Dastgeer, Ghulam; Khan, Muhammad Farooq; Nazir, Ghazanfar; Afzal, Amir Muhammad; Aftab, Sikandar; Naqvi, Bilal Abbas; Cha, Janghwan; Min, Kyung-Ah; Jamil, Yasir; Jung, Jongwan; Hong, Suklyun; Eom, Jonghwa
2018-04-18
Heterostructures comprising two-dimensional (2D) semiconductors fabricated by individual stacking exhibit interesting characteristics owing to their 2D nature and atomically sharp interface. As an emerging 2D material, black phosphorus (BP) nanosheets have drawn much attention because of their small band gap semiconductor characteristics along with high mobility. Stacking structures composed of p-type BP and n-type transition metal dichalcogenides can produce an atomically sharp interface with van der Waals interaction which leads to p-n diode functionality. In this study, for the first time, we fabricated a heterojunction p-n diode composed of BP and WS 2 . The rectification effects are examined for monolayer, bilayer, trilayer, and multilayer WS 2 flakes in our BP/WS 2 van der Waals heterojunction diodes and also verified by density function theory calculations. We report superior functionalities as compared to other van der Waals heterojunction, such as efficient gate-dependent static rectification of 2.6 × 10 4 , temperature dependence, thickness dependence of rectification, and ideality factor of the device. The temperature dependence of Zener breakdown voltage and avalanche breakdown voltage were analyzed in the same device. Additionally, superior optoelectronic characteristics such as photoresponsivity of 500 mA/W and external quantum efficiency of 103% are achieved in the BP/WS 2 van der Waals p-n diode, which is unprecedented for BP/transition metal dichalcogenides heterostructures. The BP/WS 2 van der Waals p-n diodes have a profound potential to fabricate rectifiers, solar cells, and photovoltaic diodes in 2D semiconductor electronics and optoelectronics.
Temperature Dependence of Errors in Parameters Derived from Van't Hoff Studies.
ERIC Educational Resources Information Center
Dec, Steven F.; Gill, Stanley J.
1985-01-01
The method of Clarke and Glew is broadly applicable to studies of the temperature dependence of equilibrium constant measurements. The method is described and examples of its use in comparing calorimetric results and temperature dependent gas solubility studies are provided. (JN)
ShunLi Shang; Louis G. Hector Jr.; Paul Saxe; Zi-Kui Liu; Robert J. Moon; Pablo D. Zavattieri
2014-01-01
Anisotropy and temperature dependence of structural, thermodynamic and elastic properties of crystalline cellulose Iβ were computed with first-principles density functional theory (DFT) and a semi-empirical correction for van der Waals interactions. Specifically, we report the computed temperature variation (up to 500...
Microscopic Description of Thermodynamics of Lipid Membrane at Liquid-Gel Phase Transition
NASA Astrophysics Data System (ADS)
Kheyfets, B.; Galimzyanov, T.; Mukhin, S.
2018-05-01
A microscopic model of the lipid membrane is constructed that provides analytically tractable description of the physical mechanism of the first order liquid-gel phase transition. We demonstrate that liquid-gel phase transition is cooperative effect of the three major interactions: inter-lipid van der Waals attraction, steric repulsion and hydrophobic tension. The model explicitly shows that temperature-dependent inter-lipid steric repulsion switches the system from liquid to gel phase when the temperature decreases. The switching manifests itself in the increase of lateral compressibility of the lipids as the temperature decreases, making phase with smaller area more preferable below the transition temperature. The model gives qualitatively correct picture of abrupt change at transition temperature of the area per lipid, membrane thickness and volume per hydrocarbon group in the lipid chains. The calculated dependence of phase transition temperature on lipid chain length is in quantitative agreement with experimental data. Steric repulsion between the lipid molecules is shown to be the only driver of the phase transition, as van der Waals attraction and hydrophobic tension are weakly temperature dependent.
Van vleck paramagnetism in orthorhombic TiO2 (Brookite)
Senftle, F.E.; Thorpe, A.N.
1968-01-01
The magnetic susceptibility of the orthorhombic form of titanium dioxide has been measured from 5 to 300??K. After deducting the temperature-dependent component, which is probably due to defects or impurities, and the free-ion diamagnetic component, the Van Vleck paramagnetism was estimated to be 33??10-6 emu/mole. Comparison is made between this value and the Van Vleck paramagnetism of strontium titanate and the two tetragonal forms of titanium dioxide: rutile and anatase. ?? 1968 The American Physical Society.
Antiferromagnetism in the van der Waals layered spin-lozenge semiconductor CrTe 3
McGuire, Michael A.; Garlea, V. Ovidiu; KC, Santosh; ...
2017-04-14
We have investigated the crystallographic, magnetic, and transport properties of the van der Waals bonded, layered compound CrTe 3 on single-crystal and polycrystalline materials. Furthermore, the crystal structure contains layers made up of lozenge-shaped Cr 4 tetramers. Electrical resistivity measurements show the crystals to be semiconducting, with a temperature dependence consistent with a band gap of 0.3 eV. The magnetic susceptibility exhibits a broad maximum near 300 K characteristic of low dimensional magnetic systems. Weak anomalies are observed in the susceptibility and heat capacity near 55 K, and single-crystal neutron diffraction reveals the onset of long-range antiferromagnetic order at thismore » temperature. Strongly dispersive spin waves are observed in the ordered state. Significant magnetoelastic coupling is indicated by the anomalous temperature dependence of the lattice parameters and is evident in structural optimization in van der Waals density functional theory calculations for different magnetic configurations. The cleavability of the compound is apparent from its handling and is confirmed by first-principles calculations, which predict a cleavage energy 0.5 J / m 2 , similar to graphite. Based on our results, CrTe 3 is identified as a promising compound for studies of low dimensional magnetism in bulk crystals as well as magnetic order in monolayer materials and van der Waals heterostructures.« less
Antiferromagnetism in the van der Waals layered spin-lozenge semiconductor CrTe 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuire, Michael A.; Garlea, V. Ovidiu; KC, Santosh
We have investigated the crystallographic, magnetic, and transport properties of the van der Waals bonded, layered compound CrTe 3 on single-crystal and polycrystalline materials. Furthermore, the crystal structure contains layers made up of lozenge-shaped Cr 4 tetramers. Electrical resistivity measurements show the crystals to be semiconducting, with a temperature dependence consistent with a band gap of 0.3 eV. The magnetic susceptibility exhibits a broad maximum near 300 K characteristic of low dimensional magnetic systems. Weak anomalies are observed in the susceptibility and heat capacity near 55 K, and single-crystal neutron diffraction reveals the onset of long-range antiferromagnetic order at thismore » temperature. Strongly dispersive spin waves are observed in the ordered state. Significant magnetoelastic coupling is indicated by the anomalous temperature dependence of the lattice parameters and is evident in structural optimization in van der Waals density functional theory calculations for different magnetic configurations. The cleavability of the compound is apparent from its handling and is confirmed by first-principles calculations, which predict a cleavage energy 0.5 J / m 2 , similar to graphite. Based on our results, CrTe 3 is identified as a promising compound for studies of low dimensional magnetism in bulk crystals as well as magnetic order in monolayer materials and van der Waals heterostructures.« less
NASA Astrophysics Data System (ADS)
Zhang, Jian; Liu, Siyu; Nshimiyimana, Jean Pierre; Deng, Ya; Hu, Xiao; Chi, Xiannian; Wu, Pei; Liu, Jia; Chu, Weiguo; Sun, Lianfeng
2018-06-01
A Van Hove singularity (VHS) is a singularity in the phonon or electronic density of states of a crystalline solid. When the Fermi energy is close to the VHS, instabilities will occur, which can give rise to new phases of matter with desirable properties. However, the position of the VHS in the band structure cannot be changed in most materials. In this work, we demonstrate that the carrier densities required to approach the VHS are reached by gating in a suspended carbon nanotube Schottky barrier transistor. Critical saddle points were observed in regions of both positive and negative gate voltage, and the conductance flattened out when the gate voltage exceeded the critical value. These novel physical phenomena were evident when the temperature is below 100 K. Further, the temperature dependence of the electrical characteristics was also investigated in this type of Schottky barrier transistor.
Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates
NASA Astrophysics Data System (ADS)
Bonilla, Manuel; Kolekar, Sadhu; Ma, Yujing; Diaz, Horacio Coy; Kalappattil, Vijaysankar; Das, Raja; Eggers, Tatiana; Gutierrez, Humberto R.; Phan, Manh-Huong; Batzill, Matthias
2018-04-01
Reduced dimensionality and interlayer coupling in van der Waals materials gives rise to fundamentally different electronic1, optical2 and many-body quantum3-5 properties in monolayers compared with the bulk. This layer-dependence permits the discovery of novel material properties in the monolayer regime. Ferromagnetic order in two-dimensional materials is a coveted property that would allow fundamental studies of spin behaviour in low dimensions and enable new spintronics applications6-8. Recent studies have shown that for the bulk-ferromagnetic layered materials CrI3 (ref. 9) and Cr2Ge2Te6 (ref. 10), ferromagnetic order is maintained down to the ultrathin limit at low temperatures. Contrary to these observations, we report the emergence of strong ferromagnetic ordering for monolayer VSe2, a material that is paramagnetic in the bulk11,12. Importantly, the ferromagnetic ordering with a large magnetic moment persists to above room temperature, making VSe2 an attractive material for van der Waals spintronics applications.
NASA Astrophysics Data System (ADS)
Zhuravlev, A. K.; Anokhin, A. O.; Irkhin, V. Yu.
2018-02-01
Simple scaling consideration and NRG solution of the one- and two-channel Kondo model in the presence of a logarithmic Van Hove singularity at the Fermi level is given. The temperature dependences of local and impurity magnetic susceptibility and impurity entropy are calculated. The low-temperature behavior of the impurity susceptibility and impurity entropy turns out to be non-universal in the Kondo sense and independent of the s-d coupling J. The resonant level model solution in the strong coupling regime confirms the NRG results. In the two-channel case the local susceptibility demonstrates a non-Fermi-liquid power-law behavior.
Van der Waals interaction in uniaxial anisotropic media.
Kornilovitch, Pavel E
2013-01-23
Van der Waals interactions between flat surfaces in uniaxial anisotropic media are investigated in the nonretarded limit. The main focus is the effect of nonzero tilt between the optical axis and the surface normal on the strength of the van der Waals attraction. General expressions for the van der Waals free energy are derived using the surface mode method and the transfer-matrix formalism. To facilitate numerical calculations a temperature-dependent three-band parameterization of the dielectric tensor of the liquid crystal 5CB is developed. A solid slab immersed in a liquid crystal experiences a van der Waals torque that aligns the surface normal relative to the optical axis of the medium. The preferred orientation is different for different materials. Two solid slabs in close proximity experience a van der Waals attraction that is strongest for homeotropic alignment of the intervening liquid crystal for all the materials studied. The results have implications for the stability of plate-like colloids in liquid crystal hosts.
Dependence of Van-Vleck paramagnetism on the size of nanocrystals in superstoichiometric TiO{sub y}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valeeva, A. A., E-mail: valeeva@ihim.uran.ru; Nazarova, S. Z.; Rempel, A. A.
2016-04-15
In situ measurements of the magnetic susceptibility of titanium monoxide nanocrystals with superstoichiometric composition TiO{sub y} (y > 1) in the 300–1200 K temperature range showed that this value depends not only on the structural state of a sample, but also on the size of crystals. Analysis of data obtained for both ordered and disordered TiO{sub y} showed that the Van-Vleck paramagnetism is inversely proportional to the nanocrystal size because of breakage of the symmetry of local environment of the near-surface atoms of titanium and oxygen. The Van-Vleck paramagnetism contribution due to atomic-vacancy disorder in superstoichiometric titanium monoxide nanocrystals, asmore » well as in the stoichiometric composition, is proportional to a deviation of the degree of long-range order from its maximum value.« less
Hu, Hongyi; Wang, Feng
2015-06-07
In this paper, the surface tension and critical properties for the TIP4P/2005 and BLYPSP-4F models are reported. A clear dependence of surface tension on the van der Waals cutoff radius (rvdw) is shown when van der Waals interactions are modeled with a simple cutoff scheme. A linear extrapolation formula is proposed that can be used to determine the infinite rvdw surface tension through a few simulations with finite rvdw. A procedure for determining liquid and vapor densities is proposed that does not require fitting to a profile function. Although the critical temperature of water is also found to depend on the choice of rvdw, the dependence is weaker. We argue that a rvdw of 1.75 nm is a good compromise for water simulations when long-range van der Waals correction is not applied. Since the majority of computational programs do not support rigorous treatment of long-range dispersion, the establishment of a minimal acceptable rvdw is important for the simulation of a variety of inhomogeneous systems, such as water bubbles, and water in confined environments. The BLYPSP-4F model predicts room temperature surface tension marginally better than TIP4P/2005 but overestimates the critical temperature. This is expected since only liquid configurations were fit during the development of the BLYPSP-4F potential. The potential is expected to underestimate the stability of vapor and thus overestimate the region of stability for the liquid.
A fully automated temperature-dependent resistance measurement setup using van der Pauw method
NASA Astrophysics Data System (ADS)
Pandey, Shivendra Kumar; Manivannan, Anbarasu
2018-03-01
The van der Pauw (VDP) method is widely used to identify the resistance of planar homogeneous samples with four contacts placed on its periphery. We have developed a fully automated thin film resistance measurement setup using the VDP method with the capability of precisely measuring a wide range of thin film resistances from few mΩ up to 10 GΩ under controlled temperatures from room-temperature up to 600 °C. The setup utilizes a robust, custom-designed switching network board (SNB) for measuring current-voltage characteristics automatically at four different source-measure configurations based on the VDP method. Moreover, SNB is connected with low noise shielded coaxial cables that reduce the effect of leakage current as well as the capacitance in the circuit thereby enhancing the accuracy of measurement. In order to enable precise and accurate resistance measurement of the sample, wide range of sourcing currents/voltages are pre-determined with the capability of auto-tuning for ˜12 orders of variation in the resistances. Furthermore, the setup has been calibrated with standard samples and also employed to investigate temperature dependent resistance (few Ω-10 GΩ) measurements for various chalcogenide based phase change thin films (Ge2Sb2Te5, Ag5In5Sb60Te30, and In3SbTe2). This setup would be highly helpful for measurement of temperature-dependent resistance of wide range of materials, i.e., metals, semiconductors, and insulators illuminating information about structural change upon temperature as reflected by change in resistances, which are useful for numerous applications.
Characterization of rarefaction waves in van der Waals fluids
NASA Astrophysics Data System (ADS)
Yuen, Albert; Barnard, John J.
2015-12-01
We calculate the isentropic evolution of an instantaneously heated foil, assuming a van der Waals equation of state with the Maxwell construction. The analysis by Yuen and Barnard [Phys. Rev. E 92, 033019 (2015), 10.1103/PhysRevE.92.033019] is extended for the particular case of three degrees of freedom. We assume heating to temperatures in the vicinity of the critical point. The self-similar profiles of the rarefaction waves describing the evolution of the foil display plateaus in density and temperature due to a phase transition from the single-phase to the two-phase regime. The hydrodynamic equations are expressed in a dimensionless form and the solutions form a set of universal curves, depending on a single parameter: the dimensionless initial entropy. We characterize the rarefaction waves by calculating how the plateau length, density, pressure, temperature, velocity, internal energy, and sound speed vary with dimensionless initial entropy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pribram-Jones, Aurora; Grabowski, Paul E.; Burke, Kieron
We present that the van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. Finally, this produces a natural method for generating new thermal exchange-correlation approximations.
Pribram-Jones, Aurora; Grabowski, Paul E.; Burke, Kieron
2016-06-08
We present that the van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. Finally, this produces a natural method for generating new thermal exchange-correlation approximations.
Rarefaction waves in van der Waals fluids with an arbitrary number of degrees of freedom
Yuen, Albert; Barnard, John J.
2015-09-30
The isentropic expansion of an instantaneously and homogeneously heated foil is calculated using a 1D fluid model. The initial temperature and density are assumed to be in the vicinity of the critical temperature and solid density, respectively. The fluid is assumed to satisfy the van der Waals equation of state with an arbitrary number of degrees of freedom. Self-similar Riemann solutions are found. With a larger number of degrees of freedom f, depending on the initial dimensionless entropymore » $$˜\\atop{s_0}$$, a richer family of foil expansion behaviors have been found. We calculate the domain in parameter space where these behaviors occur. In total, eight types of rarefaction waves are found and described.« less
Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit.
Huang, Bevin; Clark, Genevieve; Navarro-Moratalla, Efrén; Klein, Dahlia R; Cheng, Ran; Seyler, Kyle L; Zhong, Ding; Schmidgall, Emma; McGuire, Michael A; Cobden, David H; Yao, Wang; Xiao, Di; Jarillo-Herrero, Pablo; Xu, Xiaodong
2017-06-07
Since the discovery of graphene, the family of two-dimensional materials has grown, displaying a broad range of electronic properties. Recent additions include semiconductors with spin-valley coupling, Ising superconductors that can be tuned into a quantum metal, possible Mott insulators with tunable charge-density waves, and topological semimetals with edge transport. However, no two-dimensional crystal with intrinsic magnetism has yet been discovered; such a crystal would be useful in many technologies from sensing to data storage. Theoretically, magnetic order is prohibited in the two-dimensional isotropic Heisenberg model at finite temperatures by the Mermin-Wagner theorem. Magnetic anisotropy removes this restriction, however, and enables, for instance, the occurrence of two-dimensional Ising ferromagnetism. Here we use magneto-optical Kerr effect microscopy to demonstrate that monolayer chromium triiodide (CrI 3 ) is an Ising ferromagnet with out-of-plane spin orientation. Its Curie temperature of 45 kelvin is only slightly lower than that of the bulk crystal, 61 kelvin, which is consistent with a weak interlayer coupling. Moreover, our studies suggest a layer-dependent magnetic phase, highlighting thickness-dependent physical properties typical of van der Waals crystals. Remarkably, bilayer CrI 3 displays suppressed magnetization with a metamagnetic effect, whereas in trilayer CrI 3 the interlayer ferromagnetism observed in the bulk crystal is restored. This work creates opportunities for studying magnetism by harnessing the unusual features of atomically thin materials, such as electrical control for realizing magnetoelectronics, and van der Waals engineering to produce interface phenomena.
Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
Huang, Bevin; Clark, Genevieve; Navarro-Moratalla, Efrén; ...
2017-06-07
Since the celebrated discovery of graphene, the family of two-dimensional (2D) materials has grown to encompass a broad range of electronic properties. Recent additions include spin-valley coupled semiconductors, Ising superconductors that can be tuned into a quantum metal, possible Mott insulators with tunable charge-density waves, and topological semi-metals with edge transport. Despite this progress, there is still no 2D crystal with intrinsic magnetism, which would be useful for many technologies such as sensing, information, and data storage. Theoretically, magnetic order is prohibited in the 2D isotropic Heisenberg model at finite temperatures by the Mermin-Wagner theorem. However, magnetic anisotropy removes thismore » restriction and enables, for instance, the occurrence of 2D Ising ferromagnetism. Here, we use magneto-optical Kerr effect (MOKE) microscopy to demonstrate that monolayer chromium triiodide (CrI 3) is an Ising ferromagnet with out-of-plane spin orientation. Its Curie temperature of 45 K is only slightly lower than the 61 K of the bulk crystal, consistent with a weak interlayer coupling. Moreover, our studies suggest a layer-dependent magnetic phases, showcasing the hallmark thickness dependent physical properties typical of van der Waals crystals. Remarkably, bilayer CrI3 displays suppressed magnetization with a metamagnetic effect, while in trilayer the interlayer ferromagnetism observed in the bulk crystal is restored. Our work creates opportunities for studying magnetism by harnessing the unique features of atomically-thin materials, such as electrical control for realizing magnetoelectronics, and van der Waals engineering for novel interface phenomena.« less
Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Bevin; Clark, Genevieve; Navarro-Moratalla, Efrén
Since the celebrated discovery of graphene, the family of two-dimensional (2D) materials has grown to encompass a broad range of electronic properties. Recent additions include spin-valley coupled semiconductors, Ising superconductors that can be tuned into a quantum metal, possible Mott insulators with tunable charge-density waves, and topological semi-metals with edge transport. Despite this progress, there is still no 2D crystal with intrinsic magnetism, which would be useful for many technologies such as sensing, information, and data storage. Theoretically, magnetic order is prohibited in the 2D isotropic Heisenberg model at finite temperatures by the Mermin-Wagner theorem. However, magnetic anisotropy removes thismore » restriction and enables, for instance, the occurrence of 2D Ising ferromagnetism. Here, we use magneto-optical Kerr effect (MOKE) microscopy to demonstrate that monolayer chromium triiodide (CrI 3) is an Ising ferromagnet with out-of-plane spin orientation. Its Curie temperature of 45 K is only slightly lower than the 61 K of the bulk crystal, consistent with a weak interlayer coupling. Moreover, our studies suggest a layer-dependent magnetic phases, showcasing the hallmark thickness dependent physical properties typical of van der Waals crystals. Remarkably, bilayer CrI3 displays suppressed magnetization with a metamagnetic effect, while in trilayer the interlayer ferromagnetism observed in the bulk crystal is restored. Our work creates opportunities for studying magnetism by harnessing the unique features of atomically-thin materials, such as electrical control for realizing magnetoelectronics, and van der Waals engineering for novel interface phenomena.« less
Sousa, João Miguel; Ferreira, António Luís; Fagg, Duncan Paul; Titus, Elby; Krishna, Rahul; Gracio, José
2012-08-01
Grand canonical Monte Carlo simulations of hydrogen adsorption in zeolites NaA were carried out for a wide range of temperatures between 77 and 300 K and pressures up to 180 MPa. A potential model was used that comprised of three main interactions: van der Waals, coulombic and induced polarization by the electric field in the system. The computed average number of adsorbed molecules per unit cell was compared with available results and found to be in agreement in the regime of moderate to high pressures. The particle insertion method was used to calculate the Henry coefficient for this model and its dependence on temperature.
Analytical theory of the hydrophobic effect of solutes in water.
Urbic, Tomaz; Dill, Ken A
2017-09-01
We develop an analytical statistical-mechanical model for hydrophobic solvation in water. In this three-dimensional Mercedes-Benz-like model, two neighboring waters have three possible interaction states: a radial van der Waals interaction, a tetrahedral orientation-dependent hydrogen-bonding interaction, or no interaction. Nonpolar solutes are modeled as van der Waals particles of different radii. The model is sufficiently simple that we can calculate the partition function and thermal and volumetric properties of solvation versus temperature, pressure, and solute radius. Predictions are in good agreement with results of Monte Carlo simulations. And their trends agree with experiments on hydrophobic solute insertion. The theory shows that first-shell waters are more highly structured than bulk waters, because of hydrogen bonding, and that that structure melts out faster with temperature than it does in bulk waters. Because the theory is analytical, it can explore a broad range of solvation properties and anomalies of water, at minimal computational expense.
Resistivity in the Vicinity of a van Hove Singularity: Sr2RuO4 under Uniaxial Pressure
NASA Astrophysics Data System (ADS)
Barber, M. E.; Gibbs, A. S.; Maeno, Y.; Mackenzie, A. P.; Hicks, C. W.
2018-02-01
We report the results of a combined study of the normal-state resistivity and superconducting transition temperature Tc of the unconventional superconductor Sr2 RuO4 under uniaxial pressure. There is strong evidence that, as well as driving Tc through a maximum at ˜3.5 K , compressive strains ɛ of nearly 1% along the crystallographic [100] axis drive the γ Fermi surface sheet through a van Hove singularity, changing the temperature dependence of the resistivity from T2 above, and below the transition region to T1.5 within it. This occurs in extremely pure single-crystals in which the impurity contribution to the resistivity is <100 n Ω cm , so our study also highlights the potential of uniaxial pressure as a more general probe of this class of physics in clean systems.
Analytical theory of the hydrophobic effect of solutes in water
NASA Astrophysics Data System (ADS)
Urbic, Tomaz; Dill, Ken A.
2017-09-01
We develop an analytical statistical-mechanical model for hydrophobic solvation in water. In this three-dimensional Mercedes-Benz-like model, two neighboring waters have three possible interaction states: a radial van der Waals interaction, a tetrahedral orientation-dependent hydrogen-bonding interaction, or no interaction. Nonpolar solutes are modeled as van der Waals particles of different radii. The model is sufficiently simple that we can calculate the partition function and thermal and volumetric properties of solvation versus temperature, pressure, and solute radius. Predictions are in good agreement with results of Monte Carlo simulations. And their trends agree with experiments on hydrophobic solute insertion. The theory shows that first-shell waters are more highly structured than bulk waters, because of hydrogen bonding, and that that structure melts out faster with temperature than it does in bulk waters. Because the theory is analytical, it can explore a broad range of solvation properties and anomalies of water, at minimal computational expense.
Isotope engineering of van der Waals interactions in hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Vuong, T. Q. P.; Liu, S.; van der Lee, A.; Cuscó, R.; Artús, L.; Michel, T.; Valvin, P.; Edgar, J. H.; Cassabois, G.; Gil, B.
2018-02-01
Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes (10B and 11B) compared to those with the natural distribution of boron (20 at% 10B and 80 at% 11B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10BN than in 11BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.
Isotope engineering of van der Waals interactions in hexagonal boron nitride.
Vuong, T Q P; Liu, S; Van der Lee, A; Cuscó, R; Artús, L; Michel, T; Valvin, P; Edgar, J H; Cassabois, G; Gil, B
2018-02-01
Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes ( 10 B and 11 B) compared to those with the natural distribution of boron (20 at% 10 B and 80 at% 11 B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10 BN than in 11 BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.
Secundo, Francesco; Russo, Consiglia; Giordano, Antonietta; Carrea, Giacomo; Rossi, Mosè; Raia, Carlo A
2005-08-23
A combination of hydrogen/deuterium exchange, fluorescence quenching, and kinetic studies was used to acquire experimental evidence for the crystallographically hypothesized increase in local flexibility which occurs in thermophilic NAD(+)-dependent Sulfolobus solfataricus alcohol dehydrogenase (SsADH) upon substitution Asn249Tyr. The substitution, located at the adenine-binding site, proved to decrease the affinity for both coenzyme and substrate, rendering the mutant enzyme 6-fold more active when compared to the wild-type enzyme [Esposito et al. (2003) FEBS Lett. 539, 14-18]. The amide H/D exchange data show that the wild-type and mutant enzymes have similar global flexibility at 22 and 60 degrees C. However, the temperature dependence of the Stern-Volmer constant determined by acrylamide quenching shows that the increase in temperature affects the local flexibility differently, since the K(SV) increment is significantly higher for the wild-type than for the mutant enzyme over the range 18-45 degrees C. Interestingly, the corresponding van't Hoff plot (log K(SV) vs 1/T) proves nonlinear for the apo and holo wild-type and apo mutant enzymes, with a break at approximately 45 degrees C in all three cases due to a conformational change affecting the tryptophan microenvironment experienced by the quencher molecules. The Arrhenius and van't Hoff plots derived from the k(cat) and K(M) thermodependence measured with cyclohexanol and NAD(+) at different temperatures display an abrupt change of slope at 45-50 degrees C. This proves more pronounced in the case of the mutant enzyme compared to the wild-type enzyme due to a conformational change in the structure rather than to an overlapping of two or more rate-limiting reaction steps with different temperature dependencies of their rate constants. Three-dimensional analysis indicates that the observed conformational change induced by temperature is associated with the flexible loops directly involved in the substrate and coenzyme binding.
El Amrani, Abdel-Ilah; El Amrani-Callens, Francine; Loriot, Stéphane; Singh, Pramila; Forster, Roy
2016-01-01
Cardiovascular safety assessment requires accurate evaluation of QT interval, which depends on the length of the cardiac cycle and also on core body temperature (BT). Increases in QT interval duration have been shown to be associated with decreases in BT in dogs. An example of altered QT interval duration associated with changes in body temperature observed during a 4-week regulatory toxicology study in dogs is presented. Four groups of Beagle dogs received the vehicle or test item once on Day 1, followed by a 4-week observation period. Electrocardiogram (ECG) parameters were continuously recorded on Days 1 and 26 by jacketed external telemetry (JET). Core body temperature (BT) was measured with a conventional rectal thermometer at appropriate time-points during the Day 1 recording period. Decreased BT was observed approximately 2h after treatment on Day 1, along with increased QT interval duration corrected according to the Van de Water formula (QTcV), but the effect was no longer observed after correction for changes in BT [QTcVcT=QTcV-14(37.5-BT)] according to the Van der Linde formula. No significant changes in QTcV were reported at the end of the observation period, on Day 26. The present study demonstrates that core body (rectal) temperature can easily be monitored at appropriate time-points during JET recording in regulatory toxicology studies in dogs, in order to correct QT interval duration values for treatment-related changes in BT. The successful application of the Van der Linde formula to correct QTc prolongation for changes in BT was demonstrated. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Hall number across a van Hove singularity
Maharaj, Akash V.; Esterlis, Ilya; Zhang, Yi; ...
2017-07-24
In this paper, in the context of the relaxation time approximation to Boltzmann transport theory, we examine the behavior of the Hall number n H of a metal in the neighborhood of a Lifshitz transition from a closed Fermi surface to open sheets. We find a universal nonanalytic dependence of n H on the electron density in the high-field limit, but a nonsingular dependence at low fields. Finally, the existence of an assumed nematic transition produces a doping dependent n H similar to that observed in recent experiments in the high-temperature superconductor YBa 2Cu 3O 7-x.
Magnetization of topological line-node semimetals
NASA Astrophysics Data System (ADS)
Mikitik, G. P.; Sharlai, Yu. V.
2018-02-01
Using an approximate expression for the Landau levels of the electrons located near a nodal line of a topological line-node semimetal, we obtain formulas for the magnetization of this semimetal at an arbitrary shape of its line. It is also shown that the dependence of the chemical potential on the magnetic field can be strong in these materials, and this dependence can essentially influence the de Haas-van Alphen oscillations. The obtained results are applied to the rhombohedral graphite, which is one of the line-node semimetals. For this material, we find temperature and magnetic field dependencies of its magnetic susceptibility.
Three-Body Recombination near a Narrow Feshbach Resonance in
NASA Astrophysics Data System (ADS)
Li, Jiaming; Liu, Ji; Luo, Le; Gao, Bo
2018-05-01
We experimentally measure and theoretically analyze the three-atom recombination rate, L3, around a narrow s -wave magnetic Feshbach resonance of
NASA Astrophysics Data System (ADS)
Meier, G.; Gapinski, J.; Ratajczyk, M.; Lettinga, M. P.; Hirtz, K.; Banachowicz, E.; Patkowski, A.
2018-03-01
The Stokes-Einstein relation allows us to calculate apparent viscosity experienced by tracers in complex media on the basis of measured self-diffusion coefficients. Such defined nano-viscosity values can be obtained through single particle techniques, like fluorescence correlation spectroscopy (FCS) and particle tracking (PT). In order to perform such measurements, as functions of pressure and temperature, a new sample cell was designed and is described in this work. We show that this cell in combination with a long working distance objective of the confocal microscope can be used for successful FCS, PT, and confocal imaging experiments in broad pressure (0.1-100 MPa) and temperature ranges. The temperature and pressure dependent nano-viscosity of a van der Waals liquid obtained from the translational diffusion coefficient measured in this cell by means of FCS obeys the same scaling as the rotational relaxation and macro-viscosity of the system.
Accounting for apparent deviations between calorimetric and van't Hoff enthalpies.
Kantonen, Samuel A; Henriksen, Niel M; Gilson, Michael K
2018-03-01
In theory, binding enthalpies directly obtained from calorimetry (such as ITC) and the temperature dependence of the binding free energy (van't Hoff method) should agree. However, previous studies have often found them to be discrepant. Experimental binding enthalpies (both calorimetric and van't Hoff) are obtained for two host-guest pairs using ITC, and the discrepancy between the two enthalpies is examined. Modeling of artificial ITC data is also used to examine how different sources of error propagate to both types of binding enthalpies. For the host-guest pairs examined here, good agreement, to within about 0.4kcal/mol, is obtained between the two enthalpies. Additionally, using artificial data, we find that different sources of error propagate to either enthalpy uniquely, with concentration error and heat error propagating primarily to calorimetric and van't Hoff enthalpies, respectively. With modern calorimeters, good agreement between van't Hoff and calorimetric enthalpies should be achievable, barring issues due to non-ideality or unanticipated measurement pathologies. Indeed, disagreement between the two can serve as a flag for error-prone datasets. A review of the underlying theory supports the expectation that these two quantities should be in agreement. We address and arguably resolve long-standing questions regarding the relationship between calorimetric and van't Hoff enthalpies. In addition, we show that comparison of these two quantities can be used as an internal consistency check of a calorimetry study. Copyright © 2017 Elsevier B.V. All rights reserved.
Dryden, Daniel M; Hopkins, Jaime C; Denoyer, Lin K; Poudel, Lokendra; Steinmetz, Nicole F; Ching, Wai-Yim; Podgornik, Rudolf; Parsegian, Adrian; French, Roger H
2015-09-22
The self-assembly of heterogeneous mesoscale systems is mediated by long-range interactions, including van der Waals forces. Diverse mesoscale architectures, built of optically and morphologically anisotropic elements such as DNA, collagen, single-walled carbon nanotubes, and inorganic materials, require a tool to calculate the forces, torques, interaction energies, and Hamaker coefficients that govern assembly in such systems. The mesoscale Lifshitz theory of van der Waals interactions can accurately describe solvent and temperature effects, retardation, and optically and morphologically anisotropic materials for cylindrical and planar interaction geometries. The Gecko Hamaker open-science software implementation of this theory enables new and sophisticated insights into the properties of important organic/inorganic systems: interactions show an extended range of magnitudes and retardation rates, DNA interactions show an imprint of base pair composition, certain SWCNT interactions display retardation-dependent nonmonotonicity, and interactions are mapped across a range of material systems in order to facilitate rational mesoscale design.
van der Waals criticality in AdS black holes: A phenomenological study
NASA Astrophysics Data System (ADS)
Bhattacharya, Krishnakanta; Majhi, Bibhas Ranjan; Samanta, Saurav
2017-10-01
Anti-de Sitter black holes exhibit van der Waals-type phase transition. In the extended phase-space formalism, the critical exponents for any spacetime metric are identical to the standard ones. Motivated by this fact, we give a general expression for the Helmholtz free energy near the critical point, which correctly reproduces these exponents. The idea is similar to the Landau model, which gives a phenomenological description of the usual second-order phase transition. Here, two main inputs are taken into account for the analysis: (a) black holes should have van der Waals-like isotherms, and (b) free energy can be expressed solely as a function of thermodynamic volume and horizon temperature. Resulting analysis shows that the form of Helmholtz free energy correctly encapsulates the features of the Landau function. We also discuss the isolated critical point accompanied by nonstandard values of critical exponents. The whole formalism is then extended to two other criticalities, namely, Y -X and T -S (based on the standard; i.e., nonextended phase space), where X and Y are generalized force and displacement, whereas T and S are the horizon temperature and entropy. We observe that in the former case Gibbs free energy plays the role of Landau function, whereas in the later case, that role is played by the internal energy (here, it is the black hole mass). Our analysis shows that, although the existence of a van der Waals phase transition depends on the explicit form of the black hole metric, the values of the critical exponents are universal in nature.
Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites
NASA Technical Reports Server (NTRS)
Wei, Chengyu; Srivastava, Deepak; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)
2001-01-01
Classical molecular dynamics (MD) simulations employing Brenner potential for intra-nanotube interactions and van der Waals forces for polymer-nanotube interface have been used to investigate thermal expansion and diffusion characteristics of carbon nanotube-polyethylene composites. Addition of carbon nanotubes to polymer matrix is found to significantly increase the glass transition temperature Tg, and thermal expansion and diffusion coefficients in the composite above Tg. The increase has been attributed to the temperature dependent increase of the excluded volume for the polymer chains, and the findings could have implications in the composite processing, coating and painting applications.
Fekete, Szabolcs; Guillarme, Davy
2015-05-08
The goal of this work was to evaluate the changes in retention induced by frictional heating, pressure and temperature under ultra high pressure liquid chromatography (UHPLC) conditions, for four model proteins (i.e. lysozyme, myoglobin, fligrastim and interferon alpha-2A) possessing molecular weights between 14 and 20kDa. First of all, because the decrease of the molar volume upon adsorption onto a hydrophobic surface was more pronounced for large molecules such as proteins, the impact of pressure appears to overcome the frictional heating effects. Nevertheless, we have also demonstrated that the retention decrease due to frictional heating was not negligible with such large biomolecules in the variable inlet pressure mode. Secondly, it is clearly shown that the modification of retention under various pressure and temperature conditions cannot be explained solely by the frictional heating and pressure effects. Indeed, some very uncommon van't Hoff plots (concave plots with a maximum) were recorded for our model/therapeutic proteins. These maximum retention factors values on the van't Hoff plots indicate a probable change of secondary structure/conformation with pressure and temperature. Based on these observations, it seems that the combination of pressure and temperature causes the protein denaturation and this folding-unfolding procedure is clearly protein dependent. Copyright © 2015 Elsevier B.V. All rights reserved.
The phosphatidyl choline exchange properties in the cytosol of Aspergillus niger.
Audigier-Petit, C; Letoublon, R; Fayet, Y; Got, R; Frot-Coutaz, J
1986-01-01
The presence of a PC-binding activity in the cytosol of Aspergillus niger van Tieghem has been established by measuring the reversible exchange of labeled DPC between an adsorbent (celite) and the cytosol. We have shown that this exchange is dependent upon the temperature and the ionic strength and it varies linearly with the protein concentration. This PC-binding activity is able to discriminate between DPC and some other phospholipids.
High-temperature magnetostructural transition in van der Waals-layered α - MoCl 3
McGuire, Michael A.; Yan, Jiaqiang; Lampen-Kelley, Paula; ...
2017-11-07
Here, the crystallographic and magnetic properties of the cleavable 4d 3 transition metal compound α–MoCl 3 are reported, with a focus on the behavior above room temperature. Crystals were grown by chemical vapor transport and characterized using temperature dependent x-ray diffraction, Raman spectroscopy, and magnetization measurements. A structural phase transition occurs near 585 K, at which the Mo-Mo dimers present at room temperature are broken. A nearly regular honeycomb net of Mo is observed above the transition, and an optical phonon associated with the dimerization instability is identified in the Raman data and in first-principles calculations. The crystals are diamagneticmore » at room temperature in the dimerized state, and the magnetic susceptibility increases sharply at the structural transition. Moderately strong paramagnetism in the high-temperature structure indicates the presence of local moments on Mo. This is consistent with results of spin-polarized density functional theory calculations using the low- and high-temperature structures. Above the magnetostructural phase transition the magnetic susceptibility continues to increase gradually up to the maximum measurement temperature of 780 K, with a temperature dependence that suggests two-dimensional antiferromagnetic correlations.« less
High-temperature magnetostructural transition in van der Waals-layered α -MoCl3
NASA Astrophysics Data System (ADS)
McGuire, Michael A.; Yan, Jiaqiang; Lampen-Kelley, Paula; May, Andrew F.; Cooper, Valentino R.; Lindsay, Lucas; Puretzky, Alexander; Liang, Liangbo; KC, Santosh; Cakmak, Ercan; Calder, Stuart; Sales, Brian C.
2017-11-01
The crystallographic and magnetic properties of the cleavable 4 d3 transition metal compound α -MoCl3 are reported, with a focus on the behavior above room temperature. Crystals were grown by chemical vapor transport and characterized using temperature dependent x-ray diffraction, Raman spectroscopy, and magnetization measurements. A structural phase transition occurs near 585 K, at which the Mo-Mo dimers present at room temperature are broken. A nearly regular honeycomb net of Mo is observed above the transition, and an optical phonon associated with the dimerization instability is identified in the Raman data and in first-principles calculations. The crystals are diamagnetic at room temperature in the dimerized state, and the magnetic susceptibility increases sharply at the structural transition. Moderately strong paramagnetism in the high-temperature structure indicates the presence of local moments on Mo. This is consistent with results of spin-polarized density functional theory calculations using the low- and high-temperature structures. Above the magnetostructural phase transition the magnetic susceptibility continues to increase gradually up to the maximum measurement temperature of 780 K, with a temperature dependence that suggests two-dimensional antiferromagnetic correlations.
Electrode effects in dielectric spectroscopy measurements on (Nb+In) co-doped TiO2
NASA Astrophysics Data System (ADS)
Crandles, D. A.; Yee, S. M. M.; Savinov, M.; Nuzhnyy, D.; Petzelt, J.; Kamba, S.; Prokeš, J.
2016-04-01
Recently, several papers reported the discovery of giant permittivity and low dielectric loss in (Nb+In) co-doped TiO2. A series of tests was performed which included the measurement of the frequency dependence of the dielectric permittivity and alternating current (ac) conductivity of co-doped (Nb+In)TiO2 as a function of electrode type, sample thickness, and temperature. The data suggest that the measurements are strongly affected by the electrodes. The consistency between four-contact van der Pauw direct current conductivity measurements and bulk conductivity values extracted from two-contact ac conductivity measurements suggest that the values of colossal permittivity are, at least in part, a result of Schottky barrier depletion widths that depend on electrode type and temperature.
Electrode effects in dielectric spectroscopy measurements on (Nb +In) co-doped TiO2
NASA Astrophysics Data System (ADS)
Crandles, David; Yee, Susan; Savinov, Maxim; Nuzhnyy, Dimitri; Petzelt, Jan; Kamba, Stanislav; Prokes, Jan
Recently, several papers reported the discovery of giant permittivity and low dielectric loss in (Nb+In) co-doped TiO2. A series of tests was performed which included the measurement of the frequency dependence of the dielectric permittivity and ac conductivity of co-doped (Nb+In)TiO2 as a function of electrode type, sample thickness and temperature. The data suggest that the measurements are strongly affected by the electrodes. The consistency between four contact van der Pauw dc conductivity measurements and bulk conductivity values extracted from two contact ac conductivity measurements suggest that the values of colossal permittivity are, at least in part, a result of Schottky barrier depletion widths that depend on electrode type and temperature. Nserc, Czech Science Foundation (Project 15-08389S).
van der Waals epitaxial ZnTe thin film on single-crystalline graphene
NASA Astrophysics Data System (ADS)
Sun, Xin; Chen, Zhizhong; Wang, Yiping; Lu, Zonghuan; Shi, Jian; Washington, Morris; Lu, Toh-Ming
2018-01-01
Graphene template has long been promoted as a promising host to support van der Waals flexible electronics. However, van der Waals epitaxial growth of conventional semiconductors in planar thin film form on transferred graphene sheets is challenging because the nucleation rate of film species on graphene is significantly low due to the passive surface of graphene. In this work, we demonstrate the epitaxy of zinc-blende ZnTe thin film on single-crystalline graphene supported by an amorphous glass substrate. Given the amorphous nature and no obvious remote epitaxy effect of the glass substrate, this study clearly proves the van der Waals epitaxy of a 3D semiconductor thin film on graphene. X-ray pole figure analysis reveals the existence of two ZnTe epitaxial orientational domains on graphene, a strong X-ray intensity observed from the ZnTe [ 1 ¯ 1 ¯ 2] ǁ graphene [10] orientation domain, and a weaker intensity from the ZnTe [ 1 ¯ 1 ¯ 2] ǁ graphene [11] orientation domain. Furthermore, this study systematically investigates the optoelectronic properties of this epitaxial ZnTe film on graphene using temperature-dependent Raman spectroscopy, steady-state and time-resolved photoluminescence spectroscopy, and fabrication and characterization of a ZnTe-graphene photodetector. The research suggests an effective approach towards graphene-templated flexible electronics.
Out-of-equilibrium relaxation of the thermal Casimir effect in a model polarizable material
NASA Astrophysics Data System (ADS)
Dean, David S.; Démery, Vincent; Parsegian, V. Adrian; Podgornik, Rudolf
2012-03-01
Relaxation of the thermal Casimir or van der Waals force (the high temperature limit of the Casimir force) for a model dielectric medium is investigated. We start with a model of interacting polarization fields with a dynamics that leads to a frequency dependent dielectric constant of the Debye form. In the static limit, the usual zero frequency Matsubara mode component of the Casimir force is recovered. We then consider the out-of-equilibrium relaxation of the van der Waals force to its equilibrium value when two initially uncorrelated dielectric bodies are brought into sudden proximity. For the interaction between dielectric slabs, it is found that the spatial dependence of the out-of-equilibrium force is the same as the equilibrium one, but it has a time dependent amplitude, or Hamaker coefficient, which increases in time to its equilibrium value. The final relaxation of the force to its equilibrium value is exponential in systems with a single or finite number of polarization field relaxation times. However, in systems, such as those described by the Havriliak-Negami dielectric constant with a broad distribution of relaxation times, we observe a much slower power law decay to the equilibrium value.
Theoretical Study on the Dynamics of the Reaction of HNO((1)A') with HO2((2)A″).
Mousavipour, S Hosein; Asemani, S Somayeh
2015-06-04
We used stochastic one-dimensional chemical master equation (CME) simulation to gain insight into the dynamics of the reaction of HNO((1)A') with HO2((2)A″). The reaction takes place over a multiwell, multichannel potential energy surface that is based on the computations at the CBS-QB3 level of theory. The calculated multipath potential energy surface consists of three potential wells and three van der Waals complexes. In solving the master equation, the Lennard-Jones potential is used to model the collision between the collider gases. The fractional population of different intermediates and products in the early stages of the reaction is examined to determine the role of the energized intermediates and van der Waals complexes on the kinetics of the title reaction. The major products of the title reaction at lower temperatures are OH, HNO2, HNOH, and O2(X(3)Σg(-)). The temperature- and pressure-dependence of the reaction over a wide range of temperature (300-3000 K) and pressure (0.1-2000 Torr) are studied. No sign of pressure dependence was being observed for the title reaction over the stated range of pressure. The calculated rate constants from the CME simulation are compared with those obtained from the RRKM-SSA method that is based on strong collision assumption. Our results indicate that the strong collision assumption increases the calculated rate constant for the formation of the main products (HNO2 + OH) by a factor of 2 at 300 K and 1 atm pressure, compared to the results of CME simulation, although the results are in good agreement at higher temperatures.
The electrical properties of 60 keV zinc ions implanted into semi-insulating gallium arsenide
NASA Technical Reports Server (NTRS)
Littlejohn, M. A.; Anikara, R.
1972-01-01
The electrical behavior of zinc ions implanted into chromium-doped semiinsulating gallium arsenide was investigated by measurements of the sheet resistivity and Hall effect. Room temperature implantations were performed using fluence values from 10 to the 12th to 10 to the 15th power/sq cm at 60 keV. The samples were annealed for 30 minutes in a nitrogen atmosphere up to 800 C in steps of 200 C and the effect of this annealing on the Hall effect and sheet resistivity was studied at room temperature using the Van der Pauw technique. The temperature dependence of sheet resistivity and mobility was measured from liquid nitrogen temperature to room temperature. Finally, a measurement of the implanted profile was obtained using a layer removal technique combined with the Hall effect and sheet resistivity measurements.
Lloyd-Hughes, J; Mosley, C D W; Jones, S P P; Lees, M R; Chen, A; Jia, Q X; Choi, E-M; MacManus-Driscoll, J L
2017-04-12
Colossal magnetoresistance (CMR) is demonstrated at terahertz (THz) frequencies by using terahertz time-domain magnetospectroscopy to examine vertically aligned nanocomposites (VANs) and planar thin films of La 0.7 Sr 0.3 MnO 3 . At the Curie temperature (room temperature), the THz conductivity of the VAN was dramatically enhanced by over 2 orders of magnitude under the application of a magnetic field with a non-Drude THz conductivity that increased with frequency. The direct current (dc) CMR of the VAN is controlled by extrinsic magnetotransport mechanisms such as spin-polarized tunneling between nanograins. In contrast, we find that THz CMR is dominated by intrinsic, intragrain transport: the mean free path was smaller than the nanocolumn size, and the planar thin-film exhibited similar THz CMR to the VAN. Surprisingly, the observed colossal THz magnetoresistance suggests that the magnetoresistance can be large for alternating current motion on nanometer length scales, even when the magnetoresistance is negligible on the macroscopic length scales probed by dc transport. This suggests that colossal magnetoresistance at THz frequencies may find use in nanoelectronics and in THz optical components controlled by magnetic fields. The VAN can be scaled in thickness while retaining a high structural quality and offers a larger THz CMR at room temperature than the planar film.
Lloyd-Hughes, James; Mosley, C. D. W.; Jones, S. P. P.; ...
2017-03-13
Colossal magnetoresistance (CMR) is demonstrated at terahertz (THz) frequencies by using terahertz time-domain magnetospectroscopy to examine vertically aligned nanocomposites (VANs) and planar thin films of La 0.7Sr 0.3MnO 3. At the Curie temperature (room temperature), the THz conductivity of the VAN was dramatically enhanced by over 2 orders of magnitude under the application of a magnetic field with a non-Drude THz conductivity that increased with frequency. The direct current (dc) CMR of the VAN is controlled by extrinsic magnetotransport mechanisms such as spin-polarized tunneling between nanograins. In contrast, we find that THz CMR is dominated by intrinsic, intragrain transport: themore » mean free path was smaller than the nanocolumn size, and the planar thin-film exhibited similar THz CMR to the VAN. Surprisingly, the observed colossal THz magnetoresistance suggests that the magnetoresistance can be large for alternating current motion on nanometer length scales, even when the magnetoresistance is negligible on the macroscopic length scales probed by dc transport. This suggests that colossal magnetoresistance at THz frequencies may find use in nanoelectronics and in THz optical components controlled by magnetic fields. As a result, the VAN can be scaled in thickness while retaining a high structural quality and offers a larger THz CMR at room temperature than the planar film.« less
NASA Astrophysics Data System (ADS)
Orbanić, F.; Novak, M.; Pleslić, S.; Kokanović, I.
2018-03-01
Magnetoresistance (MR), Hall resistance and magnetization of the Pb0.83Sn0.17Se crystals have been measured in magnetic field up to 15 T and 5 T, respectively, and temperatures from 1.7 K up to 300 K. A large linear and temperature dependent MR is observed in magnetic field up to 15 T. The de Haas–van Alphen (dHvA) and Shubnikov de Haas effects (SdH) of Pb0.83Sn0.17Se crystals have been clearly seen in the temperature range from 30 K down to 1.7 K and magnetic field as low as 2 T. The dHvA and SdH oscillations reveal single frequency of around 8 T which confirms the existence of a single Fermi surface cross section. Influence of isothermal annealing of Pb0.83Sn0.17Se crystals in Se vapours has been investigated. By increasing the annealing temperature from 433 °C up to 440 °C, transition from n to p-type conductivity has been observed. The dHvA and SdH effects clearly reflect the existence of a nontrivial Berry’s phase owing to the linear band dispersion which is the signature of a three-dimensional Dirac fermion in the Pb0.83Sn0.17Se crystals [1].
Anisotropic thermal transport in van der Waals layered alloys WSe2(1-x)Te2x
NASA Astrophysics Data System (ADS)
Qian, Xin; Jiang, Puqing; Yu, Peng; Gu, Xiaokun; Liu, Zheng; Yang, Ronggui
2018-06-01
Transition metal dichalcogenide (TMD) alloys have attracted great interest in recent years due to their tunable electronic properties and the semiconductor-metal phase transition along with their potential applications in solid-state memories and thermoelectrics among others. However, the thermal conductivity of layered TMD alloys remains largely unexplored despite that it plays a critical role in the reliability and functionality of TMD-enabled devices. In this work, we study the composition- and temperature-dependent anisotropic thermal conductivity of the van der Waals layered TMD alloys WSe2(1-x)Te2x in both the in-plane direction (parallel to the basal planes) and the cross-plane direction (along the c-axis) using time-domain thermoreflectance measurements. In the WSe2(1-x)Te2x alloys, the cross-plane thermal conductivity is observed to be dependent on the heating frequency (modulation frequency of the pump laser) due to the non-equilibrium transport between different phonon modes. Using a two-channel heat conduction model, we extracted the anisotropic thermal conductivity at the equilibrium limit. A clear discontinuity in both the cross-plane and the in-plane thermal conductivity is observed as x increases from 0.4 to 0.6 due to the phase transition from the 2H to the Td phase in the layered alloys. The temperature dependence of thermal conductivity for the TMD alloys was found to become weaker compared with the pristine 2H WSe2 and Td WTe2 due to the atomic disorder. This work serves as an important starting point for exploring phonon transport in layered alloys.
Lian, Cheng; Univ. of California, Riverside, CA; Zhao, Shuangliang; ...
2016-11-29
Understanding the charging kinetics of electric double layers is of fundamental importance for the design and development of novel electrochemical devices such as supercapacitors and field-effect transistors. In this paper, we study the dynamic behavior of room-temperature ionic liquids using a classical time-dependent density functional theory that accounts for the molecular excluded volume effects, the electrostatic correlations, and the dispersion forces. While the conventional models predict a monotonic increase of the surface charge with time upon application of an electrode voltage, our results show that dispersion between ions results in a non-monotonic increase of the surface charge with the durationmore » of charging. Finally and furthermore, we investigate the effects of van der Waals attraction between electrode/ionic-liquid interactions on the charging processes.« less
Mitchell, Stephanie L; Mattei, Lisa M; Alby, Kevin
2017-08-01
Vancomycin-dependent enterococci are a relatively uncommon phenotype recovered in the clinical laboratory. Recognition and recovery of these isolates are important, to provide accurate identification and susceptibility information to treating physicians. Herein, we describe the recovery of a vancomycin-dependent and revertant E. faecium isolates harboring vanB operon from a patient with bacteremia. Using whole genome sequencing, we found a unique single nucleotide polymorphism (S186N) in the D-Ala-D-Ala ligase (ddl) conferring vancomycin-dependency. Additionally, we found that a majority of in vitro revertants mutated outside ddl, with some strains harboring mutations in vanS, while others likely containing novel mechanisms of reversion. Copyright © 2017 Elsevier B.V. All rights reserved.
Görgenyi, Miklós; Héberger, Károly
2005-04-01
Molar solvation enthalpy (deltasol H(o)298) and molar heat capacity changes (deltasol C(o)p) were determined by gas chromatography for the C6-C12 n-alkanes on four preferred stationary phases (100% polydimethyl siloxane, 50% diphenyl-50% dimethyl polysiloxane, 50% trifluoropropyl methylsiloxane, and polyethylene glycol) in commercial FSOT. Statistical evaluation indicated the temperature independence of deltasol C(o)p in the range 303-393 K. Deltasol H(o)298 depends linearly on the number of carbon atoms in the n-alkanes, but no linearity could be established for deltasol C(o)p of higher homologues on polar columns, which may be due to a more ordered state on the liquid phase. The homologues for which a linear temperature dependence exists demonstrated that deltasol C(o)p is related linearly to the van der Waals volume and the temperature derivative of the density of the stationary phase. The results are consistent with a simple physical explanation at the molecular level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lloyd-Hughes, James; Mosley, C. D. W.; Jones, S. P. P.
Colossal magnetoresistance (CMR) is demonstrated at terahertz (THz) frequencies by using terahertz time-domain magnetospectroscopy to examine vertically aligned nanocomposites (VANs) and planar thin films of La 0.7Sr 0.3MnO 3. At the Curie temperature (room temperature), the THz conductivity of the VAN was dramatically enhanced by over 2 orders of magnitude under the application of a magnetic field with a non-Drude THz conductivity that increased with frequency. The direct current (dc) CMR of the VAN is controlled by extrinsic magnetotransport mechanisms such as spin-polarized tunneling between nanograins. In contrast, we find that THz CMR is dominated by intrinsic, intragrain transport: themore » mean free path was smaller than the nanocolumn size, and the planar thin-film exhibited similar THz CMR to the VAN. Surprisingly, the observed colossal THz magnetoresistance suggests that the magnetoresistance can be large for alternating current motion on nanometer length scales, even when the magnetoresistance is negligible on the macroscopic length scales probed by dc transport. This suggests that colossal magnetoresistance at THz frequencies may find use in nanoelectronics and in THz optical components controlled by magnetic fields. As a result, the VAN can be scaled in thickness while retaining a high structural quality and offers a larger THz CMR at room temperature than the planar film.« less
Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure.
Baranowski, M; Surrente, A; Klopotowski, L; Urban, J M; Zhang, N; Maude, D K; Wiwatowski, K; Mackowski, S; Kung, Y C; Dumcenco, D; Kis, A; Plochocka, P
2017-10-11
Stacking atomic monolayers of semiconducting transition metal dichalcogenides (TMDs) has emerged as an effective way to engineer their properties. In principle, the staggered band alignment of TMD heterostructures should result in the formation of interlayer excitons with long lifetimes and robust valley polarization. However, these features have been observed simultaneously only in MoSe 2 /WSe 2 heterostructures. Here we report on the observation of long-lived interlayer exciton emission in a MoS 2 /MoSe 2 /MoS 2 trilayer van der Waals heterostructure. The interlayer nature of the observed transition is confirmed by photoluminescence spectroscopy, as well as by analyzing the temporal, excitation power, and temperature dependence of the interlayer emission peak. The observed complex photoluminescence dynamics suggests the presence of quasi-degenerate momentum-direct and momentum-indirect bandgaps. We show that circularly polarized optical pumping results in long-lived valley polarization of interlayer exciton. Intriguingly, the interlayer exciton photoluminescence has helicity opposite to the excitation. Our results show that through a careful choice of the TMDs forming the van der Waals heterostructure it is possible to control the circular polarization of the interlayer exciton emission.
van der Waals Interactions in Hadron Resonance Gas: From Nuclear Matter to Lattice QCD.
Vovchenko, Volodymyr; Gorenstein, Mark I; Stoecker, Horst
2017-05-05
An extension of the ideal hadron resonance gas (HRG) model is constructed which includes the attractive and repulsive van der Waals (VDW) interactions between baryons. This VDW-HRG model yields the nuclear liquid-gas transition at low temperatures and high baryon densities. The VDW parameters a and b are fixed by the ground state properties of nuclear matter, and the temperature dependence of various thermodynamic observables at zero chemical potential are calculated within the VDW-HRG model. Compared to the ideal HRG model, the inclusion of VDW interactions between baryons leads to a qualitatively different behavior of second and higher moments of fluctuations of conserved charges, in particular in the so-called crossover region T∼140-190 MeV. For many observables this behavior resembles closely the results obtained from lattice QCD simulations. This hadronic model also predicts nontrivial behavior of net-baryon fluctuations in the region of phase diagram probed by heavy-ion collision experiments. These results imply that VDW interactions play a crucial role in the thermodynamics of hadron gas. Thus, the commonly performed comparisons of the ideal HRG model with the lattice and heavy-ion data may lead to misconceptions and misleading conclusions.
A statistical mechanical theory for a two-dimensional model of water
Urbic, Tomaz; Dill, Ken A.
2010-01-01
We develop a statistical mechanical model for the thermal and volumetric properties of waterlike fluids. Each water molecule is a two-dimensional disk with three hydrogen-bonding arms. Each water interacts with neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of the Truskett and Dill (TD) treatment of the “Mercedes-Benz” (MB) model. The present model gives better predictions than TD for hydrogen-bond populations in liquid water by distinguishing strong cooperative hydrogen bonds from weaker ones. We explore properties versus temperature T and pressure p. We find that the volumetric and thermal properties follow the same trends with T as real water and are in good general agreement with Monte Carlo simulations of MB water, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds for increasing temperature. The model reproduces that pressure squeezes out water’s heat capacity and leads to a negative thermal expansion coefficient at low temperatures. In terms of water structuring, the variance in hydrogen-bonding angles increases with both T and p, while the variance in water density increases with T but decreases with p. Hydrogen bonding is an energy storage mechanism that leads to water’s large heat capacity (for its size) and to the fragility in its cagelike structures, which are easily melted by temperature and pressure to a more van der Waals-like liquid state. PMID:20550408
A statistical mechanical theory for a two-dimensional model of water
NASA Astrophysics Data System (ADS)
Urbic, Tomaz; Dill, Ken A.
2010-06-01
We develop a statistical mechanical model for the thermal and volumetric properties of waterlike fluids. Each water molecule is a two-dimensional disk with three hydrogen-bonding arms. Each water interacts with neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of the Truskett and Dill (TD) treatment of the "Mercedes-Benz" (MB) model. The present model gives better predictions than TD for hydrogen-bond populations in liquid water by distinguishing strong cooperative hydrogen bonds from weaker ones. We explore properties versus temperature T and pressure p. We find that the volumetric and thermal properties follow the same trends with T as real water and are in good general agreement with Monte Carlo simulations of MB water, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds for increasing temperature. The model reproduces that pressure squeezes out water's heat capacity and leads to a negative thermal expansion coefficient at low temperatures. In terms of water structuring, the variance in hydrogen-bonding angles increases with both T and p, while the variance in water density increases with T but decreases with p. Hydrogen bonding is an energy storage mechanism that leads to water's large heat capacity (for its size) and to the fragility in its cagelike structures, which are easily melted by temperature and pressure to a more van der Waals-like liquid state.
A statistical mechanical theory for a two-dimensional model of water.
Urbic, Tomaz; Dill, Ken A
2010-06-14
We develop a statistical mechanical model for the thermal and volumetric properties of waterlike fluids. Each water molecule is a two-dimensional disk with three hydrogen-bonding arms. Each water interacts with neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of the Truskett and Dill (TD) treatment of the "Mercedes-Benz" (MB) model. The present model gives better predictions than TD for hydrogen-bond populations in liquid water by distinguishing strong cooperative hydrogen bonds from weaker ones. We explore properties versus temperature T and pressure p. We find that the volumetric and thermal properties follow the same trends with T as real water and are in good general agreement with Monte Carlo simulations of MB water, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds for increasing temperature. The model reproduces that pressure squeezes out water's heat capacity and leads to a negative thermal expansion coefficient at low temperatures. In terms of water structuring, the variance in hydrogen-bonding angles increases with both T and p, while the variance in water density increases with T but decreases with p. Hydrogen bonding is an energy storage mechanism that leads to water's large heat capacity (for its size) and to the fragility in its cagelike structures, which are easily melted by temperature and pressure to a more van der Waals-like liquid state.
A notable difference between ideal gas and infinite molar volume limit of van der Waals gas
NASA Astrophysics Data System (ADS)
Liu, Q. H.; Shen, Y.; Bai, R. L.; Wang, X.
2010-05-01
The van der Waals equation of state does not sufficiently represent a gas unless a thermodynamic potential with two proper and independent variables is simultaneously determined. The limiting procedures under which the behaviour of the van der Waals gas approaches that of an ideal gas are letting two van der Waals coefficients be zero rather than letting the molar volume become infinitely large; otherwise, the partial derivative of internal energy with respect to pressure at a fixed temperature does not vanish.
Graphene Casimir Interactions and Some Possible Applications
NASA Astrophysics Data System (ADS)
Phan, Anh D.
Scientific development requires profound understandings of micromechanical and nanomechanical systems (MEMS/NEMS) due to their applications not only in the technological world, but also for scientific understanding. At the micro- or nano-scale, when two objects are brought close together, the existence of stiction or adhesion is inevitable and plays an important role in the behavior operation of these systems. Such effects are due to surface dispersion forces, such as the van der Waals or Casimir interactions. The scientific understanding of these forces is particularly important for low-dimensional materials. In addition, the discovery of materials, such as graphitic systems has provided opportunities for new classes of devices and challenging fundamental problems. Therefore, investigations of the van der Waals or Caismir forces in graphene-based systems, in particular, and the solution generating non-touching systems are needed. In this study, the Casimir force involving 2D graphene is investigated under various conditions. The Casimir interaction is usually studied in the framework of the Lifshitz theory. According to this theory, it is essential to know the frequency-dependent reflection coefficients of materials. Here, it is found that the graphene reflection coefficients strongly depend on the optical conductivity of graphene, which is described by the Kubo formalism. When objects are placed in vacuum, the Casimir force is attractive and leads to adhesion on the surface. We find that the Casimir repulsion can be obtained by replacing vacuum with a suitable liquid. Our studies show that bromobenzene is the liquid providing this effect. We also find that this long-range force is temperature dependent and graphene/bromobenzene/metal substrate configuration can be used to demonstrate merely thermal Casimir interaction at room temperature and micrometer distances. These findings would provide good guidance and predictions for practical studies.
NASA Astrophysics Data System (ADS)
Wolkenberg, Andrzej; Przeslawski, Tomasz
1996-04-01
Galvanomagnetic measurements were performed on the square shaped samples after Van der Pauw and on the Hall bar at low electric fields app. 1.5 V/cm and magnetic induction app. 6 kG in order to make a comparison between the theoretical and experimental results of the temperature dependence of mobility and resistivity from 70 K to 300 K. A calculation method was obtained of the drift mobility and the Hall mobility in which the scatterings are applied: on ionized impurities, on polar optical phonons, on acoustic phonons (deformation potential), on acoustic phonons (piezoelectric potential) and on dislocations. The elaborated method transformed to a computer program allows us to fit experimental values of the resistivity and the Hall mobility to those calculated. The fitting procedure makes it possible to characterize the quality of the n-type GaAs MBE layer, i.e. the net electron concentration, whole ionized impurities concentration and dislocation density after Read space charge cylinders model. The calculations together with the measurements allow us to obtain compensation ratio value in the layer, too. The influence of the epitaxial layer thickness on layers measurements accuracy in the case of Van der Pauw square probe was investigated. It was stated that in the layers under 3 micrometer the bulk properties are strongly influenced by both surfaces. The results of measurements of the same layer using the Van der Pauw and the Hall bar structure were compared. It was stated that the Hall bar structure only could be used to obtain proper measurements results.
Two-dimensional Fermi surfaces in Kondo insulating SmB6
NASA Astrophysics Data System (ADS)
Li, Gang
There has been renewed interest in Samarium Hexaboride, which is a strongly correlated heavy Fermion material. Hybridization between itinerant electrons and localized orbitals lead to an opening of charge gap at low temperature. However, the resistivity of SmB6 does not diverge at low temperature. Former studies suggested that this residual conductance is contributed by various origins. Recent theoretical developments suggest that the particular symmetry of energy bands of SmB6 may host a topologically non-trivial surface state, i.e., a topological Kondo insulator. To probe the Fermiology of the possible metallic surface state, we use sensitive torque magnetometry to detect the de Haas van Alphen (dHvA) effect due to Landau level quantization on flux-grown crystals, down to He-3 temperature and up to 45 Tesla. Our angular and temperature dependent data suggest two-dimensional Fermi Surfaces lie in both crystalline (001) and (101) surface planes of SmB6.
Junquera, Elena; Laynez, José; Menéndez, Margarita; Sharma, Sunil; Penadés, Soledad
1996-10-04
Thermodynamic studies of the binding of a series of p-nitrophenyl glycosides (PNPGly) of varying stereochemistry to alpha-cyclodextrin (alpha-CD) were performed at three different temperatures (25, 35, and 42 degrees C) using a microcalorimetric technique. The system p-nitrophenol (PNP) at pH = 3 and alpha-CD was also studied for the sake of comparison. All these complexes were found to be enthalpy driven with a favorable enthalpic term clearly dominant over an unfavorable entropic term. A clear enthalpy-entropy compensation effect was observed at all the temperatures, with a slope close to unity (alpha = 1.02) and an intercept TDeltaS degrees (o) = 2.91 kcal mol(-)(1). This thermodynamic pattern is in agreement with those usually found for lectin-carbohydrate associations and for the binding processes of several host-guest systems. This pattern is explained in terms of the contribution of primarily two driving forces: the van der Waals interactions between the host and the guest, and the solvation/desolvation processes which accompany the association reaction. The presence of the carbohydrate molecule in the PNP ring causes a slight destabilization of the complex at 25 degrees C with respect to the alpha-CD-PNP (pH = 3) complex, although a different behavior has been observed depending on the axial/equatorial configuration of the glycoside and the temperature. This behavior is modulated by the stereochemistry of the glycoside. Differences were observed between the deoxy-derivatives (LAra and LFuc) and those derivatives with a hydroxymethyl group (Glc, Gal, Man). DeltaC(p) degrees values were obtained from the dependency of DeltaH degrees on temperature (=( partial differentialDeltaH degrees / partial differentialT)(p)). These values are small and negative except for alphaMan complex. For the latter complex, discrepancy between the calorimetric and the calculated van't Hoff enthalpies was observed. Parallels are drawn between the thermodynamics of our model and those proposed for carbohydrate-protein associations.
Ballistic Transport Exceeding 28 μm in CVD Grown Graphene.
Banszerus, Luca; Schmitz, Michael; Engels, Stephan; Goldsche, Matthias; Watanabe, Kenji; Taniguchi, Takashi; Beschoten, Bernd; Stampfer, Christoph
2016-02-10
We report on ballistic transport over more than 28 μm in graphene grown by chemical vapor deposition (CVD) that is fully encapsulated in hexagonal boron nitride. The structures are fabricated by an advanced dry van-der-Waals transfer method and exhibit carrier mobilities of up to three million cm(2)/(Vs). The ballistic nature of charge transport is probed by measuring the bend resistance in cross- and square-shaped devices. Temperature-dependent measurements furthermore prove that ballistic transport is maintained exceeding 1 μm up to 200 K.
