatures with increase of both chemical potential and Hubbard parameter. Moreover the increase of magnetic field leads to shift of peak in temperature dependence of thermal conductivity to higher temperatures. Finally the behavior of Seebeck coefficient in terms of temperature has been studied and the effects of magnetic field and Hubbard parameter on this coefficient have been investigated in details.

  3. Modeling of mid-infrared quantum cascade lasers: The role of temperature and operating field strength on the laser performance

    NASA Astrophysics Data System (ADS)

    Yousefvand, Hossein Reza

    2017-07-01

    In this paper a self-consistent numerical approach to study the temperature and bias dependent characteristics of mid-infrared (mid-IR) quantum cascade lasers (QCLs) is presented which integrates a number of quantum mechanical models. The field-dependent laser parameters including the nonradiative scattering times, the detuning and energy levels, the escape activation energy, the backfilling excitation energy and dipole moment of the optical transition are calculated for a wide range of applied electric fields by a self-consistent solution of Schrodinger-Poisson equations. A detailed analysis of performance of the obtained structure is carried out within a self-consistent solution of the subband population rate equations coupled with carrier coherent transport equations through the sequential resonant tunneling, by taking into account the temperature and bias dependency of the relevant parameters. Furthermore, the heat transfer equation is included in order to calculate the carrier temperature inside the active region levels. This leads to a compact predictive model to analyze the temperature and electric field dependent characteristics of the mid-IR QCLs such as the light-current (L-I), electric field-current (F-I) and core temperature-electric field (T-F) curves. For a typical mid-IR QCL, a good agreement was found between the simulated temperature-dependent L-I characteristic and experimental data, which confirms validity of the model. It is found that the main characteristics of the device such as output power and turn-on delay time are degraded by interplay between the temperature and Stark effects.

  4. Temperature evolution of the local order parameter in relaxor ferroelectrics (1 - x)PMN-xPZT

    NASA Astrophysics Data System (ADS)

    Gridnev, S. A.; Glazunov, A. A.; Tsotsorin, A. N.

    2005-09-01

    The temperature dependence of the local order parameter and relaxation time distribution function have been determined in (1 - x)PMN-xPZT ceramic samples via dielectric permittivity. Above the Burns temperature, the permittivity was found to follow the Currie-Weiss law, and with temperature decreasing the deviation was observed to increase. A local order parameter was calculated from the dielectric data using a modified Landau-Devonshire approach. These results are compared to the distribution function of relaxation times. It was found that a glasslike freezing of reorientable polar clusters occurs in the temperature range of diffuse relaxor transition. The evolution of the studied system to more ordered state arises from the increased PZT content.

  5. Modelling leaf photosynthetic and transpiration temperature-dependent responses in Vitis vinifera cv. Semillon grapevines growing in hot, irrigated vineyard conditions

    PubMed Central

    Greer, Dennis H.

    2012-01-01

    Background and aims Grapevines growing in Australia are often exposed to very high temperatures and the question of how the gas exchange processes adjust to these conditions is not well understood. The aim was to develop a model of photosynthesis and transpiration in relation to temperature to quantify the impact of the growing conditions on vine performance. Methodology Leaf gas exchange was measured along the grapevine shoots in accordance with their growth and development over several growing seasons. Using a general linear statistical modelling approach, photosynthesis and transpiration were modelled against leaf temperature separated into bands and the model parameters and coefficients applied to independent datasets to validate the model. Principal results Photosynthesis, transpiration and stomatal conductance varied along the shoot, with early emerging leaves having the highest rates, but these declined as later emerging leaves increased their gas exchange capacities in accordance with development. The general linear modelling approach applied to these data revealed that photosynthesis at each temperature was additively dependent on stomatal conductance, internal CO2 concentration and photon flux density. The temperature-dependent coefficients for these parameters applied to other datasets gave a predicted rate of photosynthesis that was linearly related to the measured rates, with a 1 : 1 slope. Temperature-dependent transpiration was multiplicatively related to stomatal conductance and the leaf to air vapour pressure deficit and applying the coefficients also showed a highly linear relationship, with a 1 : 1 slope between measured and modelled rates, when applied to independent datasets. Conclusions The models developed for the grapevines were relatively simple but accounted for much of the seasonal variation in photosynthesis and transpiration. The goodness of fit in each case demonstrated that explicitly selecting leaf temperature as a model parameter, rather than including temperature intrinsically as is usually done in more complex models, was warranted. PMID:22567220

  6. Parametric dependence of density limits in the Tokamak Experiment for Technology Oriented Research (TEXTOR): Comparison of thermal instability theory with experiment

    NASA Astrophysics Data System (ADS)

    Kelly, F. A.; Stacey, W. M.; Rapp, J.

    2001-11-01

    The observed dependence of the TEXTOR [Tokamak Experiment for Technology Oriented Research: E. Hintz, P. Bogen, H. A. Claassen et al., Contributions to High Temperature Plasma Physics, edited by K. H. Spatschek and J. Uhlenbusch (Akademie Verlag, Berlin, 1994), p. 373] density limit on global parameters (I, B, P, etc.) and wall conditioning is compared with the predicted density limit parametric scaling of thermal instability theory. It is necessary first to relate the edge parameters of the thermal instability theory to n¯ and the other global parameters. The observed parametric dependence of the density limit in TEXTOR is generally consistent with the predicted density limit scaling of thermal instability theory. The observed wall conditioning dependence of the density limit can be reconciled with the theory in terms of the radiative emissivity temperature dependence of different impurities in the plasma edge. The thermal instability theory also provides an explanation of why symmetric detachment precedes radiative collapse for most low power shots, while a multifaceted asymmetric radiation from the edge MARFE precedes detachment for most high power shots.

  7. The meaning of the "universal" WLF parameters of glass-forming polymer liquids

    NASA Astrophysics Data System (ADS)

    Dudowicz, Jacek; Douglas, Jack F.; Freed, Karl F.

    2015-01-01

    Although the Williams-Landell-Ferry (WLF) equation for the segmental relaxation time τ(T) of glass-forming materials is one of the most commonly encountered relations in polymer physics, its molecular basis is not well understood. The WLF equation is often claimed to be equivalent to the Vogel-Fulcher-Tammann (VFT) equation, even though the WLF expression for τ(T) contains no explicit dependence on the fragility parameter D of the VFT equation, while the VFT equation lacks any explicit reference to the glass transition temperature Tg, the traditionally chosen reference temperature in the WLF equation. The observed approximate universality of the WLF parameters C1 ( g ) and C2 ( g ) implies that τ(T) depends only on T-Tg, a conclusion that seems difficult to reconcile with the VFT equation where the fragility parameter D largely governs the magnitude of τ(T). The current paper addresses these apparent inconsistencies by first evaluating the macroscopic WLF parameters C1 ( g ) and C2 ( g ) from the generalized entropy theory of glass-formation and then by determining the dependence of C1 ( g ) and C2 ( g ) on the microscopic molecular parameters (including the strength of the cohesive molecular interactions and the degree of chain stiffness) and on the molar mass of the polymer. Attention in these calculations is restricted to the temperature range (Tg < T < Tg + 100 K), where both the WLF and VFT equations apply.

  8. Tack Measurements of Prepreg Tape at Variable Temperature and Humidity

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher; Palmieri, Frank L.; Forghani, Alireza; Hickmott, Curtis; Bedayat, Houman; Coxon, Brian; Poursartip, Anoush; Grimsley, Brian

    2017-01-01

    NASA’s Advanced Composites Project has established the goal of achieving a 30 percent reduction in the timeline for certification of primary composite structures for application on commercial aircraft. Prepreg tack is one of several critical parameters affecting composite manufacturing by automated fiber placement (AFP). Tack plays a central role in the prevention of wrinkles and puckers that can occur during AFP, thus knowledge of tack variation arising from a myriad of manufacturing and environmental conditions is imperative for the prediction of defects during AFP. A full design of experiments was performed to experimentally characterize tack on 0.25-inch slit-tape tow IM7/8552-1 prepreg using probe tack testing. Several process parameters (contact force, contact time, retraction speed, and probe diameter) as well as environmental parameters (temperature and humidity) were varied such that the entire parameter space could be efficiently evaluated. Mid-point experimental conditions (i.e., parameters not at either extrema) were included to enable prediction of curvature in relationships and repeat measurements were performed to characterize experimental error. Collectively, these experiments enable determination of primary dependencies as well as multi-parameter relationships. Slit-tape tow samples were mounted to the bottom plate of a rheometer parallel plate fixture using a jig to prevent modification of the active area to be interrogated with the top plate, a polished stainless steel probe, during tack testing. The probe surface was slowly brought into contact with the pre-preg surface until a pre-determined normal force was achieved (2-30 newtons). After a specified dwell time (0.02-10 seconds), during which the probe substrate interaction was maintained under displacement control, the probe was retracted from the surface (0.1-50 millimeters per second). Initial results indicated a clear dependence of tack strength on several parameters, with a particularly strong dependence on temperature and humidity. Although an increase in either of these parameters reduces tack strength, a maximum in tack was predicted to occur under conditions of low temperature and moderate humidity.

  9. Climate modeling for Yamal territory using supercomputer atmospheric circulation model ECHAM5-wiso

    NASA Astrophysics Data System (ADS)

    Denisova, N. Y.; Gribanov, K. G.; Werner, M.; Zakharov, V. I.

    2015-11-01

    Dependences of monthly means of regional averages of model atmospheric parameters on initial and boundary condition remoteness in the past are the subject of the study. We used atmospheric general circulation model ECHAM5-wiso for simulation of monthly means of regional averages of climate parameters for Yamal region and different periods of premodeling. Time interval was varied from several months to 12 years. We present dependences of model monthly means of regional averages of surface temperature, 2 m air temperature and humidity for December of 2000 on duration of premodeling. Comparison of these results with reanalysis data showed that best coincidence with true parameters could be reached if duration of pre-modelling is approximately 10 years.

  10. Study of photon emission by electron capture during solar nuclei acceleration, 1: Temperature-dependent cross section for charge changing processes

    NASA Technical Reports Server (NTRS)

    Perez-Peraza, J.; Alvarez, M.; Laville, A.; Gallegos, A.

    1985-01-01

    The study of charge changing cross sections of fast ions colliding with matter provides the fundamental basis for the analysis of the charge states produced in such interactions. Given the high degree of complexity of the phenomena, there is no theoretical treatment able to give a comprehensive description. In fact, the involved processes are very dependent on the basic parameters of the projectile, such as velocity charge state, and atomic number, and on the target parameters, the physical state (molecular, atomic or ionized matter) and density. The target velocity, may have also incidence on the process, through the temperature of the traversed medium. In addition, multiple electron transfer in single collisions intrincates more the phenomena. Though, in simplified cases, such as protons moving through atomic hydrogen, considerable agreement has been obtained between theory and experiments However, in general the available theoretical approaches have only limited validity in restricted regions of the basic parameters. Since most measurements of charge changing cross sections are performed in atomic matter at ambient temperature, models are commonly based on the assumption of targets at rest, however at Astrophysical scales, temperature displays a wide range in atomic and ionized matter. Therefore, due to the lack of experimental data , an attempt is made here to quantify temperature dependent cross sections on basis to somewhat arbitrary, but physically reasonable assumptions.

  11. Magnetism of the 35 K superconductor CsEuFe4As4

    NASA Astrophysics Data System (ADS)

    Albedah, Mohammed A.; Nejadsattari, Farshad; Stadnik, Zbigniew M.; Liu, Yi; Cao, Guang-Han

    2018-04-01

    The results of ab initio hyperfine-interaction parameters calculations, and of x-ray diffraction and 57Fe and 151Eu Mössbauer spectroscopy study of the new 35 K superconductor CsEuFe4As4 are reported. The superconductor crystallizes in the tetragonal space group P4/mmm with the lattice parameters a = 3.8956(1) Å and c = 13.6628(5) Å. It is demonstrated unequivocally that there is no magnetic order of the Fe magnetic moments down to 2.1 K and that the ferromagnetic order is associated with the Eu magnetic moments. The Curie temperature TC = 15.97(8) K determined from the temperature dependence of the hyperfine magnetic field at 151Eu nuclei is shown to be compatible with the temperature dependence of the transferred hyperfine magnetic field at 57Fe nuclei that is induced by the ferromagnetically ordered Eu sublattice. The Eu magnetic moments are shown to be perpendicular to the crystallographic c-axis. The temperature dependence of the principal component of the electric field gradient tensor, both at Fe and Eu sites, is well described by a T 3/2 power-law relation. Good agreement between the calculated and measured hyperfine-interaction parameters is observed. The Debye temperature of CsEuFe4As4 is found to be 295(3) K.

  12. Temperature Dependence of Thermodynamic Properties of Thallium Chloride and Thallium Bromide

    NASA Astrophysics Data System (ADS)

    Kavanoz, H. B.

    2015-02-01

    Thermodynamic properties as lattice parameters, thermal expansion, heat capacities Cp and Cv, bulk modulus, and Gruneisen parameter of ionic halides TlCl and TlBr in solid and liquid phases were studied using classical molecular dynamics simulation (MD) with interionic Vashistha-Rahman (VR) model potential. In addition to the static and transport properties which have been previously reported by the author [13], this study further confirms that temperature dependence of the calculated thermophysical properties of TlCl and TlBr are in agreement with the available experimental data at both solid and liquid phases in terms of providing an alternative rigid ion potential. The results give a fairly good description of TlCl and TlBr in the temperature range 10-1000 K.

  13. Line parameters for CO2 broadening in the ν2 band of HD16O

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Crawford, Timothy J.; Gamache, Robert R.; Renaud, Candice L.; Smith, Mary Ann H.; Mantz, Arlan W.; Villanueva, Geronimo L.

    2017-01-01

    CO2-rich planetary atmospheres such as those of Mars and Venus require accurate knowledge of CO2 broadened HDO half-width coefficients and their temperature dependence exponents for reliable abundance determination. Although a few calculated line lists have recently been published on HDO-CO2 line shapes and their temperature dependences, laboratory measurements of those parameters are thus far non-existent. In this work, we report the first measurements of CO2-broadened half-width and pressure-shift coefficients and their temperature dependences for over 220 transitions in the ν2 band. First measurements of self-broadened half-width and self-shift coefficients at room temperature are also obtained for majority of these transitions. In addition, the first experimental determination of collisional line mixing has been reported for 11 transition pairs for HDO-CO2 and HDO-HDO systems. These results were obtained by analyzing ten high-resolution spectra of HDO and HDO-CO2 mixtures at various sample temperatures and pressures recorded with the Bruker IFS-125HR Fourier transform spectrometer at the Jet Propulsion Laboratory (JPL). Two coolable absorption cells with path lengths of 20.38 cm and 20.941 m were used to record the spectra. The various line parameters were retrieved by fitting all ten spectra simultaneously using a multispectrum nonlinear least squares fitting algorithm. The HDO transitions in the 1100-4100 cm-1 range were extracted from the HITRAN2012 database. For the ν2 and 2ν2 -ν2 bands there were 2245 and 435 transitions, respectively. Modified Complex Robert-Bonamy formalism (MCRB) calculations were made for the half-width coefficients, their temperature dependence and the pressure shift coefficients for the HDO-CO2 and HDO-HDO collision systems. MCRB calculations are compared with the measured values.

  14. Deconvolution of complex differential scanning calorimetry profiles for protein transitions under kinetic control.

    PubMed

    Toledo-Núñez, Citlali; Vera-Robles, L Iraís; Arroyo-Maya, Izlia J; Hernández-Arana, Andrés

    2016-09-15

    A frequent outcome in differential scanning calorimetry (DSC) experiments carried out with large proteins is the irreversibility of the observed endothermic effects. In these cases, DSC profiles are analyzed according to methods developed for temperature-induced denaturation transitions occurring under kinetic control. In the one-step irreversible model (native → denatured) the characteristics of the observed single-peaked endotherm depend on the denaturation enthalpy and the temperature dependence of the reaction rate constant, k. Several procedures have been devised to obtain the parameters that determine the variation of k with temperature. Here, we have elaborated on one of these procedures in order to analyze more complex DSC profiles. Synthetic data for a heat capacity curve were generated according to a model with two sequential reactions; the temperature dependence of each of the two rate constants involved was determined, according to the Eyring's equation, by two fixed parameters. It was then shown that our deconvolution procedure, by making use of heat capacity data alone, permits to extract the parameter values that were initially used. Finally, experimental DSC traces showing two and three maxima were analyzed and reproduced with relative success according to two- and four-step sequential models. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Boundary conditions, dimensionality, topology and size dependence of the superconducting transition temperature

    NASA Astrophysics Data System (ADS)

    Fink, Herman J.; Haley, Stephen B.; Giuraniuc, Claudiu V.; Kozhevnikov, Vladimir F.; Indekeu, Joseph O.

    2005-11-01

    For various sample geometries (slabs, cylinders, spheres, hypercubes), de Gennes' boundary condition parameter b is used to study its effect upon the transition temperature Tc of a superconductor. For b > 0 the order parameter at the surface is decreased, and as a consequence Tc is reduced, while for b < 0 the order parameter at the surface is increased, thereby enhancing Tc of a specimen in zero magnetic field. Exact solutions, derived by Fink and Haley (Int. J. mod. Phys. B, 17, 2171 (2003)), of the order parameter of a slab of finite thickness as a function of temperature are presented, both for reduced and enhanced transition (nucleation) temperatures. At the nucleation temperature the order parameter approaches zero. This concise review closes with a link established between de Gennes' microscopic boundary condition and the Ginzburg-Landau phenomenological approach, and a discussion of some relevant experiments. For example, applying the boundary condition with b < 0 to tin whiskers elucidates the increase of Tc with strain.

  16. Free-bound electron exchange contribution to l-split atomic structure in dense plasmas

    NASA Astrophysics Data System (ADS)

    Bennadji, K.; Rosmej, F.; Lisitsa, V. S.

    2013-11-01

    An analytical expression for the exchange energy between the bound electron in hydrogen-like ions and the free electrons of plasma is proposed. Two limiting cases are identified: 1) the low temperature limit where the energy depends linearly on density and on the ion charge as 1/Z2 but does not depend on the temperature itself, 2) the high temperature limit where the energy depends on temperature as 1/T but does not depend on the ion charge. These two regimes are separated by a characteristic temperature (T∗ = 4Z2Ry) which is a universal parameter depending only on the charge Z of the ions. We presented numerical results for aluminum: the exchange energy contributes about 15% to the total plasma energy and can reach an order of 10-4 of the total transition energy. Comparison to the Local-density Approximation (Kohn-Sham) exchange energy shows a good agreement.

  17. Total Dose Effects on Bipolar Integrated Circuits at Low Temperature

    NASA Technical Reports Server (NTRS)

    Johnston, A. H.; Swimm, R. T.; Thorbourn, D. O.

    2012-01-01

    Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, due to the large difference in emitter doping concentration. When irradiations are done at temperatures of -140 deg C, no damage occurs until devices are warmed to temperatures above -50 deg C. After warm-up, subsequent cooling shows that damage is then present at low temperature. This can be explained by the very strong temperature dependence of dispersive transport in the continuous-time-random-walk model for hole transport. For linear integrated circuits, low temperature operation is affected by the strong temperature dependence of npn transistors along with the higher sensitivity of lateral and substrate pnp transistors to radiation damage.

  18. Parameter dependences of the separatrix density in nitrogen seeded ASDEX Upgrade H-mode discharges

    NASA Astrophysics Data System (ADS)

    Kallenbach, A.; Sun, H. J.; Eich, T.; Carralero, D.; Hobirk, J.; Scarabosio, A.; Siccinio, M.; ASDEX Upgrade Team; EUROfusion MST1 Team

    2018-04-01

    The upstream separatrix electron density is an important interface parameter for core performance and divertor power exhaust. It has been measured in ASDEX Upgrade H-mode discharges by means of Thomson scattering using a self-consistent estimate of the upstream electron temperature under the assumption of Spitzer-Härm electron conduction. Its dependence on various plasma parameters has been tested for different plasma conditions in H-mode. The leading parameter determining n e,sep was found to be the neutral divertor pressure, which can be considered as an engineering parameter since it is determined mainly by the gas puff rate and the pumping speed. The experimentally found parameter dependence of n e,sep, which is dominated by the divertor neutral pressure, could be approximately reconciled by 2-point modelling.

  19. A temperature-dependent coarse-grained model for the thermoresponsive polymer poly(N-isopropylacrylamide)

    DOE PAGES

    Abbott, Lauren J.; Stevens, Mark J.

    2015-12-22

    In this study, a coarse-grained (CG) model is developed for the thermoresponsive polymer poly(N-isopropylacrylamide) (PNIPAM), using a hybrid top-down and bottom-up approach. Nonbonded parameters are fit to experimental thermodynamic data following the procedures of the SDK (Shinoda, DeVane, and Klein) CG force field, with minor adjustments to provide better agreement with radial distribution functions from atomistic simulations. Bonded parameters are fit to probability distributions from atomistic simulations using multi-centered Gaussian-based potentials. The temperature-dependent potentials derived for the PNIPAM CG model in this work properly capture the coil–globule transition of PNIPAM single chains and yield a chain-length dependence consistent with atomisticmore » simulations.« less

  20. Elastoviscoplastic snap-through behavior of shallow arches subjected to thermomechanical loads

    NASA Technical Reports Server (NTRS)

    Simitses, George J.; Song, Yuzhao; Sheinman, Izhak

    1991-01-01

    The problem of snap-through buckling of clamped shallow arches under thermomechanical loads is investigated. The analysis is based on nonlinear kinematic relations and nonlinear rate-dependent unified constitutive equations. A finite element approach is employed to predict the, in general, inelastic buckling behavior. The construction material is alloy B1900 + Hf, which is commonly utilized in high-temperature environments. The effect of several parameters is assessed. These parameters include the rise parameter and temperature. Comparison between elastic and elastoviscoplastic responses is also presented.

  1. Pore-size dependence and characteristics of water diffusion in slitlike micropores

    DOE PAGES

    Diallo, S. O.

    2015-07-16

    The temperature dependence of the dynamics of water inside microporous activated carbon fibers (ACF) is investigated by means of incoherent elastic and quasielastic neutron-scattering techniques. The aim is to evaluate the effect of increasing pore size on the water dynamics in these primarily hydrophobic slit-shaped channels. Using two different micropore sizes (similar to 12 and 18 angstrom, denoted, respectively, ACF-10 and ACF-20), a clear suppression of the mobility of the water molecules is observed as the pore gap or temperature decreases. Suppression, we found, is accompanied by a systematic dependence of the average translational diffusion coefficient D-r and relaxation timemore » [tau(0)] of the restricted water on pore size and temperature. We observed D-r values and tested against a proposed scaling law, in which the translational diffusion coefficient D-r of water within a porous matrix was found to depend solely on two single parameters, a temperature-independent translational diffusion coefficient D-c associated with the water bound to the pore walls and the ratio theta of this strictly confined water to the total water inside the pore, yielding unique characteristic parameters for water transport in these carbon channels across the investigated temperature range.« less

  2. Temperature dependence of fast carbonyl backbone dynamics in chicken villin headpiece subdomain

    PubMed Central

    Vugmeyster, Liliya; Ostrovsky, Dmitry

    2012-01-01

    Temperature-dependence of protein dynamics can provide information on details of the free energy landscape by probing the characteristics of the potential responsible for the fluctuations. We have investigated the temperature-dependence of picosecond to nanosecond backbone dynamics at carbonyl carbon sites in chicken villin headpiece subdomain protein using a combination of three NMR relaxation rates: 13C′ longitudinal rate, and two cross-correlated rates involving dipolar and chemical shift anisotropy (CSA) relaxation mechanisms, 13C′/13C′−13Cα CSA/dipolar and 13C′/13C′−15N CSA/dipolar. Order parameters have been extracted using the Lipari-Szabo model-free approach assuming a separation of the time scales of internal and molecular motions in the 2–16°C temperature range. There is a gradual deviation from this assumption from lower to higher temperatures, such that above 16°C the separation of the time scales is inconsistent with the experimental data and, thus, the Lipari-Szabo formalism can not be applied. While there are variations among the residues, on the average the order parameters indicate a markedly steeper temperature dependence at backbone carbonyl carbons compared to that probed at amide nitrogens in an earlier study. This strongly advocates for probing sites other than amide nitrogen for accurate characterization of the potential and other thermodynamics characteristics of protein backbone. PMID:21416162

  3. Three-Dimensional Mixed Convection Flow of Viscoelastic Fluid with Thermal Radiation and Convective Conditions

    PubMed Central

    Hayat, Tasawar; Ashraf, Muhammad Bilal; Alsulami, Hamed H.; Alhuthali, Muhammad Shahab

    2014-01-01

    The objective of present research is to examine the thermal radiation effect in three-dimensional mixed convection flow of viscoelastic fluid. The boundary layer analysis has been discussed for flow by an exponentially stretching surface with convective conditions. The resulting partial differential equations are reduced into a system of nonlinear ordinary differential equations using appropriate transformations. The series solutions are developed through a modern technique known as the homotopy analysis method. The convergent expressions of velocity components and temperature are derived. The solutions obtained are dependent on seven sundry parameters including the viscoelastic parameter, mixed convection parameter, ratio parameter, temperature exponent, Prandtl number, Biot number and radiation parameter. A systematic study is performed to analyze the impacts of these influential parameters on the velocity and temperature, the skin friction coefficients and the local Nusselt number. It is observed that mixed convection parameter in momentum and thermal boundary layers has opposite role. Thermal boundary layer is found to decrease when ratio parameter, Prandtl number and temperature exponent are increased. Local Nusselt number is increasing function of viscoelastic parameter and Biot number. Radiation parameter on the Nusselt number has opposite effects when compared with viscoelastic parameter. PMID:24608594

  4. Three-dimensional mixed convection flow of viscoelastic fluid with thermal radiation and convective conditions.

    PubMed

    Hayat, Tasawar; Ashraf, Muhammad Bilal; Alsulami, Hamed H; Alhuthali, Muhammad Shahab

    2014-01-01

    The objective of present research is to examine the thermal radiation effect in three-dimensional mixed convection flow of viscoelastic fluid. The boundary layer analysis has been discussed for flow by an exponentially stretching surface with convective conditions. The resulting partial differential equations are reduced into a system of nonlinear ordinary differential equations using appropriate transformations. The series solutions are developed through a modern technique known as the homotopy analysis method. The convergent expressions of velocity components and temperature are derived. The solutions obtained are dependent on seven sundry parameters including the viscoelastic parameter, mixed convection parameter, ratio parameter, temperature exponent, Prandtl number, Biot number and radiation parameter. A systematic study is performed to analyze the impacts of these influential parameters on the velocity and temperature, the skin friction coefficients and the local Nusselt number. It is observed that mixed convection parameter in momentum and thermal boundary layers has opposite role. Thermal boundary layer is found to decrease when ratio parameter, Prandtl number and temperature exponent are increased. Local Nusselt number is increasing function of viscoelastic parameter and Biot number. Radiation parameter on the Nusselt number has opposite effects when compared with viscoelastic parameter.

  5. Predicting chemical degradation during storage from two successive concentration ratios: Theoretical investigation.

    PubMed

    Peleg, Micha; Normand, Mark D

    2015-09-01

    When a vitamin's, pigment's or other food component's chemical degradation follows a known fixed order kinetics, and its rate constant's temperature-dependence follows a two parameter model, then, at least theoretically, it is possible to extract these two parameters from two successive experimental concentration ratios determined during the food's non-isothermal storage. This requires numerical solution of two simultaneous equations, themselves the numerical solutions of two differential rate equations, with a program especially developed for the purpose. Once calculated, these parameters can be used to reconstruct the entire degradation curve for the particular temperature history and predict the degradation curves for other temperature histories. The concept and computation method were tested with simulated degradation under rising and/or falling oscillating temperature conditions, employing the exponential model to characterize the rate constant's temperature-dependence. In computer simulations, the method's predictions were robust against minor errors in the two concentration ratios. The program to do the calculations was posted as freeware on the Internet. The temperature profile can be entered as an algebraic expression that can include 'If' statements, or as an imported digitized time-temperature data file, to be converted into an Interpolating Function by the program. The numerical solution of the two simultaneous equations requires close initial guesses of the exponential model's parameters. Programs were devised to obtain these initial values by matching the two experimental concentration ratios with a generated degradation curve whose parameters can be varied manually with sliders on the screen. These programs too were made available as freeware on the Internet and were tested with published data on vitamin A. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Difference and similarity of dielectric relaxation processes among polyols

    NASA Astrophysics Data System (ADS)

    Minoguchi, Ayumi; Kitai, Kei; Nozaki, Ryusuke

    2003-09-01

    Complex permittivity measurements were performed on sorbitol, xylitol, and sorbitol-xylitol mixture in the supercooled liquid state in an extremely wide frequency range from 10 μHz to 500 MHz at temperatures near and above the glass transition temperature. We determined detailed behavior of the relaxation parameters such as relaxation frequency and broadening against temperature not only for the α process but also for the β process above the glass transition temperature, to the best of our knowledge, for the first time. Since supercooled liquids are in the quasi-equilibrium state, the behavior of all the relaxation parameters for the β process can be compared among the polyols as well as those for the α process. The relaxation frequencies of the α processes follow the Vogel-Fulcher-Tammann manner and the loci in the Arrhenius diagram are different corresponding to the difference of the glass transition temperatures. On the other hand, the relaxation frequencies of the β processes, which are often called as the Johari-Goldstein processes, follow the Arrhenius-type temperature dependence. The relaxation parameters for the β process are quite similar among the polyols at temperatures below the αβ merging temperature, TM. However, they show anomalous behavior near TM, which depends on the molecular size of materials. These results suggest that the origin of the β process is essentially the same among the polyols.

  7. Unsteady Convection Flow and Heat Transfer over a Vertical Stretching Surface

    PubMed Central

    Cai, Wenli; Su, Ning; Liu, Xiangdong

    2014-01-01

    This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient. PMID:25264737

  8. Unsteady convection flow and heat transfer over a vertical stretching surface.

    PubMed

    Cai, Wenli; Su, Ning; Liu, Xiangdong

    2014-01-01

    This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient.

  9. Determination of deuterium–tritium critical burn-up parameter by four temperature theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazirzadeh, M.; Ghasemizad, A.; Khanbabei, B.

    Conditions for thermonuclear burn-up of an equimolar mixture of deuterium-tritium in non-equilibrium plasma have been investigated by four temperature theory. The photon distribution shape significantly affects the nature of thermonuclear burn. In three temperature model, the photon distribution is Planckian but in four temperature theory the photon distribution has a pure Planck form below a certain cut-off energy and then for photon energy above this cut-off energy makes a transition to Bose-Einstein distribution with a finite chemical potential. The objective was to develop four temperature theory in a plasma to calculate the critical burn up parameter which depends upon initialmore » density, the plasma components initial temperatures, and hot spot size. All the obtained results from four temperature theory model are compared with 3 temperature model. It is shown that the values of critical burn-up parameter calculated by four temperature theory are smaller than those of three temperature model.« less

  10. Density functional and theoretical study of the temperature and pressure dependency of the plasmon energy of solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attarian Shandiz, M., E-mail: mohammad.attarianshandiz@mail.mcgill.ca; Gauvin, R.

    The temperature and pressure dependency of the volume plasmon energy of solids was investigated by density functional theory calculations. The volume change of crystal is the major factor responsible for the variation of valence electron density and plasmon energy in the free electron model. Hence, to introduce the effect of temperature and pressure for the density functional theory calculations of plasmon energy, the temperature and pressure dependency of lattice parameter was used. Also, by combination of the free electron model and the equation of state based on the pseudo-spinodal approach, the temperature and pressure dependency of the plasmon energy wasmore » modeled. The suggested model is in good agreement with the results of density functional theory calculations and available experimental data for elements with the free electron behavior.« less

  11. Temperature dependent electrical characteristics of Zn/ZnSe/n-GaAs/In structure

    NASA Astrophysics Data System (ADS)

    Sağlam, M.; Güzeldir, B.

    2016-04-01

    We have reported a study of the I-V characteristics of Zn/ZnSe/n-GaAs/In sandwich structure in a wide temperature range of 80-300 K by a step of 20 K, which are prepared by Successive Ionic Layer Adsorption and Reaction (SILAR) method. The main electrical parameters, such as ideality factor and zero-bias barrier height determined from the forward bias I-V characteristics were found strongly depend on temperature and when the increased, the n decreased with increasing temperature. The ideality factor and barrier height values as a function of the sample temperature have been attributed to the presence of the lateral inhomogeneities of the barrier height. Furthermore, the series resistance have been calculated from the I-V measurements as a function of temperature dependent.

  12. On the Reliability of Photovoltaic Short-Circuit Current Temperature Coefficient Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osterwald, Carl R.; Campanelli, Mark; Kelly, George J.

    2015-06-14

    The changes in short-circuit current of photovoltaic (PV) cells and modules with temperature are routinely modeled through a single parameter, the temperature coefficient (TC). This parameter is vital for the translation equations used in system sizing, yet in practice is very difficult to measure. In this paper, we discuss these inherent problems and demonstrate how they can introduce unacceptably large errors in PV ratings. A method for quantifying the spectral dependence of TCs is derived, and then used to demonstrate that databases of module parameters commonly contain values that are physically unreasonable. Possible ways to reduce measurement errors are alsomore » discussed.« less

  13. Annular convective-radiative fins with a step change in thickness, and temperature-dependent thermal conductivity and heat transfer coefficient

    NASA Astrophysics Data System (ADS)

    Barforoush, M. S. M.; Saedodin, S.

    2018-01-01

    This article investigates the thermal performance of convective-radiative annular fins with a step reduction in local cross section (SRC). The thermal conductivity of the fin's material is assumed to be a linear function of temperature, and heat transfer coefficient is assumed to be a power-law function of surface temperature. Moreover, nonzero convection and radiation sink temperatures are included in the mathematical model of the energy equation. The well-known differential transformation method (DTM) is used to derive the analytical solution. An exact analytical solution for a special case is derived to prove the validity of the obtained results from the DTM. The model provided here is a more realistic representation of SRC annular fins in actual engineering practices. Effects of many parameters such as conduction-convection parameters, conduction-radiation parameter and sink temperature, and also some parameters which deal with step fins such as thickness parameter and dimensionless parameter describing the position of junction in the fin on the temperature distribution of both thin and thick sections of the fin are investigated. It is believed that the obtained results will facilitate the design and performance evaluation of SRC annular fins.

  14. Characterization of hot dense plasma with plasma parameters

    NASA Astrophysics Data System (ADS)

    Singh, Narendra; Goyal, Arun; Chaurasia, S.

    2018-05-01

    Characterization of hot dense plasma (HDP) with its parameters temperature, electron density, skin depth, plasma frequency is demonstrated in this work. The dependence of HDP parameters on temperature and electron density is discussed. The ratio of the intensities of spectral lines within HDP is calculated as a function of electron temperature. The condition of weakly coupled for HDP is verified by calculating coupling constant. Additionally, atomic data such as transition wavelength, excitation energies, line strength, etc. are obtained for Be-like ions on the basis of MCDHF method. In atomic data calculations configuration interaction and relativistic effects QED and Breit corrections are newly included for HDP characterization and this is first result of HDP parameters from extreme ultraviolet (EUV) radiations.

  15. Ultrawideband temperature-dependent dielectric properties of animal liver tissue in the microwave frequency range.

    PubMed

    Lazebnik, Mariya; Converse, Mark C; Booske, John H; Hagness, Susan C

    2006-04-07

    The development of ultrawideband (UWB) microwave diagnostic and therapeutic technologies, such as UWB microwave breast cancer detection and hyperthermia treatment, is facilitated by accurate knowledge of the temperature- and frequency-dependent dielectric properties of biological tissues. To this end, we characterize the temperature-dependent dielectric properties of a representative tissue type-animal liver-from 0.5 to 20 GHz. Since discrete-frequency linear temperature coefficients are impractical and inappropriate for applications spanning wide frequency and temperature ranges, we propose a novel and compact data representation technique. A single-pole Cole-Cole model is used to fit the dielectric properties data as a function of frequency, and a second-order polynomial is used to fit the Cole-Cole parameters as a function of temperature. This approach permits rapid estimation of tissue dielectric properties at any temperature and frequency.

  16. Stark parameter dependence of the rest core charge of the emitters for multiply charged ions spectral lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Šćepanović, M., E-mail: mara.scepanovic@gmail.com; Purić, J.

    2016-03-25

    Stark width and shift simultaneous dependence on the upper level ionization potential and rest core charge of the emitter has been evaluated and discussed. It has been verified that the found relations, connecting Stark broadening parameters with upper level ionization potential and rest core charge of the emitters for particular electron temperature and density, can be used for prediction of Stark line width and shift data in case of ions for which observed data, or more detailed calculations, are not yet available. Stark widths and shifts published data are used to demonstrate the existence of other kinds of regularities withinmore » similar spectra of different elements and their ionization stages. The emphasis is on the Stark parameter dependence on the upper level ionization potential and on the rest core charge for the lines from similar spectra of multiply charged ions. The found relations connecting Stark widths and shift parameters with upper level ionization potential, rest core charge and electron temperature were used for a prediction of new Stark broadening data, thus avoiding much more complicated procedures.« less

  17. Semi-empirical anzatz for Helmholtz free energy calculation: Thermal properties of silver along shock Hugoniot

    NASA Astrophysics Data System (ADS)

    Joshi, R. H.; Thakore, B. Y.; Bhatt, N. K.; Vyas, P. R.; Jani, A. R.

    2018-02-01

    A density functional theory along with electronic contribution is used to compute quasiharmonic total energy for silver, whereas explicit phonon anharmonic contribution is added through perturbative term in temperature. Within the Mie-Grüneisen approach, we propose a consistent computational scheme for calculating various thermophysical properties of a substance, in which the required Grüneisen parameter γth is calculated from the knowledge of binding energy. The present study demonstrates that no separate relation for volume dependence for γth is needed, and complete thermodynamics under simultaneous high-temperature and high-pressure condition can be derived in a consistent manner. We have calculated static and dynamic equation of states and some important thermodynamic properties along the shock Hugoniot. A careful examination of temperature dependence of Grüneisen parameter reveals the importance of temperature-effect on various thermal properties.

  18. Influence of the temperature on the composites' fusion bonding quality

    NASA Astrophysics Data System (ADS)

    Harkous, Ali; Jurkowski, Tomasz; Bailleul, Jean-Luc; Le Corre, Steven

    2017-10-01

    Thermoplastic composite parts are increasingly used to replace metal pieces in automotive field due to their mechanical properties, chemical properties and recycling potential [1]. To assemble and give them new mechanical functions, fusion bonding is often used. It is a type of welding carried out at a higher temperature than the fusion one [2]. The mechanical quality of the final adhesion depends on the process parameters like pressure, temperature and cycle time [3]. These parameters depend on two phenomena at the origin of the bonding formation: intimate contact [4] and reptation and healing [5]. In this study, we analyze the influence of the temperature on the bonding quality, disregarding in this first steps the pressure influence. For that, two polyamide composite parts are welded using a specific setup. Then, they undergo a mechanical test of peeling in order to quantify the adhesion quality.

  19. Temperature of surface waters in the conterminous United States

    USGS Publications Warehouse

    Blakey, James F.

    1966-01-01

    Temperature is probably the most important, but least discussed, parameter in determining water quality. The purpose of this report is to present the average or most probable temperatures of surface waters in the conterminous United States and to cite factors that affect and are affected by water temperature. Temperature is related, usually directly, to all the chemical, physical, and biological properties of water. The ability of water to dissolve or precipitate materials is temperature dependent, the ability of water to transport or deposit suspended material is temperature dependent, and the aquatic life of a lake or stream may thrive or die because of the water temperature.Everyone is concerned, though often unknowingly, about water temperature. The amount and type of treatment necessary for a municipal supply are temperature dependent; therefore it affects the consumer cost. Temperature determines the volume of cooling water needed for industrial processes and steampower generation. Conservation and recreation practices are affected by water temperature, and the farmers' irrigation practices and livestock production may be affected by the water temperature.

  20. Temperature-dependent biological and demographic parameters of Coleomegilla maculata (Coleoptera: Coccinellidae)

    USDA-ARS?s Scientific Manuscript database

    The temperature requirements for development and the optimal range of temperatures for growth and reproduction of Coleomegilla maculata De Geer were studied. The development time of individual C. maculata larvae were determined at 18, 21, 24, 27, 30, 33, and 36°C. Development times were converted to...

  1. Tensile Strength of Carbon Nanotubes Under Realistic Temperature and Strain Rate

    NASA Technical Reports Server (NTRS)

    Wei, Chen-Yu; Cho, Kyeong-Jae; Srivastava, Deepak; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Strain rate and temperature dependence of the tensile strength of single-wall carbon nanotubes has been investigated with molecular dynamics simulations. The tensile failure or yield strain is found to be strongly dependent on the temperature and strain rate. A transition state theory based predictive model is developed for the tensile failure of nanotubes. Based on the parameters fitted from high-strain rate and temperature dependent molecular dynamics simulations, the model predicts that a defect free micrometer long single-wall nanotube at 300 K, stretched with a strain rate of 1%/hour, fails at about 9 plus or minus 1% tensile strain. This is in good agreement with recent experimental findings.

  2. Effects of medium on nuclear properties in multifragmentation

    NASA Astrophysics Data System (ADS)

    De, J. N.; Samaddar, S. K.; Viñas, X.; Centelles, M.; Mishustin, I. N.; Greiner, W.

    2012-08-01

    In multifragmentation of hot nuclear matter, properties of fragments embedded in a soup of nucleonic gas and other fragments should be modified as compared with isolated nuclei. Such modifications are studied within a simple model where only nucleons and one kind of heavy nuclei are considered. The interaction between different species is described with a momentum-dependent two-body potential whose parameters are fitted to reproduce properties of cold isolated nuclei. The internal energy of heavy fragments is parametrized according to a liquid-drop model with density- and temperature-dependent parameters. Calculations are carried out for several subnuclear densities and moderate temperatures, for isospin-symmetric and asymmetric systems. We find that the fragments get stretched due to interactions with the medium and their binding energies decrease with increasing temperature and density of nuclear matter.

  3. Periodic MHD flow with temperature dependent viscosity and thermal conductivity past an isothermal oscillating cylinder

    NASA Astrophysics Data System (ADS)

    Ahmed, Rubel; Rana, B. M. Jewel; Ahmmed, S. F.

    2017-06-01

    Temperature dependent viscosity and thermal conducting heat and mass transfer flow with chemical reaction and periodic magnetic field past an isothermal oscillating cylinder have been considered. The partial dimensionless equations governing the flow have been solved numerically by applying explicit finite difference method with the help Compaq visual 6.6a. The obtained outcome of this inquisition has been discussed for different values of well-known flow parameters with different time steps and oscillation angle. The effect of chemical reaction and periodic MHD parameters on the velocity field, temperature field and concentration field, skin-friction, Nusselt number and Sherwood number have been studied and results are presented by graphically. The novelty of the present problem is to study the streamlines by taking into account periodic magnetic field.

  4. Non-isothermal crystallization kinetics of ternary Se90Te10-xPbx glasses

    NASA Astrophysics Data System (ADS)

    Atyia, H. E.; Farid, A. S.

    2016-02-01

    Ternary Se90Te10-xPbx with (x=2 and 6 at%) glass compositions have been prepared using a melt quenching technique and performed the non-isothermal kinetics by differential thermal analysis (DTA) at various heating rates. The glassy state of the studied samples has been characterized using x-ray diffraction analysis. The glass transition temperature Tg, the onset temperature of crystallization Tc and the peak temperature of crystallization Tp are found to be composition and heating rate dependent. From heating rate dependence of Tg and Tp, the glass transition activation energies Eg and the crystallization activation energies Ec have been determined according to different methods. The transformation mechanisms have been examined by the values of Avrami exponent n and dimensionality of growth m. Thermal stability and glass formation ability have been monitored through the calculation of the thermal stability S, temperature difference ΔT, Hurby parameter Hr, frequency factor Ko, crystallization rate factor K and fragility index F. The compositional dependence of the above-mentioned parameters indicate that, the stability of the studied glass samples decreases with increasing Pb at% content.

  5. Hansen solubility parameters for polyethylene glycols by inverse gas chromatography.

    PubMed

    Adamska, Katarzyna; Voelkel, Adam

    2006-11-03

    Inverse gas chromatography (IGC) has been applied to determine solubility parameter and its components for nonionic surfactants--polyethylene glycols (PEG) of different molecular weight. Flory-Huggins interaction parameter (chi) and solubility parameter (delta(2)) were calculated according to DiPaola-Baranyi and Guillet method from experimentally collected retention data for the series of carefully selected test solutes. The Hansen's three-dimensional solubility parameters concept was applied to determine components (delta(d), delta(p), delta(h)) of corrected solubility parameter (delta(T)). The molecular weight and temperature of measurement influence the solubility parameter data, estimated from the slope, intercept and total solubility parameter. The solubility parameters calculated from the intercept are lower than those calculated from the slope. Temperature and structural dependences of the entopic factor (chi(S)) are presented and discussed.

  6. Solvent induced temperature dependencies of NMR parameters of hydrogen bonded anionic clusters

    NASA Astrophysics Data System (ADS)

    Golubev, Nikolai S.; Shenderovich, Ilja G.; Tolstoy, Peter M.; Shchepkin, Dmitry N.

    2004-07-01

    The solvent induced temperature dependence of NMR parameters (proton and fluorine chemical shifts, the two-bond scalar spin coupling constant across the hydrogen bridge, 2hJFF) for dihydrogen trifluoride anion, (FH) 2F -, in a polar aprotic solvent, CDF 3/CDF 2Cl, is reported and discussed. The results are interpreted in terms of a simple electrostatic model, accounting a decrease of electrostatic repulsion of two negatively charged fluorine atoms on placing into a dielectric medium. The conclusion is drawn that polar medium causes some contraction of hydrogen bonds in ionic clusters combined with a decrease of hydrogen bond asymmetry.

  7. The temperature dependence of the conductivity peak values in the single and the double quantum well nanostructures n-InGaAs/GaAs after IR-illumination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arapov, Yu. G.; Gudina, S. V.; Klepikova, A. S., E-mail: klepikova@imp.uran.ru

    2017-02-15

    The dependences of the longitudinal and Hall resistances on a magnetic field in n-InGaAs/GaAs heterostructures with a single and double quantum wells after infrared illumination are measured in the range of magnetic fields Ð’ = 0–16 T and temperatures T = 0.05–4.2 K. Analysis of the experimental results was carried out on a base of two-parameter scaling hypothesis for the integer quantum Hall effect. The value of the second (irrelevant) critical exponent of the theory of two-parameter scaling was estimated.

  8. Characterisation of temperature dependent parameters of multi-quantum well (MQW) Ti/Au/n-AlGaAs/n-GaAs/n-AlGaAs Schottky diodes

    NASA Astrophysics Data System (ADS)

    Filali, Walid; Sengouga, Nouredine; Oussalah, Slimane; Mari, Riaz H.; Jameel, Dler; Al Saqri, Noor Alhuda; Aziz, Mohsin; Taylor, David; Henini, Mohamed

    2017-11-01

    Forward and reverse current-voltage (Isbnd V) of Ti/Au/n-Al0.33Ga0.67As/n-GaAs/n-Al0.33Ga0.67As multi-quantum well (MQW) Schottky diodes were measured over a range of temperatures from 20 to 400 K by a step of 20 K. The Schottky diodes parameters were then extracted from these characteristics. The Cheung method is used for this purpose, assuming a thermionic conduction mechanism. The extracted ideality factor decrease with increasing temperatures. But their values at low temperatures were found to be unrealistic. In order to explain this uncertainty, three assumptions were explored. Firstly an assumed inhomogeneous barrier height gave better parameters especially the Richardson constant but the ideality factor is still unrealistic at low temperatures. Secondly, by using numerical simulation, it was demonstrated that defects including interface states are not responsible for the apparent unrealistic Schottky diode parameters. The third assumption is the tunnelling mechanism through the barrier in the low temperature range. At these lower temperatures, the tunnelling mechanism was more suitable to explain the extracted parameters values.

  9. Temperature affects transport of polysaccharides and proteins in articular cartilage explants.

    PubMed

    Moeini, Mohammad; Lee, Kwan-Bong; Quinn, Thomas M

    2012-07-26

    Solute transport phenomena mediate many aspects of the physiology and contrast agent-based clinical imaging of articular cartilage. Temperatures up to 10°C below standard body temperature (37°C) are common in articulating joints during normal activities and clinically (e.g. cold treatment of injuries). Therefore it is of interest to characterize the effects of temperature changes on solute transport parameters in cartilage. A range of fluorescent solutes including fluorescein isothiocyanate, 4 and 40kDa dextrans, myoglobin, insulin and chondroitin sulfate were prepared and used in assays of solute effective partition coefficient and effective diffusivity in bovine intermediate zone articular cartilage explants maintained at 10, 22 or 37°C. Trends for increasing partition coefficient with increasing temperature were evident for all solutes except chondroitin sulfate, with significant changes between 22 and 37°C for 4kDa dextran, insulin and myoglobin. Diffusivities of most solutes tested also tended to increase with increasing temperature, with significant changes between 10 and 22°C for FITC, 40kDa dextran and myoglobin. Oddly, insulin diffusivity decreased significantly as temperature increased from 22 to 37°C while chondroitin sulfate diffusivity exhibited no clear temperature dependence. These results highlight solute-specific temperature dependences of transport phenomena which may depend upon molecular weight, chemical structure, molecular conformation, and solute-matrix and solute-solute interactions. The articular cartilage explants themselves exhibited small but significant changes in water and glycosaminoglycan contents during experiments, underscoring the importance of solute-matrix interactions. Solute transport parameters in cartilage and their temperature dependences are therefore not easily predicted, and case-by-case experimental determination may be essential. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Empirical evidence that metabolic theory describes the temperature dependency of within-host parasite dynamics.

    PubMed

    Kirk, Devin; Jones, Natalie; Peacock, Stephanie; Phillips, Jessica; Molnár, Péter K; Krkošek, Martin; Luijckx, Pepijn

    2018-02-01

    The complexity of host-parasite interactions makes it difficult to predict how host-parasite systems will respond to climate change. In particular, host and parasite traits such as survival and virulence may have distinct temperature dependencies that must be integrated into models of disease dynamics. Using experimental data from Daphnia magna and a microsporidian parasite, we fitted a mechanistic model of the within-host parasite population dynamics. Model parameters comprising host aging and mortality, as well as parasite growth, virulence, and equilibrium abundance, were specified by relationships arising from the metabolic theory of ecology. The model effectively predicts host survival, parasite growth, and the cost of infection across temperature while using less than half the parameters compared to modeling temperatures discretely. Our results serve as a proof of concept that linking simple metabolic models with a mechanistic host-parasite framework can be used to predict temperature responses of parasite population dynamics at the within-host level.

  11. Empirical evidence that metabolic theory describes the temperature dependency of within-host parasite dynamics

    PubMed Central

    Jones, Natalie; Peacock, Stephanie; Phillips, Jessica; Molnár, Péter K.; Krkošek, Martin; Luijckx, Pepijn

    2018-01-01

    The complexity of host–parasite interactions makes it difficult to predict how host–parasite systems will respond to climate change. In particular, host and parasite traits such as survival and virulence may have distinct temperature dependencies that must be integrated into models of disease dynamics. Using experimental data from Daphnia magna and a microsporidian parasite, we fitted a mechanistic model of the within-host parasite population dynamics. Model parameters comprising host aging and mortality, as well as parasite growth, virulence, and equilibrium abundance, were specified by relationships arising from the metabolic theory of ecology. The model effectively predicts host survival, parasite growth, and the cost of infection across temperature while using less than half the parameters compared to modeling temperatures discretely. Our results serve as a proof of concept that linking simple metabolic models with a mechanistic host–parasite framework can be used to predict temperature responses of parasite population dynamics at the within-host level. PMID:29415043

  12. CdO thin films based on the annealing temperature differences prepared by sol-gel method and their heterojunction devices

    NASA Astrophysics Data System (ADS)

    Soylu, M.; Yazici, T.

    2017-12-01

    Undoped CdO films were prepared on glass substrate and p-type silicon wafer using sol-gel spin coating method. The structural and optical properties of the films were investigated as a function of the annealing temperature. X-ray diffraction (XRD) patterns reveal that the films are formed from CdO with cubic crystal structure and (1 1 1) preferred orientation. It is seen that good crystallinity is due to the high annealing temperature. The surface morphology of the CdO films was found to be depending on the annealing temperature, showing cauliflower like structure. Optical band gaps for annealing temperature of 250 °C and 450 °C were found to be 2.49 eV and 2.27 eV, respectively, showing a decrease with raising temperature. Optics parameters such as extinction coefficient, refractive index, and surface-volume energy loss were determined with spectrophotometric analysis as a function of annealing temperature. CdO/p-Si heterojunction structure showed weak rectifying behavior. The diode parameters were found to be depending on annealing temperature. The results are encouraging to get better conjunction with CdO thin film component at optimize annealing temperature.

  13. Concurrent hyperthermia estimation schemes based on extended Kalman filtering and reduced-order modelling.

    PubMed

    Potocki, J K; Tharp, H S

    1993-01-01

    The success of treating cancerous tissue with heat depends on the temperature elevation, the amount of tissue elevated to that temperature, and the length of time that the tissue temperature is elevated. In clinical situations the temperature of most of the treated tissue volume is unknown, because only a small number of temperature sensors can be inserted into the tissue. A state space model based on a finite difference approximation of the bioheat transfer equation (BHTE) is developed for identification purposes. A full-order extended Kalman filter (EKF) is designed to estimate both the unknown blood perfusion parameters and the temperature at unmeasured locations. Two reduced-order estimators are designed as computationally less intensive alternatives to the full-order EKF. Simulation results show that the success of the estimation scheme depends strongly on the number and location of the temperature sensors. Superior results occur when a temperature sensor exists in each unknown blood perfusion zone, and the number of sensors is at least as large as the number of unknown perfusion zones. Unacceptable results occur when there are more unknown perfusion parameters than temperature sensors, or when the sensors are placed in locations that do not sample the unknown perfusion information.

  14. Beth-Uhlenbeck approach for repulsive interactions between baryons in a hadron gas

    NASA Astrophysics Data System (ADS)

    Vovchenko, Volodymyr; Motornenko, Anton; Gorenstein, Mark I.; Stoecker, Horst

    2018-03-01

    The quantum mechanical Beth-Uhlenbeck (BU) approach for repulsive hard-core interactions between baryons is applied to the thermodynamics of a hadron gas. The second virial coefficient a2—the "excluded volume" parameter—calculated within the BU approach is found to be temperature dependent, and it differs dramatically from the classical excluded volume (EV) model result. At temperatures T =100 -200 MeV, the widely used classical EV model underestimates the EV parameter for nucleons at a given value of the nucleon hard-core radius by large factors of 3-4. Previous studies, which employed the hard-core radii of hadrons as an input into the classical EV model, have to be re-evaluated using the appropriately rescaled EV parameters. The BU approach is used to model the repulsive baryonic interactions in the hadron resonance gas (HRG) model. Lattice data for the second- and fourth-order net baryon susceptibilities are described fairly well when the temperature dependent BU baryonic excluded volume parameter corresponds to nucleon hard-core radii of rc=0.25 -0.3 fm. Role of the attractive baryonic interactions is also considered. It is argued that HRG model with a constant baryon-baryon EV parameter vN N≃1 fm3 provides a simple yet efficient description of baryon-baryon interaction in the crossover temperature region.

  15. A Rigorous Temperature-Dependent Stochastic Modelling and Testing for MEMS-Based Inertial Sensor Errors.

    PubMed

    El-Diasty, Mohammed; Pagiatakis, Spiros

    2009-01-01

    In this paper, we examine the effect of changing the temperature points on MEMS-based inertial sensor random error. We collect static data under different temperature points using a MEMS-based inertial sensor mounted inside a thermal chamber. Rigorous stochastic models, namely Autoregressive-based Gauss-Markov (AR-based GM) models are developed to describe the random error behaviour. The proposed AR-based GM model is initially applied to short stationary inertial data to develop the stochastic model parameters (correlation times). It is shown that the stochastic model parameters of a MEMS-based inertial unit, namely the ADIS16364, are temperature dependent. In addition, field kinematic test data collected at about 17 °C are used to test the performance of the stochastic models at different temperature points in the filtering stage using Unscented Kalman Filter (UKF). It is shown that the stochastic model developed at 20 °C provides a more accurate inertial navigation solution than the ones obtained from the stochastic models developed at -40 °C, -20 °C, 0 °C, +40 °C, and +60 °C. The temperature dependence of the stochastic model is significant and should be considered at all times to obtain optimal navigation solution for MEMS-based INS/GPS integration.

  16. Temperature dependence of quantized states in an In0.86Ga0.14As0.3P0.7/InP quantum well heterostructure

    NASA Astrophysics Data System (ADS)

    Li, C. F.; Lin, D. Y.; Huang, Y. S.; Chen, Y. F.; Tiong, K. K.

    1997-01-01

    Piezoreflectance (PzR) and contactless electroreflectance (CER) measurements of an In0.86Ga0.14As0.3P0.7/InP quantum well heterostructure as a function of temperature in the range of 20-300 K have been carried out. A careful analysis of the PzR and CER spectra has led to the identification of various excitonic transitions, mnH(L), between the mth conduction band state and the nth heavy (light)-hole band state. The parameters that describe the temperature dependence of EmnH(L) are evaluated. A detailed study of the temperature variation of excitonic transition energies indicates that the main influence of temperature on quantized transitions is through the temperature dependence of the band gap of the constituent material in the well. The temperature dependence of the linewidth of 11H exciton is evaluated and compared with that of the bulk material.

  17. Temperature dependence of quantized states in strained-layer In0.21Ga0.79As/GaAs single quantum well

    NASA Astrophysics Data System (ADS)

    Chi, Wuh-Sheng; Huang, Ying-Sheng; Qiang, Hao; Pollak, Fred H.; Pettit, David G.; Woodall, Jerry M.

    1994-02-01

    The piezoreflectance (PzR) and photoreflectance (PR) measurements of a strained-layer (001) In0.21Ga0.79As/GaAs single quantum well as a function of temperature in the range of 20 to 300 K have been carried out. A careful analysis of the PzR and PR spectra has led to the identification of various excitonic transitions, mnH(L), between the mth conduction band state to the nth heavy (light)-hole band state. The parameters that describe the temperature dependence of E(sub mnH(L)) are evaluated. The detailed study of the temperature variation of excitonic transition energies indicates that the main influence of temperature on quantized transitions is through the temperature dependence of the band gap of the constituent material in the well. The temperature dependence of the linewidth of the 11H exciton is evaluated and compared with that of the bulk material.