NASA Astrophysics Data System (ADS)
Ishii, Hiroyuki; Kobayashi, Nobuhiko; Hirose, Kenji
2017-01-01
We present a wave-packet dynamical approach to charge transport using maximally localized Wannier functions based on density functional theory including van der Waals interactions. We apply it to the transport properties of pentacene and rubrene single crystals and show the temperature-dependent natures from bandlike to thermally activated behaviors as a function of the magnitude of external static disorder. We compare the results with those obtained by the conventional band and hopping models and experiments.
NASA Astrophysics Data System (ADS)
Wu, Huaping; Ma, Xuefu; Zhang, Zheng; Zhu, Jun; Wang, Jie; Chai, Guozhong
2016-04-01
A nonlinear thermodynamic model based on the vertically aligned nanocomposite (VAN) thin films of ferroelectric-metal oxide system has been developed to investigate the physical properties of the epitaxial Ba0.6Sr0.4TiO3 (BST) films containing vertical Sm2O3 (SmO) nanopillar arrays on the SrTiO3 substrate. The phase diagrams of out-of-plane lattice mismatch vs. volume fraction of SmO are calculated by minimizing the total free energy. It is found that the phase transformation and dielectric response of BST-SmO VAN systems are extremely dependent on the in-plane misfit strain, the out-of-plane lattice mismatch, the volume fraction of SmO phase, and the external electric field applied to the nanocomposite films at room temperature. In particular, the BST-SmO VAN systems exhibit higher dielectric properties than pure BST films. Giant dielectric response and maximum tunability are obtained near the lattice mismatch where the phase transition occurs. Under the in-plane misfit strain of umf=0.3 % and the out-of-plane lattice mismatch of u3=0.002 , the dielectric tunability can be dramatically enhanced to 90% with the increase of SmO volume fraction, which is well consistent with previous experimental results. This work represents an approach to further understand the dependence of physical properties on the lattice mismatch (in-plane and out-of-plane) and volume fraction, and to manipulate or optimize functionalities in the nanocomposite oxide thin films.
NASA Astrophysics Data System (ADS)
Harbour, L.; Förster, G. D.; Dharma-wardana, M. W. C.; Lewis, Laurent J.
2018-04-01
The ion-ion dynamical structure factor and the equation of state of warm dense aluminum in a two-temperature quasiequilibrium state, with the electron temperature higher than the ion temperature, are investigated using molecular-dynamics simulations based on ion-ion pair potentials constructed from a neutral pseudoatom model. Such pair potentials based on density functional theory are parameter-free and depend directly on the electron temperature and indirectly on the ion temperature, enabling efficient computation of two-temperature properties. Comparison with ab initio simulations and with other average-atom calculations for equilibrium aluminum shows good agreement, justifying a study of quasiequilibrium situations. Analyzing the van Hove function, we find that ion-ion correlations vanish in a time significantly smaller than the electron-ion relaxation time so that dynamical properties have a physical meaning for the quasiequilibrium state. A significant increase in the speed of sound is predicted from the modification of the dispersion relation of the ion acoustic mode as the electron temperature is increased. The two-temperature equation of state including the free energy, internal energy, and pressure is also presented.
Huntsville, Alabama, Volunteer Van Demonstration
DOT National Transportation Integrated Search
1988-04-01
The Huntsville Volunteer Van Demonstration, operational since November of 1980, provides transportation service to the traditional transit-dependent community in an unconventional way. The city of Huntsville is not served by a conventional public tra...
Magneto-optical Kerr effect in Cr-doped (Bi,Sb)2Te3 Thin Films
NASA Astrophysics Data System (ADS)
Pan, Yu; Yao, Bing; Richardella, Anthony; Kandala, Abhinav; Fraleigh, Robert; Lee, Joon Sue; Samarth, Nitin; Yeats, Andrew; Awschalom, David D.
2014-03-01
When a three-dimensional (3D) topological insulator (TI) is interfaced with magnetism, the breaking of time reversal symmetry results in new phenomena such as the recently observed quantum anomalous Hall effect [C.-Z. Zhang et al., Science340, 167 (2013)]. Thus motivated, we use the polar-mode magneto-optical Kerr effect (MOKE) to probe the temperature- and field-dependent magnetization in molecular beam epitaxy grown Cr-doped thin films of the 3D TI (Bi,Sb)2Te3. Square MOKE hysteresis loops observed at low temperatures indicate robust ferromagnetism with a perpendicular magnetic anisotropy and Curie temperature that varies from ~ 5 K to ~ 150 K, depending on sample details. A key question is the nature of the ferromagnetism: is it a carrier-mediated mechanism, Van Vleck mechanism or due to extrinsic clusters? We address this issue by varying the magnetic ion concentration and carrier density via sample composition as well as by varying the chemical potential by back gating. Finally, we use spatially-resolved MOKE to image the magnetization in these samples. Supported by ONR and DARPA.
NASA Astrophysics Data System (ADS)
Hafez, H. A.; Chai, X.; Sekine, Y.; Takamura, M.; Oguri, K.; Al-Naib, I.; Dignam, M. M.; Hibino, H.; Ozaki, T.
2017-04-01
A thorough understanding of the stability of graphene under ambient environmental conditions is essential for future graphene-based applications. In this paper, we study the effects of ambient temperature on the properties of monolayer graphene using terahertz time-domain spectroscopy as well as time-resolved terahertz spectroscopy enabled by an optical-pump/terahertz-probe technique. The observations show that graphene is extremely sensitive to the ambient environmental conditions and behaves differently depending on the sample preparation technique and the initial Fermi level. The analysis of the spectroscopic data is supported by van der Pauw and Hall effect measurements of the carrier mobility and carrier density at temperatures comparable to those tested in our THz spectroscopic experiments.
NASA Astrophysics Data System (ADS)
Rajabpour, Ali; Fan, Zheyong; Vaez Allaei, S. Mehdi
2018-06-01
Van der Waals heterostructures have exhibited interesting physical properties. In this paper, heat transfer in hybrid coplanar bilayer/monolayer (BL-ML) graphene, as a model layered van der Waals heterostructure, was studied using non-equilibrium molecular dynamics (MD) simulations. The temperature profile and inter- and intra-layer heat fluxes of the BL-ML graphene indicated that, there is no fully developed thermal equilibrium between layers and the drop in the average temperature profile at the step-like BL-ML interface is not attributable to the effect of Kapitza resistance. By increasing the length of the system up to 1 μm in the studied MD simulations, the thermally non-equilibrium region was reduced to a small area near the step-like interface. All MD results were compared to a continuum model and a good match was observed between the two approaches. Our results provide a useful understanding of heat transfer in nano- and micro-scale layered materials and van der Waals heterostructures.
NASA Astrophysics Data System (ADS)
Han, Shan; Luan, Ye-Mei; Pang, Shu-Feng; Zhang, Yun-Hong
2015-03-01
The conformational change of poly(vinyl alcohol) has been studied by Fourier transform infrared spectroscopy at various temperatures in the 4000-400 cm-1 region. The molecular motion and the trans/gauche content are sensitive to the Csbnd H, Csbnd C stretching modes. FTIR spectra show that the I2920/I2849 decreases from 1.84 to 1.0 with increasing temperature, companying the decrease in I1047/I1095 from 0.78 to 0.58, implying the conformational transition from trans to gauche in alkyl chain. Based on the van't Hoff relation, the enthalpies and entropies have been calculated in different temperatures, which are 4.61 kJ mol-1 and 15.23 J mol-1 K-1, respectively, in the region of 80-140 °C. From the Cdbnd O stretching mode and Osbnd H band, it can be concluded that the intermolecular hydrogen bonds decrease owing to elevating temperature, which leads to more gauche conformers.
NASA Astrophysics Data System (ADS)
Joe, Andrew; Jauregui, Luis; High, Alex; Dibos, Alan; Gulpinar, Elgin; Pistunova, Kateryna; Park, Hongkun; Kim, Philip
, Luis A. Jauregui, Alex A. High, Alan Dibos, Elgin Gulpinar, Kateryna Pistunova, Hongkun Park, Philip Kim Harvard University, Physics Department -abstract- Single layer transition metal dichalcogenides (TMDC) are 2-dimensional (2D) semiconductors van der Waals (vdW) characterized by a direct optical bandgap in the visible wavelength (~2 eV). Characterization of the band alignment between TMDC and the barrier is important for the fabrication of tunneling devices. Here, we fabricate coupled quantum well (CQW) heterostructures made of 2D TMDCs with hexagonal Boron nitride (hBN) as an atomically thin barrier and gate dielectric and with top and bottom metal (or graphite) as gate electrodes. We observe a clear dependence of the photo-generated current with varying hBN thickness, electrode workfunctions, electric field, laser excitation power, excitation wavelength, and temperature. We will discuss the implication of photocurrent in relation to quantum transport process across the vdW interfaces.
The first example of erbium triple-stranded helicates displaying SMM behaviour.
Gorczyński, Adam; Kubicki, Maciej; Pinkowicz, Dawid; Pełka, Robert; Patroniak, Violetta; Podgajny, Robert
2015-10-14
A series of isostructural C3-symmetrical triple stranded dinuclear lanthanide [Ln2L3](NO3)3 molecules have been synthesized using subcomponent self-assembly of Ln(NO3)3 with 2-(methylhydrazino)benzimidazole and 4-tert-butyl-2,6-diformylphenol, where Ln = Tb (1), Dy (2), Ho (3), Er (4), Tm (5), and Yb (6). The temperature dependent and field dependent magnetic properties of 1-6 were modeled using the van Vleck approximation including the crystal field term HCF, the super-exchange term HSE and the Zeeman term HZE. Ferromagnetic interactions were found in 1, 2, 4 and 6, while antiferromagnetic interactions were found in 3 and 5. The erbium analogue reveals field induced SMM behaviour.
Mihut, Adriana M.; Stenqvist, Björn; Lund, Mikael; Schurtenberger, Peter; Crassous, Jérôme J.
2017-01-01
We have seen a considerable effort in colloid sciences to copy Nature’s successful strategies to fabricate complex functional structures through self-assembly. This includes attempts to design colloidal building blocks and their intermolecular interactions, such as creating the colloidal analogs of directional molecular interactions, molecular recognition, host-guest systems, and specific binding. We show that we can use oppositely charged thermoresponsive particles with complementary shapes, such as spherical and bowl-shaped particles, to implement an externally controllable lock-and-key self-assembly mechanism. The use of tunable electrostatic interactions combined with the temperature-dependent size and shape and van der Waals interactions of these building blocks provides an exquisite control over the selectivity and specificity of the interactions and self-assembly process. The dynamic nature of the mechanism allows for reversibly cycling through various structures that range from weakly structured dense liquids to well-defined molecule-shaped clusters with different configurations through variations in temperature and ionic strength. We link this complex and dynamic self-assembly behavior to the relevant molecular interactions, such as screened Coulomb and van der Waals forces and the geometrical complementarity of the two building blocks, and discuss our findings in the context of the concepts of adaptive chemistry recently introduced to molecular systems. PMID:28929133
NASA Astrophysics Data System (ADS)
Pinchuk, P.; Pinchuk, A. O.
2016-09-01
Hamaker-Lifshitz constants are used to calculate van der Waals interaction forces between small particles in solution. Typically, these constants are size-independent and material specific. According to the Lifshitz theory, the Hamaker-Lifshitz constants can be calculated by taking integrals that include the dielectric permittivity, as a function of frequency, of the interacting particles and the medium around particles. The dielectric permittivity of interacting metal nanoparticles can be calculated using the free-electron Drude model for metals. For bulk metals, the Drude model does is size independent. However, the conducting electrons in small metal nanoparticles exhibit surface scattering, which changes the complex dielectric permittivity function. Additionally, the Drude model can be modified to include temperature dependence. That is, an increase in temperature leads to thermal volume expansion and increased phonon population, which affect the scattering rate of the electrons and the plasma frequency. Both of these terms contribute significantly to the Drude model for the dielectric permittivity of the particles. In this work, we show theoretically that scattering of the free conducting electrons inside noble metal nanoparticles with the size of 1 - 50 nm leads to size-dependent dielectric permittivity and Hamaker-Lifshitz constants. In addition, we calculate numerically the Hamaker-Lifshitz constants for a variety of temperatures. The results of the study might be of interest for understanding colloidal stability of metal nanoparticles.
Sorption of hydrogen by silica aerogel at low-temperatures
NASA Astrophysics Data System (ADS)
Dolbin, A. V.; Khlistyuck, M. V.; Esel'son, V. B.; Gavrilko, V. G.; Vinnikov, N. A.; Basnukaeva, R. M.; Martsenuk, V. E.; Veselova, N. V.; Kaliuzhnyi, I. A.; Storozhko, A. V.
2018-02-01
The programmed thermal desorption method is used at temperatures of 7-95 K to study the sorption and subsequent desorption of hydrogen by a sample of silica aerogel. Physical sorption of hydrogen owing to the weak van-der-Waals interaction of hydrogen molecules with the silicon dioxide walls of the pores of the sample was observed over the entire temperature range. The total capacity of the aerogel sample for hydrogen was ˜1.5 mass %. It was found that when the sample temperature was lowered from 95 to 60 K, the characteristic sorption times for hydrogen by the silica aerogel increase; this is typical of thermally activated diffusion (Ea ≈ 408 K). For temperatures of 15-45 K the characteristic H2 sorption times depended weakly on temperature, presumably because of the predominance of a tunnel mechanism for diffusion over thermally activated diffusion. Below 15 K the characteristic sorption times increase somewhat as the temperature is lowered; this may be explained by the formation of a monolayer of H2 molecules on the surface of the aerogel grains.
Linear-response time-dependent density-functional theory with pairing fields.
Peng, Degao; van Aggelen, Helen; Yang, Yang; Yang, Weitao
2014-05-14
Recent development in particle-particle random phase approximation (pp-RPA) broadens the perspective on ground state correlation energies [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013), Y. Yang, H. van Aggelen, S. N. Steinmann, D. Peng, and W. Yang, J. Chem. Phys. 139, 174110 (2013); D. Peng, S. N. Steinmann, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 104112 (2013)] and N ± 2 excitation energies [Y. Yang, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 224105 (2013)]. So far Hartree-Fock and approximated density-functional orbitals have been utilized to evaluate the pp-RPA equation. In this paper, to further explore the fundamentals and the potential use of pairing matrix dependent functionals, we present the linear-response time-dependent density-functional theory with pairing fields with both adiabatic and frequency-dependent kernels. This theory is related to the density-functional theory and time-dependent density-functional theory for superconductors, but is applied to normal non-superconducting systems for our purpose. Due to the lack of the proof of the one-to-one mapping between the pairing matrix and the pairing field for time-dependent systems, the linear-response theory is established based on the representability assumption of the pairing matrix. The linear response theory justifies the use of approximated density-functionals in the pp-RPA equation. This work sets the fundamentals for future density-functional development to enhance the description of ground state correlation energies and N ± 2 excitation energies.
Molecular Modeling of High-Temperature Oxidation of Refractory Borides
2008-02-01
generate the classical potential, we adopt the van Beest , Kramer and van Santen (BKS) parameterization for Si-O interactions, but fit B-O and Si-B...seminar at Department of Aerospace and Mechanical Engineering, University of Notre Dame, March 20, 2007. 6 Los Alamos National Lab Physics & Theoretical
Modeling a simple coronal streamer during whole sun month
NASA Technical Reports Server (NTRS)
Gibson, S. E.; Bagenal, F.; Biesecker, D.; Guhathakurta, M.; Hoeksema, J. T.; Thompson, B. J.
1997-01-01
The solar minimum streamer structure observed during the whole sun month was modeled. The Van de Hulst inversion was used in order to determine the coronal electron density profiles and scale-height temperature profiles. The axisymmetric magnetostatic model of Gibson, Bagenal and Low was also used. The density, temperature, and magnetic field distribution were quantified using both coronal white light data and photospheric magnetic field data from the Wilcox Solar Observatory. The densities and temperatures obtained by the Van de Hulst and magnetostatic models are compared to the magnetic field predicted by the magnetostatic model to a potential field extrapolated from the photosphere.
Analytical model for three-dimensional Mercedes-Benz water molecules.
Urbic, T
2012-06-01
We developed a statistical model which describes the thermal and volumetric properties of water-like molecules. A molecule is presented as a three-dimensional sphere with four hydrogen-bonding arms. Each water molecule interacts with its neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of a model developed before for a two-dimensional Mercedes-Benz model of water. We explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility as a function of temperature and pressure. We found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds upon increasing the temperature.
Analytical model for three-dimensional Mercedes-Benz water molecules
NASA Astrophysics Data System (ADS)
Urbic, T.
2012-06-01
We developed a statistical model which describes the thermal and volumetric properties of water-like molecules. A molecule is presented as a three-dimensional sphere with four hydrogen-bonding arms. Each water molecule interacts with its neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of a model developed before for a two-dimensional Mercedes-Benz model of water. We explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility as a function of temperature and pressure. We found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds upon increasing the temperature.
Analytical model for three-dimensional Mercedes-Benz water molecules
Urbic, T.
2013-01-01
We developed a statistical model which describes the thermal and volumetric properties of water-like molecules. A molecule is presented as a three-dimensional sphere with four hydrogen-bonding arms. Each water molecule interacts with its neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of a model developed before for a two-dimensional Mercedes-Benz model of water. We explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility as a function of temperature and pressure. We found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds upon increasing the temperature. PMID:23005100
NASA Astrophysics Data System (ADS)
Lonchakov, A. T.
2011-04-01
A negative paramagnetic contribution to the dynamic elastic moduli is identified in AIIBVI:3d wide band-gap compounds for the first time. It appears as a paramagnetic elastic, or, briefly, paraelastic, susceptibility. These compounds are found to have a linear temperature dependence for the inverse paraelastic susceptibility. This is explained by a contribution from the diagonal matrix elements of the orbit-lattice interaction operators in the energy of the spin-orbital states of the 3d-ion as a function of applied stress (by analogy with the Curie contribution to the magnetic susceptibility). The inverse paraelastic susceptibility of AIIBVI crystals containing non-Kramers 3d-ions is found to deviate from linearity with decreasing temperature and reaches saturation. This effect is explained by a contribution from nondiagonal matrix elements (analogous to the well known van Vleck contribution to the magnetic susceptibility of paramagnets).
Ye, Han; Zhou, Jiadong; Er, Dequan; Price, Christopher C; Yu, Zhongyuan; Liu, Yumin; Lowengrub, John; Lou, Jun; Liu, Zheng; Shenoy, Vivek B
2017-12-26
Vertical stacking of monolayers via van der Waals (vdW) interaction opens promising routes toward engineering physical properties of two-dimensional (2D) materials and designing atomically thin devices. However, due to the lack of mechanistic understanding, challenges remain in the controlled fabrication of these structures via scalable methods such as chemical vapor deposition (CVD) onto substrates. In this paper, we develop a general multiscale model to describe the size evolution of 2D layers and predict the necessary growth conditions for vertical (initial + subsequent layers) versus in-plane lateral (monolayer) growth. An analytic thermodynamic criterion is established for subsequent layer growth that depends on the sizes of both layers, the vdW interaction energies, and the edge energy of 2D layers. Considering the time-dependent growth process, we find that temperature and adatom flux from vapor are the primary criteria affecting the self-assembled growth. The proposed model clearly demonstrates the distinct roles of thermodynamic and kinetic mechanisms governing the final structure. Our model agrees with experimental observations of various monolayer and bilayer transition metal dichalcogenides grown by CVD and provides a predictive framework to guide the fabrication of vertically stacked 2D materials.
On the Henry constant and isosteric heat at zero loading in gas phase adsorption.
Do, D D; Nicholson, D; Do, H D
2008-08-01
The Henry constant and the isosteric heat of adsorption at zero loading are commonly used as indicators of the strength of the affinity of an adsorbate for a solid adsorbent. It is assumed that (i) they are observable in practice, (ii) the Van Hoff's plot of the logarithm of the Henry constant versus the inverse of temperature is always linear and the slope is equal to the heat of adsorption, and (iii) the isosteric heat of adsorption at zero loading is either constant or weakly dependent on temperature. We show in this paper that none of these three points is necessarily correct, first because these variables might not be observable since they are outside the range of measurability; second that the linearity of the Van Hoff plot breaks down at very high temperature, and third that the isosteric heat versus loading is a strong function of temperature. We demonstrate these points using Monte Carlo integration and Monte Carlo simulation of adsorption of various gases on a graphite surface. Another issue concerning the Henry constant is related to the way the adsorption excess is defined. The most commonly used equation is the one that assumes that the void volume is the volume extended all the way to a boundary passing through the centres of the outermost solid atoms. With this definition the Henry constant can become negative at high temperatures. Although adsorption at these temperatures may not be practical because of the very low value of the Henry constant, it is more useful to define the Henry constant in such a way that it is always positive at all temperatures. Here we propose the use of the accessible volume; the volume probed by the adsorbate when it is in nonpositive regions of the potential, to calculate the Henry constant.
Statistical substantiation of the van der Waals theory of inhomogeneous fluids
NASA Astrophysics Data System (ADS)
Baidakov, V. G.; Protsenko, S. P.; Chernykh, G. G.; Boltachev, G. Sh.
2002-04-01
Computer experiments on simulation of thermodynamic properties and structural characteristics of a Lennard-Jones fluid in one- and two-phase models have been performed for the purpose of checking the base concepts of the van der Waals theory. Calculations have been performed by the method of molecular dynamics at cutoff radii of the intermolecular potential rc,1=2.6σ and rc,2=6.78σ. The phase equilibrium parameters, surface tension, and density distribution have been determined in a two-phase model with a flat liquid-vapor interface. The strong dependence of these properties on the value of rc is shown. The p,ρ,T properties and correlation functions have been calculated in a homogeneous model for a stable and a metastable fluid. An equation of state for a Lennard-Jones fluid describing stable, metastable, and labile regions has been built. It is shown that at T>=1.1 the properties of a flat interface within the computer experimental error can be described by the van der Waals square-gradient theory with an influence parameter κ independent of the density. Taking into account the density dependence of κ through the second moment of the direct correlation function will deteriorate the agreement of the theory with data of computer simulation. The contribution of terms of a higher order than (∇ρ)2 to the Helmholtz free energy of an inhomogeneous system has been considered. It is shown that taking into account terms proportional to (∇ρ)4 leaves no way of obtaining agreement between the theory and simulation data, while taking into consideration of terms proportional to (∇ρ)6 makes it possible to describe with adequate accuracy all the properties of a flat interface in the temperature range from the triple to the critical point.
Three-dimensional ``Mercedes-Benz'' model for water
NASA Astrophysics Data System (ADS)
Dias, Cristiano L.; Ala-Nissila, Tapio; Grant, Martin; Karttunen, Mikko
2009-08-01
In this paper we introduce a three-dimensional version of the Mercedes-Benz model to describe water molecules. In this model van der Waals interactions and hydrogen bonds are given explicitly through a Lennard-Jones potential and a Gaussian orientation-dependent terms, respectively. At low temperature the model freezes forming Ice-I and it reproduces the main peaks of the experimental radial distribution function of water. In addition to these structural properties, the model also captures the thermodynamical anomalies of water: The anomalous density profile, the negative thermal expansivity, the large heat capacity, and the minimum in the isothermal compressibility.
Three-dimensional "Mercedes-Benz" model for water.
Dias, Cristiano L; Ala-Nissila, Tapio; Grant, Martin; Karttunen, Mikko
2009-08-07
In this paper we introduce a three-dimensional version of the Mercedes-Benz model to describe water molecules. In this model van der Waals interactions and hydrogen bonds are given explicitly through a Lennard-Jones potential and a Gaussian orientation-dependent terms, respectively. At low temperature the model freezes forming Ice-I and it reproduces the main peaks of the experimental radial distribution function of water. In addition to these structural properties, the model also captures the thermodynamical anomalies of water: The anomalous density profile, the negative thermal expansivity, the large heat capacity, and the minimum in the isothermal compressibility.
Magnetotransport properties of MoP 2
Wang, Aifeng; Graf, D.; Stein, Aaron; ...
2017-11-02
We report magnetotransport and de Haas–van Alphen (dHvA) effect studies on MoP 2 single crystals, predicted to be a type- II Weyl semimetal with four pairs of robust Weyl points located below the Fermi level and long Fermi arcs. The temperature dependence of resistivity shows a peak before saturation, which does not move with magnetic field. Large nonsaturating magnetoresistance (MR) was observed, and the field dependence of MR exhibits a crossover from semiclassical weak-field B 2 dependence to the high-field linear-field dependence, indicating the presence of Dirac linear energy dispersion. In addition, a systematic violation of Kohler's rule was observed,more » consistent with multiband electronic transport. Strong spin-orbit coupling splitting has an effect on dHvA measurements whereas the angular-dependent dHvA orbit frequencies agree well with the calculated Fermi surface. The cyclotron effective mass ~1.6m e indicates the bands might be trivial, possibly since the Weyl points are located below the Fermi level.« less
Pan, Jianjun; Tristram-Nagle, Stephanie; Kucerka, Norbert; Nagle, John F
2008-01-01
X-ray diffuse scattering was measured from oriented stacks and unilamellar vesicles of dioleoylphosphatidylcholine lipid bilayers to obtain the temperature dependence of the structure and of the material properties. The area/molecule, A, was 75.5 A(2) at 45 degrees C, 72.4 A(2) at 30 degrees C, and 69.1 A(2) at 15 degrees C, which gives the area expansivity alpha(A) = 0.0029/deg at 30 degrees C, and we show that this value is in excellent agreement with the polymer brush theory. The bilayer becomes thinner with increasing temperature; the contractivity of the hydrocarbon portion was alpha(Dc) = 0.0019/deg; the difference between alpha(A) and alpha(Dc) is consistent with the previously measured volume expansivity alpha(Vc) = 0.0010/deg. The bending modulus K(C) decreased as exp(455/T) with increasing T (K). Our area compressibility modulus K(A) decreased with increasing temperature by 5%, the same as the surface tension of dodecane/water, in agreement again with the polymer brush theory. Regarding interactions between bilayers, the compression modulus B as a function of interbilayer water spacing D'(W) was found to be nearly independent of temperature. The repulsive fluctuation pressure calculated from B and K(C) increased with temperature, and the Hamaker parameter for the van der Waals interaction was nearly independent of temperature; this explains why the fully hydrated water spacing, D'(W), that we obtain from our structural results increases with temperature.
Van Driest transformation and compressible wall-bounded flows
NASA Technical Reports Server (NTRS)
Huang, P. G.; Coleman, G. N.
1994-01-01
The transformation validity question utilizing resulting data from direct numerical simulations (DNS) of supersonic, isothermal cold wall channel flow was investigated. The DNS results stood for a wide scope of parameter and were suitable for the purpose of examining the generality of Van Driest transformation. The Van Driest law of the wall can be obtained from the inner-layer similarity arguments. It was demonstrated that the Van Driest transformation cannot be incorporated to collapse the sublayer and log-layer velocity profiles simultaneously. Velocity and temperature predictions according to the preceding composite mixing-length model were presented. Despite satisfactory congruity with the DNS data, the model must be perceived as an engineering guide and not as a rigorous analysis.
Control of excitons in multi-layer van der Waals heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calman, E. V., E-mail: ecalman@gmail.com; Dorow, C. J.; Fogler, M. M.
2016-03-07
We report an experimental study of excitons in a double quantum well van der Waals heterostructure made of atomically thin layers of MoS{sub 2} and hexagonal boron nitride. The emission of neutral and charged excitons is controlled by gate voltage, temperature, and both the helicity and the power of optical excitation.
Nonlinear Pauli susceptibilities in Sr 3 Ru 2 O 7 and universal features of itinerant metamagnetism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shivaram, B. S.; Luo, Jing; Chern, Gia-Wei
We report, for the first time, measurements of the third order, x 3 and fifth order, x 5, susceptibilities in an itinerant oxide metamagnet, Sr 3Ru 2O 7 for magnetic fields both parallel and perpendicular to the c-axis. These susceptibilities exhibit maxima in their temperature dependence such that T 1 ≈ 2T 3 ≈ 4T 5 where the T i are the position in temperature where a peak in the i-th order susceptibility occurs. These features taken together with the scaling of the critical field with the temperature T 1 observed in a diverse variety of itinerant metamagnets find amore » natural explanation in a single band model with one Van Hove singularity (VHS) and onsite repulsion U. The separation of the VHS from the Fermi energy V, sets a single energy scale, which is the primary driver for the observed features of itinerant metamagnetism at low temperatures.« less
Nonlinear Pauli susceptibilities in Sr 3 Ru 2 O 7 and universal features of itinerant metamagnetism
Shivaram, B. S.; Luo, Jing; Chern, Gia-Wei; ...
2018-03-12
We report, for the first time, measurements of the third order, x 3 and fifth order, x 5, susceptibilities in an itinerant oxide metamagnet, Sr 3Ru 2O 7 for magnetic fields both parallel and perpendicular to the c-axis. These susceptibilities exhibit maxima in their temperature dependence such that T 1 ≈ 2T 3 ≈ 4T 5 where the T i are the position in temperature where a peak in the i-th order susceptibility occurs. These features taken together with the scaling of the critical field with the temperature T 1 observed in a diverse variety of itinerant metamagnets find amore » natural explanation in a single band model with one Van Hove singularity (VHS) and onsite repulsion U. The separation of the VHS from the Fermi energy V, sets a single energy scale, which is the primary driver for the observed features of itinerant metamagnetism at low temperatures.« less
Developing an Effective and Efficient Real Time Strategy Agent for Use as a Computer Generated Force
2010-03-01
Coello, Carlos A., Gary B. Lamont, and David A. Van Veldhuizen . Evolution- ary Algorithms for Solving Multi-Objective Problems (Genetic and...Practice. Oxford Univer- sity Press, 1996. 4. Bakkes, Sander, Philip Kerbusch, Pieter Spronck, and Jaap van den Herik. “Au- tomatically Evaluating...Pieter Spronck, and Jaap van den Herik. “Phase-dependent Evaluation in RTS games”. Proceedings of the 19th Belgian-Dutch Conference on Artificial
Design and mechanistic study of a novel gold nanocluster-based drug delivery system.
Li, Qinzhen; Pan, Yiting; Chen, Tiankai; Du, Yuanxin; Ge, Honghua; Zhang, Buchang; Xie, Jianping; Yu, Haizhu; Zhu, Manzhou
2018-05-22
Chemically-triggered drug delivery systems (DDSs) have been extensively studied as they do not require specialized equipment to deliver the drug and can deeply penetrate human tissue. However, their syntheses are complicated and they tend to be cytotoxic, which restricts their clinical utility. In this work, the self-regulated drug loading and release capabilities of peptide-protected gold nanoclusters (Pep-Au NCs) are investigated using vancomycin (Van) as the model drug. Gold nanoclusters (Au NCs) coated with a custom-designed pentapeptide are synthesized as drug delivery nanocarriers and loaded with Van - a spontaneous process reliant on the specific binding between Van and the custom-designed peptide. The Van-loaded Au NCs show comparable antimicrobial activity with Van on its own, and the number of Van released by the Pep-Au NCs is found to be proportional to the amount of bacteria present. The controlled nature of the Van release is very encouraging, and predominantly due to the stronger binding affinity of Van with bacteria than that with Au NCs. In addition, these fluorescent Au NCs could also be used to construct temperature sensors, which enable the in vitro and in vivo bioimaging.
Nesterenko, Pavel N; Rybalko, Marina A; Paull, Brett
2005-06-01
Significant deviations from classical van Deemter behaviour, indicative of turbulent flow liquid chromatography, has been recorded for mobile phases of varying viscosity on porous silica monolithic columns at elevated mobile phase flow rates.
Jang, Seung Woo; Kotani, Takao; Kino, Hiori; Kuroki, Kazuhiko; Han, Myung Joon
2015-01-01
Despite decades of progress, an understanding of unconventional superconductivity still remains elusive. An important open question is about the material dependence of the superconducting properties. Using the quasiparticle self-consistent GW method, we re-examine the electronic structure of copper oxide high-Tc materials. We show that QSGW captures several important features, distinctive from the conventional LDA results. The energy level splitting between and is significantly enlarged and the van Hove singularity point is lowered. The calculated results compare better than LDA with recent experimental results from resonant inelastic xray scattering and angle resolved photoemission experiments. This agreement with the experiments supports the previously suggested two-band theory for the material dependence of the superconducting transition temperature, Tc. PMID:26206417
Huang, Daoming; Chen, Zhongming
2010-01-01
Hydrogen peroxide is not only an important oxidant in itself; it also serves as both sink and temporary reservoir for other important oxidants including HOx (OH and HO2) radicals and O3 in the atmosphere. Its partitioning between gas and aqueous phases in the atmosphere, usually described by its Henry's law constant (K(H)), significantly influences its role in atmospheric processes. Large discrepancies between the K(H) values reported in previous work, however, have created uncertainty for atmospheric modelers. Based on our newly developed online instrumentation, we have re-determined the temperature and acidity dependence of K(H) for hydrogen peroxide at an air pressure of (0.960 +/- 0.013) atm (1 atm = 1.01325 x 10(5) Pa). The results indicated that the temperature dependence of K(H) for hydrogen peroxide fits to the Van't Hoff equation form, expressed as lnK(H) = a/T - b, and a = -deltaH/R, where K(H) is in M/atm (M is mol/L), T is in degrees Kelvin, R is the ideal gas constant, and deltaH is the standard heat of solution. For acidity dependence, results demonstrated that the K(H) value of hydrogen peroxide appeared to have no obvious dependence on decreasing pH level (from pH 7 to pH 1). Combining the dependence of both temperature and acidity, the obtained a and b were 7024 +/- 138 and 11.97 +/- 0.48, respectively, deltaH was (58.40 +/- 1.15) kJ/(K x mol), and the uncertainties represent sigma. Our determined K(H) values for hydrogen peroxide will therefore be of great use in atmospheric models.
Scaling laws for van der Waals interactions in nanostructured materials.
Gobre, Vivekanand V; Tkatchenko, Alexandre
2013-01-01
Van der Waals interactions have a fundamental role in biology, physics and chemistry, in particular in the self-assembly and the ensuing function of nanostructured materials. Here we utilize an efficient microscopic method to demonstrate that van der Waals interactions in nanomaterials act at distances greater than typically assumed, and can be characterized by different scaling laws depending on the dimensionality and size of the system. Specifically, we study the behaviour of van der Waals interactions in single-layer and multilayer graphene, fullerenes of varying size, single-wall carbon nanotubes and graphene nanoribbons. As a function of nanostructure size, the van der Waals coefficients follow unusual trends for all of the considered systems, and deviate significantly from the conventionally employed pairwise-additive picture. We propose that the peculiar van der Waals interactions in nanostructured materials could be exploited to control their self-assembly.
Going beyond the second virial coefficient in the hadron resonance gas model
NASA Astrophysics Data System (ADS)
Bugaev, K. A.; Sagun, V. V.; Ivanytskyi, A. I.; Yakimenko, I. P.; Nikonov, E. G.; Taranenko, A. V.; Zinovjev, G. M.
2018-02-01
We develop a novel formulation of the hadron resonance gas model which, besides a hard-core repulsion, explicitly accounts for the surface tension induced by the interaction between the particles. Such an equation of state allows us to go beyond the Van der Waals approximation for any number of different hard-core radii. A comparison with the Carnahan-Starling equation of state shows that the new model is valid for packing fractions 0.2-0.22, while the usual Van der Waals model is inapplicable at packing fractions above 0.1-0.11. Moreover, it is shown that the equation of state with induced surface tension is softer than the one of hard spheres and remains causal at higher particle densities. The great advantage of our model is that there are only two equations to be solved and neither their number nor their form depend on the values of the hard-core radii used for different hadronic resonances. Such an advantage leads to a significant mathematical simplification compared to other versions of truly multi-component hadron resonance gas models. Using this equation of state we obtain a high-quality fit of the ALICE hadron multiplicities measured at the center-of-mass energy 2.76 TeV per nucleon and we find that the dependence of χ2 / ndf on the temperature has a single global minimum in the traditional hadron resonance gas model with the multi-component hard-core repulsion. Also we find two local minima of χ2 / ndf in the model in which the proper volume of each hadron is proportional to its mass. However, it is shown that in the latter model a second local minimum located at higher temperatures always appears far above the limit of its applicability.
2015-01-01
Two single-tryptophan variants were generated in a thermophilic alcohol dehydrogenase with the goal of correlating temperature-dependent changes in local fluorescence with the previously demonstrated catalytic break at ca. 30 °C (Kohen et al., Nature1999, 399, 496). One tryptophan variant, W87in, resides at the active site within van der Waals contact of bound alcohol substrate; the other variant, W167in, is a remote-site surface reporter located >25 Å from the active site. Picosecond-resolved fluorescence measurements were used to analyze fluorescence lifetimes, time-dependent Stokes shifts, and the extent of collisional quenching at Trp87 and Trp167 as a function of temperature. A subnanosecond fluorescence decay rate constant has been detected for W87in that is ascribed to the proximity of the active site Zn2+ and shows a break in behavior at 30 °C. For the remainder of the reported lifetime measurements, there is no detectable break between 10 and 50 °C, in contrast with previously reported hydrogen/deuterium exchange experiments that revealed a temperature-dependent break analogous to catalysis (Liang et al., Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 9556). We conclude that the motions that lead to the rigidification of ht-ADH below 30 °C are likely to be dominated by global processes slower than the picosecond to nanosecond motions measured herein. In the case of collisional quenching of fluorescence by acrylamide, W87in and W167in behave in a similar manner that resembles free tryptophan in water. Stokes shift measurements, by contrast, show distinctive behaviors in which the active-site tryptophan relaxation is highly temperature-dependent, whereas the solvent-exposed tryptophan’s dynamics are temperature-independent. These data are concluded to reflect a significantly constrained environment surrounding the active site Trp87 that both increases the magnitude of the Stokes shift and its temperature-dependence. The results are discussed in the context of spatially distinct differences in enthalpic barriers for protein conformational sampling that may be related to catalysis. PMID:24892947
NASA Astrophysics Data System (ADS)
Lejosne, Solène; Mozer, F. S.
2016-12-01
The electric drift E × B/B2 plays a fundamental role for the description of plasma flow and particle acceleration. Yet it is not well-known in the inner belt and slot region because of a lack of reliable in situ measurements. In this article, we present an analysis of the electric drifts measured below L 3 by both Van Allen Probes A and B from September 2012 to December 2014. The objective is to determine the typical components of the equatorial electric drift in both radial and azimuthal directions. The dependences of the components on radial distance, magnetic local time, and geographic longitude are examined. The results from Van Allen Probe A agree with Van Allen Probe B. They show, among other things, a typical corotation lag of the order of 5 to 10% below L 2.6, as well as a slight radial transport of the order of 20 m s-1. The magnetic local time dependence of the electric drift is consistent with that of the ionosphere wind dynamo below L 2 and with that of a solar wind-driven convection electric field above L 2. A secondary longitudinal dependence of the electric field is also found. Therefore, this work also demonstrates that the instruments on board Van Allen Probes are able to perform accurate measurements of the electric drift below L 3.
Weber, Barbara; Lindell, Kristoffer; El Qaidi, Samir; Hjerde, Erik; Willassen, Nils-Peder
2011-01-01
Vibrio anguillarum utilizes quorum sensing to regulate stress responses required for survival in the aquatic environment. Like other Vibrio species, V. anguillarum contains the gene qrr1, which encodes the ancestral quorum regulatory RNA Qrr1, and phosphorelay quorum-sensing systems that modulate the expression of small regulatory RNAs (sRNAs) that destabilize mRNA encoding the transcriptional regulator VanT. In this study, three additional Qrr sRNAs were identified. All four sRNAs were positively regulated by σ54 and the σ54-dependent response regulator VanO, and showed a redundant activity. The Qrr sRNAs, together with the RNA chaperone Hfq, destabilized vanT mRNA and modulated expression of VanT-regulated genes. Unexpectedly, expression of all four qrr genes peaked at high cell density, and exogenously added N-acylhomoserine lactone molecules induced expression of the qrr genes at low cell density. The phosphotransferase VanU, which phosphorylates and activates VanO, repressed expression of the Qrr sRNAs and stabilized vanT mRNA. A model is presented proposing that VanU acts as a branch point, aiding cross-regulation between two independent phosphorelay systems that activate or repress expression of the Qrr sRNAs, giving flexibility and precision in modulating VanT expression and inducing a quorum-sensing response to stresses found in a constantly changing aquatic environment. PMID:21948044
Weber, Barbara; Lindell, Kristoffer; El Qaidi, Samir; Hjerde, Erik; Willassen, Nils-Peder; Milton, Debra L
2011-12-01
Vibrio anguillarum utilizes quorum sensing to regulate stress responses required for survival in the aquatic environment. Like other Vibrio species, V. anguillarum contains the gene qrr1, which encodes the ancestral quorum regulatory RNA Qrr1, and phosphorelay quorum-sensing systems that modulate the expression of small regulatory RNAs (sRNAs) that destabilize mRNA encoding the transcriptional regulator VanT. In this study, three additional Qrr sRNAs were identified. All four sRNAs were positively regulated by σ(54) and the σ(54)-dependent response regulator VanO, and showed a redundant activity. The Qrr sRNAs, together with the RNA chaperone Hfq, destabilized vanT mRNA and modulated expression of VanT-regulated genes. Unexpectedly, expression of all four qrr genes peaked at high cell density, and exogenously added N-acylhomoserine lactone molecules induced expression of the qrr genes at low cell density. The phosphotransferase VanU, which phosphorylates and activates VanO, repressed expression of the Qrr sRNAs and stabilized vanT mRNA. A model is presented proposing that VanU acts as a branch point, aiding cross-regulation between two independent phosphorelay systems that activate or repress expression of the Qrr sRNAs, giving flexibility and precision in modulating VanT expression and inducing a quorum-sensing response to stresses found in a constantly changing aquatic environment.
Detection of topological phase transitions through entropy measurements: The case of germanene
NASA Astrophysics Data System (ADS)
Grassano, D.; Pulci, O.; Shubnyi, V. O.; Sharapov, S. G.; Gusynin, V. P.; Kavokin, A. V.; Varlamov, A. A.
2018-05-01
We propose a characterization tool for studies of the band structure of new materials promising for the observation of topological phase transitions. We show that a specific resonant feature in the entropy per electron dependence on the chemical potential may be considered as a fingerprint of the transition between topological and trivial insulator phases. The entropy per electron in a honeycomb two-dimensional crystal of germanene subjected to the external electric field is obtained from the first-principles calculation of the density of electronic states and the Maxwell relation. We demonstrate that, in agreement with the recent prediction of the analytical model, strong spikes in the entropy per particle dependence on the chemical potential appear at low temperatures. They are observed at the values of the applied bias both below and above the critical value that corresponds to the transition between the topological insulator and trivial insulator phases, whereas the giant resonant feature in the vicinity of the zero chemical potential is strongly suppressed at the topological transition point, in the low-temperature limit. In a wide energy range, the van Hove singularities in the electronic density of states manifest themselves as zeros in the entropy per particle dependence on the chemical potential.
Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment.
Yan, Rusen; Fathipour, Sara; Han, Yimo; Song, Bo; Xiao, Shudong; Li, Mingda; Ma, Nan; Protasenko, Vladimir; Muller, David A; Jena, Debdeep; Xing, Huili Grace
2015-09-09
van der Waals (vdW) heterojunctions composed of two-dimensional (2D) layered materials are emerging as a solid-state materials family that exhibits novel physics phenomena that can power a range of electronic and photonic applications. Here, we present the first demonstration of an important building block in vdW solids: room temperature Esaki tunnel diodes. The Esaki diodes were realized in vdW heterostructures made of black phosphorus (BP) and tin diselenide (SnSe2), two layered semiconductors that possess a broken-gap energy band offset. The presence of a thin insulating barrier between BP and SnSe2 enabled the observation of a prominent negative differential resistance (NDR) region in the forward-bias current-voltage characteristics, with a peak to valley ratio of 1.8 at 300 K and 2.8 at 80 K. A weak temperature dependence of the NDR indicates electron tunneling being the dominant transport mechanism, and a theoretical model shows excellent agreement with the experimental results. Furthermore, the broken-gap band alignment is confirmed by the junction photoresponse, and the phosphorus double planes in a single layer of BP are resolved in transmission electron microscopy (TEM) for the first time. Our results represent a significant advance in the fundamental understanding of vdW heterojunctions and broaden the potential applications of 2D layered materials.
Van der Waals pressure sensors using reduced graphene oxide composites
NASA Astrophysics Data System (ADS)
Jung, Ju Ra; Ahn, Sung Il
2018-04-01
Reduced graphene oxide (RGO) films intercalated with various polymers were fabricated by reaction-based self-assembly, and their characteristics as vacuum pressure sensors based on van der Waals interactions were studied. At low temperature, the electrical resistances of the samples decrease linearly with increasing vacuum pressure, whereas at high temperature the variation of the electrical resistance shows secondary order curves. Among all samples, the poly vinyl alcohol intercalated RGO shows the highest sensitivity, being almost two times more sensitive than reference RGO. All samples show almost the same signal for repetitive sudden pressure changes, indicating reasonable reproducibility and durability.
Thermally programmable gas storage and release in single crystals of an organic van der Waals host.
Enright, Gary D; Udachin, Konstantin A; Moudrakovski, Igor L; Ripmeester, John A
2003-08-20
A single crystal of a low density form of guest-free p-tert-butylcalix[4]arene can take up and release small guest molecules by controlling the temperature and pressure without changing the structure. Using NMR spectroscopy with flowing hyperpolarized xenon, we have shown that at room temperature access of xenon to the pore system is difficult, whereas it is relatively easy at 100 degrees C. There are good prospects for simple van der Waals materials such as the title material to be used as programmable zeolite mimics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenger, F.J.; Bozek, J.M.; Soltis, R.F.
1976-10-01
Five electric vehicles were tested at vehicle test tracks using the SAE. The tests provide range data at steady speeds and for several driving cycles. Most tests were conducted with lead-acid traction batteries. The Otis Van and the Copper Electric Town Car were also tested with lead-acid and nickel-zinc batteries. The tests showed a range increase of from 82 to 101 percent depending on vehicle, speed, and test cycle.
NASA Technical Reports Server (NTRS)
Stenger, F. J.; Bozek, J. M.; Soltis, R. F.
1976-01-01
Five electric vehicles were tested at vehicle test tracks using the SAE. The tests provide range data at steady speeds and for several driving cycles. Most tests were conducted with lead-acid traction batteries. The Otis Van and the Copper Electric Town Car were also tested with lead-acid and nickel-zinc batteries. The tests showed a range increase of from 82 to 101 percent depending on vehicle, speed, and test cycle.
France-Lanord, Arthur; Soukiassian, Patrick; Glattli, Christian; Wimmer, Erich
2016-03-14
In an effort to extend the reach of current ab initio calculations to simulations requiring millions of configurations for complex systems such as heterostructures, we have parameterized the third-generation Charge Optimized Many-Body (COMB3) potential using solely ab initio total energies, forces, and stress tensors as input. The quality and the predictive power of the new forcefield are assessed by computing properties including the cohesive energy and density of SiO2 polymorphs, surface energies of alpha-quartz, and phonon densities of states of crystalline and amorphous phases of SiO2. Comparison with data from experiments, ab initio calculations, and molecular dynamics simulations using published forcefields including BKS (van Beest, Kramer, and van Santen), ReaxFF, and COMB2 demonstrates an overall improvement of the new parameterization. The computed temperature dependence of the thermal conductivity of crystalline alpha-quartz and the Kapitza resistance of the interface between crystalline Si(001) and amorphous silica is in excellent agreement with experiment, setting the stage for simulations of complex nanoscale heterostructures.
A note on evaluating VAN earthquake predictions
NASA Astrophysics Data System (ADS)
Tselentis, G.-Akis; Melis, Nicos S.
The evaluation of the success level of an earthquake prediction method should not be based on approaches that apply generalized strict statistical laws and avoid the specific nature of the earthquake phenomenon. Fault rupture processes cannot be compared to gambling processes. The outcome of the present note is that even an ideal earthquake prediction method is still shown to be a matter of a “chancy” association between precursors and earthquakes if we apply the same procedure proposed by Mulargia and Gasperini [1992] in evaluating VAN earthquake predictions. Each individual VAN prediction has to be evaluated separately, taking always into account the specific circumstances and information available. The success level of epicenter prediction should depend on the earthquake magnitude, and magnitude and time predictions may depend on earthquake clustering and the tectonic regime respectively.
Photon-induced selenium migration in TiSe 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lioi, David B.; Gosztola, David J.; Wiederrecht, Gary P.
2017-02-20
TiSe 2 is a member of the transition metal dichalcogenide family of layered van der Waals materials which exhibits some distinct electronic and optical properties. Here, we perform Raman spectroscopy and microscopy studies on single crystal TiSe 2 to investigate thermal and photon-induced defects associated with diffusion of selenium to the surface. Additional phonon peaks near 250 cm -1 are observed in the laser- irradiated regions that are consistent with formation of amorphous and nanocrys- talline selenium on the surface. Temperature dependent studies of the threshold temperature and laser intensity necessary to initiate selenium migration to the surface show anmore » activation barrier for the process of 1.55 eV. The impact of these results on the properties of strongly correlated electron states in TiSe 2 are discussed« less
Chlorhexidine Induces VanA-Type Vancomycin Resistance Genes in Enterococci
Bhardwaj, Pooja; Ziegler, Elizabeth
2016-01-01
Chlorhexidine is a bisbiguanide antiseptic used for infection control. Vancomycin-resistant E. faecium (VREfm) is among the leading causes of hospital-acquired infections. VREfm may be exposed to chlorhexidine at supra- and subinhibitory concentrations as a result of chlorhexidine bathing and chlorhexidine-impregnated central venous catheter use. We used RNA sequencing to investigate how VREfm responds to chlorhexidine gluconate exposure. Among the 35 genes upregulated ≥10-fold after 15 min of exposure to the MIC of chlorhexidine gluconate were those encoding VanA-type vancomycin resistance (vanHAX) and those associated with reduced daptomycin susceptibility (liaXYZ). We confirmed that vanA upregulation was not strain or species specific by querying other VanA-type VRE. VanB-type genes were not induced. The vanH promoter was found to be responsive to subinhibitory chlorhexidine gluconate in VREfm, as was production of the VanX protein. Using vanH reporter experiments with Bacillus subtilis and deletion analysis in VREfm, we found that this phenomenon is VanR dependent. Deletion of vanR did not result in increased chlorhexidine susceptibility, demonstrating that vanHAX induction is not protective against chlorhexidine. As expected, VanA-type VRE is more susceptible to ceftriaxone in the presence of sub-MIC chlorhexidine. Unexpectedly, VREfm is also more susceptible to vancomycin in the presence of subinhibitory chlorhexidine, suggesting that chlorhexidine-induced gene expression changes lead to additional alterations in cell wall synthesis. We conclude that chlorhexidine induces expression of VanA-type vancomycin resistance genes and genes associated with daptomycin nonsusceptibility. Overall, our results indicate that the impacts of subinhibitory chlorhexidine exposure on hospital-associated pathogens should be further investigated in laboratory studies. PMID:26810654
Sulfur-vacancy-dependent geometric and electronic structure of bismuth adsorbed on Mo S2
NASA Astrophysics Data System (ADS)
Park, Youngsin; Li, Nannan; Lee, Geunsik; Kim, Kwang S.; Kim, Ki-Jeong; Hong, Soon Cheol; Han, Sang Wook
2018-03-01
Through Bi deposition on the single-crystalline Mo S2 surface, we find that the density of the sulfur vacancy is a critical parameter for the growth of the crystalline Bi overlayer or cluster at room temperature. Also, the Mo S2 band structure is significantly modified near Γ due to the orbital hybridization with an adsorbed Bi monolayer. Our experimental observations and analysis in combination with density functional theory calculation suggest the importance of controlling the sulfur vacancy concentration in realizing an exotic quantum phase based on the van der Waals interface of Bi and Mo S2 .
Van der Waals heterojunction diode composed of WS2 flake placed on p-type Si substrate
NASA Astrophysics Data System (ADS)
Aftab, Sikandar; Farooq Khan, M.; Min, Kyung-Ah; Nazir, Ghazanfar; Afzal, Amir Muhammad; Dastgeer, Ghulam; Akhtar, Imtisal; Seo, Yongho; Hong, Suklyun; Eom, Jonghwa
2018-01-01
P-N junctions represent the fundamental building blocks of most semiconductors for optoelectronic functions. This work demonstrates a technique for forming a WS2/Si van der Waals junction based on mechanical exfoliation. Multilayered WS2 nanoflakes were exfoliated on the surface of bulk p-type Si substrates using a polydimethylsiloxane stamp. We found that the fabricated WS2/Si p-n junctions exhibited rectifying characteristics. We studied the effect of annealing processes on the performance of the WS2/Si van der Waals p-n junction and demonstrated that annealing improved its electrical characteristics. However, devices with vacuum annealing have an enhanced forward-bias current compared to those annealed in a gaseous environment. We also studied the top-gate-tunable rectification characteristics across the p-n junction interface in experiments as well as density functional theory calculations. Under various temperatures, Zener breakdown occurred at low reverse-bias voltages, and its breakdown voltage exhibited a negative coefficient of temperature. Another breakdown voltage was observed, which increased with temperature, suggesting a positive coefficient of temperature. Therefore, such a breakdown can be assigned to avalanche breakdown. This work demonstrates a promising application of two-dimensional materials placed directly on conventional bulk Si substrates.
Appelo, C.A.J.; Parkhurst, David L.; Post, V.E.A.
2014-01-01
Calculating the solubility of gases and minerals at the high pressures of carbon capture and storage in geological reservoirs requires an accurate description of the molar volumes of aqueous species and the fugacity coefficients of gases. Existing methods for calculating the molar volumes of aqueous species are limited to a specific concentration matrix (often seawater), have been fit for a limited temperature (below 60 °C) or pressure range, apply only at infinite dilution, or are defined for salts instead of individual ions. A more general and reliable calculation of apparent molar volumes of single ions is presented, based on a modified Redlich–Rosenfeld equation. The modifications consist of (1) using the Born equation to calculate the temperature dependence of the intrinsic volumes, following Helgeson–Kirkham–Flowers (HKF), but with Bradley and Pitzer’s expression for the dielectric permittivity of water, (2) using the pressure dependence of the extended Debye–Hückel equation to constrain the limiting slope of the molar volume with ionic strength, and (3) adopting the convention that the proton has zero volume at all ionic strengths, temperatures and pressures. The modifications substantially reduce the number of fitting parameters, while maintaining or even extending the range of temperature and pressure over which molar volumes can be accurately estimated. The coefficients in the HKF-modified-Redlich–Rosenfeld equation were fitted by least-squares on measured solution densities.The limiting volume and attraction factor in the Van der Waals equation of state can be estimated with the Peng–Robinson approach from the critical temperature, pressure, and acentric factor of a gas. The Van der Waals equation can then be used to determine the fugacity coefficients for pure gases and gases in a mixture, and the solubility of the gas can be calculated from the fugacity, the molar volume in aqueous solution, and the equilibrium constant. The coefficients for the Peng–Robinson equations are readily available in the literature.The required equations have been implemented in PHREEQC, version 3, and the parameters for calculating the partial molar volumes and fugacity coefficients have been added to the databases that are distributed with PHREEQC. The ease of use and power of the formulation are illustrated by calculating the solubility of CO2 at high pressures and temperatures, and comparing with well-known examples from the geochemical literature. The equations and parameterizations are suitable for wide application in hydrogeochemical systems, especially in the field of carbon capture and storage.
NASA Astrophysics Data System (ADS)
Appelo, C. A. J.; Parkhurst, D. L.; Post, V. E. A.
2014-01-01
Calculating the solubility of gases and minerals at the high pressures of carbon capture and storage in geological reservoirs requires an accurate description of the molar volumes of aqueous species and the fugacity coefficients of gases. Existing methods for calculating the molar volumes of aqueous species are limited to a specific concentration matrix (often seawater), have been fit for a limited temperature (below 60 °C) or pressure range, apply only at infinite dilution, or are defined for salts instead of individual ions. A more general and reliable calculation of apparent molar volumes of single ions is presented, based on a modified Redlich-Rosenfeld equation. The modifications consist of (1) using the Born equation to calculate the temperature dependence of the intrinsic volumes, following Helgeson-Kirkham-Flowers (HKF), but with Bradley and Pitzer’s expression for the dielectric permittivity of water, (2) using the pressure dependence of the extended Debye-Hückel equation to constrain the limiting slope of the molar volume with ionic strength, and (3) adopting the convention that the proton has zero volume at all ionic strengths, temperatures and pressures. The modifications substantially reduce the number of fitting parameters, while maintaining or even extending the range of temperature and pressure over which molar volumes can be accurately estimated. The coefficients in the HKF-modified-Redlich-Rosenfeld equation were fitted by least-squares on measured solution densities. The limiting volume and attraction factor in the Van der Waals equation of state can be estimated with the Peng-Robinson approach from the critical temperature, pressure, and acentric factor of a gas. The Van der Waals equation can then be used to determine the fugacity coefficients for pure gases and gases in a mixture, and the solubility of the gas can be calculated from the fugacity, the molar volume in aqueous solution, and the equilibrium constant. The coefficients for the Peng-Robinson equations are readily available in the literature. The required equations have been implemented in PHREEQC, version 3, and the parameters for calculating the partial molar volumes and fugacity coefficients have been added to the databases that are distributed with PHREEQC. The ease of use and power of the formulation are illustrated by calculating the solubility of CO2 at high pressures and temperatures, and comparing with well-known examples from the geochemical literature. The equations and parameterizations are suitable for wide application in hydrogeochemical systems, especially in the field of carbon capture and storage.
Jang, Seung Woo; Kotani, Takao; Kino, Hiori; Kuroki, Kazuhiko; Han, Myung Joon
2015-07-24
Despite decades of progress, an understanding of unconventional superconductivity still remains elusive. An important open question is about the material dependence of the superconducting properties. Using the quasiparticle self-consistent GW method, we re-examine the electronic structure of copper oxide high-Tc materials. We show that QSGW captures several important features, distinctive from the conventional LDA results. The energy level splitting between d(x(2)-y(2)) and d(3z(2)-r(2)) is significantly enlarged and the van Hove singularity point is lowered. The calculated results compare better than LDA with recent experimental results from resonant inelastic xray scattering and angle resolved photoemission experiments. This agreement with the experiments supports the previously suggested two-band theory for the material dependence of the superconducting transition temperature, Tc.
Vanillin (VAN) and cinnamaldehyde (CIN) are dietary antimutagens that effectively inhibit both induced and spontaneous mutations. We have shown previously that VAN and CIN reduced the spontaneous mutant frequency in Salmonella TA104 (hisG428, rfa, ¿uvrB, pKM101) by approximately...
A van der Waals Equation of State for a Dilute Boson Gas
ERIC Educational Resources Information Center
Deeney, F. A.; O'Leary, J. P.
2012-01-01
An equation of state of a system is a relationship that connects the thermodynamic variables of the system such as pressure and temperature. Such equations are well known for classical gases but less so for quantum systems. In this paper we develop a van der Waals equation of state for a dilute boson gas that may be used to explain the occurrence…
A statistical model of the human core-temperature circadian rhythm
NASA Technical Reports Server (NTRS)
Brown, E. N.; Choe, Y.; Luithardt, H.; Czeisler, C. A.
2000-01-01
We formulate a statistical model of the human core-temperature circadian rhythm in which the circadian signal is modeled as a van der Pol oscillator, the thermoregulatory response is represented as a first-order autoregressive process, and the evoked effect of activity is modeled with a function specific for each circadian protocol. The new model directly links differential equation-based simulation models and harmonic regression analysis methods and permits statistical analysis of both static and dynamical properties of the circadian pacemaker from experimental data. We estimate the model parameters by using numerically efficient maximum likelihood algorithms and analyze human core-temperature data from forced desynchrony, free-run, and constant-routine protocols. By representing explicitly the dynamical effects of ambient light input to the human circadian pacemaker, the new model can estimate with high precision the correct intrinsic period of this oscillator ( approximately 24 h) from both free-run and forced desynchrony studies. Although the van der Pol model approximates well the dynamical features of the circadian pacemaker, the optimal dynamical model of the human biological clock may have a harmonic structure different from that of the van der Pol oscillator.
NASA Astrophysics Data System (ADS)
Belkhode, Pramod Namdeorao
2017-06-01
Field data based model is proposed to reduce the overhauling time and human energy consumed in liner piston maintenance activity so as to increase the productivity of liner piston maintenance activity. The independent variables affecting the phenomenon such as anthropometric parameters of workers (Eastman Kodak Co. Ltd in Section VIA Appendix-A: Anthropometric Data. Ergonomic Design for People at Work, Van Nostrans Reinhold, New York, 1), workers parameters, specification of liner piston data, specification of tools used in liner piston maintenance activity, specification of solvents, axial clearance of big end bearing and bolt elongation, workstation data (Eastman Kodak Co. Ltd in Work Place Ergonomic Design for People at Work, Van Nostrans Reinhold, New York, 2) and extraneous variables, namely, temperature, humidity at workplace, illumination at workplace and noise at workplace (Eastman Kodak Co. Ltd in Chapter V Environment Ergonomic Design for People at Work, Van Nostrans Reinhold, New York, 3) are taken into account. The model is formulated for dependent variables of liner piston maintenance activity to minimize the overhauling time and human energy consumption so as to improve the productivity of liner piston maintenance activity. The developed model can predict the performance of liner piston maintenance activity which involves man and machine system (Schenck in Theories of Engineering Experimentation, Mc-Graw Hill, New York 4). The model is then optimized by optimization technique and the sensitivity analysis of the model has also been estimated.
Wang, Fang; Yeung, David; Han, Jun; Semin, David; McElvain, James S; Cheetham, Janet
2008-03-01
We report the application of column temperature programs as a tool to examine unusual temperature-induced behaviors of polysaccharide chiral stationary phases (CSPs). Using dihydropyrimidinone (DHP) compounds as probes we observed the heating (10-50 degrees C) and cooling (50-10 degrees C) van't Hoff plots of retention factors and/or selectivities of DHP compounds were not superimposable on AD, IA, and AS-H columns solvated with ethanol (EtOH)/n-hexane (n-Hex) mobile phases. The plots were not superimposable on AD, IB, and AS-H columns solvated with 2-propanol (2-PrOH)/n-Hex mobile phases. The thermally induced path-dependant behaviors were caused by slow equilibration as evidenced by the disappearance of the hysteresis in the second heating to cooling cycle and in a cooling to heating cycle. From the step-temperature program (10-50-10 degrees C), only EtOH solvated AD and AS-H phases showed the change of retention factors and/or selectivities with time while only 2-PrOH solvated AS-H phase showed similar behaviors.
Thermal stability of MBE-grown epitaxial MoSe2 and WSe2 thin films
NASA Astrophysics Data System (ADS)
Chang, Young Jun; Choy, Byoung Ki; Phark, Soo-Hyon; Kim, Minu
Layered transition metal dichalcogenides (TMDs) draw much attention, because of its unique optical properties and band structures depending on the layer thicknesses. However, MBE growth of epitaxial films demands information about thermal stability of stoichiometry and related electronic structure for high temperature range. We grow epitaxial MoSe2 and WSe2 ultrathin films by using molecular beam epitaxy (MBE). We characterize stoichiometry of films grown at various growth temperature by using various methods, XPS, EDX, and TOF-MEIS. We further test high temperature stability of electronic structure for those films by utilizing in-situ ellipsometry attached to UHV chamber. We discuss threshold temperatures up to 700~1000oC, at which electronic phases changes from semiconductor to metal due to selenium deficiency. This information can be useful for potential application of TMDs for fabrication of Van der Waals multilayers and related devices. This research was supported by Nano.Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning. (2009-0082580), NRF-2014R1A1A1002868.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helzel, J.; Jankowski, S.; El Helou, M.
The optical transitions of pentacene films deposited on ZnO have been studied by absorption spectroscopy as a function of temperature in the range of room temperature down to 10 K. The pentacene films were prepared with thicknesses of 10 nm, 20 nm, and 100 nm on the ZnO-O(000-1) surface by molecular beam deposition. A unique temperature dependence has been observed for the two Davydov components of the excitons for different film thicknesses. At room temperature, the energetic positions of the respective absorption bands are the same for all films, whereas the positions differ more than 20 meV at 10 Kmore » caused by the very different expansion coefficients of pentacene and ZnO. Although the pentacene is just bonded via van der Waals interaction to the ZnO substrate, the very first pentacene monolayer (adlayer) is forced to keep the initial position on the ZnO surface and suffering, therefore, a substantial tensile strain. For all the subsequent pentacene monolayers, the strain is reduced step by step resulting electronically in a strong potential gradient at the interface.« less
High-throughput resistivity apparatus for thin-film combinatorial libraries
NASA Astrophysics Data System (ADS)
Hewitt, K. C.; Casey, P. A.; Sanderson, R. J.; White, M. A.; Sun, R.
2005-09-01
An apparatus, capable of measuring the dc resistance versus temperature of a 49-member library prepared by thin-film deposition techniques was designed and tested. The library is deposited by dc magnetron sputtering onto 10.16cm×10.16cm alumina substrates on which are placed aluminum masks consisting of 8mm diam holes cut on a 7×7 grid, the center-to-center spacing being 10.15mm. Electrical contact to the library is made in a standard van der Pauw geometry using 196 spring-loaded, gold-coated pins, four pins for each member of the library. The temperature is controlled using a helium refrigerator in combination with a liquid-nitrogen radiation shield that greatly reduces radiative heating of the sample stage. With the radiation shield, the cold finger is able to sustain a minimum temperature of 7K and the sample stage a minimum temperature of 27K. The temperature (27-291K) dependent dc resistivity of a thin-film silver library of varying thickness (48-639nm) is presented to highlight the capabilities of the apparatus. The thickness dependence of both the resistivity and the temperature coefficient of resistivity are quantitatively consistent with the literature. For thicknesses greater than about 100nm, the room-temperature resistivity (3.4μΩcm) are consistent with Matthiessen's rule for 1%-2% impurity content, and the temperature coefficient of resistivity is consistent with the bulk value. For thicknesses less than 100nm, an increase in resistivity by a factor of 8 is found, which may be due to surface and boundary scattering effects; a corresponding increase in the temperature coefficient of resistivity is consistent with a concomitant decrease in the magnitude of the elastic constants and surface scattering effects.
Band-like temperature dependence of mobility in a solution-processed organic semiconductor
NASA Astrophysics Data System (ADS)
Sakanoue, Tomo; Sirringhaus, Henning
2010-09-01
The mobility μ of solution-processed organic semiconductorshas improved markedly to room-temperature values of 1-5cm2V-1s-1. In spite of their growing technological importance, the fundamental open question remains whether charges are localized onto individual molecules or exhibit extended-state band conduction like those in inorganic semiconductors. The high bulk mobility of 100cm2V-1s-1 at 10K of some molecular single crystals provides clear evidence that extended-state conduction is possible in van-der-Waals-bonded solids at low temperatures. However, the nature of conduction at room temperature with mobilities close to the Ioffe-Regel limit remains controversial. Here we investigate the origin of an apparent `band-like', negative temperature coefficient of the mobility (dμ/dT<0) in spin-coated films of 6,13-bis(triisopropylsilylethynyl)-pentacene. We use optical spectroscopy of gate-induced charge carriers to show that, at low temperature and small lateral electric field, charges become localized onto individual molecules in shallow trap states, but that a moderate lateral electric field is able to detrap them resulting in highly nonlinear, low-temperature transport. The negative temperature coefficient of the mobility at high fields is not due to extended-state conduction but to localized transport limited by thermal lattice fluctuations.
Band-like temperature dependence of mobility in a solution-processed organic semiconductor.
Sakanoue, Tomo; Sirringhaus, Henning
2010-09-01
The mobility mu of solution-processed organic semiconductors has improved markedly to room-temperature values of 1-5 cm(2) V(-1) s(-1). In spite of their growing technological importance, the fundamental open question remains whether charges are localized onto individual molecules or exhibit extended-state band conduction like those in inorganic semiconductors. The high bulk mobility of 100 cm(2) V(-1) s(-1) at 10 K of some molecular single crystals provides clear evidence that extended-state conduction is possible in van-der-Waals-bonded solids at low temperatures. However, the nature of conduction at room temperature with mobilities close to the Ioffe-Regel limit remains controversial. Here we investigate the origin of an apparent 'band-like', negative temperature coefficient of the mobility (dmu/dT<0) in spin-coated films of 6,13-bis(triisopropylsilylethynyl)-pentacene. We use optical spectroscopy of gate-induced charge carriers to show that, at low temperature and small lateral electric field, charges become localized onto individual molecules in shallow trap states, but that a moderate lateral electric field is able to detrap them resulting in highly nonlinear, low-temperature transport. The negative temperature coefficient of the mobility at high fields is not due to extended-state conduction but to localized transport limited by thermal lattice fluctuations.