  18. Temperature Dependence of Quantized States in Strained-Layer In0.21Ga0.79As/GaAs Single Quantum Well

    NASA Astrophysics Data System (ADS)

    Chi, Wuh-Sheng; Huang, Ying-Sheng; Qiang, Hao; Pollak, Fred; Pettit, David; Woodall, Jerry

    1994-02-01

    The piezoreflectance (PzR) and photoreflectance (PR) measurements of a strained-layer (001) In0.21Ga0.79As/GaAs single quantum well as a function of temperature in the range of 20 to 300 K have been carried out. A careful analysis of the PzR and PR spectra has led to the identification of various excitonic transitions, mnH(L), between the mth conduction band state to the nth heavy (light)-hole band state. The parameters that describe the temperature dependence of E mnH(L) are evaluated. The detailed study of the temperature variation of excitonic transition energies indicates that the main influence of temperature on quantized transitions is through the temperature dependence of the band gap of the constituent material in the well. The temperature dependence of the linewidth of the 11H exciton is evaluated and compared with that of the bulk material.

  19. Temperature Dependence in the Terahertz Spectrum of Nicotinamide: Anharmonicity and Hydrogen-Bonded Network.

    PubMed

    Takahashi, Masae; Okamura, Nubuyuki; Fan, Xinyi; Shirakawa, Hitoshi; Minamide, Hiroaki

    2017-04-06

    We have investigated the terahertz-spectral property of nicotinamide focusing on the temperature dependence in the range of 14-300 K. We observed that almost all peaks in the terahertz spectrum of the nicotinamide crystal showed a remarkable shift with temperature, whereas the lowest-frequency peak at 34.8 cm -1 showed a negligible shift with temperature. By analyzing the terahertz spectrum with the dispersion-corrected density functional theory calculations, we found that the difference in the temperature dependence of the peak shift is well understood in terms of the presence/absence of stretching vibration of the intermolecular hydrogen bond in the mode and the change of cell parameters. The anharmonicity in the dissociation potential energy of very weak intermolecular hydrogen bonding causes the remarkable peak shift with temperature in the terahertz spectrum of nicotinamide. This finding suggests that the assignment and identification of peaks in the terahertz spectrum are systematically enabled by temperature-dependent measurements.

  20. Features of changes in electrophysical properties of silicon under the influence of thermal treatment

    NASA Astrophysics Data System (ADS)

    Gaidar, G. P.; Baranskii, P. I.

    2018-06-01

    The influence of the annealing temperatures and cooling rates of n-silicon crystals, grown by the Czochralski method and doped with phosphorus impurity, on their electric and thermoelectric properties was studied. In the region of predominantly impurity scattering a more essential dependence of the charge carrier mobility on the cooling conditions of crystals was established in comparison with the dependence on the annealing temperature. The analysis of the measurement results of tensoresistance and tenso-thermo-emf was carried out, on the basis of which the dependence of the anisotropy parameter of drag thermo-emf on the cooling rate was obtained. The feature of the anisotropy parameter of thermo-emf M in the form of its maximal deviation from the linear dependence M = M(lg(υcl)) was revealed in the region of cooling rates from 8 to 15 K/min.

  1. Method and device for predicting wavelength dependent radiation influences in thermal systems

    DOEpatents

    Kee, Robert J.; Ting, Aili

    1996-01-01

    A method and apparatus for predicting the spectral (wavelength-dependent) radiation transport in thermal systems including interaction by the radiation with partially transmitting medium. The predicted model of the thermal system is used to design and control the thermal system. The predictions are well suited to be implemented in design and control of rapid thermal processing (RTP) reactors. The method involves generating a spectral thermal radiation transport model of an RTP reactor. The method also involves specifying a desired wafer time dependent temperature profile. The method further involves calculating an inverse of the generated model using the desired wafer time dependent temperature to determine heating element parameters required to produce the desired profile. The method also involves controlling the heating elements of the RTP reactor in accordance with the heating element parameters to heat the wafer in accordance with the desired profile.

  2. Atomistic modelling of magnetic nano-granular thin films

    NASA Astrophysics Data System (ADS)

    Agudelo-Giraldo, J. D.; Arbeláez-Echeverry, O. D.; Restrepo-Parra, E.

    2018-03-01

    In this work, a complete model for studying the magnetic behaviour of polycrystalline thin films at nanoscale was processed. This model includes terms as exchange interaction, dipolar interaction and various types of anisotropies. For the first term, exchange interaction dependence of the distance n was used with purpose of quantify the interaction, mainly in grain boundaries. The third term includes crystalline, surface and boundary anisotropies. Special attention was paid to the disorder vector that determines the loss of cubic symmetry in the crystalline structure. For the case of the dipolar interaction, a similar implementation of the fast multiple method (FMM) was performed. Using these tools, modelling and simulations were developed varying the number of grains, and the results obtained presented a great dependence of the magnetic properties on this parameter. Comparisons between critical temperature and magnetization of saturation depending on the number of grains were performed for samples with and without factors as the surface and boundary anisotropies, and the dipolar interaction. It was observed that the inclusion of these parameters produced a decrease in the critical temperature and the magnetization of saturation; furthermore, in both cases, including and not including the disorder parameters, not only the critical temperature, but also the magnetization of saturation exhibited a range of values that also depend on the number of grains. This presence of a critical interval is due to each grain can transit toward the ferromagnetic state at different values of critical temperature. The processes of Zero field cooling (ZFC), Field cooling (FCC) and field cooling in warming mode (FCW) were necessary for understanding the mono-domain regime around of transition temperature, due to the high probabilities of a Super-paramagnetic (SPM) state.

  3. Magnetized liquid 3He at finite temperature: A variational calculation approach

    NASA Astrophysics Data System (ADS)

    Bordbar, Gholam Hossein; Mohammadi Sabet, Mohammad Taghi

    2016-08-01

    Using the spin-dependent (SD) and spin-independent (SI) correlation functions, we have investigated the properties of liquid 3He in the presence of magnetic field at finite temperature. Our calculations have been done using the variational method based on cluster expansion of the energy functional. Our results show that the low field magnetic susceptibility obeys Curie law at high temperatures. This behavior is in a good agreement with the experimental data as well as the molecular field theory results in which the spin dependency has been introduced in correlation function. Reduced susceptibility as a function of temperature as well as reduced temperature has been also investigated, and again we have seen that the spin-dependent correlation function leads to a good agreement with the experimental data. The Landau parameter, F0a, has been calculated, and for this parameter, a value about - 0.75 has been found in the case of spin-spin correlation. In the case of spin-independent correlation function, this value is about - 0.7. Therefore, inclusion of spin dependency in the correlation function leads to a more compatible value of F0a with experimental data. The magnetization and susceptibility of liquid 3He have also been investigated as a function of magnetic field. Our results show a downward curvature in magnetization of system with spin-dependent correlation for all densities and relevant temperatures. A metamagnetic behavior has been observed as a maximum in susceptibility versus magnetic field, when the spin-spin correlation has been considered. This maximum occurs at 45T ≤ B ≤ 100T for all densities and temperatures. This behavior has not been observed in the case of spin-independent correlation function.

  4. Analysis and Sizing for Transient Thermal Heating of Insulated Aerospace Vehicle Structures

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.

    2012-01-01

    An analytical solution was derived for the transient response of an insulated structure subjected to a simplified heat pulse. The solution is solely a function of two nondimensional parameters. Simpler functions of these two parameters were developed to approximate the maximum structural temperature over a wide range of parameter values. Techniques were developed to choose constant, effective thermal properties to represent the relevant temperature and pressure-dependent properties for the insulator and structure. A technique was also developed to map a time-varying surface temperature history to an equivalent square heat pulse. Equations were also developed for the minimum mass required to maintain the inner, unheated surface below a specified temperature. In the course of the derivation, two figures of merit were identified. Required insulation masses calculated using the approximate equation were shown to typically agree with finite element results within 10%-20% over the relevant range of parameters studied.

  5. An Analytical Solution for Transient Thermal Response of an Insulated Structure

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.

    2012-01-01

    An analytical solution was derived for the transient response of an insulated aerospace vehicle structure subjected to a simplified heat pulse. This simplified problem approximates the thermal response of a thermal protection system of an atmospheric entry vehicle. The exact analytical solution is solely a function of two non-dimensional parameters. A simpler function of these two parameters was developed to approximate the maximum structural temperature over a wide range of parameter values. Techniques were developed to choose constant, effective properties to represent the relevant temperature and pressure-dependent properties for the insulator and structure. A technique was also developed to map a time-varying surface temperature history to an equivalent square heat pulse. Using these techniques, the maximum structural temperature rise was calculated using the analytical solutions and shown to typically agree with finite element simulations within 10 to 20 percent over the relevant range of parameters studied.

  6. Study and Optimization of CPT Resonance Parameters in 87 Rb/Ar/Ne Microcells Aimed for Application in Metrology

    NASA Astrophysics Data System (ADS)

    Masian, Y.; Sivak, A.; Sevostianov, D.; Vassiliev, V.; Velichansky, V.

    The paper shows the presents results of studies of small-size rubidium cells with argon and neon buffer gases, produced by a patent pended technique of laser welding [Fishman et al. (2014)]. Cells were designed for miniature frequency standard. Temperature dependence of the frequency of the coherent population trapping (CPT) resonance was measured and used to optimize the ratio of partial pressures of buffer gases. The influence of duration and regime of annealing on the CPT-resonance frequency drift was investigated. The parameters of the FM modulation of laser current for two cases which correspond to the highest amplitude of CPT resonance and to the smallest light shifts of the resonance frequency were determined. The temperature dependences of the CPT resonance frequency were found to be surprisingly different in the two cases. A non-linear dependence of CPT resonance frequency on the temperature of the cell with the two extremes was revealed for one of these cases.

  7. Magnetic moment of solar plasma and the Kelvin force: -The driving force of plasma up-flow -

    NASA Astrophysics Data System (ADS)

    Shibasaki, Kiyoto

    2017-04-01

    Thermal plasma in the solar atmosphere is magnetized (diamagnetic). The magnetic moment does not disappear by collisions because complete gyration is not a necessary condition to have magnetic moment. Magnetized fluid is subjected to Kelvin force in non-uniform magnetic field. Generally, magnetic field strength decreases upwards in the solar atmosphere, hence the Kelvin force is directed upwards along the field. This force is not included in the fluid treatment of MHD. By adding the Kelvin force to the MHD equation of motion, we can expect temperature dependent plasma flows along the field which are reported by many observations. The temperature dependence of the flow speed is explained by temperature dependence of magnetic moment. From the observed parameters, we can infer physical parameters in the solar atmosphere such as scale length of the magnetic field strength and the friction force acting on the flowing plasma. In case of closed magnetic field lines, loop-top concentration of hot plasma is expected which is frequently observed.

  8. Temperature-dependent μ-Raman investigation of struvite crystals.

    PubMed

    Prywer, Jolanta; Kasprowicz, D; Runka, T

    2016-04-05

    The effect of temperature on the vibrational properties of struvite crystals grown from silica gels was systematically studied by μ-Raman spectroscopy. The time-dependent Raman spectra recorded in the process of long time annealing of struvite crystal at 353 K do not indicate structural changes in the struvite crystal with the time of annealing. The temperature-dependent Raman spectra recorded in the range 298-423 K reveal a phase transition in struvite at about 368 K. Above this characteristic temperature, some of bands assigned to vibrations of the PO4 and NH4 tetrahedra and water molecules observed in the Raman spectra in low temperatures (orthorhombic phase) change their spectral parameters or disappear, which indicates a transition to a higher symmetry structure of struvite in the range of high temperatures. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Progressive failure site generation in AlGaN/GaN high electron mobility transistors under OFF-state stress: Weibull statistics and temperature dependence

    NASA Astrophysics Data System (ADS)

    Sun, Huarui; Bajo, Miguel Montes; Uren, Michael J.; Kuball, Martin

    2015-01-01

    Gate leakage degradation of AlGaN/GaN high electron mobility transistors under OFF-state stress is investigated using a combination of electrical, optical, and surface morphology characterizations. The generation of leakage "hot spots" at the edge of the gate is found to be strongly temperature accelerated. The time for the formation of each failure site follows a Weibull distribution with a shape parameter in the range of 0.7-0.9 from room temperature up to 120 °C. The average leakage per failure site is only weakly temperature dependent. The stress-induced structural degradation at the leakage sites exhibits a temperature dependence in the surface morphology, which is consistent with a surface defect generation process involving temperature-associated changes in the breakdown sites.

  10. Diffusive and subdiffusive dynamics of indoor microclimate: a time series modeling.

    PubMed

    Maciejewska, Monika; Szczurek, Andrzej; Sikora, Grzegorz; Wyłomańska, Agnieszka

    2012-09-01

    The indoor microclimate is an issue in modern society, where people spend about 90% of their time indoors. Temperature and relative humidity are commonly used for its evaluation. In this context, the two parameters are usually considered as behaving in the same manner, just inversely correlated. This opinion comes from observation of the deterministic components of temperature and humidity time series. We focus on the dynamics and the dependency structure of the time series of these parameters, without deterministic components. Here we apply the mean square displacement, the autoregressive integrated moving average (ARIMA), and the methodology for studying anomalous diffusion. The analyzed data originated from five monitoring locations inside a modern office building, covering a period of nearly one week. It was found that the temperature data exhibited a transition between diffusive and subdiffusive behavior, when the building occupancy pattern changed from the weekday to the weekend pattern. At the same time the relative humidity consistently showed diffusive character. Also the structures of the dependencies of the temperature and humidity data sets were different, as shown by the different structures of the ARIMA models which were found appropriate. In the space domain, the dynamics and dependency structure of the particular parameter were preserved. This work proposes an approach to describe the very complex conditions of indoor air and it contributes to the improvement of the representative character of microclimate monitoring.

  11. Temperature dependence of Lorentz air-broadening and pressure-shift coefficients of (12)CH4 lines in the 2.3-micron spectral region

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Smith, M. A. H.; Rinsland, C. P.

    1994-01-01

    High-resolution (0.01/cm) absorption spectra of lean mixtures of CH4 in dry air were recorded with the McMath-Pierce Fourier transform spectrometer (FTS) of the National Solar Observatory on Kitt Peak at various temperatures between 24 and -61 C. The spectra have been analyzed to determine the values at room temperature of pressure-broadened widths and pressure-induced shifts of more than 740 transitions. The temperature dependence of air-broadened widths and pressure-induced shifts was deduced for approx. 370 transitions in the nu(sub 1) + nu(sub 4), nu(sub 3) + nu(sub 4), and nu(sub 2) + nu(sub 3) bands of (12)CH4 located between 4118 and 4615/cm. These results were obtained by analyzing a total of 29 spectra simultaneously using a multi-spectral non-linear least-squares fitting technique. This new technique allowed the determination of correlated spectral line parameters (e.g. intensity and broadening coefficient) better than the procedure of averaging values obtained by fitting the spectra individually. This method also provided a direct determination of the uncertainties in the retrieved parameters due to random errors. For each band analysed in this study the dependence of the various spectral line parameters upon the tetrahedral symmetry species and the rotational quantum numbers of the transitions is also presented.

  12. Scaling and Thermal Evolution of Internally Heated Planets: Yield Stress and Thermal History.

    NASA Astrophysics Data System (ADS)

    Weller, M. B.; Lenardic, A.; Moore, W. B.

    2014-12-01

    Using coupled 3D mantle convection and planetary tectonics models of bi-stable systems, we show how system behaviors for mobile-lid and stagnant-lid states scale as functions of internal heating rates (Q) and basal Ra (Rab). With parameter ranges for temperature- and depth-dependant viscosities: 1e4 - 3e4, Rab: 1e5- 3e5, Q: 0 - 100, and yield stress: 1e4 - 2e5, it can be shown the internal temperatures, velocities, heat fluxes, and system behaviors for mobile-lid and stagnant-lid states diverge, for equivalent parameter values, as a function of increasing Q. For the mobile-lid regime, yielding behavior in the upper boundary layer strongly influences the dynamics of the system. Internal temperatures, and consequently temperature-dependant viscosities, vary strongly as a function of yield stress for a given Q. The temperature distribution across the upper and lower mantles are sub-adiabatic for low to moderate yield stress, and adiabatic to super-adiabatic for high yield stresses. Across the parameter range considered, and for fixed yield stress, the Nu across the basal boundary (Nub) is positive and only weakly dependant on Q (varies by ~ 9%). Nub varies strongly as a function of yield stress (maximum variation of ~84%). Both mobile-lid velocities and lid-thicknesses are yield stress dependant for a given Q and Ra. In contrast to mobile-lids, the stagnant-lid regime is governed by the relative inefficiency of heat transport through the surface boundary layer. Internal temperatures are yield stress independent, and are on average 30% greater. Nub has a strong dependence on heating rates and surface boundary layer thicknesses. Within the parameter space considered, the maximum stagnant-lid Nub corresponds to the minimum mobile-lid Nub (for high yield stress), and decreases with increasing Q. For high Q, super-heated stagnant-lids may develop, with Nub< 0, and changes in trends for system behaviors. Planets with high levels of internal heating and/or high yield stresses (e.g. Super-Earths), may favor super-heated stagnant-lids early in their evolution. These regimes indicate reduced heat transport efficiencies (from the nominal stagnant-lid), and as a result, increasing heat flux into the core with increasing Q. Implications for terrestrial and Super-Earth planetary evolution will be discussed.

  13. The temperature dependence of the BK channel activity - kinetics, thermodynamics, and long-range correlations.

    PubMed

    Wawrzkiewicz-Jałowiecka, Agata; Dworakowska, Beata; Grzywna, Zbigniew J

    2017-10-01

    Large-conductance, voltage dependent, Ca 2+ -activated potassium channels (BK) are transmembrane proteins that regulate many biological processes by controlling potassium flow across cell membranes. Here, we investigate to what extent temperature (in the range of 17-37°C with ΔT=5°C step) is a regulating parameter of kinetic properties of the channel gating and memory effect in the series of dwell-time series of subsequent channel's states, at membrane depolarization and hyperpolarization. The obtained results indicate that temperature affects strongly the BK channels' gating, but, counterintuitively, it exerts no effect on the long-range correlations, as measured by the Hurst coefficient. Quantitative differences between dependencies of appropriate channel's characteristics on temperature are evident for different regimes of voltage. Examining the characteristics of BK channel activity as a function of temperature allows to estimate the net activation energy (E act ) and changes of thermodynamic parameters (ΔH, ΔS, ΔG) by channel opening. Larger E act corresponds to the channel activity at membrane hyperpolarization. The analysis of entropy and enthalpy changes of closed to open channel's transition suggest the entropy-driven nature of the increase of open state probability during voltage activation and supports the hypothesis about the voltage-dependent geometry of the channel vestibule. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The behavior of gain and saturation characteristics versus temperature in a copper bromide laser

    NASA Astrophysics Data System (ADS)

    Mohammadpour Lima, S.; Behrouzinia, S.; Salem, M. K.; Elahei, M.; Khorasani, K.; Dorranian, D.

    2017-05-01

    A pair of copper bromide lasers in an oscillator-amplifier configuration was used to investigate the temperature dependence of the small-signal gain, saturation intensity, and output power of the laser. The observations were explained in terms of the electron temperature and energy levels of transition. An optimum electrical input power of 1.6 kW and a corresponding operational temperature of 510 °C were determined for the maximum values of these parameters. The balance between the microscopic parameters, such as stimulated emission cross-section, laser upper-level lifetime, and population inversion, which determine the behavior of the amplifying parameters and laser output power with respect to the operational temperature, has been investigated. We used the steady-state rate equation from the Hargrove model to determine the amplifying parameters, instead of the Frantz-Nodvik formula. The power extracted from the amplifier exceeds that achieved with the same device as the oscillator by more than 60%.

  15. Different 57Fe microenvironments in the nanosized iron cores in human liver ferritin and its pharmaceutical analogues on the basis of temperature dependent Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Oshtrakh, M. I.; Alenkina, I. V.; Klencsár, Z.; Kuzmann, E.; Semionkin, V. A.

    2017-02-01

    Mössbauer spectra of human liver ferritin and its pharmaceutical analogues Ferrum Lek and Maltofer® measured at various temperatures within the range of 295-83 K were fitted using five quadrupole doublets related to different 57Fe microenvironments in various layers/regions of the ferrihydrite and akaganéite iron cores. The observed anomalous temperature dependences of some Mössbauer parameters were considered as a result of low temperature structural rearrangements in different layers/regions in the iron core.

  16. Thermally stratified flow of second grade fluid with non-Fourier heat flux and temperature dependent thermal conductivity

    NASA Astrophysics Data System (ADS)

    Khan, M. Ijaz; Zia, Q. M. Zaigham; Alsaedi, A.; Hayat, T.

    2018-03-01

    This attempt explores stagnation point flow of second grade material towards an impermeable stretched cylinder. Non-Fourier heat flux and thermal stratification are considered. Thermal conductivity dependents upon temperature. Governing non-linear differential system is solved using homotopic procedure. Interval of convergence for the obtained series solutions is explicitly determined. Physical quantities of interest have been examined for the influential variables entering into the problems. It is examined that curvature parameter leads to an enhancement in velocity and temperature. Further temperature for non-Fourier heat flux model is less than Fourier's heat conduction law.

  17. Cell size and morphological properties of yeast Saccharomyces cerevisiae in relation to growth temperature.

    PubMed

    Zakhartsev, Maksim; Reuss, Matthias

    2018-04-26

    Cell volume is an important parameter for modelling cellular processes. Temperature-induced variability of cellular size, volume, intracellular granularity, a fraction of budding cells of yeast Saccharomyces cerevisiae CEN.PK 113-7D (in anaerobic glucose unlimited batch cultures) were measured by flow cytometry and matched with the performance of the biomass growth (maximal specific growth rate (μ_max), specific rate of glucose consumption, the rate of maintenance, biomass yield on glucose). The critical diameter of single cells was 7.94 μm and it is invariant at growth temperatures above 18.5°C. Below 18.5°C, it exponentially increases up to 10.2 μm. The size of the bud linearly depends on μ_max, and it is between 50% at 5°C and 90% at 31°C of the averaged single cell. The intracellular granularity (SSC-index) negatively depends on μ_max. There are two temperature regions (5-31°C vs. 33-40°C) where the relationship between SSC-index and various cellular parameters differ significantly. In supraoptimal temperature range (33-40°C), cells are less granulated perhaps due to a higher rate of the maintenance. There is temperature dependent passage through the checkpoints in the cell cycle which influences the μ_max. The results point to the existence of two different morphological states of yeasts in these different temperature regions.

  18. Effects of Temperature on Solute Transport Parameters in Differently-Textured Soils at Saturated Condition

    NASA Astrophysics Data System (ADS)

    Hamamoto, S.; Arihara, M.; Kawamoto, K.; Nishimura, T.; Komatsu, T.; Moldrup, P.

    2014-12-01

    Subsurface warming driven by global warming, urban heat islands, and increasing use of shallow geothermal heating and cooling systems such as the ground source heat pump, potentially causes changes in subsurface mass transport. Therefore, understanding temperature dependency of the solute transport characteristics is essential to accurately assess environmental risks due to increased subsurface temperature. In this study, one-dimensional solute transport experiments were conducted in soil columns under temperature control to investigate effects of temperature on solute transport parameters, such as solute dispersion and diffusion coefficients, hydraulic conductivity, and retardation factor. Toyoura sand, Kaolin clay, and intact loamy soils were used in the experiments. Intact loamy soils were taken during a deep well boring at the Arakawa Lowland in Saitama Prefecture, Japan. In the transport experiments, the core sample with 5-cm diameter and 4-cm height was first isotropically consolidated, whereafter 0.01M KCl solution was injected to the sample from the bottom. The concentrations of K+ and Cl- in the effluents were analyzed by an ion chromatograph to obtain solute breakthrough curves. The solute transport parameters were calculated from the breakthrough curves. The experiments were conducted under different temperature conditions (15, 25, and 40 oC). The retardation factor for the intact loamy soils decreased with increasing temperature, while water permeability increased due to reduced viscosity of water at higher temperature. Opposite, the effect of temperature on solute dispersivity for the intact loamy soils was insignificant. The effects of soil texture on the temperature dependency of the solute transport characteristics will be further investigated from comparison of results from differently-textured samples.

  19. Incorporation of nonlinear thermorheological complexity into the phenomenologies of structural relaxation.

    PubMed

    Hodge, Ian M

    2005-09-22

    A distribution of activation energies is introduced into the nonlinear Adam-Gibbs ("Hodge-Scherer") phenomenology for structural relaxation. The resulting dependencies of the stretched exponential beta parameter on thermodynamic temperature and fictive temperature (nonlinear thermorheological complexity) are derived. No additional adjustable parameters are introduced, and contact is made with the predictions of the random first-order transition theory of aging of Lubchenko and Wolynes [J. Chem. Physics121, 2852 (2004)].

  20. Influence of the Fluid on the Parameters and Limits of Bubble Detonation

    NASA Astrophysics Data System (ADS)

    Pinaev, A. V.; Prokhorov, E. S.

    2017-12-01

    The compression and inflammation of reactive gas bubbles in bubble detonation waves have been studied, and the considerable influence of the fluid (liquid or vapor) on the detonation parameters has been found. It has been shown numerically that the final values of the pressure and temperature significantly decrease if the temperature dependence of the adiabatic index is taken into account at the compression stage. The parameters of reactive gas combustion products in the bubble have been calculated in terms of an equilibrium model, and the influence of the fluid that remains in the bubble in the form of microdroplets and vapor on these parameters has been investigated.

  1. The electrical transport properties of liquid Rb using pseudopotential theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, A. B., E-mail: amit07patel@gmail.com; Bhatt, N. K., E-mail: amit07patel@gmail.com; Thakore, B. Y., E-mail: amit07patel@gmail.com

    2014-04-24

    Certain electric transport properties of liquid Rb are reported. The electrical resistivity is calculated by using the self-consistent approximation as suggested by Ferraz and March. The pseudopotential due to Hasegawa et al for full electron-ion interaction, which is valid for all electrons and contains the repulsive delta function due to achieve the necessary s-pseudisation was used for the calculation. Temperature dependence of structure factor is considered through temperature dependent potential parameter in the pair potential. Finally, thermo-electric power and thermal conductivity are obtained. The outcome of the present study is discussed in light of other such results, and confirms themore » applicability of pseudopotential at very high temperature via temperature dependent pair potential.« less

  2. Model for the alpha and beta shear-mechanical properties of supercooled liquids and its comparison to squalane data

    NASA Astrophysics Data System (ADS)

    Hecksher, Tina; Olsen, Niels Boye; Dyre, Jeppe C.

    2017-04-01

    This paper presents data for supercooled squalane's frequency-dependent shear modulus covering frequencies from 10 mHz to 30 kHz and temperatures from 168 K to 190 K; measurements are also reported for the glass phase down to 146 K. The data reveal a strong mechanical beta process. A model is proposed for the shear response of the metastable equilibrium liquid phase of supercooled liquids. The model is an electrical equivalent-circuit characterized by additivity of the dynamic shear compliances of the alpha and beta processes. The nontrivial parts of the alpha and beta processes are each represented by a "Cole-Cole retardation element" defined as a series connection of a capacitor and a constant-phase element, resulting in the Cole-Cole compliance function well-known from dielectrics. The model, which assumes that the high-frequency decay of the alpha shear compliance loss varies with the angular frequency as ω-1 /2, has seven parameters. Assuming time-temperature superposition for the alpha and beta processes separately, the number of parameters varying with temperature is reduced to four. The model provides a better fit to the data than an equally parametrized Havriliak-Negami type model. From the temperature dependence of the best-fit model parameters, the following conclusions are drawn: (1) the alpha relaxation time conforms to the shoving model; (2) the beta relaxation loss-peak frequency is almost temperature independent; (3) the alpha compliance magnitude, which in the model equals the inverse of the instantaneous shear modulus, is only weakly temperature dependent; (4) the beta compliance magnitude decreases by a factor of three upon cooling in the temperature range studied. The final part of the paper briefly presents measurements of the dynamic adiabatic bulk modulus covering frequencies from 10 mHz to 10 kHz in the temperature range from 172 K to 200 K. The data are qualitatively similar to the shear modulus data by having a significant beta process. A single-order-parameter framework is suggested to rationalize these similarities.

  3. Model for the alpha and beta shear-mechanical properties of supercooled liquids and its comparison to squalane data.

    PubMed

    Hecksher, Tina; Olsen, Niels Boye; Dyre, Jeppe C

    2017-04-21

    This paper presents data for supercooled squalane's frequency-dependent shear modulus covering frequencies from 10 mHz to 30 kHz and temperatures from 168 K to 190 K; measurements are also reported for the glass phase down to 146 K. The data reveal a strong mechanical beta process. A model is proposed for the shear response of the metastable equilibrium liquid phase of supercooled liquids. The model is an electrical equivalent-circuit characterized by additivity of the dynamic shear compliances of the alpha and beta processes. The nontrivial parts of the alpha and beta processes are each represented by a "Cole-Cole retardation element" defined as a series connection of a capacitor and a constant-phase element, resulting in the Cole-Cole compliance function well-known from dielectrics. The model, which assumes that the high-frequency decay of the alpha shear compliance loss varies with the angular frequency as ω -1/2 , has seven parameters. Assuming time-temperature superposition for the alpha and beta processes separately, the number of parameters varying with temperature is reduced to four. The model provides a better fit to the data than an equally parametrized Havriliak-Negami type model. From the temperature dependence of the best-fit model parameters, the following conclusions are drawn: (1) the alpha relaxation time conforms to the shoving model; (2) the beta relaxation loss-peak frequency is almost temperature independent; (3) the alpha compliance magnitude, which in the model equals the inverse of the instantaneous shear modulus, is only weakly temperature dependent; (4) the beta compliance magnitude decreases by a factor of three upon cooling in the temperature range studied. The final part of the paper briefly presents measurements of the dynamic adiabatic bulk modulus covering frequencies from 10 mHz to 10 kHz in the temperature range from 172 K to 200 K. The data are qualitatively similar to the shear modulus data by having a significant beta process. A single-order-parameter framework is suggested to rationalize these similarities.

  4. EPR investigation of local structure for [Mn(H 2O) 6] 2+ cluster in [M(H 2O) 6]XCl 6:Mn 2+ (M = Zn, Mg, Cd, Ca; X = Pt, Sn) systems at different temperatures

    NASA Astrophysics Data System (ADS)

    Tian, Wen-Yan; Kuang, Xiao-Yu; Li, Hui-Fang; Li, Yan-Fang; Ying-Li

    2009-01-01

    A theoretical method for studying the inter-relation between the local structure and EPR spectra is established by diagonalizing the complete energy matrices. For [M(H 2O) 6]XCl 6:Mn 2+ (M = Zn, Mg, Cd, Ca; X = Pt, Sn) systems, the calculated results demonstrate that the local structures around the octahedral Mn 2+ centers in the doped systems are very similar despite of the host crystals being different. Furthermore, it is shown that the EPR zero-field parameter D depends simultaneously on the local structure parameters R and θ while ( a - F) depends mainly on R, whether the doped systems are at liquid-nitrogen temperature or room temperature.

  5. radiation and electric field induced effects on the order-disorder phase in lithium sodium sulphate crystals

    NASA Astrophysics Data System (ADS)

    Hamed, A. E.; Kassem, M. E.; El-Wahidy, E. F.; El-Abshehy, M. A.

    1995-03-01

    The temperature dependence of specific heat at constant pressure, Cp(T), has been measured for lithium sodium sulphate, LiNaSo4 crystals, at different ?-radiation doses and external bias electric field (Eb), in the temperature range 300-900 K. A nonlinear dependence of transition temperature, T1 and a remarkable change in the thermodynamic parameters, were obtained as the effect of both electric field and ?-radiation. The effect of ?-radiation doses on the phase transition in LiNaSO4 crystals was explained as due to an internal bias field, Eb, originating from the interaction of polar defects with the order parameter of the host lattice. The internal bias field effect on the behaviour of Cp(T) in LiNaSO4 crystals was similar to that of the external electric field (E).

  6. Temperature effect on pyrene as a polarity probe for supercritical fluid and liquid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H.H.; McGuffin, V.L.

    1994-05-01

    The effect of temperature on the fluorescence spectrum of pyrene in supercritical and liquid carbon dioxide and liquid organic solvents is systematically studied. The Py parameter (intensity ratio of vibronic bands 1 and 3) is found to increase with the density of supercritical carbon dioxide in the range from 0.54 to 0.75 g/cm{sup 3}. This observation is consistent with the fact that dispersion forces which represent the major interaction between pyrene and carbon dioxide, depend inversely on the sixth power of distance. However, the Py parameter of both supercritical and liquid carbon dioxide is also found to decrease with temperaturemore » at constant density, which is not consistent with expectations for dispersion forces. Carbon dioxide, which is generally regarded as a nonpopular solvent, shows a temperature effect comparable to that for polar liquid solvents. The origin of this temperature effect is examined in this study by computer simulation using both semispherical molecular orbital and molecular mechanic methods. On the basis of these simulations, a strong electrostatic attraction arises between pyrene and carbon dioxide which is similiar in magnitude to that with polar solvents. The temperature dependence of the Py parameter can be qualitatively explained by these simulation results. 45 refs., 15 fig., 5 tab.« less

  7. Optimal parameters for arterial repair using light-activated surgical adhesives.

    PubMed

    Soller, Eric C; Hoffman, Grant T; McNally-Heintzelman, Karen M

    2003-01-01

    The clinical acceptance of laser-tissue repair techniques is dependent on the reproducibility of viable repairs. Reproducibility is dependent on two factors: (i) the choice of materials to be used as the adhesive; and (ii) obtaining temperatures high enough to cause protein denaturation at the vital tissue interface without causing excessive thermal damage to the surrounding tissue. The use of a polymer scaffold as a carrier for the protein solder provides for uniform application of the solder to the tissue, thus allowing for pre-selection of optimal laser parameters. The scaffold also facilitates precise tissue alignment and ease of clinical application. In addition, the scaffold can be doped with various pharmaceuticals such as hemostatic and thrombogenic agents to aid wound healing. An ex vivo study was performed to correlate solder and tissue temperature with the tensile strength of arterial repairs formed using scaffold-enhanced light-activated surgical adhesives. Previous studies by our group using solid protein solder without the scaffold indicate that a solder/tissue, interface temperature of 65 degrees C is optimal. Using this parameter as a benchmark, laser irradiance was varied and temperatures were recorded at the surface and at the tissue interface of scaffold-enhanced protein solder using an infrared temperature monitoring system, designed by the researchers, and a type-K thermocouple, respectively.

  8. Thermodynamics of concentrated electrolyte mixtures and the prediction of mineral solubilities to high temperatures for mixtures in the system Na-K-Mg-Cl-SO 4-OH-H 2O

    NASA Astrophysics Data System (ADS)

    Pabalan, Roberto T.; Pitzer, Kenneth S.

    1987-09-01

    Mineral solubilities in binary and ternary electrolyte mixtures in the system Na-K-Mg-Cl-SO 4-OH-H 2O are calculated to high temperatures using available thermodynamic data for solids and for aqueous electrolyte solutions. Activity and osmotic coefficients are derived from the ion-interaction model of Pitzer (1973, 1979) and co-workers, the parameters of which are evaluated from experimentally determined solution properties or from solubility data in binary and ternary mixtures. Excellent to good agreement with experimental solubilities for binary and ternary mixtures indicate that the model can be successfully used to predict mineral-solution equilibria to high temperatures. Although there are currently no theoretical forms for the temperature dependencies of the various model parameters, the solubility data in ternary mixtures can be adequately represented by constant values of the mixing term θ ij and values of ψ ijk which are either constant or have a simple temperature dependence. Since no additional parameters are needed to describe the thermodynamic properties of more complex electrolyte mixtures, the calculations can be extended to equilibrium studies relevant to natural systems. Examples of predicted solubilities are given for the quaternary system NaCl-KCl-MgCl 2-H 2O.

  9. Temperature-Dependent Electrical Conductivity of GeTe-Based RF Switches

    DTIC Science & Technology

    2015-03-31

    Short, high temperature pulses result in a melt -quench cycle, amorphizing the GeTe and leaving the switch in the electrically insulating OFF state...Longer, lower temperature pulses result in the recrystallization of the GeTe, leaving the switch in the electrically conductive ON state. The...shown to vary only weakly with temperature. OFF-state S-parameters also exhibit slight temperature variation, with an inflection point of ~175

  10. Fracture strength of the particulate-reinforced ultra-high temperature ceramics based on a temperature dependent fracture toughness model

    NASA Astrophysics Data System (ADS)

    Wang, Ruzhuan; Li, Weiguo; Ji, Baohua; Fang, Daining

    2017-10-01

    The particulate-reinforced ultra-high temperature ceramics (pUHTCs) have been particularly developed for fabricating the leading edge and nose cap of hypersonic vehicles. They have drawn intensive attention of scientific community for their superior fracture strength at high temperatures. However, there is no proper model for predicting the fracture strength of the ceramic composites and its dependency on temperature. In order to account for the effect of temperature on the fracture strength, we proposed a concept called energy storage capacity, by which we derived a new model for depicting the temperature dependent fracture toughness of the composites. This model gives a quantitative relationship between the fracture toughness and temperature. Based on this temperature dependent fracture toughness model and Griffith criterion, we developed a new fracture strength model for predicting the temperature dependent fracture strength of pUHTCs at different temperatures. The model takes into account the effects of temperature, flaw size and residual stress without any fitting parameters. The predictions of the fracture strength of pUHTCs in argon or air agreed well with the experimental measurements. Additionally, our model offers a mechanism of monitoring the strength of materials at different temperatures by testing the change of flaw size. This study provides a quantitative tool for design, evaluation and monitoring of the fracture properties of pUHTCs at high temperatures.

  11. Temperature-Dependent Second Shell Interference in the First Shell Analysis of Crystalline InP X-ray Absorption Spectroscopy Data

    NASA Astrophysics Data System (ADS)

    Schnohr, Claudia S.; Araujo, Leandro L.; Ridgway, Mark C.

    2014-09-01

    Analysing only the first nearest neighbour (NN) scattering signal is a commonly used and often successful way to treat extended X-ray absorption fine structure data. However, using temperature-dependent measurements of InP as an example, we demonstrate how this approach can lead to erroneous first NN structural parameters in systems with a weak first but strong second NN scatterer. In such cases, particularly low temperature data may suffer from an overlap of first and second NN scattering signals caused by the Fourier transformation (FT) even if the dominant peaks appear to be well separated. The first NN structural parameters then vary as a function of the FT settings if only the first NN scattering contribution is considered in the analysis. Although this variation is small, it can also lead to significant differences in other calculated properties such as the Einstein temperature. We demonstrate that these variations can be avoided either by choosing an appropriate FT window or by including the scattering contributions of higher shells in the analysis. The latter is achieved by a path fitting approach and yields structural parameters independent of the FT settings used.

  12. The viscosity to entropy ratio: From string theory motivated bounds to warm dense matter

    DOE PAGES

    Faussurier, G.; Libby, S. B.; Silvestrelli, P. L.

    2014-07-04

    Here, we study the ratio of viscosity to entropy density in Yukawa one-component plasmas as a function of coupling parameter at fixed screening, and in realistic warm dense matter models as a function of temperature at fixed density. In these two situations, the ratio is minimized for values of the coupling parameters that depend on screening, and for temperatures that in turn depend on density and material. In this context, we also examine Rosenfeld arguments relating transport coefficients to excess reduced entropy for Yukawa one-component plasmas. For these cases we show that this ratio is always above the lower-bound conjecturemore » derived from string theory ideas.« less

  13. Photoconduction in amorphous thin films of Se90Sb10-xAgx glassy alloys

    NASA Astrophysics Data System (ADS)

    Sharma, Suresh Kumar; Shukla, R. K.; Dwivedi, Prabhat K.; Kumar, A.

    2017-10-01

    The present paper reports the steady state photoconductivity and photosensitivity response of thermally evaporated amorphous thin films of Se90Sb10-xAgx(x = 2, 4, 6, 8, 10). Temperature dependence of dark conductivity is studied and activation energy is calculated for different samples. Temperature dependence of photoconductivity is also studied at different intensities. From temperature dependence of photoconductivity activation energy is computed at different intensities which are found to vary from 0.26 to 0.47 eV. Intensity dependence of photoconductivity has also been studied at different temperatures. These curves are plotted on logarithmic scale and found to be straight lines which show that photoconductivity follows a power law with intensity. Composition dependence of dark conductivity, activation energy of DC conduction and photosensitivity show that these parameters are highly. composition dependent and show a discontinuity at a particular composition when Ag concentration becomes 6 at. %. This is explained in terms of transition from floppy state to mechanically stabilized state at this composition.

  14. Oceanic lithosphere and asthenosphere - Thermal and mechanical structure

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Yuen, D. A.; Froidevaux, C.

    1976-01-01

    A coupled thermomechanical subsolidus model of the oceanic lithosphere and asthenosphere is developed which includes vertical heat conduction, a temperature-dependent thermal conductivity, heat advection by a horizontal and vertical mass flow that depends on depth and age, contributions of viscous dissipation or shear heating, a linear or nonlinear deformation law relating shear stress and strain rate, as well as a temperature- and pressure-dependent viscosity. The model requires a constant horizontal velocity and temperature at the surface, but zero horizontal velocity and constant temperature at great depths. The depth- and age-dependent temperature, horizontal and vertical velocities, and viscosity structure of the lithosphere and asthenosphere are determined along with the age-dependent shear stress in those two zones. The ocean-floor topography, oceanic heat flow, and lithosphere thickness are deduced as functions of ocean-floor age; seismic velocity profiles which exhibit a marked low-velocity zone are constructed from the age-dependent geotherms and assumed values of the elastic parameters. It is found that simple boundary-layer cooling determines the thermal structure at young ages, while effects of viscous dissipation become more important at older ages.

  15. New correlation for the temperature-dependent viscosity for saturated liquids

    NASA Astrophysics Data System (ADS)

    Tian, Jianxiang; Zhang, Laibin

    2016-11-01

    Based on the recent progress on both the temperature dependence of surface tension [H. L. Yi, J. X. Tian, A. Mulero and I. Cachading, J. Therm. Anal. Calorim. 126 (2016) 1603, and the correlation between surface tension and viscosity of liquids [J. X. Tian and A. Mulero, Ind. Eng. Chem. Res. 53 (2014) 9499], we derived a new multiple parameter correlation to describe the temperature-dependent viscosity of liquids. This correlation is verified by comparing with data from NIST Webbook for 35 saturated liquids including refrigerants, hydrocarbons and others, in a wide temperature range from the triple point temperature to the one very near to the critical temperature. Results show that this correlation predicts the NIST data with high accuracy with absolute average deviation (AAD) less than 1% for 21 liquids and more than 3% for only four liquids, and is clearly better than the popularly used Vogel-Fulcher-Tamman (VFT) correlation.

  16. Improved two-temperature model including electron density of states effects for Au during femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Fang, Ranran; Wei, Hua; Li, Zhihua; Zhang, Duanming

    2012-01-01

    The electron temperature dependences of the electron-phonon coupling factor and electron heat capacity based on the electron density of states are investigated for precious metal Au under femtosecond laser irradiation. The thermal excitation of d band electrons is found to result in large deviations from the commonly used approximations of linear temperature dependence of the electron heat capacity, and the constant electron-phonon coupling factor. Results of the simulations performed with the two-temperature model demonstrate that the electron-phonon relaxation time becomes short for high fluence laser for Au. The satisfactory agreement between our numerical results and experimental data of threshold fluence indicates that the electron temperature dependence of the thermophysical parameters accounting for the thermal excitation of d band electrons should not be neglected under the condition that electron temperature is higher than 10 4 K.

  17. Progressive failure site generation in AlGaN/GaN high electron mobility transistors under OFF-state stress: Weibull statistics and temperature dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Huarui, E-mail: huarui.sun@bristol.ac.uk; Bajo, Miguel Montes; Uren, Michael J.

    2015-01-26

    Gate leakage degradation of AlGaN/GaN high electron mobility transistors under OFF-state stress is investigated using a combination of electrical, optical, and surface morphology characterizations. The generation of leakage “hot spots” at the edge of the gate is found to be strongly temperature accelerated. The time for the formation of each failure site follows a Weibull distribution with a shape parameter in the range of 0.7–0.9 from room temperature up to 120 °C. The average leakage per failure site is only weakly temperature dependent. The stress-induced structural degradation at the leakage sites exhibits a temperature dependence in the surface morphology, which ismore » consistent with a surface defect generation process involving temperature-associated changes in the breakdown sites.« less

  18. Creation and Characterization of an Ultrasound and CT Phantom for Non-invasive Ultrasound Thermometry Calibration

    PubMed Central

    Lai, Chun-Yen; Kruse, Dustin E.; Ferrara, Katherine W.; Caskey, Charles F.

    2014-01-01

    Ultrasound thermometry provides noninvasive two-dimensional (2-D) temperature monitoring, and in this paper, we have investigated the use of computed tomography (CT) radiodensity to characterize tissues to improve the accuracy of ultrasound thermometry. Agarose-based tissue-mimicking phantoms were created with glyceryl trioleate (a fat-mimicking material) concentration of 0, 10, 20, 30, 40, and 50%. The speed of sound (SOS) of the phantoms was measured over a temperature range of 22.1–41.1°C. CT images of the phantoms were acquired by a clinical dedicated breast CT scanner, followed by calculation of the Hounsfield units (HU). The phantom was heated with a therapeutic acoustic pulse (1.54 MHz), while RF data were acquired with a 10-MHz linear-array transducer. 2-D speckle tracking was used to calculate the thermal strain offline. The tissue dependent thermal strain parameter required for ultrasound thermometry was analyzed and correlated with CT radiodensity, followed by validation of the temperature prediction. Results showed that the change in SOS with the temperature increase was opposite in sign between the 0–10% and 20–50% trioleate phantoms. The inverse of the tissue dependent thermal strain parameter of the phantoms was correlated with the CT radiodensity (R2 = 0.99). A blinded ultrasound thermometry study on phantoms with a trioleate range of 5–35% demonstrated the capability to estimate the tissue dependent thermal strain parameter and estimate temperature with error less than ~1°C. In conclusion, CT radiodensity may provide a method for improving ultrasound thermometry in heterogeneous tissues. PMID:24107918

  19. Finite element calculations of the time dependent thermal fluxes in the laser-heated diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Montoya, Javier A.; Goncharov, Alexander F.

    2012-06-01

    The time-dependent temperature distribution in the laser-heated diamond anvil cell (DAC) is examined using finite element simulations. Calculations are carried out for the practically important case of a surface-absorbing metallic plate (coupler) surrounded by a thermally insulating transparent medium. The time scales of the heat transfer in the DAC cavity are found to be typically on the order of tens of microseconds depending on the geometrical and thermochemical parameters of the constituent materials. The use of much shorter laser pulses (e.g., on the order of tens of nanoseconds) creates sharp radial temperature gradients, which result in a very intense and abrupt axial conductive heat transfer that exceeds the radiative heat transfer by several orders of magnitude in the practically usable temperature range (<12 000 K). In contrast, the use of laser pulses with several μs duration provides sufficiently uniform spatial heating conditions suitable for studying the bulk sample. The effect of the latent heat of melting on the temperature distribution has been examined in the case of iron and hydrogen for both pulsed and continuous laser heating. The observed anomalies in temperature-laser power dependencies cannot be due to latent heat effects only. Finally, we examine the applicability of a modification to the plate geometry Ångström method for measurements of the thermal diffusivity in the DAC. The calculations show substantial effects of the thermochemical parameters of the insulating medium on the amplitude change and phase shift between the surface temperature variations of the front and back of the sample, which makes this method dependent on the precise knowledge of the properties of the medium.

  20. Effects of bay substituents on the racemization barriers of perylene bisimides: resolution of atropo-enantiomers.

    PubMed

    Osswald, Peter; Würthner, Frank

    2007-11-21

    The activation parameters for the interconversion of atropisomers (P- and M-enantiomer) of core-twisted perylene bisimides have been determined by dynamic NMR spectroscopy (DNMR) and time- and temperature-dependent CD spectroscopy. By comparing the activation parameters of a series of perylene bisimides containing halogen or aryloxy substituents in the bay area (1,6,7,12-positions), a clear structure-property relationship has been found that demonstrates that the kinetic and thermodynamic parameters for the inversion of enantiomers are dependent on the apparent overlap parameter Sigmar* of the bay substituents. This study reveals a high stability (DeltaG(368 K) = 118 kJ/mol) for the atropo-enantiomers of tetrabromo-substituted perylene bisimide in solution. Accordingly, the enantiomers of this derivative could be resolved by HPLC on a chiral column. These enantiomers do not racemize in solution at room temperature and, thus, represent the first examples of enantiomerically pure core-twisted perylene bisimides.

  1. Electrothermal DC characterization of GaN on Si MOS-HEMTs

    NASA Astrophysics Data System (ADS)

    Rodríguez, R.; González, B.; García, J.; Núñez, A.

    2017-11-01

    DC characteristics of AlGaN/GaN on Si single finger MOS-HEMTs, for different gate geometries, have been measured and numerically simulated with substrate temperatures up to 150 °C. Defect density, depending on gate width, and thermal resistance, depending additionally on temperature, are extracted from transfer characteristics displacement and the AC output conductance method, respectively, and modeled for numerical simulations with Atlas. The thermal conductivity degradation in thin films is also included for accurate simulation of the heating response. With an appropriate methodology, the internal model parameters for temperature dependencies have been established. The numerical simulations show a relative error lower than 4.6% overall, for drain current and channel temperature behavior, and account for the measured device temperature decrease with the channel length increase as well as with the channel width reduction, for a set bias.

  2. Size-dependent phase diagrams of metallic alloys: A Monte Carlo simulation study on order–disorder transitions in Pt–Rh nanoparticles

    PubMed Central

    Stahl, Christian; Albe, Karsten

    2012-01-01

    Summary Nanoparticles of Pt–Rh were studied by means of lattice-based Monte Carlo simulations with respect to the stability of ordered D022- and 40-phases as a function of particle size and composition. By thermodynamic integration in the semi-grand canonical ensemble, phase diagrams for particles with a diameter of 7.8 nm, 4.3 nm and 3.1 nm were obtained. Size-dependent trends such as the lowering of the critical ordering temperature, the broadening of the compositional stability range of the ordered phases, and the narrowing of the two-phase regions were observed and discussed in the context of complete size-dependent nanoparticle phase diagrams. In addition, an ordered surface phase emerges at low temperatures and low platinum concentration. A decrease of platinum surface segregation with increasing global platinum concentration was observed, when a second, ordered phase is formed inside the core of the particle. The order–disorder transitions were analyzed in terms of the Warren–Cowley short-range order parameters. Concentration-averaged short-range order parameters were used to remove the surface segregation bias of the conventional short-range order parameters. Using this procedure, it was shown that the short-range order in the particles at high temperatures is bulk-like. PMID:22428091

  3. On The Stability Of Model Flows For Chemical Vapour Deposition

    NASA Astrophysics Data System (ADS)

    Miller, Robert

    2016-11-01

    The flow in a chemical vapour deposition (CVD) reactor is assessed. The reactor is modelled as a flow over an infinite-radius rotating disk, where the mean flow and convective instability of the disk boundary layer are measured. Temperature-dependent viscosity and enforced axial flow are used to model the steep temperature gradients present in CVD reactors and the pumping of the gas towards the disk, respectively. Increasing the temperature-dependence parameter of the fluid viscosity (ɛ) results in an overall narrowing of the fluid boundary layer. Increasing the axial flow strength parameter (Ts) accelerates the fluid both radially and axially, while also narrowing the thermal boundary layer. It is seen that when both effects are imposed, the effects of axial flow generally dominate those of the viscosity temperature dependence. A local stability analysis is performed and the linearized stability equations are solved using a Galerkin projection in terms of Chebyshev polynomials. The neutral stability curves are then plotted for a range of ɛ and Ts values. Preliminary results suggest that increasing Ts has a stabilising effect on both type I and type II stationary instabilities, while small increases in ɛ results in a significant reduction to the critical Reynolds number.

  4. Nitrogen-Pressure Shifts in the v3 Band of Methane Measured at Several Temperatures between 300 and 90 K

    NASA Technical Reports Server (NTRS)

    Tumuhimbise, Anthony T.; Hurtmans, Daniel; Mantz, Arlan W.; Mondelain, Didier

    2008-01-01

    Remote sensing of the Earth's atmosphere requires accurate knowledge of spectroscopic line parameters for the molecules investigated. Knowledge of the temperature dependence of these parameters is also essential if agreement, at the noise level, between calculated and experimental data is to be achieved. The authors recently published results of nitrogen broadening measurements in the v3 band of 12CH4 using the 5.37 m long absorption path length all-copper Herriott cell. The temperature dependent line parameters determined in the laboratory were applied to fit a portion of the atmospheric spectrum recorded with a balloon-borne remote sensing FTIR instrument, called the Limb Profile Monitor of the Atmosphere, and operating in absorption against the sun. Since the authors had a relatively complete series of data for the P(9) transition in the v3 band of 12CH4, the A2 1 as well as the F2 1, F1 1 and A1 1 lines recorded at different pressures and at four temperatures between 300 and 90 K, we reanalyzed the data to derive pressure shift information at different temperatures. The temperatures for which data were collected and analyzed are 298, 140 and 90K. The high precision pressure shift data obtained here over a large range of temperature demonstrate the ability of our experimental arrangement to address specific questions on a given spectral window like in the balloon experiment or in a satellite project, for example.

  5. A novel technique to control high temperature materials degradation in fossil plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez-Rodriguez, J.G.; Porcayo-Calderon, J.; Martinez-Villafane, A.

    1995-11-01

    High temperature corrosion of superheater (SH) and, specially, reheater (RH) is strongly dependent on metal temperature. In this work, a way to continuously monitor the metal temperature of SH or RH, elements developed by the Instituto de Investigaciones Electricas (IIE) is described and the effects of operating parameters on metal temperature are evaluated. Also, the effects the steam-generator design and metal temperature on the corrosion rates have been investigated. In some steam generators, corrosion rates were reduced from 0.7 to 0.2 mm/y by changing the tube material and reducing the metal temperature. Also, the effect of metal temperature on themore » residual life of a 347H tube in a 158MW steam generator is evaluated. It is concluded that metal temperature is the most important parameter in controlling the high-temperature materials behavior in boiler environments.« less

  6. Two-diode behavior in metal-ferroelectric-semiconductor structures with bismuth titanate interfacial layer

    NASA Astrophysics Data System (ADS)

    Durmuş, Perihan; Altindal, Şemsettin

    2017-10-01

    In this study, electrical parameters of the Al/Bi4Ti3O12/p-Si metal-ferroelectric-semiconductor (MFS) structure and their temperature dependence were investigated using current-voltage (I-V) data measured between 120 K and 300 K. Semi-logarithmic I-V plots of the structure revealed that fabricated structure presents two-diode behavior that leads to two sets of ideality factor, reverse saturation current and zero-bias barrier height (BH) values. Obtained results of these parameters suggest that current conduction mechanism (CCM) deviates strongly from thermionic emission theory particularly at low temperatures. High values of interface states and nkT/q-kT/q plot supported the idea of deviation from thermionic emission. In addition, ln(I)-ln(V) plots suggested that CCM varies from one bias region to another and depends on temperature as well. Series resistance values were calculated using Ohm’s law and Cheungs’ functions, and they decreased drastically with increasing temperature.

  7. Model fit versus biological relevance: Evaluating photosynthesis-temperature models for three tropical seagrass species

    NASA Astrophysics Data System (ADS)

    Adams, Matthew P.; Collier, Catherine J.; Uthicke, Sven; Ow, Yan X.; Langlois, Lucas; O'Brien, Katherine R.

    2017-01-01

    When several models can describe a biological process, the equation that best fits the data is typically considered the best. However, models are most useful when they also possess biologically-meaningful parameters. In particular, model parameters should be stable, physically interpretable, and transferable to other contexts, e.g. for direct indication of system state, or usage in other model types. As an example of implementing these recommended requirements for model parameters, we evaluated twelve published empirical models for temperature-dependent tropical seagrass photosynthesis, based on two criteria: (1) goodness of fit, and (2) how easily biologically-meaningful parameters can be obtained. All models were formulated in terms of parameters characterising the thermal optimum (Topt) for maximum photosynthetic rate (Pmax). These parameters indicate the upper thermal limits of seagrass photosynthetic capacity, and hence can be used to assess the vulnerability of seagrass to temperature change. Our study exemplifies an approach to model selection which optimises the usefulness of empirical models for both modellers and ecologists alike.

  8. Model fit versus biological relevance: Evaluating photosynthesis-temperature models for three tropical seagrass species.

    PubMed

    Adams, Matthew P; Collier, Catherine J; Uthicke, Sven; Ow, Yan X; Langlois, Lucas; O'Brien, Katherine R

    2017-01-04

    When several models can describe a biological process, the equation that best fits the data is typically considered the best. However, models are most useful when they also possess biologically-meaningful parameters. In particular, model parameters should be stable, physically interpretable, and transferable to other contexts, e.g. for direct indication of system state, or usage in other model types. As an example of implementing these recommended requirements for model parameters, we evaluated twelve published empirical models for temperature-dependent tropical seagrass photosynthesis, based on two criteria: (1) goodness of fit, and (2) how easily biologically-meaningful parameters can be obtained. All models were formulated in terms of parameters characterising the thermal optimum (T opt ) for maximum photosynthetic rate (P max ). These parameters indicate the upper thermal limits of seagrass photosynthetic capacity, and hence can be used to assess the vulnerability of seagrass to temperature change. Our study exemplifies an approach to model selection which optimises the usefulness of empirical models for both modellers and ecologists alike.

  9. Model fit versus biological relevance: Evaluating photosynthesis-temperature models for three tropical seagrass species

    PubMed Central

    Adams, Matthew P.; Collier, Catherine J.; Uthicke, Sven; Ow, Yan X.; Langlois, Lucas; O’Brien, Katherine R.

    2017-01-01

    When several models can describe a biological process, the equation that best fits the data is typically considered the best. However, models are most useful when they also possess biologically-meaningful parameters. In particular, model parameters should be stable, physically interpretable, and transferable to other contexts, e.g. for direct indication of system state, or usage in other model types. As an example of implementing these recommended requirements for model parameters, we evaluated twelve published empirical models for temperature-dependent tropical seagrass photosynthesis, based on two criteria: (1) goodness of fit, and (2) how easily biologically-meaningful parameters can be obtained. All models were formulated in terms of parameters characterising the thermal optimum (Topt) for maximum photosynthetic rate (Pmax). These parameters indicate the upper thermal limits of seagrass photosynthetic capacity, and hence can be used to assess the vulnerability of seagrass to temperature change. Our study exemplifies an approach to model selection which optimises the usefulness of empirical models for both modellers and ecologists alike. PMID:28051123

  10. Temperature Dependence of Inorganic Nitrogen Uptake: Reduced Affinity for Nitrate at Suboptimal Temperatures in Both Algae and Bacteria

    PubMed Central

    Reay, David S.; Nedwell, David B.; Priddle, Julian; Ellis-Evans, J. Cynan

    1999-01-01

    Nitrate utilization and ammonium utilization were studied by using three algal isolates, six bacterial isolates, and a range of temperatures in chemostat and batch cultures. We quantified affinities for both substrates by determining specific affinities (specific affinity = maximum growth rate/half-saturation constant) based on estimates of kinetic parameters obtained from chemostat experiments. At suboptimal temperatures, the residual concentrations of nitrate in batch cultures and the steady-state concentrations of nitrate in chemostat cultures both increased. The specific affinity for nitrate was strongly dependent on temperature (Q10 ≈ 3, where Q10 is the proportional change with a 10°C temperature increase) and consistently decreased at temperatures below the optimum temperature. In contrast, the steady-state concentrations of ammonium remained relatively constant over the same temperature range, and the specific affinity for ammonium exhibited no clear temperature dependence. This is the first time that a consistent effect of low temperature on affinity for nitrate has been identified for psychrophilic, mesophilic, and thermophilic bacteria and algae. The different responses of nitrate uptake and ammonium uptake to temperature imply that there is increasing dependence on ammonium as an inorganic nitrogen source at low temperatures. PMID:10347046

  11. Line parameters for CO2- and self-broadening in the ν3 band of HD16O

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Crawford, Timothy J.; Gamache, Robert R.; Renaud, Candice L.; Smith, Mary Ann H.; Mantz, Arlan W.; Villanueva, Geronimo L.

    2017-12-01

    Pressure-broadened line shape parameters of transitions in the ν3 band of HDO (ν0 = 3707.4 cm-1) were measured from spectra of HDO and mixtures of HDO and CO2 for application to accurate retrievals of HDO abundances and D/H ratios for CO2-rich planetary atmospheres of Mars and Venus. A few calculated line lists have recently been published on HDO-CO2 line shapes and their temperature dependences, but the present study represents the first laboratory measurements of those parameters in the ν3 band; Measurements for nearly 100 transitions in the ν3 band have been made. Room temperature measurements of self-broadened width and shift coefficients for all of these transitions, line mixing via off-diagonal relaxation matrix element coefficients and quadratic speed dependence parameter were measured for the majority of these transitions. All these measurements were made by simultaneously fitting eleven high-resolution spectra of HDO and HDO-CO2 mixtures at various temperatures and pressures recorded with the Bruker Fourier transform spectrometer at the Jet Propulsion Laboratory. Two specially built coolable absorption cells with path lengths of 20.38 cm and 20.941 m were used to contain the sample mixtures. Multispectrum nonlinear least squares fitting algorithm was employed in the analysis. Calculations using the Modified Complex Robert-Bonamy formalism (MCRB) were made for the half-width coefficients, their temperature dependences and pressure shift coefficients for the HDO-CO2 and HDO-HDO collision systems. The calculations were made for all ν3 band transitions in the 1100-4100 cm-1 region on the HITRAN2012 database. Present measurements are compared with the MCRB calculations and other literature values.

  12. Dynamical properties in supercooling liquid of trehalose aqueous solution studied by Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Shibata, Tomohiko; Tominaga, Ayane; Takayama, Haruki; Kojima, Seiji

    2013-02-01

    Brillouin scattering spectroscopy has been applied to study the dynamical properties of glass transition of trehalose aqueous solutions in a high-frequency gigahertz range and in the temperature range (-190°C ≤ T ≤ 100°C). The temperature variations of sound velocity and attenuation were accurately determined using the refractive index measured by a prism-coupling method. The temperature dependence of relaxation time of the structural relaxation process was determined by the Debye model. Its temperature dependence shows Arrhenius behavior in a liquid state. The parameters of Arrhenius law were also determined as a function of trehalose concentration.

  13. Unsteady Sisko magneto-nanofluid flow with heat absorption and temperature dependent thermal conductivity: A 3D numerical study

    NASA Astrophysics Data System (ADS)

    Khan, Masood; Ahmad, Latif; Gulzar, M. Mudassar

    2018-03-01

    The impact of temperature dependent thermal conductivity and convective surface conditions on unsteady 3D Sisko nanofluid flow over a stretching surface is studied in the presence of heat generation/absorption and magnetic field. The numerical solution of nonlinear coupled equations has been carried out to explore the properties of different physical profiles of the fluid flow with varying of parameters. Specifically, the application of generalized Biot numbers and heat generation/absorption parameter in the sketching of temperature and concentration profiles are explored. The effect of all three parameters is noticed in the increasing order for shear thinning (0 < n < 1) and for shear thickening (n > 1) fluids. Moreover, the influence of Biot number γ1 on heat and mass transfer rates, are found in the enhancement and diminishing conducts respectively, in both cases of shear thinning as well as shear thickening fluids and a reverse trend is observed with the variation of Biot number γ2 . Additionally, the present results are validated through skin friction, heat and mass transfer rate values with the comparable values in the existing previous values.

  14. Design of high temperature ceramic components against fast fracture and time-dependent failure using cares/life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jadaan, O.M.; Powers, L.M.; Nemeth, N.N.

    1995-08-01

    A probabilistic design methodology which predicts the fast fracture and time-dependent failure behavior of thermomechanically loaded ceramic components is discussed using the CARES/LIFE integrated design computer program. Slow crack growth (SCG) is assumed to be the mechanism responsible for delayed failure behavior. Inert strength and dynamic fatigue data obtained from testing coupon specimens (O-ring and C-ring specimens) are initially used to calculate the fast fracture and SCG material parameters as a function of temperature using the parameter estimation techniques available with the CARES/LIFE code. Finite element analysis (FEA) is used to compute the stress distributions for the tube as amore » function of applied pressure. Knowing the stress and temperature distributions and the fast fracture and SCG material parameters, the life time for a given tube can be computed. A stress-failure probability-time to failure (SPT) diagram is subsequently constructed for these tubes. Such a diagram can be used by design engineers to estimate the time to failure at a given failure probability level for a component subjected to a given thermomechanical load.« less

  15. Influence of temperature on the spectral characteristics of semiconductor lasers in the visible range

    NASA Astrophysics Data System (ADS)

    Adamov, A. A.; Baranov, M. S.; Khramov, V. N.

    2018-04-01

    The results of studies on the effect of temperature on the output spectral characteristics of continuous semiconductor lasers of the visible range are presented. The paper presents the results of studying the spectral-optical radiation parameters of semiconductor lasers, their coherence lengths, and the dependence of the position of the spectral peak of the wavelength on temperature. This is necessary for the selection of the most optimal laser in order to use it for medical ophthalmologic diagnosis. The experiment was carried out using semiconductor laser modules based on a laser diode. The spectra were recorded by using a two-channel automated spectral complex based on the MDR-23 monochromator. Spectral dependences on the temperature of semiconductor lasers are obtained, in the range from 300 to 370 K. The possibility of determining the internal damage to the stabilization of laser modules without opening the case is shown, but only with the use of their spectral characteristics. The obtained data allow taking into account temperature characteristics and further optimization of parameters of such lasers when used in medical practice, in particular, in ophthalmologic diagnostics.

  16. Temperature studies of optical parameters of (Ag3AsS3)0.6(As2S3)0.4 thin films prepared by rapid thermal evaporation and pulse laser deposition

    NASA Astrophysics Data System (ADS)

    Studenyak, I. P.; Kutsyk, M. M.; Buchuk, M. Yu.; Rati, Y. Y.; Neimet, Yu. Yu.; Izai, V. Yu.; Kökényesi, S.; Nemec, P.

    2016-02-01

    (Ag3AsS3)0.6(As2S3)0.4 thin films were deposited using rapid thermal evaporation (RTE) and pulse laser deposition (PLD) techniques. Ag-enriched micrometre-sized cones (RTE) and bubbles (PLD) were observed on the thin film surface. Optical transmission spectra of the thin films were studied in the temperature range 77-300 K. The Urbach behaviour of the optical absorption edge in the thin films due to strong electron-phonon interaction was observed, the main parameters of the Urbach absorption edge were determined. Temperature dependences of the energy position of the exponential absorption edge and the Urbach energy are well described in the Einstein model. Dispersion and temperature dependences of refractive indices were analysed; a non-linear increase of the refractive indices with temperature was revealed. Disordering processes in the thin films were studied and compared with bulk composites, the differences between the thin films prepared by RTE and PLD were analysed.

  17. Laser diode absorption spectroscopy for accurate CO(2) line parameters at 2 microm: consequences for space-based DIAL measurements and potential biases.

    PubMed

    Joly, Lilian; Marnas, Fabien; Gibert, Fabien; Bruneau, Didier; Grouiez, Bruno; Flamant, Pierre H; Durry, Georges; Dumelie, Nicolas; Parvitte, Bertrand; Zéninari, Virginie

    2009-10-10

    Space-based active sensing of CO(2) concentration is a very promising technique for the derivation of CO(2) surface fluxes. There is a need for accurate spectroscopic parameters to enable accurate space-based measurements to address global climatic issues. New spectroscopic measurements using laser diode absorption spectroscopy are presented for the preselected R30 CO(2) absorption line ((20(0)1)(III)<--(000) band) and four others. The line strength, air-broadening halfwidth, and its temperature dependence have been investigated. The results exhibit significant improvement for the R30 CO(2) absorption line: 0.4% on the line strength, 0.15% on the air-broadening coefficient, and 0.45% on its temperature dependence. Analysis of potential biases of space-based DIAL CO(2) mixing ratio measurements associated to spectroscopic parameter uncertainties are presented.

  18. Thermo-Mechanical Calculations of Hybrid Rotary Friction Welding at Equal Diameter Copper Bars and Effects of Essential Parameters on Dependent Special Variables

    NASA Astrophysics Data System (ADS)

    Parsa, M. H.; Davari, H.; Hadian, A. M.; Ahmadabadi, M. Nili

    2007-05-01

    Hybrid Rotary Friction Welding is a modified type of common rotary friction welding processes. In this welding method parameters such as pressure, angular velocity and time of welding control temperature, stress, strain and their variations. These dependent factors play an important rule in defining optimum process parameters combinations in order to improve the design and manufacturing of welding machines and quality of welded parts. Thermo-mechanical simulation of friction welding has been carried out and it has been shown that, simulation is an important tool for prediction of generated heat and strain at the weld interface and can be used for prediction of microstructure and evaluation of quality of welds. For simulation of Hybrid Rotary Friction Welding, a commercial finite element program has been used and the effects of pressure and rotary velocity of rotary part on temperature and strain variations have been investigated.

  19. Basic electronic properties of iron selenide under variation of structural parameters

    NASA Astrophysics Data System (ADS)

    Guterding, Daniel; Jeschke, Harald O.; Valentí, Roser

    2017-09-01

    Since the discovery of high-temperature superconductivity in the thin-film FeSe /SrTiO3 system, iron selenide and its derivates have been intensively scrutinized. Using ab initio density functional theory calculations we review the electronic structures that could be realized in iron selenide if the structural parameters could be tuned at liberty. We calculate the momentum dependence of the susceptibility and investigate the symmetry of electron pairing within the random phase approximation. Both the susceptibility and the symmetry of electron pairing depend on the structural parameters in a nontrivial way. These results are consistent with the known experimental behavior of binary iron chalcogenides and, at the same time, reveal two promising ways of tuning superconducting transition temperatures in these materials: on one hand by expanding the iron lattice of FeSe at constant iron-selenium distance and, on the other hand, by increasing the iron-selenium distance with unchanged iron lattice.

  20. Parameter variation effects on temperature elevation in a steady-state, one-dimensional thermal model for millimeter wave exposure of one- and three-layer human tissue.

    PubMed

    Kanezaki, Akio; Hirata, Akimasa; Watanabe, Soichi; Shirai, Hiroshi

    2010-08-21

    The present study describes theoretical parametric analysis of the steady-state temperature elevation in one-dimensional three-layer (skin, fat and muscle) and one-layer (skin only) models due to millimeter-wave exposure. The motivation of this fundamental investigation is that some variability of warmth sensation in the human skin has been reported. An analytical solution for a bioheat equation was derived by using the Laplace transform for the one-dimensional human models. Approximate expressions were obtained to investigate the dependence of temperature elevation on different thermal and tissue thickness parameters. It was shown that the temperature elevation on the body surface decreases monotonically with the blood perfusion rate, heat conductivity and heat transfer from the body to air. Also revealed were the conditions where maximum and minimum surface temperature elevations were observed for different thermal and tissue thickness parameters. The surface temperature elevation in the three-layer model is 1.3-2.8 times greater than that in the one-layer model. The main reason for this difference is attributed to the adiabatic nature of the fat layer. By considering the variation range of thermal and tissue thickness parameters which causes the maximum and minimum temperature elevations, the dominant parameter influencing the surface temperature elevation was found to be the heat transfer coefficient between the body surface and air.

  1. A study on the dependence of nuclear viscosity on temperature

    NASA Astrophysics Data System (ADS)

    Vardaci, E.; Di Nitto, A.; Nadtochy, P. N.; La Rana, G.; Cinausero, M.; Prete, G.; Gelli, N.; Ashaduzzaman, M.; Davide, F.; Pulcini, A.; Quero, D.; Kozulin, E. M.; Knyazheva, G. N.; Itkis, I. M.

    2018-05-01

    Nuclear viscosity is an irreplaceable ingredient of nuclear fission collective dynamical models. It drives the exchange of energy between the collective variables and the thermal bath of single particle degrees of freedom. Its dependence on the shape and temperature is a matter of controversy. By using systems of intermediate fissility we have demonstrated in a recent study that the viscosity parameters is larger for compact shapes, and decreases for larger deformations of the fissioning system, at variance with the conclusions of the statistical model modified to include empirically viscosity and time scales. In this contribution we propose an experimental scenario to highlight the possible dependence of the viscosity from the temperature.

  2. Investigations of Low Temperature Time Dependent Cracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van der Sluys, W A; Robitz, E S; Young, B A

    2002-09-30

    The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity.more » The resultant data was integrated into current available life prediction tools.« less

  3. Evidence for the bias-driven migration of oxygen vacancies in amorphous non-stoichiometric gallium oxide

    NASA Astrophysics Data System (ADS)

    Guo, D. Y.; Qian, Y. P.; Su, Y. L.; Shi, H. Z.; Li, P. G.; Wu, J. T.; Wang, S. L.; Cui, C.; Tang, W. H.

    2017-06-01

    The conductivity of gallium oxide thin films is strongly dependent on the growth temperature when they deposited by pulsed laser deposition under vacuum environment, exhibiting an insulative-to-metallic transition with the decrease of the temperature. The high conductive gallium oxide films deposited at low temperature are amorphous, non-stoichiometric, and rich in oxygen vacancy. Large changes in electrical resistance are observed in these non-stoichiometric thin films. The wide variety of hysteretic shapes in the I-V curves depend on the voltage-sweep rate, evidencing that the time-dependent redistribution of oxygen vacancy driven by bias is the controlling parameter for the resistance of gallium oxide.

  4. On the Enthalpy and Entropy of Point Defect Formation in Crystals

    NASA Astrophysics Data System (ADS)

    Kobelev, N. P.; Khonik, V. A.

    2018-03-01

    A standard way to determine the formation enthalpy H and entropy S of point defect formation in crystals consists in the application of the Arrhenius equation for the defect concentration. In this work, we show that a formal use of this method actually gives the effective (apparent) values of these quantities, which appear to be significantly overestimated. The underlying physical reason lies in temperature-dependent formation enthalpy of the defects, which is controlled by temperature dependence of the elastic moduli. We present an evaluation of the "true" H- and S-values for aluminum, which are derived on the basis of experimental data by taking into account temperature dependence of the formation enthalpy related to temperature dependence of the elastic moduli. The knowledge of the "true" activation parameters is needed for a correct calculation of the defect concentration constituting thus an issue of major importance for different fundamental and application issues of condensed matter physics and chemistry.

  5. Magneto-optical study of holmium iron garnet Ho3Fe5O12

    NASA Astrophysics Data System (ADS)

    Kalashnikova, A. M.; Pavlov, V. V.; Kimel, A. V.; Kirilyuk, A.; Rasing, Th.; Pisarev, R. V.

    2012-09-01

    Bulk holmium iron garnet Ho3Fe5O12 is a cubic ferrimagnet with Curie temperature TC = 567 K and magnetization compensation point in the range 130-140 K. The magneto-optical data are presented for a holmium iron garnet Ho3Fe5O12 film, ˜10 μm thick, epitaxially grown on a (111)-type gadolinium-gallium garnet Gd3Ga5O12 substrate. A specific feature of this structure is that the parameters of the bulk material, from which the film was grown, closely match the substrate ones. The temperature and field dependences of Faraday rotation as well as the temperature dependence of the domain structure in zero field were investigated. The compensation point of the structure was found to be Tcomp = 127 K. It was shown that the temperature dependence of the characteristic size of domain structure diverges at this point. Based on the obtained results we established that the magnetic anisotropy of the material is determined by both uniaxial and cubic contributions, each characterized by different temperature dependence. A complex shape of hysteresis loops and sharp changes of the domain pattern with temperature indicate the presence of collinear-noncollinear phase transitions. Study of the optical second harmonic generation was carried out using 100 fs laser pulses with central photon energy E = 1.55 eV. The electric dipole contribution (both crystallographic and magnetic) to the second harmonic generation was observed with high reliability despite a small mismatch of the film and substrate parameters.

  6. The coronal structure of active regions

    NASA Technical Reports Server (NTRS)

    Landini, M.; Monsignori Fossi, B. C.; Krieger, A.; Vaiana, G. S.

    1975-01-01

    A four-parameter model, which assumes a Gaussian dependence of both temperature and pressure on distance from center, is used to fit the compact part of coronal active regions as observed in X-ray photographs from a rocket experiment. The four parameters are the maximum temperature, the maximum pressure, the width of the pressure distribution, and the width of the temperature distribution. The maximum temperature ranges from 2.2 to 2.8 million K, and the maximum density from 2 to 9 by 10 to the 9th power per cu cm. The range of the pressure-distribution width is from 2 to 4 by 10 to the 9th power cm and that of the temperature-distribution width from 2 to 7.

  7. Zero-point fluctuations in naphthalene and their effect on charge transport parameters.

    PubMed

    Kwiatkowski, Joe J; Frost, Jarvist M; Kirkpatrick, James; Nelson, Jenny

    2008-09-25

    We calculate the effect of vibronic coupling on the charge transport parameters in crystalline naphthalene, between 0 and 400 K. We find that nuclear fluctuations can cause large changes in both the energy of a charge on a molecule and on the electronic coupling between molecules. As a result, nuclear fluctuations cause wide distributions of both energies and couplings. We show that these distributions have a small temperature dependence and that, even at high temperatures, vibronic coupling is dominated by the effect of zero-point fluctuations. Because of the importance of zero-point fluctuations, we find that the distributions of energies and couplings have substantial width, even at 0 K. Furthermore, vibronic coupling with high energy modes may be significant, even though these modes are never thermally activated. Our results have implications for the temperature dependence of charge mobilities in organic semiconductors.

  8. Temperature-Dependence of Air-Broadened Line Widths and Shifts in the nu3 Band of Ozone

    NASA Technical Reports Server (NTRS)

    Smith, Mary A. H.; Rinsland, Curtis P.; Devi, V. Malathy; Benner, D. Chris; Cox, A. M.

    2006-01-01

    The 9.6-micron bands of O3 are used by many remote-sensing experiments for retrievals of terrestrial atmospheric ozone concentration profiles. Line parameter errors can contribute significantly to the total errors in these retrievals, particularly for nadir-viewing. The McMath-Pierce Fourier transform spectrometer at the National Solar Observatory on Kitt Peak was used to record numerous high-resolution infrared absorption spectra of O3 broadened by various gases at temperatures between 160 and 300 K. Over 30 spectra were analyzed simultaneously using a multispectrum nonlinear least squares fitting technique to determine Lorentz air-broadening and pressure-induced shift coefficients along with their temperature dependences for selected transitions in the 3 fundamental band of (16)O3. We compare the present results with other measurements reported in the literature and with the ozone parameters on the 2000 and 2004 editions of the HITRAN database.

  9. In-situ analysis of microwave conductivity and impedance spectroscopy for evaluation of charge carrier dynamics at interfaces

    NASA Astrophysics Data System (ADS)

    Choi, Wookjin; Inoue, Junichi; Tsutsui, Yusuke; Sakurai, Tsuneaki; Seki, Shu

    2017-11-01

    A unique concerted analysis comprising non-contact microwave conductivity measurements and impedance spectroscopy was developed to simultaneously assess the charge carrier mobility and injection barriers. The frequency dependence of the microwave conductivity as well as the electrical current was analyzed by applying sinusoidal voltage to determine the equivalent circuit parameters. Based on the temperature dependence of the circuit parameters, the energy of the injection barrier was estimated to be 0.4 eV with the Richardson-Schottky model, and the band-like transport was confirmed with the negative temperature coefficient with the β value of 1.4 in the intra-layer conduction of C8-BTBT. In contrast, the increase in the resistance of the C8-BTBT layer with decreasing temperature implied the occurrence of hopping-like transport in the inter-layer conduction of C8-BTBT.

  10. AB INITIO Molecular Dynamics Simulations on Local Structure and Electronic Properties in Liquid Sb from 913 K to 1193 K

    NASA Astrophysics Data System (ADS)

    Hao, Qing-Hai; Li, Y. D.; Kong, Xiang-Shan; Liu, C. S.

    2013-02-01

    Ab initio molecular dynamics simulations on liquid Sb have been carried out at five different temperatures from 913 K to 1193 K. We have investigated the temperature dependence of structure properties including structural factor S(Q), pair correlation function g(r), bond-angle distribution function g3(θ), cluster properties and bond order parameter Q4 and Q6. A shoulder was reproduced in the high wave number side of the first peak in the S(Q) implying that the residual structure units of crystalline Sb remain in liquid Sb. There is a noticeable bend at around 1023 K in the temperature dependence of the first-peak height of S(Q), the cluster properties and bond order parameter Q4, respectively, indicating that an abnormal structural change may occur at 973-1023 K.

  11. The temperature dependence of the hydroxyl deuterium quadrupole coupling parameter and the rotational correlation time of the OD internuclear vector in neat ethanol-d

    NASA Astrophysics Data System (ADS)

    Ferris, Thomas D.; Farrar, Thomas C.

    The temperature dependence of the hydroxyl proton chemical shift and deuterium quadrupolar relaxation time of neat ethanol were measured over the temperature range 190-350 K. The proton isotropic chemical shift varies from 6.2 ppm at 190 K to 4.7 ppm at 350 K. The deuterium NMR relaxation time in ethanol- d 1 varies from 6.2 ms to 309 ms over the same range. Ab initio calculations performed on various ethanol clusters ranging in size from monomer to hexamer show a linear correlation ( R 2 = 0.99) between ≤D, the deuterium quadrupole coupling parameter, and δH, the isotropic proton chemical shift in ppm relative to TMS: ≤D(kHz) = 297.60 - 15.28 δH. The temperature dependence of ≤D ranges from 199.5 kHz at 190 K to 221.4 kHz at 350 K. Using the values for ≤D and the relaxation time data, the temperature dependence of the OD rotational correlation time was found to vary from 282 ps at 190 K to 4.5 ps near the boiling point (350 K). Using these correlation times and bulk viscosity data, the Gierer-Wirtz model predicts a supramolecular cluster volume of about 317 A 3 , the approximate volume of a cyclic pentamer cluter of ethanol molecules. The cluster volume was nearly constant from 340 K to about 290 K.

  12. Temperature dependence of damage coefficient in electron irradiated solar cells

    NASA Technical Reports Server (NTRS)

    Faith, T. J.

    1973-01-01

    Measurements of light-generated current vs cell temperature on electron-irradiated n/p silicon solar cells show the temperature coefficient of this current to increase with increasing fluence for both 10-ohm and 20-ohm cells. A relationship between minority-carrier diffusion length and light-generated current was derived by combining measurements of these two parameters: vs fluence at room temperature, and vs cell temperature in cells irradiated to a fluence of 1 x 10 to the 15th power e/sq cm. This relationship was used, together with the light-generated current data, to calculate the temperature dependence of the diffusion-length damage coefficient. The results show a strong decrease in the damage coefficient with increasing temperature in the range experienced by solar panels in synchronous earth orbit.

  13. Pressure dependence of the electron-phonon interaction and the normal-state resistivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, O.; Sundqvist, B.

    1981-07-01

    Accurate measurements of the electrical resistance as a function of temperature and pressure are reported for Sn, Zr, dhcp La, and V. These measurements cover a temperature region around room temperature and pressures up to 1.3 GPa. From these data, including also our previous measurements for Al and published results for Pb, the pressure dependence of drho/dT (the resistivity-temperature derivative) is obtained. This quantity is found to be a significant factor in the pressure dependence of the electron-phonon interaction parameter lambda. For the nontransition metals the relative pressure dependence of drho/dT is much larger than the compressibility. Therefore the pressuremore » dependence of the superconducting T/sub c/ is quantitatively well accounted for by the resistance data for these metals. For the transition metals the pressure dependence of drho/dT is relatively smaller and T/sub c/(p) calculated from the resistance data is, at the best, only qualitatively correct. These differences are discussed. Estimates for the pressure dependence of the plasma frequency are obtained.« less

  14. Homeostasis of the temperature sensitivity of respiration over a range of growth temperatures indicated by a modified Arrhenius model.

    PubMed

    Noguchi, Ko; Yamori, Wataru; Hikosaka, Kouki; Terashima, Ichiro

    2015-07-01

    The temperature dependence of plant respiratory rate (R) changes in response to growth temperature. Here, we used a modified Arrhenius model incorporating the temperature dependence of activation energy (Eo ), and compared the temperature dependence of R between cold-sensitive and cold-tolerant species. We analyzed the temperature dependences of leaf CO2 efflux rate of plants cultivated at low (LT) or high temperature (HT). In plants grown at HT (HT plants), Eo at low measurement temperature varied among species, but Eo at growth temperature in HT plants did not vary and was comparable to that in plants grown at LT (LT plants), suggesting that the limiting process was similar at the respective growth temperatures. In LT plants, the integrated value of loge R, a measure of respiratory capacity, in cold-sensitive species was lower than that in cold-tolerant species. When plants were transferred from HT to LT, the respiratory capacity changed promptly after the transfer compared with the other parameters. These results suggest that a similar process limits R at different growth temperatures, and that the lower capacity of the respiratory system in cold-sensitive species may explain their low growth rate at LT. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  15. Direct observation of temperature-driven magnetic symmetry transitions by vectorial resolved MOKE magnetometry

    NASA Astrophysics Data System (ADS)

    Cuñado, Jose Luis F.; Pedrosa, Javier; Ajejas, Fernando; Perna, Paolo; Miranda, Rodolfo; Camarero, Julio

    2017-10-01

    Angle- and temperature-dependent vectorial magnetometry measurements are necessary to disentangle the effective magnetic symmetry in magnetic nanostructures. Here we present a detailed study on an Fe(1 0 0) thin film system with competing collinear biaxial (four-fold symmetry) and uniaxial (two-fold) magnetic anisotropies, carried out with our recently developed full angular/broad temperature range/vectorial-resolved magneto-optical Kerr effect magnetometer, named TRISTAN. The data give direct views on the angular and temperature dependence of the magnetization reversal pathways, from which characteristic axes, remanences, critical fields, domain wall types, and effective magnetic symmetry are obtained. In particular, although the remanence shows four-fold angular symmetry for all investigated temperatures (15 K-400 K), the critical fields show strong temperature and angular dependencies and the reversal mechanism changes for specific angles at a given (angle-dependent) critical temperature, showing signatures of an additional collinear two-fold symmetry. This symmetry-breaking is more relevant as temperature increases to room temperature. It originates from the competition between two anisotropy contributions with different symmetry and temperature evolution. The results highlight the importance of combining temperature and angular studies, and the need to look at different magnetic parameters to unravel the underlying magnetic symmetries and temperature evolutions of the symmetry-breaking effects in magnetic nanostructures.

  16. Nonlinear electromagnetic propagation in ionosphere: Inclusion of electron temperature dependence of the collision parameter (δ)

    NASA Astrophysics Data System (ADS)

    Sodha, Mahendra Singh; Verma, R. K.

    2018-02-01

    In this paper, the authors have taken into account the electron temperature dependence of δ, the fraction of excess energy of an electron over that of a neutral particle which is exchanged in an elastic collision. The dependence of electron temperature, electron collision frequency, and refractive index/absorption coefficient, corresponding to different frequencies, on the intensity of the wave (specifically square of the amplitude of electric vector) at heights of 90 km, 100 km, and 110 km in the ionosphere, has been evaluated. The results have been discussed and graphically illustrated. The derived dependence of n and k on Eo 2 has been used to study the nonlinear horizontal propagation of electromagnetic waves at the heights of 90 km, 100 km, and 110 km in the ionosphere.

  17. Spacecraft Charging in Low Temperature Environments

    NASA Technical Reports Server (NTRS)

    Parker, Linda N.

    2007-01-01

    Spacecraft charging in plasma and radiation environments is a temperature dependent phenomenon due to the reduction of electrical conductivity in dielectric materials at low temperatures. Charging time constants are proportional to l/conductivity may become very large (on the order of days to years) at low temperatures and accumulation of charge densities in insulators in charging environments traditionally considered benign at ambient temperatures may be sufficient to produce charge densities and electric fields of concern in insulators at low temperatures. Low temperature charging is of interest because a number of spacecraft-primarily infrared astronomy and microwave cosmology observatories-are currently being design, built, and or operated at very cold temperatures on the order of 40K to 100K. This paper reviews the temperature dependence of spacecraft charging processes and material parameters important to charging as a function of temperature with an emphasis on low temperatures regimes.

  18. Voltage current characteristics of type III superconductors

    NASA Astrophysics Data System (ADS)

    Dorofejev, G. L.; Imenitov, A. B.; Klimenko, E. Yu.

    1980-06-01

    An adequate description of voltage-current characteristics is important in order to understand the nature of high critical current for the electrodynamic construction of type-III superconductors and for commercial superconductor specification. Homogenious monofilament and multifilament Nb-Ti, Nb-Zr, Nb 3Sn wires were investigated in different ranges of magnetic field, temperature and current. The longitudinal electric field for homogenious wires may be described by E=J ρnexp- T c/T 0+ T/T 0+ B/B 0+ J/J 0, where To, Bo, Jo are the increasing parameters, which depend weakly on B and T, of the electric field. The shape of the voltage-current characteristics of multifilament wires, and the parameter's dependence on temperature and magnetic field may be explained qualitatively by the longitudinal heterogeneous nature of the filaments. A method of attaining the complete specification of the wire's electro-physical properties is proposed. It includes the traditional description of a critical surface (ie the surface corresponding to a certain conventional effective resistivity in T, B, J - space) and a description of any increasing parameter that depends on B and T.

  19. Identification of a thermo-elasto-viscoplastic behavior law for the simulation of thermoforming of high impact polystyrene

    NASA Astrophysics Data System (ADS)

    Atmani, O.; Abbès, B.; Abbès, F.; Li, Y. M.; Batkam, S.

    2018-05-01

    Thermoforming of high impact polystyrene sheets (HIPS) requires technical knowledge on material behavior, mold type, mold material, and process variables. Accurate thermoforming simulations are needed in the optimization process. Determining the behavior of the material under thermoforming conditions is one of the key parameters for an accurate simulation. The aim of this work is to identify the thermomechanical behavior of HIPS in the thermoforming conditions. HIPS behavior is highly dependent on temperature and strain rate. In order to reproduce the behavior of such material, a thermo-elasto-viscoplastic constitutive law was implement in the finite element code ABAQUS. The proposed model parameters are considered as thermo-dependent. The strain-dependence effect is introduced using Prony series. Tensile tests were carried out at different temperatures and strain rates. The material parameters were then identified using a NSGA-II algorithm. To validate the rheological model, experimental blowing tests were carried out on a thermoforming pilot machine. To compare the numerical results with the experimental ones the thickness distribution and the bubble shape were investigated.

  20. Approximate similarity principle for a full-scale STOVL ejector

    NASA Astrophysics Data System (ADS)

    Barankiewicz, Wendy S.; Perusek, Gail P.; Ibrahim, Mounir B.

    1994-03-01

    Full-scale ejector experiments are expensive and difficult to implement at engine exhaust temperatures. For this reason the utility of using similarity principles, in particular the Munk and prim principle for isentropic flow, was explored. Static performance test data for a full-scale thrust augmenting ejector were analyzed for primary flow temperature up to 1560 R. At different primary temperatures, exit pressure contours were compared for similarity. A nondimensional flow parameter is then used to eliminate primary nozzle temperature dependence and verify similarity between the hot and cold flow experiments. Under the assumption that an appropriate similarity principle can be established, properly chosen performance parameters were found to be similar for both flow and cold flow model tests.

  1. Temperature and composition dependence of short-range order and entropy, and statistics of bond length: the semiconductor alloy (GaN)(1-x)(ZnO)(x).

    PubMed

    Liu, Jian; Pedroza, Luana S; Misch, Carissa; Fernández-Serra, Maria V; Allen, Philip B

    2014-07-09

    We present total energy and force calculations for the (GaN)1-x(ZnO)x alloy. Site-occupancy configurations are generated from Monte Carlo (MC) simulations, on the basis of a cluster expansion model proposed in a previous study. Local atomic coordinate relaxations of surprisingly large magnitude are found via density-functional calculations using a 432-atom periodic supercell, for three representative configurations at x = 0.5. These are used to generate bond-length distributions. The configurationally averaged composition- and temperature-dependent short-range order (SRO) parameters of the alloys are discussed. The entropy is approximated in terms of pair distribution statistics and thus related to SRO parameters. This approximate entropy is compared with accurate numerical values from MC simulations. An empirical model for the dependence of the bond length on the local chemical environments is proposed.

  2. Selectivity of the gas sensor based on the 50%In2O3-50%Ga2O3 thin film in dynamic mode of operation

    NASA Astrophysics Data System (ADS)

    Demin, I. E.; Kozlov, A. G.

    2018-01-01

    The article considers the gas sensor with the sensitive layer based on the 50%In2O3 -50%Ga2O3 thin film. The temperature and concentration dependencies of gas-induced resistance response of this sensor and the dynamical dependencies of its resistance response on the test gases in air are investigated. The test gases were ethanol, acetone, ammonia and liquefied petroleum gas. The information parameters of the sensor in the dynamical mode of operation were considered to improve its selectivity. The presented results show that the selectivity of the sensor in this mode may be improved by using the following information parameters: gas-induced resistance response in steady state, activation energy of the response and pre-exponential factor of the temperature dependence of the response time constant.

  3. Estimation procedure of the efficiency of the heat network segment

    NASA Astrophysics Data System (ADS)

    Polivoda, F. A.; Sokolovskii, R. I.; Vladimirov, M. A.; Shcherbakov, V. P.; Shatrov, L. A.

    2017-07-01

    An extensive city heat network contains many segments, and each segment operates with different efficiency of heat energy transfer. This work proposes an original technical approach; it involves the evaluation of the energy efficiency function of the heat network segment and interpreting of two hyperbolic functions in the form of the transcendental equation. In point of fact, the problem of the efficiency change of the heat network depending on the ambient temperature was studied. Criteria dependences used for evaluation of the set segment efficiency of the heat network and finding of the parameters for the most optimal control of the heat supply process of the remote users were inferred with the help of the functional analysis methods. Generally, the efficiency function of the heat network segment is interpreted by the multidimensional surface, which allows illustrating it graphically. It was shown that the solution of the inverse problem is possible as well. Required consumption of the heating agent and its temperature may be found by the set segment efficient and ambient temperature; requirements to heat insulation and pipe diameters may be formulated as well. Calculation results were received in a strict analytical form, which allows investigating the found functional dependences for availability of the extremums (maximums) under the set external parameters. A conclusion was made that it is expedient to apply this calculation procedure in two practically important cases: for the already made (built) network, when the change of the heat agent consumption and temperatures in the pipe is only possible, and for the projecting (under construction) network, when introduction of changes into the material parameters of the network is possible. This procedure allows clarifying diameter and length of the pipes, types of insulation, etc. Length of the pipes may be considered as the independent parameter for calculations; optimization of this parameter is made in accordance with other, economical, criteria for the specific project.

  4. Fractional time-dependent apparent viscosity model for semisolid foodstuffs

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Chen, Wen; Sun, HongGuang

    2017-10-01

    The difficulty in the description of thixotropic behaviors in semisolid foodstuffs is the time dependent nature of apparent viscosity under constant shear rate. In this study, we propose a novel theoretical model via fractional derivative to address the high demand by industries. The present model adopts the critical parameter of fractional derivative order α to describe the corresponding time-dependent thixotropic behavior. More interestingly, the parameter α provides a quantitative insight into discriminating foodstuffs. With the re-exploration of three groups of experimental data (tehineh, balangu, and natillas), the proposed methodology is validated in good applicability and efficiency. The results show that the present fractional apparent viscosity model performs successfully for tested foodstuffs in the shear rate range of 50-150 s^{ - 1}. The fractional order α decreases with the increase of temperature at low temperature, below 50 °C, but increases with growing shear rate. While the ideal initial viscosity k decreases with the increase of temperature, shear rate, and ingredient content. It is observed that the magnitude of α is capable of characterizing the thixotropy of semisolid foodstuffs.

  5. Effect of Mn and Cr additions on kinetics of recrystallization and parameters of grain-boundary relaxation of Al-4.9Mg alloy

    NASA Astrophysics Data System (ADS)

    Mikhailovskaya, A. V.; Golovin, I. S.; Zaitseva, A. A.; Portnoi, V. K.; Dröttboom, P.; Cifre, J.

    2013-03-01

    Methods of microstructural analysis, measurements of hardness, and temperature and time dependences of internal friction (TDIF and TDIF(iso), respectively) have been used to study recrystallization in cold-rolled alloys and grain-boundary relaxation in annealed alloys. A complex analysis of the effect of additions of transition metals (Mn, Cr) on the magnitude of the activation energy of the background of the internal friction in deformed and annealed states and on the activation parameters of grain-boundary relaxation has been performed. Methods of amplitude dependences of internal friction (ADIF) have been used to determine the critical amplitude that corresponds to the beginning of microplastic deformation in the alloys at different temperatures.

  6. Heat Capacity of Room-Temperature Ionic Liquids: A Critical Review

    NASA Astrophysics Data System (ADS)

    Paulechka, Yauheni U.

    2010-09-01

    Experimental data on heat capacity of room-temperature ionic liquids in the liquid state were compiled and critically evaluated. The compilation contains data for 102 aprotic ionic liquids from 63 literature references and covers the period of time from 1998 through the end of February 2010. Parameters of correlating equations for temperature dependence of the heat capacities were developed.

  7. Hygrothermal wave propagation in viscoelastic graphene under in-plane magnetic field based on nonlocal strain gradient theory

    NASA Astrophysics Data System (ADS)

    Karami, Behrouz; Shahsavari, Davood; Li, Li

    2018-03-01

    A size-dependent model is developed for the hygrothermal wave propagation analysis of an embedded viscoelastic single layer graphene sheet (SLGS) under the influence of in-plane magnetic field. The bi-Helmholtz nonlocal strain gradient theory involving three small scale parameters is introduced to account for the size-dependent effects. The size-dependent model is deduced based on Hamilton's principle. The closed-form solution of eigenfrequency relation between wave number and phase velocity is achieved. By studying the size-dependent effects on the flexural wave of SLGS, the dispersion relation predicted by the developed size-dependent model can show a good match with experimental data. The influence of in-plane magnetic field, temperature and moisture of environs, structural damping, damped substrate, lower and higher order nonlocal parameters and the material characteristic parameter on the phase velocity of SLGS is explored.

  8. Internally heated mantle convection and the thermal and degassing history of the earth

    NASA Technical Reports Server (NTRS)

    Williams, David R.; Pan, Vivian

    1992-01-01

    An internally heated model of parameterized whole mantle convection with viscosity dependent on temperature and volatile content is examined. The model is run for 4l6 Gyr, and temperature, heat flow, degassing and regassing rates, stress, and viscosity are calculated. A nominal case is established which shows good agreement with accepted mantle values. The effects of changing various parameters are also tested. All cases show rapid cooling early in the planet's history and strong self-regulation of viscosity due to the temperature and volatile-content dependence. The effects of weakly stress-dependent viscosity are examined within the bounds of this model and are found to be small. Mantle water is typically outgassed rapidly to reach an equilibrium concentration on a time scale of less than 200 Myr for almost all models, the main exception being for models which start out with temperatures well below the melting temperature.

  9. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2003-01-01

    Spectroscopic parameters (such as line position, intensity, broadening and shifting coefficients and their temperature dependences, line mixing coefficients etc.) for various molecular species of atmospheric interest are determined. In order to achieve these results, infrared spectra of several molecular bands are obtained using high-resolution recording instruments such as tunable diode laser spectrometer and Fourier transform spectrometers. Using sophisticated analysis routines (Multispectrum nonlinear least squares technique) these high-resolution infrared spectra are processed to determine the various spectral line parameters that are cited above. Spectra were taken using the McMath-Pierce Fourier transform spectrometer (FTS) at the National Solar Observatory on Kitt Peak, Arizona as well as the Bruker FTS at the Pacific Northwest National Laboratory (PNNL) at Richland, Washington. Most of the spectra are acquired not only at room temperature, but also at several different cold temperatures. This procedure is necessary to study the variation of the spectral line parameters as a function of temperature in order to simulate the Earth's and other planetary atmospheric environments. Depending upon the strength or weakness of the various bands recorded and analyzed, the length(s) of the absorption cells in which the gas samples under study are kept varied from a few centimeters up to several meters and the sample temperatures varied from approximately +30 C to -63 C. Research on several infrared bands of various molecular species and their isotopomers are undertaken. Those studies are briefly described.

  10. Temperature dependent growth of GaN nanowires using CVD technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Mukesh, E-mail: mukeshjihrnp@gmail.com; Singh, R.; Kumar, Vikram

    2016-05-23

    Growth of GaN nanowires have been carried out on sapphire substrates with Au as a catalyst using chemical vapour deposition technique. GaN nanowires growth have been studied with the experimental parameter as growth temperature. Diameter of grown GaN nanowires are in the range of 50 nm to 100 nm while the nanowire length depends on growth temperature. Morphology of the GaN nanowires have been studied by scanning electron microscopy. Crystalline nature has been observed by XRD patterns. Optical properties of grown GaN nanowires have been investigated by photoluminescence spectra.

  11. Determination and importance of temperature dependence of retention coefficient (RPHPLC) in QSAR model of nitrazepams' partition coefficient in bile acid micelles.

    PubMed

    Posa, Mihalj; Pilipović, Ana; Lalić, Mladena; Popović, Jovan

    2011-02-15

    Linear dependence between temperature (t) and retention coefficient (k, reversed phase HPLC) of bile acids is obtained. Parameters (a, intercept and b, slope) of the linear function k=f(t) highly correlate with bile acids' structures. Investigated bile acids form linear congeneric groups on a principal component (calculated from k=f(t)) score plot that are in accordance with conformations of the hydroxyl and oxo groups in a bile acid steroid skeleton. Partition coefficient (K(p)) of nitrazepam in bile acids' micelles is investigated. Nitrazepam molecules incorporated in micelles show modified bioavailability (depo effect, higher permeability, etc.). Using multiple linear regression method QSAR models of nitrazepams' partition coefficient, K(p) are derived on the temperatures of 25°C and 37°C. For deriving linear regression models on both temperatures experimentally obtained lipophilicity parameters are included (PC1 from data k=f(t)) and in silico descriptors of the shape of a molecule while on the higher temperature molecular polarisation is introduced. This indicates the fact that the incorporation mechanism of nitrazepam in BA micelles changes on the higher temperatures. QSAR models are derived using partial least squares method as well. Experimental parameters k=f(t) are shown to be significant predictive variables. Both QSAR models are validated using cross validation and internal validation method. PLS models have slightly higher predictive capability than MLR models. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Influence des conditions climatiques saisonnières sur quelques paramètres physiologiques dès boucs Créoles alimentés avec de l'ensilage de banane

    NASA Astrophysics Data System (ADS)

    Fauconneau, B.; Xande, A.

    1986-06-01

    Response of three groups of 12 male creole goats (weighing about 10 kg) to environmental variations was tested in Guadeloupe (French West Indies) respectively at three times in the year: end of humid season (October November), dry season (February March) and beginning of humid season (July August). Voluntary free intake of banana silage (silage of mixed green banana, bagassa, wheat bran and urea complemented with molasse) was not significantly affected by climatic variations. Three physiological parameters: rectal temperature, respiratory frequency and cardiac frequency were measured. These parameters were correlated with heat production dependent factors such as metabolic body weight, body weight gain and voluntary free intake. Rectal temperature increased all through the day until sunset and then decreased during the night. Both minimal rectal temperature and daily increase of rectal temperature were correlated with ambient temperature. Cardiac frequency increased during feeding. Generally cardiac frequency seemed to be correlated with activity of animals and so with behavioural response to environmental variations. Respiratory frequency was the most sensitive index of goat response to climate. The daily increase of respiratory frequency was important at the end of the humid season but was not observed in dry season. This increase was dependent on ambient temperature increase but also on air humidity characteristics and air velocity. These points are discussed according to integration of those physiological parameters in thermoregulation.

  13. Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamand, S.M., E-mail: soran.mamand@univsul.net; Omar, M.S.; Muhammad, A.J.

    2012-05-15

    Graphical abstract: Temperature dependence of calculated lattice thermal conductivity of Wurtzite GaN nanowires. Highlights: Black-Right-Pointing-Pointer A modified Callaway model is used to calculate lattice thermal conductivity of Wurtzite GaN nanowires. Black-Right-Pointing-Pointer A direct method is used to calculate phonon group velocity for these nanowires. Black-Right-Pointing-Pointer 3-Gruneisen parameter, surface roughness, and dislocations are successfully investigated. Black-Right-Pointing-Pointer Dislocation densities are decreases with the decrease of wires diameter. -- Abstract: A detailed calculation of lattice thermal conductivity of freestanding Wurtzite GaN nanowires with diameter ranging from 97 to 160 nm in the temperature range 2-300 K, was performed using a modified Callaway model.more » Both longitudinal and transverse modes are taken into account explicitly in the model. A method is used to calculate the Debye and phonon group velocities for different nanowire diameters from their related melting points. Effect of Gruneisen parameter, surface roughness, and dislocations as structure dependent parameters are successfully used to correlate the calculated values of lattice thermal conductivity to that of the experimentally measured curves. It was observed that Gruneisen parameter will decrease with decreasing nanowire diameters. Scattering of phonons is assumed to be by nanowire boundaries, imperfections, dislocations, electrons, and other phonons via both normal and Umklapp processes. Phonon confinement and size effects as well as the role of dislocation in limiting thermal conductivity are investigated. At high temperatures and for dislocation densities greater than 10{sup 14} m{sup -2} the lattice thermal conductivity would be limited by dislocation density, but for dislocation densities less than 10{sup 14} m{sup -2}, lattice thermal conductivity would be independent of that.« less

  14. Aspects of metallic low-temperature transport in Mott-insulator/band-insulator superlattices: Optical conductivity and thermoelectricity

    NASA Astrophysics Data System (ADS)

    Rüegg, Andreas; Pilgram, Sebastian; Sigrist, Manfred

    2008-06-01

    We investigate the low-temperature electrical and thermal transport properties in atomically precise metallic heterostructures involving strongly correlated electron systems. The model of the Mott-insulator/band-insulator superlattice was discussed in the framework of the slave-boson mean-field approximation and transport quantities were derived by use of the Boltzmann transport equation in the relaxation-time approximation. The results for the optical conductivity are in good agreement with recently published experimental data on (LaTiO3)N/(SrTiO3)M superlattices and allow us to estimate the values of key parameters of the model. Furthermore, predictions for the thermoelectric response were made and the dependence of the Seebeck coefficient on model parameters was studied in detail. The width of the Mott-insulating material was identified as the most relevant parameter, in particular, this parameter provides a way to optimize the thermoelectric power factor at low temperatures.

  15. Thermal Management in Friction-Stir Welding of Precipitation-Hardening Aluminum Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Piyush; Reynolds, Anthony

    2015-05-25

    Process design and implementation in FSW is mostly dependent on empirical information gathered through experience. Basic science of friction stir welding and processing can only be complete when fundamental interrelationships between process control parameters and response variables and resulting weld microstructure and properties are established to a reasonable extent. It is known that primary process control parameters like tool rotation and translation rate and forge axis force have complicated and interactive relationships to the process response variables such as peak temperature, time at temperature etc. Of primary influence to the other process response parameters are temperature and its gradient atmore » the deformation and heat affected zones. Through review of pertinent works in the literature and some experimental results from boundary condition work performed in precipitation hardening aluminum alloys this paper will partially elucidate the nature and effects of temperature transients caused by variation of thermal boundaries in Friction Stir Welding.« less

  16. Physiological breakdown of Jeffrey six constant nanofluid flow in an endoscope with nonuniform wall

    NASA Astrophysics Data System (ADS)

    Nadeem, S.; Shaheen, A.; Hussain, S.

    2015-12-01

    This paper analyse the endoscopic effects of peristaltic nanofluid flow of Jeffrey six-constant fluid model in the presence of magnetohydrodynamics flow. The current problem is modeled in the cylindrical coordinate system and exact solutions are managed (where possible) under low Reynolds number and long wave length approximation. The influence of emerging parameters on temperature and velocity profile are discussed graphically. The velocity equation is solved analytically by utilizing the homotopy perturbation technique strongly, while the exact solutions are computed from temperature equation. The obtained expressions for velocity , concentration and temperature is sketched during graphs and the collision of assorted parameters is evaluate for transform peristaltic waves. The solution depend on thermophoresis number Nt, local nanoparticles Grashof number Gr, and Brownian motion number Nb. The obtained expressions for the velocity, temperature, and nanoparticles concentration profiles are plotted and the impact of various physical parameters are investigated for different peristaltic waves.

  17. Thermal Management in Friction-Stir Welding of Precipitation-Hardened Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Upadhyay, Piyush; Reynolds, Anthony P.

    2015-05-01

    Process design and implementation in friction-stir welding (FSW) is mostly dependent on empirical information. Basic science of FSW and processing can only be complete when fundamental interrelationships between the process control parameters and response variables and the resulting weld microstructure and properties are established to a reasonable extent. It is known that primary process control parameters such as tool rotation, translation rates, and forge axis force have complicated and interactive relationships to process-response variables such as peak temperature and time at temperature. Of primary influence on the other process-response parameters are temperature and its gradient in the deformation and heat-affected zones. Through a review of pertinent works in the literature and results from boundary condition experiments performed in precipitation-hardening aluminum alloys, this article partially elucidates the nature and effects of temperature transients caused by variation of thermal boundaries in FSW.

  18. Anomalous and non-Gaussian diffusion in Hertzian spheres

    NASA Astrophysics Data System (ADS)

    Ouyang, Wenze; Sun, Bin; Sun, Zhiwei; Xu, Shenghua

    2018-09-01

    By means of molecular dynamics simulations, we study the non-Gaussian diffusion in the fluid of Hertzian spheres. The time dependent non-Gaussian parameter, as an indicator of the dynamic heterogeneity, is increased with the increasing of temperature. When the temperature is high enough, the dynamic heterogeneity becomes very significant, and it seems counterintuitive that the maximum of non-Gaussian parameter and the position of its peak decrease monotonically with the increasing of density. By fitting the curves of self intermediate scattering function, we find that the character relaxation time τα is surprisingly not coupled with the time τmax where the non-Gaussian parameter reaches to a maximum. The intriguing features of non-Gaussian diffusion at high enough temperatures can be associated with the weakly correlated mean-field behavior of Hertzian spheres. Especially the time τmax is nearly inversely proportional to the density at extremely high temperatures.

  19. Temperature-dependent infrared optical properties of 3C-, 4H- and 6H-SiC

    NASA Astrophysics Data System (ADS)

    Tong, Zhen; Liu, Linhua; Li, Liangsheng; Bao, Hua

    2018-05-01

    The temperature-dependent optical properties of cubic (3C) and hexagonal (4H and 6H) silicon carbide are investigated in the infrared range of 2-16 μm both by experimental measurements and numerical simulations. The temperature in experimental measurement is up to 593 K, while the numerical method can predict the optical properties at elevated temperatures. To investigate the temperature effect, the temperature-dependent damping parameter in the Lorentz model is calculated based on anharmonic lattice dynamics method, in which the harmonic and anharmonic interatomic force constants are determined from first-principles calculations. The infrared phonon modes of silicon carbide are determined from first-principles calculations. Based on first-principles calculations, the Lorentz model is parameterized without any experimental fitting data and the temperature effect is considered. In our investigations, we find that the increasing temperature induces a small reduction of the reflectivity in the range of 10-13 μm. More importantly, it also shows that our first-principles calculations can predict the infrared optical properties at high-temperature effectively which is not easy to be obtained through experimental measurements.

  20. Temperature Dependences of Air-Broadening and Shift Parameters in the ν_3 Band of Ozone

    NASA Astrophysics Data System (ADS)

    Smith, Mary Ann H.; Devi, V. Malathy; Benner, D. Chris

    2015-06-01

    Line parameter errors can contribute significantly to the total errors in retrievals of terrestrial atmospheric ozone concentration profiles using the strong 9.6-μm band, particularly for nadir-viewing experiments Detailed knowledge of the interfering ozone signal is also needed for retrievals of other atmospheric species in this spectral region. We have determined Lorentz air-broadening and pressure-induced shift coefficients along with their temperature dependences for a number of transitions in the ν_3 fundamental band of 16O_3. These results were obtained by applying the multispectrum nonlinear least-squares fitting technique to a set of 31 high-resolution infrared absorption spectra of O_3 recorded at temperatures between 160 and 300 K with several different room-temperature and coolable sample cells at the McMath-Pierce Fourier transform spectrometer at the National Solar Observatory on Kitt Peak. We compare our results with other available measurements and with the ozone line parameters in the HITRAN database. J.~Worden et al., J.~Geophys.~Res. 109 (2004) 9308-9319. R.~Beer et al., Geophys.~Res.~Lett. 35 (2008) L09801. D.~Chris Benner et al., JQSRT 53 (1995) 705-721. Rothman et al., J. Quant. Spectrosc. Radiat. Transfer 130 (2013) 4. JQSRT 130 (2013) 4-50.

  1. Long wavelength emitting GaInN quantum wells on metamorphic GaInN buffer layers with enlarged in-plane lattice parameter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Däubler, J., E-mail: juergen.daeubler@iaf.fraunhofer.de; Passow, T.; Aidam, R.

    Metamorphic (i.e., linear composition graded) GaInN buffer layers with an increased in-plane lattice parameter, grown by plasma-assisted molecular beam epitaxy, were used as templates for metal organic vapor phase epitaxy (MOVPE) grown GaInN/GaInN quantum wells (QWs), emitting in the green to red spectral region. A composition pulling effect was observed allowing considerable higher growth temperatures for the QWs for a given In composition. The internal quantum efficiency (IQE) of the QWs was determined by temperature and excitation power density dependent photoluminescence (PL) spectroscopy. An increase in IQE by a factor of two was found for green emitting QWs grown onmore » metamorphic GaInN buffer compared to reference samples grown on standard GaN buffer layers. The ratio of room temperature to low temperature intensity PL of the red emitting QWs were found to be comparable to the PL efficiency of green emitting QWs, both grown on metamorphic GaInN buffers. The excitation density and well width dependence of the IQE indicate a reduction of the quantum confined Stark effect upon growth on GaInN buffer layers with increased in-plane lattice parameter.« less

  2. Parameter variation of the one-diode model of a-Si and a- Si/μc-Si solar cells for modeling light-induced degradation

    NASA Astrophysics Data System (ADS)

    Weicht, J. A.; Hamelmann, F. U.; Behrens, G.

    2014-11-01

    For analyzing the long-term behavior of thin film a-Si/μc-Si photovoltaic modules, it is important to observe the light-induced degradation (LID) in dependence of the temperature for the parameters of the one-diode model for solar cells. According to the IEC 61646 standard, the impact of LID on module parameters of these thin film cells is determined at a constant temperature of 50°C with an irradiation of 1000 W/m2 at open circuit conditions. Previous papers examined the LID of thin film a-Si cells with different temperatures and some others are about a-Si/μc-Si. In these previous papers not all parameters of the one-diode model are examined. We observed the serial resistance (Rs), parallel resistance (Rp), short circuit current (Isc), open circuit voltage (Uoc), the maximum power point (MPP: Umpp, Impp and Pmpp) and the diode factor (n). Since the main reason for the LID of silicon-based thin films is the Staebler Wronski effect in the a-Si part of the cell, the temperature dependence of the healing of defects for all parameters of the one-diode model is also taken into account. We are also measuring modules with different kind of transparent conductive oxides: In a-Si thin film solar cells fluorine-doped tin oxide (FTO) is used and for thin film solar cells of a-Si/μc-Si boron- doped zinc oxide is used. In our work we describe an approach for transferring the parameters of a one-diode model for tandem thin film solar cells into the one-diode model for each part of the solar cell. The measurement of degradation and regeneration at higher temperatures is the necessary base for optimization of the different silicon-based thin films in warm hot climate.

  3. Comment on 'Collisional cooling investigation of THz rotational transitions of water'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupnov, A. F.