Strong Field Quenching of the Quasiparticle Effective Mass in Heavy Fermion Compound YbCo2Zn20
NASA Astrophysics Data System (ADS)
Masahiro Ohya,; Masaki Matsushita,; Shingo Yoshiuchi,; Tetsuya Takeuchi,; Fuminori Honda,; Rikio Settai,; Toshiki Tanaka,; Yasunori Kubo,; Yoshichika Ōnuki,
2010-08-01
We found a metamagnetic like anomaly at Hm≃ 5 kOe in a heavy fermion compound YbCo2Zn20 below the characteristic temperature Tχ_{max}=0.32 K where the ac-susceptibility shows a broad peak, suggesting that an electronic state with a very low Kondo temperature is realized. Interestingly, the metamagnetic like behavior was observed as two peaks at 4.0 and 7.5 kOe at 95 mK in the magnetic field dependence of the electronic specific heat C/T. The extremely large values of the electronic specific heat coefficient γ≃ 8000 mJ/(K2\\cdotmol) and A=160 μΩ\\cdotcm/K2 in the electrical resistivity ρ=ρ0+AT2 at H=0 kOe are most likely due to the very low Kondo temperature. The \\sqrt{A} value was, however, found to be strongly reduced from \\sqrt{A}=12.6 (μΩ\\cdotcm/K2)1/2 at 0 kOe to 0.145 (μΩ\\cdotcm/K2)1/2 at 150 kOe. Therefore, we considered that the corresponding cyclotron effective mass mc*, which was determined from the temperature dependence of the de Haas-van Alphen (dHvA) amplitude, is also reduced with increasing magnetic field and is in fact not large, ranging from 2 to 9m0 at 117 kOe. From the field dependence of \\sqrt{A} and mc*, we estimated the cyclotron effective mass at 0 kOe to be 100--500m0, revealing the largest cyclotron mass as far as we know.
Growth and magnetooptical properties of anisotropic TbF3 single crystals
NASA Astrophysics Data System (ADS)
Valiev, Uygun V.; Karimov, Denis N.; Burdick, Gary W.; Rakhimov, Rakhim; Pelenovich, Vasiliy O.; Fu, Dejun
2017-06-01
This paper investigates the Faraday effect and absorption and luminescence spectra of single-crystal TbF3 measured at 90 K and 300 K. The optical-quality single-phase TbF3 crystals (structural type β-YF3) were grown by the Bridgman technique. Faraday rotation angles were measured at remagnetization along the [100] crystallographic axis. Low temperature optical measurements were carried out along the [100] axis. "Quasi-doublet" sublevels with energy at 0 cm-1, 65 cm-1, and 190 cm-1, and also a singlet sublevel with energy at 114 cm-1 located in the ground 7F6 multiplet were determined from the low temperature luminescence spectra. The Van-Vleck behavior of the magnetic susceptibility χb can be satisfactorily explained by the magnetic mixing of wave functions belonging to the ground and first excited "quasi-doublet" sublevels at 0 and 65 cm-1, respectively. Analysis of the oscillation dependences of the rotation angle showed that the value of the natural birefringence (Δn ≈ 0.0186) remains nearly constant within the wavelength and temperature ranges under investigation. As the temperature decreases, we find significant increases in the oscillation amplitude of the rotation angle and in the Verdet constant V. The spectral dependences V(χ) are linear throughout the temperature range. The magnetooptical activity of TbF3 can be explained by means of the spin- and parity-allowed electric-dipole 4f → 5d transitions in the Tb3+ ions.
The oscillations in ESR spectra of Hg0.76Cd0.24Te implanted by Ag+ at the X and Q-bands
NASA Astrophysics Data System (ADS)
Shestakov, A. V.; Fazlizhanov, I. I.; Yatsyk, I. V.; Gilmutdinov, I. F.; Ibragimova, M. I.; Shustov, V. A.; Eremina, R. M.
2018-05-01
The objects of the investigation were uniformly Ag+ doped Hg0.76Cd0.24Te mercury chalcogenide monocrystals obtained by ion implantation with subsequent thermal annealing over 20 days. After implantation and annealing the conductivity was inverted from n-type with carrier concentration of 1016 cm‑3 to p-type with carrier concentration of ≈ 3.9 × 1015 cm‑3. The investigations of microwave absorption derivative (dP/dH) showed the existence of strong oscillations in the magnetic field for Ag:Hg0.76Cd0.24Te in the temperature range 4.2–12 K. The concentration and effective mass of charge carrier were determined from oscillation period and temperature dependency of oscillation amplitude. We suppose that this phenomenon is similar to the de Haas–van Alphen effect in weakly correlated electron system with imperfect nesting vector.
Universal phase diagrams with superconducting domes for electronic flat bands
NASA Astrophysics Data System (ADS)
Löthman, Tomas; Black-Schaffer, Annica M.
2017-08-01
Condensed matter systems with flat bands close to the Fermi level generally exhibit, due to their very large density of states, extraordinarily high critical ordering temperatures of symmetry-breaking orders, such as superconductivity and magnetism. Here we show that the critical temperatures follow one of two universal curves with doping away from a flat band depending on the ordering channel, which completely dictates both the general order competition and the phase diagram. Notably, we find that orders in the particle-particle channel (superconducting orders) survive decisively farther than orders in the particle-hole channel (magnetic or charge orders) because the channels have fundamentally different polarizabilities. Thus, even if a magnetic or charge order initially dominates, superconducting domes are still likely to exist on the flanks of flat bands. We apply these general results to both the topological surface flat bands of rhombohedral ABC-stacked graphite and to the Van Hove singularity of graphene.
Electronic transport properties of Ti-impurity band in Si
NASA Astrophysics Data System (ADS)
Olea, J.; González-Díaz, G.; Pastor, D.; Mártil, I.
2009-04-01
In this paper we show that pulsed laser melted high dose implantation of Ti in Si, above the Mott transition, produces an impurity band (IB) in this semiconductor. Using the van der Pauw method and Hall effect measurements we find strong laminated conductivity at the implanted layer and a temperature dependent decoupling between the Ti implanted layer (TIL) and the substrate. The conduction mechanism from the TIL to the substrate shows blocking characteristics that could be well explained through IB theory. Using the ATLAS code we can estimate the energetic position of the IB at 0.36 eV from the conduction band, the density of holes in this band which is closely related to the Ti atomic density and the hole mobility in this band. Band diagrams of the structure at low and high temperatures are also simulated in the ATLAS framework. The simulation obtained is fully coherent with experimental results.
GMAG Dissertation Award: Tunnel spin injectors for semiconductor spintronics
NASA Astrophysics Data System (ADS)
Jiang, Xin
2004-03-01
Spin-based electronics aims to develop novel sensor, memory and logic devices by manipulating the spin states of carriers in semiconducting materials. This talk will focus on electrical spin injection into semiconductors, which is a prerequisite for spintronics and, in particular, on tunnel based spin injectors that are potentially operable above room temperature. The magneto-transport properties of two families of tunnel spin injectors will be discussed. The spin polarization of the electron current within the semiconductor is detected by measuring the circular polarization of the electroluminescence (EL) from a quantum well light emitting diode structure. The temperature and bias dependence of the EL polarization provides insight into the mechanism of spin relaxation within the semiconductor heterostructure. Collaborators: Roger Wang^1,2, Sebastiaan van Dijken^1,*, Robert Shelby^1, Roger Macfarlane^1, Seth Bank^2, Glenn Solomon^2, James Harris^2, and Stuart S. P. Parkin^1 * Currently at Trinity College, Dublin, Ireland
Li intercalation in graphite: A van der Waals density-functional study
NASA Astrophysics Data System (ADS)
Hazrati, E.; de Wijs, G. A.; Brocks, G.
2014-10-01
Modeling layered intercalation compounds from first principles poses a problem, as many of their properties are determined by a subtle balance between van der Waals interactions and chemical or Madelung terms, and a good description of van der Waals interactions is often lacking. Using van der Waals density functionals we study the structures, phonons and energetics of the archetype layered intercalation compound Li-graphite. Intercalation of Li in graphite leads to stable systems with calculated intercalation energies of -0.2 to -0.3 eV/Li atom, (referred to bulk graphite and Li metal). The fully loaded stage 1 and stage 2 compounds LiC6 and Li1 /2C6 are stable, corresponding to two-dimensional √{3 }×√{3 } lattices of Li atoms intercalated between two graphene planes. Stage N >2 structures are unstable compared to dilute stage 2 compounds with the same concentration. At elevated temperatures dilute stage 2 compounds easily become disordered, but the structure of Li3 /16C6 is relatively stable, corresponding to a √{7 }×√{7 } in-plane packing of Li atoms. First-principles calculations, along with a Bethe-Peierls model of finite temperature effects, allow for a microscopic description of the observed voltage profiles.
Fuciños, Clara; Fuciños, Pablo; Míguez, Martín; Katime, Issa; Pastrana, Lorenzo M.; Rúa, María L.
2014-01-01
Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements). PMID:24520326
Fuciños, Clara; Fuciños, Pablo; Míguez, Martín; Katime, Issa; Pastrana, Lorenzo M; Rúa, María L
2014-01-01
Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements).
Tischer, Alexander; Auton, Matthew
2013-01-01
We have analyzed the thermodynamic properties of the von Willebrand factor (VWF) A3 domain using urea-induced unfolding at variable temperature and thermal unfolding at variable urea concentrations to generate a phase diagram that quantitatively describes the equilibrium between native and denatured states. From this analysis, we were able to determine consistent thermodynamic parameters with various spectroscopic and calorimetric methods that define the urea–temperature parameter plane from cold denaturation to heat denaturation. Urea and thermal denaturation are experimentally reversible and independent of the thermal scan rate indicating that all transitions are at equilibrium and the van't Hoff and calorimetric enthalpies obtained from analysis of individual thermal transitions are equivalent demonstrating two-state character. Global analysis of the urea–temperature phase diagram results in a significantly higher enthalpy of unfolding than obtained from analysis of individual thermal transitions and significant cross correlations describing the urea dependence of and that define a complex temperature dependence of the m-value. Circular dichroism (CD) spectroscopy illustrates a large increase in secondary structure content of the urea-denatured state as temperature increases and a loss of secondary structure in the thermally denatured state upon addition of urea. These structural changes in the denatured ensemble make up ∼40% of the total ellipticity change indicating a highly compact thermally denatured state. The difference between the thermodynamic parameters obtained from phase diagram analysis and those obtained from analysis of individual thermal transitions illustrates that phase diagrams capture both contributions to unfolding and denatured state expansion and by comparison are able to decipher these contributions. PMID:23813497
Hole Fermi surface in Bi2Se3 probed by quantum oscillations
NASA Astrophysics Data System (ADS)
Piot, B. A.; Desrat, W.; Maude, D. K.; Orlita, M.; Potemski, M.; Martinez, G.; Hor, Y. S.
2016-04-01
Transport and torque magnetometry measurements are performed at high magnetic fields and low temperatures in a series of p-type (Ca-doped) Bi2Se3 crystals. The angular dependence of the Shubnikov-de Haas and de Haas-van Alphen quantum oscillations enables us to determine the Fermi surface of the bulk valence band states as a function of the carrier density. At low density, the angular dependence exhibits a downturn in the oscillations frequency between 0∘ and 90∘, reflecting a bag-shaped hole Fermi surface. The detection of a single frequency for all tilt angles rules out the existence of a Fermi surface with different extremal cross sections down to 24 meV. There is therefore no signature of a camelback in the valence band of our bulk samples, in accordance with the direct band gap predicted by G W calculations.
Acclimatization of rats after ground transportation to a new animal facility.
Capdevila, S; Giral, M; Ruiz de la Torre, J L; Russell, R J; Kramer, K
2007-04-01
This study aimed to assess the time needed by rats, which had not been previously transported, to acclimate to a new environment after 5 h of van transport, using physiological parameters as measures of acclimatization. Animal shipping boxes and transport van conditions were standardized to minimize stress factors that could be associated with transport. Heart rate (HR), body temperature and activity levels were measured in the rats before and after transport using previously implanted radio-telemetry transmitters. Body weight was also recorded. All parameters were changed significantly except for body temperature. Results suggest that rats take three days to acclimate to a new environment, as measured by the physiological parameters of body weight, HR and activity.
Is It that Difficult to Find a Good Preference Order for the Incremental Algorithm?
ERIC Educational Resources Information Center
Krahmer, Emiel; Koolen, Ruud; Theune, Mariet
2012-01-01
In a recent article published in this journal (van Deemter, Gatt, van der Sluis, & Power, 2012), the authors criticize the Incremental Algorithm (a well-known algorithm for the generation of referring expressions due to Dale & Reiter, 1995, also in this journal) because of its strong reliance on a pre-determined, domain-dependent Preference Order.…
Sharma, Anirban; Ghorai, Pradip Kr
2016-11-17
The effects of confinement on the structural and dynamical properties of the ionic liquid (IL) 1,3-dimethylimidazolium bromide ([MMIM][Br]) have been investigated by molecular dynamics simulations. We used zeolite faujasite (NaY) as a hydrophilic confinement and dealuminated faujasite (DAY) as a hydrophobic confinement. The presence of an extra framework cation, [Na + ], in NaY makes the host hydrophilic, whereas DAY, with no extra framework cation, is hydrophobic. Although both NaY and DAY have almost similar structures, the IL showed markedly different structural and dynamical properties in these confinements and in bulk. In the confinements, the cation-cation radial distribution function, which strongly depends on temperature, exhibits a layer-like structure, whereas in bulk, it shows a liquid-like structure that hardly depends on temperature. Although the interaction between [MMIM] + and Br - in DAY is stronger than that in both NaY and bulk, the strength of the interaction between them is almost invariant with temperature. Both [MMIM] + and Br - strongly interact with Na + of the host, and their interaction strongly depends on temperature, whereas the interaction of the IL with Si and O is very weak and invariant with temperature. In bulk, the self-diffusion coefficient, [D], of both [MMIM] + and Br - increases exponentially with temperature, and the D of the cation is slightly higher than that of the anion at all studied temperatures, whereas in the confinements, [MMIM] + moves much faster than Br - . For example, in the hydrophilic confinement, the D of the cation is 20-30 times higher than that of the anion. The D of both the ions decreases significantly in the confinements as compared to that in bulk. During diffusion, [MMIM] + diffuses closer to the inner surface in the hydrophilic confinement than that in the hydrophobic confinement. The diffusion pathway imperceptibly depends on temperature but strongly depends on the nature of the confinement. The self part of the time-dependent van Hoove correlation function of [MMIM] + in the hydrophilic confinement shows a larger deviation from its Gaussian form than that in the hydrophobic confinement at all temperatures, indicating that the long-time dynamics of [MMIM] + in NaY is more heterogeneous than that in DAY. Although the orientational relaxation time scales of [MMIM] + in the confinements significantly slowed as compared to those in bulk, confinement does not affect the librational motion of the collective hydrogen-bond network present in the IL.
Ding, Wenjun; Zhu, Jianbao; Wang, Zhe; Gao, Yanfei; Xiao, Di; Gu, Yi; Zhang, Zhenyu; Zhu, Wenguang
2017-04-07
Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been reported in such materials so far. Here we employ first-principles calculations to discover a branch of the 2D materials family, based on In 2 Se 3 and other III 2 -VI 3 van der Waals materials, that exhibits room-temperature ferroelectricity with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations. The device potential of these 2D ferroelectric materials is further demonstrated using the examples of van der Waals heterostructures of In 2 Se 3 /graphene, exhibiting a tunable Schottky barrier, and In 2 Se 3 /WSe 2 , showing a significant band gap reduction in the combined system. These findings promise to substantially broaden the tunability of van der Waals heterostructures for a wide range of applications.
Ding, Wenjun; Zhu, Jianbao; Wang, Zhe; Gao, Yanfei; Xiao, Di; Gu, Yi; Zhang, Zhenyu; Zhu, Wenguang
2017-01-01
Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been reported in such materials so far. Here we employ first-principles calculations to discover a branch of the 2D materials family, based on In2Se3 and other III2-VI3 van der Waals materials, that exhibits room-temperature ferroelectricity with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations. The device potential of these 2D ferroelectric materials is further demonstrated using the examples of van der Waals heterostructures of In2Se3/graphene, exhibiting a tunable Schottky barrier, and In2Se3/WSe2, showing a significant band gap reduction in the combined system. These findings promise to substantially broaden the tunability of van der Waals heterostructures for a wide range of applications. PMID:28387225
NASA Astrophysics Data System (ADS)
Ding, Wenjun; Zhu, Jianbao; Wang, Zhe; Gao, Yanfei; Xiao, Di; Gu, Yi; Zhang, Zhenyu; Zhu, Wenguang
2017-04-01
Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been reported in such materials so far. Here we employ first-principles calculations to discover a branch of the 2D materials family, based on In2Se3 and other III2-VI3 van der Waals materials, that exhibits room-temperature ferroelectricity with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations. The device potential of these 2D ferroelectric materials is further demonstrated using the examples of van der Waals heterostructures of In2Se3/graphene, exhibiting a tunable Schottky barrier, and In2Se3/WSe2, showing a significant band gap reduction in the combined system. These findings promise to substantially broaden the tunability of van der Waals heterostructures for a wide range of applications.
Direction-specific van der Waals attraction between rutile TiO2 nanocrystals
NASA Astrophysics Data System (ADS)
Zhang, Xin; He, Yang; Sushko, Maria L.; Liu, Jia; Luo, Langli; De Yoreo, James J.; Mao, Scott X.; Wang, Chongmin; Rosso, Kevin M.
2017-04-01
Mutual lattice orientations dictate the types and magnitudes of forces between crystalline particles. When lattice polarizability is anisotropic, the van der Waals dispersion attraction can, in principle, contribute to this direction dependence. We report measurement of this attraction between rutile nanocrystals, as a function of their mutual orientation and surface hydration extent. At tens of nanometers of separation, the attraction is weak and shows no dependence on azimuthal alignment or surface hydration. At separations of approximately one hydration layer, the attraction is strongly dependent on azimuthal alignment and systematically decreases as intervening water density increases. Measured forces closely agree with predictions from Lifshitz theory and show that dispersion forces can generate a torque between particles interacting in solution and between grains in materials.
Thermodynamics of high temperature, Mie-Gruneisen solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemons, Don S.; Lund, Carl M.
1999-12-01
We construct a set of equations of state for condensed matter at temperatures well above the Debye temperature. These equations incorporate the Mie-Gruneisen equation of state and generic properties of high temperature solids. They are simple enough to provide an alternative to the ideal gas and the van der Waals equations of state for illustrating thermodynamic concepts. (c) 1999 American Association of Physics Teachers.
Van Gerven, Pascal W M; Van Boxtel, Martin P J; Ausems, Eleonora E B; Bekers, Otto; Jolles, Jelle
2012-07-01
We investigated suspected longitudinal interaction effects of apolipoprotein E (APOE) genotype and educational attainment on cognitive decline in normal aging. Our sample consisted of 571 healthy, nondemented adults aged between 49 and 82 years. Linear mixed-models analyses were performed with four measurement time points: baseline, 3-year, 6-year, and 12-year follow-up. Covariates included age at baseline, sex, and self-perceived physical and mental health. Dependent measures were global cognitive functioning (Mini-Mental State Examination; Folstein, Folstein, & McHugh, 1975), Stroop performance (Stroop Color-Word Test; Van der Elst, Van Boxtel, Van Breukelen, & Jolles, 2006a), set-shifting performance (Concept Shifting Test; Van der Elst, Van Boxtel, Van Breukelen, & Jolles, 2006b), cognitive speed (Letter-Digit Substitution Test; Van der Elst, Van Boxtel, Van Breukelen, & Jolles, 2006c), verbal learning (Verbal Learning Test: Sum of five trials; Van der Elst, Van Boxtel, Van Breukelen, & Jolles, 2005), and long-term memory (Verbal Learning Test: Delayed recall). We found only faint evidence that older, high-educated carriers of the APOE-ε4 allele (irrespective of zygosity) show a more pronounced decline than younger, low-educated carriers and noncarriers (irrespective of educational attainment). Moreover, this outcome was confined to concept-shifting performance and was especially observable between 6- and 12-year follow-ups. No protective effects of higher education were found on any of the six cognitive measures. We conclude that the combination of APOE-ε4 allele and high educational attainment may be a risk factor for accelerated cognitive decline in older age, as has been reported before, but only to a very limited extent. Moreover, we conclude that, within the cognitive reserve framework, education does not have significant protective power against age-related cognitive decline.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinemann, Thomas, E-mail: thomas.heinemann@tu-berlin.de; Klapp, Sabine H. L., E-mail: klapp@physik.tu-berlin.de; Palczynski, Karol, E-mail: karol.palczynski@helmholtz-berlin.de
We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in moremore » efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.« less
Defect mediated van der Waals epitaxy of hexagonal boron nitride on graphene
NASA Astrophysics Data System (ADS)
Heilmann, M.; Bashouti, M.; Riechert, H.; Lopes, J. M. J.
2018-04-01
Van der Waals heterostructures comprising of hexagonal boron nitride and graphene are promising building blocks for novel two-dimensional devices such as atomically thin transistors or capacitors. However, demonstrators of those devices have been so far mostly fabricated by mechanical assembly, a non-scalable and time-consuming method, where transfer processes can contaminate the surfaces. Here, we investigate a direct growth process for the fabrication of insulating hexagonal boron nitride on high quality epitaxial graphene using plasma assisted molecular beam epitaxy. Samples were grown at varying temperatures and times and studied using atomic force microscopy, revealing a growth process limited by desorption at high temperatures. Nucleation was mostly commencing from morphological defects in epitaxial graphene, such as step edges or wrinkles. Raman spectroscopy combined with x-ray photoelectron measurements confirm the formation of hexagonal boron nitride and prove the resilience of graphene against the nitrogen plasma used during the growth process. The electrical properties and defects in the heterostructures were studied with high lateral resolution by tunneling current and Kelvin probe force measurements. This correlated approach revealed a nucleation apart from morphological defects in epitaxial graphene, which is mediated by point defects. The presented results help understanding the nucleation and growth behavior during van der Waals epitaxy of 2D materials, and point out a route for a scalable production of van der Waals heterostructures.
Das, Anuradha; Das, Suman; Biswas, Ranjit
2015-01-21
Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH3CONH2) and urea (NH2CONH2) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH3CONH2 + (1 - f)NH2CONH2] have been studied in a temperature range of 328-353 K which is ∼120-145 K above the measured glass transition temperatures (∼207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probe solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (∼70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α2) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Anuradha; Das, Suman; Biswas, Ranjit, E-mail: ranjit@bose.res.in
2015-01-21
Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH{sub 3}CONH{sub 2}) and urea (NH{sub 2}CONH{sub 2}) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH{sub 3}CONH{sub 2} + (1 − f)NH{sub 2}CONH{sub 2}] have been studied in a temperature range of 328-353 K which is ∼120-145 K above the measured glass transition temperatures (∼207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probemore » solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (∼70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α{sub 2}) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.« less
Henry constant and isosteric heat at zero-loading for gas adsorption in carbon nanotubes.
Do, D D; Do, H D; Wongkoblap, A; Nicholson, D
2008-12-28
The Henry constant and the isosteric heat of adsorption at zero loading in a carbon nanotube bundle are studied with Monte Carlo integration for the adsorption of gases over a range of temperatures. The spacing between nanotubes in a bundle is determined from the minimization of potential energy of interaction between these tubes. We study different tube configurations with bundles of 2, 3, 4 and 7 tubes. Depending on the configuration it is found that the spacing is of between 0.31 to 0.333 nm, and this falls within the range reported in the literature. The Henry constant has been carefully defined so that it will not become negative at high temperatures. This is done with the aid of accessible volume, rather than the usual absolute void volume. We show that linearity of the van't Hoff plot for the Henry constant is not strictly followed. Furthermore the slope of this plot is not equal to the isosteric heat of adsorption at zero loading, which is found to be a strong function of temperature. From the results we find that the Henry constant and the heat of adsorption depend on the tube configuration. In general the adsorption in the cusp interstices is strongest followed by that inside the tube and finally on the outer surface. However for very small tubes adsorption occurs inside the tube first. For molecules with orientation, the behaviour is even more interesting and the shape of the isosteric heat versus temperature depends on the degree of orientation, tube configuration and the domain of adsorption (interstices, inside the tube and on the outer surface).
NASA Astrophysics Data System (ADS)
Das, Anuradha; Das, Suman; Biswas, Ranjit
2015-01-01
Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH3CONH2) and urea (NH2CONH2) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH3CONH2 + (1 - f)NH2CONH2] have been studied in a temperature range of 328-353 K which is ˜120-145 K above the measured glass transition temperatures (˜207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probe solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (˜70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α2) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.
Manifestations of Kitaev physics in thermodynamic properties of hexagonal iridates and α-RuCl3
NASA Astrophysics Data System (ADS)
Tsirlin, Alexander
Kitaev model is hard to achieve in real materials. Best candidates available so far are hexagonal iridates M2IrO3 (M = Li and Na) and the recently discovered α-RuCl3 featuring hexagonal layers coupled by weak van der Waals bonding. I will review recent progress in crystal growth of these materials and compare their thermodynamic properties. Both hexagonal iridates and α-RuCl3 feature highly anisotropic Curie-Weiss temperatures that not only differ in magnitude but also change sign depending on the direction of the applied magnetic field. Néel temperatures are largely suppressed compared to the energy scale of the Curie-Weiss temperatures. These experimental observations will be linked to features of the electronic structure and to structural peculiarities associated with deviations from the ideal hexagonal symmetry. I will also discuss how the different nature of ligand atoms affects electronic structure and magnetic superexchange. This work has been done in collaboration with M. Majumder, M. Schmidt, M. Baenitz, F. Freund, and P. Gegenwart.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, J. Y.; Liu, L. H., E-mail: lhliu@hit.edu.cn; Department of Physics, Harbin Institute of Technology, Harbin 150001
2016-07-21
The dielectric functions of few-layer graphene and the related temperature dependence are investigated from the atomic scale using first-principles calculations. Compared with ellipsometry experiments in the spectral range of 190–2500 nm, the normalized optical constants of mono-layer graphene demonstrate good agreement and further validate first-principles calculations. To interpret dielectric function of mono-layer graphene, the electronic band structure and density of states are analyzed. By comparing dielectric functions of mono-, bi-, and tri-layer graphene, it shows that interlayer screening strengthens intraband transition and greatly enhances the absorption peak located around 1 eV. The strengthened optical absorption is intrinsically caused by the increasing electronmore » states near the Fermi level. To investigate temperature effect, the first-principles calculations and lattice dynamics are combined. The lattice vibration enhances parallel optical absorption peak around 1 eV and induces redshift. Moreover, it is observed that the van der Waals force plays a key role in keeping the interlayer distance stable during dynamics simulations.« less
One-stage pulsed laser deposition of conductive zinc oxysulfide layers
NASA Astrophysics Data System (ADS)
Bereznev, Sergei; Kocharyan, Hrachya; Maticiuc, Natalia; Naidu, Revathi; Volobujeva, Olga; Tverjanovich, Andrey; Kois, Julia
2017-12-01
Zinc oxysulfide - Zn(O,S) is one of the prospective materials for substitution of conventional CdS buffer layer in complete optoelectronic devices due to its optimal bandgap and low toxicity. In this work Zn(O,S) thin films have been prepared by one-step pulsed laser deposition technique. The films with a thickness of 650 nm were deposited onto the FTO/glass substrates at different substrate temperatures from room temperature to 400 °C. Zn(O,S) layers were characterized by means of scanning electron microscopy, energy dispersive spectroscopy, Raman, X-ray diffraction, UV-vis spectroscopy and Van der Pauw technique. It was found, that obtained Zn(O,S) layers are mainly polycrystalline, highly uniform, transparent, electrically conductive and demonstrate good adhesion to the FTO/glass substrates. In addition, we show that elemental composition of PLD Zn(O,S) films depends on the substrate temperature. For the first time high quality single phase conductive Zn(O,S) layers were prepared by one stage PLD in high vacuum at relatively low temperature 200 °C without any post treatment. The properties of prepared Zn(O,S) films suggest that these films can be applied as buffer layer in optoelectronic devices.
Reynolds shear stress and heat flux calculations in a fully developed turbulent duct flow
NASA Technical Reports Server (NTRS)
Antonia, R. A.; Kim, J.
1991-01-01
The use of a modified form of the Van Driest mixing length for a fully developed turbulent channel flow leads to mean velocity and Reynolds stress distributions that are in close agreement with data obtained either from experiments or direct numerical simulations. The calculations are then extended to a nonisothermal flow by assuming a constant turbulent Prandtl number, the value of which depends on the molecular Prandtl number. Calculated distributions of mean temperature and lateral heat flux are in reasonable agreement with the simulations. The extension of the calculations to higher Reynolds numbers provides some idea of the Reynolds number required for scaling on wall variables to apply in the inner region of the flow.
An interfaced system for production of methane in a spacecraft
NASA Technical Reports Server (NTRS)
Weiss, A. H.
1973-01-01
The formose reaction, the homogeneously catalyzed condensation of formaldehyde to sugars, proceeds simultaneously with Cannizzaro and crossed Cannizzaro reactions. Reaction studies in a continuous stirred tank reactor have shown that rate instabilities are exhibited. There are temperature instabilities as well as concentration instabilities in calcium hydroxide catalyst, formaldehyde reactant, and hydroxyl ion. It is postulated that Ca(OH)+ is the actual catalytic species for the formose system. A unifying mechanism is developed that postulates that reactions proceed from a common intermediate complexed species, and that the selectivity for each reaction depends on the nature of the catalyst forming the carbohydrate complex. The catalytic mechanism explains the Lobry de Bruyn-van Eckenstein aldose ketose rearrangements and mutarotations of sugars that also proceed in the system.
Electromagnetic van Kampen waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ignatov, A. M., E-mail: aign@fpl.gpi.ru
2017-01-15
The theory of van Kampen waves in plasma with an arbitrary anisotropic distribution function is developed. The obtained solutions are explicitly expressed in terms of the permittivity tensor. There are three types of perturbations, one of which is characterized by the frequency dependence on the wave vector, while for the other two, the dispersion relation is lacking. Solutions to the conjugate equations allowing one to solve the initial value problem are analyzed.
Tischer, Alexander; Auton, Matthew
2013-09-01
We have analyzed the thermodynamic properties of the von Willebrand factor (VWF) A3 domain using urea-induced unfolding at variable temperature and thermal unfolding at variable urea concentrations to generate a phase diagram that quantitatively describes the equilibrium between native and denatured states. From this analysis, we were able to determine consistent thermodynamic parameters with various spectroscopic and calorimetric methods that define the urea-temperature parameter plane from cold denaturation to heat denaturation. Urea and thermal denaturation are experimentally reversible and independent of the thermal scan rate indicating that all transitions are at equilibrium and the van't Hoff and calorimetric enthalpies obtained from analysis of individual thermal transitions are equivalent demonstrating two-state character. Global analysis of the urea-temperature phase diagram results in a significantly higher enthalpy of unfolding than obtained from analysis of individual thermal transitions and significant cross correlations describing the urea dependence of ΔH0 and ΔCP0 that define a complex temperature dependence of the m-value. Circular dichroism (CD) spectroscopy illustrates a large increase in secondary structure content of the urea-denatured state as temperature increases and a loss of secondary structure in the thermally denatured state upon addition of urea. These structural changes in the denatured ensemble make up ∼40% of the total ellipticity change indicating a highly compact thermally denatured state. The difference between the thermodynamic parameters obtained from phase diagram analysis and those obtained from analysis of individual thermal transitions illustrates that phase diagrams capture both contributions to unfolding and denatured state expansion and by comparison are able to decipher these contributions. © 2013 The Protein Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, M.L.; Martorell, J.T.
1962-01-01
The purification of zirconium in a cyclical static process using ZrI/sub 4/ as the volatile compound and W filaments was studied after a review of previous works on the subject. The equations corresponding to the isothermal process are given, in some detail. The optimum conditions of temperature and velocity for the maximum purification of the metal were determined. (J.S.R.)
Al{sub 70}Pd{sub 21.5}Mn{sub 8.5}: A quasicrystal showing the de haas-van Alphen effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haanappel, E.G.; Kycia, S.W.; Harmon, B.N.
1995-07-01
We have measured the de Haas-van Alphen effect in the icosahedral quasicrystal Al{sub 70}Pd{sub 21.5}Mn{sub 8.5}. We have found two well-defined frequencies with the magnetic field parallel to a five-fold axis, and two different ones with the field parallel to a two-fold axis. On increasing the temperature, the amplitude of the oscillations substantially decreased, suggesting that the carriers have large masses.
NASA Astrophysics Data System (ADS)
Baidakov, Vladimir G.
2016-02-01
The process of bubble nucleation in a Lennard-Jones (LJ) liquid is studied by molecular dynamics (MD) simulation. The bubble nucleation rate J is determined by the mean life-time method at temperatures above that of the triple point in the region of negative pressures. The results of simulation are compared with classical nucleation theory (CNT) and modified classical nucleation theory (MCNT), in which the work of formation of a critical bubble is determined in the framework of the van der Waals-Cahn-Hilliard gradient theory (GT). It has been found that the values of J obtained in MD simulation systematically exceed the data of CNT, and this excess in the nucleation rate reaches 8-10 orders of magnitude close to the triple point temperature. The results of MCNT are in satisfactory agreement with the data of MD simulation. To describe the properties of vapor-phase nuclei in the framework of GT, an equation of state has been built up which describes stable, metastable and labile regions of LJ fluids. The surface tension of critical bubbles γ has been found from CNT and data of MD simulation as a function of the radius of curvature of the surface of tension R*. The dependence γ(R*) has also been calculated from GT. The Tolman length has been determined, which is negative and in modulus equal to ≈(0.1 - 0.2) σ. The paper discusses the applicability of the Tolman formula to the description of the properties of critical nuclei in nucleation.
NASA Astrophysics Data System (ADS)
Sonwalkar, V. S.; Butler, J.; Reddy, A.
2017-12-01
We present a new method to remotely measure magnetospheric electron density and ion composition using lightning generated nonducted whistlers observed on a satellite. Electron and ion densities play important roles in magnetospheric processes such as wave-particle interactions in the equatorial region and ion-neutral dynamics in the ionosphere, and are important for calculating space weather effects such as particle precipitation, GPS scintillations, and satellite drag. The nonducted whistler resulting from a single lightning appears on a spectrogram as a series of magnetospherically reflected traces with characteristic dispersion (time delay versus frequency) and upper and lower cut off frequencies. Ray tracing simulations show that these observed characteristics depend on the magnetospheric electron density and ion composition. The cut off frequencies depend on both electron density and ion composition. The dispersion depends strongly on electron density, but weakly on ion composition. Using an iterative process to fit the measured dispersion and cutoff frequencies to those obtained from ray tracing simulations, it is possible to construct the electron and ion density profiles of the magnetosphere. We demonstrate our method by applying it to nonducted whistlers observed on OGO 1 and Van Allen probe satellites. In one instance (08 Nov 1965), whistler traces observed on OGO 1 (L = 2.4, λm = -6°) displayed a few seconds of dispersion and cutoff frequencies in the 1-10 kHz range. Ray tracing analysis showed that a diffusive equilibrium density model with the following parameters can reproduce the observed characteristics of the whistler traces: 1900 el/cc at L=2.4 and the equator, 358,000 el/cc at F2 peak (hmF2 = 220 km), the relative ion concentrations αH+ = 0.2, αHe+ = 0.2, and αO+ = 0.6 at 1000 km, and temperature 1600 K. The method developed here can be applied to whistlers observed on the past, current, and future magnetospheric satellite missions carrying wave instrument (e.g. OGO, ISEE 1, DE 1, POLAR, CLUSTER, Van Allen Probes). The method can be easily extended to make tomographic measurements of magnetospheric electron and ion density by analyzing a series of whistlers observed along the satellite orbit.
Computational Nanomechanics of Carbon Nanotubes and Composites
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Wei, Chenyu; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)
2002-01-01
Nanomechanics of individual carbon and boron-nitride nanotubes and their application as reinforcing fibers in polymer composites has been reviewed with interplay of theoretical modeling, computer simulations and experimental observations. The emphasis in this work is on elucidating the multi-length scales of the problems involved, and of different simulation techniques that are needed to address specific characteristics of individual nanotubes and nanotube polymer-matrix interfaces. Classical molecular dynamics simulations are shown to be sufficient to describe the generic behavior such as strength and stiffness modulus but are inadequate to describe elastic limit and nature of plastic buckling at large strength. Quantum molecular dynamics simulations are shown to bring out explicit atomic nature dependent behavior of these nanoscale materials objects that are not accessible either via continuum mechanics based descriptions or through classical molecular dynamics based simulations. As examples, we discus local plastic collapse of carbon nanotubes under axial compression and anisotropic plastic buckling of boron-nitride nanotubes. Dependence of the yield strain on the strain rate is addressed through temperature dependent simulations, a transition-state-theory based model of the strain as a function of strain rate and simulation temperature is presented, and in all cases extensive comparisons are made with experimental observations. Mechanical properties of nanotube-polymer composite materials are simulated with diverse nanotube-polymer interface structures (with van der Waals interaction). The atomistic mechanisms of the interface toughening for optimal load transfer through recycling, high-thermal expansion and diffusion coefficient composite formation above glass transition temperature, and enhancement of Young's modulus on addition of nanotubes to polymer are discussed and compared with experimental observations.
Van der Waals interactions and the limits of isolated atom models at interfaces
Kawai, Shigeki; Foster, Adam S.; Björkman, Torbjörn; Nowakowska, Sylwia; Björk, Jonas; Canova, Filippo Federici; Gade, Lutz H.; Jung, Thomas A.; Meyer, Ernst
2016-01-01
Van der Waals forces are among the weakest, yet most decisive interactions governing condensation and aggregation processes and the phase behaviour of atomic and molecular matter. Understanding the resulting structural motifs and patterns has become increasingly important in studies of the nanoscale regime. Here we measure the paradigmatic van der Waals interactions represented by the noble gas atom pairs Ar–Xe, Kr–Xe and Xe–Xe with a Xe-functionalized tip of an atomic force microscope at low temperature. Individual rare gas atoms were fixed at node sites of a surface-confined two-dimensional metal–organic framework. We found that the magnitude of the measured force increased with the atomic radius, yet detailed simulation by density functional theory revealed that the adsorption induced charge redistribution strengthened the van der Waals forces by a factor of up to two, thus demonstrating the limits of a purely atomic description of the interaction in these representative systems. PMID:27174162
Wang, Qiaoming; Yang, Liangliang; Zhou, Shengwen; Ye, Xianjun; Wang, Zhe; Zhu, Wenguang; McCluskey, Matthew D; Gu, Yi
2017-07-06
We demonstrate a van der Waals Schottky junction defined by crystalline phases of multilayer In 2 Se 3 . Besides ideal diode behaviors and the gate-tunable current rectification, the thermoelectric power is significantly enhanced in these junctions by more than three orders of magnitude compared with single-phase multilayer In 2 Se 3 , with the thermoelectric figure-of-merit approaching ∼1 at room temperature. Our results suggest that these significantly improved thermoelectric properties are not due to the 2D quantum confinement effects but instead are a consequence of the Schottky barrier at the junction interface, which leads to hot carrier transport and shifts the balance between thermally and field-driven currents. This "bulk" effect extends the advantages of van der Waals materials beyond the few-layer limit. Adopting such an approach of using energy barriers between van der Waals materials, where the interface states are minimal, is expected to enhance the thermoelectric performance in other 2D materials as well.
Van Vleck and the magnetic susceptibilities of gaseous molecules
NASA Astrophysics Data System (ADS)
Meyer, Horst
2011-03-01
In his 1927 Physical Review article and in his 1932 book, ~The Theory of Electric and Magnetic Susceptibilities,~Van Vleck used the new quantum theory to derive the magnetic susceptibilities of O2 and NO in their gaseous form ~and compared them with experiments. ~He was therefore very interested in low temperature susceptibility experiments on O2 at Oxford University in 1954 where individual O2 molecules were trapped in small, almost spherical cages in organic clathrates. Correspondence between him and this speaker, then at Oxford, led to further measurements of O2 and also of NO in such clathrates, to theory and to subsequent publications and correspondence. Later communication with Van Vleck on the magnetism in rare earth iron garnets, a subject of long-term interest to him, will be described ~in connection with experiments carried out at Duke University. Some fond personal ~recollections of this speaker of his interaction with Van Vleck - both while at Harvard, during visits and through correspondence which extended into the seventies - will be presented.
NOAA Mobile Laboratory Measures Oil and Gas Emissions
NASA Astrophysics Data System (ADS)
Kofler, J. D.; Petron, G.; Dube, W. P.; Edwards, P. M.; Brown, S. S.; Geiger, F.; Patrick, L.; Crepinsek, S.; Chen, H.; Miller, B. R.; Montzka, S. A.; Lang, P. M.; Newberger, T.; Higgs, J. A.; Sweeney, C.; Guenther, D.; Karion, A.; Wolter, S.; Williams, J.; Jordan, A.; Tans, P. P.; Schnell, R. C.
2012-12-01
A van capable of continuous real time measurements of CH4 , CO2, CO, Water Vapor, Ozone, NO, NO2, Volatile Organic Compounds VOCs including aromatics and other traces gases was driven in the oil and gas fields of the Uintah Basin in northeastern Utah. Compressor Stations, processing plants, oil and gas well heads. Separators, condensate tanks, evaporation pond disposal facilities, holding tanks, hydraulic fracturing sites, gas pipelines and more were studied using the van. The mobile measurements provide a powerful tool to get to the source of the emissions and reveal the unique chemical signature of each of the stages and components of oil and gas production as well as the overall basin and background gas concentrations. In addition to a suite of gas analyzers, the van includes a meteorological system (temperature, humidity, and wind speed and direction), GPS tracking, flask sampling system and a batter power system. Aspects of the vans hardware, sampling methods and operations are discussed along with a few highlights of the measurements.
NASA Astrophysics Data System (ADS)
Hsieh, Min-Kang; Lin, Shiang-Tai
2009-12-01
Molecular dynamics simulations are performed to study the initial structural development in poly(trimethylene terephthalate) (PTT) when quenched below its melting point. The development of local ordering has been observed in our simulations. The thermal properties, such as the glass transition temperature (Tg) and the melting temperature (Tm), determined from our simulations are in reasonable agreement with experimental values. It is found that, between these two temperatures, the number of local structures quickly increases during the thermal relaxation period soon after the system is quenched and starts to fluctuate afterwards. The formation and development of local structures is found to be driven mainly by the torsional and van der Waals forces and follows the classical nucleation-growth mechanism. The variation of local structures' fraction with temperature exhibits a maximum between Tg and Tm, resembling the temperature dependence of the crystallization rate for most polymers. In addition, the backbone torsion distribution for segments within the local structures preferentially reorganizes to the trans-gauche-gauche-trans (t-g-g-t) conformation, the same as that in the crystalline state. As a consequence, we believe that such local structural ordering could be the baby nuclei that have been suggested to form in the early stage of polymer crystallization.
Structural and Functional Adaptation of Vancomycin Resistance VanT Serine Racemases
Meziane-Cherif, Djalal; Stogios, Peter J.; Evdokimova, Elena; Egorova, Olga
2015-01-01
ABSTRACT Vancomycin resistance in Gram-positive bacteria results from the replacement of the d-alanyl–d-alanine target of peptidoglycan precursors with d-alanyl–d-lactate or d-alanyl–d-serine (d-Ala-d-Ser), to which vancomycin has low binding affinity. VanT is one of the proteins required for the production of d-Ala-d-Ser-terminating precursors by converting l-Ser to d-Ser. VanT is composed of two domains, an N-terminal membrane-bound domain, likely involved in l-Ser uptake, and a C-terminal cytoplasmic catalytic domain which is related to bacterial alanine racemases. To gain insight into the molecular function of VanT, the crystal structure of the catalytic domain of VanTG from VanG-type resistant Enterococcus faecalis BM4518 was determined. The structure showed significant similarity to type III pyridoxal 5′-phosphate (PLP)-dependent alanine racemases, which are essential for peptidoglycan synthesis. Comparative structural analysis between VanTG and alanine racemases as well as site-directed mutagenesis identified three specific active site positions centered around Asn696 which are responsible for the l-amino acid specificity. This analysis also suggested that VanT racemases evolved from regular alanine racemases by acquiring additional selectivity toward serine while preserving that for alanine. The 4-fold-lower relative catalytic efficiency of VanTG against l-Ser versus l-Ala implied that this enzyme relies on its membrane-bound domain for l-Ser transport to increase the overall rate of d-Ser production. These findings illustrate how vancomycin pressure selected for molecular adaptation of a housekeeping enzyme to a bifunctional enzyme to allow for peptidoglycan remodeling, a strategy increasingly observed in antibiotic-resistant bacteria. PMID:26265719
Structural and functional adaptation of vancomycin resistance VanT serine racemases
Meziane-Cherif, Djalal; Stogios, Peter J.; Evdokimova, Elena; ...
2015-08-11
Vancomycin resistance in Gram-positive bacteria results from the replacement of the D-alanyl–D-alanine target of peptidoglycan precursors with D-alanyl–D-lactate or D-alanyl–D-serine (D-Ala-D-Ser), to which vancomycin has low binding affinity. VanT is one of the proteins required for the production of D-Ala-D-Ser-terminating precursors by converting L-Ser to D-Ser. VanT is composed of two domains, an N-terminal membrane-bound domain, likely involved in L-Ser uptake, and a C-terminal cytoplasmic catalytic domain which is related to bacterial alanine racemases. To gain insight into the molecular function of VanT, the crystal structure of the catalytic domain of VanT G from VanG-type resistant Enterococcus faecalis BM4518more » was determined. The structure showed significant similarity to type III pyridoxal 5'-phosphate (PLP)-dependent alanine racemases, which are essential for peptidoglycan synthesis. Comparative structural analysis between VanT G and alanine racemases as well as site-directed mutagenesis identified three specific active site positions centered around Asn 696 which are responsible for theL-amino acid specificity. This analysis also suggested that VanT racemases evolved from regular alanine racemases by acquiring additional selectivity toward serine while preserving that for alanine. The 4-fold-lower relative catalytic efficiency of VanT G against L-Ser versus L-Ala implied that this enzyme relies on its membrane-bound domain for L-Ser transport to increase the overall rate of D-Ser production. These findings illustrate how vancomycin pressure selected for molecular adaptation of a housekeeping enzyme to a bifunctional enzyme to allow for peptidoglycan remodeling, a strategy increasingly observed in antibiotic-resistant bacteria.« less
Park, I S; Lin, C H; Walsh, C T
1997-09-16
The VanC phenotype for clinical resistance of enterococci to vancomycin is exhibited by Enterococcus gallinarum and Enterococcus casseliflavus. Based on the detection of the cell precursor UDP-N-acetylmuramic acid pentapeptide intermediate terminating in D-Ala-D-Ser instead of D-Ala-D-Ala, it has been predicted that the VanC ligase would be a D-Ala-D-Ser rather than a D-Ala-D-Ala ligase. Overproduction of the E. casseliflavus ATCC 25788 vanC2 gene in Escherichia coli and its purification to homogeneity allowed demonstration of ATP-dependent D-Ala-D-Ser ligase activity. The kcat/Km2 (Km2 = Km for D-Ser or C-terminal D-Ala) ratio for D-Ala-D-Ser/D-Ala-D-Ala dipeptide formation is 270/0.69 for a 400-fold selection against D-Ala in the C-terminal position. VanC2 also has substantial D-Ala-D-Asn ligase activity (kcat/Km2 = 74 mM-1min-1).
NASA Astrophysics Data System (ADS)
Smiljanić, Jelena D.; Kijevčanin, Mirjana Lj.; Djordjević, Bojan D.; Grozdanić, Dušan K.; Šerbanović, Slobodan P.
2008-04-01
Densities ρ of the 1-butanol + chloroform + benzene ternary mixture and the 1-butanol + chloroform and 1-butanol + benzene binaries have been measured at six temperatures (288.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K and atmospheric pressure, using an oscillating U-tube densimeter. From these densities, excess molar volumes ( V E) were calculated and fitted to the Redlich Kister equation for all binary mixtures and to the Nagata and Tamura equation for the ternary system. The Radojković et al. equation has been used to predict excess molar volumes of the ternary mixtures. Also, V E data of the binary systems were correlated by the van der Waals (vdW1) and Twu Coon Bluck Tilton (TCBT) mixing rules coupled with the Peng Robinson Stryjek Vera (PRSV) equation of state. The prediction and correlation of V E data for the ternary system were performed by the same models.
Ji, Xiaohu; Hu, Guixin; Zhang, Qiongyan; Wang, Fengshan; Liu, Chunhui
2016-11-05
Uncovering the biological roles of heparosan oligosaccharides requires a simple and robust method for their separation and identification. We reported on systematic investigations of the retention behaviors of synthetic heparosan oligosaccharides on porous graphitic carbon (PGC) column by HPLC with charged aerosol detection. Oligosaccharides were strongly retained by PGC material in water-acetonitrile mobile phase, and eluted by trifluoroacetic acid occurring as narrow peaks. Addition of small fraction of methanol led to better selectivity of PGC to oligosaccharides than acetonitrile modifier alone, presumably, resulting from displacement of methanol to give different chemical environment at the PGC surface. Van't-Hoff plots demonstrated that retention behaviors highly depended on the column temperature and oligosaccharide moieties. By implementing the optimal MeOH content and temperature, a novel isocratic elution method was successfully developed for baseline resolution and identification of seven heparosan oligosaccharides using PGC-HPLC-CAD/MS. This approach allows for rapid analysis of heparosan oligosaccharides from various sources. Copyright © 2016 Elsevier Ltd. All rights reserved.
Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl 3 crystals
McGuire, Michael A.; Clark, Genevieve; KC, Santosh; ...
2017-06-19
CrCl 3 is a layered insulator that undergoes a crystallographic phase transition below room temperature and orders antiferromagnetically at low temperature. Weak van der Waals bonding between the layers and ferromagnetic in-plane magnetic order make it a promising material for obtaining atomically thin magnets and creating van der Waals heterostructures. In this work we have grown crystals of CrCl 3, revisited the structural and thermodynamic properties of the bulk material, and explored mechanical exfoliation of the crystals. We find two distinct anomalies in the heat capacity at 14 and 17 K confirming that the magnetic order develops in two stagesmore » on cooling, with ferromagnetic correlations forming before long-range antiferromagnetic order develops between them. This scenario is supported by magnetization data. A magnetic phase diagram is constructed from the heat capacity and magnetization results. We also find an anomaly in the magnetic susceptibility at the crystallographic phase transition, indicating some coupling between the magnetism and the lattice. First-principles calculations accounting for van der Waals interactions also indicate spin-lattice coupling, and find multiple nearly degenerate crystallographic and magnetic structures consistent with the experimental observations. Lastly, we demonstrate that monolayer and few-layer CrCl 3 specimens can be produced from the bulk crystals by exfoliation, providing a path for the study of heterostructures and magnetism in ultrathin crystals down to the monolayer limit.« less
Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl 3 crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuire, Michael A.; Clark, Genevieve; KC, Santosh
CrCl 3 is a layered insulator that undergoes a crystallographic phase transition below room temperature and orders antiferromagnetically at low temperature. Weak van der Waals bonding between the layers and ferromagnetic in-plane magnetic order make it a promising material for obtaining atomically thin magnets and creating van der Waals heterostructures. In this work we have grown crystals of CrCl 3, revisited the structural and thermodynamic properties of the bulk material, and explored mechanical exfoliation of the crystals. We find two distinct anomalies in the heat capacity at 14 and 17 K confirming that the magnetic order develops in two stagesmore » on cooling, with ferromagnetic correlations forming before long-range antiferromagnetic order develops between them. This scenario is supported by magnetization data. A magnetic phase diagram is constructed from the heat capacity and magnetization results. We also find an anomaly in the magnetic susceptibility at the crystallographic phase transition, indicating some coupling between the magnetism and the lattice. First-principles calculations accounting for van der Waals interactions also indicate spin-lattice coupling, and find multiple nearly degenerate crystallographic and magnetic structures consistent with the experimental observations. Lastly, we demonstrate that monolayer and few-layer CrCl 3 specimens can be produced from the bulk crystals by exfoliation, providing a path for the study of heterostructures and magnetism in ultrathin crystals down to the monolayer limit.« less
Direction-specific van der Waals attraction between rutile TiO2 nanocrystals.
Zhang, Xin; He, Yang; Sushko, Maria L; Liu, Jia; Luo, Langli; De Yoreo, James J; Mao, Scott X; Wang, Chongmin; Rosso, Kevin M
2017-04-28
Mutual lattice orientations dictate the types and magnitudes of forces between crystalline particles. When lattice polarizability is anisotropic, the van der Waals dispersion attraction can, in principle, contribute to this direction dependence. We report measurement of this attraction between rutile nanocrystals, as a function of their mutual orientation and surface hydration extent. At tens of nanometers of separation, the attraction is weak and shows no dependence on azimuthal alignment or surface hydration. At separations of approximately one hydration layer, the attraction is strongly dependent on azimuthal alignment and systematically decreases as intervening water density increases. Measured forces closely agree with predictions from Lifshitz theory and show that dispersion forces can generate a torque between particles interacting in solution and between grains in materials. Copyright © 2017, American Association for the Advancement of Science.
Direction-specific van der Waals attraction between rutile TiO 2 nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xin; He, Yang; Sushko, Maria L.
Mutual lattice orientations dictate the types and magnitudes of forces between crystalline particles. When lattice polarizability is anisotropic, the van der Waals dispersion attraction can, in principle, contribute to this direction dependence. Here we report direct measurement of this attraction between rutile nanocrystals, as a function of their mutual orientation and surface hydration extent. At tens of nanometers of separation the attraction is weak and shows no dependence on azimuthal alignment nor surface hydration. At separations of approximately one hydration layer the attraction is strongly dependent on azimuthal alignment, and systematically decreases as intervening water density increases. Measured forces aremore » in close agreement with predictions from Lifshitz theory, and show that dispersion forces are capable of generating a torque between particles interacting in solution and between grains in materials.« less
Phonon-coupled ultrafast interlayer charge oscillation at van der Waals heterostructure interfaces
NASA Astrophysics Data System (ADS)
Zheng, Qijing; Xie, Yu; Lan, Zhenggang; Prezhdo, Oleg V.; Saidi, Wissam A.; Zhao, Jin
2018-05-01
Van der Waals (vdW) heterostructures of transition-metal dichalcogenide (TMD) semiconductors are central not only for fundamental science, but also for electro- and optical-device technologies where the interfacial charge transfer is a key factor. Ultrafast interfacial charge dynamics has been intensively studied, however, the atomic scale insights into the effects of the electron-phonon (e-p) coupling are still lacking. In this paper, using time dependent ab initio nonadiabatic molecular dynamics, we study the ultrafast interfacial charge transfer dynamics of two different TMD heterostructures MoS2/WS2 and MoSe2/WSe2 , which have similar band structures but different phonon frequencies. We found that MoSe2/WSe2 has softer phonon modes compared to MoS2/WS2 , and thus phonon-coupled charge oscillation can be excited with sufficient phonon excitations at room temperature. In contrast, for MoS2/WS2 , phonon-coupled interlayer charge oscillations are not easily excitable. Our study provides an atomic level understanding on how the phonon excitation and e-p coupling affect the interlayer charge transfer dynamics, which is valuable for both the fundamental understanding of ultrafast dynamics at vdW hetero-interfaces and the design of novel quasi-two-dimensional devices for optoelectronic and photovoltaic applications.
Structural characteristics of liquid nitromethane at the nanoscale confinement in carbon nanotubes.
Liu, Yingzhe; Lai, Weipeng; Yu, Tao; Ge, Zhongxue; Kang, Ying
2014-10-01
The stability of energetic materials confined in the carbon nanotubes can be improved at ambient pressure and room temperature, leading to potential energy storage and controlled energy release. However, the microscopic structure of confined energetic materials and the role played by the confinement size are still fragmentary. In this study, molecular dynamics simulations have been performed to explore the structural characteristics of liquid nitromethane (NM), one of the simplest energetic materials, confined in a series of armchair single-walled carbon nanotubes (SWNTs) changing from (5,5) to (16,16) at ambient conditions. The simulation results show that the size-dependent ordered structures of NM with preferred orientations are formed inside the tubular cavities driven by the van der Waals attractions between NM and SWNT together with the dipole-dipole interactions of NM, giving rise to a higher local mass density than that of bulk NM. The NM dipoles prefer to align parallel along the SWNT axis in an end-to-end fashion inside all the nanotubes except the (7,7) SWNT where a unique staggered orientation of NM dipoles perpendicular to the SWNT axis is observed. As the SWNT radius increases, the structural arrangements and dipole orientations of NM become disordered as a result of the weakening of van der Waals interactions between NM and SWNT.
Kerboua, Kaouther; Hamdaoui, Oualid
2018-01-01
Based on two different assumptions regarding the equation describing the state of the gases within an acoustic cavitation bubble, this paper studies the sonochemical production of hydrogen, through two numerical models treating the evolution of a chemical mechanism within a single bubble saturated with oxygen during an oscillation cycle in water. The first approach is built on an ideal gas model, while the second one is founded on Van der Waals equation, and the main objective was to analyze the effect of the considered state equation on the ultrasonic hydrogen production retrieved by simulation under various operating conditions. The obtained results show that even when the second approach gives higher values of temperature, pressure and total free radicals production, yield of hydrogen does not follow the same trend. When comparing the results released by both models regarding hydrogen production, it was noticed that the ratio of the molar amount of hydrogen is frequency and acoustic amplitude dependent. The use of Van der Waals equation leads to higher quantities of hydrogen under low acoustic amplitude and high frequencies, while employing ideal gas law based model gains the upper hand regarding hydrogen production at low frequencies and high acoustic amplitudes. Copyright © 2017 Elsevier B.V. All rights reserved.
Su, Ran; Hou, Zhun; Sang, Lihong; Zhou, Zhi-Ming; Fang, Hao; Yang, Xinying
2017-09-15
Enantioseparation of thirteen 6-substituted carbamoyl benzimidazoles by high-performance liquid chromatography (HPLC) was investigated using two immobilized polysaccharide-based chiral stationary phases (CSPs), Chiralpak IC and Chiralpak IA, in normal-phase mode. Most of the examined compounds were completely resolved. The effects of a polar alcohol modifier, analyte structure, and column temperature on the chiral recognition were investigated. Furthermore, the structure-retention relationship was evaluated, and thermodynamic parameters were calculated from plots of ln k' or ln α versus 1/T. The thermodynamic parameters indicated that the separations were enthalpy-driven. Moreover, nonlinear van't Hoff plots were obtained on Chiralpak IA. However, two unusual phenomena were observed: (1) an unusual increase in retention with increasing temperature with linear van't Hoff plots on Chiralpak IC and (2) an extremely high T iso value (i.e., several thousand degrees centigrade). Copyright © 2017 Elsevier B.V. All rights reserved.
Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus.
Long, Mingsheng; Gao, Anyuan; Wang, Peng; Xia, Hui; Ott, Claudia; Pan, Chen; Fu, Yajun; Liu, Erfu; Chen, Xiaoshuang; Lu, Wei; Nilges, Tom; Xu, Jianbin; Wang, Xiaomu; Hu, Weida; Miao, Feng
2017-06-01
The mid-infrared (MIR) spectral range, pertaining to important applications, such as molecular "fingerprint" imaging, remote sensing, free space telecommunication, and optical radar, is of particular scientific interest and technological importance. However, state-of-the-art materials for MIR detection are limited by intrinsic noise and inconvenient fabrication processes, resulting in high-cost photodetectors requiring cryogenic operation. We report black arsenic phosphorus-based long-wavelength IR photodetectors, with room temperature operation up to 8.2 μm, entering the second MIR atmospheric transmission window. Combined with a van der Waals heterojunction, room temperature-specific detectivity higher than 4.9 × 10 9 Jones was obtained in the 3- to 5-μm range. The photodetector works in a zero-bias photovoltaic mode, enabling fast photoresponse and low dark noise. Our van der Waals heterojunction photodetectors not only exemplify black arsenic phosphorus as a promising candidate for MIR optoelectronic applications but also pave the way for a general strategy to suppress 1/ f noise in photonic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murayama, Chisato; Okabe, Momoko; Fukuda, Koichiro
We investigated the crystallographic structure of FePS{sub 3} with a layered structure using transmission electron microscopy and powder X-ray diffraction. We found that FePS{sub 3} forms a rotational twin structure with the common axis along the c*-axis. The high-resolution transmission electron microscopy images revealed that the twin boundaries were positioned at the van der Waals gaps between the layers. The narrow bands of dark contrast were observed in the bright-field transmission electron microscopy images below the antiferromagnetic transition temperature, T{sub N} ≈ 120 K. Low-temperature X-ray diffraction showed a lattice distortion; the a- and b-axes shortened and lengthened, respectively, as the temperature decreasedmore » below T{sub N.} We propose that the narrow bands of dark contrast observed in the bright-field transmission electron microscopy images are caused by the directional lattice distortion with respect to each micro-twin variant in the antiferromagnetic phase.« less
Thalman, Ryan; Volkamer, Rainer
2013-10-07
The collisions between two oxygen molecules give rise to O4 absorption in the Earth atmosphere. O4 absorption is relevant to atmospheric transmission and Earth's radiation budget. O4 is further used as a reference gas in Differential Optical Absorption Spectroscopy (DOAS) applications to infer properties of clouds and aerosols. The O4 absorption cross section spectrum of bands centered at 343, 360, 380, 446, 477, 532, 577 and 630 nm is investigated in dry air and oxygen as a function of temperature (203-295 K), and at 820 mbar pressure. We characterize the temperature dependent O4 line shape and provide high precision O4 absorption cross section reference spectra that are suitable for atmospheric O4 measurements. The peak absorption cross-section is found to increase at lower temperatures due to a corresponding narrowing of the spectral band width, while the integrated cross-section remains constant (within <3%, the uncertainty of our measurements). The enthalpy of formation is determined to be ΔH(250) = -0.12 ± 0.12 kJ mol(-1), which is essentially zero, and supports previous assignments of O4 as collision induced absorption (CIA). At 203 K, van der Waals complexes (O(2-dimer)) contribute less than 0.14% to the O4 absorption in air. We conclude that O(2-dimer) is not observable in the Earth atmosphere, and as a consequence the atmospheric O4 distribution is for all practical means and purposes independent of temperature, and can be predicted with an accuracy of better than 10(-3) from knowledge of the oxygen concentration profile.
An augmented Young-Laplace model of an evaporating meniscus in a micro-channel with high heat flux
NASA Technical Reports Server (NTRS)
Wayner, P. C., Jr.; Plawsky, J.; Schonberg, J. A.; Dasgupta, S.
1993-01-01
High flux evaporations from a steady meniscus formed in a 2 micron channel is modeled using the augmented Young-Laplace equation. The heat flux is found to be a function of the long range van der Waals dispersion force which represents interfacial conditions between heptane and various substrates. Heat fluxes of (1.3-1.6) x 10(exp 6) W/m(exp 2) based on the width of the channel are obtained for heptane completely wetting the substrate at 100 C. Small channels are used to obtain these large fluxes. Even though the real contact angle is 0 deg, the apparent contact angle is found to vary between 24.8 deg and 25.6 deg. The apparent contact angle, which represents viscous losses near the contact line, has a large effect on the heat flow rate because of its effect on capillary suction and the area of the meniscus. The interfacial heat flux is modeled using kinetic theory for the evaporation rate. The superheated state depends on the temperature and the pressure of the liquid phase. The liquid pressure differs from the pressure of the vapor phase due to capillarity and long range van der Waals dispersion forces which are relevant in the ultra think film formed at the leading edge of the meniscus. Important pressure gradients in the thin film cause a substantial apparent contact angle for a complete wetting system. The temperature of the liquid is related to the evaporation rate and to the substrate temperature through the steady heat conduction equation. Conduction in the liquid phase is calculated using finite element analysis except in the vicinity of the thin film. A lubrication theory solution for the thin film is combined with the finite element analysis by the method of matched asymptotic expansions.
Charge-induced fluctuation forces in graphitic nanostructures
Drosdoff, D.; Bondarev, Igor V.; Widom, Allan; ...
2016-01-21
Charge fluctuations in nanocircuits with capacitor components are shown to give rise to a novel type of long-ranged interaction, which coexist with the regular Casimir–van derWaals force. The developed theory distinguishes between thermal and quantum mechanical effects, and it is applied to capacitors involving graphene nanostructures. The charge fluctuations mechanism is captured via the capacitance of the system with geometrical and quantum mechanical components. The dependence on the distance separation, temperature, size, and response properties of the system shows that this type of force can have a comparable and even dominant effect to the Casimir interaction. Lastly, our results stronglymore » indicate that fluctuation-induced interactions due to various thermodynamic quantities can have important thermal and quantum mechanical contributions at the microscale and the nanoscale.« less
Optical spectroscopy study of the three-dimensional Dirac semimetal ZrTe 5
Chen, R. Y.; Gu, G. D.; Zhang, S. J.; ...
2015-08-05
Three-dimensional (3D) topological Dirac materials have been under intensive study recently. The layered compound ZrTe 5 has been suggested to be one such material as a result of transport and angle-resolved photoemission spectroscopy experiments. Here, we perform infrared reflectivity measurements to investigate the underlying physics of this material. The derived optical conductivity increases linearly with frequency below normal interband transitions, which provides optical spectroscopic proof of a 3D Dirac semimetal. In addition, the plasma edge shifts dramatically to lower energy upon temperature cooling, which might be due to the shrinking of the lattice parameters. Additionally, an extremely sharp peak showsmore » up in the frequency-dependent optical conductivity, indicating the presence of a Van Hove singularity in the joint density of state.« less
Angle-resolved effective potentials for disk-shaped molecules
NASA Astrophysics Data System (ADS)
Heinemann, Thomas; Palczynski, Karol; Dzubiella, Joachim; Klapp, Sabine H. L.
2014-12-01
We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in more efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.
NASA Astrophysics Data System (ADS)
Aghaei Abchouyeh, Maryam; Mirza, Behrouz; Karimi Takrami, Moein; Younesizadeh, Younes
2018-05-01
We propose a correspondence between an Anyon Van der Waals fluid and a (2 + 1) dimensional AdS black hole. Anyons are particles with intermediate statistics that interpolates between a Fermi-Dirac statistics and a Bose-Einstein one. A parameter α (0 < α < 1) characterizes this intermediate statistics of Anyons. The equation of state for the Anyon Van der Waals fluid shows that it has a quasi Fermi-Dirac statistics for α >αc, but a quasi Bose-Einstein statistics for α <αc. By defining a general form of the metric for the (2 + 1) dimensional AdS black hole and considering the temperature of the black hole to be equal with that of the Anyon Van der Waals fluid, we construct the exact form of the metric for a (2 + 1) dimensional AdS black hole. The thermodynamic properties of this black hole is consistent with those of the Anyon Van der Waals fluid. For α <αc, the solution exhibits a quasi Bose-Einstein statistics. For α >αc and a range of values of the cosmological constant, there is, however, no event horizon so there is no black hole solution. Thus, for these values of cosmological constants, the AdS Anyon Van der Waals black holes have only quasi Bose-Einstein statistics.
Van der Waals model for phase transitions in thermoresponsive surface films.
McCoy, John D; Curro, John G
2009-05-21
Phase transitions in polymeric surface films are studied with a simple model based on the van der Waals equation of state. Each chain is modeled by a single bead attached to the surface by an entropic-Hooke's law spring. The surface coverage is controlled by adjusting the chemical potential, and the equilibrium density profile is calculated with density functional theory. The interesting feature of this model is the multivalued nature of the density profile seen at low temperature. This van der Waals loop behavior is resolved with a Maxwell construction between a high-density phase near the wall and a low-density phase in a "vertical" phase transition. Signatures of the phase transition in experimentally measurable quantities are then found. Numerical calculations are presented for isotherms of surface pressure, for the Poisson ratio, and for the swelling ratio.
NASA Astrophysics Data System (ADS)
Pontes, Renato B.; Miwa, Roberto H.; da Silva, Antônio J. R.; Fazzio, Adalberto; Padilha, José E.
2018-06-01
The structural and electronic properties of few layers of blue phosphorus and their van der Waals heterostructures with graphene were investigated by means of first-principles electronic structure calculations. We study the four energetically most stable stacking configurations for multilayers of blue phosphorus. For all of them, the indirect band-gap semiconductor character, are preserved. We show that the properties of monolayer graphene and single-layer (bilayer) blue phosphorus are preserved in the van der Waals heterostructures. Further, our results reveal that under a perpendicular applied electric field, the position of the band structure of blue phosphorus with respect to that of graphene is tunable, enabling the effective control of the Schottky barrier height. Indeed, for the bilayer blue phosphorene on top of graphene, it is possible to even move the system into an Ohmic contact and induce a doping level of the blue phosphorene. All of these features are fundamental for the design of new nanodevices based on van der Waals heterostructures.
Quantum oscillations in insulators with neutral Fermi surfaces
NASA Astrophysics Data System (ADS)
Sodemann, Inti; Chowdhury, Debanjan; Senthil, T.
2018-02-01
We develop a theory of quantum oscillations in insulators with an emergent Fermi sea of neutral fermions minimally coupled to an emergent U(1 ) gauge field. As pointed out by Motrunich [Phys. Rev. B 73, 155115 (2006), 10.1103/PhysRevB.73.155115], in the presence of a physical magnetic field the emergent magnetic field develops a nonzero value leading to Landau quantization for the neutral fermions. We focus on the magnetic field and temperature dependence of the analog of the de Haas-van Alphen effect in two and three dimensions. At temperatures above the effective cyclotron energy, the magnetization oscillations behave similarly to those of an ordinary metal, albeit in a field of a strength that differs from the physical magnetic field. At low temperatures, the oscillations evolve into a series of phase transitions. We provide analytical expressions for the amplitude and period of the oscillations in both of these regimes and simple extrapolations that capture well their crossover. We also describe oscillations in the electrical resistivity of these systems that are expected to be superimposed with the activated temperature behavior characteristic of their insulating nature and discuss suitable experimental conditions for the observation of these effects in mixed-valence insulators and triangular lattice organic materials.
NASA Astrophysics Data System (ADS)
Maxworth, A. S.; Golkowski, M.; Malaspina, D.; Jaynes, A. N.
2017-12-01
Whistler mode waves play a dominant role in the energy dynamics of the Earth's magnetosphere. Trajectory of whistler mode waves can be predicted by raytracing. Raytracing is a numerical method which solves the Haselgrove's equations at each time step taking the background plasma parameters in to account. The majority of previous raytracing work was conducted assuming a cold (0 K) background magnetospheric plasma. Here we perform raytracing in a finite temperature plasma with background electron and ion temperatures of a few eV. When encountered with a high energy (>10 keV) electron distribution, whistler mode waves can undergo a power attenuation and/or growth, depending on resonance conditions which are a function of wave frequency, wave normal angle and particle energy. In this work we present the wave power attenuation and growth analysis of whistler mode waves, during the interaction with a high energy electron distribution. We have numerically modelled the high energy electron distribution as an isotropic velocity distribution, as well as an anisotropic bi-Maxwellian distribution. Both cases were analyzed with and without the temperature effects for the background magnetospheric plasma. Finally we compare our results with the whistler mode energy distribution obtained by the EMFISIS instrument hosted at the Van Allen Probe spacecraft.
Electrical characterization of 6H crystalline silicon carbide. M.S. Thesis Final Report
NASA Technical Reports Server (NTRS)
Lempner, Stephen E.
1994-01-01
Crystalline silicon carbide (SiC) substrates and epilayers, undoped as well as n- and p-doped, have been electrically characterized by performing Hall effect and resistivity measurements (van der Pauw) over the temperature range of approximately 85 K to 650 K (200 K to 500 K for p-type sample). By fitting the measured temperature dependent carrier concentration data to the single activation energy theoretical model: (1) the activation energy for the nitrogen donor ranged from 0.078 eV to 0.101 eV for a doping concentration range of 10(exp 17) cm(exp -3) to 10(exp 18) cm(exp -3) and (2) the activation energy for the aluminum acceptor was 0.252 eV for a doping concentration of 4.6 x 10(exp 18) cm(exp -3). By fitting the measured temperature dependent carrier concentration data to the double activation energy level theoretical model for the nitrogen donor: (1) the activation energy for the hexagonal site was 0.056 eV and 0.093 eV corresponding to doping concentrations of 3.33 x 10 (exp 17) cm(exp -3) and 1.6 x 10(exp 18) cm(exp -3) and (2) the activation energy for the cubic site was 0.113 and 0.126 eV corresponding to doping concentrations of 4.2 x 10(exp 17) cm(exp -3) and 5.4 x 10(exp 18) cm(exp -3).
Phase diagram for the Kuramoto model with van Hemmen interactions.
Kloumann, Isabel M; Lizarraga, Ian M; Strogatz, Steven H
2014-01-01
We consider a Kuramoto model of coupled oscillators that includes quenched random interactions of the type used by van Hemmen in his model of spin glasses. The phase diagram is obtained analytically for the case of zero noise and a Lorentzian distribution of the oscillators' natural frequencies. Depending on the size of the attractive and random coupling terms, the system displays four states: complete incoherence, partial synchronization, partial antiphase synchronization, and a mix of antiphase and ordinary synchronization.
Dependence of Radar Backscatter on the Energetics of the Air-Sea Interface
1990-07-01
14 3 Figure 41a. Shematic Spectrum of Wind Speed Near the Ground Estimated from a Study of Van der Hoven (1957...O.O0 Figure 41a. Schematic Spectrum of Wind Speed Near the Ground Estimated from a Study of Van der Hoven (1957) (from Lumley and Panofsky, 1964) The...resolved is 0.6 to 8.0s. Following Der (1976), the sensors are capacitance transduction devices which produce output voltage signals proportional to surface
NASA Astrophysics Data System (ADS)
Dumitraşcu, Loredana; Ursache, Florentina Mihaela; Stănciuc, Nicoleta; Aprodu, Iuliana
2016-12-01
Sea buckthorn is a natural food ingredient rich in bioactive compounds such as carotenoids, tocopherols, sterols, flavonoids, lipids, vitamins, tannins and minerals. Herein, fluorescence and UV-vis techniques were used to study the interaction of heat treated α-lactalbumin (α-LA) with carotenoids from sea buckthorn berries extract (CSB) and β-carotene. Further atomic level details on the interaction between α-LA and β-carotene were obtained by means of molecular modelling techniques. The quenching rate constants, binding constants, and number of binding sites were calculated in the presence of CSB. The emission spectral studies revealed that, CSB have the ability to bind α-LA and form a ground state complex via static quenching process. Maximum degree of quenching was reached at 100 °C, where β-carotene and CSB quenched the Trp fluorescence of α-LA by 56% and 47%, respectively. In order to reveal the interaction between CSB and α-LA, the thermodynamic parameters were determined from the van't Hoff plot based on the temperature dependence of the binding constant. In agreement with the in silico observations, the thermodynamic parameters enabled us to consider that the association between α-LA and β-carotene is a spontaneous process driven by enthalpy, dominated mainly by the van der Waals interaction, but hydrophobic interactions might also be considered. The interaction between CSB and α-LA was further confirmed by UV-vis absorption spectra, where a blue shift of position was noticed at higher temperature suggesting the complex formation. The results provided here supply a better understanding of the binding of CSB to α-LA, which can be further exploited in designing new healthy food applications.
van der Waals model for the surface tension of liquid 4He near the λ point
NASA Astrophysics Data System (ADS)
Tavan, Paul; Widom, B.
1983-01-01
We develop a phenomenological model of the 4He liquid-vapor interface. With it we calculate the surface tension of liquid helium near the λ point and compare with the experimental measurements by Magerlein and Sanders. The model is a form of the van der Waals surface-tension theory, extended to apply to a phase equilibrium in which the simultaneous variation of two order parameters-here the superfluid order parameter and the total density-is essential. The properties of the model are derived analytically above the λ point and numerically below it. Just below the λ point the superfluid order parameter is found to approach its bulk-superfluid-phase value very slowly with distance on the liquid side of the interface (the characteristic distance being the superfluid coherence length), and to vanish rapidly with distance on the vapor side, while the total density approaches its bulk-phase values rapidly and nearly symmetrically on the two sides. Below the λ point the surface tension has a |ɛ|32 singularity (ɛ~T-Tλ) arising from the temperature dependence of the spatially varying superfluid order parameter. This is the mean-field form of the more general |ɛ|μ singularity predicted by Sobyanin and by Hohenberg, in which μ (which is in reality close to 1.35 at the λ point of helium) is the exponent with which the interfacial tension between two critical phases vanishes. Above the λ point the surface tension in this model is analytic in ɛ. A singular term |ɛ|μ may in reality be present in the surface tension above as well as below the λ point, although there should still be a pronounced asymmetry. The variation with temperature of the model surface tension is overall much like that in experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blake, S. F.; Hodovanets, H.; McCollam, A.
Here we present a de Haas–van Alphen study of the Fermi surface of the low-temperature antiferromagnet CeZn 11 and its nonmagnetic analog LaZn 11, measured by torque magnetometry up to fields of 33T and at temperatures down to 320 mK . Both systems possess similar de Haas–van Alphen frequencies, with three clear sets of features—ranging from 50 T to 4 kT —corresponding to three bands of a complex Fermi surface, with an expected fourth band also seen weakly in CeZn 11 . The effective masses of the charge carriers are very light (<1 m e) in LaZn 11 but amore » factor of 2–4 larger in CeZn 11, indicative of stronger electronic correlations. We perform detailed density functional theory (DFT) calculations for CeZn 11 and find that only DFT+ U calculations with U = 1.5 eV , which localize the 4 f states, provide a good match to the measured de Haas–van Alphen frequencies, once the presence of magnetic breakdown orbits is also considered. Finally, our study suggests that the Fermi surface of CeZn 11 is very close to that of LaZn 11 being dominated by Zn 3d , as the Ce 4 f states are localized and have little influence on its electronic structure, however, they are responsible for its magnetic order and contribute to enhance electronic correlations.« less
Blake, S. F.; Hodovanets, H.; McCollam, A.; ...
2016-12-02
Here we present a de Haas–van Alphen study of the Fermi surface of the low-temperature antiferromagnet CeZn 11 and its nonmagnetic analog LaZn 11, measured by torque magnetometry up to fields of 33T and at temperatures down to 320 mK . Both systems possess similar de Haas–van Alphen frequencies, with three clear sets of features—ranging from 50 T to 4 kT —corresponding to three bands of a complex Fermi surface, with an expected fourth band also seen weakly in CeZn 11 . The effective masses of the charge carriers are very light (<1 m e) in LaZn 11 but amore » factor of 2–4 larger in CeZn 11, indicative of stronger electronic correlations. We perform detailed density functional theory (DFT) calculations for CeZn 11 and find that only DFT+ U calculations with U = 1.5 eV , which localize the 4 f states, provide a good match to the measured de Haas–van Alphen frequencies, once the presence of magnetic breakdown orbits is also considered. Finally, our study suggests that the Fermi surface of CeZn 11 is very close to that of LaZn 11 being dominated by Zn 3d , as the Ce 4 f states are localized and have little influence on its electronic structure, however, they are responsible for its magnetic order and contribute to enhance electronic correlations.« less
Nasrabad, Afshin Eskandari; Laghaei, Rozita; Eu, Byung Chan
2005-04-28
In previous work on the density fluctuation theory of transport coefficients of liquids, it was necessary to use empirical self-diffusion coefficients to calculate the transport coefficients (e.g., shear viscosity of carbon dioxide). In this work, the necessity of empirical input of the self-diffusion coefficients in the calculation of shear viscosity is removed, and the theory is thus made a self-contained molecular theory of transport coefficients of liquids, albeit it contains an empirical parameter in the subcritical regime. The required self-diffusion coefficients of liquid carbon dioxide are calculated by using the modified free volume theory for which the generic van der Waals equation of state and Monte Carlo simulations are combined to accurately compute the mean free volume by means of statistical mechanics. They have been computed as a function of density along four different isotherms and isobars. A Lennard-Jones site-site interaction potential was used to model the molecular carbon dioxide interaction. The density and temperature dependence of the theoretical self-diffusion coefficients are shown to be in excellent agreement with experimental data when the minimum critical free volume is identified with the molecular volume. The self-diffusion coefficients thus computed are then used to compute the density and temperature dependence of the shear viscosity of liquid carbon dioxide by employing the density fluctuation theory formula for shear viscosity as reported in an earlier paper (J. Chem. Phys. 2000, 112, 7118). The theoretical shear viscosity is shown to be robust and yields excellent density and temperature dependence for carbon dioxide. The pair correlation function appearing in the theory has been computed by Monte Carlo simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Pei Chun; Singleton, John; Goddard, Paul A.
We use MHz conductivity, torque magnetometer, and magnetization measurements to report on single crystals of CeOs 4 Sb 12 and NdOs 4 Sb 12 using temperatures down to 0.5 K and magnetic fields of up to 60 tesla. The field-orientation dependence of the de Haas-van Alphen and Shubnikov-de Haas oscillations is deduced by rotating the samples about the [ 010 ] and [ 0more » $$\\bar{1}$$ 1 1 ] directions. Our results indicate that NdOs 4 Sb 12 has a similar Fermi surface topology to that of the unusual superconductor PrOs 4 Sb 12 , but with significantly smaller effective masses, supporting the importance of local phonon modes in contributing to the low-temperature heat capacity of NdOs 4 Sb 12 . By contrast, CeOs 4 Sb 12 undergoes a field-induced transition from an unusual semimetal into a high-field, high-temperature state characterized by a single, almost spherical Fermi-surface section. Furthermore, the behavior of the phase boundary and comparisons with models of the band structure lead us to propose that the field-induced phase transition in CeOs 4 Sb 12 is similar in origin to the well-known α - γ transition in Ce and its alloys.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagraev, N. T., E-mail: bagraev@mail.ioffe.ru; Grigoryev, V. Yu.; Klyachkin, L. E.
The negative-U impurity stripes confining the edge channels of semiconductor quantum wells are shown to allow the effective cooling inside in the process of the spin-dependent transport. The aforesaid also promotes the creation of composite bosons and fermions by the capture of single magnetic flux quanta at the edge channels under the conditions of low sheet density of carriers, thus opening new opportunities for the registration of quantum kinetic phenomena in weak magnetic fields at high temperatures up to the room temperature. As a certain version noted above, we present the first findings of the high temperature de Haas–van Alphenmore » (300 K) and quantum Hall (77 K) effects in the silicon sandwich structure that represents the ultranarrow, 2 nm, p-type quantum well (Si-QW) confined by the delta barriers heavily doped with boron on the n-type Si (100) surface. These data appear to result from the low density of single holes that are of small effective mass in the edge channels of p-type Si-QW because of the impurity confinement by the stripes consisting of the negative-U dipole boron centers which seems to give rise to the efficiency reduction of the electron–electron interaction.« less
Thermodynamic scaling in ionically conducting glasses and melts
NASA Astrophysics Data System (ADS)
Habasaki, Junko
2013-02-01
Molecular dynamics simulations have been performed to learn temperature, composition, pressure dependencies of the diffusivity and structures in the system having ion channels and network formers. Validity of the thermodynamic scaling in the lithium silicate glasses and melts is shown, where the scaling concept is extended with an aid of a percolation aspect of the ion channels. All diffusion coefficients of ions of different compositions, temperatures, pressures are successfully represented by a single master curve as a function of system volumes, temperatures and volume fraction of M2O part. It enables us to predict the diffusivity in different conditions. Furthermore, it suggests an applicability of scaling concept for the sub-structures in more complex systems. Nearby points on the master curve have the comparable MSD as well as self-part of the van Hove functions. Similarity is observed from an early term region. This observation is consistent to our previous claims [K. L. Ngai, J. Habasaki, D. Prevosto, S. Capaccioli, Marian Paluch, J. Chem. Phys. 137, 034511 (2012)] that the thermodynamic scaling of α-Relaxation time stems from the Johari-Goldstein β-relaxation or the primitive relaxation of the coupling model.
Wet calcining of trona (sodium sesquicarbonate) and bicarbonate in a mixed solvent
NASA Astrophysics Data System (ADS)
Gärtner, R. S.; Witkamp, G. J.
2002-04-01
Trona ore is used in large amounts for the production of soda ash. A key step in this process is the conversion of trona (sodium sesquicarbonate: Na 2CO 3·NaHCO 3·2H 2O) into soda (sodium carbonate anhydrate: Na 2CO 3). Currently, this conversion is done industrially by calcining of the raw ore in rotary calciners at ca. 120°C or higher (Natural Soda Ash—Occurrences, Processing, and Use, Van Nostrand Reinhold, New York, 1991, p. 267). Trona can however be converted at lower temperatures by using a "wet calcining" technique. In this technique, trona is contacted with an organic or mixed organic-aqueous solvent at a conversion temperature that depends on the water activity of the used solvent. In pure ethylene glycol this temperature can be as low as 55°C. The conversion by "wet calcining" occurs very similar to that in the regular dry calcining process via a solid phase conversion. The anhydrate crystals form directly from the solid trona. This produces pseudomorphs (J. Chem. Eng. Data 8(3) (1963) 301), i.e. agglomerates of fine anhydrate crystals (1-10 μm). At high temperatures, dense, finely pored agglomerates are formed, while the outer shape of the agglomerate retains the prism shape of the trona crystal. At low conversion temperatures, loosely packed or even unstable agglomerates are found.
NASA Astrophysics Data System (ADS)
Langenberg, Stefan; Schurath, Ulrich
2018-05-01
The well established technique of gas chromatography is used to investigate interactions of sulfur dioxide with a crystalline ice film in a fused silica wide bore column. Peak shape analysis of SO2 chromatograms measured in the temperature range 205-265 K is applied to extract parameters describing a combination of three processes: (i) physisorption of SO2 at the surface, (ii) dissociative reaction with water and (iii) slow uptake into bulk ice. Process (ii) is described by a dissociative Langmuir isotherm. The pertinent monolayer saturation capacity is found to increase with temperature. The impact of process (iii) on SO2 peak retention time is found to be negligible under our experimental conditions. By analyzing binary chromatograms of hydrophobic n-hexane and hydrophilic acetone, the premelt surface layer is investigated in the temperature range 221-263 K, possibly giving rise to irregular adsorption. Both temperature dependencies fit simple van't Hoff equations as expected for process (i), implying that irregular adsorption of acetone is negligible in the investigated temperature range. Adsorption enthalpies of -45 ± 5 and -23±2 kJ mol-1 are obtained for acetone and n-hexane. The motivation of our study was to assess the vertical displacement of SO2 and acetone in the wake of aircraft by adsorption on ice particles and their subsequent sedimentation. Our results suggest that this transport mechanism is negligible.
NASA Astrophysics Data System (ADS)
Lastennet, E.; Fernandes, J.; Lejeune, Th.
2002-06-01
Johnson BVRI photometric data for individual components of binary systems have been provided by ten Brummelaar et al. (\\cite{Brummelaar}). This is essential because non-interacting binaries can be considered as two single stars and therefore play a critical role in testing and calibrating single-star stellar evolution sets of isochrones and the implicit theory. While they derived the effective temperature (T_eff) from their estimated spectral type, we infer metallicity-dependent T_eff from a minimizing method fitting the B-V, V-R and V-I colours. For this purpose, a grid of 621 600 flux distributions were computed from the Basel Stellar Library (BaSeL 2.2) of model-atmosphere spectra, and their theoretical colours compared with the observed photometry. The BaSeL colours show a very good agreement with the BVRI metallicity-dependent empirical calibrations of Alonso et al. (\\cite{Alonso}), with the temperatures being different by 3+/-3% in the range 4000-8000 K for dwarf stars. Before deriving the metallicity-dependent T_eff from the BaSeL models, we paid particular attention to the influence of reddening and stellar rotation. We inferred the reddening from two different methods: (i) the MExcessNg code v1.1 (Méndez & van Altena \\cite{Mendez}) and (ii) neutral hydrogen column density data. A comparison of both methods shows a good agreement for the sample located inside a local sphere of ~ 500 pc, but we point out a few directions where the MExcess model overestimates the E(B-V) colour excess. Influence of stellar rotation on the BVRI colours can be neglected except for 5 stars with large v sin i, the maximum effect on temperature being less than 5%. Our final determinations provide effective temperature estimates for each component. They are in good agreement with previous spectroscopic determinations available for a few primary components, and with ten Brummelaar et al. below ~ 10 000 K. Nevertheless, we obtain an increasing disagreement with their temperatures beyond 10 000 K. Finally, we provide a revised Hertzsprung-Russell diagram (HRD) for the systems with the more accurately determined temperatures.
Spontaneous encapsulation behavior of ionic liquid into carbon nanotube
NASA Astrophysics Data System (ADS)
Jiang, Yanyan; Zhang, Kun; Li, Hui; He, Yezeng; Song, Xigui
2012-10-01
Molecular dynamics simulations and density functional theory have been performed to investigate the spontaneous encapsulation of 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]) into single-walled carbon nanotubes (SWCNTs). This phenomenon can be attributed to the van der Waals attractive force, hydrogen bonds and especially the π-π stacking effect. The [Bmim][Cl] molecules enter SWCNTs with larger diameters more rapidly, showing an interesting dependence on tube size. A high temperature is not beneficial to, and may even disrupt, the encapsulation of the [Bmim][Cl] molecules. It is also worth noting that the graphene nanoribbon entering the SWCNT would have an extremely different effect on this encapsulation process from when they wrap around the outer surface. Furthermore, the [Bmim][Cl] molecules can assist water transport in the SWCNT by expelling water molecules from the SWCNT. The proposed discoveries eventually provide a powerful way to fabricate nanoscale materials and devices and tune their properties.Molecular dynamics simulations and density functional theory have been performed to investigate the spontaneous encapsulation of 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]) into single-walled carbon nanotubes (SWCNTs). This phenomenon can be attributed to the van der Waals attractive force, hydrogen bonds and especially the π-π stacking effect. The [Bmim][Cl] molecules enter SWCNTs with larger diameters more rapidly, showing an interesting dependence on tube size. A high temperature is not beneficial to, and may even disrupt, the encapsulation of the [Bmim][Cl] molecules. It is also worth noting that the graphene nanoribbon entering the SWCNT would have an extremely different effect on this encapsulation process from when they wrap around the outer surface. Furthermore, the [Bmim][Cl] molecules can assist water transport in the SWCNT by expelling water molecules from the SWCNT. The proposed discoveries eventually provide a powerful way to fabricate nanoscale materials and devices and tune their properties. Electronic supplementary information (ESI) available: (1) Movie: the encapsulation process of the ILs into the SWCNT (16,16). (2) More calculation details, including the data of the morphology vs. the encapsulation process from both ends and different tube diameters. See DOI: 10.1039/c2nr31432k
All-Electrical Spin Field Effect Transistor in van der Waals Heterostructures at Room Temperature
NASA Astrophysics Data System (ADS)
Dankert, André; Dash, Saroj
Spintronics aims to exploit the spin degree of freedom in solid state devices for data storage and information processing. Its fundamental concepts (creation, manipulation and detection of spin polarization) have been demonstrated in semiconductors and spin transistor structures using electrical and optical methods. However, an unsolved challenge is the realization of all-electrical methods to control the spin polarization in a transistor manner at ambient temperatures. Here we combine graphene and molybdenum disulfide (MoS2) in a van der Waals heterostructure to realize a spin field-effect transistor (spin-FET) at room temperature. These two-dimensional crystals offer a unique platform due to their contrasting properties, such as weak spin-orbit coupling (SOC) in graphene and strong SOC in MoS2. The gate-tuning of the Schottky barrier at the MoS2/graphene interface and MoS2 channel yields spins to interact with high SOC material and allows us to control the spin polarization and lifetime. This all-electrical spin-FET at room temperature is a substantial step in the field of spintronics and opens a new platform for testing a plethora of exotic physical phenomena, which can be key building blocks in future device architectures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheckelton, John P.; Plumb, Kemp W.; Trump, Benjamin A.
Insulating Nb3Cl8 is a layered chloride consisting of two-dimensional triangular layers of Seff = 1/2 Nb3Cl13 clusters at room temperature. Magnetic susceptibility measurement show a sharp, hysteretic drop to a temperature independent value below T = 90 K. Specific heat measurements show that the transition is first order, with ΔS ≈ 5 J K-1 mol-1 f.u.-1, and a low temperature T-linear contribution originating from defect spins. Neutron and X-ray diffraction show a lowering of symmetry from trigonal P[3 with combining macron]m1 to monoclinic C2/m symmetry, with a change in layer stacking from –AB–AB– to –AB'–BC'–CA'– and no observed magnetic order.more » This lowering of symmetry and rearrangement of successive layers evades geometric magnetic frustration to form a singlet ground state. It is the lowest temperature at which a change in stacking sequence is known to occur in a van der Waals solid, occurs in the absence of orbital degeneracies, and suggests that designer 2-D heterostructures may be able to undergo similar phase transitions.« less
Corresponding-states laws for protein solutions.
Katsonis, Panagiotis; Brandon, Simon; Vekilov, Peter G
2006-09-07
The solvent around protein molecules in solutions is structured and this structuring introduces a repulsion in the intermolecular interaction potential at intermediate separations. We use Monte Carlo simulations with isotropic, pair-additive systems interacting with such potentials. We test if the liquid-liquid and liquid-solid phase lines in model protein solutions can be predicted from universal curves and a pair of experimentally determined parameters, as done for atomic and colloid materials using several laws of corresponding states. As predictors, we test three properties at the critical point for liquid-liquid separation: temperature, as in the original van der Waals law, the second virial coefficient, and a modified second virial coefficient, all paired with the critical volume fraction. We find that the van der Waals law is best obeyed and appears more general than its original formulation: A single universal curve describes all tested nonconformal isotropic pair-additive systems. Published experimental data for the liquid-liquid equilibrium for several proteins at various conditions follow a single van der Waals curve. For the solid-liquid equilibrium, we find that no single system property serves as its predictor. We go beyond corresponding-states correlations and put forth semiempirical laws, which allow prediction of the critical temperature and volume fraction solely based on the range of attraction of the intermolecular interaction potential.
Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures.
Lin, Yu-Chuan; Ghosh, Ram Krishna; Addou, Rafik; Lu, Ning; Eichfeld, Sarah M; Zhu, Hui; Li, Ming-Yang; Peng, Xin; Kim, Moon J; Li, Lain-Jong; Wallace, Robert M; Datta, Suman; Robinson, Joshua A
2015-06-19
Vertical integration of two-dimensional van der Waals materials is predicted to lead to novel electronic and optical properties not found in the constituent layers. Here, we present the direct synthesis of two unique, atomically thin, multi-junction heterostructures by combining graphene with the monolayer transition-metal dichalcogenides: molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). The realization of MoS2-WSe2-graphene and WSe2-MoS2-graphene heterostructures leads to resonant tunnelling in an atomically thin stack with spectrally narrow, room temperature negative differential resistance characteristics.
Peeling off an elastica from a smooth attractive substrate
NASA Astrophysics Data System (ADS)
Oyharcabal, Xabier; Frisch, Thomas
2005-03-01
Using continuum mechanics, we study theoretically the unbinding of an inextensible rod with free ends attracted by a smooth substrate and submitted to a vertical force. We use the elastica model in a medium-range van der Waals potential. We numerically solve a nonlinear boundary value problem and obtain the force-stretching relation at zero temperature. We obtain the critical force for which the rod unbinds from the substrate as a function of three dimensionless parameters, and we find two different regimes of adhesion. We study analytically the contact potential case as the van der Waals radius goes to zero.
Uranyl sulfate irradiations at the Van de Graaff: A means to combat uranyl peroxide precipitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youker, Amanda J.; Kalensky, Michael; Quigley, Kevin J.
As part of an effort to support SHINE Medical Technologies in developing a process to produce Mo-99 by neutron-induced fission, a series of irradiation experiments was performed with a 3 MeV Van de Graaff accelerator to generate high radiation doses in 0.5–2 mL uranyl sulfate solutions. The purpose was to determine what conditions result in uranyl peroxide precipitation and what can be done to prevent its formation. The effects of temperature, dose rate, uranium concentration, and the addition of known catalysts for the destruction of peroxide were determined.
Polynomial-interpolation algorithm for van der Pauw Hall measurement in a metal hydride film
NASA Astrophysics Data System (ADS)
Koon, D. W.; Ares, J. R.; Leardini, F.; Fernández, J. F.; Ferrer, I. J.
2008-10-01
We apply a four-term polynomial-interpolation extension of the van der Pauw Hall measurement technique to a 330 nm Mg-Pd bilayer during both absorption and desorption of hydrogen at room temperature. We show that standard versions of the van der Pauw DC Hall measurement technique produce an error of over 100% due to a drifting offset signal and can lead to unphysical interpretations of the physical processes occurring in this film. The four-term technique effectively removes this source of error, even when the offset signal is drifting by an amount larger than the Hall signal in the time interval between successive measurements. This technique can be used to increase the resolution of transport studies of any material in which the resistivity is rapidly changing, particularly when the material is changing from metallic to insulating behavior.
Ionic liquids: dissecting the enthalpies of vaporization.
Köddermann, Thorsten; Paschek, Dietmar; Ludwig, Ralf
2008-03-14
We calculate the heats of vaporisation for imidazolium-based ionic liquids [C(n)mim][NTf(2)] with n=1, 2, 4, 6, 8 by means of molecular dynamics (MD) simulations and discuss their behavior with respect to temperature and the alkyl chain length. We use a force field developed recently. The different cohesive energies contributing to the overall heats of vaporisations are discussed in detail. With increasing alkyl chain length, the Coulomb contribution to the heat of vaporisation remains constant at around 80 kJ mol(-1), whereas the van der Waals interaction increases continuously. The calculated increase of about 4.7 kJ mol(-1) per CH(2)-group of the van der Waals contribution in the ionic liquid exactly coincides with the increase in the heats of vaporisation for n-alcohols and n-alkanes, respectively. The results support the importance of van der Waals interactions even in systems completely composed of ions.
SPECIATION OF ORGANICS IN WATER
We describe herein a method for determining constants for simultaneously occurring, site-specific "microequilibria" (as with tautomers) for organics in water. The method is based in part on modeling temperature-variant Raman spectra according to the van't Hoff equation....
Persistent photoconductivity in ZnO nanowires: Influence of oxygen and argon ambient
NASA Astrophysics Data System (ADS)
Madel, M.; Huber, F.; Mueller, R.; Amann, B.; Dickel, M.; Xie, Y.; Thonke, K.
2017-03-01
ZnO nanowires typically show persistent photoconductivity (PPC), which depends in their temporal behaviour on the ambient. We investigate ZnO nanowires in oxygen and argon ambient and analyze the PPC both on the short and on the long time scale to sort out the underlying mechanisms. Wavelength dependent excitation shows the energy barrier for the PPC to be around 150 meV below the band gap of ZnO, independent of the ambient atmosphere. In photocurrent measurements at constant wavelength, a log-logistic dependence of the conductivity on the partial oxygen pressure is observed. The experimental results are compared to a model of Bonasewicz et al. [J. Electrochem. Soc. 133, 2270 (1986)] and can be explained by oxygen adsorption processes occurring on the surface of the ZnO nanowires. From temperature dependent measurements of the decay times in oxygen and argon ambient, the related activation energies for the fast and slow decay processes are determined. Comparing our results to theoretical calculations of energy levels of intrinsic defects [Janotti and Van de Walle, Phys. Status Solidi B 248, 799 (2011)], we find oxygen vacancies to be related to the fast decay processes, whereas adsorption and desorption processes of oxygen on the ZnO nanowire surface account for the slow part.
Foster, David A.; Hantzopoulos, Petros; Zubay, Geoffrey
1982-01-01
Aphidicolin is a highly specific inhibitor of DNA polymerase α and has been most useful for assessing the role of this enzyme in various replication processes (J. A. Huberman, Cell 23:647-648, 1981). Both nuclear DNA replication and simian virus 40 DNA replication are highly sensitive to this drug (Krokan et al., Biochemistry 18:4431-4443, 1979), whereas mitochondrial DNA synthesis is completely insensitive (Zimmerman et al., J. Biol. Chem. 255:11847-11852, 1980). Adenovirus DNA replication is sensitive to aphidicolin, but only at much higher concentrations. These patterns of sensitivity are seen both in vivo and in vitro (Krokan et al., Biochemistry 18:4431-4443, 1979). A temperature-sensitive mutant of adenovirus type 5 known as H5ts125 is able to complete but not initiate new rounds of replication at nonpermissive temperatures (P. C. van der Vliet and J. S. Sussenbach, Virology 67:415-426, 1975). When cells infected with H5ts125 were shifted from permissive (33°C) to nonpermissive (41°C) conditions, the residual DNA synthesis (elongation) showed a striking increase in sensitivity to aphidicolin. The temperature-sensitive mutation of H5ts125 is in the gene for the 72-kilodalton single-stranded DNA-binding protein. This demonstrated that the increased resistance to aphidicolin shown by adenovirus DNA replication was dependent on that protein. It also supports an elongation role for both DNA polymerase α and the 72-kilodalton single-stranded DNA-binding protein in adenovirus DNA replication. Further support for an elongation role of DNA polymerase α came from experiments with permissive temperature conditions and inhibiting levels of aphidicolin in which it was shown that newly initiated strands failed to elongate to completion. Images PMID:6809958
Thermal adaptiveness of plumage color in screech owls
Mosher, James A.; Henny, Charles J.
1976-01-01
Clinal variation in the relative proportions of red and gray plum- age phases in Screech Owls (Otus asio) was analyzed by Owen (1963) and Marshall (1967). This variation was well known prior to Owen's work, but was misinterpreted (Baird, et al. 1874, Hasbrouck 1893, Allen 1893).]Laurel VanCamp and Charles Henny (MS) have 30 years of data on a northern Ohio Screech Owl population. They observed an over- winter decline (from about 25% to 15%) in the proportion of red phase birds in the winter of 1951-52. This decline was correlated with a severe winter of above normal snowfall and below average temperatures. They examined banding and recovery data and found overwinter survival of red and gray birds to be the same except for this one severe winter when 44% more red phase birds were lost than grays (VanCamp and Henny MS). Differential mortality was reported by Gullion and Marshall (1968) for red and gray phase Ruffed Grouse (Bonasa umbellus) where snow conditions for roosting is apparently the critical factor for grouse overwinter survival and is related to predation. Snow- roosting has not, to our knowledge, been observed in Screech Owls. VanCamp and Henny (MS) discuss the observations of Ruffed Grouse and Screech Owls and suggest that possible thermoregulatory differences between red and gray phase birds could account for differential overwinter survival.Our objective was to test for differences between color phase in oxygen uptake at several ambient temperatures. We hypothesized that oxygen uptake would be greater by red phase birds, especially at lower temperatures.
Persistent photoconductivity in two-dimensional Mo 1-xW xSe 2–MoSe 2 van der Waals heterojunctions
Puretzky, Alexander A.; Basile, Leonardo; Idrobo, Juan Carlos; ...
2016-02-16
Van der Waals (vdW) heterojunctions consisting of vertically-stacked individual or multiple layers of two-dimensional (2D) layered semiconductors, especially the transition metal dichalcogenides (TMDs), are fascinating new artificial solids just nanometers-thin that promise novel optoelectronic functionalities due to the sensitivity of their electronic and optical properties to strong quantum confinement and interfacial interactions. Here, monolayers of n-type MoSe 2 and p-type Mo 1-xW xSe 2–MoSe 2 are grown by vapor transport methods, then transferred and stamped to form artificial vdW heterostructures with different interlayer orientations. Atomic-resolution Z-contrast electron microscopy and electron diffraction are used to characterize both the individual monolayers andmore » the atomic registry between layers in the bilayer vdW heterostructures. These measurements are compared with photoluminescence and low-frequency Raman spectroscopy, which indicates strong interlayer coupling in heterostructures. Remarkably, the heterojunctions exhibit an unprecedented photoconductivity effect that persists at room temperature for several days. This persistent photoconductivity is shown to be tunable by applying a gate bias that equilibrates the charge distribution. Furthermore, these measurements indicate that such ultrathin vdW heterojunctions can function as rewritable optoelectronic switches or memory elements under time-dependent photo-illumination, an effect which appears promising for new monolayer TMDs-based optoelectronic devices applications.« less
Katkov, Igor I
2008-10-01
Some aspects of proper linearization of the Boyle-van't Hoff (BVH) relationship for calculation of the osmotically inactive volume v(b), and Arrhenius plot (AP) for the activation energy E(a) are discussed. It is shown that the commonly used determination of the slope and the intercept (v(b)), which are presumed to be independent from each other, is invalid if the initial intracellular molality m(0) is known. Instead, the linear regression with only one independent parameter (v(b)) or the Least Square Method (LSM) with v(b) as the only fitting LSM parameter must be applied. The slope can then be calculated from the BVH relationship as the function of v(b). In case of unknown m(0) (for example, if cells are preloaded with trehalose, or electroporation caused ion leakage, etc.), it is considered as the second independent statistical parameter to be found. In this (and only) scenario, all three methods give the same results for v(b) and m(0). AP can be linearized only for water hydraulic conductivity (L(p)) and solute mobility (omega(s)) while water and solute permeabilities P(w) identical withL(p)RT and P(s) identical withomega(s)RT cannot be linearized because they have pre-exponential factor (RT) that depends on the temperature T.
Electric-field switching of two-dimensional van der Waals magnets
NASA Astrophysics Data System (ADS)
Jiang, Shengwei; Shan, Jie; Mak, Kin Fai
2018-05-01
Controlling magnetism by purely electrical means is a key challenge to better information technology1. A variety of material systems, including ferromagnetic (FM) metals2-4, FM semiconductors5, multiferroics6-8 and magnetoelectric (ME) materials9,10, have been explored for the electric-field control of magnetism. The recent discovery of two-dimensional (2D) van der Waals magnets11,12 has opened a new door for the electrical control of magnetism at the nanometre scale through a van der Waals heterostructure device platform13. Here we demonstrate the control of magnetism in bilayer CrI3, an antiferromagnetic (AFM) semiconductor in its ground state12, by the application of small gate voltages in field-effect devices and the detection of magnetization using magnetic circular dichroism (MCD) microscopy. The applied electric field creates an interlayer potential difference, which results in a large linear ME effect, whose sign depends on the interlayer AFM order. We also achieve a complete and reversible electrical switching between the interlayer AFM and FM states in the vicinity of the interlayer spin-flip transition. The effect originates from the electric-field dependence of the interlayer exchange bias.
Effects of the bond polarity on the structural and dynamical properties of silica-like liquids
NASA Astrophysics Data System (ADS)
Pafong Sanjon, E.; Drossel, B.; Vogel, M.
2018-03-01
Silica is a network-forming liquid that shares many properties with water due to its tetrahedral structure. It undergoes a transition from a fragile to a strong liquid as the temperature is decreased, which is accompanied by a structural change to lower density and higher tetrahedral order. In order to disentangle the effects of Coulomb and van der Waals interactions on the structure and dynamics of liquid silica, we modify the bond polarity by changing the partial charges assigned to each atom. Using molecular dynamics simulations, we show that density, tetrahedral order, and structural relaxation times decrease when reducing bond polarity. Moreover, we find that the density maximum and the fragile-to-strong transition move to lower temperatures until they eventually vanish when the partial charges are decreased below approximately 75% of their regular value. Irrespective of whether strong or fragile behavior exists, structural relaxation is governed by hopping motion at sufficiently low temperatures. As long as there is a strong regime, the energy barrier associated with strong dynamics decreases with decreasing partial charges, but the dependence on the bond polarity differs from that of the activation energy in the Arrhenius regime at high temperatures. We show that the fragile-to-strong transition is associated with structural changes occurring between the first and second coordination shells that lead to a decrease in density and an increase in tetrahedral order. In particular, independent of the value of the partial charges, the distribution of the local structures is the same at this dynamic crossover, but we find no evidence that the effect occurs upon crossing the Widom line. In the fragile regime at intermediate temperatures, the relaxation times are well described by a previously proposed model which decomposes the apparent activation energy into a constant single-particle contribution and a temperature-dependent collective contribution. However, our results for silica-like melts do not obey several common relations of the model parameters reported for molecular glass formers.
Dark CO2 Fixation in Gladiolus Cormels and Its Regulation during the Break of Dormancy 1
Ginzburg, Chen
1975-01-01
The increase in dark CO2 fixation during cold storage of Gladiolus x gandavensis van Houtte-type grandiflorus cormels is used to monitor changes in their state of dormancy. Dark fixation is also promoted by benzyladenine, which breaks cormel dormancy, and is inhibited by abscisic acid and gibberellin A3, which inhibit cormel germination. The rate of dark fixation by nondormant cormels is five times higher than that in dormant ones. Dark fixation is not due to microorganisms. It is temperature-dependent and can be measured stoichiometrically in vivo. The apex and base of the cormels accumulate more label than the central part. Dark fixation of both dormant and nondormant cormels is also promoted by imbibition in water. The fate of the labeled assimilates was followed by ion exchange chromatography. PMID:16659256
The calculation of rare-earth levels in layered cobaltates Rx/3CoO2 (x ≦ 1)
NASA Astrophysics Data System (ADS)
Novák, P.; Knížek, K.; Jirák, Z.; Buršík, J.
2015-05-01
We studied theoretically the crystal field and Zeeman split electronic levels of trivalent rare earths that are distributed over trigonal prismatic sites of the layered Rx/3CoO2 system (closely related to sodium cobaltate NaxCoO2). The calculations were done in the whole basis of 4fn configurations (up to 3000 many-electron determinantal functions) for the ideal trigonal symmetry D3h, as well as for the reduced symmetry C2v that takes into account a more distant neighborhood of the R-sites. Detailed data on the doublet and singlet states for Pr, Nd, Sm, Tb and Dy are presented. The obtained g-factor and the van Vleck susceptibility tensor components are used for calculations of anisotropic magnetic susceptibilities and their temperature dependencies.
Chang, Yingju; Lai, Juin-Yih; Lee, Duu-Jong
2016-12-01
The standard Gibbs free energy, enthalpy and entropy change data for adsorption equilibrium reported in biosorption literature during January 2013-May2016 were listed. Since the studied biosorption systems are all near-equilibrium processes, the enthalpy and entropy change data evaluated by fitting temperature-dependent free energy data using van Hoff's equation reveal a compensation artifact. Additional confusion is introduced with arbitrarily chosen adsorbate concentration unit in bulk solution that added free energy change of mixing into the reported free energy and enthalpy change data. Different standard states may be chosen for properly describing biosorption processes; however, this makes the general comparison between data from different systems inappropriate. No conclusion should be drawn based on unjustified thermodynamic parameters reported in biosorption studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pressure broadening and frequency shift of the D 1 and D 2 lines of K in the presence of Ne and Kr
NASA Astrophysics Data System (ADS)
Wang, Xulin; Chen, Yao; Quan, Wei; Chi, Haotian; Fang, Jiancheng
2018-02-01
We present the results of pressure broadening and frequency shift of K D 1 and D 2 lines in presence of 1-4 amg of Neon gas and 1-5 amg of Krypton gas by laser absorption spectroscopy. Both pressure broadening and frequency shift are linearly related to gas density with high accuracy. The asymmetry of the absorption line shape caused by van der Waals potential was first found in the near-line wings of large density Kr in the experiment. We have also investigated the temperature dependence of the pressure broadening and frequency shift in a range of 353-403 K in Neon and 373-417 K in Krypton and compared the results of the pressure broadening and frequency shift with previous values.
A Reassessment of Heavy-Duty Truck Aerodynamic Design Features and Priorities
NASA Technical Reports Server (NTRS)
Saltzman, Edwin J.; Meyer, Robert R., Jr.
1999-01-01
Between 1973 and 1982, the NASA Dryden Flight Research Center conducted "coast-down" tests demonstrating means for reducing the drag of trucks, buses, and motor homes. Numerous configurations were evaluated using a box-shaped test van, a two-axle truck, and a tractor-semitrailer combination. Results from three configurations of the test van are of interest now in view of a trucking industry goal of a 0.25 drag coefficient for tractor-semitrailer combinations. Two test van configurations with blunt-base geometry, similar to present day trucks (one configuration has square front comers and the other has rounded front comers), quantify the base drag increase associated with reduced forebody drag. Hoemer's equations predict this trend; however, test van results, reinforced by large-scale air vehicle data, indicate that Hoemer's formula greatly underestimates this dependence of base drag on forebody efficiency. The demonstrated increase in base drag associated with forebody refinement indicates that the goal of a 0.25 drag coefficient will not be achieved without also reducing afterbody drag. A third configuration of the test van had a truncated boattail to reduce afterbody drag and achieved a drag coefficient of 0.242. These results are included here and references are identified for other means of reducing afterbody drag.
Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope.
Govyadinov, Alexander A; Konečná, Andrea; Chuvilin, Andrey; Vélez, Saül; Dolado, Irene; Nikitin, Alexey Y; Lopatin, Sergei; Casanova, Fèlix; Hueso, Luis E; Aizpurua, Javier; Hillenbrand, Rainer
2017-07-21
Van der Waals materials exhibit intriguing structural, electronic, and photonic properties. Electron energy loss spectroscopy within scanning transmission electron microscopy allows for nanoscale mapping of such properties. However, its detection is typically limited to energy losses in the eV range-too large for probing low-energy excitations such as phonons or mid-infrared plasmons. Here, we adapt a conventional instrument to probe energy loss down to 100 meV, and map phononic states in hexagonal boron nitride, a representative van der Waals material. The boron nitride spectra depend on the flake thickness and on the distance of the electron beam to the flake edges. To explain these observations, we developed a classical response theory that describes the interaction of fast electrons with (anisotropic) van der Waals slabs, revealing that the electron energy loss is dominated by excitation of hyperbolic phonon polaritons, and not of bulk phonons as often reported. Thus, our work is of fundamental importance for interpreting future low-energy loss spectra of van der Waals materials.Here the authors adapt a STEM-EELS system to probe energy loss down to 100 meV, and apply it to map phononic states in hexagonal boron nitride, revealing that the electron loss is dominated by hyperbolic phonon polaritons.
Metal-phthalocyanine ordered layers on Au(110): Metal-dependent adsorption energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massimi, Lorenzo, E-mail: lorenzo.massimi@uniroma1.it; Angelucci, Marco; Gargiani, Pierluigi
2014-06-28
Iron-phthalocyanine and cobalt-phthalocyanine chains, assembled along the Au(110)-(1×2) reconstructed channels, present a strong interaction with the Au metallic states, via the central metal ion. X-ray photoemission spectroscopy from the metal-2p core-levels and valence band high-resolution ultraviolet photoelectron spectroscopy bring to light signatures of the interaction of the metal-phthalocyanine single-layer with gold. The charge transfer from Au to the molecule causes the emerging of a metal-2p core level component at lower binding energy with respect to that measured in the molecular thin films, while the core-levels associated to the organic macrocycle (C and N 1s) are less influenced by the adsorption,more » and the macrocycles stabilize the interaction, inducing a strong interface dipole. Temperature Programmed Desorption experiments and photoemission as a function of temperature allow to estimate the adsorption energy for the thin-films, mainly due to the molecule-molecule van der Waals interaction, while the FePc and CoPc single-layers remain adsorbed on the Au surface up to at least 820 K.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahadur, N.P.; Shiu, W.Y.; Boocock, D.G.B.
1999-01-01
Measurements of partition coefficients between tricaprylin (glyceryl tri-n-octanoate) and water are reported for seven chlorobenzenes (1,2-dichlorobenzene, 1,4-dichlorobenzene, 1,3,5-trichlorobenzene, 1,2,3,4-tetrachlorobenzene, 1,2,3,5-tetrachlorobenzene, pentachlorobenzene, and hexachlorobenzene) between 5 and 45 C. The values are compared with reported data on octanol-water and triolein-water partition coefficients. The van`t Hoff plots of log K{sub OW} versus T{sup {minus}1} exhibit linearity with values of K{sub OW} increasing by 5--8% over this temperature range, and the enthalpy of phase change varies from 9.7 to 16 kJ/mol. Several reasons are suggested why tricaprylin-water partition coefficients may be preferable to octanol-water and triolein-water partition coefficients when quantifying a substance`s hydrophobicity.more » The mutual solubilities of tricaprylin and water are less than that of octanol and water. Tricaprylin is easier to purify than triolein and, because of its lower molecular mass, is easier to analyze by gas chromatography.« less
LPCVD homoepitaxy of Si doped β-Ga2O3 thin films on (010) and (001) substrates
NASA Astrophysics Data System (ADS)
Rafique, Subrina; Karim, Md Rezaul; Johnson, Jared M.; Hwang, Jinwoo; Zhao, Hongping
2018-01-01
This paper presents the homoepitaxy of Si-doped β-Ga2O3 thin films on semi-insulating (010) and (001) Ga2O3 substrates via low pressure chemical vapor deposition with a growth rate of ≥1 μm/h. Both high resolution scanning transmission electron microscopy and X-ray diffraction measurements demonstrated high crystalline quality homoepitaxial growth of these thin films. Atomic resolution STEM images of the as-grown β-Ga2O3 thin films on (010) and (001) substrates show high quality material without extended defects or dislocations. The charge carrier transport properties of the as-grown Si-doped β-Ga2O3 thin films were characterized by the temperature dependent Hall measurement using van der Pauw patterns. The room temperature carrier concentrations achieved for the (010) and (001) homoepitaxial thin films were ˜1.2 × 1018 cm-3 and ˜9.5 × 1017 cm-3 with mobilities of ˜72 cm2/V s and ˜42 cm2/V s, respectively.
Chang, Wen-Hsin; Yu, Ju-ching; Yang, Sung-Yi; Lin, Yi-Cheng; Wang, Chih-Hung; You, Huey-Ling; Wu, Jiunn-Jong; Lee, Gwo-Bin
2017-01-01
Vancomycin-resistant Enterococcus (VRE) is a kind of enterococci, which shows resistance toward antibiotics. It may last for a long period of time and meanwhile transmit the vancomycin-resistant gene (vanA) to other bacteria. In the United States alone, the resistant rate of Enterococcus to vancomycin increased from a mere 0.3% to a whopping 40% in the past two decades. Therefore, timely diagnosis and control of VRE is of great need so that clinicians can prevent patients from becoming infected. Nowadays, VRE is diagnosed by antibiotic susceptibility test or molecular diagnosis assays such as matrix-assisted laser desorption ionization/time-of-flight mass spectrometry and polymerase chain reaction. However, the existing diagnostic methods have some drawbacks, for example, time-consumption, no genetic information, or high false-positive rate. This study reports an integrated microfluidic system, which can automatically identify the vancomycin resistant gene (vanA) from live bacteria in clinical samples. A new approach using ethidium monoazide, nucleic acid specific probes, low temperature chemical lysis, and loop-mediated isothermal amplification (LAMP) has been presented. The experimental results showed that the developed system can detect the vanA gene from live Enterococcus in joint fluid samples with detection limit as low as 10 colony formation units/reaction within 1 h. This is the first time that an integrated microfluidic system has been demonstrated to detect vanA gene from live bacteria by using the LAMP approach. With its high sensitivity and accuracy, the proposed system may be useful to monitor antibiotic resistance genes from live bacteria in clinical samples in the near future. PMID:28798845
USAF Summer Faculty Research Program. 1981 Research Reports. Volume II.
1981-10-01
Research Associate 17 (A) Spect roscop i( Analysis anld Opt. i n1iZaLtol on 1 Di. Larry R. Dalton the oxygen/ I od ine Chemica (tILase r and (8...theory appear in Fig. 7 where the inverse temper- ature dependence reflects the dominant influence of the van der Waals 2.7 attraction. Note that the...colinear geometry. Coltrin obtains a 13 depth of 6.9 kcal/mol vs. 2.7 kcal/mol obtained by Wilkins. Thus we expect more Coltrin trajectories to form van der
Spacecraft surface charging within geosynchronous orbit observed by the Van Allen Probes
Sarno-Smith, Lois K.; Larsen, Brian A.; Skoug, Ruth M.; ...
2016-02-27
Using the Helium Oxygen Proton Electron (HOPE) and Electric Field and Waves (EFW) instruments from the Van Allen Probes, we explored the relationship between electron energy fluxes in the eV and keV ranges and spacecraft surface charging. We present statistical results on spacecraft charging within geosynchronous orbit by L and MLT. An algorithm to extract the H+ charging line in the HOPE instrument data was developed to better explore intense charging events. Also, this study explored how spacecraft potential relates to electron number density, electron pressure, electron temperature, thermal electron current, and low-energy ion density between 1 and 210 eV.more » It is demonstrated that it is imperative to use both EFW potential measurements and the HOPE instrument ion charging line for examining times of extreme spacecraft charging of the Van Allen Probes. The results of this study show that elevated electron energy fluxes and high-electron pressures are present during times of spacecraft charging but these same conditions may also occur during noncharging times. Furthermore, we also show noneclipse significant negative charging events on the Van Allen Probes.« less
The Intracellular Localization of the Vanillin Biosynthetic Machinery in Pods of Vanilla planifolia.
Gallage, Nethaji J; Jørgensen, Kirsten; Janfelt, Christian; Nielsen, Agnieszka J Z; Naake, Thomas; Dunski, Eryk; Dalsten, Lene; Grisoni, Michel; Møller, Birger Lindberg
2018-02-01
Vanillin is the most important flavor compound in the vanilla pod. Vanilla planifolia vanillin synthase (VpVAN) catalyzes the conversion of ferulic acid and ferulic acid glucoside into vanillin and vanillin glucoside, respectively. Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) of vanilla pod sections demonstrates that vanillin glucoside is preferentially localized within the mesocarp and placental laminae whereas vanillin is preferentially localized within the mesocarp. VpVAN is present as the mature form (25 kDa) but, depending on the tissue and isolation procedure, small amounts of the immature unprocessed form (40 kDa) and putative oligomers (50, 75 and 100 kDa) may be observed by immunoblotting using an antibody specific to the C-terminal sequence of VpVAN. The VpVAN protein is localized within chloroplasts and re-differentiated chloroplasts termed phenyloplasts, as monitored during the process of pod development. Isolated chloroplasts were shown to convert [14C]phenylalanine and [14C]cinnamic acid into [14C]vanillin glucoside, indicating that the entire vanillin de novo biosynthetic machinery converting phenylalanine to vanillin glucoside is present in the chloroplast.
The Intracellular Localization of the Vanillin Biosynthetic Machinery in Pods of Vanilla planifolia
Gallage, Nethaji J; JØrgensen, Kirsten; Janfelt, Christian; Nielsen, Agnieszka J Z; Naake, Thomas; Duński, Eryk; Dalsten, Lene; Grisoni, Michel; MØller, Birger Lindberg
2018-01-01
Abstract Vanillin is the most important flavor compound in the vanilla pod. Vanilla planifolia vanillin synthase (VpVAN) catalyzes the conversion of ferulic acid and ferulic acid glucoside into vanillin and vanillin glucoside, respectively. Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) of vanilla pod sections demonstrates that vanillin glucoside is preferentially localized within the mesocarp and placental laminae whereas vanillin is preferentially localized within the mesocarp. VpVAN is present as the mature form (25 kDa) but, depending on the tissue and isolation procedure, small amounts of the immature unprocessed form (40 kDa) and putative oligomers (50, 75 and 100 kDa) may be observed by immunoblotting using an antibody specific to the C-terminal sequence of VpVAN. The VpVAN protein is localized within chloroplasts and re-differentiated chloroplasts termed phenyloplasts, as monitored during the process of pod development. Isolated chloroplasts were shown to convert [14C]phenylalanine and [14C]cinnamic acid into [14C]vanillin glucoside, indicating that the entire vanillin de novo biosynthetic machinery converting phenylalanine to vanillin glucoside is present in the chloroplast. PMID:29186560
NASA Astrophysics Data System (ADS)
Ghasemi, Jahanbakhsh; Niazi, Ali; Kubista, Mikael
2005-11-01
The dimerization constants of rhodamine B and 6G have been determined by studying the dependence of their absorption spectra on the temperature in the range 20-80 °C at different total concentrations of rhodamine B (5.89 × 10 -6 to 2.36 × 10 -4 M) and rhodamine 6G (2.34 × 10 -5 to 5.89 × 10 -4 M) and in different concentrations of LiCl, NaCl and KCl salts as supporting electrolytes. The monomer-dimer equilibrium of rhodamine B and 6G have been determined by chemometrics refinement of the absorption spectra obtained by thermometric titrations performed at different ionic strengths. The quantitative analysis of the data of undefined mixtures, was carried out by simultaneous resolution of the overlapping spectral bands in the whole set of absorption spectra. The dimerization constants are varied by changing the ionic strength and the degree of dimerization are decreased by increasing of the ionic strength of the medium. The enthalpy and entropy of the dimerization reactions were determined from the dependence of the equilibrium constants on the temperature (van't Hoff equation). From the thermodynamic results the TΔ S°-Δ H° plot was sketched. It shows a fairly good positive correlation which indicates the enthalpy-entropy compensation in the dimerization reactions (compensation effect).
Ghasemi, Jahanbakhsh; Niazi, Ali; Kubista, Mikael
2005-11-01
The dimerization constants of rhodamine B and 6G have been determined by studying the dependence of their absorption spectra on the temperature in the range 20-80 degrees C at different total concentrations of rhodamine B (5.89 x 10(-6) to 2.36 x 10(-4)M) and rhodamine 6G (2.34 x 10(-5) to 5.89 x 10(-4)M) and in different concentrations of LiCl, NaCl and KCl salts as supporting electrolytes. The monomer-dimer equilibrium of rhodamine B and 6G have been determined by chemometrics refinement of the absorption spectra obtained by thermometric titrations performed at different ionic strengths. The quantitative analysis of the data of undefined mixtures, was carried out by simultaneous resolution of the overlapping spectral bands in the whole set of absorption spectra. The dimerization constants are varied by changing the ionic strength and the degree of dimerization are decreased by increasing of the ionic strength of the medium. The enthalpy and entropy of the dimerization reactions were determined from the dependence of the equilibrium constants on the temperature (van't Hoff equation). From the thermodynamic results the TDeltaS degrees -DeltaH degrees plot was sketched. It shows a fairly good positive correlation which indicates the enthalpy-entropy compensation in the dimerization reactions (compensation effect).
NASA Astrophysics Data System (ADS)
Ren, Yanzhi; Asanuma, Morito; Iimura, Ken-ichi; Kato, Teiji
2001-01-01
Temperature-variable grazing incidence reflection absorption (GIR) spectra were recorded for the single monolayer of [CF3(CF2)m(CH2)nCOO)]2Cd [(m,n)=(7,10), (7,16), (7,22), (5,22), and (3,22)], transferred from aqueous Cd2+ subphase to gold- and aluminum-evaporated glass substrates. The spectra reveal that these monolayers have better thermal stability on Al substrates than on Au. An "interaction band" is identified at 1484˜1480 cm-1, due to the νs(COO-) mode of carboxylate headgroups in ionic bonding with the Al surface. It is found that both the van der Waals interaction between the trans zig-zag hydrocarbon chains and the overlapping interaction between the fluorocarbon helixes are responsible for the systematic variation of the monolayer thermal behavior with (m,n). The thermal behavior of a single monolayer of cadmium stearate, serving as a model system, has been investigated to further confirm the spectral interpretation about the partially fluorinated monolayer. In addition, temperature-dependent friction measurements show that the single monolayers of (m,n)=(7,16), (7,22), (5,22), and (3,22) are potential molecular lubricants that can be used in the range of 25˜140 °C.
Low LET radiolysis escape yields for reducing radicals and H2 in pressurized high temperature water
NASA Astrophysics Data System (ADS)
Sterniczuk, Marcin; Yakabuskie, Pamela A.; Wren, J. Clara; Jacob, Jasmine A.; Bartels, David M.
2016-04-01
Low Linear Energy Transfer (LET) radiolysis escape yields (G values) are reported for the sum (G(radH)+G(e-)aq) and for G(H2) in subcritical water up to 350 °C. The scavenger system 1-10 mM acetate/0.001 M hydroxide/0.00048 M N2O was used with simultaneous mass spectroscopic detection of H2 and N2 product. Temperature-dependent measurements were carried out with 2.5 MeV electrons from a van de Graaff accelerator, while room temperature calibration measurements were done with a 60Co gamma source. The concentrations and dose range were carefully chosen so that initial spur chemistry is not perturbed and the N2 product yield corresponds to those reducing radicals that escape recombination in pure water. In comparison with a recent review recommendation of Elliot and Bartels (AECL report 153-127160-450-001, 2009), the measured reducing radical yield is seven percent smaller at room temperature but in fairly good agreement above 150 °C. The H2 escape yield is in good agreement throughout the temperature range with several previous studies that used much larger radical scavenging rates. Previous analysis of earlier high temperature measurements of Gesc(radOH) is shown to be flawed, although the actual G values may be nearly correct. The methodology used in the present report greatly reduces the range of possible error and puts the high temperature escape yields for low-LET radiation on a much firmer quantitative foundation than was previously available.
The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures
Wang, Han; Bang, Junhyeok; Sun, Yiyang; ...
2016-05-10
Here, the success of van der Waals (vdW) heterostructures, made of graphene, metal dichalcogenides, and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that vdW heterostructues can exhibit ultra-fast charge transfer despite the weak binding of the heterostructure. Using time-dependent density functional theory molecular dynamics, we identify a strong dynamic coupling between the vdW layers associated with charge transfer. This dynamic coupling results in rapid nonlinear coherentmore » charge oscillations which constitute a purely electronic phenomenon and are shown to be a general feature of vdW heterostructures provided they have a critical minimum dipole coupling. Application to MoS2/WS2 heterostructure yields good agreement with experiment, indicating near complete charge transfer within a timescale of 100 fs.The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application to the MoS2/WS2 heterostructure yields good agreement with experiments, indicating near complete charge transfer within a timescale of 100 fs.« less
The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Han; Bang, Junhyeok; Sun, Yiyang
Here, the success of van der Waals (vdW) heterostructures, made of graphene, metal dichalcogenides, and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that vdW heterostructues can exhibit ultra-fast charge transfer despite the weak binding of the heterostructure. Using time-dependent density functional theory molecular dynamics, we identify a strong dynamic coupling between the vdW layers associated with charge transfer. This dynamic coupling results in rapid nonlinear coherentmore » charge oscillations which constitute a purely electronic phenomenon and are shown to be a general feature of vdW heterostructures provided they have a critical minimum dipole coupling. Application to MoS2/WS2 heterostructure yields good agreement with experiment, indicating near complete charge transfer within a timescale of 100 fs.The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application to the MoS2/WS2 heterostructure yields good agreement with experiments, indicating near complete charge transfer within a timescale of 100 fs.« less
A thermodynamic model to predict electron mobility in superfluid helium.
Aitken, Frédéric; Volino, Ferdinand; Mendoza-Luna, Luis Guillermo; Haeften, Klaus von; Eloranta, Jussi
2017-06-21
Electron mobility in superfluid helium is modeled between 0.1 and 2.2 K by a van der Waals-type thermodynamic equation of state, which relates the free volume of solvated electrons to temperature, density, and phase dependent internal pressure. The model is first calibrated against known electron mobility reference data along the saturated vapor pressure line and then validated to reproduce the existing mobility literature values as a function of pressure and temperature with at least 10% accuracy. Four different electron mobility regimes are identified: (1) Landau critical velocity limit (T ≈ 0), (2) mobility limited by thermal phonons (T < 0.6 K), (3) thermal phonon and discrete roton scattering ("roton gas") limited mobility (0.6 K < T < 1.2 K), and (4) the viscous liquid ("roton continuum") limit (T > 1.2 K) where the ion solvation structure directly determines the mobility. In the latter regime, the Stokes equation can be used to estimate the hydrodynamic radius of the solvated electron based on its mobility and fluid viscosity. To account for the non-continuum behavior appearing below 1.2 K, the temperature and density dependent Millikan-Cunningham factor is introduced. The hydrodynamic electron bubble radii predicted by the present model appear generally larger than the solvation cavity interface barycenter values obtained from density functional theory (DFT) calculations. Based on the classical Stokes law, this difference can arise from the variation of viscosity and flow characteristics around the electron. The calculated DFT liquid density profiles show distinct oscillations at the vacuum/liquid interface, which increase the interface rigidity.
NASA Astrophysics Data System (ADS)
Wang, Yi-Yan; Xu, Sheng; Sun, Lin-Lin; Xia, Tian-Long
2018-02-01
Dirac semimetals, which host Dirac fermions and represent a new state of quantum matter, have been studied intensively in condensed-matter physics. The exploration of new materials with topological states is important in both physics and materials science. We report the synthesis and the transport properties of high-quality single crystals of YbMnSb2. YbMnSb2 is a new compound with metallic behavior. Quantum oscillations, including Shubnikov-de Haas (SdH) oscillation and de Haas-van Alphen-type oscillation, have been observed at low temperature and high magnetic field. Small effective masses and nontrivial Berry phase are extracted from the analyses of quantum oscillations, which provide the transport evidence for the possible existence of Dirac fermions in YbMnSb2. The measurements of angular-dependent interlayer magnetoresistance indicate that the interlayer transport is coherent. The Fermi surface of YbMnSb2 possesses a quasi-two-dimensional characteristic as determined by the angular dependence of SdH oscillation frequency. These findings suggest that YbMnSb2 is a new candidate of topological Dirac semimetals.
Effective field theories for van der Waals interactions
NASA Astrophysics Data System (ADS)
Brambilla, Nora; Shtabovenko, Vladyslav; Tarrús Castellà, Jaume; Vairo, Antonio
2017-06-01
Van der Waals interactions between two neutral but polarizable systems at a separation R much larger than the typical size of the systems are at the core of a broad sweep of contemporary problems in settings ranging from atomic, molecular and condensed matter physics to strong interactions and gravity. In this paper, we reexamine the dispersive van der Waals interactions between two hydrogen atoms. The novelty of the analysis resides in the usage of nonrelativistic effective field theories of quantum electrodynamics. In this framework, the van der Waals potential acquires the meaning of a matching coefficient in an effective field theory, dubbed van der Waals effective field theory, suited to describe the low-energy dynamics of an atom pair. It may be computed systematically as a series in R times some typical atomic scale and in the fine-structure constant α . The van der Waals potential gets short-range contributions and radiative corrections, which we compute in dimensional regularization and renormalize here for the first time. Results are given in d space-time dimensions. One can distinguish among different regimes depending on the relative size between 1 /R and the typical atomic bound-state energy, which is of order m α2. Each regime is characterized by a specific hierarchy of scales and a corresponding tower of effective field theories. The short-distance regime is characterized by 1 /R ≫m α2 and the leading-order van der Waals potential is the London potential. We also compute next-to-next-to-next-to-leading-order corrections. In the long-distance regime we have 1 /R ≪m α2. In this regime, the van der Waals potential contains contact terms, which are parametrically larger than the Casimir-Polder potential that describes the potential at large distances. In the effective field theory, the Casimir-Polder potential counts as a next-to-next-to-next-to-leading-order effect. In the intermediate-distance regime, 1 /R ˜m α2, a significantly more complex potential is obtained. We compare this exact result with the two previous limiting cases. We conclude by commenting on the van der Waals interactions in the hadronic case.
Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures
Lin, Yu-Chuan; Ghosh, Ram Krishna; Addou, Rafik; Lu, Ning; Eichfeld, Sarah M.; Zhu, Hui; Li, Ming-Yang; Peng, Xin; Kim, Moon J.; Li, Lain-Jong; Wallace, Robert M.; Datta, Suman; Robinson, Joshua A.
2015-01-01
Vertical integration of two-dimensional van der Waals materials is predicted to lead to novel electronic and optical properties not found in the constituent layers. Here, we present the direct synthesis of two unique, atomically thin, multi-junction heterostructures by combining graphene with the monolayer transition-metal dichalcogenides: molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). The realization of MoS2–WSe2–graphene and WSe2–MoS2–graphene heterostructures leads to resonant tunnelling in an atomically thin stack with spectrally narrow, room temperature negative differential resistance characteristics. PMID:26088295
[The origin of homoiothermy--unsolved problem].
Dol'nik, V P
2003-01-01
The analysis of allometric dependence of energy expenditure on body mass among reptiles, birds and mammals has shown that standard metabolic rate of reptiles when they are warmed up to the temperature of homoiothermic animals is an order of magnitude lower than that of birds and mammals. Basal metabolism is originated as special feature historically related to the metabolism during active behavior, rather than thermal regulation. Facultative endothermy was not advantageous for large animals because of long time needed to warm up the body. The ancestors of birds and animals escaped negative consequences of van't-Hoff equation by choosing constant body temperature. Heat conductivity of reptile's covers is so great, that it cannot keep endogenous warm of resting animal at any temperature of the body. Reptile "dressed" in covers of bird or mammal would be able to keep warm under conditions of maximal aerobic muscular activity and body temperature similar to that of homoiothermic animals. The base of chemical thermoregulation in birds and mammals is a thermoregulatory muscle tonus which remains unknown. One can suppose that during evolution of birds and mammals the saltation-liked origin of endothermy "fixed" the level of metabolism typical for running reptile and transformed in into the basal metabolism. This event took place at the cell and tissue level. The absence of palaeontological evidences and intermediate forms among recent species does not allow easy understanding of homoiothermy origin.
Ho, Pei Chun; Singleton, John; Goddard, Paul A.; ...
2016-11-28
We use MHz conductivity, torque magnetometer, and magnetization measurements to report on single crystals of CeOs 4 Sb 12 and NdOs 4 Sb 12 using temperatures down to 0.5 K and magnetic fields of up to 60 tesla. The field-orientation dependence of the de Haas-van Alphen and Shubnikov-de Haas oscillations is deduced by rotating the samples about the [ 010 ] and [ 0more » $$\\bar{1}$$ 1 1 ] directions. Our results indicate that NdOs 4 Sb 12 has a similar Fermi surface topology to that of the unusual superconductor PrOs 4 Sb 12 , but with significantly smaller effective masses, supporting the importance of local phonon modes in contributing to the low-temperature heat capacity of NdOs 4 Sb 12 . By contrast, CeOs 4 Sb 12 undergoes a field-induced transition from an unusual semimetal into a high-field, high-temperature state characterized by a single, almost spherical Fermi-surface section. Furthermore, the behavior of the phase boundary and comparisons with models of the band structure lead us to propose that the field-induced phase transition in CeOs 4 Sb 12 is similar in origin to the well-known α - γ transition in Ce and its alloys.« less
Novel size-dependent chemistry within ionized van der Waals clusters of 1,1-difluoroethane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coolbaugh, M.T.; Peifer, W.R.; Garvey, J.F.