    2010-09-15

    A possible experimental explanation for the unusual temperature dependence of water line broadening by molecular hydrogen recently observed by Dick et al. [Phys. Rev. A 81, 022706 (2010)] is proposed. This temperature dependence differs radically from both theoretical predictions and the higher temperature behavior, but remains unexplained. It is suggested that the cause is a change in sample composition due to preferential adsorption of orthohydrogen onto the cell walls at low temperature. As parahydrogen has collision cross sections with water molecules up to an order of magnitude smaller than those with orthohydrogen, an enrichment of the gas sample by parahydrogenmore » would lead to a decrease in broadening parameters at low temperatures, as observed in the experiment.« less

  4. Correlation between the Temperature Dependence of Intrsinsic Mr Parameters and Thermal Dose Measured by a Rapid Chemical Shift Imaging Technique

    PubMed Central

    Taylor, Brian A.; Elliott, Andrew M.; Hwang, Ken-Pin; Hazle, John D.; Stafford, R. Jason

    2011-01-01

    In order to investigate simultaneous MR temperature imaging and direct validation of tissue damage during thermal therapy, temperature-dependent signal changes in proton resonance frequency (PRF) shifts, R2* values, and T1-weighted amplitudes are measured from one technique in ex vivo tissue heated with a 980-nm laser at 1.5T and 3.0T. Using a multi-gradient echo acquisition and signal modeling with the Stieglitz-McBride algorithm, the temperature sensitivity coefficient (TSC) values of these parameters are measured in each tissue at high spatiotemporal resolutions (1.6×1.6×4mm3,≤5sec) at the range of 25-61 °C. Non-linear changes in MR parameters are examined and correlated with an Arrhenius rate dose model of thermal damage. Using logistic regression, the probability of changes in these parameters is calculated as a function of thermal dose to determine if changes correspond to thermal damage. Temperature calibrations demonstrate TSC values which are consistent with previous studies. Temperature sensitivity of R2* and, in some cases, T1-weighted amplitudes are statistically different before and after thermal damage occurred. Significant changes in the slopes of R2* as a function of temperature are observed. Logistic regression analysis shows that these changes could be accurately predicted using the Arrhenius rate dose model (Ω=1.01±0.03), thereby showing that the changes in R2* could be direct markers of protein denaturation. Overall, by using a chemical shift imaging technique with simultaneous temperature estimation, R2* mapping and T1-W imaging, it is shown that changes in the sensitivity of R2* and, to a lesser degree, T1-W amplitudes are measured in ex vivo tissue when thermal damage is expected to occur according to Arrhenius rate dose models. These changes could possibly be used for direct validation of thermal damage in contrast to model-based predictions. PMID:21721063

  5. Fitting the Incidence Data from the City of Campinas, Brazil, Based on Dengue Transmission Modellings Considering Time-Dependent Entomological Parameters

    PubMed Central

    Yang, Hyun Mo; Boldrini, José Luiz; Fassoni, Artur César; Freitas, Luiz Fernando Souza; Gomez, Miller Ceron; de Lima, Karla Katerine Barboza; Andrade, Valmir Roberto; Freitas, André Ricardo Ribas

    2016-01-01

    Four time-dependent dengue transmission models are considered in order to fit the incidence data from the City of Campinas, Brazil, recorded from October 1st 1995 to September 30th 2012. The entomological parameters are allowed to depend on temperature and precipitation, while the carrying capacity and the hatching of eggs depend only on precipitation. The whole period of incidence of dengue is split into four periods, due to the fact that the model is formulated considering the circulation of only one serotype. Dengue transmission parameters from human to mosquito and mosquito to human are fitted for each one of the periods. The time varying partial and overall effective reproduction numbers are obtained to explain the incidence of dengue provided by the models. PMID:27010654

  6. Maxwell boundary condition and velocity dependent accommodation coefficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Struchtrup, Henning, E-mail: struchtr@uvic.ca

    2013-11-15

    A modification of Maxwell's boundary condition for the Boltzmann equation is developed that allows to incorporate velocity dependent accommodation coefficients into the microscopic description. As a first example, it is suggested to consider the wall-particle interaction as a thermally activated process with three parameters. A simplified averaging procedure leads to jump and slip boundary conditions for hydrodynamics. Coefficients for velocity slip, temperature jump, and thermal transpiration flow are identified and compared with those resulting from the original Maxwell model and the Cercignani-Lampis model. An extension of the model leads to temperature dependent slip and jump coefficients.

  7. Effect of deep cryogenic temperature on silicon-on-insulator CMOS mismatch: A circuit designer’s perspective

    NASA Astrophysics Data System (ADS)

    Das, Kushal; Lehmann, Torsten

    2014-07-01

    The effect of ultra low operating temperature on mismatch among identically designed Silicon-on-Sapphire CMOS devices is investigated in detail from a circuit design view point. The evolution of transistor matching properties for different operating conditions at both room and 4.2 K temperature are presented. The statistical analysis reveals that mismatch at low temperature is effectively unrelated to that at room temperature, which disagrees with previously published literature. The measurement data was used to extract key transistor parameters and the consequence of temperature lowering on their respective variance is estimated. We find that standard deviation of the threshold-voltage mismatch deteriorates by a factor ∼2 at 4.2 K temperature. Similar to room temperature operation, mismatch at 4.2 K is bias point dependent and the degradation of matching at very low temperature depends to some extent on how the bias point shifts upon cooling.

  8. Size effects and electron microscopy of thin metal films. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Hernandez, J. D.

    1978-01-01

    All films were deposited by resistive heated evaporation in an oil diffusion pumped vacuum system (ultimate approx. equal to 0.0000001 torr). The growth from nuclei to a continuous film is highly dependent on the deposition parameters, evaporation rate as well as substrate material and substrate temperature. The growth stages of a film and the dependence of grain size on various deposition and annealing parameters are shown. Resistivity measurements were taken on thin films to observe size effects.

  9. Effects of a temperature-dependent rheology on large scale continental extension

    NASA Technical Reports Server (NTRS)

    Sonder, Leslie J.; England, Philip C.

    1988-01-01

    The effects of a temperature-dependent rheology on large-scale continental extension are investigated using a thin viscous sheet model. A vertically-averaged rheology is used that is consistent with laboratory experiments on power-law creep of olivine and that depends exponentially on temperature. Results of the calculations depend principally on two parameters: the Peclet number, which describes the relative rates of advection and diffusion of heat, and a dimensionless activation energy, which controls the temperature dependence of the rheology. At short times following the beginning of extension, deformation occurs with negligible change in temperature, so that only small changes in lithospheric strength occur due to attenuation of the lithosphere. However, after a certain critical time interval, thermal diffusion lowers temperatures in the lithosphere, strongly increasing lithospheric strength and slowing the rate of extension. This critical time depends principally on the Peclet number and is short compared with the thermal time constant of the lithosphere. The strength changes cause the locus of high extensional strain rates to shift with time from regions of high strain to regions of low strain. Results of the calculations are compared with observations from the Aegean, where maximum extensional strains are found in the south, near Crete, but maximum present-day strain rates are largest about 300 km further north.

  10. Effects of Post Annealing on I-V-T Characteristics of (Ni/Au)/Al0.09Ga0.91N Schottky Barrier Diodes

    NASA Astrophysics Data System (ADS)

    Akkaya, Abdullah; Ayyıldız, Enise

    2016-04-01

    Post annealing is a simple, effective and suitable method for improving the diode parameters, especially when the used chemically stable substrates like Si, III-N and ternary alloys. In our work, we were applied this method to (Ni/Au)/Al0.09Ga0.91N Schottky Barrier Diodes (SBDs) and investigated by temperature-dependent current-voltage (I-V-T) characteristics at optimum conditions. Optimum annealing temperature was 600°C, which it’s determined with respect to have a highest barrier height value. The temperature-dependent electrical characteristics of the annealed at 600°C (Ni/Au)/Al0.09Ga0.91N SBDs were investigated in the wide temperature range of 95-315K. The diode parameters such as ideality factor (n) and Schottky barrier height (Vb0) were obtained to be strongly temperature dependent. The observed variation in Vb0 and n can be attributed to the spatial barrier inhomogeneities in Schottky barrier height by assuming a triple Gaussian distribution (TGD) of barrier heights (BHs) at 95-145K, 145-230K and 230-315K. The modified Richardson plots and T0 analysis was performed to provide an experimental Richardson constants and bias coefficients of the mean barrier height. Furthermore, the chemical composition of the contacts was examined by the XPS depth profile analysis.

  11. Phonon-drag magnetothermopower in Rashba spin-split two-dimensional electron systems.

    PubMed

    Biswas, Tutul; Ghosh, Tarun Kanti

    2013-10-16

    We study the phonon-drag contribution to the thermoelectric power in a quasi-two-dimensional electron system confined in GaAs/AlGaAs heterostructure in the presence of both Rashba spin-orbit interaction and perpendicular magnetic field at very low temperature. It is observed that the peaks in the phonon-drag thermopower split into two when the Rashba spin-orbit coupling constant is strong. This splitting is a direct consequence of the Rashba spin-orbit interaction. We show the dependence of phonon-drag thermopower on both magnetic field and temperature numerically. A power-law dependence of phonon-drag magnetothermopower on the temperature in the Bloch-Gruneisen regime is found. We also extract the exponent of the temperature dependence of phonon-drag thermopower for different parameters like electron density, magnetic field, and the spin-orbit coupling constant.

  12. Effect of medium electrophysical parameters and their temperature dependences on wideband electromagnetic pulse propagation

    NASA Astrophysics Data System (ADS)

    Volkomirskaya, L. B.; Gulevich, O. A.; Reznikov, A. E.

    2017-03-01

    The dielectric permittivity of fiery spoil tips (Shakhty town, Rostov Region) is studied with the use of a GROT 12E remote-controlled ground-penetrating radar (GPR). An anomalous zone in a combustion source is shown to be clearly pronounced in GPR data due to the temperature dependence of the dielectric permittivity of these spoil tips. To substantiate this statement, the GPR data are compared with direct measurements of soil temperatures at depths from 1.5 to 2.5 m. The experimental results are compared with the variable spectral range of a GPR sounding pulse. GPR is shown to be a promising tool for the mapping of temperature-contrast underground objects.

  13. Simultaneous effects of pressure and temperature on donor binding energy in Pöschl-Teller quantum well

    NASA Astrophysics Data System (ADS)

    Hakimyfard, Alireza; Barseghyan, M. G.; Duque, C. A.; Kirakosyan, A. A.

    2009-12-01

    In the frame of the variational method and the effective-mass approximation, the effects of hydrostatic pressure and temperature on the binding energy for donor impurities in the Pöschl-Teller quantum well are studied. The binding energy dependencies on the width of the quantum well, the hydrostatic pressure, the impurity position, the temperature, and the parameters of the confining potential are reported. The results show that the binding energy increases (decreases) with the increasing of the hydrostatic pressure (temperature). It is also found that, associated with the symmetry breaking in the Pöschl-Teller quantum well, and depending on the impurity position, the binding energy can increase or decrease.

  14. NOSD-1000, the high-temperature nitrous oxide spectroscopic databank

    NASA Astrophysics Data System (ADS)

    Tashkun, S. A.; Perevalov, V. I.; Lavrentieva, N. N.

    2016-07-01

    We present a high-temperature version, NOSD-1000, of the nitrous oxide spectroscopic databank. The databank contains the line parameters (positions, intensities, air- and self-broadened half-widths and coefficients of temperature dependence of air- and self-broadened half-widths) of the most abundant isotopologue 14N216O of the nitrous oxide molecule. The reference temperature is Tref=1000 K and the intensity cutoff is Icut=10-25 cm-1/(molecule cm-2). More than 1.4 million lines covering the 260-8310 cm-1 spectral range are included in NOSD-1000. The databank has been generated within the framework of the method of effective operators and based on the global fittings of spectroscopic parameters (parameters of the effective Hamiltonian and effective dipole moment operators) to observed data collected from the literature. Line-by-line simulation of a medium-resolution high-temperature (T=873 K) spectrum has been performed in order to validate the databank. NOSD-1000 is freely accessible via the Internet.

  15. In orbit adiabatic demagnetization refrigeration for bolometric and microcalorimetric detectors

    NASA Astrophysics Data System (ADS)

    Hepburn, I. D.; Ade, P. A. R.; Davenport, I.; Smith, A.; Sumner, T. J.

    1992-12-01

    The new generation of photon detectors for satellite based mm/submm and X-ray astronomical observations require cooling to temperatures in the range 60 to 300 mK. At present Adiabatic Demagnetization Refrigeration (ADR) is the best proposed technique for producing these temperatures in orbit due to its inherent simplicity and gravity independent operation. For the efficient utilization of an ADR it is important to realize long operational times at base temperature with short recycle times. These criteria are dependent on several parameters; the required operating temperature, the cryogen bath temperature, the amount of heat leakage to the paramagnetic salt, the volume and type of salt and the maximum obtainable magnetic field. For space application these parameters are restricted by the limitations imposed on the physical size, the mass, the available electrical power and the cooling power available. The design considerations required in order to match these parameters are described and test data from a working laboratory system is presented.

  16. Estimated effects of temperature on secondary organic aerosol concentrations.

    PubMed

    Sheehan, P E; Bowman, F M

    2001-06-01

    The temperature-dependence of secondary organic aerosol (SOA) concentrations is explored using an absorptive-partitioning model under a variety of simplified atmospheric conditions. Experimentally determined partitioning parameters for high yield aromatics are used. Variation of vapor pressures with temperature is assumed to be the main source of temperature effects. Known semivolatile products are used to define a modeling range of vaporization enthalpy of 10-25 kcal/mol-1. The effect of diurnal temperature variations on model predictions for various assumed vaporization enthalpies, precursor emission rates, and primary organic concentrations is explored. Results show that temperature is likely to have a significant influence on SOA partitioning and resulting SOA concentrations. A 10 degrees C decrease in temperature is estimated to increase SOA yields by 20-150%, depending on the assumed vaporization enthalpy. In model simulations, high daytime temperatures tend to reduce SOA concentrations by 16-24%, while cooler nighttime temperatures lead to a 22-34% increase, compared to constant temperature conditions. Results suggest that currently available constant temperature partitioning coefficients do not adequately represent atmospheric SOA partitioning behavior. Air quality models neglecting the temperature dependence of partitioning are expected to underpredict peak SOA concentrations as well as mistime their occurrence.

  17. Three-dimensional solutions for the thermal buckling and sensitivity derivatives of temperature-sensitive multilayered angle-ply plates

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Burton, W. S.

    1992-01-01

    Analytic three-dimensional thermoelasticity solutions are presented for the thermal buckling of multilayered angle-ply composite plates with temperature-dependent thermoelastic properties. Both the critical temperatures and the sensitivity derivatives are computed. The sensitivity derivatives measure the sensitivity of the buckling response to variations in the different lamination and material parameters of the plate. The plates are assumed to have rectangular geometry and an antisymmetric lamination with respect to the middle plane. The temperature is assumed to be independent of the surface coordinates, but has an arbitrary symmetric variation through the thickness of the plate. The prebuckling deformations are accounted for. Numerical results are presented, for plates subjected to uniform temperature increase, showing the effects of temperature-dependent material properties on the prebuckling stresses, critical temperatures, and their sensitivity derivatives.

  18. Relative mass distributions of neutron-rich thermally fissile nuclei within a statistical model

    NASA Astrophysics Data System (ADS)

    Kumar, Bharat; Kannan, M. T. Senthil; Balasubramaniam, M.; Agrawal, B. K.; Patra, S. K.

    2017-09-01

    We study the binary mass distribution for the recently predicted thermally fissile neutron-rich uranium and thorium nuclei using a statistical model. The level density parameters needed for the study are evaluated from the excitation energies of the temperature-dependent relativistic mean field formalism. The excitation energy and the level density parameter for a given temperature are employed in the convolution integral method to obtain the probability of the particular fragmentation. As representative cases, we present the results for the binary yields of 250U and 254Th. The relative yields are presented for three different temperatures: T =1 , 2, and 3 MeV.

  19. ESTIMATION OF CRACK-ARREST TOUGHNESS TRANSITION AND NDT TEMPERATURES FROM CHARPY FORCE-DISPLACEMENT IMPACT TRACES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolov, Mikhail A

    2010-01-01

    A force-displacement trace of a Charpy impact test of a reactor pressure vessel (RPV) steel in the transition range has a characteristic point, the so-called force at the end of unstable crack propagation , Fa. A two-parameter Weibull probability function is used to model the distribution of the Fa in Charpy tests performed at ORNL on different RPV steels in the unirradiated and irradiated conditions. These data have a good replication at a given test temperature, thus, the statistical analysis was applicable. It is shown that when temperature is normalized to TNDT (T-TNDT) or to T100a (T-T100a), the median Famore » values of different RPV steels have a tendency to form the same shape of temperature dependence. Depending on normalization temperature, TNDT or T100a, it suggests a universal shape of the temperature dependence of Fa for different RPV steels. The best fits for these temperature dependencies are presented. These dependencies are suggested for use in estimation of NDT or T100a from randomly generated Charpy impact tests. The maximum likelihood methods are used to derive equations to estimate TNDT and T100a from randomly generated Charpy impact tests.« less

  20. Iterative matrix algorithm for high precision temperature and force decoupling in multi-parameter FBG sensing.

    PubMed

    Hopf, Barbara; Dutz, Franz J; Bosselmann, Thomas; Willsch, Michael; Koch, Alexander W; Roths, Johannes

    2018-04-30

    A new iterative matrix algorithm has been applied to improve the precision of temperature and force decoupling in multi-parameter FBG sensing. For the first time, this evaluation technique allows the integration of nonlinearities in the sensor's temperature characteristic and the temperature dependence of the sensor's force sensitivity. Applied to a sensor cable consisting of two FBGs in fibers with 80 µm and 125 µm cladding diameter installed in a 7 m-long coiled PEEK capillary, this technique significantly reduced the uncertainties in friction-compensated temperature measurements. In the presence of high friction-induced forces of up to 1.6 N the uncertainties in temperature evaluation were reduced from several degrees Celsius if using a standard linear matrix approach to less than 0.5°C if using the iterative matrix approach in an extended temperature range between -35°C and 125°C.

  1. Size-dependent axisymmetric vibration of functionally graded circular plates in bifurcation/limit point instability

    NASA Astrophysics Data System (ADS)

    Ashoori, A. R.; Vanini, S. A. Sadough; Salari, E.

    2017-04-01

    In the present paper, vibration behavior of size-dependent functionally graded (FG) circular microplates subjected to thermal loading are carried out in pre/post-buckling of bifurcation/limit-load instability for the first time. Two kinds of frequently used thermal loading, i.e., uniform temperature rise and heat conduction across the thickness direction are considered. Thermo-mechanical material properties of FG plate are supposed to vary smoothly and continuously throughout the thickness based on power law model. Modified couple stress theory is exploited to describe the size dependency of microplate. The nonlinear governing equations of motion and associated boundary conditions are extracted through generalized form of Hamilton's principle and von-Karman geometric nonlinearity for the vibration analysis of circular FG plates including size effects. Ritz finite element method is then employed to construct the matrix representation of governing equations which are solved by two different strategies including Newton-Raphson scheme and cylindrical arc-length method. Moreover, in the following a parametric study is accompanied to examine the effects of the several parameters such as material length scale parameter, temperature distributions, type of buckling, thickness to radius ratio, boundary conditions and power law index on the dimensionless frequency of post-buckled/snapped size-dependent FG plates in detail. It is found that the material length scale parameter and thermal loading have a significant effect on vibration characteristics of size-dependent circular FG plates.

  2. The electron trap parameter extraction-based investigation of the relationship between charge trapping and activation energy in IGZO TFTs under positive bias temperature stress

    NASA Astrophysics Data System (ADS)

    Rhee, Jihyun; Choi, Sungju; Kang, Hara; Kim, Jae-Young; Ko, Daehyun; Ahn, Geumho; Jung, Haesun; Choi, Sung-Jin; Myong Kim, Dong; Kim, Dae Hwan

    2018-02-01

    Experimental extraction of the electron trap parameters which are associated with charge trapping into gate insulators under the positive bias temperature stress (PBTS) is proposed and demonstrated for the first time in amorphous indium-gallium-zinc-oxide thin-film transistors. This was done by combining the PBTS/recovery time-evolution of the experimentally decomposed threshold voltage shift (ΔVT) and the technology computer-aided design (TCAD)-based charge trapping simulation. The extracted parameters were the trap density (NOT) = 2.6 × 1018 cm-3, the trap energy level (ΔET) = 0.6 eV, and the capture cross section (σ0) = 3 × 10-19 cm2. Furthermore, based on the established TCAD framework, the relationship between the electron trap parameters and the activation energy (Ea) is comprehensively investigated. It is found that Ea increases with an increase in σ0, whereas Ea is independent of NOT. In addition, as ΔET increases, Ea decreases in the electron trapping-dominant regime (low ΔET) and increases again in the Poole-Frenkel (PF) emission/hopping-dominant regime (high ΔET). Moreover, our results suggest that the cross-over ΔET point originates from the complicated temperature-dependent competition between the capture rate and the emission rate. The PBTS bias dependence of the relationship between Ea and ΔET suggests that the electric field dependence of the PF emission-based electron hopping is stronger than that of the thermionic field emission-based electron trapping.

  3. Temperature effects on quasi-isolated conjugated polymers as revealed by temperature-dependent optical spectra of 16-mer oligothiophene diluted in a sold matrix.

    PubMed

    Kanemoto, Katsuichi; Akai, Ichiro; Sugisaki, Mitsuru; Hashimoto, Hideki; Karasawa, Tsutomu; Negishi, Nobukazu; Aso, Yoshio

    2009-06-21

    Temperature dependences (4-300 K) of photoluminescence (PL) and absorption spectra of 16-mer oligothiophene (16 T) extremely diluted in polypropylene (PP) have been investigated in order to clarify temperature effects on quasi-isolated conjugated polymers. The PL and absorption spectra are found to blueshift with increasing temperature. The reason for the blueshift is discussed by comparing models based on the refractive index of the solvent (PP) and on the thermal conformational change of 16 T. The blueshift is concluded to result from the thermal conformational change. Time-resolved PL spectra show a redshift of PL band following photoexcitation (spectral migration). The amount of the migration is shown to increase with increasing temperature. The increased migration is concluded to be due to the thermal conformational change. The temperature dependence of the effective conjugation length (ECL) of 16 T is calculated for the absorption and PL transitions. The calculation suggests that ECL is reduced at room temperature to two-thirds of the intrinsic chain length. The activation energy of the conformational change is estimated to be 22.4 meV from the temperature dependence of ECL. We demonstrate that the steady-state PL spectra are well reproduced by simple Franck-Condon analyses using a single Huang-Ryes factor over a wide temperature range. The analyses reveal features of temperature dependence in important spectral parameters such as the Stokes shift, linewidth, and Huang-Ryes factor.

  4. HEATING 7. 1 user's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, K.W.

    1991-07-01

    HEATING is a FORTRAN program designed to solve steady-state and/or transient heat conduction problems in one-, two-, or three- dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heating generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which maymore » be surface-to-boundary or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General graybody radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING is variably dimensioned and utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution (for one-dimensional or two-dimensional problems), and conjugate gradient. Transient problems may be solved using one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method (which for some circumstances allows a time step greater than the CEP stability criterion). The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less

  5. Temperature dependent DC characterization of InAlN/(AlN)/GaN HEMT for improved reliability

    NASA Astrophysics Data System (ADS)

    Takhar, K.; Gomes, U. P.; Ranjan, K.; Rathi, S.; Biswas, D.

    2015-02-01

    InxAl1-xN/AlN/GaN HEMT device performance is analysed at various temperatures with the help of physics based 2-D simulation using commercially available BLAZE and GIGA modules from SILVACO. Various material parameters viz. band-gap, low field mobility, density of states, velocity saturation, and substrate thermal conductivity are considered as critical parameters for predicting temperature effect in InxAl1-xN/AlN/GaN HEMT. Reduction in drain current and transconductance has been observed due to the decrease of 2-DEG mobility and effective electron velocity with the increase in temperature. Degradation in cut-off frequency follows the transconductance profile as variation in gate-source/gate-drain capacitances observed very small.

  6. Impact of viscosity variation and micro rotation on oblique transport of Cu-water fluid.

    PubMed

    Tabassum, Rabil; Mehmood, R; Nadeem, S

    2017-09-01

    This study inspects the influence of temperature dependent viscosity on Oblique flow of micropolar nanofluid. Fluid viscosity is considered as an exponential function of temperature. Governing equations are converted into dimensionless forms with aid of suitable transformations. Outcomes of the study are shown in graphical form and discussed in detail. Results revealed that viscosity parameter has pronounced effects on velocity profiles, temperature distribution, micro-rotation, streamlines, shear stress and heat flux. It is found that viscosity parameter enhances the temperature distribution, tangential velocity profile, normal component of micro-rotation and shear stress at the wall while it has decreasing effect on tangential component of micro-rotation and local heat flux. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Theoretical and experimental study of AC electrical conduction mechanism in the low temperature range of p-CuIn3Se5

    NASA Astrophysics Data System (ADS)

    Essaleh, L.; Amhil, S.; Wasim, S. M.; Marín, G.; Choukri, E.; Hajji, L.

    2018-05-01

    In the present work, an attempt has been made to study theoretically and experimentally the AC electrical conduction mechanism in disordered semiconducting materials. The key parameter considered in this analysis is the frequency exponent s(ω , T) =( ∂ln(σAC(ω , T))/∂ ln(ω)T , where σAC is the AC electrical conductivity that depends on angular frequency ω and temperature T. In the theoretical part of this work, the effect of the barrier hopping energy, the polaron radius and the characteristic relaxation time is considered. The theoretical models of Quantum Mechanical Tunneling (QMT), Non overlapping Small Polaron Tunneling (NSPT), Overlapping Large Polaron Tunneling (OLPT) and Correlated Barrier Hopping (CBH) are considered to fit experimental data of σAC in p-CuIn3Se5 (p-CIS135) in the low temperature range up to 96 K. Some important parameters, as the polaron radius, the localization length and the barrier hopping energies, are estimated and their temperature and frequency dependence discussed.

  8. White LED compared with other light sources: age-dependent photobiological effects and parameters for evaluation.

    PubMed

    Rebec, Katja Malovrh; Klanjšek-Gunde, Marta; Bizjak, Grega; Kobav, Matej B

    2015-01-01

    Ergonomic science at work and living places should appraise human factors concerning the photobiological effects of lighting. Thorough knowledge on this subject has been gained in the past; however, few attempts have been made to propose suitable evaluation parameters. The blue light hazard and its influence on melatonin secretion in age-dependent observers is considered in this paper and parameters for its evaluation are proposed. New parameters were applied to analyse the effects of white light-emitting diode (LED) light sources and to compare them with the currently applied light sources. The photobiological effects of light sources with the same illuminance but different spectral power distribution were determined for healthy 4-76-year-old observers. The suitability of new parameters is discussed. Correlated colour temperature, the only parameter currently used to assess photobiological effects, is evaluated and compared to new parameters.

  9. Temperature variation effects on stochastic characteristics for low-cost MEMS-based inertial sensor error

    NASA Astrophysics Data System (ADS)

    El-Diasty, M.; El-Rabbany, A.; Pagiatakis, S.

    2007-11-01

    We examine the effect of varying the temperature points on MEMS inertial sensors' noise models using Allan variance and least-squares spectral analysis (LSSA). Allan variance is a method of representing root-mean-square random drift error as a function of averaging times. LSSA is an alternative to the classical Fourier methods and has been applied successfully by a number of researchers in the study of the noise characteristics of experimental series. Static data sets are collected at different temperature points using two MEMS-based IMUs, namely MotionPakII and Crossbow AHRS300CC. The performance of the two MEMS inertial sensors is predicted from the Allan variance estimation results at different temperature points and the LSSA is used to study the noise characteristics and define the sensors' stochastic model parameters. It is shown that the stochastic characteristics of MEMS-based inertial sensors can be identified using Allan variance estimation and LSSA and the sensors' stochastic model parameters are temperature dependent. Also, the Kaiser window FIR low-pass filter is used to investigate the effect of de-noising stage on the stochastic model. It is shown that the stochastic model is also dependent on the chosen cut-off frequency.

  10. Measurement of the Temperature Dependence of Line Mixing and Pressure Broadening Parameters between 296 and 90 K in the v3 band of 12CH4 and their Influence on Atmospheric Methane Retrievals

    NASA Technical Reports Server (NTRS)

    Mondelain, Didier; Payan, Sebastien; Deng, Wenping; Camy-Peyret, Claude; Hurtmans, Daniel; Mantz, Arlan W.

    2007-01-01

    We measured the temperature dependence of the nitrogen broadening, narrowing and line-mixing coefficients of four lines of the P9 manifold in the v3 band of 12CH4 for atmospheric purposes. The data were collected using our tunable diode laser (TDL) spectrometer with active wavenumber control coupled to a newly developed cold Herriott cell with a path length of 5.37 m and a temperature uniformity of better than 0.01 K along the cell. We recorded and analyzed spectra recorded at sample temperature between 90 K and room temperature. We have investigate the influence of our new results in the inversion model used to retrieve methane profiles from atmospheric spectra; our new results make it possible to retrieve significantly more precise methane profiles. The atmospheric spectra we utilized were obtained by several of us with a balloon-born Fourier Transform infrared experiment in a limb configuration. Differences up to 7% on the retrieved volume mixing ratio were found compared to an inversion model using only HITRAN04 spectroscopic parameters.

  11. Understanding temperature and magnetic-field actuated magnetization polarity reversal in the Prussian blue analogue Cu 0.73 Mn 0.77 [Fe(CN) 6 ]. z H 2 O, using XMCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lahiri, Debdutta; Choi, Yongseong; Yusuf, S. M.

    2016-02-23

    We have investigated the microscopic origin of temperature and magnetic-field actuated magnetization reversal in Cu0.73Mn0.77[Fe(CN)(6)]center dot zH(2)O, using XMCD. Our results show a fair deviation from the mean-field-theory in the form of different ordering temperatures of Fe and Mn sublattices. A preferential sign reversal of Mn spin under magnetic field and different spin cant angles for the two sublattices have also been observed. An antiferromagnetic coupling between the Fe and Mn sublattices along with different ordering temperatures (sublattice decoupling) for these sublattices explain the temperature-dependent magnetization reversal. Whereas, Mn spin reversal alone (under external magnetic field) is responsible for themore » observed field-dependent magnetization reversal. The dissimilar magnetic behavior of Fe and Mn sublattices in this cubic 3d-orbital system has been understood by invoking disparity and competition among inter-sublattice magnetic control parameters, viz. magnetic Zeeman energy, exchange coupling constant and magnetic anisotropy constant. Our results have significant design implications for future magnetic switches, by optimizing the competition among these magnetic control parameters.« less

  12. Model evaluation of temperature dependency for carbon and nitrogen removal in a full-scale activated sludge plant treating leather-tanning wastewater.

    PubMed

    Görgün, Erdem; Insel, Güçlü; Artan, Nazik; Orhon, Derin

    2007-05-01

    Organic carbon and nitrogen removal performance of a full-scale activated sludge plant treating pre-settled leather tanning wastewater was evaluated under dynamic process temperatures. Emphasis was placed upon observed nitrogen removal depicting a highly variable magnitude with changing process temperatures. As the plant was not specifically designed for this purpose, observed nitrogen removal could be largely attributed to simultaneous nitrification and denitrification presumably occurring at increased process temperatures (T>25 degrees C) and resulting low dissolved oxygen levels (DO<0.5 mgO2/L). Model evaluation using long-term data revealed that the yearly performance of activated sludge reactor could be successfully calibrated by means of temperature dependent parameters associated with nitrification, hydrolysis, ammonification and endogenous decay parameters. In this context, the Arrhenius coefficients of (i) for the maximum autotrophic growth rate, [image omitted]A, (ii) maximum hydrolysis rate, khs and (iii) endogenous heterotrophic decay rate, bH were found to be 1.045, 1.070 and 1.035, respectively. The ammonification rate (ka) defining the degradation of soluble organic nitrogen could not be characterized however via an Arrhenius-type equation.

  13. A size dependent dynamic model for piezoelectric nanogenerators: effects of geometry, structural and environmental parameters

    NASA Astrophysics Data System (ADS)

    Sadeghzadeh, Sadegh; Farshad Mir Saeed Ghazi, Seyyed

    2018-03-01

    Piezoelectric Nanogenerator (PENG) is one of the novel energy harvester systems that recently, has been a subject of interest for researchers. By the use of nanogenerators, it’s possible to harvest different forms of energy in the environment like mechanical vibrations and generate electricity. The structure of a PENG consists of vertical arrays of nanowires between two electrodes. In this paper, dynamic analysis of a PENG is studied numerically. The modified couple stress theory which includes one length scale material parameter is used to study the size-dependent behavior of PENGs. Then, by application of a complete form of linear hybrid piezoelectric—pyroelectric equations, and using the Euler-Bernoulli beam model, the equations of motion has been derived. Generalized Differential Quadrature (GDQ) method was employed to solve the equations of motion. The effect of damping ratio, temperature rise, excitation frequency and length scale parameter was studied. It was found that the PENG voltage maximizes at the resonant frequency of nanowire. The temperature rise has a significant effect on PENG’s efficiency. When temperature increases about 10 {{K}}, the maximum voltage increases about 26%. Increasing the damping ratio, the maximum voltage decreases gradually.

  14. Cold Gas-Sprayed Deposition of Metallic Coatings onto Ceramic Substrates Using Laser Surface Texturing Pre-treatment

    NASA Astrophysics Data System (ADS)

    Kromer, R.; Danlos, Y.; Costil, S.

    2018-04-01

    Cold spraying enables a variety of metals dense coatings onto metal surfaces. Supersonic gas jet accelerates particles which undergo with the substrate plastic deformation. Different bonding mechanisms can be created depending on the materials. The particle-substrate contact time, contact temperature and contact area upon impact are the parameters influencing physicochemical and mechanical bonds. The resultant bonding arose from plastic deformation of the particle and substrate and temperature increasing at the interface. The objective was to create specific topography to enable metallic particle adhesion onto ceramic substrates. Ceramic did not demonstrate deformation during the impact which minimized the intimate bonds. Laser surface texturing was hence used as prior surface treatment to create specific topography and to enable mechanical anchoring. Particle compressive states were necessary to build up coating. The coating deposition efficiency and adhesion strength were evaluated. Textured surface is required to obtain strong adhesion of metallic coatings onto ceramic substrates. Consequently, cold spray coating parameters depend on the target material and a methodology was established with particle parameters (diameters, velocities, temperatures) and particle/substrate properties to adapt the surface topography. Laser surface texturing is a promising tool to increase the cold spraying applications.

  15. Exchange field and Hc dependence on the ferromagnetic material in exchange couples with CoO (abstract)

    NASA Astrophysics Data System (ADS)

    Takano, Kentaro; Berkowitz, A. E.

    1997-04-01

    As recording density increases, magnetoresistive (MR) sensors are becoming increasingly important in read heads. NixCo(1-x)O is receiving technological attention for biasing magnetoresistive sensors as a robust alternative to FeMn. The interfacial exchange coupling between a ferromagnetic (FM) layer and an antiferromagnetic (AFM) is observed as an exchange field and an enhanced coercive field of the FM layer. The AFM/FM coupling is sensitive to the interfacial structure and the AFM and FM magnetic parameters. In this work, we deposited various FM layers on similar 300 Å CoO base layers to study the dependence of the FM exchange integral parameter J on the exchange HE and coercive HC fields. CoO was selected as the AFM material because (i) its simple spin and crystal structures facilitate the structural characterization and modeling of its magnetic properties, and (ii) it's modest Néel temperature of 300 K facilitates the use of a superconducting quantum interference device for the magnetic measurements at temperatures ranging from 5 to 400 K. The 300 Å CoO films were reactively sputtered on silicon substrates and capped with various 300 Å FM films, Ni, Co, Fe, and permalloy (Ni81Fe19). The 300 Å CoO base layer films were polycrystalline with columnar grains. The CoO deposition conditions were reproduced to ensure similar structural and magnetic interfacial AF environments. The observed HE temperature dependence cannot be explained by current theoretical models. The temperature dependence of the exchange fields have the common features (i) a blocking temperature Tb=300 K, which corresponds to the bulk Néel temperature of CoO, (ii) a rise in the exchange field with decreasing temperature, (iii) an intermediate temperature region of constant HE (plateau value), and (iv) a second region of linearly increasing HE with decreasing temperatures down to 0 K. The plateau value of the HE decreased inversely with increasing FM magnetization as predicted by theory. The low-temperature increase of HE is more significant in the FM with higher exchange integral J values. The crossover temperature from the plateau to the low-temperature rise in HE appears to be dependent on FM's J value. The increase in the interfacial coupling strength could suggest the magnetic ordering of a secondary phase localized at the interfacial atoms. The temperature dependence of HC enhancement does not share the nonlinear temperature behavior of HE. For T<300 K, HC increases linearly with decreasing temperatures down to 10 K. Although the HC enhancement may have magnetoelastic contributions, the disappearance of the linear enhancement at 300 K, the Néel temperature of CoO, indicates that the dominant mechanism is the interfacial magnetic coupling.

  16. Temperature-Dependent Implicit-Solvent Model of Polyethylene Glycol in Aqueous Solution.

    PubMed

    Chudoba, Richard; Heyda, Jan; Dzubiella, Joachim

    2017-12-12

    A temperature (T)-dependent coarse-grained (CG) Hamiltonian of polyethylene glycol/oxide (PEG/PEO) in aqueous solution is reported to be used in implicit-solvent material models in a wide temperature (i.e., solvent quality) range. The T-dependent nonbonded CG interactions are derived from a combined "bottom-up" and "top-down" approach. The pair potentials calculated from atomistic replica-exchange molecular dynamics simulations in combination with the iterative Boltzmann inversion are postrefined by benchmarking to experimental data of the radius of gyration. For better handling and a fully continuous transferability in T-space, the pair potentials are conveniently truncated and mapped to an analytic formula with three structural parameters expressed as explicit continuous functions of T. It is then demonstrated that this model without further adjustments successfully reproduces other experimentally known key thermodynamic properties of semidilute PEG solutions such as the full equation of state (i.e., T-dependent osmotic pressure) for various chain lengths as well as their cloud point (or collapse) temperature.

  17. Simulation of nonlinear convective thixotropic liquid with Cattaneo-Christov heat flux

    NASA Astrophysics Data System (ADS)

    Zubair, M.; Waqas, M.; Hayat, T.; Ayub, M.; Alsaedi, A.

    2018-03-01

    In this communication we utilized a modified Fourier approach featuring thermal relaxation effect in nonlinear convective flow by a vertical exponentially stretchable surface. Temperature-dependent thermal conductivity describes the heat transfer process. Thixotropic liquid is modeled. Convergent local similar solutions by homotopic approach are obtained. Graphical results for emerging parameters of interest are analyzed. Skin friction is calculated and interpreted. Consideration of larger local buoyancy and nonlinear convection parameters yields an enhancement in velocity distribution. Temperature and thermal layer thickness are reduced for larger thermal relaxation factor.

  18. Forced convective heat transfer in boundary layer flow of Sisko fluid over a nonlinear stretching sheet.

    PubMed

    Munir, Asif; Shahzad, Azeem; Khan, Masood

    2014-01-01

    The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden's method in the domain[Formula: see text]. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature.

  19. Effects of nanoparticles on the compatibility of PEO-PMMA block copolymers.

    PubMed

    Mu, Dan; Li, Jian-Quan; Li, Wei-Dong; Wang, Song

    2011-12-01

    The compatibility of six kinds of designed poly(ethylene oxide)-block-poly(methyl methacrylate) (PEO-b-PMMA) copolymers was studied at 270, 298 and 400 K via mesoscopic modeling. The values of the order parameters depended on both the structures of the block copolymers and the simulation temperature, while the values of the order parameters of the long chains were higher than those of the short ones; temperature had a more obvious effect on long chains than on the short ones. Plain copolymers doped with poly(ethylene oxide) (PEO) or poly(methyl methacrylate) (PMMA) homopolymer showed different order parameter values. When a triblock copolymer had the same component at both ends and was doped with one of its component polymers as a homopolymer (such as A5B6A5 doped with B6 or A5 homopolymer), the value of its order parameter depended on the simulation temperature. The highest order parameter values were observed for A5B6A5 doped with B6 at 400 K and for A5B6A5 doped with A5 at 270 K. A study of copolymers doped with nanoparticles showed that the mesoscopic phase was influenced by not only the properties of the nanoparticles, such as the size and density, but also the compositions of the copolymers. Increasing the size of the nanoparticles used as a dopant had the most significant effect on the phase morphologies of the copolymers.

  20. Measurements of temperature characteristics and estimation of terahertz negative differential conductance in resonant-tunneling-diode oscillators

    NASA Astrophysics Data System (ADS)

    Asada, M.; Suzuki, S.; Fukuma, T.

    2017-11-01

    The temperature dependences of output power, oscillation frequency, and current-voltage curve are measured for resonant-tunneling-diode terahertz (THz) oscillators. The output power largely changes with temperature owing to the change in Ohmic loss. In contrast to the output power, the oscillation frequency and current-voltage curve are almost insensitive to temperature. The measured temperature dependence of output power is compared with the theoretical calculation including the negative differential conductance (NDC) as a fitting parameter assumed to be independent of temperature. Very good agreement was obtained between the measurement and calculation, and the NDC in the THz frequency region is estimated. The results show that the absolute values of NDC in the THz region significantly decrease relative to that at DC, and increases with increasing frequency in the measured frequency range.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, L. H.; Wang, X. D.; Yu, Q.

    Temperature-dependent atomistic structure evolution of liquid gallium (Ga) has been investigated by using in situ high energy X-ray diffraction experiment and ab initio molecular dynamics simulation. Both experimental and theoretical results reveal the existence of a liquid structural change around 1000 K in liquid Ga. Below and above this temperature the liquid exhibits differences in activation energy for selfdiffusion, temperature-dependent heat capacity, coordination numbers, density, viscosity, electric resistivity and thermoelectric power, which are reflected from structural changes of the bond-orientational order parameter Q6, fraction of covalent dimers, averaged string length and local atomic packing. This finding will trigger more studiesmore » on the liquid-to-liquid crossover in metallic melts.« less

  2. Laboratory measurements of heterogeneous CO2 ice nucleation on nanoparticles under conditions relevant to the Martian mesosphere

    NASA Astrophysics Data System (ADS)

    Nachbar, Mario; Duft, Denis; Mangan, Thomas Peter; Martin, Juan Carlos Gomez; Plane, John M. C.; Leisner, Thomas

    2016-05-01

    Clouds of CO2 ice particles have been observed in the Martian mesosphere. These clouds are believed to be formed through heterogeneous nucleation of CO2 on nanometer-sized meteoric smoke particles (MSPs) or upward propagated Martian dust particles (MDPs). Large uncertainties still exist in parameterizing the microphysical formation process of these clouds as key physicochemical parameters are not well known. We present measurements on the nucleation and growth of CO2 ice on sub-4 nm radius iron oxide and silica particles representing MSPs at conditions close to the mesosphere of Mars. For both particle materials we determine the desorption energy of CO2 to be ΔFdes = (18.5 ± 0.2) kJ mol-1 corresponding to ΔFdes = (0.192 ± 0.002) eV and obtain m = 0.78 ± 0.02 for the contact parameter that governs heterogeneous nucleation by analyzing the measurements using classical heterogeneous nucleation theory. We did not find any temperature dependence for the contact parameter in the temperature range examined (64 K to 73 K). By applying these values for MSPs in the Martian mesosphere, we derive characteristic temperatures for the onset of CO2 ice nucleation, which are 8-18 K below the CO2 frost point temperature, depending on particle size. This is in line with the occurrence of highly supersaturated conditions extending to 20 K below frost point temperature without the observation of clouds. Moreover, the sticking coefficient of CO2 on solid CO2 was determined to be near unity. We further argue that the same parameters can be applied to CO2 nucleation on upward propagated MDPs.

  3. Box-modeling of bone and tooth phosphate oxygen isotope compositions as a function of environmental and physiological parameters.

    PubMed

    Langlois, C; Simon, L; Lécuyer, Ch

    2003-12-01

    A time-dependent box model is developed to calculate oxygen isotope compositions of bone phosphate as a function of environmental and physiological parameters. Input and output oxygen fluxes related to body water and bone reservoirs are scaled to the body mass. The oxygen fluxes are evaluated by stoichiometric scaling to the calcium accretion and resorption rates, assuming a pure hydroxylapatite composition for the bone and tooth mineral. The model shows how the diet composition, body mass, ambient relative humidity and temperature may control the oxygen isotope composition of bone phosphate. The model also computes how bones and teeth record short-term variations in relative humidity, air temperature and delta18O of drinking water, depending on body mass. The documented diversity of oxygen isotope fractionation equations for vertebrates is accounted for by our model when for each specimen the physiological and diet parameters are adjusted in the living range of environmental conditions.

  4. Hydrostatic pressure effects on the structural, elastic and thermodynamic properties of the complex transition metal hydrides A2OsH6 (A = Mg, Ca, Sr and Ba)

    NASA Astrophysics Data System (ADS)

    Souadia, Z.; Bouhemadou, A.; Boudrifa, O.; Bin-Omran, S.; Khenata, R.; Al-Douri, Y.

    2017-10-01

    We report a systematic first-principles density functional theory study on the pressure dependence of the structural parameters, elastic constants and related properties and thermodynamic properties of the complex transition metal hydrides Mg2OsH6, Ca2OsH6, Sr2OsH6 and Ba2OsH6. The calculated structural parameters are in excellent agreement with the existing data in the scientific literature. The single-crystal elastic constants and related properties were predicted using the stress-strain method. The elastic moduli of the polycrystalline aggregates were evaluated via the Voigt-Reuss-Hill approach. The dependences of the lattice parameter, bulk modulus, volume thermal expansion coefficient, isobaric and isochoric heat capacity and Debye temperature on the pressure and temperature, ranging from 0 to 15 GPa and from 0 to 1000 K, respectively, were investigated using the quasi-harmonic Debye model in combination with first-principles calculations.

  5. Surface and atmosphere parameter maps from earth-orbiting radiometers

    NASA Technical Reports Server (NTRS)

    Gloersen, P.

    1976-01-01

    Earlier studies have shown that an earth-orbiting electrically scanned microwave radiometer (ESMR) is capable of inferring the extent, concentration, and age of sea ice; the extent, concentration, and thickness of lake ice; rainfall rates over oceans; surface wind speeds over open water; particle size distribution in the deep snow cover of continental ice sheets; and soil moisture content in unvegetated fields. Most other features of the surface of the earth and its atmosphere require multispectral imaging techniques to unscramble the combined contributions of the atmosphere and the surface. Multispectral extraction of surface parameters is analyzed on the basis of a pertinent equation in terms of the observed brightness temperature, the emissivity of the surface which depends on wavelength and various parameters, the sensible temperature of the surface, and the total atmospheric opacity which is also wavelength dependent. Implementation of the multispectral technique is examined. Properties of the surface of the earth and its atmosphere to be determined from a scanning multichannel microwave radiometer are tabulated.

  6. Solution of magnetohydrodynamic flow and heat transfer of radiative viscoelastic fluid with temperature dependent viscosity in wire coating analysis

    PubMed Central

    Khan, Muhammad Altaf; Siddiqui, Nasir; Ullah, Murad; Shah, Qayyum

    2018-01-01

    Wire coating process is a continuous extrusion process for primary insulation of conducting wires with molten polymers for mechanical strength and protection in aggressive environments. In the present study, radiative melt polymer satisfying third grade fluid model is used for wire coating process. The effect of magnetic parameter, thermal radiation parameter and temperature dependent viscosity on wire coating analysis has been investigated. Reynolds model and Vogel’s models have been incorporated for variable viscosity. The governing equations characterizing the flow and heat transfer phenomena are solved analytically by utilizing homotopy analysis method (HAM). The computed results are also verified by ND-Solve method (Numerical technique) and Adomian Decomposition Method (ADM). The effect of pertinent parameters is shown graphically. In addition, the instability of the flow in the flows of the wall of the extrusion die is well marked in the case of the Vogel model as pointed by Nhan-Phan-Thien. PMID:29596448

  7. Modeling and experimental investigation of thermal-mechanical-electric coupling dynamics in a standing wave ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Yao, Zhiyuan; He, Yigang; Dai, Shichao

    2017-09-01

    Ultrasonic motor operation relies on high-frequency vibration of a piezoelectric vibrator and interface friction between the stator and rotor/slider, which can cause temperature rise of the motor under continuous operation, and can affect motor parameters and performance in turn. In this paper, an integral model is developed to study the thermal-mechanical-electric coupling dynamics in a typical standing wave ultrasonic motor. Stick-slip motion at the contact interface and the temperature dependence of material parameters of the stator are taken into account in this model. The elastic, piezoelectric and dielectric material coefficients of the piezoelectric ceramic, as a function of temperature, are determined experimentally using a resonance method. The critical parameters in the model are identified via measured results. The resulting model can be used to evaluate the variation in output characteristics of the motor caused by the thermal-mechanical-electric coupling effects. Furthermore, the dynamic temperature rise of the motor can be accurately predicted under different input parameters using the developed model, which will contribute to improving the reliable life of a motor for long-term running.

  8. Optimization of tissue physical parameters for accurate temperature estimation from finite-element simulation of radiofrequency ablation.

    PubMed

    Subramanian, Swetha; Mast, T Douglas

    2015-10-07

    Computational finite element models are commonly used for the simulation of radiofrequency ablation (RFA) treatments. However, the accuracy of these simulations is limited by the lack of precise knowledge of tissue parameters. In this technical note, an inverse solver based on the unscented Kalman filter (UKF) is proposed to optimize values for specific heat, thermal conductivity, and electrical conductivity resulting in accurately simulated temperature elevations. A total of 15 RFA treatments were performed on ex vivo bovine liver tissue. For each RFA treatment, 15 finite-element simulations were performed using a set of deterministically chosen tissue parameters to estimate the mean and variance of the resulting tissue ablation. The UKF was implemented as an inverse solver to recover the specific heat, thermal conductivity, and electrical conductivity corresponding to the measured area of the ablated tissue region, as determined from gross tissue histology. These tissue parameters were then employed in the finite element model to simulate the position- and time-dependent tissue temperature. Results show good agreement between simulated and measured temperature.

  9. A similarity solution of time dependent MHD liquid film flow over stretching sheet with variable physical properties

    NASA Astrophysics Data System (ADS)

    Idrees, M.; Rehman, Sajid; Shah, Rehan Ali; Ullah, M.; Abbas, Tariq

    2018-03-01

    An analysis is performed for the fluid dynamics incorporating the variation of viscosity and thermal conductivity on an unsteady two-dimensional free surface flow of a viscous incompressible conducting fluid taking into account the effect of a magnetic field. Surface tension quadratically vary with temperature while fluid viscosity and thermal conductivity are assumed to vary as a linear function of temperature. The boundary layer partial differential equations in cartesian coordinates are transformed into a system of nonlinear ordinary differential equations (ODEs) by similarity transformation. The developed nonlinear equations are solved analytically by Homotopy Analysis Method (HAM) while numerically by using the shooting method. The Effects of natural parameters such as the variable viscosity parameter A, variable thermal conductivity parameter N, Hartmann number Ma, film Thickness, unsteadiness parameter S, Thermocapillary number M and Prandtl number Pr on the velocity and temperature profiles are investigated. The results for the surface skin friction coefficient f″ (0) , Nusselt number (heat flux) -θ‧ (0) and free surface temperature θ (1) are presented graphically and in tabular form.

  10. Frequency and Temperature Dependence of Fabrication Parameters in Polymer Dispersed Liquid Crystal Devices.

    PubMed

    Torres, Juan C; Vergaz, Ricardo; Barrios, David; Sánchez-Pena, José Manuel; Viñuales, Ana; Grande, Hans Jürgen; Cabañero, Germán

    2014-05-02

    A series of polymer dispersed liquid crystal devices using glass substrates have been fabricated and investigated focusing on their electrical properties. The devices have been studied in terms of impedance as a function of frequency. An electric equivalent circuit has been proposed, including the influence of the temperature on the elements into it. In addition, a relevant effect of temperature on electrical measurements has been observed.

  11. ASD-1000: High-resolution, high-temperature acetylene spectroscopic databank

    NASA Astrophysics Data System (ADS)

    Lyulin, O. M.; Perevalov, V. I.

    2017-11-01

    We present a high-resolution, high-temperature version of the Acetylene Spectroscopic Databank called ASD-1000. The databank contains the line parameters (position, intensity, Einstein coefficient for spontaneous emission, term value of the lower states, self- and air-broadening coefficients, temperature dependence exponents of the self- and air-broadening coefficients) of the principal isotopologue of C2H2. The reference temperature for line intensity is 296 K and the intensity cutoff is 10-27 cm-1/(molecule cm-2) at 1000 K. The databank has 33,890,981 entries and covers the 3-10,000 cm-1 spectral range. The databank is based on the global modeling of the line positions and intensities performed within the framework of the method of effective operators. The parameters of the effective Hamiltonian and the effective dipole moment operator have been fitted to the observed values of the line positions and intensities collected from the literature. The broadening coefficients as well as their temperature dependence exponents were calculated using the empirical equations. The databank is useful for studying high-temperature radiative properties of C2H2. ASD-1000 is freely accessible via the Internet site of V.E. Zuev Institute of Atmospheric Optics SB RAS ftp://ftp.iao.ru/pub/ASD1000/.

  12. High Temperature Deformation of Twin-Roll Cast Al-Mn-Based Alloys after Equal Channel Angular Pressing.

    PubMed

    Málek, Přemysl; Šlapáková Poková, Michaela; Cieslar, Miroslav

    2015-11-12

    Twin roll cast Al-Mn- and Al-Mn-Zr-based alloys were subjected to four passes of equal channel angular pressing. The resulting grain size of 400 nm contributes to a significant strengthening at room temperature. This microstructure is not fully stable at elevated temperatures and recrystallization and vast grain growth occur at temperatures between 350 and 450 °C. The onset of these microstructure changes depends on chemical and phase composition. Better stability is observed in the Al-Mn-Zr-based alloy. High temperature tensile tests reveal that equal channel angular pressing results in a softening of all studied materials at high temperatures. This can be explained by an active role of grain boundaries in the deformation process. The maximum values of ductility and strain rate sensitivity parameter m found in the Al-Mn-Zr-based alloy are below the bottom limit of superplasticity (155%, m = 0.25). However, some features typical for superplastic behavior were observed-the strain rate dependence of the parameter m , the strengthening with increasing grain size, and the fracture by diffuse necking. Grain boundary sliding is believed to contribute partially to the overall strain in specimens where the grain size remained in the microcrystalline range.

  13. High Temperature Deformation of Twin-Roll Cast Al-Mn-Based Alloys after Equal Channel Angular Pressing

    PubMed Central

    Málek, Přemysl; Šlapáková Poková, Michaela; Cieslar, Miroslav

    2015-01-01

    Twin roll cast Al-Mn- and Al-Mn-Zr-based alloys were subjected to four passes of equal channel angular pressing. The resulting grain size of 400 nm contributes to a significant strengthening at room temperature. This microstructure is not fully stable at elevated temperatures and recrystallization and vast grain growth occur at temperatures between 350 and 450 °C. The onset of these microstructure changes depends on chemical and phase composition. Better stability is observed in the Al-Mn-Zr-based alloy. High temperature tensile tests reveal that equal channel angular pressing results in a softening of all studied materials at high temperatures. This can be explained by an active role of grain boundaries in the deformation process. The maximum values of ductility and strain rate sensitivity parameter m found in the Al-Mn-Zr-based alloy are below the bottom limit of superplasticity (155%, m = 0.25). However, some features typical for superplastic behavior were observed—the strain rate dependence of the parameter m, the strengthening with increasing grain size, and the fracture by diffuse necking. Grain boundary sliding is believed to contribute partially to the overall strain in specimens where the grain size remained in the microcrystalline range. PMID:28793667

  14. Temperature-dependent ac conductivity and dielectric response of vanadium doped CaCu3Ti4O12 ceramic

    NASA Astrophysics Data System (ADS)

    Sen, A.; Maiti, U. N.; Thapa, R.; Chattopadhyay, K. K.

    2011-09-01

    Successful incorporation of vanadium dopant within the giant dielectric material CaCu 3Ti 4O12 (CCTO) through a conventional solid-state sintering process is achieved and its influence on the dielectric as well as electrical properties as a function of temperature and frequency is reported here. Proper crystalline phase formation together with dopant induced lattice constant shrinkage was confirmed through X-ray diffraction. The temperature dependence of the dielectric constant at different constant frequencies was investigated. We infer that the correlated barrier hopping (CBH) model is dominant in the conduction mechanism of the ceramic as per the temperature-dependent ac conductivity measurements. The electronic parameters such as density of the states at the Fermi level, N( E f) and hopping distance, R ω of the ceramic were also calculated using this model.

  15. TRUMP. Transient & S-State Temperature Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrod, D.C.; Turner, W.D.

    1992-03-03

    TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position,more » and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.« less

  16. Mapping Isobaric Aging onto the Equilibrium Phase Diagram.

    PubMed

    Niss, Kristine

    2017-09-15

    The linear volume relaxation and the nonlinear volume aging of a glass-forming liquid are measured, directly compared, and used to extract the out-of-equilibrium relaxation time. This opens a window to investigate how the relaxation time depends on temperature, structure, and volume in parts of phase space that are not accessed by the equilibrium liquid. It is found that the temperature dependence of relaxation time is non-Arrhenius even in the isostructural case-challenging the Adam-Gibbs entropy model. Based on the presented data and the idea that aging happens through quasiequilibrium states, we suggest a mapping of the out-of-equilibrium states during isobaric aging to the equilibrium phase diagram. This mapping implies the existence of isostructural lines in the equilibrium phase diagram. The relaxation time is found to depend on the bath temperature, density, and a just single structural parameter, referred to as an effective temperature.