1990-02-22
The authors present in this paper evidence for size-dependent cluster chemistry occurring in van der Waals clusters of 1,1-difluoroethane. Clusters of C{sub 2}H{sub 4}F{sub 2} are produced from a neat adiabatic expansion and are ionized via electron impact. In addition to the anticipated fragment ions, we observe ions with the general empirical formula of M{sub n}H{sup +} (where n {ge} 4). The reactive process that generates this species cannot be rationalized in terms of intramolecular analogues of known gas-phase bimolecular ion-molecular reactions. Hence, we fell the production of this product cluster ion represents an additional example of a brand newmore » class of ion-molecule reactions that can only occur within the unique solvated environment of the cluster.« less
Li, Q; Thonhauser, T
2012-10-24
The hydrogen-methane compound (H(2))(4)CH(4)-or for short H4M-is one of the most promising hydrogen-storage materials. This van der Waals compound is extremely rich in molecular hydrogen: 33.3 mass%, not including the hydrogen bound in CH(4); including it, we reach even 50.2 mass%. Unfortunately, H4M is not stable under ambient pressure and temperature, requiring either low temperature or high pressure. In this paper, we investigate the properties and structure of the molecular and crystalline forms of H4M, using ab initio methods based on van der Waals DFT (vdW-DF). We further investigate the possibility of creating the pressures required to stabilize H4M through external agents such as metal organic framework (MOF) materials and carbon nanotubes, with very encouraging results. In particular, we find that certain MOFs can create considerable pressure for H4M in their cavities, but not enough to stabilize it at room temperature, and moderate cooling is still necessary. On the other hand, we find that all the investigated carbon nanotubes can create the high pressures required for H4M to be stable at room temperature, with direct implications for new and exciting hydrogen-storage applications.
Kinetics of Hydrogen Abstraction and Addition Reactions of 3-Hexene by ȮH Radicals.
Yang, Feiyu; Deng, Fuquan; Pan, Youshun; Zhang, Yingjia; Tang, Chenglong; Huang, Zuohua
2017-03-09
Rate coefficients of H atom abstraction and H atom addition reactions of 3-hexene by the hydroxyl radicals were determined using both conventional transition-state theory and canonical variational transition-state theory, with the potential energy surface (PES) evaluated at the CCSD(T)/CBS//BHandHLYP/6-311G(d,p) level and quantum mechanical effect corrected by the compounded methods including one-dimensional Wigner method, multidimensional zero-curvature tunneling method, and small-curvature tunneling method. Results reveal that accounting for approximate 70% of the overall H atom abstractions occur in the allylic site via both direct and indirect channels. The indirect channel containing two van der Waals prereactive complexes exhibits two times larger rate coefficient relative to the direct one. The OH addition reaction also contains two van der Waals complexes, and its submerged barrier results in a negative temperature coefficient behavior at low temperatures. In contrast, The OH addition pathway dominates only at temperatures below 450 K whereas the H atom abstraction reactions dominate overwhelmingly at temperature over 1000 K. All of the rate coefficients calculated with an uncertainty of a factor of 5 were fitted in a quasi-Arrhenius formula. Analyses on the PES, minimum reaction path and activation free Gibbs energy were also performed in this study.
NASA Astrophysics Data System (ADS)
AlKhatib, Mahmoud; Eisenhauer, Anton
2017-07-01
In order to study Strontium (Sr) partitioning and isotope fractionation of Sr and Calcium (Ca) in calcite we performed precipitation (T) experiments decoupling temperature and precipitation rate (R∗). Calcite was precipitated at 12.5, 25.0 and 37.5 °C by diffusing NH3 and CO2 gases into aqueous solutions closely following the experimental setup of Lemarchand et al. (2004). The precipitation rate (R∗) for every sample was determined applying the initial rate method and from the specific surface area of almost all samples for each reaction. The order of reaction with respect to Ca2+ ions was determined to be one and independent of T. However, the order of reaction with respect to HCO3- changed from three to one as temperature increases from 12.5, 25 °C and 37.5 °C. Strontium incorporated into calcite (expressed as DSr = [Sr/Ca]calcite/[Sr/Ca]solution) was found to be R∗ and T dependent. As a function of increasing R∗ the Δ88/86Sr-values become more negative and as temperature increases the Δ88/86Sr values also increase at constant R∗. The DSr and Δ88/86Sr-values are correlated to a high degree and depend only on R∗ being independent of temperature, complexation and varying initial ratios. Latter observation may have important implications for the study of diagenesis, the paleo-sciences and the reconstruction of past environmental conditions. Calcium isotope fractionation (Δ44/40Ca) was also found to be R∗ and T dependent. For 12.5 and 25.0 °C we observe a general increase of the Δ44/40Ca values as a function of R∗ (Lemarchand et al. type behavior, Lemarchand et al. (2004)). Whereas at 37.5 °C a significant decreasing Δ44/40Ca is observed relative to increasing R∗ (Tang et al. type behavior, Tang et al. (2008)). In order to reconcile the discrepant observations we suggest that the temperature triggered change from a Ca2+-NH3-aquacomplex covalent controlled bonding to a Ca2+-H2O-aquacomplex van-der-Waals controlled bonding caused the change in sign of the R∗ - Δ44/40Ca slope due to the switch of an equilibrium type of isotope fractionation related to the covalent bonding during lower temperatures to a kinetic type of isotope fractionation at higher temperatures. This is supported by the observation that the Δ44/40Ca ratios tend to depend on the [Ca]:[DIC] ratio at 12.5 and 25 °C but is highly independent at 37.5 °C. Our observations imply the chemical fluid composition and temperature dependent complexation controls the amount and direction of Ca isotope fractionation in contrast to the Sr isotopes which do not show any change of its fractionation behavior as a function of complexation in the liquid phase.
Dual-Gated MoTe2/MoS2 van der Waals Heterojunction p-n Diode
NASA Astrophysics Data System (ADS)
Rai, Amritesh; Movva, Hema C. P.; Kang, Sangwoo; Larentis, Stefano; Roy, Anupam; Tutuc, Emanuel; Banerjee, Sanjay K.
2D materials are promising for future electronic and optoelectronic applications. In this regard, it is important to realize p-n diodes, the most fundamental building block of all modern semiconductor devices, based on these 2D materials. While it is challenging to achieve homojunction diodes in 2D semiconductors due to lack of reliable selective doping techniques, it is relatively easier to achieve diode-like behavior in van der Waals (vdW) heterostructures comprising different 2D semiconductors. Here, we demonstrate dual-gated vdW heterojunction p-n diodes based on p-type MoTe2 and n-type MoS2, with hBN as the top and bottom gate dielectric. The heterostructure stack is assembled using a polymer-based `dry-transfer' technique. Pt contact is used for hole injection in MoTe2, whereas Ag is used for electron injection in MoS2. The dual-gates allow for independent electrostatic tuning of the carriers in MoTe2 and MoS2. Room temperature interlayer current-voltage characteristics reveal a strong gate-tunable rectification behavior. At low temperatures, the diode turn-on voltage increases, whereas the reverse saturation current decreases, in accordance with conventional p-n diode behavior. Dual-Gated MoTe2/MoS2 van der Waals Heterojunction p-n Diode.
Volumetrically Derived Thermodynamic Profile of Interactions of Urea with a Native Protein.
Son, Ikbae; Chalikian, Tigran V
2016-11-29
We report the first experimental characterization of the full thermodynamic profile for binding of urea to a native protein. We measured the volumetric parameters of lysozyme at pH 7.0 as a function of urea within a temperature range of 18-45 °C. At neutral pH, lysozyme retains its native conformation between 0 and 8 M urea over the entire range of temperatures studied. Consequently, our measured volumetric properties reflect solely the interactions of urea with the native protein and do not involve contributions from urea-induced conformational transitions. We analyzed our data within the framework of a statistical thermodynamic analytical model in which urea-protein interactions are viewed as solvent exchange in the vicinity of the protein. The analysis produced the equilibrium constant, k, for an elementary reaction of urea-protein binding with a change in standard state free energy (ΔG° = -RT ln k) at each experimental temperature. We used the van't Hoff equation to compute from the temperature dependence of the equilibrium constant, k, changes in enthalpy, ΔH°, and entropy, ΔS°, accompanying binding. The thermodynamic profile of urea-protein interactions, in conjunction with published molecular dynamics simulation results, is consistent with the picture in which urea molecules, being underhydrated in the bulk, form strong, enthalpically favorable interactions with the surface protein groups while paying a high entropic price. We discuss ramifications of our results for providing insights into the combined effects of urea, temperature, and pressure on the conformational preferences of proteins.
NASA Astrophysics Data System (ADS)
Núñez, Sara; López, José M.; Aguado, Andrés
2012-09-01
We report the putative Global Minimum (GM) structures and electronic properties of GaN+, GaN and GaN- clusters with N = 13-37 atoms, obtained from first-principles density functional theory structural optimizations. The calculations include spin polarization and employ an exchange-correlation functional which accounts for van der Waals dispersion interactions (vdW-DFT). We find a wide diversity of structural motifs within the located GM, including decahedral, polyicosahedral, polytetrahedral and layered structures. The GM structures are also extremely sensitive to the number of electrons in the cluster, so that the structures of neutral and charged clusters differ for most sizes. The main magic numbers (clusters with an enhanced stability) are identified and interpreted in terms of electronic and geometric shell closings. The theoretical results are consistent with experimental abundance mass spectra of GaN+ and with photoelectron spectra of GaN-. The size dependence of the latent heats of melting, the shape of the heat capacity peaks, and the temperature dependence of the collision cross-sections, all measured for GaN+ clusters, are properly interpreted in terms of the calculated cohesive energies, spectra of configurational excitations, and cluster shapes, respectively. The transition from ``non-melter'' to ``magic-melter'' behaviour, experimentally observed between Ga30+ and Ga31+, is traced back to a strong geometry change. Finally, the higher-than-bulk melting temperatures of gallium clusters are correlated with a more typically metallic behaviour of the clusters as compared to the bulk, contrary to previous theoretical claims.We report the putative Global Minimum (GM) structures and electronic properties of GaN+, GaN and GaN- clusters with N = 13-37 atoms, obtained from first-principles density functional theory structural optimizations. The calculations include spin polarization and employ an exchange-correlation functional which accounts for van der Waals dispersion interactions (vdW-DFT). We find a wide diversity of structural motifs within the located GM, including decahedral, polyicosahedral, polytetrahedral and layered structures. The GM structures are also extremely sensitive to the number of electrons in the cluster, so that the structures of neutral and charged clusters differ for most sizes. The main magic numbers (clusters with an enhanced stability) are identified and interpreted in terms of electronic and geometric shell closings. The theoretical results are consistent with experimental abundance mass spectra of GaN+ and with photoelectron spectra of GaN-. The size dependence of the latent heats of melting, the shape of the heat capacity peaks, and the temperature dependence of the collision cross-sections, all measured for GaN+ clusters, are properly interpreted in terms of the calculated cohesive energies, spectra of configurational excitations, and cluster shapes, respectively. The transition from ``non-melter'' to ``magic-melter'' behaviour, experimentally observed between Ga30+ and Ga31+, is traced back to a strong geometry change. Finally, the higher-than-bulk melting temperatures of gallium clusters are correlated with a more typically metallic behaviour of the clusters as compared to the bulk, contrary to previous theoretical claims. Electronic supplementary information (ESI) available: Atomic coordinates (in xyz format and Å units) and point group symmetries for the global minimum structures reported in this paper. See DOI: 10.1039/c2nr31222k
Rey, M D; Font, R; Aracil, I
2014-08-15
PCDD/F emissions from three light-duty diesel vehicles--two vans and a passenger car--have been measured in on-road conditions. We propose a new methodology for small vehicles: a sample of exhaust gas is collected by means of equipment based on United States Environmental Protection Agency (U.S. EPA) method 23 A for stationary stack emissions. The concentrations of O2, CO, CO2, NO, NO2 and SO2 have also been measured. Six tests were carried out at 90-100 km/h on a route 100 km long. Two additional tests were done during the first 10 min and the following 60 min of the run to assess the effect of the engine temperature on PCDD/F emissions. The emission factors obtained for the vans varied from 1800 to 8400 pg I-TEQ/Nm(3) for a 2004 model year van and 490-580 pg I-TEQ/Nm(3) for a 2006 model year van. Regarding the passenger car, one run was done in the presence of a catalyst and another without, obtaining emission factors (330-880 pg I-TEQ/Nm(3)) comparable to those of the modern van. Two other tests were carried out on a power generator leading to emission factors ranging from 31 to 78 pg I-TEQ/Nm(3). All the results are discussed and compared with literature. Copyright © 2014 Elsevier B.V. All rights reserved.
Hirotani, Jun; Ikuta, Tatsuya; Nishiyama, Takashi; Takahashi, Koji
2013-01-16
Interfacial thermal transport via van der Waals interaction is quantitatively evaluated using an individual multi-walled carbon nanotube bonded on a platinum hot-film sensor. The thermal boundary resistance per unit contact area was obtained at the interface between the closed end or sidewall of the nanotube and platinum, gold, or a silicon dioxide surface. When taking into consideration the surface roughness, the thermal boundary resistance at the sidewall is found to coincide with that at the closed end. A new finding is that the thermal boundary resistance between a carbon nanotube and a solid surface is independent of the materials within the experimental errors, which is inconsistent with a traditional phonon mismatch model, which shows a clear material dependence of the thermal boundary resistance. Our data indicate the inapplicability of existing phonon models when weak van der Waals forces are dominant at the interfaces.
Decoupling interface effect on the phase stability of CdS thin films by van der Waals heteroepitaxy
NASA Astrophysics Data System (ADS)
Sun, Xin; Wang, Yiping; Seewald, Lucas J.; Chen, Zhizhong; Shi, Jian; Washington, Morris A.; Lu, Toh-Ming
2017-01-01
Wurtzite (W) and zinc-blende (ZB) polytypism has long been observed in epitaxial CdS thin films. The present work, based on van der Waals epitaxial CdS thin films, is an attempt to explain which crystal modification, W or ZB, is favored under different growth conditions. In this van der Waals epitaxy system where the substrate influence is considered weak, it is found that the substrate temperature plays a crucial role in determining the crystal modification of CdS, that is, W and ZB CdS are more stable at low and high ends of substrate temperature, respectively. We attribute this temperature effect to the entropy difference (SW < SZB), a conclusion well supported by the thermodynamic hard sphere model formulation of the entropy difference between hexagonal close-packed and face-centered cubic structures. By summarizing other works, we find that the entropy difference model can also be applied to large mismatched (≳3%) CdS-substrate chemical epitaxy systems but not for small mismatched (≲3%) ones. In the latter case, the energy benefit in terms of high density of bonding contributed by the substrate-film interface is believed to be too overwhelming for the intrinsic entropy difference to overcome. Furthermore, the deposition rate is found to affect the crystalline quality and strain level in CdS films but not the crystal modification of the CdS films. Last, Raman and photoluminescence spectroscopies reveal the strain behaviors in the films. The phase change from W to ZB CdS is well-correlated with the observed peak shifts in Raman and photoluminescence spectroscopies.
Effect of van der Waals interactions on the structural and binding properties of GaSe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkisov, Sergey Y., E-mail: sarkisov@mail.tsu.ru; Kosobutsky, Alexey V., E-mail: kosobutsky@kemsu.ru; Kemerovo State University, Krasnaya 6, 650043 Kemerovo
The influence of van der Waals interactions on the lattice parameters, band structure, elastic moduli and binding energy of layered GaSe compound has been studied using projector-augmented wave method within density functional theory. We employed the conventional local/semilocal exchange-correlation functionals and recently developed van der Waals functionals which are able to describe dispersion forces. It is found that application of van der Waals density functionals allows to substantially increase the accuracy of calculations of the lattice constants a and c and interlayer distance in GaSe at ambient conditions and under hydrostatic pressure. The pressure dependences of the a-parameter, Ga–Ga, Ga–Semore » bond lengths and Ga–Ga–Se bond angle are characterized by a relatively low curvature, while c(p) has a distinct downward bowing due to nonlinear shrinking of the interlayer spacing. From the calculated binding energy curves we deduce the interlayer binding energy of GaSe, which is found to be in the range 0.172–0.197 eV/layer (14.2–16.2 meV/Å{sup 2}). - Highlights: • Effects of van der Waals interactions are analyzed using advanced density functionals. • Calculations with vdW-corrected functionals closely agree with experiment. • Interlayer binding energy of GaSe is estimated to be 14.2–16.2 meV/Å{sup 2}.« less
Genetics Home Reference: trichorhinophalangeal syndrome type II
... begin in infancy to early childhood and stop forming around adolescence. Depending on the location of the ... Citation on PubMed Maas SM, Shaw AC, Bikker H, Lüdecke HJ, van der Tuin K, Badura-Stronka ...
Estimation of ion charge states using Van Allen Probes-RBSPICE: a case study
NASA Astrophysics Data System (ADS)
Farinas Perez, G.; Sibeck, D. G.
2017-12-01
We use data from the RBSPICE instrument aboard the Van Allen Probes spacecraft to identify particle injection events with ion drift echoes. We calculate the arrival time and drift period of the protons, helium and oxygen for every energy channel of the RBSPICE instrument. The ions drift period depends upon their energy and charge, as we know the particle energy and the time drift period, the charge state can be estimated for a dipolar magnetic field model. A drift-echo event occurred in May 23, 2013 at 0400 UT is analyzed.
Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling
NASA Astrophysics Data System (ADS)
Tielrooij, Klaas-Jan; Hesp, Niels C. H.; Principi, Alessandro; Lundeberg, Mark B.; Pogna, Eva A. A.; Banszerus, Luca; Mics, Zoltán; Massicotte, Mathieu; Schmidt, Peter; Davydovskaya, Diana; Purdie, David G.; Goykhman, Ilya; Soavi, Giancarlo; Lombardo, Antonio; Watanabe, Kenji; Taniguchi, Takashi; Bonn, Mischa; Turchinovich, Dmitry; Stampfer, Christoph; Ferrari, Andrea C.; Cerullo, Giulio; Polini, Marco; Koppens, Frank H. L.
2018-01-01
Van der Waals heterostructures have emerged as promising building blocks that offer access to new physics, novel device functionalities and superior electrical and optoelectronic properties1-7. Applications such as thermal management, photodetection, light emission, data communication, high-speed electronics and light harvesting8-16 require a thorough understanding of (nanoscale) heat flow. Here, using time-resolved photocurrent measurements, we identify an efficient out-of-plane energy transfer channel, where charge carriers in graphene couple to hyperbolic phonon polaritons17-19 in the encapsulating layered material. This hyperbolic cooling is particularly efficient, giving picosecond cooling times for hexagonal BN, where the high-momentum hyperbolic phonon polaritons enable efficient near-field energy transfer. We study this heat transfer mechanism using distinct control knobs to vary carrier density and lattice temperature, and find excellent agreement with theory without any adjustable parameters. These insights may lead to the ability to control heat flow in van der Waals heterostructures.
Exfoliation and van der Waals heterostructure assembly of intercalated ferromagnet Cr1/3TaS2
NASA Astrophysics Data System (ADS)
Yamasaki, Yuji; Moriya, Rai; Arai, Miho; Masubuchi, Satoru; Pyon, Sunseng; Tamegai, Tsuyoshi; Ueno, Keiji; Machida, Tomoki
2017-12-01
Ferromagnetic van der Waals (vdW) materials are in demand for spintronic devices with all-two-dimensional-materials heterostructures. Here, we demonstrate mechanical exfoliation of magnetic-atom-intercalated transition metal dichalcogenide Cr1/3TaS2 from its bulk crystal; previously such intercalated materials were thought difficult to exfoliate. Magnetotransport in exfoliated tens-of-nanometres-thick flakes revealed ferromagnetic ordering below its Curie temperature T C ~ 110 K as well as strong in-plane magnetic anisotropy; these are identical to its bulk properties. Further, van der Waals heterostructure assembly of Cr1/3TaS2 with another intercalated ferromagnet Fe1/4TaS2 is demonstrated using a dry-transfer method. The fabricated heterojunction composed of Cr1/3TaS2 and Fe1/4TaS2 with a native Ta2O5 oxide tunnel barrier in between exhibits tunnel magnetoresistance (TMR), revealing possible spin injection and detection with these exfoliatable ferromagnetic materials through the vdW junction.
Terahertz conductivity of twisted bilayer graphene
NASA Astrophysics Data System (ADS)
Chia, Elbert E. M.; Zou, Xingquan; Shang, Jingzhi; Leaw, Jianing; Luo, Zhiqiang; Luo, Liyan; Cheong, Siew Ann; Su, Haibin; Zhu, Jian-Xin; Castro Neto, A. H.; Yu, Ting
2013-03-01
Using terahertz time-domain spectroscopy, the real part of optical conductivity [σ1 (ω) ] of twisted bilayer graphene was obtained at different temperatures (10 - 300 K) in the frequency range 0.3 - 3 THz. On top of a Drude-like response, we see a strong and narrow peak in σ1 (ω) at ~2.7 THz. We analyze the overall Drude-like response using a disorder-dependent (unitary scattering) model, then attribute the peak at 2.7 THz to an enhanced density of states at that energy, that is caused by the presence of van Hove singularities arising from a commensurate twisting of the two graphene layers. Singapore MOE AcRF Tier 2 (ARC 23/08), NRF-CRP (NRF-CRP4-2008-04), NNSA of the U.S. DOE at LANL (DE-AC52-06NA25396), LANL LDRD Program, NRF-CRP (R-144-000-295-281), DOE DE-FG02-08ER46512, ONR MURI N00014-09-1-1063.
Razdan, Neil K; Koshy, David M; Prausnitz, John M
2017-11-07
A group-contribution method based on scaled-particle theory was developed to predict Henry's constants for six families of persistent organic pollutants: polychlorinated benzenes, polychlorinated biphenyls, polychlorinated dibenzodioxins, polychlorinated dibenzofurans, polychlorinated naphthalenes, and polybrominated diphenyl ethers. The group-contribution model uses limited experimental data to obtain group-interaction parameters for an easy-to-use method to predict Henry's constants for systems where reliable experimental data are scarce. By using group-interaction parameters obtained from data reduction, scaled-particle theory gives the partial molar Gibbs energy of dissolution, Δg̅ 2 , allowing calculation of Henry's constant, H 2 , for more than 700 organic pollutants. The average deviation between predicted values of log H 2 and experiment is 4%. Application of an approximate van't Hoff equation gives the temperature dependence of Henry's constants for polychlorinated biphenyls, polychlorinated naphthalenes, and polybrominated diphenyl ethers in the environmentally relevant range 0-40 °C.
Scanning Tunneling Microscopy Observation of Phonon Condensate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altfeder, Igor; Balatsky, Alexander V.; Voevodin, Andrey A.
Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formationmore » of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.« less
Scanning Tunneling Microscopy Observation of Phonon Condensate
Altfeder, Igor; Voevodin, Andrey A.; Check, Michael H.; Eichfeld, Sarah M.; Robinson, Joshua A.; Balatsky, Alexander V.
2017-01-01
Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formation of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature. PMID:28225066
Scanning Tunneling Microscopy Observation of Phonon Condensate
Altfeder, Igor; Balatsky, Alexander V.; Voevodin, Andrey A.; ...
2017-02-22
Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formationmore » of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.« less
Structural and Functional Adaptation of Vancomycin Resistance VanT Serine Racemases.
Meziane-Cherif, Djalal; Stogios, Peter J; Evdokimova, Elena; Egorova, Olga; Savchenko, Alexei; Courvalin, Patrice
2015-08-11
Vancomycin resistance in Gram-positive bacteria results from the replacement of the D-alanyl-D-alanine target of peptidoglycan precursors with D-alanyl-D-lactate or D-alanyl-D-serine (D-Ala-D-Ser), to which vancomycin has low binding affinity. VanT is one of the proteins required for the production of D-Ala-D-Ser-terminating precursors by converting L-Ser to D-Ser. VanT is composed of two domains, an N-terminal membrane-bound domain, likely involved in L-Ser uptake, and a C-terminal cytoplasmic catalytic domain which is related to bacterial alanine racemases. To gain insight into the molecular function of VanT, the crystal structure of the catalytic domain of VanTG from VanG-type resistant Enterococcus faecalis BM4518 was determined. The structure showed significant similarity to type III pyridoxal 5'-phosphate (PLP)-dependent alanine racemases, which are essential for peptidoglycan synthesis. Comparative structural analysis between VanTG and alanine racemases as well as site-directed mutagenesis identified three specific active site positions centered around Asn696 which are responsible for the L-amino acid specificity. This analysis also suggested that VanT racemases evolved from regular alanine racemases by acquiring additional selectivity toward serine while preserving that for alanine. The 4-fold-lower relative catalytic efficiency of VanTG against L-Ser versus L-Ala implied that this enzyme relies on its membrane-bound domain for L-Ser transport to increase the overall rate of d-Ser production. These findings illustrate how vancomycin pressure selected for molecular adaptation of a housekeeping enzyme to a bifunctional enzyme to allow for peptidoglycan remodeling, a strategy increasingly observed in antibiotic-resistant bacteria. Vancomycin is one of the drugs of last resort against Gram-positive antibiotic-resistant pathogens. However, bacteria have evolved a sophisticated mechanism which remodels the drug target, the D-alanine ending precursors in cell wall synthesis, into precursors terminating with D-lactate or D-serine, to which vancomycin has less affinity. D-Ser is synthesized by VanT serine racemase, which has two unusual characteristics: (i) it is one of the few serine racemases identified in bacteria and (ii) it contains a membrane-bound domain involved in L-Ser uptake. The structure of the catalytic domain of VanTG showed high similarity to alanine racemases, and we identified three specific active site substitutions responsible for L-Ser specificity. The data provide the molecular basis for VanT evolution to a bifunctional enzyme coordinating both transport and racemization. Our findings also illustrate the evolution of the essential alanine racemase into a vancomycin resistance enzyme in response to antibiotic pressure. Copyright © 2015 Meziane-Cherif et al.
OPTIMIZATION OF RAMAN SPECTROSCOPY FOR SPECIATION OF ORGANICS IN WATER
We describe herein a method for determining constants for simultaneously occurring, site-specific "microequilibria" (as with tautomers) for organics in water. The method is based in part on modeling temperature-variant Raman spectra according to the van't Hoff equation. Spectra a...
Some factors affecting tannase production by Aspergillus niger Van Tieghem
Aboubakr, Hamada A.; El-Sahn, Malak A.; El-Banna, Amr A.
2013-01-01
One variable at a time procedure was used to evaluate the effect of qualitative variables on the production of tannase from Aspergillus niger Van Tieghem. These variables including: fermentation technique, agitation condition, tannins source, adding carbohydrates incorporation with tannic acid, nitrogen source type and divalent cations. Submerged fermentation under intermittent shaking gave the highest total tannase activity. Maximum extracellular tannase activity (305 units/50 mL) was attained in medium containing tannic acid as tannins source and sodium nitrate as nitrogen source at 30 °C for 96 h. All added carbohydrates showed significant adverse effects on the production of tannase. All tested divalent cations significantly decreased tannase production. Moreover, split plot design was carried out to study the effect of fermentation temperature and fermentation time on tannase production. The results indicated maximum tannase production (312.7 units/50 mL) at 35 °C for 96 h. In other words, increasing fermentation temperature from 30 °C to 35 °C resulted in increasing tannase production. PMID:24294255
Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus
Long, Mingsheng; Gao, Anyuan; Wang, Peng; Xia, Hui; Ott, Claudia; Pan, Chen; Fu, Yajun; Liu, Erfu; Chen, Xiaoshuang; Lu, Wei; Nilges, Tom; Xu, Jianbin; Wang, Xiaomu; Hu, Weida; Miao, Feng
2017-01-01
The mid-infrared (MIR) spectral range, pertaining to important applications, such as molecular “fingerprint” imaging, remote sensing, free space telecommunication, and optical radar, is of particular scientific interest and technological importance. However, state-of-the-art materials for MIR detection are limited by intrinsic noise and inconvenient fabrication processes, resulting in high-cost photodetectors requiring cryogenic operation. We report black arsenic phosphorus–based long-wavelength IR photodetectors, with room temperature operation up to 8.2 μm, entering the second MIR atmospheric transmission window. Combined with a van der Waals heterojunction, room temperature–specific detectivity higher than 4.9 × 109 Jones was obtained in the 3- to 5-μm range. The photodetector works in a zero-bias photovoltaic mode, enabling fast photoresponse and low dark noise. Our van der Waals heterojunction photodetectors not only exemplify black arsenic phosphorus as a promising candidate for MIR optoelectronic applications but also pave the way for a general strategy to suppress 1/f noise in photonic devices. PMID:28695200
Some factors affecting tannase production by Aspergillus niger Van Tieghem.
Aboubakr, Hamada A; El-Sahn, Malak A; El-Banna, Amr A
2013-01-01
One variable at a time procedure was used to evaluate the effect of qualitative variables on the production of tannase from Aspergillus niger Van Tieghem. These variables including: fermentation technique, agitation condition, tannins source, adding carbohydrates incorporation with tannic acid, nitrogen source type and divalent cations. Submerged fermentation under intermittent shaking gave the highest total tannase activity. Maximum extracellular tannase activity (305 units/50 mL) was attained in medium containing tannic acid as tannins source and sodium nitrate as nitrogen source at 30 °C for 96 h. All added carbohydrates showed significant adverse effects on the production of tannase. All tested divalent cations significantly decreased tannase production. Moreover, split plot design was carried out to study the effect of fermentation temperature and fermentation time on tannase production. The results indicated maximum tannase production (312.7 units/50 mL) at 35 °C for 96 h. In other words, increasing fermentation temperature from 30 °C to 35 °C resulted in increasing tannase production.
Studies on temperature coefficient of resistivity of Cu2Se - V2O5 nanocomposite
NASA Astrophysics Data System (ADS)
Sairam, S.; Rai, Ranjan; Molli, Muralikrishna
2018-05-01
Nanocomposite of Copper Selenide in Vanadium Pentoxide (Cu2Se-V2O5) was prepared and characterized using XRD for phase analysis, SEM for morphology, and EDAX for elemental analysis. Electrical resistivity measurement was carried out using van der Pauw method as a function of temperature from 35 °C to 170 °C for 5 mol% Cu2Se - 95 mol%V2O5 composite. The temperature coefficient of resistivity was found to be -1.8% per °C.
Habitability constraints on water-rich exoplanets
NASA Astrophysics Data System (ADS)
Noack, Lena; Höning, Dennis; Rivoldini, Attilio; Heistracher, Clemens; Zimov, Nastasia; Journaux, Baptiste; Lammer, Helmut; Van Hoolst, Tim; Hendrik Bredehöft, Jan
2016-04-01
This research addresses the characterization, modelling, thermal evolution and possible habitability of water-rich exoplanets. Water is necessary for the origin and survival of life as we know it. In the search for habitable worlds, water-rich planets therefore seem obvious candidates. The water layer on such planets could be hundreds of kilometers deep. Depending on the temperature profile and the pressure gradient, it is likely that at great depths a significant part of the water layer is solid high pressure ice. Whether the solid ice layer extends to the bottom of the water layer, or if a shallow lower ocean forms above the silicate mantle, depends amongst others on the thermal state of the planet. We therefore model the thermal evolution of water-rich planets with a 1D parameterized model. Depth-dependent profiles for thermodynamic properties as well as pressure and gravity are obtained by solving the Poisson equation for the gravity and the hydrostatic pressure equation for pre-defined mass and composition (in terms of iron, silicates and water) [1]. For density, equations of state are applied. For the simulation of the thermal evolution of water-rich planets, several parameters (as initial temperatures or layer thicknesses) are unknown. We therefore employ a quantitatve study with more than 20'000 simulations, where we investigated which parameters have the largest influence on the appearance of a lower ocean, i.e. the possible melting of high-pressure ice by heat flowing out of the silicate mantle [2]. We find that the surface temperature has the largest influence on the thickness of water layers, for which a lower ocean can still form between the high-pressure ice layer and the silicate mantle. For higher surface temperatures, not only entirely liquid oceans are possible for deeper water shells, also a liquid ocean can form under high-pressure ice layers of hundreds of kilometer thickness (for a 1 Earth-mass planet). Deeper down, the lower ocean can still appear episodically at the water-mantle boundary (WMB). We also investigated the main paramters influencing the existence of volcanic activity and silicate crust formation. Under deep water layers, the high pressure from the overlying water layer can inhibit melting in the mantle. The main parameters influencing the maximal water layer depth, for which melting is still possible, are indeed the parameters influencing the mantle energy budget, which are the amount of radioactive heat sources and the initial upper mantle temperature. Plate tectonics also has a strong influence on the existence of volcanism. Crustal parameters (initial thickness or heat sources enrichment factor) as well as the ice rheology (i.e. the isolating effect of the ice shell on the mantle) have only a small influence on melting processes in the interior and the formation of crust. [1] L. Noack, A. Rivoldini and T. Van Hoolst 2015: CHIC - Coupling Habitability, Interior and Crust: A new Code for Modeling the Thermal Evolution of Planets and Moons. INFOCOMP 2015, ISSN 2308-3484, ISBN 978-1-61208-416-9, pp. 84-90, IARIA, 2015. [2] L. Noack, D. Höning, A. Rivoldini, C. Heistracher, N. Zimov, B. Journaux, H. Lammer, T. Van Hoolst and J.H. Bredehöft: Water-rich planets: how habitable is a water layer deeper than on Earth? Submitted to Icarus.
Synthesis and activity study of phosphonamidate dipeptides as potential inhibitors of VanX.
Yang, Ke-Wu; Cheng, Xu; Zhao, Chuan; Liu, Cheng-Cheng; Jia, Chao; Feng, Lei; Xiao, Jian-Min; Zhou, Li-Sheng; Gao, Hui-Zhou; Yang, Xia; Zhai, Le
2011-12-01
In an effort to develop inhibitors of VanX, the phosphonamidate analogs of D-Ala-D-Ala dipeptides, N-[(1-aminoethyl) hydroxyphosphinyl]-glycine (1a), -alanine (1b), -valine (1c), -leucine (1d) and -phenylalanine (1e) were synthesized, characterized and evaluated using recombinant VanX. The crystal structure of the intermediate 6d was obtained (Deposition number: CCDC 839134), and structural analysis revealed that it is orthorhombic with a space group P2(1)2(1)2(1), the bond length of P-N is 1.62Å and angle of C-N-P is 123.6°. Phosphonamidate 1(a-e) showed to be inhibitors of VanX with IC(50) values of 0.39, 0.70, 1.12, 2.82, and 4.13mM, respectively, which revealed that the inhibition activities of the phosphonamidates were dependent on the size of R-substituent of them, with the best inhibitor 1a having the smallest substituent. Also, 1a showed antibacterial activity against Staphylococcus aureus (ATCC 25923) with a MIC value of 0.25 μg/ml. Copyright © 2011 Elsevier Ltd. All rights reserved.
Implementation of Two-Component Time-Dependent Density Functional Theory in TURBOMOLE.
Kühn, Michael; Weigend, Florian
2013-12-10
We report the efficient implementation of a two-component time-dependent density functional theory proposed by Wang et al. (Wang, F.; Ziegler, T.; van Lenthe, E.; van Gisbergen, S.; Baerends, E. J. J. Chem. Phys. 2005, 122, 204103) that accounts for spin-orbit effects on excitations of closed-shell systems by employing a noncollinear exchange-correlation kernel. In contrast to the aforementioned implementation, our method is based on two-component effective core potentials as well as Gaussian-type basis functions. It is implemented in the TURBOMOLE program suite for functionals of the local density approximation and the generalized gradient approximation. Accuracy is assessed by comparison of two-component vertical excitation energies of heavy atoms and ions (Cd, Hg, Au(+)) and small molecules (I2, TlH) to other two- and four-component approaches. Efficiency is demonstrated by calculating the electronic spectrum of Au20.
Global, Energy-Dependent Ring Current Response During Two Large Storms
NASA Astrophysics Data System (ADS)
Goldstein, J.; Angelopoulos, V.; Burch, J. L.; De Pascuale, S.; Fuselier, S. A.; Genestreti, K. J.; Kurth, W. S.; LLera, K.; McComas, D. J.; Reeves, G. D.; Spence, H. E.; Valek, P. W.
2015-12-01
Two recent large (~200 nT) geomagnetic storms occurred during 17--18 March 2015 and 22--23 June 2015. The global, energy-dependent ring current response to these two extreme events is investigated using both global imaging and multi-point in situ observations. Energetic neutral atom (ENA) imaging by the Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission provides a global view of ring current ions. Local measurements are provided by two multi-spacecraft missions. The two Van Allen Probes measure in situ plasma (including ion composition) and fields at ring current and plasmaspheric L values. The recently launched Magnetospheric Multiscale (MMS) comprises four spacecraft that have just begun to measure particles (including ion composition) and fields at outer magnetospheric L-values. We analyze the timing and energetics of the stormtime evolution of ring current ions, both trapped and precipitating, using TWINS ENA images and in situ data by the Van Allen Probes and MMS.
Solubility and dissolution thermodynamics of phthalic anhydride in organic solvents at 283-313 K
NASA Astrophysics Data System (ADS)
Wang, Long; Zhang, Fang; Gao, Xiaoqiang; Luo, Tingliang; Xu, Li; Liu, Guoji
2017-08-01
The solubility of phthalic anhydride was measured at 283-313 K under atmospheric pressure in ethyl acetate, n-propyl acetate, methyl acetate, acetone, 1,4-dioxane, n-hexane, n-butyl acetate, cyclohexane, and dichloromethane. The solubility of phthalic anhydride in all solvents increased with the increasing temperature. The Van't Hoff equation, modified Apelblat equation, λ h equation, and Wilson model were used to correlate the experimental solubility data. The standard dissolution enthalpy, the standard entropy, and the standard Gibbs energy were evaluated based on the Van't Hoff analysis. The experimental data and model parameters would be useful for optimizing of the separation processes involving phthalic anhydride.
Dipole-dipole interaction in cavity QED: The weak-coupling, nondegenerate regime
NASA Astrophysics Data System (ADS)
Donaire, M.; Muñoz-Castañeda, J. M.; Nieto, L. M.
2017-10-01
We compute the energies of the interaction between two atoms placed in the middle of a perfectly reflecting planar cavity, in the weak-coupling nondegenerate regime. Both inhibition and enhancement of the interactions can be obtained by varying the size of the cavity. We derive exact expressions for the dyadic Green's function of the cavity field which mediates the interactions and apply time-dependent quantum perturbation theory in the adiabatic approximation. We provide explicit expressions for the van der Waals potentials of two polarizable atomic dipoles and the electrostatic potential of two induced dipoles. We compute the van der Waals potentials in three different scenarios: two atoms in their ground states, two atoms excited, and two dissimilar atoms with one of them excited. In addition, we calculate the phase-shift rate of the two-atom wave function in each case. The effect of the two-dimensional confinement of the electromagnetic field on the dipole-dipole interactions is analyzed. This effect depends on the atomic polarization. For dipole moments oriented parallel to the cavity plates, both the electrostatic and the van der Waals interactions are exponentially suppressed for values of the cavity width much less than the interatomic distance, whereas for values of the width close to the interatomic distance, the strength of both interactions is higher than their values in the absence of cavity. For dipole moments perpendicular to the plates, the strength of the van der Waals interaction decreases for values of the cavity width close to the interatomic distance, while it increases for values of the width much less than the interatomic distance with respect to its strength in the absence of cavity. We illustrate these effects by computing the dipole-dipole interactions between two alkali atoms in circular Rydberg states.
Universal scaling in the aging of the strong glass former SiO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vollmayr-Lee, Katharina, E-mail: kvollmay@bucknell.edu; Gorman, Christopher H.; Castillo, Horacio E.
We show that the aging dynamics of a strong glass former displays a strikingly simple scaling behavior, connecting the average dynamics with its fluctuations, namely, the dynamical heterogeneities. We perform molecular dynamics simulations of SiO{sub 2} with van Beest-Kramer-van Santen interactions, quenching the system from high to low temperature, and study the evolution of the system as a function of the waiting time t{sub w} measured from the instant of the quench. We find that both the aging behavior of the dynamic susceptibility χ{sub 4} and the aging behavior of the probability distribution P(f{sub s,r}) of the local incoherent intermediatemore » scattering function f{sub s,r} can be described by simple scaling forms in terms of the global incoherent intermediate scattering function C. The scaling forms are the same that have been found to describe the aging of several fragile glass formers and that, in the case of P(f{sub s,r}), have been also predicted theoretically. A thorough study of the length scales involved highlights the importance of intermediate length scales. We also analyze directly the scaling dependence on particle type and on wavevector q and find that both the average and the fluctuations of the slow aging dynamics are controlled by a unique aging clock, which is not only independent of the wavevector q, but is also the same for O and Si atoms.« less
NASA Astrophysics Data System (ADS)
Yesilova, Cetin; Yesilova, Pelin; Aclan, Mustafa; Gülyüz, Nilay
2017-04-01
In this study, stratigraphic and sedimentologic characteristics of Tandoǧdu travertines exposing at the 13 km southwest of Başkale, Van were examined. In this respect, we shed light on their formation conditions and depositional environment by determining their morphological characteristics and analyzing their facies distribution. In addition, kinematic studies were conducted by collecting structural data from the structures hosting the travertines. Tandoǧdu travertines having bed type and ridge type travertines have 5 distinct lithofacies based on the studies conducted. These are: (1) crystalline crust facies, (2) coated bubble facies, (3) paper-thin raft type facies, (4) lithoclast - breccia facies and (5) paleosoil facies. According to the examination of their morphologies and lithofacies; lithofacies were developed depending on the temperature of fluids forming the travertines. Distal from the source field of the hydrothermal fluids, paper-thin raft type facies were developed in shallow pools. Proximal to the source field of the hydrothermal fluids, crystalline crust facies and coated bubble facies were deposited. Existence of breccia facies indicates the effects of active tectonism during the formation of travertines. Hot hydrothermal pools on the ridge type travertines prove the still active tectonic activities. On-going studies aim to date growth of the travertines by U-Th dating method which will also shed some light on the tectonic scenario behind the evolution of the travertines.
Goel, Mahima; Jayakannan, M
2010-10-07
Here, we report a unique design strategy to trace the role of aromatic π-stacking and van der Waals interactions on the molecular self-organization of π-conjugated building blocks in a single system. A new series of bulky oligophenylenevinylenes (OPVs) bearing a tricyclodecanemethylene (TCD) unit in the aromatic π-core with flexible long methylene chains (n = 0-12 and 16) in the longitudinal position were designed and synthesized. The OPVs were found to be liquid crystalline, and their enthalpies of phase transitions (also entropies) showed odd-even oscillation with respect to the number of carbon atoms in alkyl chains. OPVs with an even number of methylene units in the side chains showed higher enthalpies with respect to their highly packed solid structures compared to odd-numbered ones. Polarized light microscopic analysis confirmed the formation of cholesteric liquid crystalline (LC) phases of fan shaped textures with focal conics in OPVs with 5 ≤ n ≤ 9. OPVs with longer alkyl chains (OPV-10 to OPV-12) produced a birefringence pattern consisting of dark and bright ring-banded suprastructures. The melting temperature followed a sigmoidal trend, indicating the transformation of molecular self-organization in OPVs from solid to ring-banded suprastructures via cholesteric LC intermediates. At longer alkyl chain lengths, the van der Waals interactions among the alkyl chains became predominant and translated the mesogenic effect across the lamellae; as a consequence, the lamellae underwent twisted self-organization along the radial growth direction of the spherulites to produce bright and dark bands. Scanning electron microscope (SEM) analysis of cholesteric LC and ring-banded textures strongly supported the existence of twisted lamellae in the OPVs with ring-banded textures. Variable temperature X-ray diffraction analysis confirmed the reversibility of the molecular self-organization in the solid state and also showed the existence of the higher ordered lamellar structure in ring-banded OPVs. Photophysical characterizations such as excitation, emission, and time resolved fluorescence decay measurements were employed to trace molecular self-organization in their liquid crystalline phases. The emission spectra of the OPV samples showed odd-even oscillation in their emission wavelengths with respect to the length of alkyl chains. Highly packed even-OPVs showed more blue shift compared to that of less crystalline odd-OPVs. Time dependent fluorescence decay of OPVs followed a biexponential fit, and their lifetimes (τ(1) and τ(2) values) revealed that the decay is faster for odd-OPVs compared to even-OPVs. Among all the OPVs, the τ(2) values for OPV-8 and OPV-12 were found to be much higher, indicating their high luminescent characteristics. In a nut shell, bulky liquid crystalline OPV chromophores were cleverly utilized, for the first time, to probe the aromatic π-stacking versus van der Waals interactions on the molecular self-organization of π-conjugated system.
Ngai, K L; Habasaki, J; Prevosto, D; Capaccioli, S; Paluch, Marian
2012-07-21
By now it is well established that the structural α-relaxation time, τ(α), of non-associated small molecular and polymeric glass-formers obey thermodynamic scaling. In other words, τ(α) is a function Φ of the product variable, ρ(γ)/T, where ρ is the density and T the temperature. The constant γ as well as the function, τ(α) = Φ(ρ(γ)/T), is material dependent. Actually this dependence of τ(α) on ρ(γ)/T originates from the dependence on the same product variable of the Johari-Goldstein β-relaxation time, τ(β), or the primitive relaxation time, τ(0), of the coupling model. To support this assertion, we give evidences from various sources itemized as follows. (1) The invariance of the relation between τ(α) and τ(β) or τ(0) to widely different combinations of pressure and temperature. (2) Experimental dielectric and viscosity data of glass-forming van der Waals liquids and polymer. (3) Molecular dynamics simulations of binary Lennard-Jones (LJ) models, the Lewis-Wahnström model of ortho-terphenyl, 1,4 polybutadiene, a room temperature ionic liquid, 1-ethyl-3-methylimidazolium nitrate, and a molten salt 2Ca(NO(3))(2)·3KNO(3) (CKN). (4) Both diffusivity and structural relaxation time, as well as the breakdown of Stokes-Einstein relation in CKN obey thermodynamic scaling by ρ(γ)/T with the same γ. (5) In polymers, the chain normal mode relaxation time, τ(N), is another function of ρ(γ)/T with the same γ as segmental relaxation time τ(α). (6) While the data of τ(α) from simulations for the full LJ binary mixture obey very well the thermodynamic scaling, it is strongly violated when the LJ interaction potential is truncated beyond typical inter-particle distance, although in both cases the repulsive pair potentials coincide for some distances.
Arias, C A; Peña, J; Panesso, D; Reynolds, P
2003-03-01
Enterococcus gallinarum BM4175 (a vancomycin-susceptible derivative of BM4174 obtained by insertional inactivation of vanC-1) was transformed with plasmid constructs pCA10 (containing the genes necessary for resistance, vanC-1-XYc-T), pJP1 (with a fragment lacking the DNA encoding the transmembrane region of VanT, -vanC-1-XYc-T((Delta))(2-322)-) and with plasmids containing fragments encoding either the transmembrane (mvanT(1-322)) or racemase (svanT(323-698)) domains of VanT under the control of a constitutive promoter. Accumulated peptidoglycan precursors were measured in all strains in the presence of L-Ser, D-Ser (50 mM) or in the absence of any growth supplement. Uptake of 0.1 mM L-[(14)C]serine was also determined in BM4174, BM4175 and BM4175/pCA10. Vancomycin resistance was restored in BM4175 transformed with pCA10(C-1-XYc-T), and the profile of peptidoglycan precursors was similar to wild-type E. gallinarum BM4174. Transformation of E. gallinarum BM4175 with plasmid pJP1(vanC-1-XYc-T((Delta))(2-322)) resulted in: (i) vancomycin MICs remaining within susceptible levels (< or =4 mg/L) in the absence of any growth supplement, but increasing to 8 mg/L when either L-Ser or D-Ser was added to the medium; and (ii) the relative amounts of accumulated UDP-MurNAc-pentapeptide[D-Ser] and tetrapeptide precursors decreasing substantially compared with BM4175/pCA10 and BM4174. The effect on the appearance of tetrapeptide appeared to be host dependent, since a substantial amount was present when the same plasmid construct pJP1(vanC-1-XYc-T((Delta))(2-322)) was electroporated into Enterococcus faecalis JH2-2. The uptake of L-[(14)C]Ser at 240 s was decreased by approximately 40% in BM4175 compared with BM4174. Plasmid pCA10(C-1-XY(C)-T) restored uptake of L-[(14)C]Ser at 180 and 240 s in BM4175. The results suggest that the transmembrane domain of VanT is likely to be involved in the transport of L-Ser, and that in its absence the resistance phenotype is compromised.
van der Waals epitaxy of Ge films on mica
NASA Astrophysics Data System (ADS)
Littlejohn, A. J.; Xiang, Y.; Rauch, E.; Lu, T.-M.; Wang, G.-C.
2017-11-01
To date, many materials have been successfully grown on substrates through van der Waals epitaxy without adhering to the constraint of lattice matching as is required for traditional chemical epitaxy. However, for elemental semiconductors such as Ge, this has been challenging and therefore it has not been achieved thus far. In this paper, we report the observation of Ge epitaxially grown on mica at a narrow substrate temperature range around 425 °C. Despite the large lattice mismatch (23%) and the lack of high in-plane symmetry in the mica surface, an epitaxial Ge film with [111] out-of-plane orientation is observed. Crystallinity and electrical properties degrade upon deviation from the ideal growth temperature, as shown by Raman spectroscopy, X-ray diffraction, and Hall effect measurements. X-ray pole figure analysis reveals that there exist multiple rotational domains in the epitaxial Ge film with dominant in-plane orientations between Ge [" separators="|1 ¯10 ] and mica[100] of (20 n )°, where n = 0, 1, 2, 3, 4, 5. A superlattice area mismatch model was used to account for the likelihood of the in-plane orientation formation and was found to be qualitatively consistent with the observed dominant orientations. Our observation of Ge epitaxy with one out-of-plane growth direction through van der Waals forces is a step toward the growth of single crystal Ge films without the constraint in the lattice and symmetry matches with the substrates.
Structural and Magnetic Properties of {Eu}(3+) Eu 3 + -Doped {CdNb}_{2} {O}_{6} CdNb 2 O 6 Powders
NASA Astrophysics Data System (ADS)
Topkaya, Ramazan; Boyraz, Cihat; Ekmekçi, Mete Kaan
2018-03-01
Europium-doped CdNb2O6 powders with the molar concentration of Eu^{3+} (0.5, 3 and 6 mol%) were successfully prepared at 900°C by using molten salt synthesis method. The effect of europium (Eu) molar concentration on the structural and temperature-dependent magnetic properties of CdNb2O6 powders has been investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), vibrating sample magnetometer (VSM) and ferromagnetic resonance (FMR) techniques in the temperature range of 10-300 K. XRD results confirm that all the powders have orthorhombic crystal structure. It has been confirmed from VSM and FMR measurements that Eu^{3+}-doped CdNb2O6 powders have ferromagnetic behaviour for each Eu^{3+} molar concentration between 10 and 300 K. XRD and EDX analyses indicate that there is no magnetic impurity in Eu^{3+}-doped CdNb_2O_6 powders, supporting that the ferromagnetic behaviour of the powders arises from Eu^{3+} ions. The observed ferromagnetism was elucidated with the intrinsic exchange interactions between the magnetic moments associated with the unpaired 4 f electrons in Eu^{3+} ions. The saturation magnetization decreases with increasing Eu^{3+} molar concentration. The temperature-dependent magnetization behaviour was observed not to agree with Curie-Weiss law because europium obeys Van Vleck paramagnetism. Broad FMR spectra and a g-value higher than 2 were observed from FMR measurements, indicating the ferromagnetic behaviour of the powders. It was found that while the resonance field of FMR spectra decreases, the linewidth increases as a function of Eu^{3+} molar concentration.
Investigation of Indoor Air Quality in Houses of Macedonia.
Vilčeková, Silvia; Apostoloski, Ilija Zoran; Mečiarová, Ľudmila; Burdová, Eva Krídlová; Kiseľák, Jozef
2017-01-01
People who live in buildings are exposed to harmful effects of indoor air pollution for many years. Therefore, our research is aimed to investigate the indoor air quality in family houses. The measurements of indoor air temperature, relative humidity, total volatile organic compounds (TVOC), particulate matters (PM) and sound pressure level were carried out in 25 houses in several cities of the Republic of Macedonia. Mean values of indoor air temperature and relative humidity ranged from 18.9 °C to 25.6 °C and from 34.1% to 68.0%, respectively. With regard to TVOC, it can be stated that excessive occurrence was recorded. Mean values ranged from 50 μg/m³ to 2610 μg/m³. Recommended value (200 μg/m³) for human exposure to TVOC was exceeded in 32% of houses. Mean concentrations of PM 2.5 (particular matter with diameter less than 2.5 μm) and PM 10 (diameter less than 10 μm) are determined to be from 16.80 μg/m³ to 30.70 μg/m³ and from 38.30 μg/m³ to 74.60 μg/m³ individually. Mean values of sound pressure level ranged from 29.8 dB(A) to 50.6 dB(A). Dependence between characteristics of buildings (Year of construction, Year of renovation, Smoke and Heating system) and data from measurements (Temperature, Relative humidity, TVOC, PM 2.5 and PM 10 ) were analyzed using R software. Van der Waerden test shows dependence of Smoke on TVOC and PM 2.5 . Permutational multivariate analysis of variance shows the effect of interaction of Renovation and Smoke.
Investigation of Indoor Air Quality in Houses of Macedonia
Vilčeková, Silvia; Apostoloski, Ilija Zoran; Mečiarová, Ľudmila; Krídlová Burdová, Eva; Kiseľák, Jozef
2017-01-01
People who live in buildings are exposed to harmful effects of indoor air pollution for many years. Therefore, our research is aimed to investigate the indoor air quality in family houses. The measurements of indoor air temperature, relative humidity, total volatile organic compounds (TVOC), particulate matters (PM) and sound pressure level were carried out in 25 houses in several cities of the Republic of Macedonia. Mean values of indoor air temperature and relative humidity ranged from 18.9 °C to 25.6 °C and from 34.1% to 68.0%, respectively. With regard to TVOC, it can be stated that excessive occurrence was recorded. Mean values ranged from 50 μg/m3 to 2610 μg/m3. Recommended value (200 μg/m3) for human exposure to TVOC was exceeded in 32% of houses. Mean concentrations of PM2.5 (particular matter with diameter less than 2.5 µm) and PM10 (diameter less than 10 µm) are determined to be from 16.80 µg/m3 to 30.70 µg/m3 and from 38.30 µg/m3 to 74.60 µg/m3 individually. Mean values of sound pressure level ranged from 29.8 dB(A) to 50.6 dB(A). Dependence between characteristics of buildings (Year of construction, Year of renovation, Smoke and Heating system) and data from measurements (Temperature, Relative humidity, TVOC, PM2.5 and PM10) were analyzed using R software. Van der Waerden test shows dependence of Smoke on TVOC and PM2.5. Permutational multivariate analysis of variance shows the effect of interaction of Renovation and Smoke. PMID:28045447
On the temperature derivative of the surface tension at a critical end point
NASA Astrophysics Data System (ADS)
Robert, M.; Tavan, P.
1983-03-01
It is shown that, according to the van der Waals theory of fluid interfaces, the surface tension of the interface between a This result holds for any number of phases and independently varying densities and is not restricted to classical values of the critical exponents.
Assessing Friction Stress on a Liquid Lubricant by Stable Isotope Analysis
2014-07-17
military use (aviation) and demonstrated readily identifiable peaks via standard temperature gas chromatography (GC) analysis. Hercolube-A (Herc-A) was...Atmospheric Chemistry. 2004;47:191-208. [18] Handbook of Chemistry and Physics. Cleveland, OH: CRC Press; 2008. 12 [19] van de Voort FR, Sedman J
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dongsheng; Chun, Jaehun; Xiao, Dongdong
2017-07-05
Oriented attachment of nanocrystalline subunits is recognized as a common crystallization pathway that is closely related to formation of nanoparticle superlattices, mesocrystals, and other kinetically stabilized structures. Approaching particles have been observed to rotate to achieve co-alignment while separated by nanometer-scale solvent layers. Little is known about the forces that drive co-alignment, particularly in this “solvent-separated” regime. To obtain a mechanistic understanding of this process, we used atomic force microscopy-based dynamic force spectroscopy with tips fabricated from oriented mica to measure the adhesion forces between mica (001) surfaces in electrolyte solutions as a function of orientation, temperature, electrolyte type, andmore » electrolyte concentration. The results reveal a ~60° periodicity as well as a complex dependence on electrolyte concentration and temperature. A continuum model that considers the competition between electrostatic repulsion and van der Waals attraction, augmented by microscopic details that include surface separation, water structure, ion hydration, and charge regulation at the interface, qualitatively reproduces the observed trends and implies that dispersion forces are responsible for establishing co-alignment in the solvent-separated state.« less
Li, Dongsheng; Chun, Jaehun; Xiao, Dongdong; ...
2017-07-05
Here, oriented attachment of nanocrystalline subunits is recognized as a common crystallization pathway that is closely related to formation of nanoparticle superlattices, mesocrystals, and other kinetically stabilized structures. Approaching particles have been observed to rotate to achieve co-alignment while separated by nanometer-scale solvent layers. Little is known about the forces that drive co-alignment, particularly in this “solvent-separated” regime. To obtain a mechanistic understanding of this process, we used atomic force microscopy-based dynamic force spectroscopy with tips fabricated from oriented mica to measure the adhesion forces between mica (001) surfaces in electrolyte solutions as a function of orientation, temperature, electrolyte type,more » and electrolyte concentration. The results reveal a ~60° periodicity as well as a complex dependence on electrolyte concentration and temperature. A continuum model that considers the competition between electrostatic repulsion and van der Waals attraction, augmented by microscopic details that include surface separation, water structure, ion hydration, and charge regulation at the interface, qualitatively reproduces the observed trends and implies that dispersion forces are responsible for establishing co-alignment in the solvent-separated state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dongsheng; Chun, Jaehun; Xiao, Dongdong
Oriented attachment of nanocrystalline subunits is recognized as a common crystallization pathway that is closely related to formation of nanoparticle superlattices, mesocrystals, and other kinetically stabilized structures. Approaching particles have been observed to rotate to achieve co-alignment while separated by nanometer-scale solvent layers. Little is known about the forces that drive co-alignment, particularly in this “solvent-separated” regime. To obtain a mechanistic understanding of this process, we used atomic force microscopy-based dynamic force spectroscopy with tips fabricated from oriented mica to measure the adhesion forces between mica (001) surfaces in electrolyte solutions as a function of orientation, temperature, electrolyte type, andmore » electrolyte concentration. The results reveal a ~60° periodicity as well as a complex dependence on electrolyte concentration and temperature. A continuum model that considers the competition between electrostatic repulsion and van der Waals attraction, augmented by microscopic details that include surface separation, water structure, ion hydration, and charge regulation at the interface, qualitatively reproduces the observed trends and implies that dispersion forces are responsible for establishing co-alignment in the solvent-separated state.« less
Twisted bilayer graphene photoluminescence emission peaks at van Hove singularities.
Alencar, Thonimar V; von Dreifus, Driele; Gabriela Cota Moreira, Maria; Eliel, Gomes S N; Yeh, Chao-Hui; Chiu, Po-Wen; Pimenta, Marcos A; Malard, Leandro M; Maria de Paula, Ana
2018-05-02
We report on photoluminescence emission imaging by femtosecond laser excitation on twisted bilayer graphene samples. The emission images are obtained by tuning the excitation laser energies in the near infrared region. We demonstrate an increase of the photoluminescence emission at excitation energies that depends on the bilayer twist angle. The results show a peak for the light emission when the excitation is in resonance with transitions at the van Hove singularities in the electronic density of states. We measured the photoluminescence excitation peak position and width for samples with various twist angles showing resonances in the energy range of 1.2 to 1.7 eV.
Twisted bilayer graphene photoluminescence emission peaks at van Hove singularities
NASA Astrophysics Data System (ADS)
Alencar, Thonimar V.; von Dreifus, Driele; Cota Moreira, Maria Gabriela; Eliel, Gomes S. N.; Yeh, Chao-Hui; Chiu, Po-Wen; Pimenta, Marcos A.; Malard, Leandro M.; de Paula, Ana Maria
2018-05-01
We report on photoluminescence emission imaging by femtosecond laser excitation on twisted bilayer graphene samples. The emission images are obtained by tuning the excitation laser energies in the near infrared region. We demonstrate an increase of the photoluminescence emission at excitation energies that depends on the bilayer twist angle. The results show a peak for the light emission when the excitation is in resonance with transitions at the van Hove singularities in the electronic density of states. We measured the photoluminescence excitation peak position and width for samples with various twist angles showing resonances in the energy range of 1.2 to 1.7 eV.
Substrate Dependence in the Growth of Three-Dimensional Gold Nanoparticle Superlattices
2001-11-01
the Hamaker constants between gold nanoparticle assemblies and substrates through the suspension. Van der Waals interactions estimated from this...finally dialyzed to remove inorganic (Na, Cl, and B) and organic impurities. The surfactant affects the dispersion of Au nanoparticles in aqueous...be taken into account for complete understanding of the observed substrate dependency. To consider volume interactions, we calculate the Hamaker
NASA Astrophysics Data System (ADS)
Semenov, Semen; Schimpf, Martin
2004-01-01
The movement of molecules and homopolymer chains dissolved in a nonelectrolyte solvent in response to a temperature gradient is considered a consequence of temperature-induced pressure gradients in the solvent layer surrounding the solute molecules. Local pressure gradients are produced by nonuniform London van der Waals interactions, established by gradients in the concentration (density) of solvent molecules. The density gradient is produced by variations in solvent thermal expansion within the nonuniform temperature field. The resulting expression for the velocity of the solute contains the Hamaker constants for solute-solvent and solute-solute interactions, the radius of the solute molecule, and the viscosity and cubic coefficient of thermal expansion of the solvent. In this paper we consider an additional force that arises from directional asymmetry in the interaction between solvent molecules. In a closed cell, the resulting macroscopic pressure gradient gives rise to a volume force that affects the motion of dissolved solutes. An expression for this macroscopic pressure gradient is derived and the resulting force is incorporated into the expression for the solute velocity. The expression is used to calculate thermodiffusion coefficients for polystyrene in several organic solvents. When these values are compared to those measured in the laboratory, the consistency is better than that found in previous reports, which did not consider the macroscopic pressure gradient that arises in a closed thermodiffusion cell. The model also allows for the movement of solute in either direction, depending on the relative values of the solvent and solute Hamaker constants.
van der Heide, Astrid; Werth, Esther; Donjacour, Claire E.H.M.; Reijntjes, Robert H.A.M.; Lammers, Gert Jan; Van Someren, Eus J.W.; Baumann, Christian R.; Fronczek, Rolf
2016-01-01
Study Objectives: Previous laboratory studies in narcolepsy patients showed altered core body and skin temperatures, which are hypothesised to be related to a disturbed sleep wake regulation. In this ambulatory study we assessed temperature profiles in normal daily life, and whether sleep attacks are heralded by changes in skin temperature. Furthermore, the effects of three months of treatment with sodium oxybate (SXB) were investigated. Methods: Twenty-five narcolepsy patients and 15 healthy controls were included. Core body, proximal and distal skin temperatures, and sleep-wake state were measured simultaneously for 24 hours in ambulatory patients. This procedure was repeated in 16 narcolepsy patients after at least 3 months of stable treatment with SXB. Results: Increases in distal skin temperature and distal-to-proximal temperature gradient (DPG) strongly predicted daytime sleep attacks (P < 0.001). As compared to controls, patients had a higher proximal and distal skin temperature in the morning, and a lower distal skin temperature during the night (all P < 0.05). Furthermore, they had a higher core body temperature during the first part of the night (P < 0.05), which SXB decreased (F = 4.99, df = 1, P = 0.03) to a level similar to controls. SXB did not affect skin temperature. Conclusions: This ambulatory study demonstrates that daytime sleep attacks were preceded by clear changes in distal skin temperature and DPG. Furthermore, changes in core body and skin temperature in narcolepsy, previously only studied in laboratory settings, were partially confirmed. Treatment with SXB resulted in a normalisation of the core body temperature profile. Future studies should explore whether predictive temperature changes can be used to signal or even prevent sleep attacks. Citation: van der Heide A, Werth E, Donjacour CE, Reijntjes RH, Lammers GJ, Van Someren EJ, Baumann CR, Fronczek R. Core body and skin temperature in type 1 narcolepsy in daily life; effects of sodium oxybate and prediction of sleep attacks. SLEEP 2016;39(11):1941–1949. PMID:27568803
Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity
Yin, Jianbo; Wang, Huan; Peng, Han; Tan, Zhenjun; Liao, Lei; Lin, Li; Sun, Xiao; Koh, Ai Leen; Chen, Yulin; Peng, Hailin; Liu, Zhongfan
2016-01-01
Graphene with ultra-high carrier mobility and ultra-short photoresponse time has shown remarkable potential in ultrafast photodetection. However, the broad and weak optical absorption (∼2.3%) of monolayer graphene hinders its practical application in photodetectors with high responsivity and selectivity. Here we demonstrate that twisted bilayer graphene, a stack of two graphene monolayers with an interlayer twist angle, exhibits a strong light–matter interaction and selectively enhanced photocurrent generation. Such enhancement is attributed to the emergence of unique twist-angle-dependent van Hove singularities, which are directly revealed by spatially resolved angle-resolved photoemission spectroscopy. When the energy interval between the van Hove singularities of the conduction and valance bands matches the energy of incident photons, the photocurrent generated can be significantly enhanced (up to ∼80 times with the integration of plasmonic structures in our devices). These results provide valuable insight for designing graphene photodetectors with enhanced sensitivity for variable wavelength. PMID:26948537
Van Allen Probe Charging During the St. Patrick's Day Event
NASA Technical Reports Server (NTRS)
Parker, L. Neergaard; Minow, J. I.
2015-01-01
The geomagnetic storms on and around March 17, 2015 marked the largest storms seen in the declining phase of the solar cycle to date. We use the Helium Oxygen Proton Electron (HOPE) mass spectrometer on board the Van Allen Probe - A and B satellites to study in detail the charging effects seen on these spacecraft during this time. Ion particle flux data provides information on the magnitude of the charging events using the ion line charging signature due to low energy ions accelerated by the spacecraft potential. Electron flux observations are used to correlate the charging environment with variations in spacecraft potential through the event. We also investigate the density and temperature of ions and electrons during the time of the charging event.
NASA Technical Reports Server (NTRS)
Dantchev, Daniel; Rudnick, Joseph; Barmatz, M.
2007-01-01
We study critical point finite-size effects in the case of the susceptibility of a film in which interactions are characterized by a van der Waals-type power law tail. The geometry is appropriate to a slab-like system with two bounding surfaces. Boundary conditions are consistent with surfaces that both prefer the same phase in the low temperature, or broken symmetry, state. We take into account both interactions within the system and interactions between the constituents of the system and the material surrounding it. Specific predictions are made with respect to the behavior of 3He and 4He films in the vicinity of their respective liquid-vapor critical points.
Crystalline multiwall carbon nanotubes and their application as a field emission electron source.
Liu, Peng; Zhou, Duanliang; Zhang, Chunhai; Wei, Haoming; Yang, Xinhe; Wu, Yang; Li, Qingwei; Liu, Changhong; Du, Bingchu; Liu, Liang; Jiang, Kaili; Fan, Shoushan
2018-05-18
Using super-aligned carbon nanotube (CNT) film, we have fabricated van der Waals crystalline multiwall CNTs (MWCNT) by adopting high pressure and high temperature processing. The CNTs keep parallel to each other and are distributed uniformly. X-ray diffraction characterization shows peaks at the small angle range, which can be assigned to the spacing of the MWCNT crystals. The mechanical, electrical and thermal properties are all greatly improved compared with the original CNT film. The field emission properties of van der Waals crystalline MWCNTs are tested and they show a better surface morphology stability for the large emission current. We have further fabricated a field emission x-ray tube and demonstrated a precise resolution imaging ability.
Larsen, Bryan; Essmann, Michael K; Geletta, Simon; Duff, Barbara
2012-01-01
The object of this study was to quantify vancomycin-resistant enterococci in surface water from Central Iowa obtained from April 2007 to August 2007. Water from established sampling sites in four watersheds was plated on bile-esculin agar. Presumptively identified enterococci were categorized as "above the level of concern" if the sample contained ≥ 107 CFU per 100 ml. Confirmation of isolates as enterococci was based on growth at elevated temperature in high salt and on Enterococcus agar. Isolates that grew on 6 μg/ml vancomycin agar were deemed resistant. PCR analysis of resistant strains characterized vancomycin resistance genes. 77.2% of surface water samples from Central Iowa contained enterococci. Among enterococcal isolates, 10.4% grew on media containing 6 μg/ml vancomycin. PCR analysis of resistance genes showed a preponderance of VanC2/C3 in the area studied and VanB was not detected. Vancomycin-resistant Enterococcus is present in Central Iowa surface waters but resistance rarely involved VanA genotypes. Nevertheless, the potential for community-acquired infections remains a risk.
Interlayer excitons in a bulk van der Waals semiconductor.