  17. Urea-temperature phase diagrams capture the thermodynamics of denatured state expansion that accompany protein unfolding

    PubMed Central

    Tischer, Alexander; Auton, Matthew

    2013-01-01

    We have analyzed the thermodynamic properties of the von Willebrand factor (VWF) A3 domain using urea-induced unfolding at variable temperature and thermal unfolding at variable urea concentrations to generate a phase diagram that quantitatively describes the equilibrium between native and denatured states. From this analysis, we were able to determine consistent thermodynamic parameters with various spectroscopic and calorimetric methods that define the urea–temperature parameter plane from cold denaturation to heat denaturation. Urea and thermal denaturation are experimentally reversible and independent of the thermal scan rate indicating that all transitions are at equilibrium and the van't Hoff and calorimetric enthalpies obtained from analysis of individual thermal transitions are equivalent demonstrating two-state character. Global analysis of the urea–temperature phase diagram results in a significantly higher enthalpy of unfolding than obtained from analysis of individual thermal transitions and significant cross correlations describing the urea dependence of and that define a complex temperature dependence of the m-value. Circular dichroism (CD) spectroscopy illustrates a large increase in secondary structure content of the urea-denatured state as temperature increases and a loss of secondary structure in the thermally denatured state upon addition of urea. These structural changes in the denatured ensemble make up ∼40% of the total ellipticity change indicating a highly compact thermally denatured state. The difference between the thermodynamic parameters obtained from phase diagram analysis and those obtained from analysis of individual thermal transitions illustrates that phase diagrams capture both contributions to unfolding and denatured state expansion and by comparison are able to decipher these contributions. PMID:23813497

  18. Developing Lathing Parameters for PBX 9501

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodrum, Randall Brock

    This thesis presents the work performed on lathing PBX 9501 to gather and analyze cutting force and temperature data during the machining process. This data will be used to decrease federal-regulation-constrained machining time of the high explosive PBX 9501. The effects of machining parameters depth of cut, surface feet per minute, and inches per revolution on cutting force and cutting interface were evaluated. Cutting tools of tip radius 0.005 -inches and 0.05 -inches were tested to determine what effect the tool shape had on the machining process as well. A consistently repeatable relationship of temperature to changing depth of cutmore » and surface feet per minute is found, while only a weak dependence was found to changing inches per revolution. Results also show the relation of cutting force to depth of cut and inches per revolution, while weak dependence on SFM is found. Conclusions suggest rapid, shallow cuts optimize machining time for a billet of PBX 9501, while minimizing temperature increase and cutting force.« less

  19. Role of Temperature and SiCP Parameters in Stability and Quality of Al-Si-Mg/SiC Foams

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, N. V.; Gokhale, Amol A.

    2018-06-01

    Composites of Al-Si-Mg (A356) alloy with silicon carbide particles were synthesized in-house and foamed by melt processing using titanium hydride as foaming agent. The effects of the SiCP size and content, and foaming temperature on the stability and quality of the foam were explored. It was observed that the foam stability depended on the foaming temperature alone but not on the particle size or volume percent within the studied ranges. Specifically, foam stability was poor at 670°C. Among the stable foams obtained at 640°C, cell soundness (absence of/low defects, and collapse) was seen to vary depending on the particle size and content; For example, for finer size, lower particle contents were sufficient to obtain sound cell structure. It is possible to determine a foaming process window based on material and process parameters for good expansion, foam stability, and cell structure.

  20. Growth of single crystals, thermal dependency of lattice parameters and Raman scattering in the Nd 2- xCe xCuO 4- δ system

    NASA Astrophysics Data System (ADS)

    Sadowski, W.; Hagemann, H.; François, M.; Bill, H.; Peter, M.; Walker, E.; Yvon, K.

    1990-09-01

    We report on the growth of Nd 2- xCe xCuO 4- δ single crystals (0< x<0.2) from Cu 2O flux. Free separated crystals with maximum size of 5x8x0.15 nm 3 have been obtained. Magnetic AC susceptibility measurements show a sharp superconducting transition at temperatures up to 23 K. The temperature dependence of the lattice parameters has been measured by means of X-ray powder diffraction between 10 K ( a=3.9413(3) Å, c=12.0290(18) Å) and 290 K ( a=3.9482(3) Å, c=12.0590(18) Å). Room temperature Raman spectra reveal a new band at 320 cm -1 which is not observed in Nd 2CuO 4. Raman spectra of crystals with Tc ranging from 7 to 22 K show a systematic intensity change of the broad band at 590 cm -1.

  1. Influence of temperature on fatigue life or reinforced pavement by whitetopping

    NASA Astrophysics Data System (ADS)

    Szydło, A.; Mackiewicz, P.

    2018-05-01

    The article presents the influence of temperature on the fatigue strength of concrete slabs used for reinforcing susceptible flexible pavement. In Poland, so far, there is no research on thermal interactions on concrete pavement. The article presents an analysis of various climatic conditions occurring in Poland and temperature distribution in concrete pavement. The dependence of daily temperature fluctuations on the temperatures appearing in the concrete slab was demonstrated. An analysis of thermal stresses in concrete slabs depending on their parameters was shown, and then fatigue life was determined. The applied 3DFEM model includes elements of contact, friction, and gravity in order to better approximate the behaviour of the board from temperature change. On this basis, the significant influence of cyclical daily temperature changes on the durability of the concrete pavement was indicated. The presented analyses can be applied to reinforcements of existing flexible pavements.

  2. Multispectrum Analysis of 12CH4 in the v4 Band: I. Air-Broadened Half Widths, Pressure-Induced Shifts, Temperature Dependences and Line Mixing

    NASA Technical Reports Server (NTRS)

    Smith, MaryAnn H.; Benner, D. Chris; Predoi-Cross, Adriana; Venkataraman, Malathy Devi

    2009-01-01

    Lorentz air-broadened half widths, pressure-induced shifts and their temperature dependences have been measured for over 430 transitions (allowed and forbidden) in the v4 band of (CH4)-12 over the temperature range 210 to 314 K. A multispectrum non linear least squares fitting technique was used to simultaneously fit a large number of high-resolution (0.006 to 0.01/cm) absorption spectra of pure methane and mixtures of methane diluted with dry air. Line mixing was detected for pairs of A-, E-, and F-species transitions in the P- and R-branch manifolds and quantified using the off-diagonal relaxation matrix elements formalism. The measured parameters are compared to air- and N2-broadened values reported in the literature for the v4 and other bands. The dependence of the various spectral line parameters upon the tetrahedral symmetry species and rotational quantum numbers of the transitions is discussed. All data used in the present work were recorded using the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak.

  3. The thermopower in the temperature range T(sub c)-1000K and the bank spectrum of Bi-based superconductors

    NASA Technical Reports Server (NTRS)

    Gasumyants, V. E.; Vladimirskaya, E. V.; Smirnov, V. I.; Kazanskiy, S. V.

    1995-01-01

    The temperature dependencies of thermopower, S, in the range T = T(sub c)-1000K as well as of resistivity and Hall coefficient in the range T = T(sub c)-300K for the single-phase ceramic samples Bi2Sr2Ca(1-x)Nd(x)Cu2O(y) have been measured. It was found that the S(T) dependencies in normal phase have three characteristic regions. Despite the fact that the S(T) dependencies in Bi-based high-T(sub c) superconductors (HTSC) differ essentially from ones in Y-based HTSC at T = T(sub c)-300K, the main feature of theirs (S(T) = const at high temperatures) retains in samples investigated at T is greater than 620K. The results obtained have been analyzed on the basis of the narrow-band model with the use of assumption of slight asymmetry of the conductive band. The band spectrum parameters of the samples studied have been calculated. An analysis of the tendencies in these parameters changes with samples composition varying enables to make the conclusion about the similarity of the main features of the conductive band structure in Y- and Bi-based HTSC.

  4. Sensitivity of fields generated within magnetically shielded volumes to changes in magnetic permeability

    NASA Astrophysics Data System (ADS)

    Andalib, T.; Martin, J. W.; Bidinosti, C. P.; Mammei, R. R.; Jamieson, B.; Lang, M.; Kikawa, T.

    2017-09-01

    Future experiments seeking to measure the neutron electric dipole moment (nEDM) require stable and homogeneous magnetic fields. Normally these experiments use a coil internal to a passively magnetically shielded volume to generate the magnetic field. The stability of the magnetic field generated by the coil within the magnetically shielded volume may be influenced by a number of factors. The factor studied here is the dependence of the internally generated field on the magnetic permeability μ of the shield material. We provide measurements of the temperature-dependence of the permeability of the material used in a set of prototype magnetic shields, using experimental parameters nearer to those of nEDM experiments than previously reported in the literature. Our measurements imply a range of 1/μ dμ/dT from 0-2.7%/K. Assuming typical nEDM experiment coil and shield parameters gives μ/B0 dB0/dμ = 0.01, resulting in a temperature dependence of the magnetic field in a typical nEDM experiment of dB0/dT = 0 - 270 pT/K for B0 = 1 μT. The results are useful for estimating the necessary level of temperature control in nEDM experiments.

  5. Neural network-based preprocessing to estimate the parameters of the X-ray emission of a single-temperature thermal plasma

    NASA Astrophysics Data System (ADS)

    Ichinohe, Y.; Yamada, S.; Miyazaki, N.; Saito, S.

    2018-04-01

    We present data preprocessing based on an artificial neural network to estimate the parameters of the X-ray emission spectra of a single-temperature thermal plasma. The method finds appropriate parameters close to the global optimum. The neural network is designed to learn the parameters of the thermal plasma (temperature, abundance, normalization and redshift) of the input spectra. After training using 9000 simulated X-ray spectra, the network has grown to predict all the unknown parameters with uncertainties of about a few per cent. The performance dependence on the network structure has been studied. We applied the neural network to an actual high-resolution spectrum obtained with Hitomi. The predicted plasma parameters agree with the known best-fitting parameters of the Perseus cluster within uncertainties of ≲10 per cent. The result shows that neural networks trained by simulated data might possibly be used to extract a feature built in the data. This would reduce human-intensive preprocessing costs before detailed spectral analysis, and would help us make the best use of the large quantities of spectral data that will be available in the coming decades.

  6. Unraveling the temperature and voltage dependence of magnetic field effects in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Janssen, Paul; Wouters, Steinar H. W.; Cox, Matthijs; Koopmans, Bert

    2013-11-01

    In recent years, it was discovered that the current through an organic semiconductor, sandwiched between two non-magnetic electrodes, can be changed significantly by applying a small magnetic field. This surprisingly large magnetoresistance effect, often dubbed as organic magnetoresistance (OMAR), has puzzled the young field of organic spintronics during the last decade. Here, we present a detailed study on the voltage and temperature dependence of OMAR, aiming to unravel the lineshapes of the magnetic field effects and thereby gain a deeper fundamental understanding of the underlying microscopic mechanism. Using a full quantitative analysis of the lineshapes, we are able to extract all linewidth parameters and the voltage and temperature dependencies are explained with a recently proposed trion mechanism. Moreover, explicit microscopic simulations show a qualitative agreement to the experimental results.

  7. Influence of indoor environmental factors on mass transfer parameters and concentrations of semi-volatile organic compounds.

    PubMed

    Wei, Wenjuan; Mandin, Corinne; Ramalho, Olivier

    2018-03-01

    Semi-volatile organic compounds (SVOCs) in indoor environments can partition among the gas phase, airborne particles, settled dust, and available surfaces. The mass transfer parameters of SVOCs, such as the mass transfer coefficient and the partition coefficient, are influenced by indoor environmental factors. Subsequently, indoor SVOC concentrations and thus occupant exposure can vary depending on environmental factors. In this review, the influence of six environmental factors, i.e., indoor temperature, humidity, ventilation, airborne particle concentration, source loading factor, and reactive chemistry, on the mass transfer parameters and indoor concentrations of SVOCs was analyzed and tentatively quantified. The results show that all mass transfer parameters vary depending on environmental factors. These variations are mostly characterized by empirical equations, particularly for humidity. Theoretical calculations of these parameters based on mass transfer mechanisms are available only for the emission of SVOCs from source surfaces when airborne particles are not present. All mass transfer parameters depend on the temperature. Humidity influences the partition of SVOCs among different phases and is associated with phthalate hydrolysis. Ventilation has a combined effect with the airborne particle concentration on SVOC emission and their mass transfer among different phases. Indoor chemical reactions can produce or eliminate SVOCs slowly. To better model the dynamic SVOC concentration indoors, the present review suggests studying the combined effect of environmental factors in real indoor environments. Moreover, interactions between indoor environmental factors and human activities and their influence on SVOC mass transfer processes should be considered. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Optimisation of the readout parameters when evaluating thermal neutron doses by TL dosimetry with LiF:Mg,Ti.

    PubMed

    German, U; Weinstein, M; Abraham, A; Alfassi, Z B

    2007-01-01

    The location of the glow peaks depends on the heating rate. It takes some time until the crystal reaches the heater temperature, and this time lag has a direct effect on the shift of peaks towards higher temperatures. Some information on the high-temperature peaks may be lost if the readout conditions (mainly length of time) are not properly chosen. Step heating profiles to a varying final temperature between 300 degrees C and 125 degrees C were used to study the time dependence of the collected information in the glow curves of (6)LiF:Mg,Ti crystals, and the minimal heating time for evaluation of thermal neutron doses was determined.

  9. The ExoMol pressure broadening diet: H2 and He line-broadening parameters

    NASA Astrophysics Data System (ADS)

    Barton, Emma J.; Hill, C.; Czurylo, M.; Li, H. Y.; Hyslop, A.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2017-12-01

    In a variety of astronomical objects including gas giant (exo-)planets, brown dwarfs and cool stars, molecular hydrogen and helium are the major line broadeners. However, there is currently no systematic source for these parameters, particularly at the elevated temperatures encountered in many of these objects. The ExoMol project provides comprehensive molecular line lists for exoplanet and other hot atmospheres. The ExoMol database has recently been extended to provide additional data including temperature-dependent, pressure-broadening parameters. Here we assemble H2 and He pressure-broadening datasets for the molecules H2O, NH3, SO2, CH4, PH3, HCN and H2CO using available experimental and theoretical studies.

  10. Solvation effect of bacteriochlorophyll excitons in light-harvesting complex LH2.

    PubMed

    Urboniene, V; Vrublevskaja, O; Trinkunas, G; Gall, A; Robert, B; Valkunas, L

    2007-09-15

    We have characterized the influence of the protein environment on the spectral properties of the bacteriochlorophyll (Bchl) molecules of the peripheral light-harvesting (or LH2) complex from Rhodobacter sphaeroides. The spectral density functions of the pigments responsible for the 800 and 850 nm electronic transitions were determined from the temperature dependence of the Bchl absorption spectra in different environments (detergent micelles and native membranes). The spectral density function is virtually independent of the hydrophobic support that the protein experiences. The reorganization energy for the B850 Bchls is 220 cm(-1), which is almost twice that of the B800 Bchls, and its Huang-Rhys factor reaches 8.4. Around the transition point temperature, and at higher temperatures, both the static spectral inhomogeneity and the resonance interactions become temperature-dependent. The inhomogeneous distribution function of the transitions exhibits less temperature dependence when LH2 is embedded in membranes, suggesting that the lipid phase protects the protein. However, the temperature dependence of the fluorescence spectra of LH2 cannot be fitted using the same parameters determined from the analysis of the absorption spectra. Correct fitting requires the lowest exciton states to be additionally shifted to the red, suggesting the reorganization of the exciton spectrum.

  11. The implementation of non-Voigt line profiles in the HITRAN database: H2 case study

    NASA Astrophysics Data System (ADS)

    Wcisło, P.; Gordon, I. E.; Tran, H.; Tan, Y.; Hu, S.-M.; Campargue, A.; Kassi, S.; Romanini, D.; Hill, C.; Kochanov, R. V.; Rothman, L. S.

    2016-07-01

    Experimental capabilities of molecular spectroscopy and its applications nowadays require a sub-percent or even sub-per mille accuracy of the representation of the shapes of molecular transitions. This implies the necessity of using more advanced line-shape models which are characterized by many more parameters than a simple Voigt profile. It is a great challenge for modern molecular spectral databases to store and maintain the extended set of line-shape parameters as well as their temperature dependences. It is even more challenging to reliably retrieve these parameters from experimental spectra over a large range of pressures and temperatures. In this paper we address this problem starting from the case of the H2 molecule for which the non-Voigt line-shape effects are exceptionally pronounced. For this purpose we reanalyzed the experimental data reported in the literature. In particular, we performed detailed line-shape analysis of high-quality spectra obtained with cavity-enhanced techniques. We also report the first high-quality cavity-enhanced measurement of the H2 fundamental vibrational mode. We develop a correction to the Hartmann-Tran profile (HTP) which adjusts the HTP to the particular model of the velocity-changing collisions. This allows the measured spectra to be better represented over a wide range of pressures. The problem of storing the HTP parameters in the HITRAN database together with their temperature dependences is also discussed.

  12. Impact of the calibration period on the conceptual rainfall-runoff model parameter estimates

    NASA Astrophysics Data System (ADS)

    Todorovic, Andrijana; Plavsic, Jasna

    2015-04-01

    A conceptual rainfall-runoff model is defined by its structure and parameters, which are commonly inferred through model calibration. Parameter estimates depend on objective function(s), optimisation method, and calibration period. Model calibration over different periods may result in dissimilar parameter estimates, while model efficiency decreases outside calibration period. Problem of model (parameter) transferability, which conditions reliability of hydrologic simulations, has been investigated for decades. In this paper, dependence of the parameter estimates and model performance on calibration period is analysed. The main question that is addressed is: are there any changes in optimised parameters and model efficiency that can be linked to the changes in hydrologic or meteorological variables (flow, precipitation and temperature)? Conceptual, semi-distributed HBV-light model is calibrated over five-year periods shifted by a year (sliding time windows). Length of the calibration periods is selected to enable identification of all parameters. One water year of model warm-up precedes every simulation, which starts with the beginning of a water year. The model is calibrated using the built-in GAP optimisation algorithm. The objective function used for calibration is composed of Nash-Sutcliffe coefficient for flows and logarithms of flows, and volumetric error, all of which participate in the composite objective function with approximately equal weights. Same prior parameter ranges are used in all simulations. The model is calibrated against flows observed at the Slovac stream gauge on the Kolubara River in Serbia (records from 1954 to 2013). There are no trends in precipitation nor in flows, however, there is a statistically significant increasing trend in temperatures at this catchment. Parameter variability across the calibration periods is quantified in terms of standard deviations of normalised parameters, enabling detection of the most variable parameters. Correlation coefficients among optimised model parameters and total precipitation P, mean temperature T and mean flow Q are calculated to give an insight into parameter dependence on the hydrometeorological drivers. The results reveal high sensitivity of almost all model parameters towards calibration period. The highest variability is displayed by the refreezing coefficient, water holding capacity, and temperature gradient. The only statistically significant (decreasing) trend is detected in the evapotranspiration reduction threshold. Statistically significant correlation is detected between the precipitation gradient and precipitation depth, and between the time-area histogram base and flows. All other correlations are not statistically significant, implying that changes in optimised parameters cannot generally be linked to the changes in P, T or Q. As for the model performance, the model reproduces the observed runoff satisfactorily, though the runoff is slightly overestimated in wet periods. The Nash-Sutcliffe efficiency coefficient (NSE) ranges from 0.44 to 0.79. Higher NSE values are obtained over wetter periods, what is supported by statistically significant correlation between NSE and flows. Overall, no systematic variations in parameters or in model performance are detected. Parameter variability may therefore rather be attributed to errors in data or inadequacies in the model structure. Further research is required to examine the impact of the calibration strategy or model structure on the variability in optimised parameters in time.

  13. Weyl holographic superconductor in the Lifshitz black hole background

    NASA Astrophysics Data System (ADS)

    Mansoori, S. A. Hosseini; Mirza, B.; Mokhtari, A.; Dezaki, F. Lalehgani; Sherkatghanad, Z.

    2016-07-01

    We investigate analytically the properties of the Weyl holographic superconductor in the Lifshitz black hole background. We find that the critical temperature of the Weyl superconductor decreases with increasing Lifshitz dynamical exponent, z, indicating that condensation becomes difficult. In addition, it is found that the critical temperature and condensation operator could be affected by applying the Weyl coupling, γ. Moreover, we compute the critical magnetic field and investigate its dependence on the parameters γ and z. Finally, we show numerically that the Weyl coupling parameter γ and the Lifshitz dynamical exponent z together control the size and strength of the conductivity peak and the ratio of gap frequency over critical temperature ω g /T c .

  14. Gap heating with pressure gradients. [for Shuttle Orbiter thermal protection system tiles

    NASA Technical Reports Server (NTRS)

    Scott, C. D.; Maraia, R. J.

    1979-01-01

    The heating rate distribution and temperature response on the gap walls of insulating tiles is analyzed to determine significant phenomena and parameters in flows where there is an external surface pressure gradient. Convective heating due to gap flow, modeled as fully developed pipe flow, is coupled with a two-dimensional thermal model of the tiles that includes conduction and radiative heat transfer. To account for geometry and important environmental parameters, scale factors are obtained by curve-fitting measured temperatures to analytical solutions. These scale factors are then used to predict the time-dependent gap heat flux and temperature response of tile gaps on the Space Shuttle Orbiter during entry.

  15. Infrared line parameters at low temperatures relevant to planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Varanasi, Prasad

    1990-01-01

    Employing the techniques that were described in several publications for measuring infrared lineshifts, linewidths and line intensities with a tunable diode laser, these parameters were measures for lines in the important infrared bands of several molecules of interest to the planetary astronomer at low temperatures that are relevant to planetary atmospheres using He, Ne, Ar, H2, N2, O2, and air as the perturbers. In addition to obtaining the many original data on the temperature dependence of the intensities and linewidths, it was also the first measurement of the same for the collision-induced lineshift of an infrared line and it showed that it was markedly different from that of the corresponding collision-broadened linewidth.

  16. Contribution to modeling the viscosity Arrhenius-type equation for saturated pure fluids

    NASA Astrophysics Data System (ADS)

    Tian, Jianxiang; Zhang, Laibin

    2016-09-01

    Recently, Haj-Kacem et al. proposed an equation modeling the relationship between the two parameters of viscosity Arrhenius-type equations [Fluid Phase Equilibria 383, 11 (2014)]. The authors found that the two parameters are dependent upon each other in an exponential function form. In this paper, we reconsidered their ideas and calculated the two parameter values for 49 saturated pure fluids by using the experimental data in the NIST WebBook. Our conclusion is different with the ones of Haj-Kacem et al. We found that (the linearity shown by) the Arrhenius equation stands strongly only in low temperature range and that the two parameters of the Arrhenius equation are independent upon each other in the whole temperature range from the triple point to the critical point.

  17. Optimization of process parameters for RF sputter deposition of tin-nitride thin-films

    NASA Astrophysics Data System (ADS)

    Jangid, Teena; Rao, G. Mohan

    2018-05-01

    Radio frequency Magnetron sputtering technique was employed to deposit Tin-nitride thin films on Si and glass substrate at different process parameters. Influence of varying parameters like substrate temperature, target-substrate distance and RF power is studied in detail. X-ray diffraction method is used as a key technique for analyzing the changes in the stoichiometric and structural properties of the deposited films. Depending on the combination of deposition parameters, crystalline as well as amorphous films were obtained. Pure tin-nitride thin films were deposited at 15W RF power and 600°C substrate temperature with target-substrate distance fixed at 10cm. Bandgap value of 1.6 eV calculated for the film deposited at optimum process conditions matches well with reported values.

  18. Coupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers.

    PubMed

    Wildemeersch, S; Jamin, P; Orban, P; Hermans, T; Klepikova, M; Nguyen, F; Brouyère, S; Dassargues, A

    2014-11-15

    Geothermal energy systems, closed or open, are increasingly considered for heating and/or cooling buildings. The efficiency of such systems depends on the thermal properties of the subsurface. Therefore, feasibility and impact studies performed prior to their installation should include a field characterization of thermal properties and a heat transfer model using parameter values measured in situ. However, there is a lack of in situ experiments and methodology for performing such a field characterization, especially for open systems. This study presents an in situ experiment designed for estimating heat transfer parameters in shallow alluvial aquifers with focus on the specific heat capacity. This experiment consists in simultaneously injecting hot water and a chemical tracer into the aquifer and monitoring the evolution of groundwater temperature and concentration in the recovery well (and possibly in other piezometers located down gradient). Temperature and concentrations are then used for estimating the specific heat capacity. The first method for estimating this parameter is based on a modeling in series of the chemical tracer and temperature breakthrough curves at the recovery well. The second method is based on an energy balance. The values of specific heat capacity estimated for both methods (2.30 and 2.54MJ/m(3)/K) for the experimental site in the alluvial aquifer of the Meuse River (Belgium) are almost identical and consistent with values found in the literature. Temperature breakthrough curves in other piezometers are not required for estimating the specific heat capacity. However, they highlight that heat transfer in the alluvial aquifer of the Meuse River is complex and contrasted with different dominant process depending on the depth leading to significant vertical heat exchange between upper and lower part of the aquifer. Furthermore, these temperature breakthrough curves could be included in the calibration of a complex heat transfer model for estimating the entire set of heat transfer parameters and their spatial distribution by inverse modeling. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Current and efficiency optimization under oscillating forces in entropic barriers

    NASA Astrophysics Data System (ADS)

    Nutku, Ferhat; Aydıner, Ekrem

    2016-09-01

    The transport of externally overdriven particles confined in entropic barriers is investigated under various types of oscillating and temporal forces. Temperature, load, and amplitude dependence of the particle current and energy conversion efficiency are investigated in three dimensions. For oscillating forces, the optimized temperature-load, amplitude-temperature, and amplitude-load intervals are determined when fixing the amplitude, load, and temperature, respectively. By using three-dimensional plots rather than two-dimensional ones, it is clearly shown that oscillating forces provide more efficiency compared with a temporal one in specified optimized parameter regions. Furthermore, the dependency of efficiency to the angle between the unbiased driving force and a constant force is investigated and an asymmetric angular dependence is found for all types of forces. Finally, it is shown that oscillating forces with a high amplitude and under a moderate load lead to higher efficiencies than a temporal force at both low and high temperatures for the entire range of contact angle. Project supported by the Istanbul University, Turkey (Grant No. 55383).

  20. Line intensities and temperature-dependent line broadening coefficients of Q-branch transitions in the v2 band of ammonia near 10.4 μm

    NASA Astrophysics Data System (ADS)

    Sur, Ritobrata; Spearrin, R. Mitchell; Peng, Wen Y.; Strand, Christopher L.; Jeffries, Jay B.; Enns, Gregory M.; Hanson, Ronald K.

    2016-05-01

    We report measured line intensities and temperature-dependent broadening coefficients of NH3 with Ar, N2, O2, CO2, H2O, and NH3 for nine sQ(J,K) transitions in the ν2 fundamental band in the frequency range 961.5-967.5 cm-1. This spectral region was chosen due to the strong NH3 absorption strength and lack of spectral interference from H2O and CO2 for laser-based sensing applications. Spectroscopic parameters were determined by multi-line fitting using Voigt lineshapes of absorption spectra measured with two quantum cascade lasers in thermodynamically-controlled optical cells. The temperature dependence of broadening was measured over a range of temperatures between 300 and 600 K. These measurements aid the development of mid-infrared NH3 sensors for a broad range of gas mixtures and at elevated temperatures.

  1. Estimating non-isothermal bacterial growth in foods from isothermal experimental data.

    PubMed

    Corradini, M G; Peleg, M

    2005-01-01

    To develop a mathematical method to estimate non-isothermal microbial growth curves in foods from experiments performed under isothermal conditions and demonstrate the method's applicability with published growth data. Published isothermal growth curves of Pseudomonas spp. in refrigerated fish at 0-8 degrees C and Escherichia coli 1952 in a nutritional broth at 27.6-36 degrees C were fitted with two different three-parameter 'primary models' and the temperature dependence of their parameters was fitted by ad hoc empirical 'secondary models'. These were used to generate non-isothermal growth curves by solving, numerically, a differential equation derived on the premise that the momentary non-isothermal growth rate is the isothermal rate at the momentary temperature, at a time that corresponds to the momentary growth level of the population. The predicted non-isothermal growth curves were in agreement with the reported experimental ones and, as expected, the quality of the predictions did not depend on the 'primary model' chosen for the calculation. A common type of sigmoid growth curve can be adequately described by three-parameter 'primary models'. At least in the two systems examined, these could be used to predict growth patterns under a variety of continuous and discontinuous non-isothermal temperature profiles. The described mathematical method whenever validated experimentally will enable the simulation of the microbial quality of stored and transported foods under a large variety of existing or contemplated commercial temperature histories.

  2. Mössbauer spectroscopy measurements on the 35.5 K superconductor Rb1 -δEuFe4As4

    NASA Astrophysics Data System (ADS)

    Albedah, Mohammed A.; Nejadsattari, Farshad; Stadnik, Zbigniew M.; Liu, Yi; Cao, Guang-Han

    2018-04-01

    The results of x-ray diffraction and 57Fe and 151Eu Mössbauer spectroscopy measurements, supplemented with ab initio hyperfine-interaction parameter calculations, on the new 35.5 K superconductor Rb1 -δEuFe4As4 are presented. The superconductor crystallizes in the tetragonal space group P 4 /m m m with the lattice parameters a =3.8849 (1 ) Å and c =13.3370 (3 ) Å. It is shown that there is no magnetic order of the Fe magnetic moments down to 2.1 K and that the ferromagnetic order is associated solely with the Eu magnetic moments. The Curie temperature TC=16.54 (8 ) K is determined from the temperature dependence of both the hyperfine magnetic field at 151Eu nuclei and the transferred hyperfine magnetic field at 57Fe nuclei that is induced by the ferromagnetically ordered Eu sublattice. The Eu magnetic moments are demonstrated to be perpendicular to the crystallographic c axis. The temperature dependence of the principal component of the electric field gradient tensor, at both Fe and Eu sites, is well described by a T3 /2 power-law relation. Good agreement between the calculated and measured hyperfine-interaction parameters is observed. The Debye temperature of Rb1 -δEuFe4As4 is found to be 391(8) K.

  3. Kinetic model for dependence of thin film stress on growth rate, temperature, and microstructure

    NASA Astrophysics Data System (ADS)

    Chason, E.; Shin, J. W.; Hearne, S. J.; Freund, L. B.

    2012-04-01

    During deposition, many thin films go through a range of stress states, changing from compressive to tensile and back again. In addition, the stress depends strongly on the processing and material parameters. We have developed a simple analytical model to describe the stress evolution in terms of a kinetic competition between different mechanisms of stress generation and relaxation at the triple junction where the surface and grain boundary intersect. The model describes how the steady state stress scales with the dimensionless parameter D/LR where D is the diffusivity, R is the growth rate, and L is the grain size. It also explains the transition from tensile to compressive stress as the microstructure evolves from isolated islands to a continuous film. We compare calculations from the model with measurements of the stress dependence on grain size and growth rate in the steady state regime and of the evolution of stress with thickness for different temperatures.

  4. Selection of Compositions in Ti-Cr-C-Steel, Ti-B, Ti-B-Me Systems and Establishing Synthesis Parameters for Obtaining Product by “SHS-Electrical Rolling”

    NASA Astrophysics Data System (ADS)

    Aslamazashvili, Zurab; Tavadze, Giorgi; Chikhradze, Mikheil; Namicheishvili, Teimuraz; Melashvili, Zaqaria

    2017-12-01

    For the production materials by the proposed Self-propagating High-Temperature Synthesis (SHS) - Electric Rolling method, there are no limitations in the length of the material and the width only depends on the length of rolls. The innovation method enables to carry out the process in nonstop regime, which is possible by merging energy consuming SHS method and Electrical Rolling. For realizing the process it is mandatory and sufficient, that initial components, after initiation by thermal pulse, could interaction with the heat emission, which itself ensures the self-propagation of synthesis front in lieu of heat transfer in the whole sample. Just after that process, the rolls instantly start rotation with the set speed to ensure the motion of material. This speed should be equal to the speed of propagation of synthesis front. The synthesized product in hot plastic condition is delivered to the rolls in nonstop regime, simultaneously, providing the current in deformation zone in order to compensate the energy loses. As a result by using the innovation SHS -Electrical Rolling technology we obtain long dimensional metal-ceramic product. In the presented paper optimal compositions of SHS chasms were selected in Ti-Cr-C-Steel, Ti-B and Ti-B-Me systems. For the selection of the compounds the thermodynamic analysis has been carried out which enabled to determine adiabatic temperature of synthesis theoretically and to determine balanced concentrations of synthesized product at synthesis temperature. Thermodynamic analysis also gave possibility to determine optimal compositions of chasms and define the conditions, which are important for correct realization of synthesis process. For obtaining non porous materials and product by SHS-Electrical Rolling, it is necessary to select synthesis and compacting parameters correctly. These parameters are the pressure and the time. In Ti-Cr-C-Steel, Ti-B and Ti-B-Me systems the high quality (nonporous or low porosity <2%) of materials and product is directly depended on the liquid phase content just after the passing of synthesis front in the sample. The more content of liquid phase provides the higher quality of material. The content of liquid phase itself depends on synthesis parameters: speed and temperature of synthesis. The higher the speed and temperature of synthesis we have, higher the content of liquid phase is formed. The speed and the temperature of synthesis depend on the Δρ relative density of sample formed from initial chasm, this mean it depends on the pressure of formation of the sample. The paper describes the results of determination of optimal pressures in Ti-Cr-C-Steel, Ti-B and Ti-B-Me systems. Their values are defined as 50-70 MPa, 180-220 MPa and 45-70 MPa.

  5. Parametric Methods for Determining the Characteristics of Long-Term Metal Strength

    NASA Astrophysics Data System (ADS)

    Nikitin, V. I.; Rybnikov, A. I.

    2018-06-01

    A large number of parametric methods were proposed to calculate the characteristics of the long-term strength of metals. All of them are based on the fact that temperature and time are mutually compensating factors in the processes of metal degradation at high temperature under the action of a constant stress. The analysis of the well-known Larson-Miller, Dorn-Shcherby, Menson-Haferd, Graham-Wallace, and Trunin parametric equations is performed. The widely used Larson-Miller parameter was subjected to a detailed analysis. The application of this parameter to the calculation of ultimate long-term strength for steels and alloys is substantiated provided that the laws of exponential dependence on temperature and power dependence on strength for the heat resistance are observed. It is established that the coefficient C in the Larson- Miller equation is a characteristic of the heat resistance and is different for each material. Therefore, the use of a universal constant C = 20 in parametric calculations, as well as an a priori presetting of numerical C values for each individual group of materials, is unacceptable. It is shown in what manner it is possible to determine an exact value of coefficient C for any material of interest as well as to obtain coefficient C depending on stress in case such a dependence is manifested. At present, the calculation of long-term strength characteristics can be performed to a sufficient accuracy using Larson-Miller's parameter and its refinements described therein as well as on the condition that a linear law in logσ- P dependence is observed and calculations in the interpolation range is performed. The use of the presented recommendations makes it possible to obtain a linear parametric logσ- P dependence, which makes it possible to determine to a sufficient accuracy the values of ultimate long-term strength for different materials.

  6. On the Accuracy of Atmospheric Parameter Determination in BAFGK Stars

    NASA Astrophysics Data System (ADS)

    Ryabchikova, T.; Piskunov, N.; Shulyak, D.

    2015-04-01

    During the past few years, many papers determining the atmospheric parameters in FGK stars appeared in the literature where the accuracy of effective temperatures is given as 20-40 K. For main sequence stars within the 5 000-13 000 K temperature range, we have performed a comparative analysis of the parameters derived from the spectra by using the SME (Spectroscopy Made Easy) package and those found in the literature. Our sample includes standard stars Sirius, Procyon, δ Eri, and the Sun. Combining different spectral regions in the fitting procedure, we investigated an effect different atomic species have on the derived atmospheric parameters. The temperature difference may exceed 100 K depending on the spectral regions used in the SME procedure. It is shown that the atmospheric parameters derived with the SME procedure which includes wings of hydrogen lines in fitting agrees better with the results derived by the other methods and tools across a large part of the main sequence. For three stars—π Cet, 21 Peg, and Procyon—the atmospheric parameters were also derived by fitting a calculated energy distribution to the observed one. We found a substantial difference in the parameters inferred from different sets and combinations of spectrophotometric observations. An intercomparison of our results and literature data shows that the average accuracy of effective temperature determination for cool stars and for the early B-stars is 70-85 K and 170-200 K, respectively.

  7. Evaluation of eutrophication of Ostravice river depending on the chemical and physical parameters

    NASA Astrophysics Data System (ADS)

    Hlavac, A.; Melcakova, I.; Novakova, J.; Svehlakova, H.; Slavikova, L.; Klimsa, L.; Bartkova, M.

    2017-10-01

    The main objective of this study was to evaluate which selected environmental parameters in rivers affect the concentration of chlorophyll a and the distribution of macrozoobenthos. The data were collected on selected profiles of the Ostravice mountain river in the Moravian-Silesian Region. The examined chemical and physical parameters include dissolved oxygen (DO), flow rate, oxidation-reduction potential (ORP), conductivity, temperature, pH, total nitrogen and phosphorus concentration.

  8. Rubisco Catalytic Properties and Temperature Response in Crops1

    PubMed Central

    2016-01-01

    Rubisco catalytic traits and their thermal dependence are two major factors limiting the CO2 assimilation potential of plants. In this study, we present the profile of Rubisco kinetics for 20 crop species at three different temperatures. The results largely confirmed the existence of significant variation in the Rubisco kinetics among species. Although some of the species tended to present Rubisco with higher thermal sensitivity (e.g. Oryza sativa) than others (e.g. Lactuca sativa), interspecific differences depended on the kinetic parameter. Comparing the temperature response of the different kinetic parameters, the Rubisco Km for CO2 presented higher energy of activation than the maximum carboxylation rate and the CO2 compensation point in the absence of mitochondrial respiration. The analysis of the Rubisco large subunit sequence revealed the existence of some sites under adaptive evolution in branches with specific kinetic traits. Because Rubisco kinetics and their temperature dependency were species specific, they largely affected the assimilation potential of Rubisco from the different crops, especially under those conditions (i.e. low CO2 availability at the site of carboxylation and high temperature) inducing Rubisco-limited photosynthesis. As an example, at 25°C, Rubisco from Hordeum vulgare and Glycine max presented, respectively, the highest and lowest potential for CO2 assimilation at both high and low chloroplastic CO2 concentrations. In our opinion, this information is relevant to improve photosynthesis models and should be considered in future attempts to design more efficient Rubiscos. PMID:27329223

  9. Rubisco Catalytic Properties and Temperature Response in Crops.

    PubMed

    Hermida-Carrera, Carmen; Kapralov, Maxim V; Galmés, Jeroni

    2016-08-01

    Rubisco catalytic traits and their thermal dependence are two major factors limiting the CO2 assimilation potential of plants. In this study, we present the profile of Rubisco kinetics for 20 crop species at three different temperatures. The results largely confirmed the existence of significant variation in the Rubisco kinetics among species. Although some of the species tended to present Rubisco with higher thermal sensitivity (e.g. Oryza sativa) than others (e.g. Lactuca sativa), interspecific differences depended on the kinetic parameter. Comparing the temperature response of the different kinetic parameters, the Rubisco Km for CO2 presented higher energy of activation than the maximum carboxylation rate and the CO2 compensation point in the absence of mitochondrial respiration. The analysis of the Rubisco large subunit sequence revealed the existence of some sites under adaptive evolution in branches with specific kinetic traits. Because Rubisco kinetics and their temperature dependency were species specific, they largely affected the assimilation potential of Rubisco from the different crops, especially under those conditions (i.e. low CO2 availability at the site of carboxylation and high temperature) inducing Rubisco-limited photosynthesis. As an example, at 25°C, Rubisco from Hordeum vulgare and Glycine max presented, respectively, the highest and lowest potential for CO2 assimilation at both high and low chloroplastic CO2 concentrations. In our opinion, this information is relevant to improve photosynthesis models and should be considered in future attempts to design more efficient Rubiscos. © 2016 American Society of Plant Biologists. All Rights Reserved.

  10. Line Parameters of Ethane (12C_2H_6) at 12 μm with Constrained Multispectrum Fitting

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Rinsland, C. P.; Smith, M. A. H.; Sams, R. L.; Blake, T. A.; Flaud, J.-M.; Sung, K.; Brown, L. R.; Mantz, A. W.

    2010-06-01

    A multispectrum nonlinear least squares technique was applied to simultaneously fit 43 infrared absorption spectra of C_2H_6 between 795 and 850 cm-1. The high resolution (0.0016-0.005 cm-1) spectra were recorded with two different Bruker Fourier transform spectrometers at PNNL and JPL to support Earth and planetary atmosphere studies, e.g. Titan's cold stratosphere. Accurate line positions and absolute intensities at room temperature were retrieved for over 1750 transitions of ν_9. N_2- and self-broadened halfwidth coefficients with their temperature dependences were obtained for over 1330 lines using sample temperatures between ˜150 and 298 K. Constraints to intensity ratios, torsional splittings, halfwidth coefficients and their temperature dependence exponents were incorporated in the analysis to determine these parameters for both torsional split components. The variations of the observed halfwidth coefficients and their temperature dependences with respect to J, K quanta are discussed. No pressure-induced shifts were measured or even required to fit the spectra to their noise levels. Present results are compared with previously reported measurements and predictions. D. Chris Benner, C. P. Rinsland, V. M. Devi, M. A. H. Smith, and D. A. Atkins, JQSRT 1995;53:705-21. Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, the College of William and Mary, Connecticut College, and NASA Langley Research Center under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  11. Using a laboratory-based growth model to estimate mass- and temperature-dependent growth parameters across populations of juvenile Chinook Salmon

    USGS Publications Warehouse

    Perry, Russell W.; Plumb, John M.; Huntington, Charles

    2015-01-01

    To estimate the parameters that govern mass- and temperature-dependent growth, we conducted a meta-analysis of existing growth data from juvenile Chinook Salmon Oncorhynchus tshawytscha that were fed an ad libitum ration of a pelleted diet. Although the growth of juvenile Chinook Salmon has been well studied, research has focused on a single population, a narrow range of fish sizes, or a narrow range of temperatures. Therefore, we incorporated the Ratkowsky model for temperature-dependent growth into an allometric growth model; this model was then fitted to growth data from 11 data sources representing nine populations of juvenile Chinook Salmon. The model fit the growth data well, explaining 98% of the variation in final mass. The estimated allometric mass exponent (b) was 0.338 (SE = 0.025), similar to estimates reported for other salmonids. This estimate of b will be particularly useful for estimating mass-standardized growth rates of juvenile Chinook Salmon. In addition, the lower thermal limit, optimal temperature, and upper thermal limit for growth were estimated to be 1.8°C (SE = 0.63°C), 19.0°C (SE = 0.27°C), and 24.9°C (SE = 0.02°C), respectively. By taking a meta-analytical approach, we were able to provide a growth model that is applicable across populations of juvenile Chinook Salmon receiving an ad libitum ration of a pelleted diet.

  12. Monte Carlo study of one-dimensional confined fluids with Gay-Berne intermolecular potential

    NASA Astrophysics Data System (ADS)

    Moradi, M.; Hashemi, S.

    2011-11-01

    The thermodynamic quantities of a one dimensional system of particles with Gay-Berne model potential confined between walls have been obtained by means of Monte Carlo computer simulations. For a number of temperatures, the systems were considered and their density profiles, order parameter, pressure, configurational temperature and average potential energy per particle are reported. The results show that by decreasing the temperature, the soft particles become more ordered and they align to the walls and also they don't show any tendency to be near the walls at very low temperatures. We have also changed the structure of the walls by embedding soft ellipses in them, this change increases the total density near the wall whereas, increasing or decreasing the order parameter depend on the angle of embedded ellipses.

  13. Dependence of the surface roughness of MAPLE-deposited films on the solvent parameters

    NASA Astrophysics Data System (ADS)

    Caricato, A. P.; Leggieri, G.; Martino, M.; Vantaggiato, A.; Valerini, D.; Cretì, A.; Lomascolo, M.; Manera, M. G.; Rella, R.; Anni, M.

    2010-12-01

    Matrix-assisted pulsed laser evaporation (MAPLE) was used to deposit layers of poly(9,9-dioctylfluorene) (PFO) to study the relation between the solvent properties (laser light absorption, boiling temperature and solubility parameters) and the morphology of the deposited films. To this end, the polymer was diluted (0.5 wt%) in tetrahydrofuran—THF, toluene and toluene/hexane mixtures. The thickness of the films was equal to 70±20 nm. The morphology and uniformity of the films was investigated by Atomic Force Microscopy and by the photoluminescence emission properties of the polymer films, respectively. It is shown that, although the solubility parameters of the solvents are important in controlling the film roughness and morphology, the optical absorption properties and boiling temperature play a very important role, too. In fact, for matrices characterized by the same total solubility parameter, lower roughness values are obtained for films prepared using solvents with lower penetration depth of the laser radiation and higher boiling temperatures.

  14. Thermodynamic parameters of phase transitions of perfluoro-N-(4-methylcyclohexyl)piperidine

    NASA Astrophysics Data System (ADS)

    Druzhinina, A. I.; Efimova, A. A.; Varushchenko, R. M.; Chelovskaya, N. V.

    2007-12-01

    The heat capacity of perfluoro-N-(4-methylcyclohexyl)piperidine (PMCP) was measured by low-temperature adiabatic calorimetry. The purity of the substance ( N 1 = 99.66 mol %), triple point temperature ( T tp = 293.26 K), and enthalpy of fusion (Δfus H {m/°} = 8.32 kJ/mol) were determined. The enthalpy of vaporization was measured by calorimetry at 298.15 K (Δvap H {m/°}(298.15 K) = 56.56 kJ/mol). The temperature dependence of the saturated vapor pressure of PMCP over the pressure range 6.2-101.6 kPa was determined by comparative ebulliometry. The normal boiling point ( T n.b. = 460.74 K), ehthalpies of vaporization (at various temperatures), and critical parameters of PMCP were calculated. The calculated and experimental values of Δvap H {m/°}(298.15 K) agree to within measurement errors, which proves the reliability of these values and pT parameters used in calculations.

  15. Dynamics of a Landau-Zener transitions in a two-level system driven by a dissipative environment

    NASA Astrophysics Data System (ADS)

    Ateuafack, M. E.; Diffo, J. T.; Fai, L. C.

    2016-02-01

    The paper investigates the effects of a two-level quantum system coupled to transversal and longitudinal dissipative environment. The time-dependent phase accumulation, LZ transition probability and entropy in the presence of fast-ohmic, sub-ohmic and super-ohmic quantum noise are derived. Analytical results are obtained in terms of temperature, dissipation strength, LZ parameter and bath cutoff frequency. The bath is observed to modify the standard occupation difference by a decaying random phase factor and also produces dephasing during the transfer of population. The dephasing characteristics or the initial non-zero decoherence rate are observed to increase in time with the bath temperature and depend on the system-bath coupling strength and cutoff frequency. These parameters are found to strongly affect the memory and thus tailor the coherence process of the system.

  16. Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films

    NASA Astrophysics Data System (ADS)

    Hassanien, A. S.; Akl, Alaa A.

    2016-01-01

    Compositional dependence of optical and electrical properties of chalcogenide CdSxSe1-x (0.4 ≥ x ≥ 0.0 at. %) thin films was studied. Cadmium sulphoselenide films were deposited by thermal evaporation technique at vacuum (8.2 × 10-4 Pa) onto preheated glass substrates (523 K). The evaporation rate and film thickness were kept constant at 2.50 nm/s and 375 ± 5 nm, respectively. X-ray diffractograms showed that, the deposited films have the low crystalline nature. Energy dispersive analysis by X-ray (EDAX) was used to check the compositional elements of deposited films. The absorption coefficient was determined from transmission and reflection measurements at room temperature in the wavelength range 300-2500 nm. Optical density, skin depth, optical energy gap and Urbach's parameters of CdSSe thin films have also been estimated. The direct optical energy gap decreased from 2.248 eV to 1.749 eV when the ratio of Se-content was increased from 0.60 to 1.00 . Conduction band and valance band positions were evaluated. The temperature dependence of dc-electrical resistivity in the temperature range (293-450 K) has been reported. Three conduction regions due to different conduction mechanisms were detected. Electrical sheet resistance, activation energy and pre-exponential parameters were discussed. The estimated values of optical and electrical parameters were strongly dependent upon the Se-content in CdSSe matrix.

  17. Preisach modeling of temperature-dependent ferroelectric response of piezoceramics at sub-switching regime

    NASA Astrophysics Data System (ADS)

    Ochoa, Diego Alejandro; García, Jose Eduardo

    2016-04-01

    The Preisach model is a classical method for describing nonlinear behavior in hysteretic systems. According to this model, a hysteretic system contains a collection of simple bistable units which are characterized by an internal field and a coercive field. This set of bistable units exhibits a statistical distribution that depends on these fields as parameters. Thus, nonlinear response depends on the specific distribution function associated with the material. This model is satisfactorily used in this work to describe the temperature-dependent ferroelectric response in PZT- and KNN-based piezoceramics. A distribution function expanded in Maclaurin series considering only the first terms in the internal field and the coercive field is proposed. Changes in coefficient relations of a single distribution function allow us to explain the complex temperature dependence of hard piezoceramic behavior. A similar analysis based on the same form of the distribution function shows that the KNL-NTS properties soften around its orthorhombic to tetragonal phase transition.

  18. Anisotropic magnetic interactions and spin dynamics in the spin-chain compound Cu (py) 2Br2 : An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Zeisner, J.; Brockmann, M.; Zimmermann, S.; Weiße, A.; Thede, M.; Ressouche, E.; Povarov, K. Yu.; Zheludev, A.; Klümper, A.; Büchner, B.; Kataev, V.; Göhmann, F.

    2017-07-01

    We compare theoretical results for electron spin resonance (ESR) properties of the Heisenberg-Ising Hamiltonian with ESR experiments on the quasi-one-dimensional magnet Cu (py) 2Br2 (CPB). Our measurements were performed over a wide frequency and temperature range giving insight into the spin dynamics, spin structure, and magnetic anisotropy of this compound. By analyzing the angular dependence of ESR parameters (resonance shift and linewidth) at room temperature, we show that the two weakly coupled inequivalent spin-chain types inside the compound are well described by Heisenberg-Ising chains with their magnetic anisotropy axes perpendicular to the chain direction and almost perpendicular to each other. We further determine the full g tensor from these data. In addition, the angular dependence of the linewidth at high temperatures gives us access to the exponent of the algebraic decay of a dynamical correlation function of the isotropic Heisenberg chain. From the temperature dependence of static susceptibilities, we extract the strength of the exchange coupling (J /kB=52.0 K ) and the anisotropy parameter (δ ≈-0.02 ) of the model Hamiltonian. An independent compatible value of δ is obtained by comparing the exact prediction for the resonance shift at low temperatures with high-frequency ESR data recorded at 4 K . The spin structure in the ordered state implied by the two (almost) perpendicular anisotropy axes is in accordance with the propagation vector determined from neutron scattering experiments. In addition to undoped samples, we study the impact of partial substitution of Br by Cl ions on spin dynamics. From the dependence of the ESR linewidth on the doping level, we infer an effective decoupling of the anisotropic component J δ from the isotropic exchange J in these systems.

  19. Heating 7.2 user`s manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, K.W.

    1993-02-01

    HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- andmore » position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less

  20. Heating 7. 2 user's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, K.W.

    1993-02-01

    HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- andmore » position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less

  1. Effect of magnetism and atomic order on static atomic displacements in the Invar alloy Fe-27 at.% Pt

    NASA Astrophysics Data System (ADS)

    Sax, C. R.; Schönfeld, B.; Ruban, A. V.

    2015-08-01

    Fe-27 at.% Pt was aged at 1123 K and quenched to room temperature (RT) to set up a state of thermal equilibrium. The local atomic arrangement was studied by diffuse x-ray scattering above (at 427 K) and below (at RT) the Curie temperature as well as at RT under a saturating magnetic field. The separated short-range order scattering remained unchanged for all three states, with maxima at 100 positions. Effective pair interaction parameters determined by the inverse Monte Carlo method gave an order-disorder transition temperature of about 1088 K, close to direct experimental findings. The species-dependent static atomic displacements for the first two shells show large differences, with a strong increase in magnitude from the state at 427 K over RT to the state under saturating magnetic field. This outcome is in agreement with an increase in atomic volume of Fe with increasing local magnetic moment. Electronic-structure calculations closely reproduce the values for the static atomic displacements in the ferromagnetic state, and predict their dependence on the atomic configuration. They also reveal a strong dependence of the magnetic exchange interactions in Fe-Pt on the atomic configuration state and lattice parameter. In particular, the increase of the Curie temperature in a random state relative to that in the ordered one is demonstrated to be related to the corresponding change of the magnetic exchange interactions due to the different local atomic chemical environment. There exists a similar strong concentration dependence of the chemical interactions as in the case of magnetic exchange interactions. Theoretical effective interactions for Fe-27 at.% Pt alloy are in good agreement with experimental results, and they also reproduce well the L1 2-A1 transition temperature.

  2. Thermal Evolution of the Earth from a Plate Tectonics Point of View

    NASA Astrophysics Data System (ADS)

    Grigne, C.; Combes, M.; Le Yaouanq, S.; Husson, L.; Conrad, C. P.; Tisseau, C.

    2011-12-01

    Earth's thermal history is classically studied using scaling laws that link the surface heat loss to the temperature and viscosity of the convecting mantle. When such a parameterization is used in the global heat budget of the Earth to integrate the mantle temperature backwards in time, a runaway increase of temperature is obtained, leading to the so-called "thermal catastrophe". We propose a new approach that does not rely on convective scaling laws but instead considers the dynamics of plate tectonics, including temperature-dependent surface processes. We use a multi-agent system to simulate time-dependent plate tectonics in a 2D cylindrical geometry with evolutive plate boundaries. Plate velocities are computed using local force balance and explicit parameterizations for plate boundary processes such as trench migration, subduction initiation, continental breakup and plate suturing. The number of plates is not imposed but emerges naturally. At a given time step, heat flux is integrated from the seafloor age distribution and a global heat budget is used to compute the evolution of mantle temperature. This approach has a very low computational cost and allows us to study the effect of a wide range of input parameters on the long-term thermal evolution of the system. For Earth-like parameters, an average cooling rate of 60-70K per billion years is obtained, which is consistent with petrological and rheological constraints. Two time scales arise in the evolution of the heat flux: a linear long-term decrease and high-amplitude short-term fluctuations due to tectonic rearrangements. We show that the viscosity of the mantle is not a key parameter in the thermal evolution of the system and that no thermal catastrophe occurs when considering tectonic processes. The cooling rate of the Earth depends mainly on its ability to replace old insulating seafloor by young thin oceanic lithosphere. Therefore, the main controlling factors are parameters such as the resistance of continental lithosphere to breakup or the critical age for subduction initiation. We infer that simple convective considerations alone cannot account for the complex nature of mantle heat loss and that tectonic processes dictate the thermal evolution of the Earth.

  3. Thermal Evolution of Charon and the Major Satellites of Uranus: Constraints on Early Differentiation

    NASA Astrophysics Data System (ADS)

    Spohn, T.; Multhaup, K.

    2007-12-01

    A thermal history model developed for medium-sized icy satellites containing silicate rock at low volume fractions is applied to Charon and the satellites of Uranus Ariel, Umbriel, Titania, Oberon and Miranda. The model assumes homogeneously accreted satellites. To calculate the initial temperature profile we assume that infalling planetesimals deposit a fraction h of their kinetic energy as heat at the instantaneous surface of the growing satellites. The parameter h is varied between models. The model continuously checks for convectively unstable shells in the interior by updating the temperature profile and calculating the Rayleigh number and the temperature-dependent viscosity. The viscosity parameter values are taken as those of ice I although the satellites under consideration likely contain admixtures of lighter constituents. Their effects and those of rock on the viscosity are discussed. Convective heat transport is calculated assuming the stagnant lid model for strongly temperature dependent viscosity. In convectively stable regions heat transfer is by conduction with a temperature dependent thermal conductivity. Thermal evolution calculations considering radiogenic heating by the long-lived radiogenic isotopes of U, Th, and K suggest that Ariel, Umbriel, Titania, Oberon and Charon may have started to differentiate after a few hundred million years of evolution. With short-lived isotopes -- if present in sizeable concentrations -- this time will move earlier. Results for Miranda -- the smallest satellite of Uranus -- indicate that it never convected or differentiated if heated by the said long-lived isotopes only. Miranda's interior temperature was found to be not even close to the melting temperatures of reasonable mixtures of water and ammonia. This finding is in contrast to its heavily modified surface and supports theories that propose alternative heating mechanisms such as the decay of short-lived isotopes or early tidal heating.

  4. Laboratory observations of temperature and humidity dependencies of nucleation and growth rates of sub-3 nm particles

    NASA Astrophysics Data System (ADS)

    Yu, Huan; Dai, Liang; Zhao, Yi; Kanawade, Vijay P.; Tripathi, Sachchida N.; Ge, Xinlei; Chen, Mindong; Lee, Shan-Hu

    2017-02-01

    Temperature and relative humidity (RH) are the most important thermodynamic parameters in aerosol formation, yet laboratory studies of nucleation and growth dependencies on temperature and RH are lacking. Here we report the experimentally observed temperature and RH dependences of sulfuric acid aerosol nucleation and growth. Experiments were performed in a flow tube in the temperature range from 248 to 313 K, RH from 0.8% to 79%, and relative acidity (RA) of sulfuric acid from 6 × 10-5 to 0.38 (2 × 107-109 cm-3). The impurity levels of base compounds were determined to be NH3 < 23 pptv (parts per thousand by volume), methylamine < 1.5 pptv, and dimethylamine < 0.52 pptv. Our results showed that low temperatures favor nucleation at fixed sulfuric acid concentration but impede nucleation when RA is fixed. It is also shown that binary nucleation of sulfuric acid and water is negligible in planetary boundary layer temperature and sulfuric acid ranges. An empirical algorithm was derived to correlate the nucleation rate with RA, RH, and temperature together. Collision-limited condensation of free-sulfuric acid molecules fails to predict the observed growth rate in the sub-3 nm size range, as well as its dependence on temperature and RH. This suggests that evaporation, sulfuric acid hydration, and possible involvement of other ternary molecules should be considered for the sub-3 nm particle growth.

  5. Frequency and Temperature Dependence of Fabrication Parameters in Polymer Dispersed Liquid Crystal Devices

    PubMed Central

    Torres, Juan C.; Vergaz, Ricardo; Barrios, David; Sánchez-Pena, José Manuel; Viñuales, Ana; Grande, Hans Jürgen; Cabañero, Germán

    2014-01-01

    A series of polymer dispersed liquid crystal devices using glass substrates have been fabricated and investigated focusing on their electrical properties. The devices have been studied in terms of impedance as a function of frequency. An electric equivalent circuit has been proposed, including the influence of the temperature on the elements into it. In addition, a relevant effect of temperature on electrical measurements has been observed. PMID:28788632

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryabov, E.G.; Adeev, G.D.

    A macroscopic temperature-dependent model that takes into account nuclear forces of finite range is used to calculate the static and statistical properties of hot rotating compound nuclei. The level-density parameter is approximated by an expression of the leptodermous type. The resulting expansion coefficients are in good agreement with their counterparts proposed previously by A.V. Ignatyuk and his colleagues. The effect of taking simultaneously into account the temperature of a nucleus and its angular momentum on the quantities under study, such as the heights and positions of fission barriers and the effective moments of inertia of nuclei at the barrier, ismore » considered, and the importance of doing this is demonstrated. The fissility parameter (Z{sup 2}/A){sub crit} and the position of the Businaro-Gallone point are studied versus temperature. It is found that, with increasing temperature, both parameters are shifted to the region of lighter nuclei. It is shown that the inclusion of temperature leads to qualitatively the same effects as the inclusion of the angular momentum of a nucleus, but, quantitatively, thermal excitation leads to smaller effects than rotational excitation.« less

  7. Measurement of the temperature-dependent threshold shear-stress of red blood cell aggregation.

    PubMed

    Lim, Hyun-Jung; Nam, Jeong-Hun; Lee, Yong-Jin; Shin, Sehyun

    2009-09-01

    Red blood cell (RBC) aggregation is becoming an important hemorheological parameter, which typically exhibits temperature dependence. Quite recently, a critical shear-stress was proposed as a new dimensional index to represent the aggregative and disaggregative behaviors of RBCs. The present study investigated the effect of the temperature on the critical shear-stress that is required to keep RBC aggregates dispersed. The critical shear-stress was measured at various temperatures (4, 10, 20, 30, and 37 degrees C) through the use of a transient microfluidic aggregometry. The critical shear-stress significantly increased as the blood temperature lowered, which accorded with the increase in the low-shear blood viscosity with the lowering of the temperature. Furthermore, the critical shear-stress also showed good agreement with the threshold shear-stress, as measured in a rotational Couette flow. These findings assist in rheologically validating the critical shear-stress, as defined in the microfluidic aggregometry.

  8. Primary α and secondary β relaxation dynamics of meta-toluidine in the liquid state investigated by broadband dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Švajdlenková, H.; Ruff, A.; Lunkenheimer, P.; Loidl, A.; Bartoš, J.

    2017-08-01

    We report a broadband dielectric spectroscopic (BDS) study on the clustering fragile glass-former meta-toluidine (m-TOL) from 187 K up to 289 K over a wide frequency range of 10-3-109 Hz with focus on the primary α relaxation and the secondary β relaxation above the glass temperature Tg. The broadband dielectric spectra were fitted by using the Havriliak-Negami (HN) and Cole-Cole (CC) models. The β process disappearing at Tβ,disap = 1.12Tg exhibits non-Arrhenius dependence fitted by the Vogel-Fulcher-Tamman-Hesse equation with T0βVFTH in accord with the characteristic differential scanning calorimetry (DSC) limiting temperature of the glassy state. The essential feature of the α process consists in the distinct changes of its spectral shape parameter βHN marked by the characteristic BDS temperatures TB1βHN and TB2βHN. The primary α relaxation times were fitted over the entire temperature and frequency range by several current three-parameter up to six-parameter dynamic models. This analysis reveals that the crossover temperatures of the idealized mode coupling theory model (TcMCT), the extended free volume model (T0EFV), and the two-order parameter (TOP) model (Tmc) are close to TB1βHN, which provides a consistent physical rationalization for the first change of the shape parameter. In addition, the other two characteristic TOP temperatures T0TOP and TA are coinciding with the thermodynamic Kauzmann temperature TK and the second change of the shape parameter at around TB2βHN, respectively. These can be related to the onset of the liquid-like domains in the glassy state or the disappearance of the solid-like domains in the normal liquid state.

  9. Experimental study of thermal conductivity of pyrolysised materials by means of a flat layer

    NASA Astrophysics Data System (ADS)

    Vaniushkin, V. D.; Popov, S. K.; Sidenkov, D. V.

    2017-11-01

    Recycling of tires is currently a very important task. One of the areas of recycling tires is their low-temperature pyrolysis to produce marketable products - liquid fraction and a solid coke residue. For the development of the pyrolysis installation it is important to know the thermal conductivity of the coke residue at different temperatures of pyrolysis of initial material. As a property of matter, thermal conductivity depends in general on temperature and pressure. For materials with some structure, such as porous materials, the thermal conductivity depends on the characteristics of the structure. The thermal conductivity of the porous coke residue at pyrolysis temperatures of 300 0C, 400 0C, 500 0C and atmospheric pressure was studied experimentally at the laboratory unit of the department of “Theoretical basis of heat engineering” using the method of the flat layer in the temperature range 5…100 0C. Experimentally proved temperature dependencies of the coefficient of thermal conductivity of the coke residue are built to improve the accuracy of calculations of constructive and regime parameters of the pyrolysis installation.

  10. The Influence of Temperature on Time-Dependent Deformation and Failure in Granite: A Mesoscale Modeling Approach

    NASA Astrophysics Data System (ADS)

    Xu, T.; Zhou, G. L.; Heap, Michael J.; Zhu, W. C.; Chen, C. F.; Baud, Patrick

    2017-09-01

    An understanding of the influence of temperature on brittle creep in granite is important for the management and optimization of granitic nuclear waste repositories and geothermal resources. We propose here a two-dimensional, thermo-mechanical numerical model that describes the time-dependent brittle deformation (brittle creep) of low-porosity granite under different constant temperatures and confining pressures. The mesoscale model accounts for material heterogeneity through a stochastic local failure stress field, and local material degradation using an exponential material softening law. Importantly, the model introduces the concept of a mesoscopic renormalization to capture the co-operative interaction between microcracks in the transition from distributed to localized damage. The mesoscale physico-mechanical parameters for the model were first determined using a trial-and-error method (until the modeled output accurately captured mechanical data from constant strain rate experiments on low-porosity granite at three different confining pressures). The thermo-physical parameters required for the model, such as specific heat capacity, coefficient of linear thermal expansion, and thermal conductivity, were then determined from brittle creep experiments performed on the same low-porosity granite at temperatures of 23, 50, and 90 °C. The good agreement between the modeled output and the experimental data, using a unique set of thermo-physico-mechanical parameters, lends confidence to our numerical approach. Using these parameters, we then explore the influence of temperature, differential stress, confining pressure, and sample homogeneity on brittle creep in low-porosity granite. Our simulations show that increases in temperature and differential stress increase the creep strain rate and therefore reduce time-to-failure, while increases in confining pressure and sample homogeneity decrease creep strain rate and increase time-to-failure. We anticipate that the modeling presented herein will assist in the management and optimization of geotechnical engineering projects within granite.

  11. Computational modeling of properties

    NASA Technical Reports Server (NTRS)

    Franz, Judy R.

    1994-01-01

    A simple model was developed to calculate the electronic transport parameters in disordered semiconductors in strong scattered regime. The calculation is based on a Green function solution to Kubo equation for the energy-dependent conductivity. This solution together with a rigorous calculation of the temperature-dependent chemical potential allows the determination of the dc conductivity and the thermopower. For wise-gap semiconductors with single defect bands, these transport properties are investigated as a function of defect concentration, defect energy, Fermi level, and temperature. Under certain conditions the calculated conductivity is quite similar to the measured conductivity in liquid II-VI semiconductors in that two distinct temperature regimes are found. Under different conditions the conductivity is found to decrease with temperature; this result agrees with measurements in amorphous Si. Finally the calculated thermopower can be positive or negative and may change sign with temperature or defect concentration.

  12. Computational modeling of properties

    NASA Technical Reports Server (NTRS)

    Franz, Judy R.

    1994-01-01

    A simple model was developed to calculate the electronic transport parameters in disordered semiconductors in strong scattered regime. The calculation is based on a Green function solution to Kubo equation for the energy-dependent conductivity. This solution together with a rigorous calculation of the temperature-dependent chemical potential allows the determination of the dc conductivity and the thermopower. For wide-gap semiconductors with single defect bands, these transport properties are investigated as a function of defect concentration, defect energy, Fermi level, and temperature. Under certain conditions the calculated conductivity is quite similar to the measured conductivity in liquid 2-6 semiconductors in that two distinct temperature regimes are found. Under different conditions the conductivity is found to decrease with temperature; this result agrees with measurements in amorphous Si. Finally the calculated thermopower can be positive or negative and may change sign with temperature or defect concentration.

  13. Corresponding state-based correlations for the temperature-dependent surface tension of saturated hydrocarbons

    NASA Astrophysics Data System (ADS)

    Tian, Jianxiang; Zhang, Cuihua; Zhang, Laibin; Zheng, Mengmeng; Liu, Shuzhen

    2017-10-01

    Based on the recent progresses on the corresponding state-based correlations for the temperature-dependent surface tension of saturated fluids [I. Cachadiña, A. Mulero and J. X. Tian, Fluid Phase Equilibr. 442 (2017) 68; J. X. Tian, M. M. Zheng, H. L. Yi, L. B. Zhang and S. Z. Liu, Mod. Phys. Lett. B 31 (2017) 1750110], we proposed a new correlation for saturated hydrocarbons. This correlation includes three fluid-independent parameters and inquires the critical temperature, the triple-point temperature and the surface tension at the triple-point temperature as inputs for each hydrocarbon. Results show that this correlation can reproduce NIST data with absolute average deviation (AAD) less than 1% for 10 out of 19 hydrocarbons and AAD less than 5% for 17 out of 19 hydrocarbons, clearly better than other correlations.

  14. Magnetization and transport properties of single RPd2P2 (R=Y, La-Nd, Sm-Ho, Yb)

    NASA Astrophysics Data System (ADS)

    Drachuck, Gil; Boehmer, Anna; Bud'Ko, Sergey L.; Canfield, Paul

    Single crystals of RPd2P2 (R=Y, La-Nd, Sm-Ho, Yb) were grown using a self-flux method and were characterized by room-temperature powder X-ray diffraction, anisotropic temperature and field dependent magnetization and temperature dependent in-plane resistivity. Anisotropic magnetic properties, arising mostly from crystal electric field (CEF) effects, were observed for most magnetic rare earths. The experimentally estimated CEF parameters B02 were calculated from the anisotropic paramagnetic θab and θcvalues. Ordering temperatures, as well as the polycrystalline averaged paramagnetic Curie-Weiss temperature, θave, were extracted from magnetization and resistivity measurements. Work done at Ames Laboratory was supported by US Department of Energy, Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH111358.

  15. A scaling law for the critical current of Nb3Sn stands based on strong-coupling theory of superconductivity

    NASA Astrophysics Data System (ADS)

    Oh, Sangjun; Kim, Keeman

    2006-02-01

    We study the transition temperature Tc, the thermodynamic critical field Bc, and the upper critical field Bc2 of Nb3Sn with Eliashberg theory of strongly coupled superconductors using the Einstein spectrum α2(ω)F(ω)=λ<ω2>1/2δ(ω-<ω2>1/2). The strain dependences of λ(ɛ) and <ω2>1/2(V) are introduced from the empirical strain dependence of Tc(V) for three model cases. It is found that the empirical relation Tc(V)/Tc(0)=[Bc2(4.2 K,V)/Bc2(4.2 K,0)]1/w (w~3) is mainly due to the low-energy-phonon mode softening. We derive analytic expressions for the strain and temperature dependences of Bc(T,V) and Bc2(T,V) and the Ginzburg-Landau parameter κ(T,V) from the numerical calculation results. The Summers refinement on the temperature dependence of κ(T) shows deviation from our calculation results. We propose a unified scaling law of flux pinning in Nb3Sn strands in the form of the Kramer model with the analytic expressions of Bc2(T,V) and κ(T,V) derived in this work. It is shown that the proposed scaling law gives a reasonable fit to the reported data with only eight fitting parameters.

  16. Stepwise formation of H3O(+)(H2O)n in an ion drift tube: Empirical effective temperature of association/dissociation reaction equilibrium in an electric field.

    PubMed

    Nakai, Yoichi; Hidaka, Hiroshi; Watanabe, Naoki; Kojima, Takao M

    2016-06-14

    We measured equilibrium constants for H3O(+)(H2O)n-1 + H2O↔H3O(+)(H2O)n (n = 4-9) reactions taking place in an ion drift tube with various applied electric fields at gas temperatures of 238-330 K. The zero-field reaction equilibrium constants were determined by extrapolation of those obtained at non-zero electric fields. From the zero-field reaction equilibrium constants, the standard enthalpy and entropy changes, ΔHn,n-1 (0) and ΔSn,n-1 (0), of stepwise association for n = 4-8 were derived and were in reasonable agreement with those measured in previous studies. We also examined the electric field dependence of the reaction equilibrium constants at non-zero electric fields for n = 4-8. An effective temperature for the reaction equilibrium constants at non-zero electric field was empirically obtained using a parameter describing the electric field dependence of the reaction equilibrium constants. Furthermore, the size dependence of the parameter was thought to reflect the evolution of the hydrogen-bond structure of H3O(+)(H2O)n with the cluster size. The reflection of structural information in the electric field dependence of the reaction equilibria is particularly noteworthy.

  17. NDSD-1000: High-resolution, high-temperature Nitrogen Dioxide Spectroscopic Databank

    NASA Astrophysics Data System (ADS)

    Lukashevskaya, A. A.; Lavrentieva, N. N.; Dudaryonok, A. C.; Perevalov, V. I.

    2016-11-01

    We present a high-resolution, high-temperature version of the Nitrogen Dioxide Spectroscopic Databank called NDSD-1000. The databank contains the line parameters (positions, intensities, self- and air-broadening coefficients, exponents of the temperature dependence of self- and air-broadening coefficients) of the principal isotopologue of NO2. The reference temperature for line intensity is 296 K and the intensity cutoff is 10-25 cm-1/molecule cm-2 at 1000 K. The broadening parameters are presented for two reference temperatures 296 K and 1000 K. The databank has 1,046,808 entries, covers five spectral regions in the 466-4776 cm-1 spectral range and is designed for temperatures up to 1000 K. The databank is based on the global modeling of the line positions and intensities performed within the framework of the method of effective operators. The parameters of the effective Hamiltonian and the effective dipole moment operator have been fitted to the observed values of the line positions and intensities collected from the literature. The broadening coefficients as well as the temperature exponents are calculated using the semi-empirical approach. The databank is useful for studying high-temperature radiative properties of NO2. NDSD-1000 is freely accessible via the internet site of V.E. Zuev Institute of Atmospheric Optics SB RAS ftp://ftp.iao.ru/pub/NDSD/.

  18. Line mixing calculation in the ν 6Q-branches of N 2-broadened CH 3Br at low temperatures

    NASA Astrophysics Data System (ADS)

    Gomez, L.; Tran, H.; Jacquemart, D.

    2009-07-01

    In an early study [H. Tran, D. Jacquemart, J.Y. Mandin, N. Lacome, JQSRT 109 (2008) 119-131], line mixing effects of the ν 6 band of methyl bromide were observed and modeled at room temperature. In the present work, line mixing effects have been considered at low temperatures using state-to-state collisional rates which were modeled by a fitting law based on the energy gap and a few fitting parameters. To validate the model, several spectra of methyl bromide perturbed by nitrogen have been recorded at various temperatures (205-299 K) and pressures (230-825 hPa). Comparisons between measured spectra and calculations using both direct calculation from relaxation operator and Rosenkranz profile have been performed showing improvement compared to the usual Lorentz profile. Note that the temperature dependence of the spectroscopic parameters has been taken into account using results of previous studies.

  19. A semiempirical model for interpreting microwave emission from semiarid land surfaces as seen from space

    NASA Technical Reports Server (NTRS)

    Kerr, Yann H.; Njoku, Eni G.

    1990-01-01

    A radiative-transfer model for simulating microwave brightness temperatures over land surfaces is described. The model takes into account sensor viewing conditions (spacecraft altitude, viewing angle, frequency, and polarization) and atmospheric parameters over a soil surface characterized by its moisture, roughness, and temperature and covered with a layer of vegetation characterized by its temperature, water content, single scattering albedo, structure, and percent coverage. In order to reduce the influence of atmospheric and surface temperature effects, the brightness temperatures are expressed as polarization ratios that depend primarily on the soil moisture and roughness, canopy water content, and percentage of cover. The sensitivity of the polarization ratio to these parameters is investigated. Simulation of the temporal evolution of the microwave signal over semiarid areas in the African Sahel is presented and compared to actual satellite data from the SMMR instrument on Nimbus-7.

  20. Unconventional superconductivity in CaFe0.85Co0.15AsF evidenced by torque measurements

    NASA Astrophysics Data System (ADS)

    Xiao, Hong; Li, X. J.; Mu, G.; Hu, T.

    Out-of-plane angular dependent torque measurements were performed on CaFe0.85Co0.15AsF single crystals. Abnormal superconducting fluctuation, featured by enhanced diamagnetism with magnetic field, is detected up to about 1.5 times superconducting transition temperature Tc. Compared to cuprate superconductors, the fluctuation effect in iron-based superconductor is less pronounced. Anisotropy parameter γ is obtained from the mixed state torque data and it is found that γ shows both magnetic field and temperature depenence, pointing to multiband superconductivity. The temperature dependence of penetration depth λ (T) suggests unconventional superconductivity in CaFe0.85Co0.15AsF.

  1. CN radical reactions with hydrogen cyanide and cyanogen - Comparison of theory and experiment

    NASA Technical Reports Server (NTRS)

    Yang, D. L.; Yu, T.; Lin, M. C.; Melius, C. F.

    1992-01-01

    The method of laser photolysis/laser-induced fluorescence is used to obtain absolute rate constants for CN radical reactions with HCN and C2N2. The rate constants were found to be temperature-dependent in the range 300-740 K and pressure independent in the range 100-600 Torr. Rice-Remsperger-Kassel-Marcus theory for both reactions employing the transition state parameters obtained by the BAC-MP4 method are made. These calculations yielded reasonable results for the CN + HCN reaction, predicting both the temperature dependence and pressure independence. No pressure effect was observed in the pressure range 100-1000 Torr at temperatures below 900 K, confirming the experimental results.

  2. Temperature-Dependent Adhesion of Graphene Suspended on a Trench

    PubMed Central

    2015-01-01

    Graphene deposited over a trench has been studied in the context of nanomechanical resonators, where experiments indicate adhesion of the graphene sheet to the trench boundary and sidewalls leads to self-tensioning; however, this adhesion is not well understood. We use molecular dynamics to simulate graphene deposited on a trench and study how adhesion to the sidewalls depends on substrate interaction, temperature, and curvature of the edge of the trench. Over the range of parameters we study, the depth at the center of the sheet is approximately linear in substrate interaction strength and temperature but not trench width, and we explain this using a one-dimensional model for the sheet configuration. PMID:26652939

  3. Ion beam deposition of in situ superconducting Y-Ba-Cu-O films

    NASA Astrophysics Data System (ADS)

    Klein, J. D.; Yen, A.; Clauson, S. L.

    1990-01-01

    Oriented superconducting YBa2Cu3O7 thin films were deposited on yttria-stabilized zirconia substrates by ion beam sputtering of a nonstoichiometric oxide target. The films exhibited zero-resistance critical temperatures as high as 80.5 K without post-deposition anneals. Both the deposition rate and the c lattice parameter data displayed two distinct regimes of dependence on the beam power of the ion source. Low-power sputtering yielded films with large c dimensions and low Tc's. Higher power sputtering produced a continuous decrease in the c lattice parameter and an increase in critical temperatures.

  4. Sakiadis flow of Maxwell fluid considering magnetic field and convective boundary conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mustafa, M., E-mail: meraj-mm@hotmail.com; Khan, Junaid Ahmad; Hayat, T.

    2015-02-15

    In this paper we address the flow of Maxwell fluid due to constantly moving flat radiative surface with convective condition. The flow is under the influence of non-uniform transverse magnetic field. The velocity and temperature distributions have been evaluated numerically by shooting approach. The solution depends on various interesting parameters including local Deborah number De, magnetic field parameter M, Prandtl number Pr and Biot number Bi. We found that variation in velocity with an increase in local Deborah number De is non-monotonic. However temperature is a decreasing function of local Deborah number De.

  5. Neutron powder diffraction studies as a function of temperature of structure II hydrate formed from propane

    USGS Publications Warehouse

    Rawn, C.J.; Rondinone, A.J.; Chakoumakos, B.C.; Circone, S.; Stern, L.A.; Kirby, S.H.; Ishii, Y.

    2003-01-01

    Neutron powder diffraction data confirm that hydrate samples synthesized with propane crystallize as structure type II hydrate. The structure has been modeled using rigid-body constraints to describe C3H8 molecules located in the eight larger polyhedral cavities of a deuterated host lattice. Data were collected at 12, 40, 100, 130, 160, 190, 220, and 250 K and used to calculate the thermal expansivity from the temperature dependence of the lattice parameters. The data collected allowed for full structural refinement of atomic coordinates and the atomic-displacement parameters.

  6. Measures of GCM Performance as Functions of Model Parameters Affecting Clouds and Radiation

    NASA Astrophysics Data System (ADS)

    Jackson, C.; Mu, Q.; Sen, M.; Stoffa, P.

    2002-05-01

    This abstract is one of three related presentations at this meeting dealing with several issues surrounding optimal parameter and uncertainty estimation of model predictions of climate. Uncertainty in model predictions of climate depends in part on the uncertainty produced by model approximations or parameterizations of unresolved physics. Evaluating these uncertainties is computationally expensive because one needs to evaluate how arbitrary choices for any given combination of model parameters affects model performance. Because the computational effort grows exponentially with the number of parameters being investigated, it is important to choose parameters carefully. Evaluating whether a parameter is worth investigating depends on two considerations: 1) does reasonable choices of parameter values produce a large range in model response relative to observational uncertainty? and 2) does the model response depend non-linearly on various combinations of model parameters? We have decided to narrow our attention to selecting parameters that affect clouds and radiation, as it is likely that these parameters will dominate uncertainties in model predictions of future climate. We present preliminary results of ~20 to 30 AMIPII style climate model integrations using NCAR's CCM3.10 that show model performance as functions of individual parameters controlling 1) critical relative humidity for cloud formation (RHMIN), and 2) boundary layer critical Richardson number (RICR). We also explore various definitions of model performance that include some or all observational data sources (surface air temperature and pressure, meridional and zonal winds, clouds, long and short-wave cloud forcings, etc...) and evaluate in a few select cases whether the model's response depends non-linearly on the parameter values we have selected.

  7. Evaluation of an automated bridge anti-icing system [poster].

    DOT National Transportation Integrated Search

    2013-01-01

    Bridges and adjacent highways experience different environmental conditions. Depending on bridge : height, wind direction and other parameters, pavements are subject to moisture and quick changes in : temperature. Without the benefit of residual grou...

  8. Generalized Polynomial Chaos Based Uncertainty Quantification for Planning MRgLITT Procedures

    PubMed Central

    Fahrenholtz, S.; Stafford, R. J.; Maier, F.; Hazle, J. D.; Fuentes, D.

    2014-01-01

    Purpose A generalized polynomial chaos (gPC) method is used to incorporate constitutive parameter uncertainties within the Pennes representation of bioheat transfer phenomena. The stochastic temperature predictions of the mathematical model are critically evaluated against MR thermometry data for planning MR-guided Laser Induced Thermal Therapies (MRgLITT). Methods Pennes bioheat transfer model coupled with a diffusion theory approximation of laser tissue interaction was implemented as the underlying deterministic kernel. A probabilistic sensitivity study was used to identify parameters that provide the most variance in temperature output. Confidence intervals of the temperature predictions are compared to MR temperature imaging (MRTI) obtained during phantom and in vivo canine (n=4) MRgLITT experiments. The gPC predictions were quantitatively compared to MRTI data using probabilistic linear and temporal profiles as well as 2-D 60 °C isotherms. Results Within the range of physically meaningful constitutive values relevant to the ablative temperature regime of MRgLITT, the sensitivity study indicated that the optical parameters, particularly the anisotropy factor, created the most variance in the stochastic model's output temperature prediction. Further, within the statistical sense considered, a nonlinear model of the temperature and damage dependent perfusion, absorption, and scattering is captured within the confidence intervals of the linear gPC method. Multivariate stochastic model predictions using parameters with the dominant sensitivities show good agreement with experimental MRTI data. Conclusions Given parameter uncertainties and mathematical modeling approximations of the Pennes bioheat model, the statistical framework demonstrates conservative estimates of the therapeutic heating and has potential for use as a computational prediction tool for thermal therapy planning. PMID:23692295

  9. Electrical transport via variable range hopping in an individual multi-wall carbon nanotube

    NASA Astrophysics Data System (ADS)

    Husain Khan, Zishan; Husain, M.; Perng, T. P.; Salah, Numan; Habib, Sami

    2008-11-01

    E-beam lithography is used to make four leads on an individual multi-wall carbon nanotube for carrying out electrical transport measurements. Temperature dependence of conductance of an individual multi-wall carbon nanotube (MWNT) is studied over a temperature range of (297 4.8 K). The results indicate that the conduction is governed by variable range hopping (VRH) for the entire temperature range (297 4.8 K). This VRH mechanism changes from three dimensions (3D) to two dimensions (2D) as we go down to 70 K. Three-dimensional variable range hopping (3D VRH) is responsible for conduction in the temperature range (297 70 K), which changes to two-dimensional VRH for much lower temperatures (70 4.8 K). For 3D VRH, various Mott parameters such as density of states, hopping distance and hopping energy have been calculated. The 2D VRH mechanism has been applied for the temperature range (70 4.8 K) and, with the help of this model, the parameters such as localization length and hopping distance are calculated. All these parameters give interesting information about this complex structure, which may be useful for many applications.

  10. Temperature Dependence of IP3-Mediated Local and Global Ca2+ Signals

    PubMed Central

    Dickinson, George D.; Parker, Ian

    2013-01-01

    We examined the effect of temperature (12–40°C) on local and global Ca2+ signals mediated by inositol trisphosphate receptor/channels (IP3R) in human neuroblastoma (SH-SY5Y) cells. The amplitudes and spatial spread of local signals arising from single IP3R (blips) and clusters of IP3R (puffs) showed little temperature dependence, whereas their kinetics (durations and latencies) were markedly accelerated by increasing temperature. In contrast, the amplitude of global Ca2+ waves increased appreciably at lower temperatures, probably as a result of the longer duration of IP3R channel opening. Several parameters, including puff and blip durations, puff latency and frequency, and frequency of repetitive Ca2+ waves, showed a biphasic temperature dependence on Arrhenius plots. In all cases the transition temperature occurred at ∼25°C, possibly reflecting a phase transition in the lipids of the endoplasmic reticulum membrane. Although the IP3-evoked Ca2+ signals were qualitatively similar at 25°C and 36°C, one should consider the temperature sensitivity of IP3-mediated signal amplitudes when extrapolating from room temperature to physiological temperature. Conversely, further cooling may be advantageous to improve the optical resolution of channel gating kinetics. PMID:23442860

  11. Temperature dependent dielectric properties of Au/ZnO/n-Si heterojuntion

    NASA Astrophysics Data System (ADS)

    Kocyigit, Adem; Orak, İkram; Turut, Abdulmecit

    2018-03-01

    Owing to importance of ZnO in electronics, Au/ZnO/n-type Si device was fabricated to investigate its dielectric properties by aid of capacitance-conductance-voltage measurements. While the ZnO thin film layer on the n-type Si was formed by atomic layer deposition (ALD) technique, the rectifying and ohmic contacts were obtained by thermal evaporation. The surface morphology of ZnO thin film was characterized using atomic force microscopy (AFM) to show its compatibility as interfacial layer in the Au/ZnO/n-type Si device. The dielectric properties of the device were examined in terms of dielectric parameters such as dielectric constant (ɛ‧), dielectric loss (ɛ″), loss tangent (tan δ), the real and imaginary parts of electric modulus (M ‧ and M ″) and ac electrical conductivity (σ) depending on applied voltages (from -1 to 2 V) and temperatures (from 140 K to 360 K) ranges. The results have revealed that interfacial polarization and charge carriers are the important parameters to affect the dielectric properties of the device with changing temperature. The device can be used at wide range temperatures for diode applications.

  12. Magnetotransport parameters of La0.67Ca0.33MnO3 films grown on neodymium gallate substrates

    NASA Astrophysics Data System (ADS)

    Boikov, Yu. A.; Volkov, M. P.

    2013-01-01

    Weakly mechanically stressed 40-nm-thick La0.67Ca0.33MnO3 films have been grown coherently on a (001)NdGaO3 substrate by laser evaporation. The electrical resistivity ρ of the La0.67Ca0.33MnO3 film reaches a maximum at a temperature T C ≈ 255 K. At temperatures below 0.6 T C, the temperature dependences of ρ are well approximated by the relation ρ = ρdef + C 1 T 2 + C 2 T 4.5, in which the first term on the right-hand side accounts for the contribution of structural defects to electrical resistivity, and the second and third terms stand for those of the electron-electron and electron-magnon interactions, respectively. The parameters ρdef ≈ 1 x 10-4 Ω cm and C 1 ≈ 7.7 × 10-9 Ω cm K-2 do not depend on temperature and magnetic field H. The coefficient C 2 decreases with increasing H to reach about 4.9 × 10-15 Ω cm K-4.5 at μ0 H = 14 T.

  13. Sign reversal of transformation entropy change in Co{sub 2}Cr(Ga,Si) shape memory alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiao, E-mail: xu@material.tohoku.ac.jp; Omori, Toshihiro; Kainuma, Ryosuke

    2015-11-02

    In situ X-ray diffraction (XRD) measurements and compression tests were performed on Co{sub 2}Cr(Ga,Si) shape memory alloys. The reentrant martensitic transformation behavior was directly observed during the in situ XRD measurements. The high-temperature parent phase and low-temperature reentrant parent phase were found to have a continuous temperature dependence of lattice parameter, therefore suggesting that they are the same phase in nature. Moreover, compression tests were performed on a parent-phase single crystal sample; an evolution from normal to inverse temperature dependence of critical stress for martensitic transformation was directly observed. Based on the Clausius-Clapeyron analysis, a sign reversal of entropy changemore » can be expected on the same alloy.« less

  14. Line shape parameters of air-broadened water vapor transitions in the ν 1 and ν 3 spectral region

    DOE PAGES

    Malathy Devi, V.; Gamache, Robert R.; Vispoel, Bastien; ...

    2017-11-26

    A Bruker IFS-120HR Fourier transform spectrometer located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington was used to record a series of spectra of pure H 2O and air-broadened H 2O in the regions of the ν 1 and ν 3 bands (3450–4000 cm -1) at different pressures, temperatures and volume mixing ratios of H 2O in air. Eighteen high-resolution, high signal-to-noise (S/N) ratio absorption spectra were recorded at T = 268, 296 and 353 K using two temperature-controlled absorption cells with path lengths of 9.906(1) and 19.95(1) cm. Furthermore, the resolution of the spectra recorded with themore » 9.906 cm and 19.95 cm absorption cells was 0.006 and 0.008 cm -1, respectively. A multispectrum nonlinear least squares fitting technique was employed to fit all the eighteen spectra simultaneously to retrieve 313 accurate line positions, 315 intensities, 229 Lorentz air-broadened half-width and 213 air-shift coefficients and their temperature dependences (136 for air-broadened width and 128 for air-shift coefficients, respectively). Room temperature self-broadened half-width coefficients for 209 transitions and self-shift coefficients for 106 transitions were also measured. Line mixing coefficients were experimentally determined for isolated sets of 10 transition pairs for H 2O-air and 8 transition pairs for H 2O-H 2O using the off-diagonal relaxation matrix element formalism, and 85 quadratic speed dependence parameters were measured. Modified Complex Robert-Bonamy (MCRB) calculations of self-, and air-broadened (from N 2- and O 2-broadening) half-width and air-shift coefficients, and temperature dependence exponents of air-broadened half-width coefficients are made. Finally, the measurements and calculations are compared with each other and with similar parameters reported in the literature.« less

  15. Line shape parameters of air-broadened water vapor transitions in the ν1 and ν3 spectral region

    NASA Astrophysics Data System (ADS)

    Malathy Devi, V.; Gamache, Robert R.; Vispoel, Bastien; Renaud, Candice L.; Chris Benner, D.; Smith, Mary Ann H.; Blake, Thomas A.; Sams, Robert L.

    2018-06-01

    A Bruker IFS-120HR Fourier transform spectrometer located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington was used to record a series of spectra of pure H2O and air-broadened H2O in the regions of the ν1 and ν3 bands (3450-4000 cm-1) at different pressures, temperatures and volume mixing ratios of H2O in air. Eighteen high-resolution, high signal-to-noise (S/N) ratio absorption spectra were recorded at T = 268, 296 and 353 K using two temperature-controlled absorption cells with path lengths of 9.906(1) and 19.95(1) cm. The resolution of the spectra recorded with the 9.906 cm and 19.95 cm absorption cells was 0.006 and 0.008 cm-1, respectively. A multispectrum nonlinear least squares fitting technique was employed to fit all the eighteen spectra simultaneously to retrieve 313 accurate line positions, 315 intensities, 229 Lorentz air-broadened half-width and 213 air-shift coefficients and their temperature dependences (136 for air-broadened width and 128 for air-shift coefficients, respectively). Room temperature self-broadened half-width coefficients for 209 transitions and self-shift coefficients for 106 transitions were also measured. Line mixing coefficients were experimentally determined for isolated sets of 10 transition pairs for H2O-air and 8 transition pairs for H2O-H2O using the off-diagonal relaxation matrix element formalism, and 85 quadratic speed dependence parameters were measured. Modified Complex Robert-Bonamy (MCRB) calculations of self-, and air-broadened (from N2- and O2-broadening) half-width and air-shift coefficients, and temperature dependence exponents of air-broadened half-width coefficients are made. The measurements and calculations are compared with each other and with similar parameters reported in the literature.

  16. Line shape parameters of air-broadened water vapor transitions in the ν 1 and ν 3 spectral region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malathy Devi, V.; Gamache, Robert R.; Vispoel, Bastien

    A Bruker IFS-120HR Fourier transform spectrometer located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington was used to record a series of spectra of pure H 2O and air-broadened H 2O in the regions of the ν 1 and ν 3 bands (3450–4000 cm -1) at different pressures, temperatures and volume mixing ratios of H 2O in air. Eighteen high-resolution, high signal-to-noise (S/N) ratio absorption spectra were recorded at T = 268, 296 and 353 K using two temperature-controlled absorption cells with path lengths of 9.906(1) and 19.95(1) cm. Furthermore, the resolution of the spectra recorded with themore » 9.906 cm and 19.95 cm absorption cells was 0.006 and 0.008 cm -1, respectively. A multispectrum nonlinear least squares fitting technique was employed to fit all the eighteen spectra simultaneously to retrieve 313 accurate line positions, 315 intensities, 229 Lorentz air-broadened half-width and 213 air-shift coefficients and their temperature dependences (136 for air-broadened width and 128 for air-shift coefficients, respectively). Room temperature self-broadened half-width coefficients for 209 transitions and self-shift coefficients for 106 transitions were also measured. Line mixing coefficients were experimentally determined for isolated sets of 10 transition pairs for H 2O-air and 8 transition pairs for H 2O-H 2O using the off-diagonal relaxation matrix element formalism, and 85 quadratic speed dependence parameters were measured. Modified Complex Robert-Bonamy (MCRB) calculations of self-, and air-broadened (from N 2- and O 2-broadening) half-width and air-shift coefficients, and temperature dependence exponents of air-broadened half-width coefficients are made. Finally, the measurements and calculations are compared with each other and with similar parameters reported in the literature.« less

  17. Urea-temperature phase diagrams capture the thermodynamics of denatured state expansion that accompany protein unfolding.

    PubMed

    Tischer, Alexander; Auton, Matthew

    2013-09-01

    We have analyzed the thermodynamic properties of the von Willebrand factor (VWF) A3 domain using urea-induced unfolding at variable temperature and thermal unfolding at variable urea concentrations to generate a phase diagram that quantitatively describes the equilibrium between native and denatured states. From this analysis, we were able to determine consistent thermodynamic parameters with various spectroscopic and calorimetric methods that define the urea-temperature parameter plane from cold denaturation to heat denaturation. Urea and thermal denaturation are experimentally reversible and independent of the thermal scan rate indicating that all transitions are at equilibrium and the van't Hoff and calorimetric enthalpies obtained from analysis of individual thermal transitions are equivalent demonstrating two-state character. Global analysis of the urea-temperature phase diagram results in a significantly higher enthalpy of unfolding than obtained from analysis of individual thermal transitions and significant cross correlations describing the urea dependence of ΔH0 and ΔCP0 that define a complex temperature dependence of the m-value. Circular dichroism (CD) spectroscopy illustrates a large increase in secondary structure content of the urea-denatured state as temperature increases and a loss of secondary structure in the thermally denatured state upon addition of urea. These structural changes in the denatured ensemble make up ∼40% of the total ellipticity change indicating a highly compact thermally denatured state. The difference between the thermodynamic parameters obtained from phase diagram analysis and those obtained from analysis of individual thermal transitions illustrates that phase diagrams capture both contributions to unfolding and denatured state expansion and by comparison are able to decipher these contributions. © 2013 The Protein Society.

  18. Refrigeration generation using expander-generator units

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Agababov, V. S.; Koryagin, A. V.; Baidakova, Yu. O.

    2016-05-01

    The problems of using the expander-generator unit (EGU) to generate refrigeration, along with electricity were considered. It is shown that, on the level of the temperatures of refrigeration flows using the EGU, one can provide the refrigeration supply of the different consumers: ventilation and air conditioning plants and industrial refrigerators and freezers. The analysis of influence of process parameters on the cooling power of the EGU, which depends on the parameters of the gas expansion process in the expander and temperatures of cooled environment, was carried out. The schematic diagram of refrigeration generation plant based on EGU is presented. The features and advantages of EGU to generate refrigeration compared with thermotransformer of steam compressive and absorption types were shown, namely: there is no need to use the energy generated by burning fuel to operate the EGU; beneficial use of the heat delivered to gas from the flow being cooled in equipment operating on gas; energy production along with refrigeration generation, which makes it possible to create, using EGU, the trigeneration plants without using the energy power equipment. It is shown that the level of the temperatures of refrigeration flows, which can be obtained by using the EGU on existing technological decompression stations of the transported gas, allows providing the refrigeration supply of various consumers. The information that the refrigeration capacity of an expander-generator unit not only depends on the parameters of the process of expansion of gas flowing in the expander (flow rate, temperatures and pressures at the inlet and outlet) but it is also determined by the temperature needed for a consumer and the initial temperature of the flow of the refrigeration-carrier being cooled. The conclusion was made that the expander-generator units can be used to create trigeneration plants both at major power plants and at small energy.

  19. On the penetration of a hot diapir through a strongly temperature-dependent viscosity medium

    NASA Technical Reports Server (NTRS)

    Daly, S. F.; Raefsky, A.

    1985-01-01

    The ascent of a hot spherical body through a fluid with a strongly temperature-dependent viscosity has been studied using an axisymmetric finite element method. Numerical solutions range over Peclet numbers of 0.1 - 1000 from constant viscosity up to viscosity variations of 100,000. Both rigid and stress-free boundary conditions were applied at the surface of the sphere. The dependence of drag on viscosity variation was shown to have no dependence on the stress boundary condition except for a Stokes flow scaling factor. A Nusselt number parameterization based on the stress-free constant viscosity functional dependence on the Peclet number scaled by a parameter depending on the viscosity structure fits both stress-free and rigid boundary condition data above viscosity variations of 100. The temperature scale height was determined as a function of sphere radius. For the simple physical model studied in this paper pre-heating is required to reduce the ambient viscosity of the country rock to less than 10 to the 22nd sq cm/s in order for a 10 km diapir to penetrate a distance of several radii.

  20. Effects of atmospheric composition on apparent activation energy of silicate weathering: I. Model formulation

    NASA Astrophysics Data System (ADS)

    Kanzaki, Yoshiki; Murakami, Takashi

    2018-07-01

    We have developed a weathering model to comprehensively understand the determining factors of the apparent activation energy of silicate weathering in order to better estimate the silicate-weathering flux in the Precambrian. The model formulates the reaction rate of a mineral as a basis, then the elemental loss by summing the reaction rates of whole minerals, and finally the weathering flux from a given weathering profile by integrating the elemental losses along the depth of the profile. The rate expressions are formulated with physicochemical parameters relevant to weathering, including solution and atmospheric compositions. The apparent activation energies of silicate weathering are then represented by the temperature dependences of the physicochemical parameters based on the rate expressions. It was found that the interactions between individual mineral-reactions and the compositions of solution and atmosphere are necessarily accompanied by those of temperature-dependence counterparts. Indeed, the model calculates the apparent activation energy of silicate weathering as a function of the temperature dependence of atmospheric CO2 (Δ HCO2‧) . The dependence of the apparent activation energy of silicate weathering on Δ HCO2‧ may explain the empirical dependence of silicate weathering on the atmospheric composition. We further introduce a compensation law between the apparent activation energy and the pre-exponential factor to obtain the relationship between the silicate-weathering flux (FCO2), temperature and the apparent activation energy. The model calculation and the compensation law enable us to predict FCO2 as a function of temperature, once Δ HCO2‧ is given. The validity of the model is supported by agreements between the model prediction and observations of the apparent activation energy and FCO2 in the modern weathering systems. The present weathering model will be useful for the estimation of FCO2 in the Precambrian, for which Δ HCO2‧ can be deduced from the greenhouse effect of atmospheric CO2.

  1. Use of fugacity model to analyze temperature-dependent removal of micro-contaminants in sewage treatment plants.

    PubMed

    Thompson, Kelly; Zhang, Jianying; Zhang, Chunlong

    2011-08-01

    Effluents from sewage treatment plants (STPs) are known to contain residual micro-contaminants including endocrine disrupting chemicals (EDCs) despite the utilization of various removal processes. Temperature alters the efficacy of removal processes; however, experimental measurements of EDC removal at various temperatures are limited. Extrapolation of EDC behavior over a wide temperature range is possible using available physicochemical property data followed by the correction of temperature dependency. A level II fugacity-based STP model was employed by inputting parameters obtained from the literature and estimated by the US EPA's Estimations Programs Interface (EPI) including EPI's BIOWIN for temperature-dependent biodegradation half-lives. EDC removals in a three-stage activated sludge system were modeled under various temperatures and hydraulic retention times (HRTs) for representative compounds of various properties. Sensitivity analysis indicates that temperature plays a significant role in the model outcomes. Increasing temperature considerably enhances the removal of β-estradiol, ethinyestradiol, bisphenol, phenol, and tetrachloroethylene, but not testosterone with the highest biodegradation rate. The shortcomings of BIOWIN were mitigated by the correction of highly temperature-dependent biodegradation rates using the Arrhenius equation. The model predicts well the effects of operating temperature and HRTs on the removal via volatilization, adsorption, and biodegradation. The model also reveals that an impractically long HRT is needed to achieve a high EDC removal. The STP model along with temperature corrections is able to provide some useful insight into the different patterns of STP performance, and useful operational considerations relevant to EDC removal at winter low temperatures. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Temperature-dependent optical band gap of the metastable zinc-blende structure [beta]-GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramirez-Flores, G.; Navarro-Contreras, H.; Lastras-Martinez, A.

    1994-09-15

    The temperature-dependent (10--300 K) optical band gap [ital E][sub 0]([ital T]) of the epitaxial metastable zinc-blende-structure [beta]-GaN(001)4[times]1 has been determined by modulated photoreflectance and used to interpret low-temperature photoluminescence spectra. [ital E][sub 0] in [beta]-GaN was found to vary from 3.302[plus minus]0.004 eV at 10 K to 3.231[plus minus]0.008 eV at 300 K with a temperature dependence given by [ital E][sub 0]([ital T]) =3.302--6.697[times]10[sup [minus]4][ital T][sup 2]/([ital T]+600) eV. The spin-orbit splitting [Delta][sub 0] in the valence band was determined to be 17[plus minus]1 meV. The oscillations in the photoreflectance spectra were very sharp with a broadening parameter [Gamma] ofmore » only 10 meV at 10 K. The dominant transition observed in temperature-dependent photoluminescence was attributed to radiative recombination between a shallow donor, at [congruent]11 meV below the conduction-band edge and the valence band.« less

  3. Temperature modulates dengue virus epidemic growth rates through its effects on reproduction numbers and generation intervals

    PubMed Central

    Oidtman, Rachel J.; Huber, John H.; Kraemer, Moritz U. G.; Brady, Oliver J.; Johansson, Michael A.; Perkins, T. Alex

    2017-01-01

    Epidemic growth rate, r, provides a more complete description of the potential for epidemics than the more commonly studied basic reproduction number, R0, yet the former has never been described as a function of temperature for dengue virus or other pathogens with temperature-sensitive transmission. The need to understand the drivers of epidemics of these pathogens is acute, with arthropod-borne virus epidemics becoming increasingly problematic. We addressed this need by developing temperature-dependent descriptions of the two components of r—R0 and the generation interval—to obtain a temperature-dependent description of r. Our results show that the generation interval is highly sensitive to temperature, decreasing twofold between 25 and 35°C and suggesting that dengue virus epidemics may accelerate as temperatures increase, not only because of more infections per generation but also because of faster generations. Under the empirical temperature relationships that we considered, we found that r peaked at a temperature threshold that was robust to uncertainty in model parameters that do not depend on temperature. Although the precise value of this temperature threshold could be refined following future studies of empirical temperature relationships, the framework we present for identifying such temperature thresholds offers a new way to classify regions in which dengue virus epidemic intensity could either increase or decrease under future climate change. PMID:28723920

  4. Temperature modulates dengue virus epidemic growth rates through its effects on reproduction numbers and generation intervals.

    NASA Astrophysics Data System (ADS)

    Siraj, A. S.; Oidtman, R. J.; Huber, J. H.; Kraemer, M. U.; Brady, O. J.; Johansson, M. A.; Perkins, T. A.

    2017-12-01

    Epidemic growth rate, r, provides a more complete description of the potential for epidemics than the more commonly studied basic reproduction number, R0, yet the former has never been described as a function of temperature for dengue virus or other pathogens with temperature-sensitive transmission. The need to understand the drivers of epidemics of these pathogens is acute, with arthropod-borne virus epidemics becoming increasingly problematic. We addressed this need by developing temperature-dependent descriptions of the two components of r—R0 and the generation interval—to obtain a temperature-dependent description of r. Our results show that the generation interval is highly sensitive to temperature, decreasing twofold between 25 and 35 °C and suggesting that dengue virus epidemics may accelerate as temperatures increase, not only because of more infections per generation but also because of faster generations. Under the empirical temperature relationships that we considered, we found that r peaked at a temperature threshold that was robust to uncertainty in model parameters that do not depend on temperature. Although the precise value of this temperature threshold could be refined following future studies of empirical temperature relationships, the framework we present for identifying such temperature thresholds offers a new way to classify regions in which dengue virus epidemic intensity could either increase or decrease under future climate change.

  5. Atomistic Modeling of Surface and Bulk Properties of Cu, Pd and the Cu-Pd System

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Garces, Jorge E.; Noebe, Ronald D.; Abel, Phillip; Mosca, Hugo O.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    The BFS (Bozzolo-Ferrante-Smith) method for alloys is applied to the study of the Cu-Pd system. A variety of issues are analyzed and discussed, including the properties of pure Cu or Pd crystals (surface energies, surface relaxations), Pd/Cu and Cu/Pd surface alloys, segregation of Pd (or Cu) in Cu (or Pd), concentration dependence of the lattice parameter of the high temperature fcc CuPd solid solution, the formation and properties of low temperature ordered phases, and order-disorder transition temperatures. Emphasis is made on the ability of the method to describe these properties on the basis of a minimum set of BFS universal parameters that uniquely characterize the Cu-Pd system.

  6. Electrical conductivity of rocks at high pressures and temperatures

    NASA Technical Reports Server (NTRS)

    Parkhomenko, E. I.; Bondarenko, A. T.

    1986-01-01

    The results of studies of the electrical conductivity in the most widely distributed types of igneous rocks, at temperatures of up to 1200 C, at atmospheric pressure, and also at temperatures of up to 700 C and at pressures of up to 20,000 kg/sq cm are described. The figures of electrical conductivity, of activaation energy and of the preexponential coefficient are presented and the dependence of these parameters on the petrochemical parameters of the rocks are reviewed. The possible electrical conductivities for the depository, granite and basalt layers of the Earth's crust and of the upper mantle are presented, as well as the electrical conductivity distribution to the depth of 200 to 240 km for different geological structures.

  7. Temperature-Dependent Characterization, Modeling, and Switching Speed-Limitation Analysis of Third-Generation 10-kV SiC MOSFET

    DOE PAGES

    Ji, Shiqi; Zheng, Sheng; Wang, Fei; ...

    2017-07-06

    The temperature-dependent characteristics of the third-generation 10-kV/20-A SiC MOSFET including the static characteristics and switching performance are carried out in this paper. The steady-state characteristics, including saturation current, output characteristics, antiparallel diode, and parasitic capacitance, are tested. Here, a double pulse test platform is constructed including a circuit breaker and gate drive with >10-kV insulation and also a hotplate under the device under test for temperature-dependent characterization during switching transients. The switching performance is tested under various load currents and gate resistances at a 7-kV dc-link voltage from 25 to 125 C and compared with previous 10-kV MOSFETs. A simplemore » behavioral model with its parameter extraction method is proposed to predict the temperature-dependent characteristics of the 10-kV SiC MOSFET. The switching speed limitations, including the reverse recovery of SiC MOSFET's body diode, overvoltage caused by stray inductance, crosstalk, heat sink, and electromagnetic interference to the control are discussed based on simulations and experimental results.« less

  8. Boundaries of the critical state stability in a hard superconductor Nb3Al in the H-T plane

    NASA Astrophysics Data System (ADS)

    Chabanenko, V. V.; Vasiliev, S. V.; Nabiałek, A.; Shishmakov, A. S.; Pérez-Rodríguez, F.; Rusakov, V. F.; Szewczyk, A.; Kodess, B. N.; Gutowska, M.; Wieckowski, J.; Szymczak, H.

    2013-04-01

    The instability of the critical state in a type-II superconductor Nb3Al is studied for the first time for simultaneous consideration of real dependences of thermal and conductive properties of the material on temperature T and magnetic field He. To do this the dependences of specific heat C(T,Hе), magnetization M(T,He) and magnetostriction ΔL(T,He) of the superconductor were investigated experimentally in a strong magnetic field (up to 12 T). The gap width, the coefficient of the linear term, which determines the electronic contribution to the specific heat, the Debye temperature, and other parameters were found using experimental data on the heat capacity in a wide range of temperatures and magnetic fields Hc1 ≤ He ≤ Hc2. From experimental studies of magnetization the dependences of the critical current of the superconductor, Jc(T,He), were reconstructed. The hysteresis loops of magnetization and magnetostriction were calculated using experimental data for temperature and field dependences of the thermal and conductive properties.

  9. Temperature dependence of the interband critical points of bulk Ge and strained Ge on Si

    NASA Astrophysics Data System (ADS)

    Fernando, Nalin S.; Nunley, T. Nathan; Ghosh, Ayana; Nelson, Cayla M.; Cooke, Jacqueline A.; Medina, Amber A.; Zollner, Stefan; Xu, Chi; Menendez, Jose; Kouvetakis, John

    2017-11-01

    Epitaxial Ge layers on a Si substrate experience a tensile biaxial stress due to the difference between the thermal expansion coefficients of the Ge epilayer and the Si substrate, which can be measured using asymmetric X-ray diffraction reciprocal space maps. This stress depends on temperature and affects the band structure, interband critical points, and optical spectra. This manuscripts reports careful measurements of the temperature dependence of the dielectric function and the interband critical point parameters of bulk Ge and Ge epilayers on Si using spectroscopic ellipsometry from 80 to 780 K and from 0.8 to 6.5 eV. The authors find a temperature-dependent redshift of the E1 and E1 + Δ1 critical points in Ge on Si (relative to bulk Ge). This redshift can be described well with a model based on thermal expansion coefficients, continuum elasticity theory, and the deformation potential theory for interband transitions. The interband transitions leading to E0‧ and E2 critical points have lower symmetry and therefore are not affected by the stress.

  10. Temperature-Dependent Characterization, Modeling, and Switching Speed-Limitation Analysis of Third-Generation 10-kV SiC MOSFET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Shiqi; Zheng, Sheng; Wang, Fei

    The temperature-dependent characteristics of the third-generation 10-kV/20-A SiC MOSFET including the static characteristics and switching performance are carried out in this paper. The steady-state characteristics, including saturation current, output characteristics, antiparallel diode, and parasitic capacitance, are tested. Here, a double pulse test platform is constructed including a circuit breaker and gate drive with >10-kV insulation and also a hotplate under the device under test for temperature-dependent characterization during switching transients. The switching performance is tested under various load currents and gate resistances at a 7-kV dc-link voltage from 25 to 125 C and compared with previous 10-kV MOSFETs. A simplemore » behavioral model with its parameter extraction method is proposed to predict the temperature-dependent characteristics of the 10-kV SiC MOSFET. The switching speed limitations, including the reverse recovery of SiC MOSFET's body diode, overvoltage caused by stray inductance, crosstalk, heat sink, and electromagnetic interference to the control are discussed based on simulations and experimental results.« less

  11. Temperature dependence of internal friction in enzyme reactions.

    PubMed

    Rauscher, Anna Á; Simon, Zoltán; Szöllosi, Gergely J; Gráf, László; Derényi, Imre; Malnasi-Csizmadia, Andras

    2011-08-01

    Our aim was to elucidate the physical background of internal friction of enzyme reactions by investigating the temperature dependence of internal viscosity. By rapid transient kinetic methods, we directly measured the rate constant of trypsin 4 activation, which is an interdomain conformational rearrangement, as a function of temperature and solvent viscosity. We found that the apparent internal viscosity shows an Arrhenius-like temperature dependence, which can be characterized by the activation energy of internal friction. Glycine and alanine mutations were introduced at a single position of the hinge of the interdomain region to evaluate how the flexibility of the hinge affects internal friction. We found that the apparent activation energies of the conformational change and the internal friction are interconvertible parameters depending on the protein flexibility. The more flexible a protein was, the greater proportion of the total activation energy of the reaction was observed as the apparent activation energy of internal friction. Based on the coupling of the internal and external movements of the protein during its conformational change, we constructed a model that quantitatively relates activation energy, internal friction, and protein flexibility.

  12. Nonlinear radiative peristaltic flow of hydromagnetic fluid through porous medium

    NASA Astrophysics Data System (ADS)

    Hussain, Q.; Latif, T.; Alvi, N.; Asghar, S.

    2018-06-01

    The radiative heat and mass transfer in wall induced flow of hydromagnetic fluid through porous medium in an asymmetric channel is analyzed. The fluid viscosity is considered temperature dependent. In the theory of peristalsis, the radiation effects are either ignored or taken as linear approximation of radiative heat flux. Such approximation is only possible when there is sufficiently small temperature differences in the flow field; however, nonlinear radiation effects are valid for large temperature differences as well (the new feature added in the present study). Mathematical modeling of the problems include the complicated system of highly nonlinear differential equations. Semi-analytical solutions are established in the wave reference frame. Results are displayed graphically and discussed in detail for the variation of various physical parameters with the special attention to viscosity, radiation, and temperature ratio parameters.

  13. Influence of structural parameters on the tendency of VVER-1000 reactor pressure vessel steel to temper embrittlement

    NASA Astrophysics Data System (ADS)

    Gurovich, B.; Kuleshova, E.; Zabusov, O.; Fedotova, S.; Frolov, A.; Saltykov, M.; Maltsev, D.

    2013-04-01

    In this paper the influence of structural parameters on the tendency of steels to reversible temper embrittlement was studied for assessment of performance properties of reactor pressure vessel steels with extended service life. It is shown that the growth of prior austenite grain size leads to an increase of the critical embrittlement temperature in the initial state. An embrittlement heat treatment at the temperature of maximum manifestation of temper embrittlement (480 °C) shifts critical embrittlement temperature to higher values due to the increase of the phosphorus concentration on grain boundaries. There is a correlation between phosphorus concentration on boundaries of primary austenite grains and the share of brittle intergranular fracture (that, in turn, depends on impact test temperature) in the fracture surfaces of the tested Charpy specimens.

  14. Use of an approximate similarity principle for the thermal scaling of a full-scale thrust augmenting ejector

    NASA Technical Reports Server (NTRS)

    Barankiewicz, Wendy S.; Perusek, Gail P.; Ibrahim, Mounir B.

    1992-01-01

    Full temperature ejector model simulations are expensive, and difficult to implement experimentally. If an approximate similarity principle could be established, properly chosen performance parameters should be similar for both hot and cold flow tests if the initial Mach number and total pressures of the flow field are held constant. Existing ejector data is used to explore the utility of one particular similarity principle; the Munk and Prim similarity principle for isentropic flows. Static performance test data for a full-scale thrust augmenting ejector are analyzed for primary flow temperatures up to 1560 R. At different primary temperatures, exit pressure contours are compared for similarity. A nondimensional flow parameter is then used to eliminate primary nozzle temperature dependence and verify similarity between the hot and cold flow experiments.

  15. Methods and apparatus for cooling electronics

    DOEpatents

    Hall, Shawn Anthony; Kopcsay, Gerard Vincent

    2014-12-02

    Methods and apparatus are provided for choosing an energy-efficient coolant temperature for electronics by considering the temperature dependence of the electronics' power dissipation. This dependence is explicitly considered in selecting the coolant temperature T.sub.0 that is sent to the equipment. To minimize power consumption P.sub.Total for the entire system, where P.sub.Total=P.sub.0+P.sub.Cool is the sum of the electronic equipment's power consumption P.sub.0 plus the cooling equipment's power consumption P.sub.Cool, P.sub.Total is obtained experimentally, by measuring P.sub.0 and P.sub.Cool, as a function of three parameters: coolant temperature T.sub.0; weather-related temperature T.sub.3 that affects the performance of free-cooling equipment; and computational state C of the electronic equipment, which affects the temperature dependence of its power consumption. This experiment provides, for each possible combination of T.sub.3 and C, the value T.sub.0* of T.sub.0 that minimizes P.sub.Total. During operation, for any combination of T.sub.3 and C that occurs, the corresponding optimal coolant temperature T.sub.0* is selected, and the cooling equipment is commanded to produce it.