Arora, Ashish; Drüppel, Matthias; Schmidt, Robert; Deilmann, Thorsten; Schneider, Robert; Molas, Maciej R; Marauhn, Philipp; Michaelis de Vasconcellos, Steffen; Potemski, Marek; Rohlfing, Michael; Bratschitsch, Rudolf
2017-09-21
Bound electron-hole pairs called excitons govern the electronic and optical response of many organic and inorganic semiconductors. Excitons with spatially displaced wave functions of electrons and holes (interlayer excitons) are important for Bose-Einstein condensation, superfluidity, dissipationless current flow, and the light-induced exciton spin Hall effect. Here we report on the discovery of interlayer excitons in a bulk van der Waals semiconductor. They form due to strong localization and spin-valley coupling of charge carriers. By combining high-field magneto-reflectance experiments and ab initio calculations for 2H-MoTe 2 , we explain their salient features: the positive sign of the g-factor and the large diamagnetic shift. Our investigations solve the long-standing puzzle of positive g-factors in transition metal dichalcogenides, and pave the way for studying collective phenomena in these materials at elevated temperatures.Excitons, quasi-particles of bound electron-hole pairs, are at the core of the optoelectronic properties of layered transition metal dichalcogenides. Here, the authors unveil the presence of interlayer excitons in bulk van der Waals semiconductors, arising from strong localization and spin-valley coupling of charge carriers.
Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities
Dufferwiel, S.; Schwarz, S.; Withers, F.; Trichet, A. A. P.; Li, F.; Sich, M.; Del Pozo-Zamudio, O.; Clark, C.; Nalitov, A.; Solnyshkov, D. D.; Malpuech, G.; Novoselov, K. S.; Smith, J. M.; Skolnick, M. S.; Krizhanovskii, D. N.; Tartakovskii, A. I.
2015-01-01
Layered materials can be assembled vertically to fabricate a new class of van der Waals heterostructures a few atomic layers thick, compatible with a wide range of substrates and optoelectronic device geometries, enabling new strategies for control of light–matter coupling. Here, we incorporate molybdenum diselenide/hexagonal boron nitride (MoSe2/hBN) quantum wells in a tunable optical microcavity. Part-light–part-matter polariton eigenstates are observed as a result of the strong coupling between MoSe2 excitons and cavity photons, evidenced from a clear anticrossing between the neutral exciton and the cavity modes with a splitting of 20 meV for a single MoSe2 monolayer, enhanced to 29 meV in MoSe2/hBN/MoSe2 double-quantum wells. The splitting at resonance provides an estimate of the exciton radiative lifetime of 0.4 ps. Our results pave the way for room-temperature polaritonic devices based on multiple-quantum-well van der Waals heterostructures, where polariton condensation and electrical polariton injection through the incorporation of graphene contacts may be realized. PMID:26446783
Åsberg, Dennis; Samuelsson, Jörgen; Leśko, Marek; Cavazzini, Alberto; Kaczmarski, Krzysztof; Fornstedt, Torgny
2015-07-03
The importance of the generated temperature and pressure gradients in ultra-high-pressure liquid chromatography (UHPLC) are investigated and compared to high-pressure liquid chromatography (HPLC). The drug Omeprazole, together with three other model compounds (with different chemical characteristics, namely uncharged, positively and negatively charged) were used. Calculations of the complete temperature profile in the column at UHPLC conditions showed, in our experiments, a temperature difference between the inlet and outlet of 16 °C and a difference of 2 °C between the column center and the wall. Through van't Hoff plots, this information was used to single out the decrease in retention factor (k) solely due to the temperature gradient. The uncharged solute was least affected by temperature with a decrease in k of about 5% while for charged solutes the effect was more pronounced, with k decreases up to 14%. A pressure increase of 500 bar gave roughly 5% increase in k for the uncharged solute, while omeprazole and the other two charged solutes gave about 25, 20 and 15% increases in k, respectively. The stochastic model of chromatography was applied to estimate the dependence of the average number of adsorption/desorption events (n) and the average time spent by a molecule in the stationary phase (τs) on temperature and pressure on peak shape for the tailing, basic solute. Increasing the temperature yielded an increase in n and decrease in τs which resulted in less skew at high temperatures. With increasing pressure, the stochastic modeling gave interesting results for the basic solute showing that the skew of the peak increased with pressure. The conclusion is that pressure effects are more pronounced for both retention and peak shape than the temperature effects for the polar or charged compounds in our study. Copyright © 2015 Elsevier B.V. All rights reserved.
Sun, Liyuan; Morales-Collazo, Oscar; Xia, Han; Brennecke, Joan F
2016-06-30
A series of room-temperature ionic liquids (ILs) composed of triethyl(alkyl)phosphonium cations paired with three different aprotic heterocyclic anions (AHAs) (alkyl = butyl ([P2224](+)) and octyl ([P2228](+))) were prepared to investigate the effect of cationic alkyl chain length on transport properties. The transport properties and density of these ILs were measured from 283.15 to 343.15 K at ambient pressure. The dependence of the transport properties (viscosity, ionic conductivity, diffusivity, and molar conductivity) on temperature can be described by the Vogel-Fulcher-Tamman (VFT) equation. The ratio of the molar conductivity obtained from the molar concentration and ionic conductivity measurements to that calculated from self-diffusion coefficients (measured by pulsed gradient spin-echo nuclear magnetic resonance spectroscopy) using the Nernst-Einstein equation was used to quantify the ionicity of these ILs. The molar conductivity ratio decreases with increasing number of carbon atoms in the alkyl chain, indicating that the reduced Coulombic interactions resulting from lower density are more than balanced by the increased van der Waals interactions between the alkyl chains. The results of this study may provide insight into the design of ILs with enhanced dynamics that may be suitable as electrolytes in lithium ion batteries and other electrochemical applications.
NASA Astrophysics Data System (ADS)
Mallaekeh, Hassan; Shams, Alireza; Shaker, Mohammad; Bahramzadeh, Ehsan; Arefi, Donya
2014-12-01
In this paper the complexation reaction of the 5,5'-(2 E,2' E)-2,2'-(ethane-1,2-diylidene)bis(hydrazine-1-yl-2-ylidene)bis(4-amino-4H-1,2,4-triazole-3-thiol) ligand (HYT) with Cd2+ education was studied in some binary mixtures of methanol (MeOH), n-propanol (PrOH) and dimethyl-formamide (DMF) at different temperatures using the conductometry and spectrophotometry. The stability constants of the complex was determined using a GENPLOT computer program. The conductance data and absorbance-mole ratio plots show that in all solvent systems, the stoichiometry of the complex formed between (HYT) and Cd2+ cation is 1: 1. The obtained results show that the stability of (HYT)-Cd complex is sensitive to the mixed solvents composition. The values of thermodynamic parameters (Δ G ∘, Δ H ∘, and Δ S ∘) for formation of (HYT)-Cd complex were obtained from temperature dependence of the stability constant using the van't Hoff plots. The results show that in most cases, the complex are enthalpy destabilized but entropy stabilized and the complex formation is affected by pH, time, temperature and the nature of the solvent.
Angle-resolved Photoemission of CeCoIn5: Detailed Comparison to LDA and LDA+DMFT
NASA Astrophysics Data System (ADS)
Allen, J. W.
2008-03-01
Highly-automated photon-dependent angle resolved photoemission spectroscopy (ARPES) in the energy range of 80-200 eV has been used to characterize the three dimensional (3D) Fermi surface (FS) topology and electronic band structure of cleaved single crystals of CeCoIn5. The sample temperature of 26K is well below the lattice coherence onset temperature of 45K found in a recent ``two fluid'' analysis of transport data. Detailed comparison of ARPES FS contours to LDA calculations for the Ce 4f electrons treated as itinerant or confined to the core reveals remarkable agreement to fine topological details of the f-core calculations. Also in agreement to the f-core calculations is the experimental absence of extra electron-like contours predicted in the f-itinerant calculation, originating from α and β bands re-entrant below EF along Z-A. Finally, the areas enclosed by FS contours for the α and β bands are significantly smaller than are found in very low temperature CeCoIn5 de Haas van Alphen data that agrees generally with the f-itinerant calculation. It is concluded that clear signatures of coherence in the transport data can develop at temperatures for which the f-electrons are not yet included in the FS. In this connection, comparison will also be made to recent T-dependent LDA+DMFT calculations for CeIrIn5. This work was done in collaboration with J. D. Denlinger, Feng Wang, R. S. Singh, K. Rossnagel, S. Elgazzar, P. M. Oppeneer, V. S. Zapf and M. B. Maple, and was supported by the U.S. DOE (DE-AC03-76SF00098 at the ALS, DE-FG02-07ER46379 at UM for current work, DE FG02-04ER-46105 at UCSD), by the U.S. NSF (DMR-03-02825 at UM for initial work, DMR-03-35173 at UCSD) and by the Swedish Research Council (VR) and the European Commission (JRC-ITU).
Eighteen-Month Final Evaluation of UPS Second Generation Diesel Hybrid-Electric Delivery Vans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lammert, M.; Walkowicz, K.
2012-09-01
A parallel hybrid-electric diesel delivery van propulsion system was evaluated at a UPS facility in Minneapolis using on-vehicle data logging, fueling, and maintenance records. Route and drive cycle analysis showed different duty cycles for hybrid vs. conventional delivery vans; routes were switched between the study groups to provide a valid comparison. The hybrids demonstrated greater advantage on the more urban routes; the initial conventional vans' routes had less dense delivery zones. The fuel economy of the hybrids on the original conventional group?s routes was 10.4 mpg vs. 9.2 mpg for the conventional group on those routes a year earlier. Themore » hybrid group's fuel economy on the original hybrid route assignments was 9.4 mpg vs. 7.9 mpg for the conventional group on those routes a year later. There was no statistically significant difference in total maintenance cost per mile or for the vehicle total cost of operation per mile. Propulsion-related maintenance cost per mile was 77% higher for the hybrids, but only 52% more on a cost-per-delivery-day basis. Laboratory dynamometer testing demonstrated 13%-36% hybrid fuel economy improvement, depending on duty cycle, and up to a 45% improvement in ton-mi/gal. NOx emissions increased 21%-49% for the hybrids in laboratory testing.« less
NASA Astrophysics Data System (ADS)
Lekala, M. L.; Chakrabarti, B.; Das, T. K.; Rampho, G. J.; Sofianos, S. A.; Adam, R. M.; Haldar, S. K.
2017-05-01
We study the ground-state and the low-lying excitations of a trapped Bose gas in an isotropic harmonic potential for very small (˜ 3) to very large (˜ 10^7) particle numbers. We use the two-body correlated basis functions and the shape-dependent van der Waals interaction in our many-body calculations. We present an exhaustive study of the effect of inter-atomic correlations and the accuracy of the mean-field equations considering a wide range of particle numbers. We calculate the ground-state energy and the one-body density for different values of the van der Waals parameter C6. We compare our results with those of the modified Gross-Pitaevskii results, the correlated Hartree hypernetted-chain equations (which also utilize the two-body correlated basis functions), as well as of the diffusion Monte Carlo for hard sphere interactions. We observe the effect of the attractive tail of the van der Waals potential in the calculations of the one-body density over the truly repulsive zero-range potential as used in the Gross-Pitaevskii equation and discuss the finite-size effects. We also present the low-lying collective excitations which are well described by a hydrodynamic model in the large particle limit.
NASA Astrophysics Data System (ADS)
Ambrosetti, Alberto; Silvestrelli, Pier Luigi
2018-04-01
Dispersion forces play a major role in graphene, largely influencing adhesion of adsorbate moieties and stabilization of functional multilayered structures. However, the reliable prediction of dispersion interactions on graphene up to the relevant ˜10 nm scale is an extremely challenging task: in fact, electromagnetic retardation effects and the highly non-local character of π electrons can imply sizeable qualitative variations of the interaction with respect to known pairwise approaches. Here we address both issues, determining the finite-temperature van der Waals (vdW)-Casimir interaction for point-like and extended adsorbates on graphene, explicitly accounting for the non-local dielectric permittivity. We find that temperature, retardation, and non-locality play a crucial role in determining the actual vdW scaling laws and the stability of both atomic and larger molecular adsorbates. Our results highlight the importance of these effects for a proper description of systems of current high interest, such as graphene interacting with biomolecules, and self-assembly of complex nanoscale structures. Due to the generality of our approach and the observed non-locality of other 2D materials, our results suggest non-trivial vdW interactions from hexagonal mono-layered materials from group 14 of the periodic table, to transition metal dichalcogenides.
Ambrosetti, Alberto; Silvestrelli, Pier Luigi
2018-04-07
Dispersion forces play a major role in graphene, largely influencing adhesion of adsorbate moieties and stabilization of functional multilayered structures. However, the reliable prediction of dispersion interactions on graphene up to the relevant ∼10 nm scale is an extremely challenging task: in fact, electromagnetic retardation effects and the highly non-local character of π electrons can imply sizeable qualitative variations of the interaction with respect to known pairwise approaches. Here we address both issues, determining the finite-temperature van der Waals (vdW)-Casimir interaction for point-like and extended adsorbates on graphene, explicitly accounting for the non-local dielectric permittivity. We find that temperature, retardation, and non-locality play a crucial role in determining the actual vdW scaling laws and the stability of both atomic and larger molecular adsorbates. Our results highlight the importance of these effects for a proper description of systems of current high interest, such as graphene interacting with biomolecules, and self-assembly of complex nanoscale structures. Due to the generality of our approach and the observed non-locality of other 2D materials, our results suggest non-trivial vdW interactions from hexagonal mono-layered materials from group 14 of the periodic table, to transition metal dichalcogenides.
CuInP₂S₆ Room Temperature Layered Ferroelectric.
Belianinov, A; He, Q; Dziaugys, A; Maksymovych, P; Eliseev, E; Borisevich, A; Morozovska, A; Banys, J; Vysochanskii, Y; Kalinin, S V
2015-06-10
We explore ferroelectric properties of cleaved 2-D flakes of copper indium thiophosphate, CuInP2S6 (CITP), and probe size effects along with limits of ferroelectric phase stability, by ambient and ultra high vacuum scanning probe microscopy. CITP belongs to the only material family known to display ferroelectric polarization in a van der Waals, layered crystal at room temperature and above. Our measurements directly reveal stable, ferroelectric polarization as evidenced by domain structures, switchable polarization, and hysteresis loops. We found that at room temperature the domain structure of flakes thicker than 100 nm is similar to the cleaved bulk surfaces, whereas below 50 nm polarization disappears. We ascribe this behavior to a well-known instability of polarization due to depolarization field. Furthermore, polarization switching at high bias is also associated with ionic mobility, as evidenced both by macroscopic measurements and by formation of surface damage under the tip at a bias of 4 V-likely due to copper reduction. Mobile Cu ions may therefore also contribute to internal screening mechanisms. The existence of stable polarization in a van-der-Waals crystal naturally points toward new strategies for ultimate scaling of polar materials, quasi-2D, and single-layer materials with advanced and nonlinear dielectric properties that are presently not found in any members of the growing "graphene family".
Nonlinear analysis of thermally and electrically actuated functionally graded material microbeam.
Li, Yingli; Meguid, S A; Fu, Yiming; Xu, Daolin
2014-02-08
In this paper, we provide a unified and self-consistent treatment of a functionally graded material (FGM) microbeam with varying thermal conductivity subjected to non-uniform or uniform temperature field. Specifically, it is our objective to determine the effect of the microscopic size of the beam, the electrostatic gap, the temperature field and material property on the pull-in voltage of the microbeam under different boundary conditions. The non-uniform temperature field is obtained by integrating the steady-state heat conduction equation. The governing equations account for the microbeam size by introducing an internal material length-scale parameter that is based on the modified couple stress theory. Furthermore, it takes into account Casimir and van der Waals forces, and the associated electrostatic force with the first-order fringing field effects. The resulting nonlinear differential equations were converted to a coupled system of algebraic equations using the differential quadrature method. The outcome of our work shows the dramatic effect and dependence of the pull-in voltage of the FGM microbeam upon the temperature field, its gradient for a given boundary condition. Specifically, both uniform and non-uniform thermal loading can actuate the FGM microbeam even without an applied voltage. Our work also reveals that the non-uniform temperature field is more effective than the uniform temperature field in actuating a FGM cantilever-type microbeam. For the clamped-clamped case, care must be taken to account for the effective use of thermal loading in the design of microbeams. It is also observed that uniform thermal loading will lead to a reduction in the pull-in voltage of a FGM microbeam for all the three boundary conditions considered.
NASA Astrophysics Data System (ADS)
Obeidat, Abdalla; Jaradat, Adnan; Hamdan, Bushra; Abu-Ghazleh, Hind
2018-04-01
The best spherical cutoff radius, long range interaction and temperature controller were determined using surface tension, density, and diffusion coefficients of van Leeuwen and Smit methanol. A quite good range of cutoff radii from 0.75 to 1.45 nm has been studied on Coulomb cut-off and particle mesh Ewald (PME) long range interaction to determine the best cutoff radius and best long range interaction as well for four sets of temperature: 200, 230, 270 and 300 K. To determine the best temperature controller, the cutoff radius of 1.25 nm was fixed using PME long range interaction on calculating the above properties at low temperature range: 200-300 K.
Using Click Chemistry to Identify Potential Drug Targets in Plasmodium
2016-06-01
test, * p < 0.05. These and other results are reported in a manuscript currently have undergone initial review at Molecular Microbiology . The referees...sporozoites requires cGMP-dependent protein kinase and calcium dependent protein kinase 4 (manuscript in review at Molecular Microbiology ) References...manuscript in review at Molecular Microbiology ) (3) Invited Articles: None (4) Abstracts: Bhanot, P., Govindasamy, K., Khan, R. , Ojo, K.K., Van
Temperature of the plasmasphere from Van Allen Probes HOPE
NASA Astrophysics Data System (ADS)
Genestreti, K. J.; Goldstein, J.; Corley, G. D.; Farner, W.; Kistler, L. M.; Larsen, B. A.; Mouikis, C. G.; Ramnarace, C.; Skoug, R. M.; Turner, N. E.
2017-01-01
We introduce two novel techniques for estimating temperatures of very low energy space plasmas using, primarily, in situ data from an electrostatic analyzer mounted on a charged and moving spacecraft. The techniques are used to estimate proton temperatures during intervals where the bulk of the ion plasma is well below the energy bandpass of the analyzer. Both techniques assume that the plasma may be described by a one-dimensional E→×B→ drifting Maxwellian and that the potential field and motion of the spacecraft may be accounted for in the simplest possible manner, i.e., by a linear shift of coordinates. The first technique involves the application of a constrained theoretical fit to a measured distribution function. The second technique involves the comparison of total and partial-energy number densities. Both techniques are applied to Van Allen Probes Helium, Oxygen, Proton, and Electron (HOPE) observations of the proton component of the plasmasphere during two orbits on 15 January 2013. We find that the temperatures calculated from these two order-of-magnitude-type techniques are in good agreement with typical ranges of the plasmaspheric temperature calculated using retarding potential analyzer-based measurements—generally between 0.2 and 2 eV (2000-20,000 K). We also find that the temperature is correlated with L shell and hot plasma density and is negatively correlated with the cold plasma density. We posit that the latter of these three relationships may be indicative of collisional or wave-driven heating of the plasmasphere in the ring current overlap region. We note that these techniques may be easily applied to similar data sets or used for a variety of purposes.
Spatial inhomogeneous barrier heights at graphene/semiconductor Schottky junctions
NASA Astrophysics Data System (ADS)
Tomer, Dushyant
Graphene, a semimetal with linear energy dispersion, forms Schottky junction when interfaced with a semiconductor. This dissertation presents temperature dependent current-voltage and scanning tunneling microscopy/spectroscopy (STM/S) measurements performed on graphene Schottky junctions formed with both three and two dimensional semiconductors. To fabricate Schottky junctions, we transfer chemical vapor deposited monolayer graphene onto Si- and C-face SiC, Si, GaAs and MoS2 semiconducting substrates using polymer assisted chemical method. We observe three main type of intrinsic spatial inhomogeneities, graphene ripples, ridges and semiconductor steps in STM imaging that can exist at graphene/semiconductor junctions. Tunneling spectroscopy measurements reveal fluctuations in graphene Dirac point position, which is directly related to the Schottky barrier height. We find a direct correlation of Dirac point variation with the topographic undulations of graphene ripples at the graphene/SiC junction. However, no such correlation is established at graphene/Si and Graphene/GaAs junctions and Dirac point variations are attributed to surface states and trapped charges at the interface. In addition to graphene ripples and ridges, we also observe atomic scale moire patterns at graphene/MoS2 junction due to van der Waals interaction at the interface. Periodic topographic modulations due to moire pattern do not lead to local variation in graphene Dirac point, indicating that moire pattern does not contribute to fluctuations in electronic properties of the heterojunction. We perform temperature dependent current-voltage measurements to investigate the impact of topographic inhomogeneities on electrical properties of the Schottky junctions. We observe temperature dependence in junction parameters, such as Schottky barrier height and ideality factor, for all types of Schottky junctions in forward bias measurements. Standard thermionic emission theory which assumes a perfect smooth interface fails to explain such behavior, hence, we apply a modified emission theory with Gaussian distribution of Schottky barrier heights. The modified theory, applicable to inhomogeneous interfaces, explains the temperature dependent behavior of our Schottky junctions and gives a temperature independent mean barrier height. We attribute the inhomogeneous barrier height to the presence of graphene ripples and ridges in case of SiC and MoS2 while surface states and trapped charges at the interface is dominating in Si and GaAs. Additionally, we observe bias dependent current and barrier height in reverse bias regime also for all Schottky junctions. To explain such behavior, we consider two types of reverse bias conduction mechanisms; Poole-Frenkel and Schottky emission. We find that Poole-Frenkel emission explains the characteristics of graphene/SiC junctions very well. However, both the mechanism fails to interpret the behavior of graphene/Si and graphene/GaAs Schottky junctions. These findings provide insight into the fundamental physics at the interface of graphene/semiconductor junctions.
NASA Astrophysics Data System (ADS)
de Jong, N.; Frantzeskakis, E.; Zwartsenberg, B.; Huang, Y. K.; Wu, D.; Hlawenka, P.; Sańchez-Barriga, J.; Varykhalov, A.; van Heumen, E.; Golden, M. S.
2015-08-01
Interfaces between a bulk-insulating topological insulator (TI) and metallic adatoms have been studied using high-resolution, angle-resolved, and core-level photoemission. Fe, Nb, and Ag were evaporated onto Bi1 .5Sb0 .5Te1 .7Se1 .3 (BSTS) surfaces both at room temperature and 38 K. The coverage and temperature dependence of the adsorption and interfacial formation process have been investigated, highlighting the effects of the overlayer growth on the occupied electronic structure of the TI. For all coverages at room temperature and for those equivalent to less than 0.2 monolayer at low temperature all three metals lead to a downward shift of the TI bands with respect to the Fermi level. At room temperature Ag appears to intercalate efficiently into the van der Waals gap of BSTS, accompanied by low-level substitution for the Te/Se atoms of the termination layer of the crystal. This Te/Se substitution with silver increases significantly for low temperature adsorption, and can even dominate the electrostatic environment of the Bi/Sb atoms in the BSTS near-surface region. On the other hand, Fe and Nb evaporants remain close to the termination layer of the crystal. On room temperature deposition, they initially substitute isoelectronically for Bi as a function of coverage, before substituting for Te/Se atoms. For low temperature deposition, Fe and Nb are too immobile for substitution processes and show a behavior consistent with clustering on the surface. For both Ag and Fe/Nb, these differing adsorption pathways still lead to the qualitatively similar and remarkable behavior for low temperature deposition that the chemical potential first moves downward (p -type dopant behavior) and then upward (n -type behavior) on increasing coverage.
Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics
Zhong, Ding; Seyler, Kyle L.; Linpeng, Xiayu; ...
2017-05-31
The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. We create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI 3 and a monolayer of WSe 2. We observe unprecedented control of the spin and valley pseudospin in WSe 2, where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe 2 valley splitting and polarization via flipping of the CrI 3 magnetization. The WSe2 photoluminescence intensity strongly depends onmore » the relative alignment between photoexcited spins in WSe 2 and the CrI 3 magnetization, because of ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure.« less
Van Allen Probes Observations of the Plasmasphere and Radiation Belts
NASA Astrophysics Data System (ADS)
Goldstein, J.; Jahn, J. M.; De Pascuale, S.; Kletzing, C.; Kurth, W. S.; Genestreti, K. J.; Skoug, R. M.; Larsen, B.; Kistler, L. M.; Mouikis, C.; Spence, H. E.; Reeves, G. D.; Baker, D. N.; Blake, J. B.
2014-12-01
Van Allen Probes (RBSP) observations during 15-20 January 2013 are the basis of this study of the spatial relationship between the plasmasphere and radiation belts, and its influence on energy dependent lifetimes of energetic electrons. We use a convection-driven plasmapause test particle (PTP) simulation to provide contextual information for in situ measurements by RBSP during 15-20 January 2013, and find that the model reproduces the observed plasmapause radial locations to within 0.40 Earth radii (RE). We use analysis of the RBSP data to examine the radial structure of both the plasmasphere and radiation belts for the selected 5-day period, which includes a moderate geomagnetic disturbance on 17 January. RBSP observed three belts (inner, outer, and storage ring) prior to the 17 January disturbance, and two belts (inner and outer) afterward. The plasmapause aligns with the outermost belt. We examine the energy dependence of the radial structure and decay lifetimes of energetic electrons, both inside and outside the plasmasphere.
Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Ding; Seyler, Kyle L.; Linpeng, Xiayu
The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. We create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI 3 and a monolayer of WSe 2. We observe unprecedented control of the spin and valley pseudospin in WSe 2, where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe 2 valley splitting and polarization via flipping of the CrI 3 magnetization. The WSe2 photoluminescence intensity strongly depends onmore » the relative alignment between photoexcited spins in WSe 2 and the CrI 3 magnetization, because of ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure.« less
Cyclic, Early Diagenetic Dolomite Formation in Alkaline Lake Van
NASA Astrophysics Data System (ADS)
McCormack, J.; Bontognali, T. R. R.; Immenhauser, A.; Kwiecien, O.
2017-12-01
Modern dolomite-forming environments are commonly constrained to evaporitic marine or marginal marine settings such as lagoons and sabkhas. Beside microbial mediation, high temperatures and Mg2+ concentrations in solution are factors considered important in aiding dolomite formation. Accordingly, previous studies associate the presence of dolomite within deep sediments of alkaline Lake Van (Turkey) with periods of enhanced evaporation, low lake levels and high Mg/Ca ratio. We systematically studied dolomite within the sedimentary record of Lake Van by means of XRD, SEM and stable isotope (δ18O and δ13C) mass spectrometry. First, we considered the origin of the dolomite; next, we focused on the wider implication of its presence. SEM imaging documents large dolomite crystals interwoven with clay minerals and individual crystals with different crystallographic orientations grown together, indicating space-limited growth within the sediment. According to recent climatic reconstructions for the same sequence (ICDP PALEOVAN project), the water depth of the coring site - today at 350 m - unlikely fell below 200 m. Consequently, dolomite formed below a thick water column at constantly low temperatures (supported by heavy δ18O signature). Within this environment, variations in Mg/Ca ratio, pH and alkalinity, which are constantly high, have no effect on the episodic nature of dolomite precipitation. These observations call for a re-evaluation of the palaeoenvironments often invoked to interpret intervals rich in dolomite within ancient sedimentary sequences (e.g., periods of enhanced aridity and evaporation). Further, and in contrast to previous interpretations, our dolomite concentration data backed up by ICDP PALEOVAN reconstructions suggest that intervals rich in dolomite coincide with periods of high lake level and increased humidity. High dolomite concentrations (20 - 85 % relative carbonate content) occur cyclically within the last glacial period and coincide with rapid Northern Hemisphere temperature oscillation (i.e. Greenland Interstadials). Lake Vańs dolomite record thus provides compelling arguments suggesting that early diagenetic dolomite formation within an alkaline environment can be highly sensitive to hydrological changes even on centennial timescales.
vanC Cluster of Vancomycin-Resistant Enterococcus gallinarum BM4174
Arias, Cesar A.; Courvalin, Patrice; Reynolds, Peter E.
2000-01-01
Glycopeptide-resistant enterococci of the VanC type synthesize UDP-muramyl-pentapeptide[d-Ser] for cell wall assembly and prevent synthesis of peptidoglycan precursors ending in d-Ala. The vanC cluster of Enterococcus gallinarum BM4174 consists of five genes: vanC-1, vanXYC, vanT, vanRC, and vanSC. Three genes are sufficient for resistance: vanC-1 encodes a ligase that synthesizes the dipeptide d-Ala-d-Ser for addition to UDP-MurNAc-tripeptide, vanXYC encodes a d,d-dipeptidase–carboxypeptidase that hydrolyzes d-Ala-d-Ala and removes d-Ala from UDP-MurNAc-pentapeptide[d-Ala], and vanT encodes a membrane-bound serine racemase that provides d-Ser for the synthetic pathway. The three genes are clustered: the start codons of vanXYC and vanT overlap the termination codons of vanC-1 and vanXYC, respectively. Two genes which encode proteins with homology to the VanS-VanR two-component regulatory system were present downstream from the resistance genes. The predicted amino acid sequence of VanRC exhibited 50% identity to VanR and 33% identity to VanRB. VanSC had 40% identity to VanS over a region of 308 amino acids and 24% identity to VanSB over a region of 285 amino acids. All residues with important functions in response regulators and histidine kinases were conserved in VanRC and VanSC, respectively. Induction experiments based on the determination of d,d-carboxypeptidase activity in cytoplasmic extracts confirmed that the genes were expressed constitutively. Using a promoter-probing vector, regions upstream from the resistance and regulatory genes were identified that have promoter activity. PMID:10817725
NASA Astrophysics Data System (ADS)
Gürbüz, E.; Cahangirov, S.; Durgun, E.; Ciraci, S.
2017-11-01
Further to planar single-layer hexagonal structures, GaN and AlN can also form free-standing, single-layer structures constructed from squares and octagons. We performed an extensive analysis of dynamical and thermal stability of these structures in terms of ab initio finite-temperature molecular dynamics and phonon calculations together with the analysis of Raman and infrared active modes. These single-layer square-octagon structures of GaN and AlN display directional mechanical properties and have wide, indirect fundamental band gaps, which are smaller than their hexagonal counterparts. These density functional theory band gaps, however, increase and become wider upon correction. Under uniaxial and biaxial tensile strain, the fundamental band gaps decrease and can be closed. The electronic and magnetic properties of these single-layer structures can be modified by adsorption of various adatoms, or by creating neutral cation-anion vacancies. The single-layer structures attain magnetic moment by selected adatoms and neutral vacancies. In particular, localized gap states are strongly dependent on the type of vacancy. The energetics, binding, and resulting electronic structure of bilayer, trilayer, and three-dimensional (3D) layered structures constructed by stacking the single layers are affected by vertical chemical bonds between adjacent layers. In addition to van der Waals interaction, these weak vertical bonds induce buckling in planar geometry and enhance their binding, leading to the formation of stable 3D layered structures. In this respect, these multilayers are intermediate between van der Waals solids and wurtzite crystals, offering a wide range of tunability.
Solubility of alkali metal halides in the ionic liquid [C4C1im][OTf].
Kuzmina, O; Bordes, E; Schmauck, J; Hunt, P A; Hallett, J P; Welton, T
2016-06-28
The solubilities of the metal halides LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, RbCl, CsCl, CsI, were measured at temperatures ranging from 298.15 to 378.15 K in the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([C4C1im][OTf]). Li(+), Na(+) and K(+) salts with anions matching the ionic liquid have also been investigated to determine how well these cations dissolve in [C4C1im][OTf]. This study compares the influence of metal cation and halide anion on the solubility of salts within this ionic liquid. The highest solubility found was for iodide salts, and the lowest solubility for the three fluoride salts. There is no outstanding difference in the solubility of salts with matching anions in comparison to halide salts. The experimental data were correlated employing several phase equilibria models, including ideal mixtures, van't Hoff, the λh (Buchowski) equation, the modified Apelblat equation, and the non-random two-liquid model (NRTL). It was found that the van't Hoff model gave the best correlation results. On the basis of the experimental data the thermodynamic dissolution parameters (ΔH, ΔS, and ΔG) were determined for the studied systems together with computed gas phase metathesis parameters. Dissolution depends on the energy difference between enthalpies of fusion and dissolution of the solute salt. This demonstrates that overcoming the lattice energy of the solid matrix is the key to the solubility of inorganic salts in ionic liquids.
The relative influence of climate and catchment properties on hydrological drought
NASA Astrophysics Data System (ADS)
Van Loon, Anne; Laaha, Gregor; Koffler, Daniel
2014-05-01
Studying hydrological drought (a below-normal water availability in groundwater, lakes and streams) is important to society and the ecosystem, but can also reveal interesting information about catchment functioning. This information can later be used for predicting drought in ungauged basins and to inform water management decisions. In this study, we used an extensive Austrian dataset of discharge measurements in clusters of catchments and combine this dataset with thematic information on climate and catchment properties. Our aim was to study the relative effects of climate and catchment characteristics on drought duration and deficit and on hydrological drought typology. Because the climate of the region is roughly uniform, our hypothesis was that the effect of differences of catchment properties would stand out. From time series of precipitation and discharge we identified droughts with the widely-used threshold level approach, defining a drought when a variable falls below a pre-defined threshold representing the regime. Drought characteristics that were analysed are drought duration and deficit. We also applied the typology of Van Loon & Van Lanen (2012). To explain differences in drought characteristics between catchments we did a correlation analysis with climate and catchment characteristics, based on Pearson correlation. We found very interesting patterns in the correlations of drought characteristics with climate and catchment properties: 1) Droughts with long duration (mean and maximum) and composite droughts are related to catchments with a high BFI (high baseflow) and a high percentage of shallow groundwater tables. 2) The deficit (mean and maximum) of both meteorological droughts and hydrological droughts is strongly related to catchment humidity, in this case quantified by average annual precipitation. 3) The hydrological drought types that are related to snow, i.e. cold snow season drought and snow melt drought, occur in catchments that are have a high elevation, steep slopes, a high percentage of crystalline rock, bare rock and glacier. The conclusion of our research is that it is not straightforward to separate the effects of climate and catchment properties on drought, since they are interrelated. This is especially true for mountainous regions where temperature and precipitation are strongly dependent on altitude. We did however see that the duration of drought is more related to catchment storage (catchment properties) and the severity of drought (represented by the drought deficit) is more related to catchment wetness (climate). Van Loon, A.F., and Van Lanen, H.A.J.: A process-based typology of hydrological drought, Hydrology and Earth System Science, 16, p. 1915-1946, doi: 10.5194/hess-16-1915-2012, 2012
A new mechanistic framework to predict OCS fluxes in soils
NASA Astrophysics Data System (ADS)
Sauze, Joana; Ogee, Jérôme; Launois, Thomas; Kesselmeier, Jürgen; Van Diest, Heidi; Wingate, Lisa
2015-04-01
A better description of the amplitude of photosynthetic and respiratory gross CO2 fluxes at large scales is needed to improve our predictions of the current and future global CO2 cycle. Carbonyl sulfide (COS) is the most abundant sulphur gas in the atmosphere and has been proposed as a new tracer of gross photosynthesis, as the uptake of COS from the atmosphere is dominated by the activity of carbonic anhydrase (CA), an enzyme abundant in leaves that also catalyses CO2 hydration during photosynthesis. However, soils also exchange COS with the atmosphere and there is growing evidence that this flux must also be accounted for in atmospheric budgets. In this context a new mechanistic description of soil-atmosphere COS exchange is clearly needed. Soils can take up COS from the atmosphere as the soil biota also contain CA, and COS emissions from soils have also been reported in agricultural fields or anoxic soils. Previous studies have also shown that soil COS fluxes present an optimum soil water content and soil temperature. Here we propose a new mechanistic framework to predict the fluxes of COS between the soils and the atmosphere. We describe the COS soil budget by a first-order reaction-diffusion-production equation, assuming that the hydrolysis of COS by CA is total and irreversible. To describe COS diffusion through the soil matrix, we use different formulations of soil air-filled pore space and temperature, depending on the turbulence level above the soil surface. Using this model we are able to explain the observed presence of an optimum temperature for soil COS uptake and show how this optimum can shift to cooler temperatures in the presence of soil COS emissions. Our model can also explain the observed optimum with soil moisture content previously described in the literature (e.g. Van Diest & Kesselmeier, 2008) as a result of diffusional constraints on COS hydrolysis. These diffusional constraints are also responsible for the response of COS uptake to soil weight and depth observed by Kesselmeier et al. (1999). In order to simulate the exact COS uptake rates and patterns observed on several soils collected from a range of biomes (Van Diest & Kesselmeier, 2008) different CA activities had to be evoked in each soil type, coherent with the expected soil microbial population size and diversity. A better description of the drivers governing soil CA activity and COS emissions from soils is needed before incorporating our new mechanistic model of soil-atmosphere COS uptake in large-scale ecosystem models and COS atmospheric budgets.
Busseron, Eric; Romuald, Camille; Coutrot, Frédéric
2010-09-03
High-yield, straightforward synthesis of two- and three-station [2]rotaxane molecular machines based on an anilinium, a triazolium, and a mono- or disubstituted pyridinium amide station is reported. In the case of the pH-sensitive two-station molecular machines, large-amplitude movement of the macrocycle occurred. However, the presence of an intermediate third station led, after deprotonation of the anilinium station, and depending on the substitution of the pyridinium amide, either to exclusive localization of the macrocycle around the triazolium station or to oscillatory shuttling of the macrocycle between the triazolium and monosubstituted pyridinium amide station. Variable-temperature (1)H NMR investigation of the oscillating system was performed in CD(2)Cl(2). The exchange between the two stations proved to be fast on the NMR timescale for all considered temperatures (298-193 K). Interestingly, decreasing the temperature displaced the equilibrium between the two translational isomers until a unique location of the macrocycle around the monosubstituted pyridinium amide station was reached. Thermodynamic constants K were evaluated at each temperature: the thermodynamic parameters DeltaH and DeltaS were extracted from a Van't Hoff plot, and provided the Gibbs energy DeltaG. Arrhenius and Eyring plots afforded kinetic parameters, namely, energies of activation E(a), enthalpies of activation DeltaH( not equal), and entropies of activation DeltaS( not equal). The DeltaG values deduced from kinetic parameters match very well with the DeltaG values determined from thermodynamic parameters. In addition, whereas signal coalescence of pyridinium hydrogen atoms located next to the amide bond was observed at 205 K in the oscillating rotaxane and at 203 K in the two-station rotaxane with a unique location of the macrocycle around the pyridinium amide, no separation of (1)H NMR signals of the considered hydrogen atoms was seen in the corresponding nonencapsulated thread. It is suggested that the macrocycle acts as a molecular brake for the rotation of the pyridinium-amide bond when it interacts by hydrogen bonding with both the amide NH and the pyridinium hydrogen atoms at the same time.
Tulstrup, Monica Vera-Lise; Christensen, Ellen Gerd; Carvalho, Vera; Linninge, Caroline; Ahrné, Siv; Højberg, Ole; Licht, Tine Rask; Bahl, Martin Iain
2015-01-01
Antibiotics are frequently administered orally to treat bacterial infections not necessarily related to the gastrointestinal system. This has adverse effects on the commensal gut microbial community, as it disrupts the intricate balance between specific bacterial groups within this ecosystem, potentially leading to dysbiosis. We hypothesized that modulation of community composition and function induced by antibiotics affects intestinal integrity depending on the antibiotic administered. To address this a total of 60 Wistar rats (housed in pairs with 6 cages per group) were dosed by oral gavage with either amoxicillin (AMX), cefotaxime (CTX), vancomycin (VAN), metronidazole (MTZ), or water (CON) daily for 10–11 days. Bacterial composition, alpha diversity and caecum short chain fatty acid levels were significantly affected by AMX, CTX and VAN, and varied among antibiotic treatments. A general decrease in diversity and an increase in the relative abundance of Proteobacteria was observed for all three antibiotics. Additionally, the relative abundance of Bifidobacteriaceae was increased in the CTX group and both Lactobacillaceae and Verrucomicrobiaceae were increased in the VAN group compared to the CON group. No changes in microbiota composition or function were observed following MTZ treatment. Intestinal permeability to 4 kDa FITC-dextran decreased after CTX and VAN treatment and increased following MTZ treatment. Plasma haptoglobin levels were increased by both AMX and CTX but no changes in expression of host tight junction genes were found in any treatment group. A strong correlation between the level of caecal succinate, the relative abundance of Clostridiaceae 1 family in the caecum, and the level of acute phase protein haptoglobin in blood plasma was observed. In conclusion, antibiotic-induced changes in microbiota may be linked to alterations in intestinal permeability, although the specific interactions remain to be elucidated as changes in permeability did not always result from major changes in microbiota and vice versa. PMID:26691591
Tulstrup, Monica Vera-Lise; Christensen, Ellen Gerd; Carvalho, Vera; Linninge, Caroline; Ahrné, Siv; Højberg, Ole; Licht, Tine Rask; Bahl, Martin Iain
2015-01-01
Antibiotics are frequently administered orally to treat bacterial infections not necessarily related to the gastrointestinal system. This has adverse effects on the commensal gut microbial community, as it disrupts the intricate balance between specific bacterial groups within this ecosystem, potentially leading to dysbiosis. We hypothesized that modulation of community composition and function induced by antibiotics affects intestinal integrity depending on the antibiotic administered. To address this a total of 60 Wistar rats (housed in pairs with 6 cages per group) were dosed by oral gavage with either amoxicillin (AMX), cefotaxime (CTX), vancomycin (VAN), metronidazole (MTZ), or water (CON) daily for 10-11 days. Bacterial composition, alpha diversity and caecum short chain fatty acid levels were significantly affected by AMX, CTX and VAN, and varied among antibiotic treatments. A general decrease in diversity and an increase in the relative abundance of Proteobacteria was observed for all three antibiotics. Additionally, the relative abundance of Bifidobacteriaceae was increased in the CTX group and both Lactobacillaceae and Verrucomicrobiaceae were increased in the VAN group compared to the CON group. No changes in microbiota composition or function were observed following MTZ treatment. Intestinal permeability to 4 kDa FITC-dextran decreased after CTX and VAN treatment and increased following MTZ treatment. Plasma haptoglobin levels were increased by both AMX and CTX but no changes in expression of host tight junction genes were found in any treatment group. A strong correlation between the level of caecal succinate, the relative abundance of Clostridiaceae 1 family in the caecum, and the level of acute phase protein haptoglobin in blood plasma was observed. In conclusion, antibiotic-induced changes in microbiota may be linked to alterations in intestinal permeability, although the specific interactions remain to be elucidated as changes in permeability did not always result from major changes in microbiota and vice versa.
Software Products for Temperature Data Reduction of Platinum Resistance Thermometers (PRT)
NASA Technical Reports Server (NTRS)
Sherrod, Jerry K.
1998-01-01
The main objective of this project is to create user-friendly personal computer (PC) software for reduction/analysis of platinum resistance thermometer (PRT) data. Software products were designed and created to help users of PRT data with the tasks of using the Callendar-Van Dusen method. Sample runs are illustrated in this report.
The Effect of Ethylene Glycol, Glycine Betaine, and Urea on Lysozyme Thermal Stability
ERIC Educational Resources Information Center
Schwinefus, Jeffrey J.; Leslie, Elizabeth J.; Nordstrom, Anna R.
2010-01-01
The four-week student project described in this article is an extension of protein thermal denaturation experiments to include effects of added cosolutes ethylene glycol, glycine betaine, and urea on the unfolding of lysozyme. The transition temperatures and van't Hoff enthalpies for unfolding are evaluated for six concentrations of each cosolute,…
NASA Astrophysics Data System (ADS)
Klein, Yannick; Casula, Michele; Santos-Cottin, David; Audouard, Alain; Vignolles, David; Fève, Gwendal; Freulon, Vincent; Plaçais, Bernard; Verseils, Marine; Yang, Hancheng; Paulatto, Lorenzo; Gauzzi, Andrea
2018-02-01
By means of Shubnikov-de Haas and de Haas-van Alphen oscillations, and ab initio calculations, we have studied the Fermi surface of high-quality BaNiS2 single crystals, with mean free path l ˜400 Å . The angle and temperature dependence of quantum oscillations indicates a quasi-two-dimensional Fermi surface, made of an electronlike tube centered at Γ , and of four holelike cones, generated by Dirac bands, weakly dispersive in the out-of-plane direction. Ab initio electronic structure calculations, in the density functional theory framework, show that the inclusion of screened exchange is necessary to account for the experimental Fermi pockets. Therefore, the choice of the functional becomes crucial. A modified HSE hybrid functional with 7% of exact exchange outperforms both GGA and GGA +U density functionals, signaling the importance of nonlocal screened-exchange interactions in BaNiS2, and, more generally, in 3 d compensated semimetals.
Evolution of the Magnetic Excitations in NaOsO3 through its Metal-Insulator Transition
NASA Astrophysics Data System (ADS)
Vale, J. G.; Calder, S.; Donnerer, C.; Pincini, D.; Shi, Y. G.; Tsujimoto, Y.; Yamaura, K.; Sala, M. Moretti; van den Brink, J.; Christianson, A. D.; McMorrow, D. F.
2018-06-01
The temperature dependence of the excitation spectrum in NaOsO3 through its metal-to-insulator transition (MIT) at 410 K has been investigated using resonant inelastic x-ray scattering at the Os L3 edge. High-resolution (Δ E ˜56 meV ) measurements show that the well-defined, low-energy magnons in the insulating state weaken and dampen upon approaching the metallic state. Concomitantly, a broad continuum of excitations develops which is well described by the magnetic fluctuations of a nearly antiferromagnetic Fermi liquid. By revealing the continuous evolution of the magnetic quasiparticle spectrum as it changes its character from itinerant to localized, our results provide unprecedented insight into the nature of the MIT in NaOsO3 [J. G. Vale, S. Calder, C. Donnerer, D. Pincini, Y. G. Shi, Y. Tsujimoto, K. Yamaura, M. M. Sala, J. van den Brink, A. D. Christianson, and D. F. McMorrow, Phys. Rev. B 97, 184429 (2018), 10.1103/PhysRevB.97.184429].
Chemin, Caroline; Bourgaux, Claudie; Péan, Jean-Manuel; Pabst, Georg; Wüthrich, Patrick; Couvreur, Patrick; Ollivon, Michel
2008-06-01
For drug delivery purpose the anticancer drug S12363 was loaded into ESM/Chol-liposomes using either a pH or an ammonium gradient. Association between the drug and the liposome depends markedly on the liposome membrane structure. Thus, ESM and ESM/Chol bilayer organization had been characterized by coupled DSC and XRDT as a function of both cholesterol concentration and aqueous medium composition. ESM bilayers exhibited a ripple lamellar gel phase P(beta') below the melting temperature and adopted a L(beta)-like gel phase upon Chol insertion. Supramolecular organization of ESM and ESM/Chol bilayers was not modified by citrate buffer or ammonium sulfate solution whatever the pH (3< or = pH < or =7). Nevertheless, in ESM bilayer, ammonium sulfate salt induced a peculiar organization of head groups, leading to irregular d-spacing and weakly correlated bilayers. Moreover, in the presence of salts, a weakening of van der Waals attraction forces was seen and led to a swelling of the water layer.
Hillen, W; Gassen, G
1978-03-29
The ApU analogues ApT, Apcl5U, Apbr5U, Apa5U and Apno5(2)U were synthesized with the aid of ribonuclease U2 starting from 2',3'-cyclic Ap and the respective uridine derivatives. For these compounds the ultraviolet data, the difference spectra, the hypochromism and the temperature dependence of the CD spectra are reported. The dimerisation shifts of the pyrimidine protons which were obtained from the 100 MHz PMR spectra confirm the optical results. The influence of the substituents in the 5 position of the uracil ring on base-base interaction and the conformation of the dinucleoside phosphates is discussed with respect to the van der Waals radii and the electronic effects of these groups. As calculated from the hypochromism the dinucleoside phosphates can be arranged according to decreasing base-base interaction: Apno5(2)U greater than Apbr5U approximately ApT greater than Apcl5U greater than ApU greater than Apa5U.
NASA Astrophysics Data System (ADS)
Deineka, V. I.; Lapshova, M. S.; Zakharenko, E. V.; Deineka, L. A.
2013-11-01
The principles of sorption on polymeric reversed phase (PRP) YMS C30 for members of the two classes of esters formed by higher saturated fatty acids, i.e., lutein diesters ( I) and triacylglycerols ( II), are investigated. It is shown that the logarithm of the retention factor increases nonlinearly with an increase of the length of the acid radical, although the retention on PRP is higher in the case of I and lower in the case of II, compared to their retention on traditional monomeric reversed phase (MRP) Kromasil-100 5C18; however, the equivalence of the contributions to the retention of I that correspond to an identical change in acids, does not depend on the length of the hydrocarbon radical of the second acid. It is noted that the Van't Hoff plot for PRP contains a curve break, indicating a change in the retention mechanism upon a rise in temperature.
Kinetic efficiency of polar monolithic capillary columns in high-pressure gas chromatography.
Kurganov, A A; Korolev, A A; Shiryaeva, V E; Popova, T P; Kanateva, A Yu
2013-11-08
Poppe plots were used for analysis of kinetic efficiency of monolithic sorbents synthesized in quartz capillaries for utilization in high-pressure gas chromatography. Values of theoretical plate time and maximum number of theoretical plates occurred to depend significantly on synthetic parameters such as relative amount of monomer in the initial polymerization mixture, temperature and polymerization time. Poppe plots let one to find synthesis conditions suitable either for high-speed separations or for maximal efficiency. It is shown that construction of kinetic Poppe curves using potential Van Deemter data demands compressibility of mobile phase to be taken into consideration in the case of gas chromatography. Model mixture of light hydrocarbons C1 to C4 was then used for investigation of influence of carrier gas nature on kinetic efficiency of polymeric monolithic columns. Minimal values of theoretical plate times were found for CO2 and N2O carrier gases. Copyright © 2013 Elsevier B.V. All rights reserved.
pH and generation dependent morphologies of PAMAM dendrimers on a graphene substrate.
Gosika, Mounika; Maiti, Prabal K
2018-03-07
The adsorption of PAMAM dendrimers at solid/water interfaces has been extensively studied, and is mainly driven by electrostatic and van der Waals interactions between the substrate and the dendrimers. However, the pH dependence of the adsorption driven predominantly by the van der Waals interactions is poorly explored, although it is crucial for investigating the potentiality of these dendrimers in supercapacitors and surface patterning. Motivated by this aspect, we have studied the adsorption behavior of PAMAM dendrimers of generations 2 (G2) to 5 (G5) with pH and salt concentration variation, on a charge neutral graphene substrate, using fully atomistic molecular dynamics simulations. The instantaneous snapshots from our simulations illustrate that the dendrimers deform significantly from their bulk structures. Based on various structural property calculations, we classify the adsorbed dendrimer morphologies into five categories and map them to a phase diagram. Interestingly, the morphologies we report here have striking analogies with those reported in star-polymer adsorption studies. From the fractional contacts and other structural property analyses we find that the deformations are more pronounced at neutral pH as compared to high and low pH. Higher generation dendrimers resist deformation following the deformation trend, G2 > G3 > G4 > G5 at any given pH level. As the adsorption here is mainly driven by van der Waals interactions, we observe no desorption of the dendrimers as the salt molarity is increased, unlike that reported in the electrostatically driven adsorption studies.
High temperature normal phase liquid chromatography of aromatic hydrocarbons on bare zirconia.
Paproski, Richard E; Liang, Chen; Lucy, Charles A
2011-11-04
The normal phase HPLC behavior of a bare zirconia column was studied at temperatures up to 200 °C using a hexane mobile phase. The use of elevated column temperatures significantly decreased the retention of twenty five aromatic model compounds according to the van't Hoff equation (>30-fold decrease for some compounds). Large improvements in peak shape, efficiency (>2.2-fold), aromatic group-type selectivity, and column re-equilibration times (>5-fold) were obtained at elevated temperatures. The thermal decomposition of two polar nitrogen compounds (indole and carbazole) was observed in a hexane/dichloromethane mobile phase at temperatures greater than 100 °C. The first order decomposition of carbazole was studied in further detail. Copyright © 2011 Elsevier B.V. All rights reserved.
Genetics Home Reference: achromatopsia
... NW, Roosing S, van Schooneveld MJ, van Lith-Verhoeven JJ, van Moll-Ramirez N, van den Born LI, ... van Schooneveld MJ, Strom TM, van Lith-Verhoeven JJ, Lotery AJ, van Moll-Ramirez N, Leroy BP, ...
Test of Monin-Obukhov similarity theory using distributed temperature sensing
NASA Astrophysics Data System (ADS)
Cheng, Y.; Sayde, C.; Li, Q.; Gentine, P.
2017-12-01
Monin-Obukhov similarity theory [Monin and Obukhov, 1954] (MOST) has been widely used to calculate atmospheric surface fluxes applying the structure correction functions [Stull, 1988]. The exact forms of the structure correction functions for momentum and heat, which depend on the vertical gradient velocity and temperature, have been determined empirically mostly from the Kansas experiment [Kaimal et al., 1972]. However, due to the limitation of point measurement, the vertical gradient of temperature and horizontal wind speed are not well captured. Here we propose a way to measure the vertical gradient of temperature and horizontal wind speed with high resolution in space (every 12.7 cm) and time (every second) using the Distributed Temperature Sensing [Selker et al., 2006] (DTS), thus determining the exact form of the structure correction functions of MOST under various stability conditions. Two parallel vertical fiber optics will be placed on a tower at the central facility of ARM SGP site. Vertical air temperature will be measured every 12.7 cm by the fiber optics and horizontal wind speed along fiber will be measured. Then vertical gradient of temperature and horizontal wind speed will be calculated and stability correction functions for momentum and heat will be determined. ReferencesKaimal, J. C., Wyngaard, J. C., Izumi, Y., and Cote, O. R. (1972), Spectral characteristics of surface-layer turbulence, Quarterly Journal of the Royal Meteorological Society, 98(417), 563-589, doi: 10.1002/qj.49709841707. Monin, A., and Obukhov, A. (1954), Basic laws of turbulent mixing in the surface layer of the atmosphere, Contrib. Geophys. Inst. Acad. Sci. USSR, 24(151), 163-187. Selker, J., Thévenaz, L., Huwald, H., Mallet, A., Luxemburg, W., van de Giesen, N., Stejskal, M., Zeman, J., Westhoff, M., and Parlange, M. B. (2006), Distributed fiber-optic temperature sensing for hydrologic systems, Water Resources Research, 42, W12202, doi: 10.1029/2006wr005326. Stull, R. (1988), An Introduction to Boundary Layer Meteorology, pp. 666, Kluwer Academic Publishers, Dordrecht.
Glycopeptide Resistance vanA Operons in Paenibacillus Strains Isolated from Soil
Guardabassi, Luca; Perichon, Bruno; van Heijenoort, Jean; Blanot, Didier; Courvalin, Patrice
2005-01-01
The sequence and gene organization of the van operons in vancomycin (MIC of >256 μg/ml)- and teicoplanin (MIC of ≥32 μg/ml)-resistant Paenibacillus thiaminolyticus PT-2B1 and Paenibacillus apiarius PA-B2B isolated from soil were determined. Both operons had regulatory (vanR and vanS), resistance (vanH, vanA, and vanX), and accessory (vanY, vanZ, and vanW) genes homologous to the corresponding genes in enterococcal vanA and vanB operons. The vanAPT operon in P. thiaminolyticus PT-2B1 had the same gene organization as that of vanA operons whereas vanAPA in P. apiarius PA-B2B resembled vanB operons due to the presence of vanW upstream from the vanHAX cluster but was closer to vanA operons in sequence. Reference P. apiarius strains NRRL B-4299 and NRRL B-4188 were found to harbor operons indistinguishable from vanAPA by PCR mapping, restriction fragment length polymorphism, and partial sequencing, suggesting that this operon was species specific. As in enterococci, resistance was inducible by glycopeptides and associated with the synthesis of pentadepsipeptide peptidoglycan precursors ending in d-Ala-d-Lac, as demonstrated by d,d-dipeptidase activities, high-pressure liquid chromatography, and mass spectrometry. The precursors differed from those in enterococci by the presence of diaminopimelic acid instead of lysine in the peptide chain. Altogether, the results are compatible with the notion that van operons in soil Paenibacillus strains and in enterococci have evolved from a common ancestor. PMID:16189102
Glycopeptide resistance vanA operons in Paenibacillus strains isolated from soil.
Guardabassi, Luca; Perichon, Bruno; van Heijenoort, Jean; Blanot, Didier; Courvalin, Patrice
2005-10-01
The sequence and gene organization of the van operons in vancomycin (MIC of >256 microg/ml)- and teicoplanin (MIC of > or =32 microg/ml)-resistant Paenibacillus thiaminolyticus PT-2B1 and Paenibacillus apiarius PA-B2B isolated from soil were determined. Both operons had regulatory (vanR and vanS), resistance (vanH, vanA, and vanX), and accessory (vanY, vanZ, and vanW) genes homologous to the corresponding genes in enterococcal vanA and vanB operons. The vanA(PT) operon in P. thiaminolyticus PT-2B1 had the same gene organization as that of vanA operons whereas vanA(PA) in P. apiarius PA-B2B resembled vanB operons due to the presence of vanW upstream from the vanHAX cluster but was closer to vanA operons in sequence. Reference P. apiarius strains NRRL B-4299 and NRRL B-4188 were found to harbor operons indistinguishable from vanA(PA) by PCR mapping, restriction fragment length polymorphism, and partial sequencing, suggesting that this operon was species specific. As in enterococci, resistance was inducible by glycopeptides and associated with the synthesis of pentadepsipeptide peptidoglycan precursors ending in D-Ala-D-Lac, as demonstrated by D,D-dipeptidase activities, high-pressure liquid chromatography, and mass spectrometry. The precursors differed from those in enterococci by the presence of diaminopimelic acid instead of lysine in the peptide chain. Altogether, the results are compatible with the notion that van operons in soil Paenibacillus strains and in enterococci have evolved from a common ancestor.
On the importance of cloud—cloud interaction to invigorate convective extremes
NASA Astrophysics Data System (ADS)
Berg, Peter; Moseley, Christopher; Hohenegger, Cathy; Haerter, Jan
2017-04-01
Observational studies have shown that convective extremes are invigorated with increasing temperatures beyond thermodynamic constraints through the Clausius-Clapeyron relationship (e.g. Lenderink and van Meijgaard, Nature Geosci., 2008; Berg et al., Nature Geosci., 2013). This implies that there are changes in the dynamics of the convective showers that are dependent on the environmental conditions. Observations of convective cells lack sufficient resolution to investigate the dynamics in detail. We have therefore applied a large eddy simulator (LES) at a 200 m horizontal resolution to study the dynamical interaction between convective cells in a set of idealized simulations of a full diurnal cycle with a vertical profile of a typical day with convective showers (Moseley et al., Nature Geosci., 2016). The simulations show that the convective cells are subjected to a gradual self-organization over the day, forming larger cell clusters and more intense precipitation. Further, by tracking rain cells, we find that cells that collide with other cells during their lifetime have a different response to changes in the environmental conditions, such as an increase in temperature, than cells that do not interact. Whereas the non-interacting cells remain almost unaffected by the boundary conditions, the colliding cells show a strong invigoration. Interestingly, granting more time for the self-organization to occur has a similar effect as increasing the temperature. We therefore speculate that self-organization is a key element to explain the strong response of convective extremes to increasing temperature. Our results suggest that proper modeling and predicting of convective extremes requires the description of the interaction between convective clouds.
Trisphenalenyl-based neutral radical molecular conductor.
Pal, Sushanta K; Itkis, Mikhail E; Tham, Fook S; Reed, Robert W; Oakley, Richard T; Haddon, Robert C
2008-03-26
We report the preparation, crystallization, and solid-state characterization of the first member of a new family of tris(1,9-disubstituted phenalenyl)silicon neutral radicals. In the solid state, the radical packs as weak partial pi-dimers with intermolecular carbon...carbon contacts that fall at the van der Waals atomic separation. Magnetic susceptibility measurements indicate approximately 0.7 Curie spins per molecule from room temperature down to 50 K, below which antiferromagnetic coupling becomes apparent; the compound has a room-temperature single-crystal conductivity of sigmaRT = 2.4 x 10(-6) S cm(-1).
Turbulent boundary-layer velocity profiles on a nonadiabatic at Mach number 6.5
NASA Technical Reports Server (NTRS)
Keener, E. R.; Hopkins, E. J.
1972-01-01
Velocity profiles were obtained from pitot-pressure and total-temperature measurements within a turbulent boundary layer on a large sharp-edged flat plate. Momentum-thickness Reynolds number ranged from 2590 to 8860 and wall-to-adiabatic-wall temperature ratios ranged from 0.3 to 0.5. Measurements were made both with and without boundary layer trips. Five methods are evaluated for correlating the measured velocity profiles with the incompressible law-of-the-wall and the velocity defect law. The mixing-length generalization of Van Driest gives the best correlation.
Written Corrective Feedback and Peer Review in the BYOD Classroom
ERIC Educational Resources Information Center
Ferreira, Daniel
2013-01-01
Error correction in the English as a Foreign Language (EFL) writing curriculum is a practice both teachers and students agree is important for writing proficiency development (Ferris, 2004; Van Beuningen, De Jong, & Kuiken, 2012; Vyatkina, 2010, 2011). Research suggests student dependency on teacher corrective feedback yields few long-term…
Toki, C J
2008-07-01
Laboratory-scale experiments were conducted to determine the influence of higher thermophilic temperatures on thermophilic aerobic digestion treatment of a simulated sludge. The efficiency of the process was evaluated in respect of solids removal and degradation rate constants at four thermophilic temperatures. Batch runs were operated at a retention time of one day and temperatures of 65, 70, 72 and 75 degrees C. The results indicated that temperature increase did not impart any significant benefits to the digestion operation in terms of suspended solids and biochemichal oxygen demand reduction. The findings from this research also suggested that the treatment would not appear to benefit from temperatures higher than 65 degrees C, as classically suggested by Van't Hoff-Arrhenius. Therefore, increase of thermophilic temperature in the tested 65-75 degrees C range does not enhance the efficiency of thermophilic, aerobic sludge digestion treatment.
Cha, J O; Yoo, J I; Kim, H K; Kim, H S; Yoo, J S; Lee, Y S; Jung, Y H
2013-10-01
To investigate diversity in the vanA cluster in Enterococcus faecium isolates from nontertiary hospitals. We identified 43 vanA-positive Ent. faecium isolates, including two vancomycin-susceptible isolates, from hospitals between 2003 and 2006. Of these isolates, >85% were resistant to ampicillin, erythromycin and ciprofloxacin. The vanA cluster was classified into six types using overlapping PCR, but the prototype transposon Tn1546 was not found. Most vanA-positive vancomycin-resistant Enterococcus (VRE) carried IS1216V and belonged to Type III (58·1%) or Type II (20·9%). vanY, vanZ and IS1216V were observed in the left and right ends of Type III with long-range PCR. IS1216V was also observed within vanS and vanX in the two vancomycin-susceptible isolates and in two vancomycin-resistant isolates. No VRE isolates with VanB and VanD phenotypes contained point mutations in vanS, unlike in previous reports. Sequence types (STs) of all isolates belonged to clonal complex 17, and ST78 was predominant. Insertion sequences, especially IS1216V, cause structural variation in the vanA cluster. We report the first observation of vanY and vanZ at the left end of Tn1546 in clinical isolates. This is the first report of the frequency of vancomycin resistance and diversity of Tn1546 in vanA-positive Ent. faecium isolates from nontertiary hospitals. © 2013 The Society for Applied Microbiology.
Raman Excitation Profile of the G-band Enhancement in Twisted Bilayer Graphene
NASA Astrophysics Data System (ADS)
Eliel, G. S. N.; Ribeiro, H. B.; Sato, K.; Saito, R.; Lu, Chun-Chieh; Chiu, Po-Wen; Fantini, C.; Righi, A.; Pimenta, M. A.
2017-12-01
A resonant Raman study of twisted bilayer graphene (TBG) samples with different twisting angles using many different laser lines in the visible range is presented. The samples were fabricated by CVD technique and transferred to Si/SiO2 substrates. The Raman excitation profiles of the huge enhancement of the G-band intensity for a group of different TBG flakes were obtained experimentally, and the analysis of the profiles using a theoretical expression for the Raman intensities allowed us to obtain the energies of the van Hove singularities generated by the Moiré patterns and the lifetimes of the excited state of the Raman process. Our results exhibit a good agreement between experimental and calculated energies for van Hove singularities and show that the lifetime of photoexcited carrier does not depend significantly on the twisting angle in the range intermediate angles ( 𝜃 between 10∘ and 15∘). We observed that the width of the resonance window (Γ ≈ 250 meV) is much larger than the REP of the Raman modes of carbon nanotubes, which are also enhanced by resonances with van Hove singularities.
NASA Astrophysics Data System (ADS)
Pinto, Thiago M.; Schilstra, Maria J.; Steuber, Volker; Roque, Antonio C.
2015-12-01
Long-term plasticity at parallel fibre (PF)-Purkinje cell (PC) synapses is thought to mediate cerebellar motor learning. It is known that calcium-calmodulin dependent protein kinase II (CaMKII) is essential for plasticity in the cerebellum. Recently, Van Woerden et al. demonstrated that the β isoform of CaMKII regulates the bidirectional inversion of PF-PC plasticity. Because the cellular events that underlie these experimental findings are still poorly understood, our work aims at unravelling how β CaMKII controls the direction of plasticity at PF-PC synapses. We developed a bidirectional plasticity model that replicates the experimental observations by Van Woerden et al. Simulation results obtained from this model indicate the mechanisms that underlie the bidirectional inversion of cerebellar plasticity. As suggested by Van Woerden et al., the filamentous actin binding enables β CaMKII to regulate the bidirectional plasticity at PF-PC synapses. Our model suggests that the reversal of long-term plasticity in PCs is based on a combination of mechanisms that occur at different calcium concentrations.
Modeling sand wave characteristics on the Belgian Continental Shelf and in the Calais-Dover Strait
NASA Astrophysics Data System (ADS)
Cherlet, J.; Besio, G.; Blondeaux, P.; van Lancker, V.; Verfaillie, E.; Vittori, G.
2007-06-01
The capability of the model of Besio et al. (2006) to predict the main geometrical characteristics (crest orientation, wavelength,…) of tidal sand waves is tested by comparing the theoretical predictions with field data. In particular the field observations carried out by Mouchet (1990) and Van Lancker et al. (2005) along the continental shelf of Belgium are used. Additional comparisons are carried out against the field measurements described by Le Bot (2001) and Le Bot and Trenteseaux (2004) which were carried out in an adjacent region. Attention is focused on the prediction of the wavelength of the bottom forms. Indeed, the capability of a linear stability analysis to predict the occurrence of sand waves has been already tested by Hulscher and van den Brink (2001) and more recently by van der Veen et al. (2006). The obtained results show that the theoretical predictions fairly agree with field observations even though some of the comparisons suggest that the accuracy of the predictions depends on the accurate evaluation of the local current and sediment characteristics.
Tunable two-dimensional interfacial coupling in molecular heterostructures
Xu, Beibei; Chakraborty, Himanshu; Yadav, Vivek K.; ...
2017-08-22
Two-dimensional van der Waals heterostructures are of considerable interest for the next generation nanoelectronics because of their unique interlayer coupling and optoelectronic properties. Here, we report a modified Langmuir–Blodgett method to organize twodimensional molecular charge transfer crystals into arbitrarily and vertically stacked heterostructures, consisting of bis(ethylenedithio)tetrathiafulvalene (BEDT–TTF)/C 60 and poly (3-dodecylthiophene-2,5-diyl) (P3DDT)/C 60 nanosheets. A strong and anisotropic interfacial coupling between the charge transfer pairs is demonstrated. The van der Waals heterostructures exhibit pressure dependent sensitivity with a high piezoresistance coefficient of -4.4 × 10 -6 Pa -1, and conductance and capacitance tunable by external stimuli (ferroelectric field and magneticmore » field). Density functional theory calculations confirm charge transfer between the n-orbitals of the S atoms in BEDT–TTF of the BEDT–TTF/C 60 layer and the π* orbitals of C atoms in C 60 of the P3DDT/C 60 layer contribute to the inter-complex CT. Thus, the two-dimensional molecular van der Waals heterostructures with tunable optical–electronic–magnetic coupling properties are promising for flexible electronic applications.« less
NASA Astrophysics Data System (ADS)
Stopper, Daniel; Thorneywork, Alice L.; Dullens, Roel P. A.; Roth, Roland
2018-03-01
Using dynamical density functional theory (DDFT), we theoretically study Brownian self-diffusion and structural relaxation of hard disks and compare to experimental results on quasi two-dimensional colloidal hard spheres. To this end, we calculate the self-van Hove correlation function and distinct van Hove correlation function by extending a recently proposed DDFT-approach for three-dimensional systems to two dimensions. We find that the theoretical results for both self-part and distinct part of the van Hove function are in very good quantitative agreement with the experiments up to relatively high fluid packing fractions of roughly 0.60. However, at even higher densities, deviations between the experiment and the theoretical approach become clearly visible. Upon increasing packing fraction, in experiments, the short-time self-diffusive behavior is strongly affected by hydrodynamic effects and leads to a significant decrease in the respective mean-squared displacement. By contrast, and in accordance with previous simulation studies, the present DDFT, which neglects hydrodynamic effects, shows no dependence on the particle density for this quantity.