  16. Growth and development rates have different thermal responses.

    PubMed

    Forster, Jack; Hirst, Andrew G; Woodward, Guy

    2011-11-01

    Growth and development rates are fundamental to all living organisms. In a warming world, it is important to determine how these rates will respond to increasing temperatures. It is often assumed that the thermal responses of physiological rates are coupled to metabolic rate and thus have the same temperature dependence. However, the existence of the temperature-size rule suggests that intraspecific growth and development are decoupled. Decoupling of these rates would have important consequences for individual species and ecosystems, yet this has not been tested systematically across a range of species. We conducted an analysis on growth and development rate data compiled from the literature for a well-studied group, marine pelagic copepods, and use an information-theoretic approach to test which equations best describe these rates. Growth and development rates were best characterized by models with significantly different parameters: development has stronger temperature dependence than does growth across all life stages. As such, it is incorrect to assume that these rates have the same temperature dependence. We used the best-fit models for these rates to predict changes in organism mass in response to temperature. These predictions follow a concave relationship, which complicates attempts to model the impacts of increasing global temperatures on species body size.

  17. Effect of Process Parameters on Catalytic Incineration of Solvent Emissions

    PubMed Central

    Ojala, Satu; Lassi, Ulla; Perämäki, Paavo; Keiski, Riitta L.

    2008-01-01

    Catalytic oxidation is a feasible and affordable technology for solvent emission abatement. However, finding optimal operation conditions is important, since they are strongly dependent on the application area of VOC incineration. This paper presents the results of the laboratory experiments concerning four most central parameters, that is, effects of concentration, gas hourly space velocity (GHSV), temperature, and moisture on the oxidation of n-butyl acetate. Both fresh and industrially aged commercial Pt/Al2O3 catalysts were tested to determine optimal process conditions and the significance order and level of selected parameters. The effects of these parameters were evaluated by computer-aided statistical experimental design. According to the results, GHSV was the most dominant parameter in the oxidation of n-butyl acetate. Decreasing GHSV and increasing temperature increased the conversion of n-butyl acetate. The interaction effect of GHSV and temperature was more significant than the effect of concentration. Both of these affected the reaction by increasing the conversion of n-butyl acetate. Moisture had only a minor decreasing effect on the conversion, but it also decreased slightly the formation of by products. Ageing did not change the significance order of the above-mentioned parameters, however, the effects of individual parameters increased slightly as a function of ageing. PMID:18584032

  18. Temperature dependence of quantized states in an InGaAs/GaAs strained asymmetric triangular quantum well

    NASA Astrophysics Data System (ADS)

    Chi, W. S.; Lin, D. Y.; Huang, Y. S.; Qiang, H.; Pollak, F. H.; Mathine, D. L.; Maracas, G. N.

    1996-03-01

    Photoreflectance (PR), contactless electroreflectance (CER) and piezoreflectance (PzR) measurements of an InGaAs/GaAs strained asymmetric triangular quantum well (ATQW) heterostructure as a function of temperature in the range of 20 to 300 K have been carried out. The structure was fabricated by molecular beam epitaxy using the digital alloy compositional grading method. A careful analysis of the PR, CER and PzR spectra has led to the identification of various excitonic transitions, mnH(L), between the mth conduction band state to the nth heavy(light)-hole band state. Comparison of the observed intersubband transitions with a theoretical calculation based on the envelope function model, including the effects of strain, provide a self-consistent check of the ATQW composition profile. The detailed study of the temperature dependence of the excitonic transition energies indicates that the potential profile of the ATQW varies at different temperatures. The parameters that describe the temperature dependence of 0268-1242/11/3/012/img8 are evaluated. The anomalous behaviour of the temperature dependence of the linewidth of 11H, 0268-1242/11/3/012/img9, is compared with recent results for GaAs/AlGaAs and InGaAs/GaAs symmetric rectangular quantum wells of comparable dimensions.

  19. A study of temperature-related non-linearity at the metal-silicon interface

    NASA Astrophysics Data System (ADS)

    Gammon, P. M.; Donchev, E.; Pérez-Tomás, A.; Shah, V. A.; Pang, J. S.; Petrov, P. K.; Jennings, M. R.; Fisher, C. A.; Mawby, P. A.; Leadley, D. R.; McN. Alford, N.

    2012-12-01

    In this paper, we investigate the temperature dependencies of metal-semiconductor interfaces in an effort to better reproduce the current-voltage-temperature (IVT) characteristics of any Schottky diode, regardless of homogeneity. Four silicon Schottky diodes were fabricated for this work, each displaying different degrees of inhomogeneity; a relatively homogeneous NiV/Si diode, a Ti/Si and Cr/Si diode with double bumps at only the lowest temperatures, and a Nb/Si diode displaying extensive non-linearity. The 77-300 K IVT responses are modelled using a semi-automated implementation of Tung's electron transport model, and each of the diodes are well reproduced. However, in achieving this, it is revealed that each of the three key fitting parameters within the model display a significant temperature dependency. In analysing these dependencies, we reveal how a rise in thermal energy "activates" exponentially more interfacial patches, the activation rate being dependent on the carrier concentration at the patch saddle point (the patch's maximum barrier height), which in turn is linked to the relative homogeneity of each diode. Finally, in a review of Tung's model, problems in the divergence of the current paths at low temperature are explained to be inherent due to the simplification of an interface that will contain competing defects and inhomogeneities.

  20. Phase transition studied by 7Li nuclear magnetic resonance in LiXSO4 (X = K, Rb, Cs and NH4) single crystals

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran; Choh, Sung Ho; Jeong, Se-Young

    2000-11-01

    The temperature dependences of 7Li nuclear magnetic resonance in LiXSO4 (X = K, Rb, Cs, and NH4) single crystals grown by the slow evaporation method have been investigated by employing a Bruker FT NMR spectrometer. From the experimental data, the nuclear quadrupole constant, the asymmetry parameter and the principal axes of the EFG tensor were determined, and the results were compared with the crystal structure. The temperature dependences of the quadrupole parameters were explained with a single torsional mode of the Li-O bond by the Bayer theory. All the LiO4 tetrahedra in four different crystals showed torsional motion about the X-axis of the EFG tensor. Based on these results, the differences in atomic weight of X in the LiXSO4 single crystals are responsible for the differences in the torsional angular frequencies.

  1. Modeling and characterization of double resonant tunneling diodes for application as energy selective contacts in hot carrier solar cells

    NASA Astrophysics Data System (ADS)

    Jehl, Zacharie; Suchet, Daniel; Julian, Anatole; Bernard, Cyril; Miyashita, Naoya; Gibelli, Francois; Okada, Yoshitaka; Guillemolles, Jean-Francois

    2017-02-01

    Double resonant tunneling barriers are considered for an application as energy selective contacts in hot carrier solar cells. Experimental symmetric and asymmetric double resonant tunneling barriers are realized by molecular beam epitaxy and characterized by temperature dependent current-voltage measurements. The negative differential resistance signal is enhanced for asymmetric heterostructures, and remains unchanged between low- and room-temperatures. Within Tsu-Esaki description of the tunnel current, this observation can be explained by the voltage dependence of the tunnel transmission amplitude, which presents a resonance under finite bias for asymmetric structures. This effect is notably discussed with respect to series resistance. Different parameters related to the electronic transmission of the structure and the influence of these parameters on the current voltage characteristic are investigated, bringing insights on critical processes to optimize in double resonant tunneling barriers applied to hot carrier solar cells.

  2. Stress influenced trapping processes in Si based multi-quantum well structures and heavy ions implanted Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciurea, Magdalena Lidia, E-mail: ciurea@infim.ro; Lazanu, Sorina, E-mail: ciurea@infim.ro

    2014-10-06

    Multi-quantum well structures and Si wafers implanted with heavy iodine and bismuth ions are studied in order to evaluate the influence of stress on the parameters of trapping centers. The experimental method of thermostimullatedcurrents without applied bias is used, and the trapping centers are filled by illumination. By modeling the discharge curves, we found in multilayered structures the parameters of both 'normal' traps and 'stress-induced' ones, the last having a Gaussian-shaped temperature dependence of the cross section. The stress field due to the presence of stopped heavy ions implanted into Si was modeled by a permanent electric field. The increasemore » of the strain from the neighborhood of I ions to the neighborhood of Bi ions produces the broadening of some energy levels and also a temperature dependence of the cross sections for all levels.« less

  3. Stress influenced trapping processes in Si based multi-quantum well structures and heavy ions implanted Si

    NASA Astrophysics Data System (ADS)

    Ciurea, Magdalena Lidia; Lazanu, Sorina

    2014-10-01

    Multi-quantum well structures and Si wafers implanted with heavy iodine and bismuth ions are studied in order to evaluate the influence of stress on the parameters of trapping centers. The experimental method of thermostimullatedcurrents without applied bias is used, and the trapping centers are filled by illumination. By modeling the discharge curves, we found in multilayered structures the parameters of both 'normal' traps and 'stress-induced' ones, the last having a Gaussian-shaped temperature dependence of the cross section. The stress field due to the presence of stopped heavy ions implanted into Si was modeled by a permanent electric field. The increase of the strain from the neighborhood of I ions to the neighborhood of Bi ions produces the broadening of some energy levels and also a temperature dependence of the cross sections for all levels.

  4. The nearest neighbor and next nearest neighbor effects on the thermodynamic and kinetic properties of RNA base pair

    NASA Astrophysics Data System (ADS)

    Wang, Yujie; Wang, Zhen; Wang, Yanli; Liu, Taigang; Zhang, Wenbing

    2018-01-01

    The thermodynamic and kinetic parameters of an RNA base pair with different nearest and next nearest neighbors were obtained through long-time molecular dynamics simulation of the opening-closing switch process of the base pair near its melting temperature. The results indicate that thermodynamic parameters of GC base pair are dependent on the nearest neighbor base pair, and the next nearest neighbor base pair has little effect, which validated the nearest-neighbor model. The closing and opening rates of the GC base pair also showed nearest neighbor dependences. At certain temperature, the closing and opening rates of the GC pair with nearest neighbor AU is larger than that with the nearest neighbor GC, and the next nearest neighbor plays little role. The free energy landscape of the GC base pair with the nearest neighbor GC is rougher than that with nearest neighbor AU.

  5. Determining the spin dependent mean free path in Co90Fe10 using giant magnetoresistance

    NASA Astrophysics Data System (ADS)

    Shakespear, K. F.; Perdue, K. L.; Moyerman, S. M.; Checkelsky, J. G.; Harberger, S. S.; Tamboli, A. C.; Carey, M. J.; Sparks, P. D.; Eckert, J. C.

    2005-05-01

    The spin dependent mean free path in Co90Fe10 is determined as a function of temperature down to 5K using two different spin valve structures. At 5K the spin dependent mean free path for one structure was measured to be 9.4±1.4nm, decreasing by a factor of 3 by 350K. For the other structure, it is 7.5±0.5nm at 5K and decreased by a factor of 1.5 by 350K. In both cases, the spin dependent mean free path approaches the typical thickness of ferromagnetic layers in spin valves at room temperature and, thus, has an impact on the choice of design parameters for the development of new spintronic devices.

  6. The solution of private problems for optimization heat exchangers parameters

    NASA Astrophysics Data System (ADS)

    Melekhin, A.

    2017-11-01

    The relevance of the topic due to the decision of problems of the economy of resources in heating systems of buildings. To solve this problem we have developed an integrated method of research which allows solving tasks on optimization of parameters of heat exchangers. This method decides multicriteria optimization problem with the program nonlinear optimization on the basis of software with the introduction of an array of temperatures obtained using thermography. The author have developed a mathematical model of process of heat exchange in heat exchange surfaces of apparatuses with the solution of multicriteria optimization problem and check its adequacy to the experimental stand in the visualization of thermal fields, an optimal range of managed parameters influencing the process of heat exchange with minimal metal consumption and the maximum heat output fin heat exchanger, the regularities of heat exchange process with getting generalizing dependencies distribution of temperature on the heat-release surface of the heat exchanger vehicles, defined convergence of the results of research in the calculation on the basis of theoretical dependencies and solving mathematical model.

  7. Incoherent scatter radar observations of the ionosphere

    NASA Technical Reports Server (NTRS)

    Hagfors, Tor

    1989-01-01

    Incoherent scatter radar (ISR) has become the most powerful means of studying the ionosphere from the ground. Many of the ideas and methods underlying the troposphere and stratosphere (ST) radars have been taken over from ISR. Whereas the theory of refractive index fluctuations in the lower atmosphere, depending as it does on turbulence, is poorly understood, the theory of the refractivity fluctuations in the ionosphere, which depend on thermal fluctuations, is known in great detail. The underlying theory is one of the most successful theories in plasma physics, and allows for many detailed investigations of a number of parameters such as electron density, electron temperature, ion temperature, electron mean velocity, and ion mean velocity as well as parameters pertaining to composition, neutral density and others. Here, the author reviews the fundamental processes involved in the scattering from a plasma undergoing thermal or near thermal fluctuations in density. The fundamental scattering properties of the plasma to the physical parameters characterizing them from first principles. He does not discuss the observation process itself, as the observational principles are quite similar whether they are applied to a neutral gas or a fluctuating plasma.

  8. Dynamics and structure of hydrogen-bonding glass formers: Comparison between hexanetriol and sugar alcohols based on dielectric relaxation

    NASA Astrophysics Data System (ADS)

    Nakanishi, Masahiro; Nozaki, Ryusuke

    2010-04-01

    Broadband dielectric spectra of supercooled 1,2,6-hexanetriol are presented in order to reveal physical picture behind a glass transition of polyhydric alcohols. It has been reported so far that temperature dependences of α relaxation time for sugar alcohols exhibit systematic trend against number of carbon atoms or OH groups per molecule. However, because each molecule is composed of equal number of carbon atoms and OH groups in the case of the reported sugar alcohols, the more dominant parameter to govern the α relaxation dynamics has not been discussed. By using a chemical structure of the hexanetriol composed of the deferent number of carbon and OH, it is possible to determine the dominant parameter. From temperature dependence of α relaxation times, it is strongly supported that the number of OH groups is the dominant parameter. Furthermore, from an analysis of static dielectric constant, it is suggested that local hydrogen-bonding structure is similar among all polyhydric alcohols. From these two results, a simple picture of the origin of the systematic character is proposed.

  9. Dynamics and structure of hydrogen-bonding glass formers: comparison between hexanetriol and sugar alcohols based on dielectric relaxation.

    PubMed

    Nakanishi, Masahiro; Nozaki, Ryusuke

    2010-04-01

    Broadband dielectric spectra of supercooled 1,2,6-hexanetriol are presented in order to reveal physical picture behind a glass transition of polyhydric alcohols. It has been reported so far that temperature dependences of alpha relaxation time for sugar alcohols exhibit systematic trend against number of carbon atoms or OH groups per molecule. However, because each molecule is composed of equal number of carbon atoms and OH groups in the case of the reported sugar alcohols, the more dominant parameter to govern the alpha relaxation dynamics has not been discussed. By using a chemical structure of the hexanetriol composed of the deferent number of carbon and OH, it is possible to determine the dominant parameter. From temperature dependence of alpha relaxation times, it is strongly supported that the number of OH groups is the dominant parameter. Furthermore, from an analysis of static dielectric constant, it is suggested that local hydrogen-bonding structure is similar among all polyhydric alcohols. From these two results, a simple picture of the origin of the systematic character is proposed.

  10. Equations for O2 and CO2 solubilities in saline and plasma: combining temperature and density dependences.

    PubMed

    Christmas, Kevin M; Bassingthwaighte, James B

    2017-05-01

    Solubilities of respiratory gasses in water, saline, and plasma decrease with rising temperatures and solute concentrations. Henry's Law, C = α·P, states that the equilibrium concentration of a dissolved gas is solubility times partial pressure. Solubilities in the water of a solution depend on temperature and the content of other solutes. Blood temperatures may differ more than 20°C between skin and heart, and an erythrocyte will undergo that range as blood circulates. The concentrations of O 2 and CO 2 are the driving forces for diffusion, exchanges, and for reactions. We provide an equation for O 2 and CO 2 solubilities, α, that allows for continuous changes in temperature, T, and solution density, ρ, in dynamically changing states:[Formula: see text]This two-exponential expression with a density scalar γ, and a density exponent β, accounts for solubility changes due to density changes of an aqueous solution. It fits experimental data on solubilities in water, saline, and plasma over temperatures from 20 to 40°C, and for plasma densities, ρ sol up to 1.020 g/ml with ~0.3% error. The amounts of additional bound O 2 (to Hb) and CO 2 (bicarbonate and carbamino) depend on the concentrations in the local water space and the reaction parameters. During exercise, solubility changes are large; both ρ sol and T change rapidly with spatial position and with time. In exercise hemoconcentration plasma, ρ sol exceeds 1.02, whereas T may range over 20°C. The six parameters for O 2 and the six for CO 2 are constants, so solubilities are calculable continuously as T and ρ sol change. NEW & NOTEWORTHY Solubilities for oxygen and carbon dioxide are dependent on the density of the solution, on temperature, and on the partial pressure. We provide a brief equation suitable for hand calculators or mathematical modeling, accounting for these factors over a wide range of temperatures and solution densities for use in rapidly changing conditions, such as extreme exercise or osmotic transients, with better than 0.5% accuracy. Copyright © 2017 the American Physiological Society.

  11. A Gaussian wave packet phase-space representation of quantum canonical statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coughtrie, David J.; Tew, David P.

    2015-07-28

    We present a mapping of quantum canonical statistical averages onto a phase-space average over thawed Gaussian wave-packet (GWP) parameters, which is exact for harmonic systems at all temperatures. The mapping invokes an effective potential surface, experienced by the wave packets, and a temperature-dependent phase-space integrand, to correctly transition from the GWP average at low temperature to classical statistics at high temperature. Numerical tests on weakly and strongly anharmonic model systems demonstrate that thermal averages of the system energy and geometric properties are accurate to within 1% of the exact quantum values at all temperatures.

  12. Method And Apparatus For Evaluatin Of High Temperature Superconductors

    DOEpatents

    Fishman, Ilya M.; Kino, Gordon S.

    1996-11-12

    A technique for evaluation of high-T.sub.c superconducting films and single crystals is based on measurement of temperature dependence of differential optical reflectivity of high-T.sub.c materials. In the claimed method, specific parameters of the superconducting transition such as the critical temperature, anisotropy of the differential optical reflectivity response, and the part of the optical losses related to sample quality are measured. The apparatus for performing this technique includes pump and probe sources, cooling means for sweeping sample temperature across the critical temperature and polarization controller for controlling a state of polarization of a probe light beam.

  13. Anisotropic nanocrystalline MnBi with high coercivity at high temperature

    NASA Astrophysics Data System (ADS)

    Yang, J. B.; Yang, Y. B.; Chen, X. G.; Ma, X. B.; Han, J. Z.; Yang, Y. C.; Guo, S.; Yan, A. R.; Huang, Q. Z.; Wu, M. M.; Chen, D. F.

    2011-08-01

    Magnetic hard nanocrystalline MnBi has been prepared by melt spinning and subsequent low temperature annealing. A coercivity of 2.5 T can be achieved at 540 K for MnBi with an average grain size of about 20-30 nm. The coercivity iHc, mainly controlled by the coherent magnetization rotation, shows a strong dependence on the time of grinding and exhibits a positive temperature coefficient from 100 up to 540 K. The unique temperature dependent behavior of the coercivity (magnetocrystalline anisotropy) has a relationship with the variations in the crystal lattice ratio of c/a with temperatures. In addition, discontinuity can not be found in the lattice parameters of a, c, and c/a ratio at the magnetostructural transition temperature. The nanocrystalline MnBi powder fixed in an epoxy resin and under an applied magnetic field of 24 kOe shows a maximum energy product of 7.1 MGOe at room temperature and shows anisotropic characteristics with high Mr/Ms ratio up to 560 K.

  14. Evaluation of the Thermosensitive Release Properties of Microspheres Containing an Agrochemical Compound.

    PubMed

    Terada, Takatoshi; Ohtsubo, Toshiro; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2017-01-01

    The purpose of this study was to develop a deeper understanding of the key physicochemical parameters involved in the release profiles of microsphere-encapsulated agrochemicals at different temperatures. Microspheres consisting of different polyurethanes (PUs) were prepared using our previously reported solventless microencapsulation technique. Notably, these microspheres exhibited considerable differences in their thermodynamic characteristics, including their glass transition temperature (T g ), extrapolated onset temperature (T o ) and extrapolated end temperature (T e ). At test temperatures below the T o of the PU, only 5-10% of the agrochemical was rapidly released from the microspheres within 1 d, and none was released thereafter. However, at test temperatures above the T o of the PU, the rate of agrochemical release gradually increased with increasing temperatures, and the rate of release from the microspheres was dependent on the composition of the PU. Taken together, these results show that the release profiles of the microspheres were dependent on their thermodynamic characteristics and changes in their PU composition.

  15. Cryogenic temperature dependence of the voltage transfer characteristics of CMOS inverters

    NASA Astrophysics Data System (ADS)

    Deen, M. J.

    1988-08-01

    The voltage transfer characteristics of CMOS inverters have been studied in detail as a function of temperature between 77 and 300 K and supply voltages between 2 and 20 V. The logic levels, maximum gain, unity gain points, noise margins and other parameters, such as ( VH - VL), all showed a marked improvement as the temperature was lowered. In particular, for one inverter with a supply of 5 V, the maximum gain increased from 57 to 105, ( VIH - VIL) decreased from 0.50 to 0.28 V and ( VH - VL) increased from 4.46 to 4.75 V on decreasing the temperature from 300 to 77 K. For all the inverters, these and other parameters showed a smooth monotonic improvement as the temperature was lowered. These and the other results obtained can be qualitatively explained as due to an increase in the absolute values in the threshold voltages of the PMOS and NMOS transistors and to an increase in the carrier mobility as the temperature was lowered.

  16. Stark shift of impurity doped quantum dots: Role of noise

    NASA Astrophysics Data System (ADS)

    Arif, Sk. Md.; Bera, Aindrila; Ghosh, Anuja; Ghosh, Manas

    2018-02-01

    Present study makes a punctilious investigation of the profiles of Stark shift (SS) of doped GaAs quantum dot (QD) under the supervision of Gaussian white noise. A few physical parameters have been varied and the consequent variations in the SS profiles have been monitored. The said physical parameters comprise of magnetic field, confinement potential, dopant location, dopant potential, noise strength, aluminium concentration (only for AlxGa1-x As alloy QD), position-dependent effective mass (PDEM), position-dependent dielectric screening function (PDDSF), anisotropy, hydrostatic pressure (HP) and temperature. The SS profiles unfurl interesting features that heavily depend upon the particular physical quantity concerned, presence/absence of noise and the manner (additive/multiplicative) noise enters the system. The study highlights feasible means of maximizing SS of doped QD in presence of noise by suitable adjustment of several control parameters. The study deems importance in view of technological applications of QD devices where noise plays some prominent role.

  17. Self-assembled patches in PtSi/n-Si (111) diodes

    NASA Astrophysics Data System (ADS)

    Afandiyeva, I. M.; Altιndal, Ş.; Abdullayeva, L. K.; Bayramova, A. İ.

    2018-05-01

    Using the effect of the temperature on the capacitance–voltage (C–V) and conductance–voltage (G/ω–V) characteristics of PtSi/n-Si (111) Schottky diodes the profile of apparent doping concentration (N Dapp), the potential difference between the Fermi energy level and the bottom of the conduction band (V n), apparent barrier height (Φ Bapp), series resistance (R s) and the interface state density N ss have been investigated. From the temperature dependence of (C–V) it was found that these parameters are non-uniformly changed with increasing temperature in a wide temperature range of 79–360 K. The voltage and temperature dependences of apparent carrier distribution we attributed to the existence of self-assembled patches similar the quantum wells, which formed due to the process of PtSi formation on semiconductor and the presence of hexagonal voids of Si (111).

  18. Position and mode dependent optical detection back-action in cantilever beam resonators

    NASA Astrophysics Data System (ADS)

    Larsen, T.; Schmid, S.; Dohn, S.; Sader, J. E.; Boisen, A.; Villanueva, L. G.

    2017-03-01

    Optical detection back-action in cantilever resonant or static detection presents a challenge when striving for state-of-the-art performance. The origin and possible routes for minimizing optical back-action have received little attention in literature. Here, we investigate the position and mode dependent optical back-action on cantilever beam resonators. A high power heating laser (100 µW) is scanned across a silicon nitride cantilever while its effect on the first three resonance modes is detected via a low-power readout laser (1 µW) positioned at the cantilever tip. We find that the measured effect of back-action is not only dependent on position but also the shape of the resonance mode. Relevant silicon nitride material parameters are extracted by fitting finite element (FE) simulations to the temperature-dependent frequency response of the first three modes. In a second round of simulations, using the extracted parameters, we successfully fit the FEM results with the measured mode and position dependent back-action. From the simulations, we can conclude that the observed frequency tuning is due to temperature induced changes in stress. Effects of changes in material properties and dimensions are negligible. Finally, different routes for minimizing the effect of this optical detection back-action are described, allowing further improvements of cantilever-based sensing in general.

  19. Effect of periodic number of [Si/Sb80Te20]x multilayer film on its laser-induced crystallization studied by coherent phonon spectroscopy

    PubMed Central

    2012-01-01

    The periodic number dependence of the femtosecond laser-induced crystallization threshold of [Si(5nm)/Sb80Te20(5nm)]x nanocomposite multilayer films has been investigated by coherent phonon spectroscopy. Coherent optical phonon spectra show that femtosecond laser-irradiated crystallization threshold of the multilayer films relies obviously on the periodic number of the multilayer films and decreases with the increasing periodic number. The mechanism of the periodic number dependence is also studied. Possible mechanisms of reflectivity and thermal conductivity losses as well as the effect of the glass substrate are ruled out, while the remaining superlattice structure effect is ascribed to be responsible for the periodic number dependence. The sheet resistance of multilayer films versus a lattice temperature is measured and shows a similar periodic number dependence with one of the laser irradiation crystallization power threshold. In addition, the periodic number dependence of the crystallization temperature can be fitted well with an experiential formula obtained by considering coupling exchange interactions between adjacent layers in a superlattice. Those results provide us with the evidence to support our viewpoint. Our results show that the periodic number of multilayer films may become another controllable parameter in the design and parameter optimization of multilayer phase change films. PMID:23173850

  20. Adaptive on-line prediction of the available power of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Waag, Wladislaw; Fleischer, Christian; Sauer, Dirk Uwe

    2013-11-01

    In this paper a new approach for prediction of the available power of a lithium-ion battery pack is presented. It is based on a nonlinear battery model that includes current dependency of the battery resistance. It results in an accurate power prediction not only at room temperature, but also at lower temperatures at which the current dependency is substantial. The used model parameters are fully adaptable on-line to the given state of the battery (state of charge, state of health, temperature). This on-line adaption in combination with an explicit consideration of differences between characteristics of individual cells in a battery pack ensures an accurate power prediction under all possible conditions. The proposed trade-off between the number of used cell parameters and the total accuracy as well as the optimized algorithm results in a real-time capability of the method, which is demonstrated on a low-cost 16 bit microcontroller. The verification tests performed on a software-in-the-loop test bench system with four 40 Ah lithium-ion cells show promising results.

  1. Lower critical field measurements in YBa2Cu3O(6+x) single crystals

    NASA Technical Reports Server (NTRS)

    Kaiser, D. L.; Swartzendruber, L. J.; Gayle, F. W.; Bennett, L. H.

    1991-01-01

    The temperature dependence of the lower critical field in YBa2Cu3O(6+x) single crystals was determined by magnetization measurements with the applied field parallel and perpendicular to the c-axis. Results are compared with data from the literature and fitted to Ginzberg-Landau equations by assuming a linear dependence of the parameter kappa on temperature. A value of 7 plus or minus 2 kOe was estimated for the thermodynamic critical field at T = O by comparison of calculated H (sub c2) values with experimental data from the literature.

  2. Thermal mathematical modeling of a multicell common pressure vessel nickel-hydrogen battery

    NASA Technical Reports Server (NTRS)

    Kim, Junbom; Nguyen, T. V.; White, R. E.

    1992-01-01

    A two-dimensional and time-dependent thermal model of a multicell common pressure vessel (CPV) nickel-hydrogen battery was developed. A finite element solver called PDE/Protran was used to solve this model. The model was used to investigate the effects of various design parameters on the temperature profile within the cell. The results were used to help find a design that will yield an acceptable temperature gradient inside a multicell CPV nickel-hydrogen battery. Steady-state and unsteady-state cases with a constant heat generation rate and a time-dependent heat generation rate were solved.

  3. Introduction to temperature anisotropies of Cosmic Microwave Background radiation

    NASA Astrophysics Data System (ADS)

    Sugiyama, Naoshi

    2014-06-01

    Since its serendipitous discovery, Cosmic Microwave Background (CMB) radiation has been recognized as the most important probe of Big Bang cosmology. This review focuses on temperature anisotropies of CMB which make it possible to establish precision cosmology. Following a brief history of CMB research, the physical processes working on the evolution of CMB anisotropies are discussed, including gravitational redshift, acoustic oscillations, and diffusion dumping. Accordingly, dependencies of the angular power spectrum on various cosmological parameters, such as the baryon density, the matter density, space curvature of the universe, and so on, are examined and intuitive explanations of these dependencies are given.

  4. Hole superconductivity in a generalized two-band model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, X.Q.; Hirsch, J.E.

    1992-06-01

    We study superconductivity in a two-band model that generalizes the model introduced by Suhl, Matthias, and Walker: All possible interaction terms coupling both bands are included. The pairing interaction is assumed to originate in the momentum dependence of the intraband interactions that arises in the model of hole superconductivity. The model generically displays a single critical temperature and two gaps, with the larger gap associated with the band with strongest holelike character to the carriers. The dependence of the critical temperature and of the magnitudes of the gaps on the various parameters in the Hamiltonian is studied.

  5. Dependence of Noise in Magnetic Tunnel Junctions Sensors on Annealing Field and Temperature

    DTIC Science & Technology

    2008-03-07

    and can be characterized by Hooge’s formula,11,12 Sf = HVs 2 NAf , where H is the material-specific Hooge parameter , A is the junction area, and...noise floor at low frequency in the future. Figure 5 shows the fitting of the noise spectra, which provides values for the Hooge parameter H for the...environment. © 2008 American Institute of Physics. DOI: 10.1063/1.2837659 I. INTRODUCTION Sensor noise is a crucial parameter in low-field applica- tions

  6. Multi-scale modelling to relate beryllium surface temperature, deuterium concentration and erosion in fusion reactor environment

    DOE PAGES

    Safi, E.; Valles, G.; Lasa, A.; ...

    2017-03-27

    Beryllium (Be) has been chosen as the plasma-facing material for the main wall of ITER, the next generation fusion reactor. Identifying the key parameters that determine Be erosion under reactor relevant conditions is vital to predict the ITER plasma-facing component lifetime and viability. To date, a certain prediction of Be erosion, focusing on the effect of two such parameters, surface temperature and D surface content, has not been achieved. In this paper, we develop the first multi-scale KMC-MD modeling approach for Be to provide a more accurate database for its erosion, as well as investigating parameters that affect erosion. First,more » we calculate the complex relationship between surface temperature and D concentration precisely by simulating the time evolution of the system using an object kinetic Monte Carlo (OKMC) technique. These simulations provide a D surface concentration profile for any surface temperature and incoming D energy. We then describe how this profile can be implemented as a starting configuration in molecular dynamics (MD) simulations. We finally use MD simulations to investigate the effect of temperature (300–800 K) and impact energy (10–200 eV) on the erosion of Be due to D plasma irradiations. The results reveal a strong dependency of the D surface content on temperature. Increasing the surface temperature leads to a lower D concentration at the surface, because of the tendency of D atoms to avoid being accommodated in a vacancy, and de-trapping from impurity sites diffuse fast toward bulk. At the next step, total and molecular Be erosion yields due to D irradiations are analyzed using MD simulations. The results show a strong dependency of erosion yields on surface temperature and incoming ion energy. The total Be erosion yield increases with temperature for impact energies up to 100 eV. However, increasing temperature and impact energy results in a lower fraction of Be atoms being sputtered as BeD molecules due to the lower D surface concentrations at higher temperatures. Finally, these findings correlate well with different experiments performed at JET and PISCES-B devices.« less

  7. Multi-scale modelling to relate beryllium surface temperature, deuterium concentration and erosion in fusion reactor environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safi, E.; Valles, G.; Lasa, A.

    Beryllium (Be) has been chosen as the plasma-facing material for the main wall of ITER, the next generation fusion reactor. Identifying the key parameters that determine Be erosion under reactor relevant conditions is vital to predict the ITER plasma-facing component lifetime and viability. To date, a certain prediction of Be erosion, focusing on the effect of two such parameters, surface temperature and D surface content, has not been achieved. In this paper, we develop the first multi-scale KMC-MD modeling approach for Be to provide a more accurate database for its erosion, as well as investigating parameters that affect erosion. First,more » we calculate the complex relationship between surface temperature and D concentration precisely by simulating the time evolution of the system using an object kinetic Monte Carlo (OKMC) technique. These simulations provide a D surface concentration profile for any surface temperature and incoming D energy. We then describe how this profile can be implemented as a starting configuration in molecular dynamics (MD) simulations. We finally use MD simulations to investigate the effect of temperature (300–800 K) and impact energy (10–200 eV) on the erosion of Be due to D plasma irradiations. The results reveal a strong dependency of the D surface content on temperature. Increasing the surface temperature leads to a lower D concentration at the surface, because of the tendency of D atoms to avoid being accommodated in a vacancy, and de-trapping from impurity sites diffuse fast toward bulk. At the next step, total and molecular Be erosion yields due to D irradiations are analyzed using MD simulations. The results show a strong dependency of erosion yields on surface temperature and incoming ion energy. The total Be erosion yield increases with temperature for impact energies up to 100 eV. However, increasing temperature and impact energy results in a lower fraction of Be atoms being sputtered as BeD molecules due to the lower D surface concentrations at higher temperatures. Finally, these findings correlate well with different experiments performed at JET and PISCES-B devices.« less

  8. Multi-scale modelling to relate beryllium surface temperature, deuterium concentration and erosion in fusion reactor environment

    NASA Astrophysics Data System (ADS)

    Safi, E.; Valles, G.; Lasa, A.; Nordlund, K.

    2017-05-01

    Beryllium (Be) has been chosen as the plasma-facing material for the main wall of ITER, the next generation fusion reactor. Identifying the key parameters that determine Be erosion under reactor relevant conditions is vital to predict the ITER plasma-facing component lifetime and viability. To date, a certain prediction of Be erosion, focusing on the effect of two such parameters, surface temperature and D surface content, has not been achieved. In this work, we develop the first multi-scale KMC-MD modeling approach for Be to provide a more accurate database for its erosion, as well as investigating parameters that affect erosion. First, we calculate the complex relationship between surface temperature and D concentration precisely by simulating the time evolution of the system using an object kinetic Monte Carlo (OKMC) technique. These simulations provide a D surface concentration profile for any surface temperature and incoming D energy. We then describe how this profile can be implemented as a starting configuration in molecular dynamics (MD) simulations. We finally use MD simulations to investigate the effect of temperature (300-800 K) and impact energy (10-200 eV) on the erosion of Be due to D plasma irradiations. The results reveal a strong dependency of the D surface content on temperature. Increasing the surface temperature leads to a lower D concentration at the surface, because of the tendency of D atoms to avoid being accommodated in a vacancy, and de-trapping from impurity sites diffuse fast toward bulk. At the next step, total and molecular Be erosion yields due to D irradiations are analyzed using MD simulations. The results show a strong dependency of erosion yields on surface temperature and incoming ion energy. The total Be erosion yield increases with temperature for impact energies up to 100 eV. However, increasing temperature and impact energy results in a lower fraction of Be atoms being sputtered as BeD molecules due to the lower D surface concentrations at higher temperatures. These findings correlate well with different experiments performed at JET and PISCES-B devices.

  9. Temperature dependent structural properties and bending rigidity of pristine and defective hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Thomas, Siby; Ajith, K. M.; Chandra, Sharat; Valsakumar, M. C.

    2015-08-01

    Structural and thermodynamical properties of monolayer pristine and defective boron nitride sheets (h-BN) have been investigated in a wide temperature range by carrying out atomistic simulations using a tuned Tersoff-type inter-atomic empirical potential. The temperature dependence of lattice parameter, radial distribution function, specific heat at constant volume, linear thermal expansion coefficient and the height correlation function of the thermally excited ripples on pristine as well as defective h-BN sheet have been investigated. Specific heat shows considerable increase beyond the Dulong-Petit limit at high temperatures, which is interpreted as a signature of strong anharmonicity present in h-BN. Analysis of the height fluctuations, < {{h}2}> , shows that the bending rigidity and variance of height fluctuations are strongly temperature dependent and this is explained using the continuum theory of membranes. A detailed study of the height-height correlation function shows deviation from the prediction of harmonic theory of membranes as a consequence of the strong anharmonicity in h-BN. It is also seen that the variance of the height fluctuations increases with defect concentration.

  10. Temperature-dependent physical properties of egg white for HIFU applications

    NASA Astrophysics Data System (ADS)

    Liu, Yunbo; Maruvada, Subha; Herman, Bruce A.; Harris, Gerald R.

    2012-10-01

    Because egg white denatures at elevated temperature due to its protein content, it has the potential for use as a blood coagulation surrogate in pre-clinical evaluations of thermal therapy procedures such as high intensity focused ultrasound (HIFU) surgery. We therefore have measured the relevant physical properties of egg white, including coagulation temperature, frequency-dependent attenuation, sound speed, viscosity, and thermal properties, as a function of temperature (20 - 95°C). Thermal coagulation and attenuation (5-12 MHz) of cow blood, pig blood, and human blood also were assessed and compared with egg white. For a 30 s thermal exposure, both egg white and blood samples started to denature at 65°C and coagulate into an elastic gel at 85°C. The temperature-dependent parameters were found to be similar to that of the blood samples. For example, the attenuation of egg white ranged from 0.23f1.09 to 2.7f0.5 dB/cm over the 20°C - 95°C range. These results suggest that egg white would make a useful blood mimic for bench testing of therapeutic ultrasound devices.

  11. Mobility-dependent low-frequency noise in graphene field-effect transistors.

    PubMed

    Zhang, Yan; Mendez, Emilio E; Du, Xu

    2011-10-25

    We have investigated the low-frequency 1/f noise of both suspended and on-substrate graphene field-effect transistors and its dependence on gate voltage, in the temperature range between 300 and 30 K. We have found that the noise amplitude away from the Dirac point can be described by a generalized Hooge's relation in which the Hooge parameter α(H) is not constant but decreases monotonically with the device's mobility, with a universal dependence that is sample and temperature independent. The value of α(H) is also affected by the dynamics of disorder, which is not reflected in the DC transport characteristics and varies with sample and temperature. We attribute the diverse behavior of gate voltage dependence of the noise amplitude to the relative contributions from various scattering mechanisms, and to potential fluctuations near the Dirac point caused by charge carrier inhomogeneity. The higher carrier mobility of suspended graphene devices accounts for values of 1/f noise significantly lower than those observed in on-substrate graphene devices and most traditional electronic materials.

  12. Influence of temperature on the hydrolysis, acidogenesis and methanogenesis in mesophilic anaerobic digestion: parameter identification and modeling application.

    PubMed

    Donoso-Bravo, A; Retamal, C; Carballa, M; Ruiz-Filippi, G; Chamy, R

    2009-01-01

    The effect of temperature on the kinetic parameters involved in the main reactions of the anaerobic digestion process was studied. Batch tests with starch, glucose and acetic acid as substrates for hydrolysis, acidogenesis and methanogenesis, respectively, were performed in a temperature range between 15 and 45 degrees C. First order kinetics was assumed to determine the hydrolysis rate constant, while Monod and Haldane kinetics were considered for acidogenesis and methanogenesis, respectively. The results obtained showed that the anaerobic process is strongly influenced by temperature, with acidogenesis exerting the highest effect. The Cardinal Temperature Model 1 with an inflection point (CTM1) fitted properly the experimental data in the whole temperature range, except for the maximum degradation rate of acidogenesis. A simple case-study assessing the effect of temperature on an anaerobic CSTR performance indicated that with relatively simple substrates, like starch, the limiting reaction would change depending on temperature. However, when more complex substrates are used (e.g. sewage sludge), the hydrolysis might become more quickly into the limiting step.

  13. Vacuum drying of apples (cv. Golden Delicious): drying characteristics, thermodynamic properties, and mass transfer parameters

    NASA Astrophysics Data System (ADS)

    Nadi, Fatemeh; Tzempelikos, Dimitrios

    2018-01-01

    In this work, apples of cv. Golden Delicious were cut into slices that were 5 and 7 mm thick and then vacuum dried at 50, 60 and 70 °C and pressure of 0.02 bar. The thin layer model drying kinetics was studied, and mass transfer properties, specifically effective moisture diffusivity and convective mass transfer coefficient, were evaluated using the Fick's equation of diffusion. Also, thermodynamic parameters of the process, i.e. enthalpy (ΔH), entropy (ΔS) and Gibbs free energy (ΔG), were determined. Colour properties were evaluated as one of the important indicators of food quality and marketability. Determination of mass transfer parameters and thermodynamic properties of vacuum dried apple slices has not been discussed much in the literature. In conclusion, the Nadi's model fitted best the observed data that represent the drying process. Thermodynamic properties were determined based on the dependence of the drying constant of the Henderson and Pabis model on temperature, and it was concluded that the variation in drying kinetics depends on the energy contribution of the surrounding environment. The enthalpy and entropy diminished, while the Gibbs free energy increased with the increase of the temperature of drying; therefore, it was possible to verify that variation in the diffusion process in the apple during drying depends on energetic contributions of the environment. The obtained results showed that diffusivity increased for 69%, while the mass transfer coefficient increase was even higher, 75%, at the variation of temperature of 20 °C. The increase in the dimensionless Biot number was 20%.

  14. Vacuum drying of apples (cv. Golden Delicious): drying characteristics, thermodynamic properties, and mass transfer parameters

    NASA Astrophysics Data System (ADS)

    Nadi, Fatemeh; Tzempelikos, Dimitrios

    2018-07-01

    In this work, apples of cv. Golden Delicious were cut into slices that were 5 and 7 mm thick and then vacuum dried at 50, 60 and 70 °C and pressure of 0.02 bar. The thin layer model drying kinetics was studied, and mass transfer properties, specifically effective moisture diffusivity and convective mass transfer coefficient, were evaluated using the Fick's equation of diffusion. Also, thermodynamic parameters of the process, i.e. enthalpy ( ΔH), entropy ( ΔS) and Gibbs free energy ( ΔG), were determined. Colour properties were evaluated as one of the important indicators of food quality and marketability. Determination of mass transfer parameters and thermodynamic properties of vacuum dried apple slices has not been discussed much in the literature. In conclusion, the Nadi's model fitted best the observed data that represent the drying process. Thermodynamic properties were determined based on the dependence of the drying constant of the Henderson and Pabis model on temperature, and it was concluded that the variation in drying kinetics depends on the energy contribution of the surrounding environment. The enthalpy and entropy diminished, while the Gibbs free energy increased with the increase of the temperature of drying; therefore, it was possible to verify that variation in the diffusion process in the apple during drying depends on energetic contributions of the environment. The obtained results showed that diffusivity increased for 69%, while the mass transfer coefficient increase was even higher, 75%, at the variation of temperature of 20 °C. The increase in the dimensionless Biot number was 20%.

  15. Assessing the sensitivity of a land-surface scheme to the parameter values using a single column model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitman, A.J.

    The sensitivity of a land-surface scheme (the Biosphere Atmosphere Transfer Scheme, BATS) to its parameter values was investigated using a single column model. Identifying which parameters were important in controlling the turbulent energy fluxes, temperature, soil moisture, and runoff was dependent upon many factors. In the simulation of a nonmoisture-stressed tropical forest, results were dependent on a combination of reservoir terms (soil depth, root distribution), flux efficiency terms (roughness length, stomatal resistance), and available energy (albedo). If moisture became limited, the reservoir terms increased in importance because the total fluxes predicted depended on moisture availability and not on the ratemore » of transfer between the surface and the atmosphere. The sensitivity shown by BATS depended on which vegetation type was being simulated, which variable was used to determine sensitivity, the magnitude and sign of the parameter change, the climate regime (precipitation amount and frequency), and soil moisture levels and proximity to wilting. The interactions between these factors made it difficult to identify the most important parameters in BATS. Therefore, this paper does not argue that a particular set of parameters is important in BATS, rather it shows that no general ranking of parameters is possible. It is also emphasized that using `stand-alone` forcing to examine the sensitivity of a land-surface scheme to perturbations, in either parameters or the atmosphere, is unreliable due to the lack of surface-atmospheric feedbacks.« less

  16. Sensitivity Analysis and Requirements for Temporally and Spatially Resolved Thermometry Using Neutron Resonance Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Juan Carlos; Barnes, Cris William; Mocko, Michael Jeffrey

    This report is intended to examine the use of neutron resonance spectroscopy (NRS) to make time- dependent and spatially-resolved temperature measurements of materials in extreme conditions. Specifically, the sensitivities of the temperature estimate on neutron-beam and diagnostic parameters is examined. Based on that examination, requirements are set on a pulsed neutron-source and diagnostics to make a meaningful measurement.

  17. Cooling of Gas Turbines. 2; Effectiveness of Rim Cooling of Blades

    NASA Technical Reports Server (NTRS)

    Wolfenstein, Lincoln; Meyer, Gene L.; McCarthy, John S.

    1945-01-01

    An analysis of rim cooling, which cools the blade by condition alone, was conducted. Gas temperatures ranged from 1300 degrees to 1900 degrees F and rim temperatures from 0 degrees to 1000 degrees F below gas temperatures. Results show that gas temperature increases up to 200 degrees F are permissible provided that the blades are cooled by 400 degrees to 500 degrees F below the gas temperature. Relatively small amounts of blade cooling, at constant gas temperature, give large increases in blade life. Dependence of rim cooling on heat-transfer coefficient, blade dimensions, and thermal conductivity is determined by a single parameter.

  18. Aharonov-Bohm oscillations, quantum decoherence and amplitude modulation in mesoscopic InGaAs/InAlAs rings.

    PubMed

    Ren, S L; Heremans, J J; Gaspe, C K; Vijeyaragunathan, S; Mishima, T D; Santos, M B

    2013-10-30

    Low-temperature Aharonov-Bohm oscillations in the magnetoresistance of mesoscopic interferometric rings patterned on an InGaAs/InAlAs heterostructure are investigated for their dependence on excitation current and temperature. The rings have an average radius of 650 nm, and a lithographic arm width of 300 nm, yielding pronounced interference oscillations over a wide range of magnetic fields. Apart from a current and temperature dependence, the oscillation amplitude also shows a quasi-periodic modulation with applied magnetic field. The phase coherence length is extracted by analysis of the fundamental and higher Fourier components of the oscillations, and by direct analysis of the amplitude and its dependence on parameters. It is concluded that the Thouless energy forms the measure of excitation energies for quantum decoherence. The amplitude modulation finds an explanation in the effect of the magnetic flux threading the finite width of the interferometer arms.

  19. The influence of oxidation time on the properties of oxidized zinc films

    NASA Astrophysics Data System (ADS)

    Rambu, A. P.

    2012-09-01

    The effect of oxidation time on the structural characteristics and electronic transport mechanism of zinc oxide thin films prepared by thermal oxidation, have been investigated. Zinc metallic films were deposited by thermal evaporation under vacuum, the subsequent oxidation of Zn films being carried out in open atmosphere. XRD and AFM analysis indicate that obtained films posses a polycrystalline structure, the crystallites having a preferential orientation. Structural analysis reveals that microstructure of the films (crystallite size, surface roughness, internal stress) is depending on the oxidation time of metallic films. The electrical behavior of ZnO films was investigated, during a heat treatment (two heating/cooling cycles). It was observed that after the first heating, the temperature dependences of electrical conductivity become reversible. Mott variable range hopping model was proposed to analyze the temperature dependence of the electrical conductivity, in low temperature ranges. Values of some characteristic parameters were calculated.

  20. Modeling turbulent energy behavior and sudden viscous dissipation in compressing plasma turbulence

    DOE PAGES

    Davidovits, Seth; Fisch, Nathaniel J.

    2017-12-21

    Here, we present a simple model for the turbulent kinetic energy behavior of subsonic plasma turbulence undergoing isotropic three-dimensional compression, which may exist in various inertial confinement fusion experiments or astrophysical settings. The plasma viscosity depends on both the temperature and the ionization state, for which many possible scalings with compression are possible. For example, in an adiabatic compression the temperature scales as 1/L 2, with L the linear compression ratio, but if thermal energy loss mechanisms are accounted for, the temperature scaling may be weaker. As such, the viscosity has a wide range of net dependencies on the compression.more » The model presented here, with no parameter changes, agrees well with numerical simulations for a range of these dependencies. This model permits the prediction of the partition of injected energy between thermal and turbulent energy in a compressing plasma.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrod, D.C.; Turner, W.D.

    TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position,more » and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.« less

  2. Cardiac sodium channel Markov model with temperature dependence and recovery from inactivation.

    PubMed Central

    Irvine, L A; Jafri, M S; Winslow, R L

    1999-01-01

    A Markov model of the cardiac sodium channel is presented. The model is similar to the CA1 hippocampal neuron sodium channel model developed by Kuo and Bean (1994. Neuron. 12:819-829) with the following modifications: 1) an additional open state is added; 2) open-inactivated transitions are made voltage-dependent; and 3) channel rate constants are exponential functions of enthalpy, entropy, and voltage and have explicit temperature dependence. Model parameters are determined using a simulated annealing algorithm to minimize the error between model responses and various experimental data sets. The model reproduces a wide range of experimental data including ionic currents, gating currents, tail currents, steady-state inactivation, recovery from inactivation, and open time distributions over a temperature range of 10 degrees C to 25 degrees C. The model also predicts measures of single channel activity such as first latency, probability of a null sweep, and probability of reopening. PMID:10096885

  3. Modeling turbulent energy behavior and sudden viscous dissipation in compressing plasma turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidovits, Seth; Fisch, Nathaniel J.

    Here, we present a simple model for the turbulent kinetic energy behavior of subsonic plasma turbulence undergoing isotropic three-dimensional compression, which may exist in various inertial confinement fusion experiments or astrophysical settings. The plasma viscosity depends on both the temperature and the ionization state, for which many possible scalings with compression are possible. For example, in an adiabatic compression the temperature scales as 1/L 2, with L the linear compression ratio, but if thermal energy loss mechanisms are accounted for, the temperature scaling may be weaker. As such, the viscosity has a wide range of net dependencies on the compression.more » The model presented here, with no parameter changes, agrees well with numerical simulations for a range of these dependencies. This model permits the prediction of the partition of injected energy between thermal and turbulent energy in a compressing plasma.« less

  4. Distribution of thermal neutrons in a temperature gradient

    NASA Astrophysics Data System (ADS)

    Molinari, V. G.; Pollachini, L.

    A method to determine the spatial distribution of the thermal spectrum of neutrons in heterogeneous systems is presented. The method is based on diffusion concepts and has a simple mathematical structure which increases computing efficiency. The application of this theory to the neutron thermal diffusion induced by a temperature gradient, as found in nuclear reactors, is described. After introducing approximations, a nonlinear equation system representing the neutron temperature is given. Values of the equation parameters and its dependence on geometrical factors and media characteristics are discussed.

  5. The effect of concentration- and temperature-dependent dielectric constant on the activity coefficient of NaCl electrolyte solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valiskó, Mónika; Boda, Dezső, E-mail: boda@almos.vein.hu

    2014-06-21

    Our implicit-solvent model for the estimation of the excess chemical potential (or, equivalently, the activity coefficient) of electrolytes is based on using a dielectric constant that depends on the thermodynamic state, namely, the temperature and concentration of the electrolyte, ε(c, T). As a consequence, the excess chemical potential is split into two terms corresponding to ion-ion (II) and ion-water (IW) interactions. The II term is obtained from computer simulation using the Primitive Model of electrolytes, while the IW term is estimated from the Born treatment. In our previous work [J. Vincze, M. Valiskó, and D. Boda, “The nonmonotonic concentration dependencemore » of the mean activity coefficient of electrolytes is a result of a balance between solvation and ion-ion correlations,” J. Chem. Phys. 133, 154507 (2010)], we showed that the nonmonotonic concentration dependence of the activity coefficient can be reproduced qualitatively with this II+IW model without using any adjustable parameter. The Pauling radii were used in the calculation of the II term, while experimental solvation free energies were used in the calculation of the IW term. In this work, we analyze the effect of the parameters (dielectric constant, ionic radii, solvation free energy) on the concentration and temperature dependence of the mean activity coefficient of NaCl. We conclude that the II+IW model can explain the experimental behavior using a concentration-dependent dielectric constant and that we do not need the artificial concept of “solvated ionic radius” assumed by earlier studies.« less

  6. The role of quantum effects in proton transfer reactions in enzymes: quantum tunneling in a noisy environment?

    NASA Astrophysics Data System (ADS)

    Bothma, Jacques P.; Gilmore, Joel B.; McKenzie, Ross H.

    2010-05-01

    We consider the role of quantum effects in the transfer of hydrogen-like species in enzyme-catalyzed reactions. This review is stimulated by claims that the observed magnitude and temperature dependence of kinetic isotope effects (KIEs) implies that quantum tunneling below the energy barrier associated with the transition state significantly enhances the reaction rate in many enzymes. We review the path integral approach and the Caldeira-Leggett model, which provides a general framework to describe and understand tunneling in a quantum system that interacts with a noisy environment at nonzero temperature. Here the quantum system is the active site of the enzyme, and the environment is the surrounding protein and water. Tunneling well below the barrier only occurs for temperatures less than a temperature T0, which is determined by the curvature of the potential energy surface near the top of the barrier. We argue that for most enzymes this temperature is less than room temperature. We review typical values for the parameters in the Caldeira-Leggett Hamiltonian, including the frequency-dependent friction and noise due to the environment. For physically reasonable parameters, we show that quantum transition state theory gives a quantitative description of the temperature dependence and magnitude of KIEs for two classes of enzymes that have been claimed to exhibit signatures of quantum tunneling. The only quantum effects are those associated with the transition state, both reflection at the barrier top and tunneling just below the barrier. We establish that the friction and noise due to the environment are weak and only slightly modify the reaction rate. Furthermore, at room temperature and for typical energy barriers environmental fluctuations with frequencies much less than 1000 cm-1 do not have a significant effect on quantum corrections to the reaction rate. This is essentially because the time scales associated with the dynamics of proton transfer are faster than much of the low-frequency noise associated with the protein and solvent.

  7. Magnetic Penetration Effects in Small Superconducting Devices

    NASA Technical Reports Server (NTRS)

    Stevenson, T. R.; Adams, J. S.; Balvin, M. A.; Bandler, S. R.; Denis, K. L.; Hsieh, W.-T.; Kelly, D. P.; Nagler, P. C.; Porst, J.-P.; Sadleir, J. E.; hide

    2011-01-01

    The temperature dependent behavior of a superconducting body in an applied magnetic field involves flux penetration/expulsion both from screening currents (within a magnetic penetration depth) and variations in the superconducting order parameter (locally to form vortices or a mixed state, or globally in the Meissner effect). The temperature dependence of the magnetic penetration depth, in particular, has been used to make highly sensitive macroscopic thermometers. For the microscopic device volumes required in sensitive low temperature photon detectors, properties of actual thin film materials, non-uniformity of applied magnetic fields, and the influence of measurement circuit dynamics are complicating factors. We discuss the various penetration effects as demonstrated in a particularly promising combination of material and geometry that we have used to make sensitive x-ray microcalorimeters.

  8. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Vanstone, R. H.

    1992-01-01

    The purpose of this program was to extend the work performed in the base program (CR 182247) into the regime of time-dependent crack growth under isothermal and thermal mechanical fatigue (TMF) loading, where creep deformation also influences the crack growth behavior. The investigation was performed in a two-year, six-task, combined experimental and analytical program. The path-independent integrals for application to time-dependent crack growth were critically reviewed. The crack growth was simulated using a finite element method. The path-independent integrals were computed from the results of finite-element analyses. The ability of these integrals to correlate experimental crack growth data were evaluated under various loading and temperature conditions. The results indicate that some of these integrals are viable parameters for crack growth prediction at elevated temperatures.

  9. Temperature dependence of threshold current in GaAs/AlGaAs quantum well lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blood, P.; Colak, S.; Kucharska, A.I.

    1988-02-22

    We have calculated the threshold current and its temperature (T) dependence in the range 200--400 K for AlGaAs quantum well lasers with 25-A-wide GaAs wells using a model which includes lifetime broadening of the transitions and broadening of the density of states function by fluctuations in the well width. The threshold current varies approximately linearly with T and the principal effect of broadening is to increase the threshold current causing a reduction in the fractional change of current with temperature. The apparent value of the parameter T/sub 0/ is increased to approx. =400 K, compared with approx. =320 K withoutmore » broadening. The calculations are compared with experimental data.« less

  10. Explicit expressions of self-diffusion coefficient, shear viscosity, and the Stokes-Einstein relation for binary mixtures of Lennard-Jones liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohtori, Norikazu, E-mail: ohtori@chem.sc.niigata-u.ac.jp; Ishii, Yoshiki

    Explicit expressions of the self-diffusion coefficient, D{sub i}, and shear viscosity, η{sub sv}, are presented for Lennard-Jones (LJ) binary mixtures in the liquid states along the saturated vapor line. The variables necessary for the expressions were derived from dimensional analysis of the properties: atomic mass, number density, packing fraction, temperature, and the size and energy parameters used in the LJ potential. The unknown dependence of the properties on each variable was determined by molecular dynamics (MD) calculations for an equimolar mixture of Ar and Kr at the temperature of 140 K and density of 1676 kg m{sup −3}. The scalingmore » equations obtained by multiplying all the single-variable dependences can well express D{sub i} and η{sub sv} evaluated by the MD simulation for a whole range of compositions and temperatures without any significant coupling between the variables. The equation for D{sub i} can also explain the dual atomic-mass dependence, i.e., the average-mass and the individual-mass dependence; the latter accounts for the “isotope effect” on D{sub i}. The Stokes-Einstein (SE) relation obtained from these equations is fully consistent with the SE relation for pure LJ liquids and that for infinitely dilute solutions. The main differences from the original SE relation are the presence of dependence on the individual mass and on the individual energy parameter. In addition, the packing-fraction dependence turned out to bridge another gap between the present and original SE relations as well as unifying the SE relation between pure liquids and infinitely dilute solutions.« less

  11. Differences between wafer and bake plate temperature uniformity in proximity bake: a theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Ramanan, Natarajan; Kozman, Austin; Sims, James B.