OMEGACAM and Gravitational Lensing
NASA Astrophysics Data System (ADS)
Christen, Fabrice Frédéric Thiébaut
2007-04-01
Het proefschrift van Fabrice Christen gaat over de ontwikkeling van nieuwe methoden voor het corrigeren van (digitale) foto's van melkwegstelsels. Met deze methoden kunnen de beelden uit het heelal beter worden geanalyseerd. Het eerste gedeelte is gewijd aan het werk dat bij ESO is uitgevoerd aan de CCD's van de OmegaCAM camera, het enige instrument van de VST. OmegaCAM is een optische groothoekcamera met een beeldveld van een vierkante graad, opgebouwd uit een mozaiek van 8 bij 4 CCD's. Van elk onderdeel moeten alle kenmerken volledig bekend zijn voordat het in het CCD mozaiek geplaatst kan worden. In het tweede deel van dit proefschrift wordt de ontwikkeling van een nieuwe methode voor het corrigeren van de ``point-spread function'' (PSF) en schatten van de ellipticiteit van de melkwegstelsels besproken. De nieuwe techniek wordt getest en vergeleken met een door sterrenkundigen algemeen gebruikte methode in het veld van zwaartekrachtslenzen, de Kaiser, Squire en Broadhurst (KSB) methode. De nieuwe methode, gebaseerd op shapelet ontleding (vergelijkbaar met wavelet ontleding), gaat verder, en is sneller en theoretisch preciezer dan de KSB methode. Door gebruik te maken van de gecorrigeerde ellipticiteit, kunnen we een statistische analyse uitvoeren om er een kosmisch vervormingssignaal uit te halen. De licht vervormde beelden van de melkwegstelsels bewij zen dat de niet-homogene massaverdeling op megaparsec-schaal voornamelijk bestaat uit grote hoeveelheden donkere materie. Verder vergelijken we de schattingen van de ellipticiteit van de shapelet en KSB methode. Bovendien voeren we ook nog een melkwegstelsel-melkwegstelsel lens analyse uit op de 50 VLT Fors1 afbeeldingen en slagen we erin de belangrijkste eigenschappen van de halo's van de stelsels, die zich op een afstand van een- tot tweeduizend megaparsec (1 parsec = 3,26 lichtjaar = 3,085 x 10^16 meter) bevinden, te bepalen door gebruik te maken van twee modellen van melkwegstelselhalo's. Vergeleken met andere overzichtsmetingen vinden we vergelijkbare resultaten.
CuInP 2S 6 Room Temperature Layered Ferroelectric
Belianinov, Alex; He, Qian; Dziaugys, Andrius; ...
2015-05-01
In this paper, we explore ferroelectric properties of cleaved 2-D flakes of copper indium thiophosphate, CuInP 2S 6 (CITP), and probe size effects along with limits of ferroelectric phase stability, by ambient and ultra high vacuum scanning probe microscopy. CITP belongs to the only material family known to display ferroelectric polarization in a van der Waals, layered crystal at room temperature and above. Our measurements directly reveal stable, ferroelectric polarization as evidenced by domain structures, switchable polarization, and hysteresis loops. We found that at room temperature the domain structure of flakes thicker than 100 nm is similar to the cleavedmore » bulk surfaces, whereas below 50 nm polarization disappears. We ascribe this behavior to a well-known instability of polarization due to depolarization field. Furthermore, polarization switching at high bias is also associated with ionic mobility, as evidenced both by macroscopic measurements and by formation of surface damage under the tip at a bias of 4 V—likely due to copper reduction. Mobile Cu ions may therefore also contribute to internal screening mechanisms. Finally, the existence of stable polarization in a van-der-Waals crystal naturally points toward new strategies for ultimate scaling of polar materials, quasi-2D, and single-layer materials with advanced and nonlinear dielectric properties that are presently not found in any members of the growing “graphene family”.« less
Characterization of the binding of 8-anilinonaphthalene sulphonate to rat class Mu GST M1-1
Kinsley, Nichole; Sayed, Yasien; Armstrong, Richard N.; Dirr, Heini W.
2008-01-01
Molecular docking and ANS-displacement experiments indicated that 8-anilinonaphthalene sulphonate (ANS) binds the hydrophobic site (H-site) in the active site of dimeric class Mu rGST M1-1. The naphthalene moiety provides most of the van der Waals contacts at the ANS-binding interface while the anilino group is able to sample different rotamers. The energetics of ANS binding were studied by isothermal titration calorimetry (ITC) over the temperature range of 5–30 °C. Binding is both enthalpically and entropically driven and displays a stoichiometry of one ANS molecule per subunit (or H-site). ANS binding is linked to the uptake of 0.5 protons at pH 6.5. Enthalpy of binding depends linearly upon temperature yielding a ΔCp of −80 ± 4 cal K−1 mol−1 indicating the burial of solvent-exposed nonpolar surface area upon ANS-protein complex formation. While ion-pair interactions between the sulfonate moiety of ANS and protein cationic groups may be significant for other ANS-binding proteins, the binding of ANS to rGST M1-1 is primarily hydrophobic in origin. The binding properties are compared with those of other GSTs and ANS-binding proteins. PMID:18703268
Local corrugation and persistent charge density wave in ZrTe 3 with Ni intercalation
NASA Astrophysics Data System (ADS)
Ganose, Alex M.; Gannon, Liam; Fabrizi, Federica; Nowell, Hariott; Barnett, Sarah A.; Lei, Hechang; Zhu, Xiangde; Petrovic, Cedomir; Scanlon, David O.; Hoesch, Moritz
2018-04-01
The mechanism of emergent bulk superconductivity in transition-metal intercalated ZrTe3 is investigated by studying the effect of Ni doping on the band structure and charge density wave (CDW). The study reports theoretical and experimental results in the range of Ni0.01ZrTe3 to Ni0.05ZrTe3 . In the highest doped samples, bulk superconductivity with Tc
Quantum oscillations study of the type-II Weyl semimetal candidate β-MoTe2
NASA Astrophysics Data System (ADS)
Schoenemann, R.; Rhodes, D.; Zhou, Q.; Zhang, Q.; Das, S.; Manousakis, E.; Balicas, L.; Chang, J.; McCandless, G.; Kampert, E.; Shimura, Y.; Johannes, M.
Here we present a quantum oscillations study of high quality single crystalline β-MoTe2 samples that show residual resistivity ratios between 400 and 2000. We performed angular and temperature dependent Shubnikov-de Haas (SdH) and de Haas-van Alphen (dHVA) measurements and compared our results with bandstructure calculations. The magnetoresistivity shows no sign of saturation and reaches values of approximately 106 at 60 T and 1.7 K. Hall effect measurements indicate almost perfect electron-hole compensation at low temperatures. Additionally we were able to extract a non-trivial Berry Phase from dHvA measurements, i.e. between 2 π x 0.445 and 2 π x 0.475 which is close to the predicted value of π. In contrast to recent ARPES data, the Fermi surface obtained by our bulk measurements deviates significantly from the calculated band structure. Furthermore we observe broad anomalies in Hall and specific heat measurements that indicate an evolution of the electronic structure below 100 K which might be responsible for the observed discrepancies. This work has been supported by NSF through NSF-DMR-1157490 and NSF-DMR-1360863 as well as by DOE-BES through award de-sc0002613 and Army Research Office MURI Grant W911NF-11-1-0362.
Two-dimensional antimonene single crystals grown by van der Waals epitaxy.
Ji, Jianping; Song, Xiufeng; Liu, Jizi; Yan, Zhong; Huo, Chengxue; Zhang, Shengli; Su, Meng; Liao, Lei; Wang, Wenhui; Ni, Zhenhua; Hao, Yufeng; Zeng, Haibo
2016-11-15
Unlike the unstable black phosphorous, another two-dimensional group-VA material, antimonene, was recently predicted to exhibit good stability and remarkable physical properties. However, the synthesis of high-quality monolayer or few-layer antimonenes, sparsely reported, has greatly hindered the development of this new field. Here, we report the van der Waals epitaxy growth of few-layer antimonene monocrystalline polygons, their atomical microstructure and stability in ambient condition. The high-quality, few-layer antimonene monocrystalline polygons can be synthesized on various substrates, including flexible ones, via van der Waals epitaxy growth. Raman spectroscopy and transmission electron microscopy reveal that the obtained antimonene polygons have buckled rhombohedral atomic structure, consistent with the theoretically predicted most stable β-phase allotrope. The very high stability of antimonenes was observed after aging in air for 30 days. First-principle and molecular dynamics simulation results confirmed that compared with phosphorene, antimonene is less likely to be oxidized and possesses higher thermodynamic stability in oxygen atmosphere at room temperature. Moreover, antimonene polygons show high electrical conductivity up to 10 4 S m -1 and good optical transparency in the visible light range, promising in transparent conductive electrode applications.
Two-dimensional antimonene single crystals grown by van der Waals epitaxy
Ji, Jianping; Song, Xiufeng; Liu, Jizi; Yan, Zhong; Huo, Chengxue; Zhang, Shengli; Su, Meng; Liao, Lei; Wang, Wenhui; Ni, Zhenhua; Hao, Yufeng; Zeng, Haibo
2016-01-01
Unlike the unstable black phosphorous, another two-dimensional group-VA material, antimonene, was recently predicted to exhibit good stability and remarkable physical properties. However, the synthesis of high-quality monolayer or few-layer antimonenes, sparsely reported, has greatly hindered the development of this new field. Here, we report the van der Waals epitaxy growth of few-layer antimonene monocrystalline polygons, their atomical microstructure and stability in ambient condition. The high-quality, few-layer antimonene monocrystalline polygons can be synthesized on various substrates, including flexible ones, via van der Waals epitaxy growth. Raman spectroscopy and transmission electron microscopy reveal that the obtained antimonene polygons have buckled rhombohedral atomic structure, consistent with the theoretically predicted most stable β-phase allotrope. The very high stability of antimonenes was observed after aging in air for 30 days. First-principle and molecular dynamics simulation results confirmed that compared with phosphorene, antimonene is less likely to be oxidized and possesses higher thermodynamic stability in oxygen atmosphere at room temperature. Moreover, antimonene polygons show high electrical conductivity up to 104 S m−1 and good optical transparency in the visible light range, promising in transparent conductive electrode applications. PMID:27845327
Lake level and climate records of the last 90 ka from the Northern Basin of Lake Van, eastern Turkey
NASA Astrophysics Data System (ADS)
Çağatay, M. N.; Öğretmen, N.; Damcı, E.; Stockhecke, M.; Sancar, Ü.; Eriş, K. K.; Özeren, S.
2014-11-01
Sedimentary, geochemical and mineralogical analyses of the ICDP cores recovered from the Northern Basin (NB) of Lake Van provide evidence of lake level and climatic changes related to orbital and North Atlantic climate system over the last 90 ka. High lake levels are generally observed during the interglacial and interstadial periods, which are marked by deposition of varved sediments with high total organic carbon (TOC), total inorganic carbon (TIC), low detrital influx (high Ca/F) and high δ18O and δ13C values of authigenic carbonate. During the glacial and stadial periods of 71-58 ka BP (Marine Isotope Stage 4, MIS4) and end of last glaciation-deglaciation (30-14.5 ka BP; MIS3) relatively low lake levels prevailed, and grey homogeneous to faintly laminated clayey silts were deposited at high sedimentation and low organic productivity rates. Millennial-scale variability of the proxies during 60-30 ka BP (MIS3 is correlated with the Dansgaard-Oeschger (D-O)) and Holocene abrupt climate events in the Atlantic. These events are characterized by laminated sediments, with high TOC, TIC, Ca/Fe, δ18O and δ13C values. The Lake Van NB records correlate well in the region with the climate records from the lakes Zeribar and Urmia in Iran and the Sofular Cave in NW Anatolia, but are in general in anti-phase to those from the Dead Sea Basin (Lake Lisan) in the Levant. The relatively higher δ18O values (0 to -0.4‰) for the interglacial and interstadial periods in the Lake Van NB section are due to the higher temperature and seasonality of precipitation and higher evaporation, whereas the lower values (-0.8 to -2‰) during the glacial and stadial periods are caused mainly by relative decrease in both temperature and seasonality of precipitation. The high δ18O values (up to 4.2‰) during the Younger Dryas, together with the presence of dolomite and low TOC contents, supports evaporative conditions and low lake level. A gradual decrease in the δ18O values from an average of -0.4‰ during the humid early Holocene to an average of -3.5‰ during the more arid late Holocene suggests an increasing contribution of winter precipitation. The changes in the seasonality of precipitation in eastern Anatolia are probably caused by changes in the temperatures of North Atlantic and Mediterranean and in the strength of Siberian High.
2007-04-01
en verantwoordelijkheden van de uitgestegen soldaat Deel A: verplaatsen van beslisbevoegdheden Datumn april 2007 Auteur (s) R. de Bruin ITE. van Bernmel...Admiraal, Bureau SMP Auteur (s) R. de Bruin Program maleider Projectleider I.E. van Bemnmel dr. W.A. Lotens, A.J. van Vliet, A.J. van Vijet TNO Defensie en...Leadership Theory en wordt relevant geacht voor de ontvangers van aanvullende beslisbevoegdheden. 2.1.3 Het oogmerk van de hogere commandant Een ander
A distinctive dual-channel quorum-sensing system operates in Vibrio anguillarum.
Croxatto, Antony; Pride, John; Hardman, Andrea; Williams, Paul; Cámara, Miguel; Milton, Debra L
2004-06-01
Many bacterial cells communicate using diffusible signal molecules to monitor cell population density via a process termed quorum sensing. In marine Vibrio species, the Vibrio harveyi-type LuxR protein is a key player in a quorum-sensing phosphorelay cascade, which controls the expression of virulence, symbiotic and survival genes. Previously, we characterized Vibrio anguillarum homologues of LuxR (VanT) and LuxMN (VanMN) and, in this study, we have identified homologues of LuxPQ (VanPQ) and LuxOU (VanOU). In contrast to other Vibrio species, vanT was expressed at low cell density and showed no significant induction as the cell number increased. In addition, although the loss of VanO increased vanT expression, the loss of VanU, unexpectedly, decreased it. Both VanN and VanQ were required for repression of vanT even in a vanU mutant, suggesting an alternative route for VanNQ signal transduction other than via VanU. VanT negatively regulated its own expression by binding and repressing the vanT promoter and by binding and activating the vanOU promoter. The signal relay results in a cellular response as expression of the metalloprotease, empA, was altered similar to that of vanT in all the mutants. Consequently, the V. anguillarum quorum-sensing phosphorelay systems work differently from those of V. harveyi and may be used to limit rather than induce vanT expression.
Dutch Anthropometry for Vehicle Design and Evaluation
2008-10-01
middelen Beschrijving van de werkzaamheden Uitgaande van afmetingen van Nederlanders zijn grenswaarden voor negen paspoppen. met vanSrende...vastgesteld voor het jaar 2015 Hierbij is uitgegaan van een Nederlands antropometrisch bestand (NedScan) Resultaten en conclusies Het resultaat is een kort... Nederlands antropometrisch bestand (NedScan) en van lichaamsafmetingen van goedgekeurde K.L rekruten. De grenswaarden omvatten 95% van dat Nederlandse
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 1 2011-04-01 2011-04-01 false Lift vans, cargo vans, shipping tanks, skids... Traffic § 10.41a Lift vans, cargo vans, shipping tanks, skids, pallets, and similar instruments of international traffic; repair components. (a)(1) Lift vans, cargo vans, shipping tanks, skids, pallets, caul...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 1 2010-04-01 2010-04-01 false Lift vans, cargo vans, shipping tanks, skids... Traffic § 10.41a Lift vans, cargo vans, shipping tanks, skids, pallets, and similar instruments of international traffic; repair components. (a)(1) Lift vans, cargo vans, shipping tanks, skids, pallets, caul...
Fast Determination of the Element Excitation of an Active Phased Array Antenna
1991-03-01
elementenexcitatie te, bepalen: de amplitude en fase van het elektrische ven-e veld moeten gemeten warden in slechts I richting in het verre veld van de ...Page 3 rapport no FEL-91-BO38 titel Een snelle bepaling van de excitatie van de elenienten van cen actieve phased array antenne auteur(s) I. J.G. van...van der Spek Onderzoek uItgevoerd door Ir. J.G. van Hezewijk SAMENVATIING (ONGERUBRICEERD) Het verre veld stralingsdiagram van een actieve phased array
GaN: From three- to two-dimensional single-layer crystal and its multilayer van der Waals solids
NASA Astrophysics Data System (ADS)
Onen, A.; Kecik, D.; Durgun, E.; Ciraci, S.
2016-02-01
Three-dimensional (3D) GaN is a III-V compound semiconductor with potential optoelectronic applications. In this paper, starting from 3D GaN in wurtzite and zinc-blende structures, we investigated the mechanical, electronic, and optical properties of the 2D single-layer honeycomb structure of GaN (g -GaN ) and its bilayer, trilayer, and multilayer van der Waals solids using density-functional theory. Based on high-temperature ab initio molecular-dynamics calculations, we first showed that g -GaN can remain stable at high temperature. Then we performed a comparative study to reveal how the physical properties vary with dimensionality. While 3D GaN is a direct-band-gap semiconductor, g -GaN in two dimensions has a relatively wider indirect band gap. Moreover, 2D g -GaN displays a higher Poisson ratio and slightly less charge transfer from cation to anion. In two dimensions, the optical-absorption spectra of 3D crystalline phases are modified dramatically, and their absorption onset energy is blueshifted. We also showed that the physical properties predicted for freestanding g -GaN are preserved when g -GaN is grown on metallic as well as semiconducting substrates. In particular, 3D layered blue phosphorus, being nearly lattice-matched to g -GaN , is found to be an excellent substrate for growing g -GaN . Bilayer, trilayer, and van der Waals crystals can be constructed by a special stacking sequence of g -GaN , and they can display electronic and optical properties that can be controlled by the number of g -GaN layers. In particular, their fundamental band gap decreases and changes from indirect to direct with an increasing number of g -GaN layers.
Van Hove singularities and spectral smearing in high-temperature superconducting H3S
NASA Astrophysics Data System (ADS)
Quan, Yundi; Pickett, Warren E.
2016-03-01
The superconducting phase of hydrogen sulfide at Tc=200 K observed by Drozdov and collaborators at pressures around 200 GPa is simple bcc I m 3 ¯m H3S from a combination of theoretical and experimental confirmation. The various "extremes" that are involved—high pressure implying extreme reduction of volume, extremely high H phonon energy scale around 1400 K, extremely high temperature for a superconductor—necessitates a close look at new issues raised by these characteristics in relation to high Tc itself. First principles methods are applied to analyze the H3S electronic structure, beginning with the effect of sulfur and then focusing on the origin and implications of the two van Hove singularities (vHs) providing an impressive peak in the density of states near the Fermi energy. Implications arising from strong coupling Migdal-Eliashberg theory are studied. It becomes evident that electron spectral density smearing due to virtual phonon emission and absorption must be accounted for in a correct understanding of this unusual material and to obtain accurate theoretical predictions. Means for increasing Tc in H3S -like materials are noted.
van Hove Singularities and Spectral Smearing in High Temperature Superconducting H3S
NASA Astrophysics Data System (ADS)
Quan, Yundi; Pickett, Warren E.
The superconducting phase of hydrogen sulfide at Tc=200 K observed by Drozdov and collaborators at pressures around 200 GPa is simple bcc Im 3 m H3S reopens questions about what is achievable in high Tc. The various ''extremes'' that are involved - pressure, implying extreme reduction of volume, extremely high H phonon energy scale around 1400K, extremely high temperature for a superconductor - necessitate a close look at new issues raised by these characteristics in relation to high Tc. We have applied first principles methods to analyze the H3S electronic structure, particularly the van Hove singularities (vHs) and the effect of sulfur. Focusing on the two closely spaced vHs near the Fermi level that give rise to the impressively sharp peak in the density of states, the implications of strong coupling Migdal-Eliashberg theory are assessed. The electron spectral density smearing due to virtual phonon emission and absorption, as done in earlier days for A15 superconductors, must be included explicitly to obtain accurate theoretical predictions and a correct understanding. Means for increasing Tc in H3S-like materials will be mentioned. NSF DMR Grant 1207622.
Ashton, Gail V; Barnes, David K A; Morley, Simon A; Peck, Lloyd S
2017-12-18
In our recent Current Biology paper [1], we describe an ocean warming experiment in which we manipulated the temperature of panels set on the seafloor to provide a realistic and relevant indication of how benthic communities may change under future ocean warming. We describe increases in growth associated with warming by 1°C, with growth rates up to doubled in some species. The definition of Q 10 is a measure of the temperature sensitivity of an enzymatic reaction rate or a physiological process due to an increase by 10°C; doubling of growth rates with a 1°C change gives Q 10 s around 1,000. In his correspondence, Jaap van der Meer [2] questions our methods and provides alternative analyses which lead him to conclude that our observed increases in growth rate were in fact much lower and in accordance with previous studies from temperate zones. We provide justification for our use of absolute growth rate, justification for not using instantaneous growth rate (or a measure of growth in proportion to previous growth) and encourage the on-going discussion of how to measure and compare growth rates. Copyright © 2017. Published by Elsevier Ltd.
D Haas-Van Alphen Oscillations in the Diluted Magnetic Semiconductor MERCURY(1-X)IRON(X)SELENIUM.
NASA Astrophysics Data System (ADS)
Miller, Michael Montgomery
de Haas-van Alphen measurements are performed in oriented single crystals of Hg_{ rm 1-x}Fe_{rm x}Se in the range 0.0 <=q x <=q 0.05 for 0.5 < T < 4.2K for the magnetic field range 0.2 T < H < 1.0 T. These data can be interpreted in terms of a closed orbit magnetic breakdown model. The effect of Fe on the conduction band is explored in some detail. It is found that the presence of Fe lowers the Dingle temperature in a non-monotonic fashion, i.e., there is a minimum in the Dingle temperature for x ~ 0.001. This effect cannot be attributed to a gross modification of the band structure. Effective mass measurements are in good agreement with those expected for HgSe. However, the presence of Fe is seen to have a subtle effect on the band structure. The overall symmetry of the band structure may be modified by the addition of Fe. Furthermore, the presence of Fe tends to decrease the inversion asymmetry splitting of the conduction band as evidenced in the low-field beating.
Parkin, Gerard
2009-02-17
Deuterium kinetic isotope effects (KIEs) serve as versatile tools to infer details about reaction mechanisms and the nature of transition states, while equilibrium isotope effects (EIEs) associated with the site preferences of hydrogen and deuterium enable researchers to study aspects of molecular structure. Researchers typically interpret primary deuterium isotope effects based on two simple guidelines: (i) the KIE for an elementary reaction is normal (k(H)/k(D) > 1) and (ii) the EIE is dictated by deuterium preferring to be located in the site corresponding to the highest frequency oscillator. In this Account, we evaluate the applicability of these rules to the interactions of H-H and C-H bonds with a transition metal center. Significantly, experimental and computational studies question the predictability of primary EIEs in these systems based on the notion that deuterium prefers to occupy the highest frequency oscillator. In particular, the EIEs for (i) formation of sigma-complexes by coordination of H-H and C-H bonds and (ii) oxidative addition of dihydrogen exhibit unusual temperature dependencies, such that the same system may demonstrate both normal (i.e., K(H)/K(D) > 1) and inverse (i.e., K(H)/K(D) < 1) values. The transition between a normal and inverse EIE indicates that these systems do not demonstrate the typical monotonic variation predicted by the van't Hoff relationship. Instead, the calculated EIEs in these systems are 0 at 0 K, increase to a value greater than 1, and then decrease to unity at infinite temperature. This unusual behavior may be rationalized by considering the individual factors that contribute to the EIE. Specifically, the EIE may be expressed in the form EIE = SYM x MMI x EXC x ZPE (where SYM is the symmetry factor, MMI is the mass-moment of inertia term, EXC is the excitation term, and ZPE is the zero-point energy term), and the distinctive temperature profile results from the inverse ZPE (enthalpy) and normal [SYM x MMI x EXC] (entropy) components opposing each other and having different temperature dependencies. At low temperatures, the ZPE component dominates and the EIE is inverse, while at high temperatures, the [SYM x MMI x EXC] component dominates and the EIE is normal. The inverse nature of the ZPE term is a consequence of the rotational and translational degrees of freedom of RH (R = H, CH(3)) becoming low-energy isotopically sensitive vibrations in the product, while the normal nature of the [SYM x MMI x EXC] component results from deuterium substitution having a larger impact on the moment of inertia of the smaller molecule.
NASA Astrophysics Data System (ADS)
Yuen, D. A.; Monnereau, M.
2005-12-01
There is increasing evidence of superadiabaticity in the lowermost portion of the mantle, from 500 to 700 km above the core-mantle boundary, from both seismology ( e.g Cammarano et al., 2005 ) and mineral physics ( e.g. da Silva et al, 2000 ). This may be caused by a blanketing effect due to a dense chemical layer ( e.g. Kellogg et al., 1999) or an accumulation of recycled crust ( Coltice and Ricard, 1999). The temperature-dependence of radiative thermal conductivity may also contribute to this superadiabatic state ( van den Berg et al., 2004 ). We have found also the post-perovskite( PPV) phase transition may also be a contributor to this phenomenon. From 3-D spherical-shell anelastic compressible convection including a deep phase change, the PPV, we have demonstrated that as long as the CMB temperature, T-cmb is higher than the temperature intercept of the PPV at the CMB pressure , T-i, the horizontally averaged temperature gradient in the the thermal boundary layer is equal to the Clapeyron slope of the PPV i.e. 6.25 K/km for a Clapeyron slope of 8 MPa/K, which corresponds to a core heat-flux of around 5 TW. This superadiabatic effect disappears, as soon as the CMB temperature becomes lower than T-i, due to secular cooling. This phenomenon is restricted to a range of temperature of above T-i. We have found that T-cmb can be as high as 4000 K for this superadiabatic condition to prevail. Such a phenomenon would prevent a double-crossing of the phase change by the horizontally averaged temperature profile, as proposed by Hernlund et al. ( 2005), at least in the range of the physical parameters of PPV transition , as measured by laboratory experiments and derived by ab initio calculations ( Tsuchiya et al., 2004 )
Hashimoto, Y; Tanimoto, K; Ozawa, Y; Murata, T; Ike, Y
2000-04-15
The vancomycin-resistant enterococci GV1, GV2 and GV3, which were isolated from droppings from broiler farms in Japan have been characterized as VanA-type VRE, which express high-level vancomycin resistance (256 or 512 microg ml(-1), MIC) and low-level teicoplanin resistance (1 or 2 microg ml(-1), MIC). The vancomycin resistances were encoded on plasmids. The vancomycin resistance conjugative plasmid pMG2 was isolated from the GV2 strain. The VanA determinant of pMG2 showed the same genetic organization as that of the VanA genes encoded on the representative transposon Tn1546, which comprises vanRSHAXYZ. The nucleotide sequences of all the genes, except the gene related to the vanS gene on Tn1546, were completely identical to the genes encoded on Tn1546. Three amino acid substitutions in the N-terminal region of the deduced VanS were detected in the nucleotide sequence of vanS encoded on pMG2. There were also three amino acid substitutions in the vanS gene of the GV1 and GV3 strains in the same positions as in the vanS gene of pMG2. Vancomycin induced the increased teicoplanin resistance in these strains.
Hölzel, Christina; Bauer, Johann; Stegherr, Eva-Maria; Schwaiger, Karin
2014-04-01
The three chromosomally located clustered genes vanC1, vanXYc, and vanT confer intrinsic resistance to vancomycin and are used for species identification of Enterococcus gallinarum. In this study, 28 strains belonging to the E. gallinarum/casseliflavus group isolated from cloacal swabs from laying hens were screened for the presence of vanC1. As confirmed by species-specific multiplex PCR, 11 vanC1-positive strains were identified as E. gallinarum. Surprisingly, one yellow pigmented strain, verified as E. casseliflavus by species-specific multiplex PCR, was also vanC1 positive; vanXYc and vanT were additionally detectable in this strain. To our knowledge, this is the first report of vanC1, vanXYc, and vanT in E. casseliflavus. The minimum inhibitory concentration of vancomycin was 4 mg/L. Real-time reverse transcription-PCR revealed that none of the clustered genes was expressed in this strain. Even if the genes seem not to be active, there is a certain risk that they will be transferred to other bacteria where they might be functionally expressed. Therefore, it may be advisable to expand the search for vanC1, vanXYc, and vanT from E. gallinarum to other (enterococcal) species. This study confirms that enterococci live up to their name as being reservoir bacteria and should therefore always be closely monitored.
NASA Astrophysics Data System (ADS)
Bogomolov, Alexandr S.; Dozmorov, Nikolay V.; Kochubei, Sergei A.; Baklanov, Alexey V.
2018-01-01
The one-laser two-color resonance enhanced multiphoton ionization REMPI [(1 + 1‧) + 1] and velocity map imaging have been applied to investigate formation of molecular oxygen in excited singlet O2(a1Δg) and ground O2(X3Σg-) states in the photodissociation of van der Waals complex isoprene-oxygen C5H8-O2. These molecules were found to appear in the different rotational states with translational energy varied from a value as low as ∼1 meV to a distribution with temperature of about 940 K. The observed traces of electron recoil in the images of photoions reveal participation of several ionization pathways of the resonantly excited intermediate states of O2.
NASA Astrophysics Data System (ADS)
Ivanov, Rossen I.; Prodanov, Emil M.
2018-01-01
The cosmological dynamics of a quintessence model based on real gas with general equation of state is presented within the framework of a three-dimensional dynamical system describing the time evolution of the number density, the Hubble parameter and the temperature. Two global first integrals are found and examples for gas with virial expansion and van der Waals gas are presented. The van der Waals system is completely integrable. In addition to the unbounded trajectories, stemming from the presence of the conserved quantities, stable periodic solutions (closed orbits) also exist under certain conditions and these represent models of a cyclic Universe. The cyclic solutions exhibit regions characterized by inflation and deflation, while the open trajectories are characterized by inflation in a “fly-by” near an unstable critical point.
Parameterization of the Van Hove dynamic self-scattering law Ss(Q,omega)
NASA Astrophysics Data System (ADS)
Zetterstrom, P.
In this paper we present a model of the Van Hove dynamic scattering law SME(Q, omega) based on the maximum entropy principle which is developed for the first time. The model is aimed to be used in the calculation of inelastic corrections to neutron diffraction data. The model is constrained by the first and second frequency moments and detailed balance, but can be expanded to an arbitrary number of frequency moments. The second moment can be varied by an effective temperature to account for the kinetic energy of the atoms. The results are compared with a diffusion model of the scattering law. Finally some calculations of the inelastic self-scattering for a time-of-flight diffractometer are presented. From this we show that the inelastic self-scattering is very sensitive to the details of the dynamic scattering law.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Yuan, E-mail: yuan.yan@pi1.physik.uni-stuttgart.de, E-mail: martin.dressel@pi1.physik.uni-stuttgart.de; Heintze, Eric; Pracht, Uwe S.
2016-04-25
De Haas–van Alphen measurements evidence that oxygen plasma etching strongly affects the properties of the three-dimensional topological insulator Sb{sub 2}Te{sub 3}. The quantum oscillations in magnetization down to low temperature (T ≥ 2 K) and high magnetic field (B ≤ 7 T) have been systematically investigated using a high-sensitive cantilever torque magnetometer. The effective mass and the oscillation frequency obtained from de Haas–van Alphen measurements first increase and then decrease as the oxygen plasma etching time increases from 0 to 12 min, corresponding to an up- and down-shift of the Dirac point. We establish the cantilever torque magnetometer as a powerful contactless tool to investigate themore » oxygen sensitivity of the surface state in topological insulators.« less
NASA Astrophysics Data System (ADS)
Zubelzu, Sergio; Rodriguez-Sinobas, Leonor; Sobrino, Fernando; Sánchez, Raúl
2017-04-01
Irrigation programing determines when and how much water apply to fulfill the plant water requirements depending of its phenology stage and location, and soil water content. Thus, the amount of water, the irrigation time and the irrigation frequency are variables that must be estimated. Likewise, irrigation programing has been based in approaches such as: the determination of plant evapotranspiration and the maintenance of soil water status between a given interval or soil matrix potential. Most of these approaches are based on the measurements of soil water sensors (or tensiometers) located at specific points within the study area which lack of the spatial information of the monitor variable. The information provided in such as few points might not be adequate to characterize the soil water distribution in irrigation systems with poor water application uniformity and thus, it would lead to wrong decisions in irrigation scheduling. Nevertheless, it can be overcome if the active heating pulses distributed fiber optic temperature measurement (AHFO) is used. This estimates the temperature variation along a cable of fiber optic and then, it is correlated with the soil water content. This method applies a known amount of heat to the soil and monitors the temperature evolution, which mainly depends on the soil moisture content. Thus, it allows estimations of soil water content every 12.5 cm along the fiber optic cable, as long as 1500 m (with 2 % accuracy) , every second. This study presents the results obtained in a green area located at the ETSI Agronómica, Agroalimentaria y Biosistesmas in Madrid. The area is irrigated by an sprinkler irrigation system which applies water with low uniformity. Also, it has deployed and installation of 147 m of fiber optic cable at 15 cm depth. The Distribute Temperature Sensing unit was a SILIXA ULTIMA SR (Silixa Ltd, UK) with spatial and temporal resolution of 0.29 m and 1 s, respectively. In this study, heat pulses of 7 W/m for 2 min were applied uniformly along the fiber optic cable and the thermal response on an adjacent cable was monitored prior, during and after the irrigation event. Data was logged every 0.3 m and every 5 s then, the heating and drying phase integer (called Tcum) was determined following the approach of Sayde et al., (2010). Thus, the infiltration and redistribution of soil water content was fully characterized. The results are promising since the water spatial variability within the soil is known and it can be correlated with the water distribution in the irrigation unit to make better irrigation scheduling in the green area improving water/nutrient/energy efficiency.. Reference Létourneau, G., Caron, J., Anderson, L., & Cormier, J. (2015). Matric potential-based irrigation management of field-grown strawberry: Effects on yield and water use efficiency. Agricultural Water Management, 161, 102-113. Liang, X., Liakos, V., Wendroth, O., & Vellidis, G. (2016). Scheduling irrigation using an approach based on the van Genuchten model. Agricultural Water Management, 176, 170-179. Sayde,C., Gregory, C., Gil-Rodriguez, M., Tufillaro, N., Tyler, S., van de Giesen, N., English, M. Cuenca, R. and Selker, J. S.. 2010. Feasibility of soil moisture monitoring with heated fiber optics. Water Resources Research. Vol.46 (6). DOI: 10.1029/2009WR007846 Stirzaker, R. J., Maeko, T. C., Annandale, J. G., Steyn, J. M., Adhanom, G. T., & Mpuisang, T. (2017). Scheduling irrigation from wetting front depth. Agricultural Water Management, 179, 306-313.
The Local Group in LCDM - Shapes and masses of dark halos
NASA Astrophysics Data System (ADS)
Vera-Ciro, Carlos Andrés
2013-01-01
In dit proefschrift bestuderen we de eigenschappen van donkere materie halo's in het LCDM paradigma. Het eerste deel richt zich op de vorm van de massadistributie van dergelijke objecten. We hebben gevonden dat de vorm van ge"isoleerde Melkweg-achtige donkere materie halo's significant afwijkt van bolsymmetrie. De lokale omgeving heeft invloed op de halo's en deze worden daarbij sterk be"invloed door de manier waarop massa aangroeit. We hebben ook de structuur en de baanstructuur van de satellieten van dergelijke halo's in detail onderzocht. In het algemeen zijn deze objecten sferischer dan de halo's zelf. Ze vertonen ook duidelijke afdrukken van getijdenwerking in zowel hun geometrische vorm als in de baanstructuur. Daarna gebruiken we het aantal massieve objecten rond de Melkweg om limieten te zetten op de totale massa van de donkere materie halo van de Melkweg. De eigenschappen van de massaverdeling van de Melkweg worden verder onderzocht in het laatste hoofdstuk. Daar maken we gebruik van de Sagittarius sterstroom om de vorm van de galactische potentiaal beter te bepalen. We komen met een nieuw model dat rekening houdt met de galactische schijf en de invloed van satellietstelsels en die bovendien consistent is met het LCDM paradigma.
Resonance Raman Spectroscopy of Extreme Nanowires and Other 1D Systems
Smith, David C.; Spencer, Joseph H.; Sloan, Jeremy; McDonnell, Liam P.; Trewhitt, Harrison; Kashtiban, Reza J.; Faulques, Eric
2016-01-01
This paper briefly describes how nanowires with diameters corresponding to 1 to 5 atoms can be produced by melting a range of inorganic solids in the presence of carbon nanotubes. These nanowires are extreme in the sense that they are the limit of miniaturization of nanowires and their behavior is not always a simple extrapolation of the behavior of larger nanowires as their diameter decreases. The paper then describes the methods required to obtain Raman spectra from extreme nanowires and the fact that due to the van Hove singularities that 1D systems exhibit in their optical density of states, that determining the correct choice of photon excitation energy is critical. It describes the techniques required to determine the photon energy dependence of the resonances observed in Raman spectroscopy of 1D systems and in particular how to obtain measurements of Raman cross-sections with better than 8% noise and measure the variation in the resonance as a function of sample temperature. The paper describes the importance of ensuring that the Raman scattering is linearly proportional to the intensity of the laser excitation intensity. It also describes how to use the polarization dependence of the Raman scattering to separate Raman scattering of the encapsulated 1D systems from those of other extraneous components in any sample. PMID:27168195
NASA Astrophysics Data System (ADS)
Cuk, T.; Lu, D. H.; Zhou, X. J.; Shen, Z.-X.; Devereaux, T. P.; Nagaosa, N.
2005-01-01
This issue of pss (b) - basic solid state physics contains a collection of Review Articles on the rather controversially discussed topic of Electron-Phonon Interaction in High-Temperature Superconductors, guest-edited by Miodrag Kuli, Johann Wolfgang Goethe-Universität Frankfurt/Main, Germany, with a Preface written by V. L. Ginzburg and E. G. Maksimov [1].The cover picture, taken from the review [2] by T. Cuk et al., shows plots of the electron-phonon coupling vertex, g2(k, k), where k, k are the initial and final electron momentum for electrons scattered by the bond-buckling phonon B1g (the out-of-phase vibration of the in-plane oxygen) in a tight-binding model of the copper-oxygen plane. The momentum dependence of this vertex, along with the d-wave superconducting gap and the van Hove singularity at the anti-node, accounts for the momentum dependence of the collective mode coupling seen in angle-resolved photoemission data on Bi2212.The present issue also sees the start of our rapid research letters, the fastest peer-reviewed publication medium in solid state physics. For more information see www.pss-rapid.com and the Editorial by the Editor-in-Chief Martin Stutzmann on page 7 [3].
Seol, Chang Ahn; Park, Jeong Su; Sung, Heungsup; Kim, Mi-Na
2014-06-01
A 53-year-old Vietnamese man with liver cirrhosis was transferred from a Vietnamese hospital to our tertiary care hospital in Korea in order to undergo a liver transplantation. Bacteremia due to vanA Enterococcus faecium was diagnosed, and stool surveillance cultures for vancomycin-resistant enterococci (VRE) were positive for both vanA and vanB E. faecium. Pulsed-field gel electrophoresis analysis revealed that the 2 vanA VRE isolates from the blood and stool were clonal, but the vanB VRE was unrelated to the vanA VRE. vanA and vanB VRE were ST64 and ST18, single-allele variations of clonal complex 17, respectively. This is the first case report of vanA VRE bacteremia in a Vietnamese patient and demonstrates the reemergence of vanB VRE since a single outbreak occurred 15years ago in Korea. The reemergence of vanB VRE emphasizes the importance of VRE genotyping to prevent the spread of new VRE strains. Copyright © 2014 Elsevier Inc. All rights reserved.
A magneto-resistance and magnetisation study of TaAs2 semimetal
NASA Astrophysics Data System (ADS)
Harimohan, V.; Bharathi, A.; Rajaraman, R.; Sundar, C. S.
2018-04-01
Here we report on the magneto-transport and magnetization studies on single crystalline samples of TaAs2. The resistivity versus temperature of the single crystalline sample shows a metallic behavior with a large residual resistivity ratio. The TaAs2 crystal shows large magneto resistance at low temperature, reaching 91000% at 2.5K in a field of 15 T and the resistivity versus temperature shows an upturn at low temperature, when measured with increase in magnetic field. Resistivity and magnetization measurements as a function of magnetic field show characteristic Shubnikov de Haas and de Hass van Alphen oscillations, displaying anisotropy with respect to the crystalline direction. The effective mass and Dingle temperature were estimated from the analysis of the oscillation amplitude as a function of temperature and magnetic field. Negative magneto-resistance was not observed with current parallel to the magnetic field direction, suggesting that TaAs2 is not an archetypical Weyl metal.
Helfferich, J; Brisch, J; Meyer, H; Benzerara, O; Ziebert, F; Farago, J; Baschnagel, J
2018-06-01
From equilibrium molecular dynamics (MD) simulations of a bead-spring model for short-chain glass-forming polymer melts we calculate several quantities characterizing the single-monomer dynamics near the (extrapolated) critical temperature [Formula: see text] of mode-coupling theory: the mean-square displacement g 0 (t), the non-Gaussian parameter [Formula: see text] and the self-part of the van Hove function [Formula: see text] which measures the distribution of monomer displacements r in time t. We also determine these quantities from a continuous-time random walk (CTRW) approach. The CTRW is defined in terms of various probability distributions which we know from previous analysis. Utilizing these distributions the CTRW can be solved numerically and compared to the MD data with no adjustable parameter. The MD results reveal the heterogeneous and non-Gaussian single-particle dynamics of the supercooled melt near [Formula: see text]. In the time window of the early [Formula: see text] relaxation [Formula: see text] is large and [Formula: see text] is broad, reflecting the coexistence of monomer displacements that are much smaller ("slow particles") and much larger ("fast particles") than the average at time t, i.e. than [Formula: see text]. For large r the tail of [Formula: see text] is compatible with an exponential decay, as found for many glassy systems. The CTRW can reproduce the spatiotemporal dependence of [Formula: see text] at a qualitative to semiquantitative level. However, it is not quantitatively accurate in the studied temperature regime, although the agreement with the MD data improves upon cooling. In the early [Formula: see text] regime we also analyze the MD results for [Formula: see text] via the space-time factorization theorem predicted by ideal mode-coupling theory. While we find the factorization to be well satisfied for small r, both above and below [Formula: see text] , deviations occur for larger r comprising the tail of [Formula: see text]. The CTRW analysis suggests that single-particle "hops" are a contributing factor for these deviations.
Resonance dispersion interaction of alkali metal atoms in Rydberg states
NASA Astrophysics Data System (ADS)
Kamenski, A. A.; Mokhnenko, S. N.; Ovsyannikov, V. D.
2017-06-01
With the use of second-order perturbation theory in the long-range interatomic interaction for the degenerate states of two Rydberg atoms we have obtained a general formula for the dependence of atomic interaction energy on the interatomic distance R in the presence of the Förster resonance. Inside of the ‘Förster sphere’ (R < RF) this dependence transforms to the formula for electric dipole interaction energy ΔEd - d = C3/R3 and for R > RF it transforms to the formula for the van der Waals interaction energy ΔEVdW = -C6/R6. The van der Waals constant C6 is represented as an expansion in terms of irreducible components which define the dependence on the interatomic axis orientation relative to the quantisation axis of projections M of the total angular momentum J. The numerical values of the irreducible components of tensor C6 were calculated for rubidium atoms in the same Rydberg states |nlJM> with large quantum numbers n. We present the calculated resonance interaction energy of two rubidium atoms in the states |43D5/2M>, whose total energy exceeds by only 8 MHz the total energy of one of the atoms in the state |45P3/2M> and of the other in the state |41F7/2M>.
Dutta, Ireena; Reynolds, Peter E.
2002-01-01
The vanC-2 cluster of Enterococcus casseliflavus ATCC 25788 consisted of five genes (vanC-2, vanXYC-2, vanTC-2, vanRC-2, and vanSC-2) and shared the same organization as the vanC cluster of E. gallinarum BM4174. The proteins encoded by these genes displayed a high degree of amino acid identity to the proteins encoded within the vanC gene cluster. The putative d,d-dipeptidase-d,d-carboxypeptidase, VanXYC-2, exhibited 81% amino acid identity to VanXYC, and VanTC-2 displayed 65% amino acid identity to the serine racemase, VanT. VanRC-2 and VanSC-2 displayed high degrees of identity to VanRC and VanSC, respectively, and contained the conserved residues identified as important to their function as a response regulator and histidine kinase, respectively. Resistance to vancomycin was expressed inducibly in E. casseliflavus ATCC 25788 and required an extended period of induction. Analysis of peptidoglycan precursors revealed that UDP-N-acetylmuramyl-l-Ala-δ-d-Glu-l-Lys-d-Ala-d-Ser could not be detected until several hours after the addition of vancomycin, and its appearance coincided with the resumption of growth. The introduction of additional copies of the vanTC-2 gene, encoding a putative serine racemase, and the presence of supplementary d-serine in the growth medium both significantly reduced the period before growth resumed after addition of vancomycin. This suggested that the availability of d-serine plays an important role in the induction process. PMID:12234834
Calibration of Automatically Generated Items Using Bayesian Hierarchical Modeling.
ERIC Educational Resources Information Center
Johnson, Matthew S.; Sinharay, Sandip
For complex educational assessments, there is an increasing use of "item families," which are groups of related items. However, calibration or scoring for such an assessment requires fitting models that take into account the dependence structure inherent among the items that belong to the same item family. C. Glas and W. van der Linden…
Community Colleges Are Key to "Green" Jobs, Activist Says
ERIC Educational Resources Information Center
McCandlish, Laura
2008-01-01
This article reports on the message of an environmental activist during a speech last week at a conference of the National Council for Workforce Education. According to the environmental activist Van Jones, community colleges play a pivotal role in pushing the fossil-fuel-dependent economy toward a reliance on renewable energy. A community…
The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals
Mudd, G. W.; Molas, M. R.; Chen, X.; Zólyomi, V.; Nogajewski, K.; Kudrynskyi, Z. R.; Kovalyuk, Z. D.; Yusa, G.; Makarovsky, O.; Eaves, L.; Potemski, M.; Fal’ko, V. I.; Patanè, A.
2016-01-01
The electronic band structure of van der Waals (vdW) layered crystals has properties that depend on the composition, thickness and stacking of the component layers. Here we use density functional theory and high field magneto-optics to investigate the metal chalcogenide InSe, a recent addition to the family of vdW layered crystals, which transforms from a direct to an indirect band gap semiconductor as the number of layers is reduced. We investigate this direct-to-indirect bandgap crossover, demonstrate a highly tuneable optical response from the near infrared to the visible spectrum with decreasing layer thickness down to 2 layers, and report quantum dot-like optical emissions distributed over a wide range of energy. Our analysis also indicates that electron and exciton effective masses are weakly dependent on the layer thickness and are significantly smaller than in other vdW crystals. These properties are unprecedented within the large family of vdW crystals and demonstrate the potential of InSe for electronic and photonic technologies. PMID:28008964
The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals.
Mudd, G W; Molas, M R; Chen, X; Zólyomi, V; Nogajewski, K; Kudrynskyi, Z R; Kovalyuk, Z D; Yusa, G; Makarovsky, O; Eaves, L; Potemski, M; Fal'ko, V I; Patanè, A
2016-12-23
The electronic band structure of van der Waals (vdW) layered crystals has properties that depend on the composition, thickness and stacking of the component layers. Here we use density functional theory and high field magneto-optics to investigate the metal chalcogenide InSe, a recent addition to the family of vdW layered crystals, which transforms from a direct to an indirect band gap semiconductor as the number of layers is reduced. We investigate this direct-to-indirect bandgap crossover, demonstrate a highly tuneable optical response from the near infrared to the visible spectrum with decreasing layer thickness down to 2 layers, and report quantum dot-like optical emissions distributed over a wide range of energy. Our analysis also indicates that electron and exciton effective masses are weakly dependent on the layer thickness and are significantly smaller than in other vdW crystals. These properties are unprecedented within the large family of vdW crystals and demonstrate the potential of InSe for electronic and photonic technologies.
Kresse, Timothy M.; Westerman, Drew A.; Hart, Rheannon M.
2015-01-01
The hydrologic and geochemical data gathered for this study provide a qualitative assessment of the potential of the Arkansas River Valley alluvial aquifer as a source of public water supply in the Van Buren area. Results indicate minimal influx of water from the Arkansas River, and recharge to the aquifer appears to be dominantly by infiltration of precipitation through overlying alluvium. If vertical wells are used as a source of public water supply, then several wells will have to be used in combination at relatively low pumping rates and placed in areas with a greater percent sand. Use of a horizontal well configuration near the river to increase production may depend on infiltration of river water to supplement water removed from storage, especially where areas of lower permeability sediments might be encountered within the surrounding alluvium. If a poor hydraulic connection exists between the river and the alluvium, as indicated by this study, then production will depend on ample precipitation and recharge throughout the year and groundwater storage sufficient to prevent declining water levels where pumping rates exceed recharge.
Magnetic quantum oscillations in doped antiferromagnets
NASA Astrophysics Data System (ADS)
Kabanov, V. V.
2017-10-01
Energy spectrum of electrons (holes) doped into two-dimensional (2D) antiferromagnetic (AF) semiconductors is quantized in an external magnetic field of arbitrary direction. A peculiar dependence of de Haas-van Alphen (dHvA) magneto-oscillation amplitudes on the azimuthal in-plane angle from the magnetization direction and on the polar angle from the out-of-plane direction is found. The angular dependence of the amplitude is different if the measurements are performed in the field above and below of the spin-flop field.
Hughes, C S; Longo, E; Phillips-Jones, M K; Hussain, R
2017-08-01
A-type resistance towards "last-line" glycopeptide antibiotic vancomycin in the leading hospital acquired infectious agent, the enterococci, is the most common in the UK. Resistance is regulated by the VanR A S A two-component system, comprising the histidine sensor kinase VanS A and the partner response regulator VanR A . The nature of the activating ligand for VanS A has not been identified, therefore this work sought to identify and characterise ligand(s) for VanS A . In vitro approaches were used to screen the structural and activity effects of a range of potential ligands with purified VanS A protein. Of the screened ligands (glycopeptide antibiotics vancomycin and teicoplanin, and peptidoglycan components N-acetylmuramic acid, D-Ala-D-Ala and Ala-D-y-Glu-Lys-D-Ala-D-Ala) only glycopeptide antibiotics vancomycin and teicoplanin were found to bind VanS A with different affinities (vancomycin 70μM; teicoplanin 30 and 170μM), and were proposed to bind via exposed aromatic residues tryptophan and tyrosine. Furthermore, binding of the antibiotics induced quicker, longer-lived phosphorylation states for VanS A , proposing them as activators of type A vancomycin resistance in the enterococci. Copyright © 2017 Diamond Light Source Ltd. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sap, Merel; Speelman, Eveline N.; Lewan, Michael D.; Sinninghe Damsté, Jaap S.; Reichart, Gert-Jan
2010-05-01
Enormous blooms of the free-floating freshwater fern Azolla occurred within the Arctic Basin during an extended period of ~1.2 Ma during the middle Eocene (Brinkhuis et al. 2006; Speelman et al., GB, 2009). The sustained growth of Azolla, currently ranking among the fastest growing plants on Earth, in a major anoxic basin may have substantially contributed to decreasing atmospheric CO2 levels by burial of Azolla-derived organic matter. Speelman et al. (OG, 2009) reported biomarkers for Azolla (1,w20 C32 - C36 diols, structurally related C29 ω20,ω21 diols, C29 1,20,21 triols, C29 dihydroxy fatty acids as well as a series of wax esters containing these mono- and dihydroxy lipids), which can be used to reconstruct palaeo-environmental conditions. Here we assess the thermal stability of these compounds, to extend their biomarker potential. We specifically focused on the thermal stability of the Azolla biomarkers using hydrous pyrolysis in order to determine which burial conditions allow reconstruction of past occurrences of Azolla. In addition, hydrous pyrolysis was also performed on samples from the Eocene Arctic Ocean (ACEX core), to test if and how the biomarkers change under higher temperatures and pressures in situ. During hydrous pyrolysis, the biomass was heated under high pressure at temperatures ranging between 220 and 365°C for 72 hours. Four experiments were also run using different durations to explore the kinetics of biomarker degradation at specific temperatures. First results indicate that the Azolla specific diols are still present at 220°C, while the corresponding wax esters are already absent. At 300°C all Azolla specific biomarkers are destroyed. More specific determination of the different biomarkers' stability and kinetics would potentially allow the reconstruction of the temperature and pressure history of Azolla deposits. Literature: • Brinkhuis, H., Schouten, S., Collinson, M. E., Sluijs, A., Sinninghe Damste, J. S., Dickens, G. R., Huber, M., Cronin, T. M., Onodera, J., Takahashi, K., Bujak, J. P., Stein, R., van der Burgh, J., Eldrett, J. S., Harding, I. C., Lotter, A. F., Sangiorgi, F., van Konijnenburg-van Cittert, H., de Leeuw, J. W., Matthiessen, J., Backman, J., Moran, K. (2006), Episodic fresh surface waters in the Eocene Arctic Ocean, Nature 441, 606-609. • Speelman, E. N., M. M. L. van Kempen, J. Barke, H. Brinkhuis, G. J. Reichart, A. J. P. Smolders, J. G. M. Roelofs, F. Sangiorgi, J. W. de Leeuw, A. F. Lotter, J. S. Sinnighe Damsté (2009), The Eocene Arctic Azolla bloom: environmental conditions, productivity and carbon drawdown, Geobiology, 7, 155-170. • Speelman, E. N., G.-J. Reichart, J.W. de Leeuw, W. I. C. Rijpstra, Jaap S. Sinnighe Damsté (2009), Biomarker lipids of the freshwater fern Azolla and its fossil counterpart from the Eocene Arctic Ocean, Organic Geochemistry, 40, 628-637.
Morrison, Thomas F.
1925-01-01
1. A method has been described whereby the intensity of the light of luminous bacteria may be measured in a quantitative manner. 2. It is pointed out that the temperature coefficients for light intensity do not follow the van't Hoff rule, but are higher and vary with each 10° temperature interval. 3. From a comparison with other data it is found that the process is not a simple one, but that the observed curve is the resultant of several reactions which proceed simultaneously. 4. The discrepancies in the temperature coefficients in the neighborhood of the "optimum temperature" may be due to a process of coagulation of the colloidal particles of the enzyme. This coagulation will tend to cause a deviation of the curve away from that normal for chemical reactions. PMID:19872179
Mukkur, T K
1978-01-01
The effect of varying the temperature over a wide range (4--60 degrees C) on the binding of epsilon-dinitrophenyl-L-lysine to bovine colostral anti-dinitrophenyl immunoglobulin G2 yielded a non-linear van't Hoff plot. The extent of curvature was indicative of a large positive heat-capacity change, and the thermodynamic parameters, calculated by using a non-linear least squares computer procedure, revealed an enthalpy--entropy-compensation mechanism for hapten-antibody binding. The enthalpy factor was found to be the primary contributor for the complex-formation at low temperatures, but at increasing temperatures the entropy factor assumed greater importance. At physiological temperature (39 degrees C), the entropy factor was the major contributor to the free energy of reaction. PMID:687378
The descent into glass formation in polymer fluids.
Freed, Karl F
2011-03-15
Glassy materials have been fundamental to technology since the dawn of civilization and remain so to this day: novel glassy systems are currently being developed for applications in energy storage, electronics, food, drugs, and more. Glass-forming fluids exhibit a universal set of transitions beginning at temperatures often in excess of twice the glass transition temperature T(g) and extending down to T(g), below which relaxation becomes so slow that systems no longer equilibrate on experimental time scales. Despite the technological importance of glasses, no prior theory explains this universal behavior nor describes the huge variations in the properties of glass-forming fluids that result from differences in molecular structure. Not surprisingly, the glass transition is currently regarded by many as the deepest unsolved problem in solid state theory. In this Account, we describe our recently developed theory of glass formation in polymer fluids. Our theory explains the origin of four universal characteristic temperatures of glass formation and their dependence on monomer-monomer van der Waals energies, conformational energies, and pressure and, perhaps most importantly, on molecular details, such as monomer structure, molecular weight, size of side groups, and so forth. The theory also provides a molecular explanation for fragility, a parameter that quantifies the rate of change with temperature of the viscosity and other dynamic mechanical properties at T(g). The fragility reflects the fluid's thermal sensitivity and determines the manner in which glass-formers can be processed, such as by extrusion, casting, or inkjet spotting. Specifically, the theory describes the change in thermodynamic properties and fragility of polymer glasses with variations in the monomer structure, the rigidity of the backbone and side groups, the cohesive energy, and so forth. The dependence of the structural relaxation time at lower temperatures emerges from the theory as the Vogel-Fulcher equation, whereas pressure and concentration analogs of the Vogel-Fulcher expression follow naturally from the theory with no additional assumptions. The computed dependence of T(g) and fragility on the length of the side group in poly(α-olefins) agrees quite well with observed trends, demonstrating that the theory can be utilized, for instance, to guide the tailoring of T(g) and the fragility of glass-forming polymer fluids in the fabrication of new materials. Our calculations also elucidate the molecular characteristics of small-molecule diluents that promote antiplasticization, a lowering of T(g) and a toughening of the material. © 2011 American Chemical Society
Zheng, Zhong; Dutton, P. Leslie; Gunner, M. R.
2010-01-01
Quinones play important roles in mitochondrial and photosynthetic energy conversion acting as intramembrane, mobile electron and proton carriers between catalytic sites in various electron transfer proteins. They display different affinity, selectivity, functionality and exchange dynamics in different binding sites. The computational analysis of quinone binding sheds light on the requirements for quinone affinity and specificity. The affinities of ten oxidized, neutral benzoquinones (BQs) were measured for the high affinity QA site in the detergent solubilized Rhodobacter sphaeroides bacterial photosynthetic reaction center. Multi-Conformation Continuum Electrostatics (MCCE) was then used to calculate their relative binding free energies by Grand Canonical Monte Carlo sampling with a rigid protein backbone, flexible ligand and side chain positions and protonation states. Van der Waals and torsion energies, Poisson-Boltzmann continuum electrostatics and accessible surface area dependent ligand-solvent interactions are considered. An initial, single cycle of GROMACS backbone optimization improves the match with experiment as do coupled ligand and side chain motions. The calculations match experiment with an RMSD of 2.29 and a slope of 1.28. The affinities are dominated by favorable protein-ligand van der Waals rather than electrostatic interactions. Each quinone appears in a closely clustered set of positions. Methyl and methoxy groups move into the same positions as found for the native quinone. Difficulties putting methyls into methoxy sites are observed. Calculations using an SAS dependent implicit van der Waals interaction smoothed out small clashes, providing a better match to experiment with a RMSD of 0.77 and a slope of 0.97. PMID:20607696
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaltak, Merzuk; Fernandez-Serra, Marivi; Hybertsen, Mark S.
The phases of A 2Mn 8O 16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3d electrons are more explicitly considered with the DFT + Umore » approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn 3+ centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Lastly, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.« less
Kaltak, Merzuk; Fernandez-Serra, Marivi; Hybertsen, Mark S.
2017-12-01
The phases of A 2Mn 8O 16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3d electrons are more explicitly considered with the DFT + Umore » approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn 3+ centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Lastly, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.« less
Distribution and Kinetics of Lipoprotein-Bound Lipoteichoic Acid
Levels, Johannes H. M.; Abraham, Philip R.; van Barreveld, Erik P.; Meijers, Joost C. M.; van Deventer, Sander J. H.
2003-01-01
Lipoteichoic acid (LTA), a major cell wall component of gram-positive bacteria, is an amphipathic anionic glycolipid with structural similarities to lipopolysaccharide (LPS) from gram-negative bacteria. LTA has been implicated as one of the primary immunostimulatory components that may trigger the systemic inflammatory response syndrome. Plasma lipoproteins have been shown to sequester LPS, which results in attenuation of the host response to infection, but little is known about the LTA binding characteristics of plasma lipid particles. In this study, we have examined the LTA binding capacities and association kinetics of the major lipoprotein classes under simulated physiological conditions in human whole blood (ex vivo) by using biologically active, fluorescently labeled LTA and high-performance gel permeation chromatography. The average distribution of an LTA preparation from Staphylococcus aureus in whole blood from 10 human volunteers revealed that >95% of the LTA was associated with total plasma lipoproteins in the following proportions: high-density lipoprotein (HDL), 68% ± 10%; low-density lipoprotein (LDL), 28% ± 8%; and very low density lipoprotein (VLDL), 4% ± 5%. The saturation capacity of lipoproteins for LTA was in excess of 150 μg/ml. The LTA distribution was temperature dependent, with an optimal binding between 22 and 37°C. The binding of LTA by lipoproteins was essentially complete within 10 min and was followed by a subsequent redistribution from HDL and VLDL to LDL. We conclude that HDL has the highest binding capacity for LTA and propose that the loading and redistribution of LTA among plasma lipoproteins is a specific process that closely resembles that previously described for LPS (J. H. M. Levels, P. R. Abraham, A. van den Ende, and S. J. H. van Deventer, Infect. Immun. 68:2821-2828, 2001). PMID:12761109
NASA Astrophysics Data System (ADS)
Kaltak, Merzuk; Fernández-Serra, Marivi; Hybertsen, Mark S.
2017-12-01
The phases of A2Mn8O16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3 d electrons are more explicitly considered with the DFT + U approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn3 + centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Finally, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.
Puri, Sarita; Chaudhuri, Tapan K
2017-03-01
The conformation and thermodynamic stability of monomeric GroEL were studied by CD and fluorescence spectroscopy. GroEL denaturation with urea and dilution in buffer leads to formation of a folded GroEL monomer. The monomeric nature of this protein was verified by size-exclusion chromatography and native PAGE. It has a well-defined secondary and tertiary structure, folding activity (prevention of aggregation) for substrate protein and is resistant to proteolysis. Being a properly folded and reversibly refoldable, monomeric GroEL is amenable for the study of thermodynamic stability by unfolding transition methods. We present the equilibrium unfolding of monomeric GroEL as studied by urea and heat mediated unfolding processes. The urea mediated unfolding shows two transitions and a single transition in the heat mediated unfolding process. In the case of thermal unfolding, some residual structure unfolds at a higher temperature (70-75°C). The process of folding/unfolding is reversible in both cases. Analysis of folding/unfolding data provides a measure of ΔG NU H 2 O , T m , ΔH van and ΔS van of monomeric GroEL. The thermodynamic stability parameter ΔG NU H 2 O is similar with both CD and intrinsic fluorescence i.e. 7.10±1.0kcal/mol. The calculated T m , ΔH van and ΔS van from the thermal unfolding transition is 46±0.5°C, 43.3±0.1kcal/mol and 143.9±0.1cal/mol/k respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Guardabassi, L.; Christensen, H.; Hasman, H.; Dalsgaard, A.
2004-01-01
Genes homologous to enterococcal glycopeptide resistance genes vanA and vanB were found in glycopeptide-resistant Paenibacillus and Rhodococcus strains from soil. The putative d-Ala:d-Lac ligase genes in Paenibacillus thiaminolyticus PT-2B1 and Paenibacillus apiarius PA-B2B were closely related to vanA (92 and 87%) and flanked by genes homologous to vanH and vanX in vanA operons. PMID:15561881
Guardabassi, L; Christensen, H; Hasman, H; Dalsgaard, A
2004-12-01
Genes homologous to enterococcal glycopeptide resistance genes vanA and vanB were found in glycopeptide-resistant Paenibacillus and Rhodococcus strains from soil. The putative D-Ala:D-Lac ligase genes in Paenibacillus thiaminolyticus PT-2B1 and Paenibacillus apiarius PA-B2B were closely related to vanA (92 and 87%) and flanked by genes homologous to vanH and vanX in vanA operons.
Dutta, Ireena; Reynolds, Peter E
2002-10-01
The vanC-2 cluster of Enterococcus casseliflavus ATCC 25788 consisted of five genes (vanC-2, vanXY(C-2), vanT(C-2), vanR(C-2), and vanS(C-2)) and shared the same organization as the vanC cluster of E. gallinarum BM4174. The proteins encoded by these genes displayed a high degree of amino acid identity to the proteins encoded within the vanC gene cluster. The putative D,D-dipeptidase-D,D-carboxypeptidase, VanXY(C-2), exhibited 81% amino acid identity to VanXY(C), and VanT(C-2) displayed 65% amino acid identity to the serine racemase, VanT. VanR(C-2) and VanS(C-2) displayed high degrees of identity to VanR(C) and VanS(C), respectively, and contained the conserved residues identified as important to their function as a response regulator and histidine kinase, respectively. Resistance to vancomycin was expressed inducibly in E. casseliflavus ATCC 25788 and required an extended period of induction. Analysis of peptidoglycan precursors revealed that UDP-N-acetylmuramyl-L-Ala-delta-D-Glu-L-Lys-D-Ala-D-Ser could not be detected until several hours after the addition of vancomycin, and its appearance coincided with the resumption of growth. The introduction of additional copies of the vanT(C-2) gene, encoding a putative serine racemase, and the presence of supplementary D-serine in the growth medium both significantly reduced the period before growth resumed after addition of vancomycin. This suggested that the availability of D-serine plays an important role in the induction process.
NASA Technical Reports Server (NTRS)
Aryan, Homayon; Sibeck, David; Balikhin, Michael; Agapitov, Oleksiy; Kletzing, Craig
2016-01-01
Highly energetic electrons in the Earths Van Allen radiation belts can cause serious damage to spacecraft electronic systems and affect the atmospheric composition if they precipitate into the upper atmosphere. Whistler mode chorus waves have attracted significant attention in recent decades for their crucial role in the acceleration and loss of energetic electrons that ultimately change the dynamics of the radiation belts. The distribution of these waves in the inner magnetosphere is commonly presented as a function of geomagnetic activity. However, geomagnetic indices are nonspecific parameters that are compiled from imperfectly covered ground based measurements. The present study uses wave data from the two Van Allen Probes to present the distribution of lower band chorus waves not only as functions of single geomagnetic index and solar wind parameters but also as functions of combined parameters. Also the current study takes advantage of the unique equatorial orbit of the Van Allen Probes to estimate the average scale size of chorus wave packets, during close separations between the two spacecraft, as a function of radial distance, magnetic latitude, and geomagnetic activity, respectively. Results show that the average scale size of chorus wave packets is approximately 13002300 km. The results also show that the inclusion of combined parameters can provide better representation of the chorus wave distributions in the inner magnetosphere and therefore can further improve our knowledge of the acceleration and loss of radiation belt electrons.
Rutter, W Cliff; Burgess, David S
2018-07-01
Acute kidney injury (AKI) increases during empirical antimicrobial therapy with the combination of piperacillin-tazobactam (TZP) and vancomycin (VAN) compared to the number of incidences with monotherapy or the combination of cefepime and VAN. Limited data regarding the impact of meropenem (MEM) combined with VAN exist. This study examined the AKI incidence among patients treated with MEM plus VAN (MEM+VAN) or TZP+VAN. Data were collected from the University of Kentucky Center for Clinical and Translational Science Enterprise Data Trust from September 2007 through October 2015. Adults without previous renal disease who received MEM+VAN or TZP+VAN for at least 2 days were included. AKI was assessed using risk, injury, failure, loss, and end-stage (RIFLE) criteria. Inverse probability of treatment weighting was utilized to control for differences between groups. In total, 10,236 patients met inclusion criteria, with 9,898 receiving TZP+VAN and 338 receiving MEM+VAN. AKI occurred in 15.4% of MEM+VAN patients and in 27.4% of TZP+VAN patients ( P < 0.001). TZP+VAN was associated with increased AKI compared to the level with MEM+VAN (odds ratio [OR], 2.53; 95% confidence interval [CI], 1.82 to 3.52), after controlling for confounders. Use of MEM+VAN should be considered an appropriate alternative therapy to TZP+VAN if nephrotoxicity is a major concern. The results of this study demonstrate that judicial use of TZP+VAN for empirical coverage of infection is needed. Copyright © 2018 American Society for Microbiology.