    2000-06-01

    As the lithography industry moves toward finer features, specifications on temperature uniformity of the bake plates are expected to become more stringent. Consequently, aggressive improvements are needed to conventional bake station designs to make them perform significantly better than current market requirements. To this end, we have conducted a rigorous study that combines state-of-the-art simulation tools and experimental methods to predict the impact of the parameters that influence the uniformity of the wafer in proximity bake. The key observation from this detailed study is that the temperature uniformity of the wafer in proximity mode depends on a number of parameters in addition to the uniformity of the bake plate itself. These parameters include the lid design, the air flow distribution around the bake chamber, bake plate design and flatness of the bake plate and wafer. By performing careful experimental studies that were guided by extensive numerical simulations, we were able to understand the relative importance of each of these parameters. In an orderly fashion, we made appropriate design changes to curtail or eliminate the nonuniformity caused by each of these parameters. After implementing all these changes, we have now been able to match or improve the temperature uniformity of the wafer in proximity with that of a contact measurement on the bake plate. The wafer temperature uniformity is also very close to the theoretically predicted uniformity of the wafer.

  12. High temperature electrical resistivity and Seebeck coefficient of Ge2Sb2Te5 thin films

    NASA Astrophysics Data System (ADS)

    Adnane, L.; Dirisaglik, F.; Cywar, A.; Cil, K.; Zhu, Y.; Lam, C.; Anwar, A. F. M.; Gokirmak, A.; Silva, H.

    2017-09-01

    High-temperature characterization of the thermoelectric properties of chalcogenide Ge2Sb2Te5 (GST) is critical for phase change memory devices, which utilize self-heating to quickly switch between amorphous and crystalline states and experience significant thermoelectric effects. In this work, the electrical resistivity and Seebeck coefficient are measured simultaneously as a function of temperature, from room temperature to 600 °C, on 50 nm and 200 nm GST thin films deposited on silicon dioxide. Multiple heating and cooling cycles with increasingly maximum temperature allow temperature-dependent characterization of the material at each crystalline state; this is in contrast to continuous measurements which return the combined effects of the temperature dependence and changes in the material. The results show p-type conduction (S > 0), linear S(T), and a positive Thomson coefficient (dS/dT) up to melting temperature. The results also reveal an interesting linearity between dS/dT and the conduction activation energy for mixed amorphous-fcc GST, which can be used to estimate one parameter from the other. A percolation model, together with effective medium theory, is adopted to correlate the conductivity of the material with average grain sizes obtained from XRD measurements. XRD diffraction measurements show plane-dependent thermal expansion for the cubic and hexagonal phases.

  13. Coexistence of superconductivity and magnetism in Ca1 -xNaxFe2As2 : Universal suppression of the magnetic order parameter in 122 iron pnictides

    NASA Astrophysics Data System (ADS)

    Materne, Philipp; Kamusella, Sirko; Sarkar, Rajib; Goltz, Til; Spehling, Johannes; Maeter, Hemke; Harnagea, Luminita; Wurmehl, Sabine; Büchner, Bernd; Luetkens, Hubertus; Timm, Carsten; Klauss, Hans-Henning

    2015-10-01

    We present a detailed investigation of the magnetic and superconducting properties of Ca1 -xNaxFe2As2 single crystals with x =0.00 , 0.35, 0.50, and 0.67 by means of the local probe techniques Mössbauer spectroscopy and muon spin relaxation experiments. With increasing Na-substitution level, the magnetic order parameter is suppressed. For x =0.50 we find a microscopic coexistence of magnetic and superconducting phases accompanied by a reduction of the magnetic order parameter below the superconducting transition temperature Tc. A systematic comparison with other 122 pnictides reveals a square-root correlation between the reduction of the magnetic order parameter and the ratio of the transition temperatures Tc/TN , which can be understood in the framework of a Landau theory. In the optimally doped sample with Tc≈34 K, diluted magnetism is found and the temperature dependence of the penetration depth and superfluid density are obtained, proving the presence of two superconducting s -wave gaps.

  14. Temperature dependence of the LO phonon sidebands in free exciton emission of GaN

    NASA Astrophysics Data System (ADS)

    Xu, S. J.; Li, G. Q.; Xiong, S.-J.; Che, C. M.

    2006-04-01

    Temperature-dependent radiative recombination of free excitons involving one or two LO phonons in GaN is investigated in detail. It is found that both phonon sidebands possess asymmetric lineshapes and their energy spacings from the zero-phonon line strongly deviate from the characteristic energy of LO phonons as the temperature increases. Furthermore, the deviation rates of one- and two-phonon sidebands are significantly different. Segall-Mahan [Phys. Rev. 171, 935 (1968)] theory, taking the exciton-photon and exciton-phonon interactions into account, is employed to calculate the sidebands of one or two LO phonons for free excitons in a wide temperature range. Excellent agreement between the theory and experiment is achieved by using only one adjustable parameter, which leads to determination of the effective mass of heavy holes (~0.5m0).

  15. Chiral dynamics in the low-temperature phase of QCD

    NASA Astrophysics Data System (ADS)

    Brandt, Bastian B.; Francis, Anthony; Meyer, Harvey B.; Robaina, Daniel

    2014-09-01

    We investigate the low-temperature phase of QCD and the crossover region with two light flavors of quarks. The chiral expansion around the point (T,m=0) in the temperature vs quark-mass plane indicates that a sharp real-time excitation exists with the quantum numbers of the pion. An exact sum rule is derived for the thermal modification of the spectral function associated with the axial charge density; the (dominant) pion pole contribution obeys the sum rule. We determine the two parameters of the pion dispersion relation using lattice QCD simulations and test the applicability of the chiral expansion. The time-dependent correlators are also analyzed using the maximum entropy method, yielding consistent results. Finally, we test the predictions of the chiral expansion around the point (T=0,m=0) for the temperature dependence of static observables.

  16. Evaluation of the factors controlling the time-dependent inactivation rate coefficients of bacteriophage MS2 and PRD1

    USGS Publications Warehouse

    Anders, R.; Chrysikopoulos, C.V.

    2006-01-01

    Static and dynamic batch experiments were conducted to study the effects of temperature and the presence of sand on the inactivation of bacteriophage MS2 and PRD1. The experimental data suggested that the inactivation process can be satisfactorily represented by a pseudo-first-order expression with time-dependent rate coefficients. The time-dependent rate coefficients were used to determine pertinent thermodynamic properties required for the analysis of the molecular processes involved in the inactivation of each bacteriophage. A combination of high temperature and the presence of sand appears to produce the greatest disruption to the surrounding protein coat of MS2. However, the lower activation energies for PRD1 indicate a weaker dependence of the inactivation rate on temperature. Instead, the presence of air-liquid and air-solid interfaces appears to produce the greatest damage to specific viral components that are related to infection. These results indicate the importance of using thermodynamic parameters based on the time-dependent inactivation model to better predict the inactivation of viruses in groundwater. ?? 2006 American Chemical Society.

  17. Neutronic safety parameters and transient analyses for Poland's MARIA research reactor.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bretscher, M. M.; Hanan, N. A.; Matos, J. E.

    1999-09-27

    Reactor kinetic parameters, reactivity feedback coefficients, and control rod reactivity worths have been calculated for the MARIA Research Reactor (Swierk, Poland) for M6-type fuel assemblies with {sup 235}U enrichments of 80% and 19.7%. Kinetic parameters were evaluated for family-dependent effective delayed neutron fractions, decay constants, and prompt neutron lifetimes and neutron generation times. Reactivity feedback coefficients were determined for fuel Doppler coefficients, coolant (H{sub 2}O) void and temperature coefficients, and for in-core and ex-core beryllium temperature coefficients. Total and differential control rod worths and safety rod worths were calculated for each fuel type. These parameters were used to calculate genericmore » transients for fast and slow reactivity insertions with both HEU and LEU fuels. The analyses show that the HEU and LEU cores have very similar responses to these transients.« less

  18. L-Band H Polarized Microwave Emission During the Corn Growth Cycle

    NASA Technical Reports Server (NTRS)

    Joseph, A. T.; va der Velde, R.; O'Neill, P. E.; Kim, E.; Lang, R. H.; Gish, T.

    2012-01-01

    Hourly L-band (1.4 GHz) horizontally (H) polarized brightness temperatures (T(sub B))'s measured during five episodes (more than two days of continuous measurements) of the 2002 corn growth cycle are analyzed. These T(sub B)'s measurements were acquired as a part of a combined active/passive microwave field campaign, and were obtained at five incidence and three azimuth angles relative to the row direction. In support of this microwave data collection, intensive ground sampling took place once a week. Moreover, the interpretation of the hourly T(sub B)'s could also rely on the data obtained using the various automated instruments installed in the same field. In this paper, the soil moisture and temperature measured at fixed time intervals have been employed as input for the tau-omega model to reproduce the hourly T(sub B). Through the calibration of the vegetation and surface roughness parameterizations, the impact of the vegetation morphological changes on the microwave emission and the dependence of the soil surface roughness parameter, h(sub r), on soil moisture are investigated. This analysis demonstrates that the b parameter, appearing in the representation of the canopy opacity, has an angular dependence that varies throughout the growing period and also that the parameter hr increases as the soil dries in a portion of the dry-down cycle. The angular dependence of the b parameter imposes the largest uncertainty on T(sub B) simulations near senescence as the response of b to the incidence is also affected by the crop row orientation. On the other hand, the incorporation of a soil moisture dependent h(sub r) parameterization was responsible for the largest error reduction of T(sub B) simulations in the early growth cycle.

  19. Estimation of thermodynamic parameters for Au- and Mg-based metallic glasses

    NASA Astrophysics Data System (ADS)

    Gaur, Jitendra; Mishra, R. K.

    2017-10-01

    The study of temperature dependent thermodynamic parameters; Gibb's free energy difference (ΔG), entropy difference (ΔS) and enthalpy difference (ΔH) between the undercooled liquid and the corresponding equilibrium solid phases has been proved to be extremely advantageous in the study of the thermodynamic behaviour of Metallic glass (MG) forming melts. In last two decades, Au- and Mg-based alloys were found to form glass phases. In present study, the three thermodynamic parameters viz., ΔG, ΔS and ΔH are calculated theoretically in the entire temperature range Tm (melting temperature) to Tg (glass transition temperature) for both Au- and Mg-based five samples of MGs; Au77Ge13.6Si9.4, Au53.2Pb27.5Sb19.3, Au81.4Si18.6, Mg85.5Cu14.5 and Mg81.6Ga18.4 on the basis of Taylor's series expansion. A relative study is also made between the present result and the result obtained experimentally as well as on the basis of expressions projected by the earlier researchers. An attempt is also been made to narrate the reduced glass transition temperature with glass forming ability for all five MGs.

  20. Turbulent circulation above the surface heat source in a stably stratified environment

    NASA Astrophysics Data System (ADS)

    Kurbatskii, A. F.; Kurbatskaya, L. I.

    2016-09-01

    The results of the numerical modeling of turbulent structure of the penetrating convection above the urban heat island with a small aspect ratio in a stably stratified medium at rest are presented. The gradient diffusion representations for turbulent momentum and heat fluxes are used, which depend on three parameters — the turbulence kinetic energy, the velocity of its spectral expenditure, and the dispersion of temperature fluctuations. These parameters are found from the closed differential equations of balance in the RANS approach of turbulence description. The distributions of averaged velocity and temperature fields as well as turbulent characteristics agree well with measurement data.

  1. Ion beam sputtering of in situ superconducting Y-Ba-Cu-O films

    NASA Astrophysics Data System (ADS)

    Klein, J. D.; Yen, A.; Clauson, S. L.

    1990-05-01

    Oriented superconducting YBa2Cu3O7 thin films were deposited on yttria stabilized zirconia and SrTiO3 substrates by ion-beam sputtering of a nonstoichiometric oxide target. The films exhibited zero-resistance critical temperatures as high as 83.5 K without post-deposition anneals. Both the deposition rate and the c-lattice parameter data displayed two distinct regimes of dependence on the beam power of the ion source. Low-power sputtering yielded films with large c-dimensions and low Tc. Higher-power sputtering produced a continuous decrease in the c-lattice parameter and increase in critical temperature. Films having the smaller c-lattice parameters were Cu rich. The Cu content of films deposited at beam voltages of 800 V and above increased with increasing beam power.

  2. Thermal Analysis of porous fin with uniform magnetic field using Adomian decomposition Sumudu transform method

    NASA Astrophysics Data System (ADS)

    Patel, Trushit; Meher, Ramakanta

    2017-09-01

    In this paper, we consider a Roseland approximation to radiate heat transfer, Darcy's model to simulate the flow in porous media and finite-length fin with insulated tip to study the thermal performance and to predict the temperature distribution in a vertical isothermal surface. The energy balance equations of the porous fin with several temperature dependent properties are solved using the Adomian Decomposition Sumudu Transform Method (ADSTM). The effects of various thermophysical parameters, such as the convection-conduction parameter, Surface-ambient radiation parameter, Rayleigh numbers and Hartman number are determined. The results obtained from the ADSTM are further compared with the fourth-fifth order Runge-Kutta-Fehlberg method and Least Square Method(LSM) (Hoshyar et al. 2016 ) to determine the accuracy of the solution.

  3. Axi-symmetric generalized thermoelastic diffusion problem with two-temperature and initial stress under fractional order heat conduction

    NASA Astrophysics Data System (ADS)

    Deswal, Sunita; Kalkal, Kapil Kumar; Sheoran, Sandeep Singh

    2016-09-01

    A mathematical model of fractional order two-temperature generalized thermoelasticity with diffusion and initial stress is proposed to analyze the transient wave phenomenon in an infinite thermoelastic half-space. The governing equations are derived in cylindrical coordinates for a two dimensional axi-symmetric problem. The analytical solution is procured by employing the Laplace and Hankel transforms for time and space variables respectively. The solutions are investigated in detail for a time dependent heat source. By using numerical inversion method of integral transforms, we obtain the solutions for displacement, stress, temperature and diffusion fields in physical domain. Computations are carried out for copper material and displayed graphically. The effect of fractional order parameter, two-temperature parameter, diffusion, initial stress and time on the different thermoelastic and diffusion fields is analyzed on the basis of analytical and numerical results. Some special cases have also been deduced from the present investigation.

  4. How Fast is Collapse of Proteins During Folding?

    NASA Astrophysics Data System (ADS)

    Chahine, J.; Onuchic, J. N.; Socci, N. D.

    1998-03-01

    Recent experiments in fast folding proteins are now starting to address the question of how fast is collapse relative to the total folding time. Using minimalist models, we are able to investigate the way in which different scenarios of folding can arise depending on the interplay between the collapse order parameter and the order parameter sensitive to specific tertiary contacts. Most of our earlier studies have focused on the limit that collapse is very fast compared to the total folding time. In this work we focus on the opposite limit, i.e., at the folding temperature, collapse and folding occurs simultaneously. The folding mechanism becomes very different in this limit. Particularly, the non-specific collapse transition, that occurs at temperatures higher than the folding temperature for the fast collapse limit, now occurs between the folding and the glass temperature. We show how this transition can be identified and its consequences for the folding kinetics.

  5. Combined electrochemical, heat generation, and thermal model for large prismatic lithium-ion batteries in real-time applications

    NASA Astrophysics Data System (ADS)

    Farag, Mohammed; Sweity, Haitham; Fleckenstein, Matthias; Habibi, Saeid

    2017-08-01

    Real-time prediction of the battery's core temperature and terminal voltage is very crucial for an accurate battery management system. In this paper, a combined electrochemical, heat generation, and thermal model is developed for large prismatic cells. The proposed model consists of three sub-models, an electrochemical model, heat generation model, and thermal model which are coupled together in an iterative fashion through physicochemical temperature dependent parameters. The proposed parameterization cycles identify the sub-models' parameters separately by exciting the battery under isothermal and non-isothermal operating conditions. The proposed combined model structure shows accurate terminal voltage and core temperature prediction at various operating conditions while maintaining a simple mathematical structure, making it ideal for real-time BMS applications. Finally, the model is validated against both isothermal and non-isothermal drive cycles, covering a broad range of C-rates, and temperature ranges [-25 °C to 45 °C].

  6. Initial reactive sticking coefficient of O 2 on Si(111)-7 × 7 at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Shklyaev, A. A.; Suzuki, Takanori

    1996-05-01

    Kinetics of the initial stage of oxide growth in the reaction of oxygen with Si(111)-7 × 7 at temperatures from room temperature to Ttr, and pressures from 5 × 10 -9 to 2 × 10 -7 Torr are investigated with optical second-harmonic generation, here temperature from oxide growth to Si etching without oxide growth. At a fixed pressure, the initial reactive sticking coefficient ( S0), obtained from the rate of oxide growth, decreases with increasing temperature to S0=0 at Ttr. We have found that the initial reacti sticking coefficient depends on the O 2 pressure. At temperatures above 320°C, the whole temperature dependence of S0 is situated in the region of higher temperatures for higher O 2 pressures ( Pox). Moreover, an additional bend in the temperature dependence of S0 is observed for Pox>1 × 10 -8 Torr near Ttr. A precursor-mediated adsorption model involving the reaction of formation is considered. The parameters of this model, obtained from the best fits to the experimental data, show that oxide growth rate constant increases and volatile SiO formation rate constant decreases as a function of O 2 pressure. At zero oxide coverage, the pressure dependence of the reaction rate constants is suggested to originate from interaction in the layer of the chemisorbed precursor species, whose coverage depends on the O 2 pressure. The volatile SiO formation is described by a three-step sequential two-channel process through the chemisorbed O 2 precursor species, whereas one of the channels with a larger activation energy is suggested to induce the additional bend in S0( T) near Ttr at higher O 2 pressures.

  7. Native Shellfish in Nearshore Ecosystems of Puget Sound

    DTIC Science & Technology

    2006-04-01

    Key parameters include temperature and salinity , turbidity, oxygen, pollutants, and food types and concentrations. All these can be affected by...variety of other organisms, depending on the stage in their life history. Larvae (in the plankton) are eaten by coho and chinook salmon and...of particular year classes are probably determined by larval survival to meta- morphosis, which depends on predation, water tempera- tures, food

  8. Thermal gas rectification using a sawtooth channel.

    PubMed

    Solórzano, S; Araújo, N A M; Herrmann, H J

    2017-09-01

    We study the rectification of a two-dimensional thermal gas in a channel of asymmetric dissipative walls. For an ensemble of smooth Lennard-Jones particles, our numerical simulations reveal a nonmonotonic dependence of the flux on the thermostat temperature, channel asymmetry, and particle density, with three distinct regimes. Theoretical arguments are developed to shed light on the functional dependence of the flux on the model parameters.

  9. [Vulnerability to atmospheric and geomagnetic factors of the body functions in healthy male dwellers of the Russian North].

    PubMed

    Markov, A L; Zenchenko, T A; Solonin, Iu G; Boĭko, E R

    2013-01-01

    In April 2009 through to November 2011, a Mars-500 satellite study of Russian Northerners (Syktyvkar citizens) was performed using the standard ECOSAN-2007 procedure evaluating the atmospheric and geomagnetic susceptibility of the main body functional parameters. Seventeen essentially healthy men at the age of 25 to 46 years were investigated. Statistical data treatment included correlation and single-factor analysis of variance. Comparison of the number of statistical correlations of the sum of all functional parameters for participants showed that most often they were sensitive to atmospheric pressure, temperature, relative humidity and oxygen partial pressure (29-35 %), and geomagnetic activity (28 %). Dependence of the functional parameters on the rate of temperature and pressure change was weak and comparable with random coincidence (11 %). Among the hemodynamic parameters, systolic pressure was particularly sensitive to space and terrestrial weather variations (29 %); sensitivity of heart rate and diastolic pressure were determined in 25 % and 21 % of participants, respectively. Among the heart rate variability parameters (HRV) the largest number of statistically reliable correlations was determined for the centralization index (32 %) and high-frequency HRV spectrum (31 %); index of the regulatory systems activity was least dependable (19 %). Life index, maximal breath-holding and Ckibinskaya's cardiorespiratory index are also susceptible. Individual responses of the functional parameters to terrestrial and space weather changes varied with partidpants which points to the necessity of individual approach to evaluation of person's reactions to environmental changes.

  10. Effect of SiC Content on the Ablation and Oxidation Behavior of ZrB2-Based Ultra High Temperature Ceramic Composites

    PubMed Central

    Hu, Ping; Gui, Kaixuan; Yang, Yang; Dong, Shun; Zhang, Xinghong

    2013-01-01

    The ablation and oxidation of ZrB2-based ultra high temperature ceramic (UHTC) composites containing 10%, 15% and 30% v/v SiC were tested under different heat fluxes in a high frequency plasma wind tunnel. Performance was significantly affected by the surface temperature, which was strongly dependent on the composition. Composites containing 10% SiC showed the highest surface temperature (>2300 °C) and underwent a marked degradation under both conditions. In contrast, composites with 30% SiC exhibited the lowest surface temperature (<2000 °C) and demonstrated excellent ablation resistance. The surface temperature of UHTCs in aerothermal testing was closely associated with the dynamic evolution of the surface and bulk oxide properties, especially for the change in chemical composition on the exposed surface, which was strongly dependent on the material composition and testing parameters (i.e., heat flux, enthalpy, pressure and test time), and in turn affected its oxidation performance. PMID:28809239

  11. Thermoplastic Elastomer Part Color as Function of Temperature Histories and Oxygen Atmosphere During Selective Laser Sintering

    NASA Astrophysics Data System (ADS)

    Kummert, C.; Josupeit, S.; Schmid, H.-J.

    2018-03-01

    The influence of selective laser sintering (SLS) parameters on PA12 part properties is well known, but research on other materials is rare. One alternative material is a thermoplastic elastomer (TPE) called PrimePart ST that is more elastic and shows a distinct SLS processing behavior. It undergoes a three-dimensional temperature distribution during the SLS process within the TPE part cake. To examine this further, a temperature measurement system that allows temperature measurements inside the part cake is applied to TPE in the present work. Position-dependent temperature histories are directly correlated with the color and mechanical properties of built parts and are in very good agreement with artificial heat treatment in a furnace. Furthermore, it is clearly shown that the yellowish discoloration of parts in different intensities is not only temperature dependent but also influenced by the residual oxygen content in the process atmosphere. Nevertheless, the discoloration has no influence on the mechanical part properties.

  12. Effect of SiC Content on the Ablation and Oxidation Behavior of ZrB₂-Based Ultra High Temperature Ceramic Composites.

    PubMed

    Hu, Ping; Gui, Kaixuan; Yang, Yang; Dong, Shun; Zhang, Xinghong

    2013-04-29

    The ablation and oxidation of ZrB₂-based ultra high temperature ceramic (UHTC) composites containing 10%, 15% and 30% v/v SiC were tested under different heat fluxes in a high frequency plasma wind tunnel. Performance was significantly affected by the surface temperature, which was strongly dependent on the composition. Composites containing 10% SiC showed the highest surface temperature (>2300 °C) and underwent a marked degradation under both conditions. In contrast, composites with 30% SiC exhibited the lowest surface temperature (<2000 °C) and demonstrated excellent ablation resistance. The surface temperature of UHTCs in aerothermal testing was closely associated with the dynamic evolution of the surface and bulk oxide properties, especially for the change in chemical composition on the exposed surface, which was strongly dependent on the material composition and testing parameters ( i.e. , heat flux, enthalpy, pressure and test time), and in turn affected its oxidation performance.

  13. Complex temperature dependence of coupling and dissipation of cavity magnon polaritons from millikelvin to room temperature

    NASA Astrophysics Data System (ADS)

    Boventer, Isabella; Pfirrmann, Marco; Krause, Julius; Schön, Yannick; Kläui, Mathias; Weides, Martin

    2018-05-01

    Hybridized magnonic-photonic systems are key components for future information processing technologies such as storage, manipulation, or conversion of data both in the classical (mostly at room temperature) and quantum (cryogenic) regime. In this work, we investigate a yttrium-iron-garnet sphere coupled strongly to a microwave cavity over the full temperature range from 290 K to 30 mK . The cavity-magnon polaritons are studied from the classical to the quantum regimes where the thermal energy is less than one resonant microwave quanta, i.e., at temperatures below 1 K . We compare the temperature dependence of the coupling strength geff(T ) , describing the strength of coherent energy exchange between spin ensemble and cavity photon, to the temperature behavior of the saturation magnetization evolution Ms(T ) and find strong deviations at low temperatures. The temperature dependence of magnonic disspation is governed at intermediate temperatures by rare-earth impurity scattering leading to a strong peak at 40 K . The linewidth κm decreases to 1.2 MHz at 30 mK , making this system suitable as a building block for quantum electrodynamics experiments. We achieve an electromagnonic cooperativity in excess of 20 over the entire temperature range, with values beyond 100 in the millikelvin regime as well as at room temperature. With our measurements, spectroscopy on strongly coupled magnon-photon systems is demonstrated as versatile tool for spin material studies over large temperature ranges. Key parameters are provided in a single measurement, thus simplifying investigations significantly.

  14. Performance of a Cryogenic Multipath Herriott Cell Vacuum-Coupled to a Bruker IFS-125HR System

    NASA Astrophysics Data System (ADS)

    Mantz, Arlan; Sung, Keeyoon; Crawford, Timothy J.; Brown, Linda; Smith, Mary Ann H.

    2014-06-01

    Accurate modeling of atmospheric trace gases requires detailed knowledge of spectroscopic line parameters at temperatures and pressures relevant to the atmospheric layers where the spectroscopic signatures form. Pressure-broadened line shapes, frequency shifts, and their temperature dependences, are critical spectroscopic parameters that limit the accuracy of state-of-the-art atmospheric remote sensing. In order to provide temperature dependent parameters from controlled laboratory experiments, a 20.946 ± 0.001 m long path Herriott cell and associated transfer optics were designed and fabricated at Connecticut College to operate in the near infrared using a Bruker 125 HR Fourier transform spectrometer. The cell body and gold coated mirrors are fabricated with Oxygen-Free High Conductivity (OFHC) copper. Transfer optics are through-put matched for entrance apertures smaller than 2 mm. A closed-cycle Helium refrigerator cools the cell and cryopumps the surrounding vacuum box. This new system and its transfer optics are fully evacuated to ˜10 mTorr (similar to the pressure inside the interferometer). Over a period of several months, this system has maintained extremely good stability in recording spectra at gas sample temperatures between 75 and 250 K. The absorption path length and cell temperatures are validated using CO spectra. The characterization of the Herriott cell is described along with its performance and future applications. We thank Drs. V. Malathy Devi and D. Chris Benner at The College of William and Mary for helpful discussion. Research described in this paper was performed at Connecticut College, the Jet Propulsion Laboratory, California Institute of Technology, and NASA Langley Research Center, under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  15. On the location of the maximum homogeneous crystal nucleation temperature

    NASA Technical Reports Server (NTRS)

    Weinberg, Michael C.

    1986-01-01

    Detailed considerations are given to the location of the temperature of maximum homogeneous nucleation as predicted by classical nucleation theory. It is shown quite generally that this maximum temperature, T-asterisk, must occur above the Kauzmann temperature and that the T-asterisk is such that T-asterisk is greater than T(m)/3, where T(m) is the melting temperature. Also, it is demonstrated tha T-asterisk may be considered to be approximately dependent upon two parameters: gamma, the ratio of the difference in specific heat between the crystal and liquid divided by the entropy of fusion, and E, a reduced activation energy for viscous flow. The variation of T-asterisk with these parameters is described. The relationship of the relative location of T-asterisk to the glass transition temperature, is discussed too. This discussion is couched within the framework of the strong and fragile liquid notion introduced by Angell (1981) and coworkers. Finally, the question of the ultimate limits to the undercooling of liquid metals is considered and its relationhsip to computations of the maximum nucleation temperature in such systems.

  16. Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Ismail, Syed; Grossmann, Benoist E.

    1991-01-01

    Recently measured properties of water vapor (H2O) absorption lines have been used in calculations to evalute the temperature sensitivity of differential absorption lidar (Dial) H2O measurements. This paper estimates the temperature sensitivity of H2O lines in the 717-733-nm region for both H2O mixing ratio and number density measurements, and discusses the influence of the H2O line ground state energies E-double-prime, the H2O absorption linewidths, the linewidth temperature dependence parameter, and the atmospheric temperature and pressure variations with altitude and location on the temperature sensitivity calculations. Line parameters and temperature sensitivity calculations for 67 H2O lines in the 720-nm band are given which can be directly used in field experiments. Water vapor lines with E-double-prime values in the 100-300/cm range were found to be optimum for Dial measurements of H2O number densities, while E-double-prime values in the 250-500/cm range were found to be optimum for H2O mixing ratio measurements.

  17. A note on anomalous band-gap variations in semiconductors with temperature

    NASA Astrophysics Data System (ADS)

    Chakraborty, P. K.; Mondal, B. N.

    2018-03-01

    An attempt is made to theoretically study the band-gap variations (ΔEg) in semiconductors with temperature following the works, did by Fan and O'Donnell et al. based on thermodynamic functions. The semiconductor band-gap reflects the bonding energy. An increase in temperature changes the chemical bondings, and electrons are promoted from valence band to conduction band. In their analyses, they made several approximations with respect to temperature and other fitting parameters leading to real values of band-gap variations with linear temperature dependences. In the present communication, we have tried to re-analyse the works, specially did by Fan, and derived an analytical model for ΔEg(T). Because, it was based on the second-order perturbation technique of thermodynamic functions. Our analyses are made without any approximations with respect to temperatures and other fitting parameters mentioned in the text, leading to a complex functions followed by an oscillating nature of the variations of ΔEg. In support of the existence of the oscillating energy band-gap variations with temperature in a semiconductor, possible physical explanations are provided to justify the experimental observation for various materials.

  18. Comparison of Observed Surface Temperatures of 4 Vesta to the KRC Thermal Model

    NASA Technical Reports Server (NTRS)

    Titus, T. N.; Becker, K. J.; Anderson, J. A.; Capria, M. T.; Tosi, F.; DeSanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; hide

    2012-01-01

    In this work, we will compare ob-served temperatures of the surface of Vesta using data acquired by the Dawn [1] Visible and Infrared Map-ping Spectrometer (VIR-MS) [2] during the approach phase to model results from the KRC thermal model. High thermal inertia materials, such as bedrock, resist changes in temperature while temperatures of low thermal inertia material, such as dust, respond quickly to changes in solar insolation. The surface of Vesta is expected to have low to medium thermal inertia values, with the most commonly used value being extremely low at 15 TIU [4]. There are several parameters which affect observed temperatures in addition to thermal inertia: bond albedo, slope, and surface roughness. In addition to these parameters, real surfaces are rarely uniform monoliths that can be described by a single thermal inertia value. Real surfaces are often vertically layered or are mixtures of dust and rock. For Vesta's surface, with temperature extremes ranging from 50 K to 275 K and no atmosphere, even a uniform monolithic surface may have non-uniform thermal inertia due to temperature dependent thermal conductivity.

  19. Photophysical study of meso-phenothiazinyl-porphyrins metallocomplexes

    NASA Astrophysics Data System (ADS)

    Starukhin, Aleksander; Gorski, Aleksander; Knyukshto, Valery; Panarin, Andrei; Pavich, Tatiana; Gaina, Luiza; Gal, Emese

    2017-10-01

    Photophysical parameters of a set of metallocomplexes of meso-phenylthiazinylporphyrins with Zn (II), Pd (II) and Cu (II) ions were studied in different organic solvents, solid solutions and polymeric matrices at room and liquid nitrogen temperatures. The dependence of the spectral and photophysical parameters on changing the molecular structure with increasing number of branched substituents attached to aryl groups in different positions of the porphyrin macrocycle has been established.

  20. Spin filtering by field-dependent resonant tunneling.

    PubMed

    Ristivojevic, Zoran; Japaridze, George I; Nattermann, Thomas

    2010-02-19

    We consider theoretically transport in a spinful one-channel interacting quantum wire placed in an external magnetic field. For the case of two pointlike impurities embedded in the wire, under a small voltage bias the spin-polarized current occurs at special points in the parameter space, tunable by a single parameter. At sufficiently low temperatures complete spin polarization may be achieved, provided repulsive interaction between electrons is not too strong.

  1. “Multi-temperature” method for high-pressure sorption measurements on moist shales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasparik, Matus; Ghanizadeh, Amin; Gensterblum, Yves

    2013-08-15

    A simple and effective experimental approach has been developed and tested to study the temperature dependence of high-pressure methane sorption in moist organic-rich shales. This method, denoted as “multi-temperature” (short “multi-T”) method, enables measuring multiple isotherms at varying temperatures in a single run. The measurement of individual sorption isotherms at different temperatures takes place in a closed system ensuring that the moisture content remains constant. The multi-T method was successfully tested for methane sorption on an organic-rich shale sample. Excess sorption isotherms for methane were measured at pressures of up to 25 MPa and at temperatures of 318.1 K, 338.1more » K, and 348.1 K on dry and moisture-equilibrated samples. The measured isotherms were parameterized with a 3-parameter Langmuir-based excess sorption function, from which thermodynamic sorption parameters (enthalpy and entropy of adsorption) were obtained. Using these, we show that by taking explicitly into account water vapor as molecular species in the gas phase with temperature-dependent water vapor pressure during the experiment, more meaningful results are obtained with respect to thermodynamical considerations. The proposed method can be applied to any adsorbent system (coals, shales, industrial adsorbents) and any supercritical gas (e.g., CH{sub 4}, CO{sub 2}) and is particularly suitable for sorption measurements using the manometric (volumetric) method.« less

  2. On the temperature independence of statistical model parameters for cleavage fracture in ferritic steels

    NASA Astrophysics Data System (ADS)

    Qian, Guian; Lei, Wei-Sheng; Niffenegger, M.; González-Albuixech, V. F.

    2018-04-01

    The work relates to the effect of temperature on the model parameters in local approaches (LAs) to cleavage fracture. According to a recently developed LA model, the physical consensus of plastic deformation being a prerequisite to cleavage fracture enforces any LA model of cleavage fracture to observe initial yielding of a volume element as its threshold stress state to incur cleavage fracture in addition to the conventional practice of confining the fracture process zone within the plastic deformation zone. The physical consistency of the new LA model to the basic LA methodology and the differences between the new LA model and other existing models are interpreted. Then this new LA model is adopted to investigate the temperature dependence of LA model parameters using circumferentially notched round tensile specimens. With the published strength data as input, finite element (FE) calculation is conducted for elastic-perfectly plastic deformation and the realistic elastic-plastic hardening, respectively, to provide stress distributions for model calibration. The calibration results in temperature independent model parameters. This leads to the establishment of a 'master curve' characteristic to synchronise the correlation between the nominal strength and the corresponding cleavage fracture probability at different temperatures. This 'master curve' behaviour is verified by strength data from three different steels, providing a new path to calculate cleavage fracture probability with significantly reduced FE efforts.

  3. Variable Viscosity Effects on Time Dependent Magnetic Nanofluid Flow past a Stretchable Rotating Plate

    NASA Astrophysics Data System (ADS)

    Ram, Paras; Joshi, Vimal Kumar; Sharma, Kushal; Walia, Mittu; Yadav, Nisha

    2016-01-01

    An attempt has been made to describe the effects of geothermal viscosity with viscous dissipation on the three dimensional time dependent boundary layer flow of magnetic nanofluids due to a stretchable rotating plate in the presence of a porous medium. The modelled governing time dependent equations are transformed a from boundary value problem to an initial value problem, and thereafter solved by a fourth order Runge-Kutta method in MATLAB with a shooting technique for the initial guess. The influences of mixed temperature, depth dependent viscosity, and the rotation strength parameter on the flow field and temperature field generated on the plate surface are investigated. The derived results show direct impact in the problems of heat transfer in high speed computer disks (Herrero et al. [1]) and turbine rotor systems (Owen and Rogers [2]).

  4. Nonlinear control of linear parameter varying systems with applications to hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Wilcox, Zachary Donald

    The focus of this dissertation is to design a controller for linear parameter varying (LPV) systems, apply it specifically to air-breathing hypersonic vehicles, and examine the interplay between control performance and the structural dynamics design. Specifically a Lyapunov-based continuous robust controller is developed that yields exponential tracking of a reference model, despite the presence of bounded, nonvanishing disturbances. The hypersonic vehicle has time varying parameters, specifically temperature profiles, and its dynamics can be reduced to an LPV system with additive disturbances. Since the HSV can be modeled as an LPV system the proposed control design is directly applicable. The control performance is directly examined through simulations. A wide variety of applications exist that can be effectively modeled as LPV systems. In particular, flight systems have historically been modeled as LPV systems and associated control tools have been applied such as gain-scheduling, linear matrix inequalities (LMIs), linear fractional transformations (LFT), and mu-types. However, as the type of flight environments and trajectories become more demanding, the traditional LPV controllers may no longer be sufficient. In particular, hypersonic flight vehicles (HSVs) present an inherently difficult problem because of the nonlinear aerothermoelastic coupling effects in the dynamics. HSV flight conditions produce temperature variations that can alter both the structural dynamics and flight dynamics. Starting with the full nonlinear dynamics, the aerothermoelastic effects are modeled by a temperature dependent, parameter varying state-space representation with added disturbances. The model includes an uncertain parameter varying state matrix, an uncertain parameter varying non-square (column deficient) input matrix, and an additive bounded disturbance. In this dissertation, a robust dynamic controller is formulated for a uncertain and disturbed LPV system. The developed controller is then applied to a HSV model, and a Lyapunov analysis is used to prove global exponential reference model tracking in the presence of uncertainty in the state and input matrices and exogenous disturbances. Simulations with a spectrum of gains and temperature profiles on the full nonlinear dynamic model of the HSV is used to illustrate the performance and robustness of the developed controller. In addition, this work considers how the performance of the developed controller varies over a wide variety of control gains and temperature profiles and are optimized with respect to different performance metrics. Specifically, various temperature profile models and related nonlinear temperature dependent disturbances are used to characterize the relative control performance and effort for each model. Examining such metrics as a function of temperature provides a potential inroad to examine the interplay between structural/thermal protection design and control development and has application for future HSV design and control implementation.

  5. A macroscopic model that connects the molar excess entropy of a supercooled liquid near its glass transition temperature to its viscosity.

    PubMed

    Matsuoka, Hiroshi

    2012-11-28

    For a deeply supercooled liquid near its glass transition temperature, we suggest a possible way to connect the temperature dependence of its molar excess entropy to that of its viscosity by constructing a macroscopic model, where the deeply supercooled liquid is assumed to be a mixture of solid-like and liquid-like micro regions. In this model, we assume that the mole fraction x of the liquid-like micro regions tends to zero as the temperature T of the liquid is decreased and extrapolated to a temperature T(g)(*), which we assume to be below but close to the lowest glass transition temperature T(g) attainable with the slowest possible cooling rate for the liquid. Without referring to any specific microscopic nature of the solid-like and liquid-like micro regions, we also assume that near T(g), the molar enthalpy of the solid-like micro regions is lower than that of the liquid-like micro regions. We then show that the temperature dependence of x is directly related to that of the molar excess entropy. Close to T(g), we assume that an activated motion of the solid-like micro regions controls the viscosity and that this activated motion is a collective motion involving practically all of the solid-like micro-regions so that the molar activation free energy Δg(a) for the activated motion is proportional to the mole fraction, 1 - x, of the solid-like micro regions. The temperature dependence of the viscosity is thus connected to that of the molar excess entropy s(e) through the temperature dependence of the mole fraction x. As an example, we apply our model to a class of glass formers for which s(e) at temperatures near T(g) is well approximated by s(e) ∝ 1 - T(K)∕T with T(K) < T(g) ≅ T(g)(*) and find their viscosities to be well approximated by the Vogel-Fulcher-Tamman equation for temperatures very close to T(g). We also find that a parameter a appearing in the temperature dependence of x for a glass former in this class is a measure for its fragility. As this class includes both fragile and strong glass formers, our model applies to both fragile and strong glass formers. We estimate the values of three parameters in our model for three glass formers in this class, o-terphenyl, 3-bromopentane, and Pd(40)Ni(40)P(20), which is the least fragile among these three. Finally, we also suggest a way to test our assumption about the solid-like and liquid-like micro regions by means of molecular dynamics simulations of model liquids.

  6. High temperature dielectric studies of indium-substituted NiCuZn nanoferrites

    NASA Astrophysics Data System (ADS)

    Hashim, Mohd.; Raghasudha, M.; Shah, Jyoti; Shirsath, Sagar E.; Ravinder, D.; Kumar, Shalendra; Meena, Sher Singh; Bhatt, Pramod; Alimuddin; Kumar, Ravi; Kotnala, R. K.

    2018-01-01

    In this study, indium (In3+)-substituted NiCuZn nanostructured ceramic ferrites with a chemical composition of Ni0.5Cu0.25Zn0.25Fe2-xInxO4 (0.0 ≤ x ≤ 0.5) were prepared by chemical synthesis involving sol-gel chemistry. Single phased cubic spinel structure materials were prepared successfully according to X-ray diffraction and transmission electron microscopy analyses. The dielectric properties of the prepared ferrites were measured using an LCR HiTester at temperatures ranging from room temperature to 300 °C at different frequencies from 102 Hz to 5 × 106 Hz. The variations in the dielectric parameters ε‧ and (tanδ) with temperature demonstrated the frequency- and temperature-dependent characteristics due to electron hopping between the ions. The materials had low dielectric loss values in the high frequency range at all temperatures, which makes them suitable for high frequency microwave applications. A qualitative explanation is provided for the dependences of the dielectric constant and dielectric loss tangent on the frequency, temperature, and composition. Mӧssbauer spectroscopy was employed at room temperature to characterize the magnetic behavior.

  7. Dependence of Lunar Surface Charging on Solar Wind Plasma Conditions and Solar Irradiation

    NASA Technical Reports Server (NTRS)

    Stubbs, T. J.; Farrell, W. M.; Halekas, J. S.; Burchill, J. K.; Collier, M. R.; Zimmerman, M. I.; Vondrak, R. R.; Delory, G. T.; Pfaff, R. F.

    2014-01-01

    The surface of the Moon is electrically charged by exposure to solar radiation on its dayside, as well as by the continuous flux of charged particles from the various plasma environments that surround it. An electric potential develops between the lunar surface and ambient plasma, which manifests itself in a near-surface plasma sheath with a scale height of order the Debye length. This study investigates surface charging on the lunar dayside and near-terminator regions in the solar wind, for which the dominant current sources are usually from the pohotoemission of electrons, J(sub p), and the collection of plasma electrons J(sub e) and ions J(sub i). These currents are dependent on the following six parameters: plasma concentration n(sub 0), electron temperature T(sub e), ion temperature T(sub i), bulk flow velocity V, photoemission current at normal incidence J(sub P0), and photo electron temperature T(sub p). Using a numerical model, derived from a set of eleven basic assumptions, the influence of these six parameters on surface charging - characterized by the equilibrium surface potential, Debye length, and surface electric field - is investigated as a function of solar zenith angle. Overall, T(sub e) is the most important parameter, especially near the terminator, while J(sub P0) and T(sub p) dominate over most of the dayside.

  8. A statistical-based approach for acoustic tomography of the atmosphere.

    PubMed

    Kolouri, Soheil; Azimi-Sadjadi, Mahmood R; Ziemann, Astrid

    2014-01-01

    Acoustic travel-time tomography of the atmosphere is a nonlinear inverse problem which attempts to reconstruct temperature and wind velocity fields in the atmospheric surface layer using the dependence of sound speed on temperature and wind velocity fields along the propagation path. This paper presents a statistical-based acoustic travel-time tomography algorithm based on dual state-parameter unscented Kalman filter (UKF) which is capable of reconstructing and tracking, in time, temperature, and wind velocity fields (state variables) as well as the dynamic model parameters within a specified investigation area. An adaptive 3-D spatial-temporal autoregressive model is used to capture the state evolution in the UKF. The observations used in the dual state-parameter UKF process consist of the acoustic time of arrivals measured for every pair of transmitter/receiver nodes deployed in the investigation area. The proposed method is then applied to the data set collected at the Meteorological Observatory Lindenberg, Germany, as part of the STINHO experiment, and the reconstruction results are presented.

  9. Impact of generalized Fourier's and Fick's laws on MHD 3D second grade nanofluid flow with variable thermal conductivity and convective heat and mass conditions

    NASA Astrophysics Data System (ADS)

    Ramzan, M.; Bilal, M.; Chung, Jae Dong; Lu, Dian Chen; Farooq, Umer

    2017-09-01

    A mathematical model has been established to study the magnetohydrodynamic second grade nanofluid flow past a bidirectional stretched surface. The flow is induced by Cattaneo-Christov thermal and concentration diffusion fluxes. Novel characteristics of Brownian motion and thermophoresis are accompanied by temperature dependent thermal conductivity and convective heat and mass boundary conditions. Apposite transformations are betrothed to transform a system of nonlinear partial differential equations to nonlinear ordinary differential equations. Analytic solutions of the obtained nonlinear system are obtained via a convergent method. Graphs are plotted to examine how velocity, temperature, and concentration distributions are affected by varied physical involved parameters. Effects of skin friction coefficients along the x- and y-direction versus various parameters are also shown through graphs and are well debated. Our findings show that velocities along both the x and y axes exhibit a decreasing trend for the Hartmann number. Moreover, temperature and concentration distributions are decreasing functions of thermal and concentration relaxation parameters.

  10. Reduction of Energy Consumption for Air Conditioning While Maintaining Acceptable Human Comfort.

    DTIC Science & Technology

    1988-04-01

    Fanger, 1972). It is not always possible, or, practical, to obtain optimi thermal comfort conditions. Therefore Frofessor Fanger devised an index to...understand the complex interaction of the six key variables that affect human comfort. Thermal comfort is not exclusively a function of air temperature... Thermal comfort also depends on five other, less obvious, parameters: mean radiant temperature, relative air velocity, humidity, activity level, and

  11. Microstructural dependence on relevant physical-mechanical properties on SiO2-Na2O-CaO-P2O5 biological glasses.

    PubMed

    Rajendran, V; Begum, A Nishara; Azooz, M A; el Batal, F H

    2002-11-01

    Bioactive glasses of the system SiO2-Na2O-CaO-P2O5 have been prepared by the normal melting and annealing technique. The elastic moduli, attenuation, Vickers hardness, fracture toughness and fracture surface energy have been obtained using the known method at room temperature. The temperature dependence of elastic moduli and attenuation measurements have been extended over a wide range of temperature from 150 to 500 K. The SiO2 content dependence of velocities, attenuation, elastic moduli, and other parameters show an interesting observation at 45 wt% of SiO2 by exhibiting an anomalous behaviour. A linear relation is developed for Tg, which explores the influence of Na2O on SiO2-Na2O-CaO-P2O5 bioactive glasses. The measured hardness, fracture toughness and fracture surface energy show a linear relation with Young's modulus. It is also interesting to note that the observed results are functions of polymerisation and the number of non-bridging oxygens (NBO) prevailing in the network with change in SiO2 content. The temperature dependence of velocities, attenuation and elastic moduli show the existence of softening in the glass network structure as temperature increases.

  12. Numerical simulation for heat transfer performance in unsteady flow of Williamson fluid driven by a wedge-geometry

    NASA Astrophysics Data System (ADS)

    Hamid, Aamir; Hashim; Khan, Masood

    2018-06-01

    The main concern of this communication is to investigate the two-layer flow of a non-Newtonian rheological fluid past a wedge-shaped geometry. One remarkable aspect of this article is the mathematical formulation for two-dimensional flow of Williamson fluid by incorporating the effect of infinite shear rate viscosity. The impacts of heat transfer mechanism on time-dependent flow field are further studied. At first, we employ the suitable non-dimensional variables to transmute the time-dependent governing flow equations into a system of non-linear ordinary differential equations. The converted conservation equations are numerically integrated subject to physically suitable boundary conditions with the aid of Runge-Kutta Fehlberg integration procedure. The effects of involved pertinent parameters, such as, moving wedge parameter, wedge angle parameter, local Weissenberg number, unsteadiness parameter and Prandtl number on the non-dimensional velocity and temperature distributions have been evaluated. In addition, the numerical values of the local skin friction coefficient and the local Nusselt number are compared and presented through tables. The outcomes of this study indicate that the rate of heat transfer increases with the growth of both wedge angle parameter and unsteadiness parameter. Moreover, a substantial rise in the fluid velocity is observed with enhancement in the viscosity ratio parameter while an opposite trend is true for the non-dimensional temperature field. A comparison is presented between the current study and already published works and results found to be in outstanding agreement. Finally, the main findings of this article are highlighted in the last section.

  13. Correlated parameter fit of arrhenius model for thermal denaturation of proteins and cells.

    PubMed

    Qin, Zhenpeng; Balasubramanian, Saravana Kumar; Wolkers, Willem F; Pearce, John A; Bischof, John C

    2014-12-01

    Thermal denaturation of proteins is critical to cell injury, food science and other biomaterial processing. For example protein denaturation correlates strongly with cell death by heating, and is increasingly of interest in focal thermal therapies of cancer and other diseases at temperatures which often exceed 50 °C. The Arrhenius model is a simple yet widely used model for both protein denaturation and cell injury. To establish the utility of the Arrhenius model for protein denaturation at 50 °C and above its sensitivities to the kinetic parameters (activation energy E a and frequency factor A) were carefully examined. We propose a simplified correlated parameter fit to the Arrhenius model by treating E a, as an independent fitting parameter and allowing A to follow dependently. The utility of the correlated parameter fit is demonstrated on thermal denaturation of proteins and cells from the literature as a validation, and new experimental measurements in our lab using FTIR spectroscopy to demonstrate broad applicability of this method. Finally, we demonstrate that the end-temperature within which the denaturation is measured is important and changes the kinetics. Specifically, higher E a and A parameters were found at low end-temperature (50 °C) and reduce as end-temperatures increase to 70 °C. This trend is consistent with Arrhenius parameters for cell injury in the literature that are significantly higher for clonogenics (45-50 °C) vs. membrane dye assays (60-70 °C). Future opportunities to monitor cell injury by spectroscopic measurement of protein denaturation are discussed.

  14. Correlated Parameter Fit of Arrhenius Model for Thermal Denaturation of Proteins and Cells

    PubMed Central

    Qin, Zhenpeng; Balasubramanian, Saravana Kumar; Wolkers, Willem F.; Pearce, John A.; Bischof, John C.

    2014-01-01

    Thermal denaturation of proteins is critical to cell injury, food science and other biomaterial processing. For example protein denaturation correlates strongly with cell death by heating, and is increasingly of interest in focal thermal therapies of cancer and other diseases at temperatures which often exceed 50 °C. The Arrhenius model is a simple yet widely used model for both protein denaturation and cell injury. To establish the utility of the Arrhenius model for protein denaturation at 50 °C and above its sensitivities to the kinetic parameters (activation energy Ea and frequency factor A) were carefully examined. We propose a simplified correlated parameter fit to the Arrhenius model by treating Ea, as an independent fitting parameter and allowing A to follow dependently. The utility of the correlated parameter fit is demonstrated on thermal denaturation of proteins and cells from the literature as a validation, and new experimental measurements in our lab using FTIR spectroscopy to demonstrate broad applicability of this method. Finally, we demonstrate that the end-temperature within which the denaturation is measured is important and changes the kinetics. Specifically, higher Ea and A parameters were found at low end-temperature (50°C) and reduce as end-temperatures increase to 70 °C. This trend is consistent with Arrhenius parameters for cell injury in the literature that are significantly higher for clonogenics (45 – 50 °C) vs. membrane dye assays (60 –70 °C). Future opportunities to monitor cell injury by spectroscopic measurement of protein denaturation are discussed. PMID:25205396

  15. Whistler waves with electron temperature anisotropy and non-Maxwellian distribution functions

    NASA Astrophysics Data System (ADS)

    Malik, M. Usman; Masood, W.; Qureshi, M. N. S.; Mirza, Arshad M.

    2018-05-01

    The previous works on whistler waves with electron temperature anisotropy narrated the dependence on plasma parameters, however, they did not explore the reasons behind the observed differences. A comparative analysis of the whistler waves with different electron distributions has not been made to date. This paper attempts to address both these issues in detail by making a detailed comparison of the dispersion relations and growth rates of whistler waves with electron temperature anisotropy for Maxwellian, Cairns, kappa and generalized (r, q) distributions by varying the key plasma parameters for the problem under consideration. It has been found that the growth rate of whistler instability is maximum for flat-topped distribution whereas it is minimum for the Maxwellian distribution. This work not only summarizes and complements the previous work done on the whistler waves with electron temperature anisotropy but also provides a general framework to understand the linear propagation of whistler waves with electron temperature anisotropy that is applicable in all regions of space plasmas where the satellite missions have indicated their presence.

  16. Numerical simulation of high-temperature thermal contact resistance and its reduction mechanism.

    PubMed

    Liu, Donghuan; Zhang, Jing

    2018-01-01

    High-temperature thermal contact resistance (TCR) plays an important role in heat-pipe-cooled thermal protection structures due to the existence of contact interface between the embedded heat pipe and the heat resistive structure, and the reduction mechanism of thermal contact resistance is of special interests in the design of such structures. The present paper proposed a finite element model of the high-temperature thermal contact resistance based on the multi-point contact model with the consideration of temperature-dependent material properties, heat radiation through the cavities at the interface and the effect of thermal interface material (TIM), and the geometry parameters of the finite element model are determined by simple surface roughness test and experimental data fitting. The experimental results of high-temperature thermal contact resistance between superalloy GH600 and C/C composite material are employed to validate the present finite element model. The effect of the crucial parameters on the thermal contact resistance with and without TIM are also investigated with the proposed finite element model.

  17. Temperature behaviour of optical parameters in (Ag3AsS3)0.3(As2S3)0.7 thin films

    NASA Astrophysics Data System (ADS)

    Kutsyk, Mykhailo M.; Ráti, Yosyp Y.; Izai, Vitalii Y.; Makauz, Ivan I.; Studenyak, Ihor P.; Kökényesi, Sandor; Komada, Paweł; Zhailaubayev, Yerkin; Smailov, Nurzhigit

    2015-12-01

    (Ag3AsS3)0.3(As2S3)0.7 thin films were deposited onto a quartz substrate by rapid thermal evaporation. The optical transmission spectra of thin films were measured in the temperature range 77-300 K. It is shown that the absorption edge spectra are described by the Urbach rule. The temperature behaviour of absorption spectra was studied, the temperature dependences of energy position of absorption edge and Urbach energy were investigated. The influence of transition from three-dimensional glass to the two-dimensional thin film as well as influence of Ag3AsS3 introduction into As2S3 on the optical parameters of (Ag3AsS3)0.3(As2S3)0.7 were analysed. The spectral and temperature behaviour or refractive index for (Ag3AsS3)0.3(As2S3)0.7 thin film were studied.

  18. Numerical simulation of high-temperature thermal contact resistance and its reduction mechanism

    PubMed Central

    Zhang, Jing

    2018-01-01

    High-temperature thermal contact resistance (TCR) plays an important role in heat-pipe-cooled thermal protection structures due to the existence of contact interface between the embedded heat pipe and the heat resistive structure, and the reduction mechanism of thermal contact resistance is of special interests in the design of such structures. The present paper proposed a finite element model of the high-temperature thermal contact resistance based on the multi-point contact model with the consideration of temperature-dependent material properties, heat radiation through the cavities at the interface and the effect of thermal interface material (TIM), and the geometry parameters of the finite element model are determined by simple surface roughness test and experimental data fitting. The experimental results of high-temperature thermal contact resistance between superalloy GH600 and C/C composite material are employed to validate the present finite element model. The effect of the crucial parameters on the thermal contact resistance with and without TIM are also investigated with the proposed finite element model. PMID:29547651

  19. A hybrid model for river water temperature as a function of air temperature and discharge

    NASA Astrophysics Data System (ADS)

    Toffolon, Marco; Piccolroaz, Sebastiano

    2015-11-01

    Water temperature controls many biochemical and ecological processes in rivers, and theoretically depends on multiple factors. Here we formulate a model to predict daily averaged river water temperature as a function of air temperature and discharge, with the latter variable being more relevant in some specific cases (e.g., snowmelt-fed rivers, rivers impacted by hydropower production). The model uses a hybrid formulation characterized by a physically based structure associated with a stochastic calibration of the parameters. The interpretation of the parameter values allows for better understanding of river thermal dynamics and the identification of the most relevant factors affecting it. The satisfactory agreement of different versions of the model with measurements in three different rivers (root mean square error smaller than 1oC, at a daily timescale) suggests that the proposed model can represent a useful tool to synthetically describe medium- and long-term behavior, and capture the changes induced by varying external conditions.

  20. Synergistic Effects of Temperature, Oxidation and Stress Level on Fatigue Damage Evolution and Lifetime Prediction of Cross-Ply SiC/CAS Ceramic-Matrix Composites Through Hysteresis-Based Parameters

    NASA Astrophysics Data System (ADS)

    Li, Longbiao

    2017-12-01

    The damage development and cyclic fatigue lifetime of cross-ply SiC/CAS ceramic-matrix composites have been investigated at different testing temperatures in air atmosphere. The relationships between the fatigue hysteresis-based damage parameters, i.e., fatigue hysteresis dissipated energy, fatigue hysteresis modulus and fatigue peak strain and the damage mechanisms of matrix multicracking, fiber/matrix interface debonding, interface sliding and fibers failure, have been established. With the increase in the cycle number, the evolution of the fatigue hysteresis modulus, fatigue peak strain and fatigue hysteresis dissipated energy depends upon the fatigue peak stress levels, interface and fibers oxidation and testing temperature. The fatigue life S-N curves of cross-ply SiC/CAS composite at room and elevated temperatures have been predicted, and the fatigue limit stresses at room temperature, 750 and 850 °C, are 50, 36 and 30% of the tensile strength, respectively.

Top