Li, Xi-Ying; van Achterberg, Cornelis; Tan, Ji-Cai
2013-01-01
Abstract The species of the subfamily Opiinae (Hymenoptera: Braconidae) from Hunan (Oriental China) are revised and illustrated. Thirty-six new species are described: Apodesmia bruniclypealis Li & van Achterberg, sp. n., Apodesmia melliclypealis Li & van Achterberg, sp. n., Areotetes albiferus Li & van Achterberg, sp. n., Areotetes carinuliferus Li & van Achterberg, sp. n., Areotetes striatiferus Li & van Achterberg, sp. n., Coleopioides diversinotum Li & van Achterberg, sp. n., Coleopioides postpectalis Li & van Achterberg, sp. n., Fopius dorsopiferus Li, van Achterberg & Tan, sp. n., Indiopius chenae Li & van Achterberg, sp. n., Opiognathus aulaciferus Li & van Achterberg, sp. n., Opiognathus brevibasalis Li & van Achterberg, sp. n., Opius crenuliferus Li & van Achterberg, sp. n., Opius malarator Li, van Achterberg & Tan, sp. n., Opius monilipalpis Li & van Achterberg, sp. n., Opius pachymerus Li & van Achterberg, sp. n., Opius songi Li & van Achterberg, sp. n., Opius youi Li & van Achterberg, sp. n., Opius zengi Li & van Achterberg, sp. n., Phaedrotoma acuticlypeata Li & van Achterberg, sp. n., Phaedrotoma angiclypeata Li & van Achterberg, sp. n., Phaedrotoma antenervalis Li & van Achterberg, sp. n., Phaedrotoma depressiclypealis Li & van Achterberg, sp. n., Phaedrotoma flavisoma Li & van Achterberg, sp. n., Phaedrotoma nigrisoma Li & van Achterberg, sp. n., Phaedrotoma protuberator Li & van Achterberg, sp. n., Phaedrotoma rugulifera Li & van Achterberg, sp. n., Li & van Achterberg,Phaedrotoma striatinota Li & van Achterberg, sp. n., Phaedrotoma vermiculifera Li & van Achterberg, sp. n., Rhogadopsis latipennis Li & van Achterberg, sp. n., Rhogadopsis longicaudifera Li & van Achterberg, sp. n., Rhogadopsis maculosa Li, van Achterberg & Tan, sp. n., Rhogadopsis obliqua Li & van Achterberg, sp. n., Rhogadopsis sculpturator Li & van Achterberg, sp. n., Utetes longicarinatus Li & van Achterberg, sp. n. and Xynobius notauliferus Li & van Achterberg, sp. n. Areotetes van Achterberg & Li, gen. n. (type species: Areotetes carinuliferus sp. n.) and Coleopioides van Achterberg & Li, gen. n. (type species: Coleopioides postpectalis sp. n. are described. All species are illustrated and keyed. In total 30 species of Opiinae are sequenced and the cladograms are presented. Neopius Gahan, 1917, Opiognathus Fischer, 1972, Opiostomus Fischer, 1972, and Rhogadopsis Brèthes, 1913, are treated as a valid genera based on molecular and morphological differences. Opius vittata Chen & Weng, 2005 (not Opius vittatus Ruschka, 1915), Opius ambiguus Weng & Chen, 2005 (not Wesmael, 1835) and Opius mitis Chen & Weng, 2005 (not Fischer, 1963) are primary homonymsandarerenamed into Phaedrotoma depressa Li & van Achterberg, nom. n., Opius cheni Li & van Achterberg, nom. n. andOpius wengi Li & van Achterberg, nom. n., respectively. Phaedrotoma terga (Chen & Weng, 2005) comb. n.,Diachasmimorpha longicaudata (Ashmead, 1905) and Biosteres pavitita Chen & Weng, 2005, are reported new for Hunan, Opiostomus aureliae (Fischer, 1957) comb. n. is new for China and Hunan; Xynobius maculipennis(Enderlein, 1912) comb. n. is new for Hunan and continental China and Rhogadopsis longuria (Chen & Weng, 2005) comb. n. is new for Hunan. The following new combinations are given: Apodesmia puncta (Weng & Chen, 2005) comb. n., Apodesmia tracta (Weng & Chen, 2005) comb. n., Areotetes laevigatus (Weng & Chen, 2005) comb. n., Phaedrotoma dimidia (Chen & Weng, 2005) comb. n., Phaedrotoma improcera (Weng & Chen, 2005) comb. n., Phaedrotoma amputata (Weng & Chen, 2005) comb. n., Phaedrotoma larga (Weng & Chen, 2005) comb. n., Phaedrotoma osculas (Weng & Chen, 2005) comb. n., Phaedrotoma postuma (Chen & Weng, 2005) comb. n., Phaedrotoma rugulosa (Chen & Weng, 2005) comb. n., Phaedrotoma tabularis (Weng & Chen, 2005) comb. n., Rhogadopsis apii (Chen & Weng, 2005) comb. n., Rhogadopsis dimidia (Chen & Weng, 2005) comb. n., Rhogadopsis diutia (Chen & Weng, 2005) comb. n., Rhogadopsis longuria (Chen & Weng, 2005) comb. n., Rhogadopsis pratellae(Weng & Chen, 2005) comb. n., Rhogadopsis pratensis (Weng & Chen, 2005) comb. n., Rhogadopsis sculpta (Chen & Weng, 2005) comb. n., Rhogadopsis sulcifer (Fischer, 1975) comb. n., Rhogadopsis tabidula(Weng & Chen, 2005) comb. n., Xynobius complexus (Weng & Chen, 2005) comb. n., Xynobius indagatrix (Weng & Chen, 2005) comb. n., Xynobius multiarculatus (Chen & Weng, 2005) comb. n. The following (sub)genera are synonymised: Snoflakopius Fischer, 1972, Jucundopius Fischer, 1984, Opiotenes Fischer, 1998, and Oetztalotenes Fischer, 1998, with Opiostomus Fischer, 1971; Xynobiotenes Fischer, 1998, with Xynobius Foerster, 1862; Allotypus Foerster, 1862, Lemnaphilopius Fischer, 1972, Agnopius Fischer, 1982, and Cryptognathopius Fischer, 1984, with Apodesmia Foerster, 1862; Nosopoea Foerster, 1862, Tolbia Cameron, 1907, Brachycentrus Szépligeti, 1907, Baeocentrum Schulz, 1911, Hexaulax Cameron, 1910, Coeloreuteus Roman, 1910, Neodiospilus Szépligeti, 1911, Euopius Fischer, 1967, Gerius Fischer, 1972, Grimnirus Fischer, 1972, Hoenirus Fischer, 1972, Mimirus Fischer, 1972, Gastrosema Fischer, 1972, Merotrachys Fischer, 1972, Phlebosema Fischer, 1972, Neoephedrus Samanta, Tamili, Saha & Raychaudhuri, 1983, Adontopius Fischer, 1984, Kainopaeopius Fischer, 1986, Millenniopius Fischer, 1996, and Neotropopius Fischer, 1999, with Phaedrotoma Foerster, 1862. PMID:23653521
Metastable Transition Metal Alloys Produced by Rapid Quenching: Structure and Properties.
1984-01-01
three amorphous o .9-f 00 alloys which span the rare earth series: Ce6sA13 5 , - Pr65 A13s end Dy6SA135. Direct comparisons can be made with the...circles - saiple cooled below ver’,us temperature, T. A sinilar plot was ob:ained the orderiij temperature in zero magnetic field, for Pr65 A135 . 72...New York. 16R. B. Roberts. Philos. Mag. 36. 91 (1977). 1969), Vol. 23. p. 183 . 17J. G. Cook. M. L. Laubitz. and M. P. Van der Meer, J. 23See K. H
Topological nature of the node-arc semimetal PtSn4 probed by de Haas-van Alphen quantum oscillations
NASA Astrophysics Data System (ADS)
Wang, Y. J.; Liang, D. D.; Ge, M.; Yang, J.; Gong, J. X.; Luo, L.; Pi, L.; Zhu, W. K.; Zhang, C. J.; Zhang, Y. H.
2018-04-01
Dirac node arc semimetal state is a new topological quantum state which is proposed to exist in PtSn4 (Wu et al 2016 Dirac node arcs in PtSn4 Nat. Phys. 12 667–71). We present a systematic de Haas-van Alphen quantum oscillation study on this compound. Two intriguing oscillation branches, i.e. F 1 and F 2, are detected in the fast Fourier transformation spectra, both of which are characterized to possess tiny effective mass and ultrahigh quantum mobility. And the F 2 branch exhibits an angle-dependent nontrivial Berry phase. The features are consistent with the existence of the node arc semimetal state and shed new light on its complicated Fermi surfaces and topological nature.
NASA Astrophysics Data System (ADS)
Yao, Yanbo; Duan, Xiaoshuang; Luo, Jiangjiang; Liu, Tao
2017-11-01
The use of the van der Pauw (VDP) method for characterizing and evaluating the piezoresistive behavior of carbon nanomaterial enabled piezoresistive sensors have not been systematically studied. By using single-wall carbon nanotube (SWCNT) thin films as a model system, herein we report a coupled electrical-mechanical experimental study in conjunction with a multiphysics finite element simulation as well as an analytic analysis to compare the two-probe and VDP testing configuration in evaluating the piezoresistive behavior of carbon nanomaterial enabled piezoresistive sensors. The key features regarding the sample aspect ratio dependent piezoresistive sensitivity or gauge factor were identified for the VDP testing configuration. It was found that the VDP test configuration offers consistently higher piezoresistive sensitivity than the two-probe testing method.
Nonlinearity of resistive impurity effects on van der Pauw measurements
NASA Astrophysics Data System (ADS)
Koon, D. W.
2006-09-01
The dependence of van der Pauw resistivity measurements on local macroscopic inhomogeneities is shown to be nonlinear. A resistor grid network models a square laminar specimen, enabling the investigation of both positive and negative local perturbations in resistivity. The effect of inhomogeneity is measured both experimentally, for an 11×11 grid, and computationally, for both 11×11 and 101×101 grids. The maximum "shortlike" perturbation produces 3.1±0.2 times the effect predicted by the linear approximation, regardless of its position within the specimen, while all "openlike" perturbations produce a smaller effect than predicted. An empirical nonlinear correction for f(x ,y) is presented which provides excellent fit over the entire range of both positive and negative perturbations for the entire specimen.
NASA Astrophysics Data System (ADS)
Stoffelen, Adrianus Cornelis Maria
1996-10-01
Een veelheid aan meteorologische metingen is dagelijks beschikbaar. De meeste van deze waarnemingen bevinden zich echter boven land, en met name windwaarnemingen boven de (Noord Atlantische) oceaan zijn schaars. Bij een westelijke luchtstroming is dit een duidelijke beperking voor de weers- en golfverwachtingen ten behoeve van Nederland. Juist dan is het gevaar voor bijvoorbeeld storm of overstroming het grootst. Ook in het aardse klimaatsysteem speelt de wind aan het oppervlak een grote rol en is de belangrijkste factor voor de aandrijving van de oceaancirculatie. De oceaancirculatie op zijn beurt is cruciaal voor de verschijnselen die samenhangen met bijvoorbeeld El Niño. Dit proefschift gaat over het scatterometer instrument dat vanuit de ruimte, zelfs onder een wolkendek, nauwkeurige en betrouwbare informatie geeft over de wind aan het oceaanoppervlak met een hoge mate van ruimtelijke consistentie. Tijdens de tweede wereldoorlog werden radars aan boord van schepen veelvuldig gebruikt voor de opsporing van vijandige vaartuigen. Hierbij werd vastgesteld dat de detectie slechter werd naarmate de wind aan het zeeoppervlak groter was. Proefondervindelijk was hiermee het principe van een wind scatterometer aangetoond. Al snel ontwikkelde zich dan ook de idee de wind aan het zeeoppervlak te meten met behulp van radar. Vanuit een vliegtuig of een satelliet word dan een microgolfbundel onder een schuine hoek naar het zeeoppervlak gestuurd. De microgolfstraling, met gewoonlijk een golflengte van enkele centimeters, wordt verstrooid aan het ruwe oppervlak, en een klein gedeelte van de uitgezonden puls keert terug naar het detectorgedeelte van de scatterometer. Het fysische fenomeen van belang voor de werking van de scatterometer is de aanwezigheid van zogeheten capillaire gavitatiegolven op het zeeoppervlak. Deze golven hebben een golflengte van enkele centimeters en reageren vrijwel instantaan op de sterkte van de wind. De verstrooiing van microgolven is op zijn beurt weer sterk afhankelijk van de amplitude van de capillaire golven. Bovendien blijken de capillaire golfjes over het algemeen gericht in lijn met de windrichting. Aldus bestaat er een verband tussen de hoeveelheid teruggestrooide energie en de windsterkte en -richting op enige hoogte. Een scatterometer instrument wordt zo ontworpen dat uit diverse metingen van het teruggestrooide vermogen, windsterkte en -richting afgeleid kunnen worden. Deze metingen kunnen dan eenvoudig vergeleken worden met bestaande windgegevens van boeien, schepen en weermodellen ter calibratie en validatie.?SAMENVATTING viii Overzicht In de loop der jaren zijn scatterometer instrumenten aan boord van verscheidene satellieten gelanceerd. De scatterometers op de ERS-1 en ERS-2 ("European Remote-sensing Satellite") hebben de langste staat van dienst en zijn sinds 1991 operationeel. Deze scatterometers (die identiek zijn) hebben ieder drie antennes, waarmee het oceaanoppervlak in drie verschillende richtingen bemeten wordt. Een punt op het aardoppervlak wordt eerst door de naar voren gerichte bundel belicht, dan door de naar opzij gerichte bundel, en als laatste door de naar achteren gerichte bundel. De drie metingen, verder kortweg aangeduid als trits, kunnen tegen elkaar worden uitgezet, hetgeen resulteert in een ruimtelijk (3D) plaatje. Door uitgekiende doorsneden te maken van deze ruimte kan de samenhang van de drie metingen kwalitatief worden bestudeerd. De drie metingen blijken dan inderdaad een sterke samenhang te vertonen die verklaard kan worden uit twee geofysische parameters. De drie metingen liggen namelijk in het algemeen dichtbij een hoornvormig (2D) oppervlak. De lengterichting van de hoorn blijkt voornamelijk te corresponderen met een variërende windsterkte (of ruwheid van de zee), en de kortste omtrek van de hoorn met een variërende windrichting (ofwel oriëntatie van de capillaire golfjes). De karakterisatie en modellering van dit oppervlak heeft geleid tot een aanzienlijke verbetering in de interpretatie van de scatterometer, zoals beschreven is in dit proefschrift. Hierboven is een uiterst simplistisch beeld gegeven van de fysica die van belang is bij de interpretatie van de scatterometer. Het eerste hoofdstuk van dit proefschrift beschrijft in meer detail de fysische modellering van belang bij de interpretatie van de scatterometer metingen. Ten eerste, de topografie van het zeeoppervlak is uitermate gecompliceerd en niet nauwkeurig te beschrijven met eenvoudige mathematische vergelijkingen. De capillaire golven hebben een andere fasesnelheid dan de langere golven en beide hebben hiermee een ingewikkelde dynamische interactie. Bij hogere windsnelheid breken de golven en ontstaan er schuimkoppen, hetgeen de fysische beschrijving verder compliceert. Ten tweede, de interactie van een schuin invallende microgolfbundel met dit gecompliceerde oppervlak is evenmin nauwkeurig te beschrijven. Zowel verstrooiing als reflectie kunnen een rol spelen. Ten derde, over de relatie tussen de amplitude van de capillaire golven en de wind op enige hoogte, laten we veronderstellen 10 m, is in de literatuur niet de overeenstemming tot in het gewenste detail. Bij lage windsnelheid zouden de oppervlaktespanning of variaties in de wind variabiliteit een rol kunnen spelen. Gezien de fysische complexiteit, is het niet verwonderlijk dat voor de interpretatie van scatterometer metingen statistische methoden hun opgang gevonden hebben. Dit proefschrift gaat met name in op deze methoden, en geeft, aan de hand van vijf wetenschappelijke publicaties, een tamelijk volledig beeld van de "state-of-the-art", zoals die bereikt is met de?SAMENVATTING ix ERS scatterometers (ERS-1 vanaf 17 juli 1991 en later ERS-2 vanaf 22 november 1995). Het derde hoofdstuk behandelt de visualisatie van de gemeten tritsen in de 3D meetruimte, de bepaling van de spreiding van de metingen rond het hoornvormige oppervlak, en de schatting van de meest waarschijnlijke "werkelijke" (of ruisvrije) trits bij het hoornvormige oppervlak gegeven de metingen en hun nauwkeurigheid (inversie). De perceptie dat de metingen met grote waarschijnlijkheid dichtbij een hoornvormig oppervlak liggen, vormt essentiële a priori informatie van belang voor de inversie. Een inversieprocedure gestoeld op waarschijnlijkheidstheorie is afgeleid. Verder worden aan de hand van de structuur van het hoornvormige oppervlak indicatoren bepaald, van belang voor de kwaliteitscontrole, instrumentbewaking, en de verdere verwerking van de gegevens. In de appendix wordt een methode besproken die beschrijft hoe, aan de hand van geselecteerde windgegevens en een goed wind-microgolf verband, ofwel transfer functie, de scatterometer verstrooiingsmetingen gecalibreerd kunnen worden boven de oceaan. Het blijkt dat deze calibratie, die per antenne wordt uitgevoerd, uiterst nauwkeurig is, en, wanneer toegepast, in de 3D meetruimte de verdeling van gemeten tritsen gemiddeld dichterbij de door de transfer functie gemodelleerde hoorn brengt. Dit levert een verbetert scatterometer wind product op. De methode was met name van groot belang voor de validatie en calibratie van de ERS-2 scatterometer, voordat de instrumentele calibratie was voltooid. Met behulp van een set windgegevens uit een weermodel en hun geschatte nauwkeurigheden, passend in locatie en tijd bij een set van scatterometer metingen en hun geschatte nauwkeurigheden, kan met quasi-lineaire schattingstheorie ("Maximum Likelihood Estimation") de meest waarschijnlijke wind-microgolf transfer functie worden afgeleid. De niet-lineariteit en onnauwkeurige formulering van de transfer functie, een niet-uniforme verdeling van invoergegevens, en een inaccurate formulering van de geschatte nauwkeurigheid kunnen hier een goed resultaat in de weg staan. Een nieuwe functie, genoemd CMOD4, wordt afgeleid in hoofdstuk IV. Een eerste eis die gesteld wordt aan een transfer functie, is dat het in de 3D meetruimte nauwkeurig bij de gemeten tritsen past. Wanneer de "fit" optimaal is zal het gecombineerde effect van meetonnauwkeurigheid en inversiefout kleiner zijn dan 0.5 m s -1 in de wind vector. CMOD4 blijkt binnen deze fout bij de metingen te passen. Een tweede eis is, dat voor een onafhankelijke gegevensset, het verschil tussen de geïnverteerde scatterometer wind en de bijpassende wind van bijvoorbeeld een weermodel zo klein mogelijk is. In de praktijk blijkt dat deze tweede eis impliciet volgt uit de eerste, maar ook dat de onnauwkeurigheid van de scatterometer wind met name wordt bepaald door de associatie van een locatie op de hoorn met een wind vector. De onnauwkeurigheid in de scatterometer wind kan dan ook goed beschreven worden in het wind domein.?SAMENVATTING x In hoofdstuk V wordt dit laatste verder uitgewerkt, en wordt gestreefd naar een gedetailleerde wind calibratie met behulp van in situ gegevens. Windgegevens bevatten doorgaans een relatief grote onnauwkeurigheid. Het wordt aangetoond dat ijking of regressie van zulke gegevens niet mogelijk is in een vergelijking van twee meetsystemen, tenzij de nauwkeurigheid van één van de twee meetsystemen bekend is. In de praktijk is dit meestal niet zo. Voor deze gevallen wordt een methode voorgesteld die uitgaat van de simultane vergelijking van drie meetsystemen. In dit geval kan zowel de ijking als een foutenmodel voor de drie meetsystemen worden opgelost. Toepassing van de methode laat zien dat de scatterometer wind afgeleid met behulp van CMOD4 ruwweg 5 % te laag is, en de oppervlaktewind van het gebruikte weermodel ongeveer 5 % te hoog. Het hoornvormige oppervlak blijkt te bestaan uit twee nauw samenvallende laagjes. Wanneer de wind een component heeft in de kijkrichting van de middelste microgolfbundel wordt de ene hoorn beschreven, en wanneer de wind een component heeft tegengesteld hieraan, de andere. Uit een trits metingen (met ruis) kan dus in het algemeen niet een unieke windvector worden bepaald. Twee ongeveer tegengestelde oplossingen resulteren. Deze dubbelzinnigheid in de windrichting kan in de praktijk worden opgelost door die oplossing te kiezen die het dichtst bij een korte termijn weervoorspelling ligt. Daarna kunnen eisen worden gesteld aan de ruimtelijke consistentie van het gevonden windvector veld. Zoals beschreven in hoofdstuk V levert zo'n methode de goede oplossing in meer dan 99 % van de gevallen. Zo kan een in het algemeen kwalitatief goed windproduct worden afgeleid uit de ERS scatterometermetingen. In het tweede gedeelte van hoofdstuk V wordt ingegaan op de assimilatie van scatterometergegevens in weermodellen. Voor variationele gegevensassimilatie wordt een methode voorgesteld, waarbij de dubbelzinnige scatterometerwinden worden geassimileerd, en niet direct de terugstrooiingsmetingen. Dit vanwege het feit dat de onzekerheid in de interpretatie van de scatterometer, het best is uit te drukken als een fout in de wind. De projectie van deze fout op de microgolfmetingen is niet-lineair, en daarmee tamelijk moeilijk te verwerken binnen de context van meteorologische variationele gegevensassimilatie. Assimilatie van de dubbelzinnige wind daarentegen is tamelijk recht toe recht aan. De scatterometermetingen leiden tot een duidelijk betere analyse en korte-termijn voorspelling van het windveld boven zee. De bedekking is echter zodanig dat andere windwaarnemingen nog lang een zeer welkome aanvulling zullen zijn. Nieuwe Amerikaanse scatterometers met een grotere bedekking zijn in ontwikkeling (met name QuikSCAT en SeaWinds). Vanwege hun andere geometrie en golflengte is echter eerst ontwikkelwerk nodig om tot een gedegen interpretatie te komen. De in dit proefschrift beschreven methodologie kan een belangrijke rol spelen in de interpretatie van de gegevens van deze scatterometers. De volgende generatie Europese scatterometers (ASCAT genoemd) heeft een?SAMENVATTING xi grote bedekking en de microgolflengte en meetgeometrie van de ERS scatterometers. Hiermee zijn we op termijn verzekerd van een goed scatterometer wind product.?SAMENVATTING xii
Splitting Fermi Surfaces and Heavy Electronic States in Non-Centrosymmetric U3Ni3Sn4
NASA Astrophysics Data System (ADS)
Maurya, Arvind; Harima, Hisatomo; Nakamura, Ai; Shimizu, Yusei; Homma, Yoshiya; Li, DeXin; Honda, Fuminori; Sato, Yoshiki J.; Aoki, Dai
2018-04-01
We report the single-crystal growth of the non-centrosymmetric paramagnet U3Ni3Sn4 by the Bridgman method and the Fermi surface properties detected by de Haas-van Alphen (dHvA) experiments. We have also investigated single-crystal U3Ni3Sn4 by single-crystal X-ray diffraction, magnetization, electrical resistivity, and heat capacity measurements. The angular dependence of the dHvA frequencies reveals many closed Fermi surfaces, which are nearly spherical in topology. The experimental results are in good agreement with local density approximation (LDA) band structure calculations based on the 5f-itinerant model. The band structure calculation predicts many Fermi surfaces, mostly with spherical shape, derived from 12 bands crossing the Fermi energy. To our knowledge, the splitting of Fermi surfaces due to the non-centrosymmetric crystal in 5f-electron systems is experimentally detected for the first time. The temperature dependence of the dHvA amplitude reveals a large cyclotron effective mass of up to 35 m0, indicating the heavy electronic state of U3Ni3Sn4 due to the proximity of the quantum critical point. From the field dependence of the dHvA amplitude, a mean free path of conduction electrons of up to 1950 Å is detected, reflecting the good quality of the grown crystal. The small splitting energy related to the antisymmetric spin-orbit interaction is most likely due to the large cyclotron effective mass.
2005-09-01
7 B. SLEEP ARCHITECTURE..................................7 1. Circadian Rhythm and Human Sleep Drive...body temperature. Van Dongen & Dinges, 2000 ....10 Figure 2. EEG of Human Brain Activity During Sleep. http://ist-socrates.berkeley.edu/~jmp...the predicted levels of human performance based on circadian rhythms , amount and quality of sleep, and combines cognitive performance 5 predictions
Planck-Benzinger thermal work function: Monoclonal antibody-DNA duplex binding interactions
NASA Astrophysics Data System (ADS)
Chun, Paul W.
We have reexamined the van't Hoff plots and delineation of thermodynamic data of the monoclonal antibodies of Jel 274 and Jel 241 binding to DNA duplex at high ionic strength using fluorescein-labeled oligonucleotide titration with increasing concentrations of the antibody as reported by Tanha and Lee (Nucleic Acid Res, 1997, 25, 1442). To compare the thermodynamic parameters from data over the experimental temperature range of 277-312.5 K, the binding constant from van't Hoff plots is used to evaluate ΔGo(T) from 0 to 400 K using our general linear T3 model, ΔGo(T) = α +βT2+γT3. The limited information provided by the van't Hoff plots and their extensions is not sufficient to describe the variations in the Gibbs free energy change as a function of temperature and other thermodynamic functions observed in these and other biological interactions. Rather, it is necessary to determine a number of thermodynamic parameters, including the heat of reaction, (Th), (Tm), and (TCp), and the thermal set point, (TS), all of which can be precisely assessed using our general linear T3 model. To date, no experimental measurement offers this degree of accuracy. In evaluating the thermodynamic parameters in the binding interaction of monoclonal IgG Jel 241-d[AT]20DNA duplex, it is apparent that at a high NaCl concentration, the range of the compensatory temperatures, (Th) = 155 K and (Tm) = 450 K, is much broader than observed in any other sample, whereas the thermal set points, (TS) = 330 K, is 20-30 K higher. The inherent chemical bond energy ΔHo(T0) is much lower in this sample. The values of thermal agitation energy (heat capacity integrals) are of similar magnitude for all the samples tested. It appears that increasing the NaCl concentration to 130 mM will greatly enhance the binding interaction between the monoclonal antibody and DNA duplex. It is not clear, however, from the limited data available, whether the binding interaction is sequence specific, although logic would suggest it is.
van Achterberg, Cornelis; Quicke, Donald L J; Boring, C Andrew
2017-01-01
The tribe Planitorini van Achterberg (Hymenoptera: Braconidae: Euphorinae) is revised. One new genus Paramannokeraia gen. n. (type species: P. gibsoni sp. n. ) and five new species from Australia are described and illustrated: Mannokeraia albipalpis van Achterberg, sp. n. , M. nigrita van Achterberg, sp. n. , M. punctata van Achterberg, sp. n. , Paramannokeraia gibsoni van Achterberg & Quicke, sp. n. and P. juliae van Achterberg, sp. n. The tribe Mannokeraiini van Achterberg, 1995, is synonymized with the tribe Planitorini ( syn. n. ).
van Achterberg, Cornelis; Quicke, Donald L.J.; Boring, C. Andrew
2017-01-01
Abstract The tribe Planitorini van Achterberg (Hymenoptera: Braconidae: Euphorinae) is revised. One new genus Paramannokeraia gen. n. (type species: P. gibsoni sp. n.) and five new species from Australia are described and illustrated: Mannokeraia albipalpis van Achterberg, sp. n., M. nigrita van Achterberg, sp. n., M. punctata van Achterberg, sp. n., Paramannokeraia gibsoni van Achterberg & Quicke, sp. n. and P. juliae van Achterberg, sp. n. The tribe Mannokeraiini van Achterberg, 1995, is synonymized with the tribe Planitorini (syn. n.). PMID:29290713
2006-06-01
van de werkzaamheden In dit rapport worden de gevolgen van initiatie van munitie door een ongewilde externe stimulus beschouwd aan de hand van reele...operationele scenario’s. Dit wordt vergeleken met de gevolgen in dezelfde scenario’s, waarin gebruik is gemaakt van Minder Kwetsbare Munitie (MKM). Naast...de historie van MKM wordt uitgelegd wat Inleiding of terroristische activiteiten, maar ook door MKM is. Vervolgens worden de gevolgen Munitie en de
Theory and experiments characterizing hypervelocity impact plasmas on biased spacecraft materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Nicolas; Close, Sigrid; Goel, Ashish
2013-03-15
Space weather including solar activity and background plasma sets up spacecraft conditions that can magnify the threat from hypervelocity impacts. Hypervelocity impactors include both meteoroids, traveling between 11 and 72 km/s, and orbital debris, with typical impact speeds of 10 km/s. When an impactor encounters a spacecraft, its kinetic energy is converted over a very short timescale into energy of vaporization and ionization, resulting in a small, dense plasma. This plasma can produce radio frequency (RF) emission, causing electrical anomalies within the spacecraft. In order to study this phenomenon, we conducted ground-based experiments to study hypervelocity impact plasmas using amore » Van de Graaff dust accelerator. Iron projectiles ranging from 10{sup -16} g to 10{sup -11} g were fired at speeds of up to 70 km/s into a variety of target materials under a range of surface charging conditions representative of space weather effects. Impact plasmas associated with bare metal targets as well as spacecraft materials were studied. Plasma expansion models were developed to determine the composition and temperature of the impact plasma, shedding light on the plasma dynamics that can lead to spacecraft electrical anomalies. The dependence of these plasma properties on target material, impact speed, and surface charge was analyzed. Our work includes three major results. First, the initial temperature of the impact plasma is at least an order of magnitude lower than previously reported, providing conditions more favorable for sustained RF emission. Second, the composition of impact plasmas from glass targets, unlike that of impact plasmas from tungsten, has low dependence on impact speed, indicating a charge production mechanism that is significant down to orbital debris speeds. Finally, negative ion formation has a strong dependence on target material. These new results can inform the design and operation of spacecraft in order to mitigate future impact-related space weather anomalies and failures.« less
Theory and experiments characterizing hypervelocity impact plasmas on biased spacecraft materials
NASA Astrophysics Data System (ADS)
Lee, Nicolas; Close, Sigrid; Goel, Ashish; Lauben, David; Linscott, Ivan; Johnson, Theresa; Strauss, David; Bugiel, Sebastian; Mocker, Anna; Srama, Ralf
2013-03-01
Space weather including solar activity and background plasma sets up spacecraft conditions that can magnify the threat from hypervelocity impacts. Hypervelocity impactors include both meteoroids, traveling between 11 and 72 km/s, and orbital debris, with typical impact speeds of 10 km/s. When an impactor encounters a spacecraft, its kinetic energy is converted over a very short timescale into energy of vaporization and ionization, resulting in a small, dense plasma. This plasma can produce radio frequency (RF) emission, causing electrical anomalies within the spacecraft. In order to study this phenomenon, we conducted ground-based experiments to study hypervelocity impact plasmas using a Van de Graaff dust accelerator. Iron projectiles ranging from 10-16 g to 10-11 g were fired at speeds of up to 70 km/s into a variety of target materials under a range of surface charging conditions representative of space weather effects. Impact plasmas associated with bare metal targets as well as spacecraft materials were studied. Plasma expansion models were developed to determine the composition and temperature of the impact plasma, shedding light on the plasma dynamics that can lead to spacecraft electrical anomalies. The dependence of these plasma properties on target material, impact speed, and surface charge was analyzed. Our work includes three major results. First, the initial temperature of the impact plasma is at least an order of magnitude lower than previously reported, providing conditions more favorable for sustained RF emission. Second, the composition of impact plasmas from glass targets, unlike that of impact plasmas from tungsten, has low dependence on impact speed, indicating a charge production mechanism that is significant down to orbital debris speeds. Finally, negative ion formation has a strong dependence on target material. These new results can inform the design and operation of spacecraft in order to mitigate future impact-related space weather anomalies and failures.
Ripoll, J. -F.; Reeves, Geoffrey D.; Cunningham, Gregory Scott; ...
2016-06-11
Here, we present dynamic simulations of energy-dependent losses in the radiation belt “slot region” and the formation of the two-belt structure for the quiet days after the 1 March storm. The simulations combine radial diffusion with a realistic scattering model, based data-driven spatially and temporally resolved whistler-mode hiss wave observations from the Van Allen Probes satellites. The simulations reproduce Van Allen Probes observations for all energies and L shells (2–6) including (a) the strong energy dependence to the radiation belt dynamics (b) an energy-dependent outer boundary to the inner zone that extends to higher L shells at lower energies andmore » (c) an “S-shaped” energy-dependent inner boundary to the outer zone that results from the competition between diffusive radial transport and losses. We find that the characteristic energy-dependent structure of the radiation belts and slot region is dynamic and can be formed gradually in ~15 days, although the “S shape” can also be reproduced by assuming equilibrium conditions. The highest-energy electrons (E > 300 keV) of the inner region of the outer belt (L ~ 4–5) also constantly decay, demonstrating that hiss wave scattering affects the outer belt during times of extended plasmasphere. Through these simulations, we explain the full structure in energy and L shell of the belts and the slot formation by hiss scattering during storm recovery. We show the power and complexity of looking dynamically at the effects over all energies and L shells and the need for using data-driven and event-specific conditions.« less
Origin of the size-dependence of the equilibrium van der Waals binding between nanostructures
NASA Astrophysics Data System (ADS)
Tao, Jianmin; Perdew, John P.; Tang, Hong; Shahi, Chandra
2018-02-01
Nanostructures can be bound together at equilibrium by the van der Waals (vdW) effect, a small but ubiquitous many-body attraction that presents challenges to density functional theory. How does the binding energy depend upon the size or number of atoms in one of a pair of identical nanostructures? To answer this question, we treat each nanostructure as a whole object, not as a collection of atoms. Our calculations start from an accurate static dipole polarizability for each considered nanostructure, and an accurate equilibrium center-to-center distance for the pair (the latter from experiment or from the vdW-DF-cx functional). We consider the competition in each term -C2k/d2k (k = 3, 4, 5) of the long-range vdW series for the interaction energy, between the size dependence of the vdW coefficient C2k and that of the 2kth power of the center-to-center distance d. The damping of these vdW terms can be negligible, but in any case, it does not affect the size dependence for a given term in the absence of non-vdW binding. To our surprise, the vdW energy can be size-independent for quasi-spherical nanoclusters bound to one another by vdW interaction, even with strong nonadditivity of the vdW coefficient, as demonstrated for fullerenes. We also show that, for low-dimensional systems, the vdW interaction yields the strongest size-dependence, in stark contrast to that of fullerenes. We illustrate this with parallel planar polycyclic aromatic hydrocarbons. The size dependences of other morphologies or bonding types lie between, as shown by sodium clusters.
Genomic and expression analysis of the vanG-like gene cluster of Clostridium difficile.
Peltier, Johann; Courtin, Pascal; El Meouche, Imane; Catel-Ferreira, Manuella; Chapot-Chartier, Marie-Pierre; Lemée, Ludovic; Pons, Jean-Louis
2013-07-01
Primary antibiotic treatment of Clostridium difficile intestinal diseases requires metronidazole or vancomycin therapy. A cluster of genes homologous to enterococcal glycopeptides resistance vanG genes was found in the genome of C. difficile 630, although this strain remains sensitive to vancomycin. This vanG-like gene cluster was found to consist of five ORFs: the regulatory region consisting of vanR and vanS and the effector region consisting of vanG, vanXY and vanT. We found that 57 out of 83 C. difficile strains, representative of the main lineages of the species, harbour this vanG-like cluster. The cluster is expressed as an operon and, when present, is found at the same genomic location in all strains. The vanG, vanXY and vanT homologues in C. difficile 630 are co-transcribed and expressed to a low level throughout the growth phases in the absence of vancomycin. Conversely, the expression of these genes is strongly induced in the presence of subinhibitory concentrations of vancomycin, indicating that the vanG-like operon is functional at the transcriptional level in C. difficile. Hydrophilic interaction liquid chromatography (HILIC-HPLC) and MS analysis of cytoplasmic peptidoglycan precursors of C. difficile 630 grown without vancomycin revealed the exclusive presence of a UDP-MurNAc-pentapeptide with an alanine at the C terminus. UDP-MurNAc-pentapeptide [d-Ala] was also the only peptidoglycan precursor detected in C. difficile grown in the presence of vancomycin, corroborating the lack of vancomycin resistance. Peptidoglycan structures of a vanG-like mutant strain and of a strain lacking the vanG-like cluster did not differ from the C. difficile 630 strain, indicating that the vanG-like cluster also has no impact on cell-wall composition.
The "quantized intrinsically localized modes" of a three-dimensional lattice
NASA Astrophysics Data System (ADS)
Kanbur, Derya
In this thesis, we have investigated the lowest-energy members of the quantized intrinsically localized modes of vibration (ILMs) of the monatomic beta Fermi-Pasta-Ulam Hamiltonian in three-dimensions. We analytically find the excitation of different center of mass momenta. Using the Ladder Approximation, we find that the ILMs occur preferentially for centre of mass momenta at which the van-Hove singularities in the two-phonon density of states coalesce. When the ILMs first form they split off from the top of the two-phonon continuum. The ILMs can be categorized as having a spin of either S=2 or S=0 and have other internal quantum numbers. Moreover, the S=0 ILMs form for lower values of the interaction than the S=2 ILMs. We also focus on the temperature dependence of the ILMs. At zero temperature, the ILMs can form in three-dimensions, but only if the interaction exceeds a minimum value. As the temperature is raised, the magnitude of the minimal interaction required to stabilize the ILM is reduced. This is in a qualitative agreement with the experiments of Manley it et al., which only found the ILMs of NaI at elevated temperatures. We have also examined the ILM many-body wave functions and find that the relative coordinate part of the wave functions has symmetries associated with internal quantum numbers. According to our numerical results, the localization length increases with decreasing values of the strength of interaction. The results are presented in D.Kanbur and P.S.Riseborough, Phil. Mag. Letts, 94, 424-432 (2014) and D.Kanbur and P.S.Riseborough, Phys.Rev.B, 90, 134301 (2014). This work was supported by the US Department of Energy, Office of Basic Energy Science, Materials Science and Engineering through the award DEFG02-84ER45872.
Thermal behavior of a pharmaceutical solid acetaminophen doped with p-aminophenol.
Faroongsarng, D; Kadejinda, W; Sunthornpit, A
2000-07-30
Thermal behavior of a series of acetaminophen (APAP) doped with p-aminophenol (PANP) was studied by differential scanning calorimetry (DSC) to determine whether it exhibited a eutectic system. Within the temperature range of 120 to 200 degrees C, accurately weighed (1-2 mg) samples sealed in hermetic pans were calorimetrically scanned with a low scanning rate of 1 degrees C/min. The mixture formed a single eutectic with the composition ratio APAP/PANP of 0.6/0.4 at a temperature of 138 degrees C, where it liquefied. Melting began as early as at the eutectic point, which was below the melting temperature of APAP (169 degrees C). The melting point as well as heat of APAP fusion was depressed with the increase in doped PANP. It was postulated that there might be a deficit heat of APAP fusion in APAP doped with PANP, which was coincident with the heat consumed by early liquefaction. The deficit heat was used to correct fraction molten in the van't Hoff law of purity determination. It was found that the purity determination of APAP doped with PANP was comparable to the UV-spectroscopic method up to the maximum doped PANP level of 8 mol percent. It was concluded that DSC was able to approach early heat of liquefaction of APAP doped with PANP. The van't Hoff law may be applicable to the determination of APAP with the presence of PANP as a eutectic impurity.
Atomistic simulation of the thermal conductivity in amorphous SiO2 matrix/Ge nanocrystal composites
NASA Astrophysics Data System (ADS)
Kuryliuk, Vasyl V.; Korotchenkov, Oleg A.
2017-04-01
We use nonequilibrium molecular dynamics computer simulations with the Tersoff potential aiming to provide a comprehensive picture of the thermal conductivity of amorphous SiO2 (a-SiO2) matrix with embedded Ge nanocrystals (nc-Ge). The modelling predicts the a-SiO2 matrix thermal conductivity in a temperature range of 50 < T < 500 K yielding a fair agreement with experiment at around room temperature. It is worth noticing that the predicted room-temperature thermal conductivity in a-SiO2 is in very good agreement with the experimental result, which is in marked contrast with the thermal conductivity calculated employing the widely used van Beest-Kramer-van Santen (BKS) potential. We show that the thermal conductivity of composite nc-Ge/a-SiO2 systems decreases steadily with increasing the volume fraction of Ge inclusions, indicative of enhanced interface scattering of phonons imposed by embedded Ge nanocrystals. We also observe that increasing the volume fractions above a certain threshold value results in a progressively increased thermal conductivity of the nanocomposite, which can be explained by increasing volume fraction of a better thermally conducting Ge. Finally, non-equilibrium molecular dynamics simulations with the Tersoff potential are promising for computing the thermal conductivity of nanocomposites based on amorphous SiO2 and can be readily scaled to more complex composite structures with embedded nanoparticles, which thus help design nanocomposites with desired thermal properties.
NASA Astrophysics Data System (ADS)
Echterling, N.; Schriver, D.; Roeder, J. L.; Fennell, J. F.
2017-12-01
During the recovery phase of substorm plasma injections, the Van Allen Probes commonly observe events of quasi-periodic energetic electron bursts correlating with simultaneously detected upper-band, whistler-mode chorus emissions. These electron bursts exhibit narrow ranges of pitch angles (75-80° and 100-105°) and energies (20-40 keV). Electron cyclotron harmonic (ECH) emissions are also commonly detected, but typically do not display correlation with the electron bursts. To examine sources of free energy and the generation of these wave emissions, an observed electron velocity distribution on January 13, 2013 is used as the starting condition for a particle in cell (PIC) simulation. Effects of temperature anisotropy (perpendicular temperature greater than parallel temperature), the presence of a loss cone and a cold electron population on the generation of whistler and ECH waves are examined to understand wave generation and nonlinear interactions with the particle population. These nonlinear interactions produce energy diffusion along with strong pitch angle scattering into the loss cone on the order of milliseconds, which is faster than a typical bounce period of seconds. To examine the quasi-periodic nature of the electron bursts, a loss-cone recycling technique is implemented to model the effects of the periodic emptying of the loss cone and electron injection on the growth of whistler and ECH waves. The results of the simulations are compared to the Van Allen Probe observations to determine electron acceleration, heating and transport in Earth's radiation belts due to wave-particle interactions.
Ion nose spectral structures observed by the Van Allen Probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferradas, C. P.; Zhang, J. -C.; Spence, H. E.
Here, we present a statistical study of nose-like structures observed in energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet. Nose structures are spectral features named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. Using 22 months of observations from the Helium Oxygen Proton Electron (HOPE) instrument onboard Van Allen Probe A, we determine the number of noses observed, and the minimum L-shell reached and energy of each nose on each pass through the inner magnetosphere. We find that multiple noses occur more frequentlymore » in heavy ions than in H +, and are most often observed during quiet times. The heavy-ion noses penetrate to lower L shells than H + noses and there is an energy-magnetic local time (MLT) dependence in the nose locations and energies that is similar for all species. The observations are interpreted using a steady-state model of ion drift in the inner magnetosphere. The model is able to explain the energy and MLT dependence of the different types of nose structures. Different ion charge exchange lifetimes are the main cause for the deeper penetration of heavy-ion noses. The species dependence and preferred geomagnetic conditions of multiple-nose events indicate that they must be on long drift paths, leading to strong charge-exchange effects. The results provide important insight into the spatial distribution, species dependence, and geomagnetic conditions under which nose structures occur.« less
Shu, Qiaosheng; Liu, Zuoxin; Si, Bingcheng
2008-01-01
Understanding the correlation between soil hydraulic parameters and soil physical properties is a prerequisite for the prediction of soil hydraulic properties from soil physical properties. The objective of this study was to examine the scale- and location-dependent correlation between two water retention parameters (alpha and n) in the van Genuchten (1980) function and soil physical properties (sand content, bulk density [Bd], and organic carbon content) using wavelet techniques. Soil samples were collected from a transect from Fuxin, China. Soil water retention curves were measured, and the van Genuchten parameters were obtained through curve fitting. Wavelet coherency analysis was used to elucidate the location- and scale-dependent relationships between these parameters and soil physical properties. Results showed that the wavelet coherence between alpha and sand content was significantly different from red noise at small scales (8-20 m) and from a distance of 30 to 470 m. Their wavelet phase spectrum was predominantly out of phase, indicating negative correlation between these two variables. The strong negative correlation between alpha and Bd existed mainly at medium scales (30-80 m). However, parameter n had a strong positive correlation only with Bd at scales between 20 and 80 m. Neither of the two retention parameters had significant wavelet coherency with organic carbon content. These results suggested that location-dependent scale analyses are necessary to improve the performance for soil water retention characteristic predictions.
Ion nose spectral structures observed by the Van Allen Probes
Ferradas, C. P.; Zhang, J. -C.; Spence, H. E.; ...
2016-11-22
Here, we present a statistical study of nose-like structures observed in energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet. Nose structures are spectral features named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. Using 22 months of observations from the Helium Oxygen Proton Electron (HOPE) instrument onboard Van Allen Probe A, we determine the number of noses observed, and the minimum L-shell reached and energy of each nose on each pass through the inner magnetosphere. We find that multiple noses occur more frequentlymore » in heavy ions than in H +, and are most often observed during quiet times. The heavy-ion noses penetrate to lower L shells than H + noses and there is an energy-magnetic local time (MLT) dependence in the nose locations and energies that is similar for all species. The observations are interpreted using a steady-state model of ion drift in the inner magnetosphere. The model is able to explain the energy and MLT dependence of the different types of nose structures. Different ion charge exchange lifetimes are the main cause for the deeper penetration of heavy-ion noses. The species dependence and preferred geomagnetic conditions of multiple-nose events indicate that they must be on long drift paths, leading to strong charge-exchange effects. The results provide important insight into the spatial distribution, species dependence, and geomagnetic conditions under which nose structures occur.« less
Ion nose spectral structures observed by the Van Allen Probes
NASA Astrophysics Data System (ADS)
Ferradas, C. P.; Zhang, J.-C.; Spence, H. E.; Kistler, L. M.; Larsen, B. A.; Reeves, G.; Skoug, R.; Funsten, H.
2016-12-01
We present a statistical study of nose-like structures observed in energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet. Nose structures are spectral features named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. Using 22 months of observations from the Helium Oxygen Proton Electron instrument onboard Van Allen Probe A, we determine the number of noses observed, and the minimum L shell reached and energy of each nose on each pass through the inner magnetosphere. We find that multiple noses occur more frequently in heavy ions than in H+ and are most often observed during quiet times. The heavy-ion noses penetrate to lower L shells than H+ noses, and there is an energy-magnetic local time (MLT) dependence in the nose locations and energies that is similar for all species. The observations are interpreted by using a steady state model of ion drift in the inner magnetosphere. The model is able to explain the energy and MLT dependence of the different types of nose structures. Different ion charge-exchange lifetimes are the main cause for the deeper penetration of heavy-ion noses. The species dependence and preferred geomagnetic conditions of multiple-nose events indicate that they must be on long drift paths, leading to strong charge-exchange effects. The results provide important insight into the spatial distribution, species dependence, and geomagnetic conditions under which nose structures occur.
The formation of quasi-alicyclic rings in alkyl-aromatic compounds
NASA Astrophysics Data System (ADS)
Straka, Pavel; Buryan, Petr; Bičáková, Olga
2018-02-01
The alkyl side chains of n-alkyl phenols, n-alkyl benzenes and n-alkyl naphthalenes are cyclised, as demonstrated by GC measurements, FTIR spectroscopy and molecular mechanics calculations. Cyclisation occurs due to the intramolecular interaction between an aromatic ring (-δ) and a hydrogen of the terminal methyl group (+δ) of an alkyl chain. In fact, conventional molecules are not aliphatic-aromatic, but quasi-alicyclic-aromatic. With the aromatic molecules formed with a quasi-alicyclic ring, the effect of van der Waals attractive forces increases not only intramolecularly but also intermolecularly. This effect is strong in molecules with propyl and higher alkyl substituents. The increase of intermolecular van der Waals attractive forces results in bi-linearity in the GC retention time of the compounds in question, observed in the dependence of the logarithm of the relative retention time on the number of carbons in a molecule in both polar and nonpolar stationary phases with both capillary and packed columns. The role of van der Waals forces has been demonstrated using the potential energies of covalent and noncovalent interactions for 2-n-alkyl phenols, n-alkyl benzenes and 1-n-alkyl- and 2-n-alkyl naphthalenes.
Prediction of mean flow data for adiabatic 2-D compressible turbulent boundary layers
NASA Astrophysics Data System (ADS)
Motallebi, Fariborz
1995-02-01
This report presents a method for the prediction of mean flow data (i.e. , skin friction, velocity profile, and shape parameter) for adiabatic two-dimensional compressible turbulent boundary layers at zero pressure gradient. The transformed law of the wall, law of the wake, the van Driest model for the complete inner region, and a correlation between the Reynolds number based on the boundary layer integral length scale (Re(sub Delta*)) and the Reynolds number based on the boundary layer momentum thickness (Re(sub theta)) were used to predict the mean flow quantities. The results for skin friction coefficient show good agreement with a number of existing theories including those of van Driest and Huang et al. Comparison with a large number of experimental data suggests that at least for transonic and supersonic flows, the velocity profile as described by van Driest and Coles is Reynolds number dependent and should not be presumed universal. Extra information or perhaps a better physical approach to the formulation of the mean structure of compressible turbulent boundary layers, even in zero pressure gradient and adiabatic condition, is required in order to achieve complete (physical and mathematical) convergence when it is applied in any prediction methods.
Electronic Transport and Possible Superconductivity at Van Hove Singularities in Carbon Nanotubes.
Yang, Y; Fedorov, G; Shafranjuk, S E; Klapwijk, T M; Cooper, B K; Lewis, R M; Lobb, C J; Barbara, P
2015-12-09
Van Hove singularities (VHSs) are a hallmark of reduced dimensionality, leading to a divergent density of states in one and two dimensions and predictions of new electronic properties when the Fermi energy is close to these divergences. In carbon nanotubes, VHSs mark the onset of new subbands. They are elusive in standard electronic transport characterization measurements because they do not typically appear as notable features and therefore their effect on the nanotube conductance is largely unexplored. Here we report conductance measurements of carbon nanotubes where VHSs are clearly revealed by interference patterns of the electronic wave functions, showing both a sharp increase of quantum capacitance, and a sharp reduction of energy level spacing, consistent with an upsurge of density of states. At VHSs, we also measure an anomalous increase of conductance below a temperature of about 30 K. We argue that this transport feature is consistent with the formation of Cooper pairs in the nanotube.
The calculation of the phase equilibrium of the multicomponent hydrocarbon systems
NASA Astrophysics Data System (ADS)
Molchanov, D. A.
2018-01-01
Hydrocarbon mixtures filtration process simulation development has resulted in use of cubic equations of state of the van der Waals type to describe the thermodynamic properties of natural fluids under real thermobaric conditions. Binary hydrocarbon systems allow to simulate the fluids of different types of reservoirs qualitatively, what makes it possible to carry out the experimental study of their filtration features. Exploitation of gas-condensate reservoirs shows the possibility of existence of various two-phase filtration regimes, including self-oscillatory one, which occurs under certain values of mixture composition, temperature and pressure drop. Plotting of the phase diagram of the model mixture is required to determine these values. A software package to calculate the vapor-liquid equilibrium of binary systems using cubic equation of state of the van der Waals type has been created. Phase diagrams of gas-condensate model mixtures have been calculated.
Modern terrestrial analogues for the carbonate globules in Martian meteorite ALH84001.
Kazmierczak, Józef; Kempe, Stephan
2003-04-01
Modern carbonate globules, located in cracks of submerged volcanic rocks and in calcareous pinnacles in alkaline (sodic) Lake Van, Turkey, appear to be analogues for the approximately 3.9 billion-year-old carbonate globules in Martian meteorite ALH84001. These terrestrial globules have similar diameters and are chemically and mineralogically zoned. Furthermore, they display surface and etching structures similar to those described from ALH84001, which were interpreted as fossilized microbial forms. These terrestrial carbonates formed at low temperatures where Ca-rich groundwaters enter the lake. Chemical, mineralogical, microbiological, and biomolecular methods were used in an attempt to decipher the process responsible for the genesis of these structures. Although the exact mode of formation of Lake Van carbonates remains an enigma, their similarity to the Martian globules indicates that the ALH84001 carbonates may have formed in similar setting on ancient Mars.
High-Performance Photovoltaic Detector Based on MoTe2 /MoS2 Van der Waals Heterostructure.
Chen, Yan; Wang, Xudong; Wu, Guangjian; Wang, Zhen; Fang, Hehai; Lin, Tie; Sun, Shuo; Shen, Hong; Hu, Weida; Wang, Jianlu; Sun, Jinglan; Meng, Xiangjian; Chu, Junhao
2018-03-01
Van der Waals heterostructures based on 2D layered materials have received wide attention for their multiple applications in optoelectronic devices, such as solar cells, light-emitting devices, and photodiodes. In this work, high-performance photovoltaic photodetectors based on MoTe 2 /MoS 2 vertical heterojunctions are demonstrated by exfoliating-restacking approach. The fundamental electric properties and band structures of the junction are revealed and analyzed. It is shown that this kind of photodetectors can operate under zero bias with high on/off ratio (>10 5 ) and ultralow dark current (≈3 pA). Moreover, a fast response time of 60 µs and high photoresponsivity of 46 mA W -1 are also attained at room temperature. The junctions based on 2D materials are expected to constitute the ultimate functional elements of nanoscale electronic and optoelectronic applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of adding Te to layered GaSe crystals to increase the van der Waals bonding force
NASA Astrophysics Data System (ADS)
Tanabe, Tadao; Zhao, Shu; Sato, Yohei; Oyama, Yutaka
2017-10-01
The interplanar binding strength of layered GaSe1-xTex crystals was directly measured using a tensile testing machine. The GaSe1-xTex crystals were grown by a low temperature liquid phase solution method under a controlled Se vapor pressure. The stoichiometry-controlled GaSe1-xTex crystal has the ɛ-polytype structure of GaSe, where the Te atoms are substituted for some of the Se atoms in the GaSe crystal. The effect of adding Te on the bonding strength between the GaSe layers was determined from direct measurements of the van der Waals bonding energy. The bonding energy was increased from 0.023 × 106 N/m2 for GaSe to 0.16 × 106 N/m2 for GaSe1-xTex (x = 0.106).
Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene
Mihnev, Momchil T.; Tolsma, John R.; Divin, Charles J.; Sun, Dong; Asgari, Reza; Polini, Marco; Berger, Claire; de Heer, Walt A.; MacDonald, Allan H.; Norris, Theodore B.
2015-01-01
In van der Waals bonded or rotationally disordered multilayer stacks of two-dimensional (2D) materials, the electronic states remain tightly confined within individual 2D layers. As a result, electron–phonon interactions occur primarily within layers and interlayer electrical conductivities are low. In addition, strong covalent in-plane intralayer bonding combined with weak van der Waals interlayer bonding results in weak phonon-mediated thermal coupling between the layers. We demonstrate here, however, that Coulomb interactions between electrons in different layers of multilayer epitaxial graphene provide an important mechanism for interlayer thermal transport, even though all electronic states are strongly confined within individual 2D layers. This effect is manifested in the relaxation dynamics of hot carriers in ultrafast time-resolved terahertz spectroscopy. We develop a theory of interlayer Coulomb coupling containing no free parameters that accounts for the experimentally observed trends in hot-carrier dynamics as temperature and the number of layers is varied. PMID:26399955
Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures
Song, Tiancheng; Cai, Xinghan; Tu, Matisse Wei-Yuan; ...
2018-05-03
Magnetic multilayer devices that exploit magnetoresistance are the backbone of magnetic sensing and data storage technologies. Here, we report multiple-spin-filter magnetic tunnel junctions (sf-MTJs) based on van der Waals (vdW) heterostructures in which atomically thin chromium triiodide (CrI3) acts as a spin-filter tunnel barrier sandwiched between graphene contacts. We demonstrate tunneling magnetoresistance which is drastically enhanced with increasing CrI 3 layer thickness, reaching a record 19,000% for magnetic multilayer structures using four-layer sf-MTJs at low temperatures. Using magnetic circular dichroism measurements, we attribute these effects to the intrinsic layer-by-layer antiferromagnetic ordering of the atomically thin CrI 3. In conclusion, ourmore » work reveals the possibility to push magnetic information storage to the atomically thin limit and highlights CrI 3 as a superlative magnetic tunnel barrier for vdW heterostructure spintronic devices.« less
Identifying Few-Molecule Water Clusters with High Precision on Au(111) Surface.
Dong, Anning; Yan, Lei; Sun, Lihuan; Yan, Shichao; Shan, Xinyan; Guo, Yang; Meng, Sheng; Lu, Xinghua
2018-06-01
Revealing the nature of a hydrogen-bond network in water structures is one of the imperative objectives of science. With the use of a low-temperature scanning tunneling microscope, water clusters on a Au(111) surface were directly imaged with molecular resolution by a functionalized tip. The internal structures of the water clusters as well as the geometry variations with the increase of size were identified. In contrast to a buckled water hexamer predicted by previous theoretical calculations, our results present deterministic evidence for a flat configuration of water hexamers on Au(111), corroborated by density functional theory calculations with properly implemented van der Waals corrections. The consistency between the experimental observations and improved theoretical calculations not only renders the internal structures of absorbed water clusters unambiguously, but also directly manifests the crucial role of van der Waals interactions in constructing water-solid interfaces.
Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Tiancheng; Cai, Xinghan; Tu, Matisse Wei-Yuan
Magnetic multilayer devices that exploit magnetoresistance are the backbone of magnetic sensing and data storage technologies. Here, we report multiple-spin-filter magnetic tunnel junctions (sf-MTJs) based on van der Waals (vdW) heterostructures in which atomically thin chromium triiodide (CrI3) acts as a spin-filter tunnel barrier sandwiched between graphene contacts. We demonstrate tunneling magnetoresistance which is drastically enhanced with increasing CrI 3 layer thickness, reaching a record 19,000% for magnetic multilayer structures using four-layer sf-MTJs at low temperatures. Using magnetic circular dichroism measurements, we attribute these effects to the intrinsic layer-by-layer antiferromagnetic ordering of the atomically thin CrI 3. In conclusion, ourmore » work reveals the possibility to push magnetic information storage to the atomically thin limit and highlights CrI 3 as a superlative magnetic tunnel barrier for vdW heterostructure spintronic devices.« less
Monte Carlo kinetics simulations of ice-mantle formation on interstellar grains
NASA Astrophysics Data System (ADS)
Garrod, Robin
2015-08-01
The majority of interstellar dust-grain chemical kinetics models use rate equations, or alternative population-based simulation methods, to trace the time-dependent formation of grain-surface molecules and ice mantles. Such methods are efficient, but are incapable of considering explicitly the morphologies of the dust grains, the structure of the ices formed thereon, or the influence of local surface composition on the chemistry.A new Monte Carlo chemical kinetics model, MIMICK, is presented here, whose prototype results were published recently (Garrod 2013, ApJ, 778, 158). The model calculates the strengths and positions of the potential mimima on the surface, on the fly, according to the individual pair-wise (van der Waals) bonds between surface species, allowing the structure of the ice to build up naturally as surface diffusion and chemistry occur. The prototype model considered contributions to a surface particle's potential only from contiguous (or "bonded") neighbors; the full model considers contributions from surface constituents from short to long range. Simulations are conducted on a fully 3-D user-generated dust-grain with amorphous surface characteristics. The chemical network has also been extended from the simple water system previously published, and now includes 33 chemical species and 55 reactions. This allows the major interstellar ice components to be simulated, such as water, methane, ammonia and methanol, as well as a small selection of more complex molecules, including methyl formate (HCOOCH3).The new model results indicate that the porosity of interstellar ices are dependent on multiple variables, including gas density, the dust temperature, and the relative accretion rates of key gas-phase species. The results presented also have implications for the formation of complex organic molecules on dust-grain surfaces at very low temperatures.
NASA Astrophysics Data System (ADS)
Scholz, Robert; Floß, Gereon; Saalfrank, Peter; Füchsel, Gernot; Lončarić, Ivor; Juaristi, J. I.
2016-10-01
A Langevin model accounting for all six molecular degrees of freedom is applied to femtosecond-laser induced, hot-electron driven dynamics of Ru(0001)(2 ×2 ):CO. In our molecular dynamics with electronic friction approach, a recently developed potential energy surface based on gradient-corrected density functional theory accounting for van der Waals interactions is adopted. Electronic friction due to the coupling of molecular degrees of freedom to electron-hole pairs in the metal are included via a local density friction approximation, and surface phonons by a generalized Langevin oscillator model. The action of ultrashort laser pulses enters through a substrate-mediated, hot-electron mechanism via a time-dependent electronic temperature (derived from a two-temperature model), causing random forces acting on the molecule. The model is applied to laser induced lateral diffusion of CO on the surface, "hot adsorbate" formation, and laser induced desorption. Reaction probabilities are strongly enhanced compared to purely thermal processes, both for diffusion and desorption. Reaction yields depend in a characteristic (nonlinear) fashion on the applied laser fluence, as well as branching ratios for various reaction channels. Computed two-pulse correlation traces for desorption and other indicators suggest that aside from electron-hole pairs, phonons play a non-negligible role for laser induced dynamics in this system, acting on a surprisingly short time scale. Our simulations on precomputed potentials allow for good statistics and the treatment of long-time dynamics (300 ps), giving insight into this system which hitherto has not been reached. We find generally good agreement with experimental data where available and make predictions in addition. A recently proposed laser induced population of physisorbed precursor states could not be observed with the present low-coverage model.
Mose, Kristian F; Andersen, Klaus E; Christensen, Lars Porskjaer
2012-04-01
Patch test preparations of volatile substances may evaporate during storage, thereby giving rise to reduced patch test concentrations. To investigate the stability of selected acrylates/methacrylates and fragrance allergens in three different test chambers under different storage conditions. Petrolatum samples of methyl methacrylate (MMA), 2-hydroxyethyl methacrylate (2-HEMA), 2-hydroxypropyl acrylate (2-HPA), cinnamal and eugenol in patch test concentrations were stored in three different test chambers (IQ chamber™, IQ Ultimate™, and Van der Bend® transport container) at room temperature and in a refrigerator. The samples were analysed in triplicate with high-performance liquid chromatography. The decrease in concentration was substantial for all five allergens under both storage conditions in IQ chamber™ and IQ Ultimate™, with the exception of 2-HEMA during storage in the refrigerator. For these two chamber systems, the contact allergen concentration dropped below the stability limit in the following order: MMA, cinnamal, 2-HPA, eugenol, and 2-HEMA. In the Van der Bend® transport container, the contact allergens exhibited acceptable stability under both storage conditions, whereas MMA and 2-HPA required cool storage for maintenance of the limit. The Van der Bend® transport container was the best device for storage of samples of volatile contact allergens. © 2012 John Wiley & Sons A/S.
Low temperature hall effect investigation of conducting polymer-carbon nanotubes composite network.
Bahrami, Afarin; Talib, Zainal Abidin; Yunus, Wan Mahmood Mat; Behzad, Kasra; M Abdi, Mahnaz; Din, Fasih Ud
2012-11-14
Polypyrrole (PPy) and polypyrrole-carboxylic functionalized multi wall carbon nanotube composites (PPy/f-MWCNT) were synthesized by in situ chemical oxidative polymerization of pyrrole on the carbon nanotubes (CNTs). The structure of the resulting complex nanotubes was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The effects of f-MWCNT concentration on the electrical properties of the resulting composites were studied at temperatures between 100 K and 300 K. The Hall mobility and Hall coefficient of PPy and PPy/f-MWCNT composite samples with different concentrations of f-MWCNT were measured using the van der Pauw technique. The mobility decreased slightly with increasing temperature, while the conductivity was dominated by the gradually increasing carrier density.
NASA Technical Reports Server (NTRS)
Vertucci, C. W.; Leopold, A. C.
1987-01-01
The physical status of water in seeds has a pivotal role in determining the physiological reactions that can take place in the dry state. Using water sorption isotherms from cotyledon and axis tissue of five leguminous seeds, the strength of water binding and the numbers of binding sites have been estimated using van't Hoff analyses and the D'Arcy/Watt equation. These parameters of water sorption are calculated for each of the three regions of water binding and for a range of temperatures. Water sorption characteristics are reflective of the chemical composition of the biological materials as well as the temperature at which hydration takes place. Changes in the sorption characteristics with temperature and hydration level may suggest hydration-induced structural changes in cellular components.
Historic Storminess Changes in North Atlantic Region
NASA Astrophysics Data System (ADS)
Dawson, A. G.; Elliott, L.; Noone, S.; Hickey, K.; Foster, I.; Wadhams, P.; Mayewski, P.
2001-05-01
Reconstructed patterns of historic storminess (1870-1990 AD) for North Atlantic region as indicated by measurements from selected stations in Iceland, Faeroes, Scotland and Ireland show clear links with the climate "seesaw" winters first described by Van Loon and Rogers. The stormiest winters appear to have occurred during periods when measured Greenland air temperatures at Jacobshavn and reconstructed air temperatures from the Summit ice core site have been exceptionally low and when air temperature across northern Europe have been well above average. Maxima and minima of recorded winter storms for the various stations are also in agreement with the Sodium chronology from GISP2 that points to increased sea salt precipitation on Greenland ice at Summit during Greenland "below" periods of the climate seesaw.
Laser safety and hazard analysis for the temperature stabilized BSLT ARES laser system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augustoni, Arnold L.
A laser safety and hazard analysis was performed for the temperature stabilized Big Sky Laser Technology (BSLT) laser central to the ARES system based on the 2000 version of the American National Standards Institute's (ANSI) Standard Z136.1, for Safe Use of Lasers and the 2000 version of the ANSI Standard Z136.6, for Safe Use of Lasers Outdoors. As a result of temperature stabilization of the BSLT laser the operating parameters of the laser had changed requiring a hazard analysis based on the new operating conditions. The ARES laser system is a Van/Truck based mobile platform, which is used to performmore » laser interaction experiments and tests at various national test sites.« less
Inelastic processes in atomic collisions involving ground state and laser-prepared atoms
NASA Astrophysics Data System (ADS)
Planje, Willem Gilles
1999-11-01
In dit proefschrift worden experimenten beschreven waarbij ionen of atomen met een bepaalde snelheid op een ensemble van doelwitatomen worden gericht. Wanneer twee deeltjes elkaar voldoende genaderd hebben, vindt er wissel- werking plaats waarbij allerlei processen kunnen optreden. Deze processen resulteren in specieke eindproducten. Kennis over de interactie tussen twee botsingspartners wordt verkregen door te bekijken welke eindproducten ontstaan, en in welke mate. Een belangrijke grootheid die van invloed is op mogelijke processen is de onderlinge snelheid van de twee kernen, oftewel de botsingssnelheid. Wanneer de botsingssnelheid voldoende klein is dan kunnen de verschillende reactiemechanismen zowel kwalitatief als kwanti- tatief vaak goed voorspeld worden door het systeem te beschouwen als een kort-stondig molecuul, opgebouwd uit de twee botsende deeltjes. De ver- schillende processen die kunnen optreden worden gekwaliceerd afhankelijk van de vorming van bepaalde eindproducten. Ruwweg de volgende indeling kan gemaakt worden: 1. de interne structuur van de eindproducten zijn identiek aan die van de beginproducten. We spreken dan van een elastische botsing. 2. e en van de deeltjes of beiden worden in een aangeslagen toestand ge- bracht (of ge¨oniseerd). Dit zijn processen waarbij de herschikte elek- tronen zich bij de oorspronkelijke kern bevinden. We spreken dan van excitatie of ionisatie. 3. e en of meerdere elektronen bevinden zich bij de andere kern na de botsing (eventueel in aangeslagen toestand). We spreken dan van elek- tronenoverdracht. In het eerste deel van deze dissertatie worden botsingsexperimenten tussen heliumionen en natriumatomen beschreven waarbij het proces van elek- tronenoverdracht wordt onderzocht. Bij dit mechanisme is het buitenste 117?Samenvatting natriumelektron betrokken. Deze kan relatief gemakkelijk `overspringen' naar het heliumion wanneer deze zich dicht in de buurt van het natrium- atoom bevindt. Het elektron kan hierbij een bepaalde (aangeslagen) toe- stand bezetten. Wij meten de bezetting van de heliumtoestanden die onder uitzending van XUV licht ( ? 58 nm) vervallen naar de heliumgrondtoe- stand. Door de lichtintensiteit te meten onderzoeken we de mate van elek- tronenoverdracht naar een selecte groep van singlet helium`eind'toestanden, namelijk He(1s2p), He(1s3s), He(1s3p) en He(1s3d). In een reactie- vergelijking ziet het mechanisme er als volgt uit: He + (1s) + ( Na(3s) Na(3p) e- -! He + Na + -! He(1s 2 ) +h(58 nm) + Na + Het experiment kent een extra dimensie door het feit dat het, in beginsel bol- symmetrische, natriumatoom een bepaalde ruimtelijk uitlijning kan worden meegegeven. Met behulp van laserlicht van een specieke frequentie en po- larisatie, wordt het buitenste natriumelektron in een aangeslagen p toestand gebracht. Het aanslaan naar deze toestand heeft als gevolg dat het valentie- elektron zich op grotere afstand van zijn kern bevindt dan voorheen. Daar- naast kan, afhankelijk van de gebruikte laserpolarisatie, het buitenste elek- tron zich nu rond de natriumkern bewegen volgens een bepaalde anisotrope verdeling, de bolsymmetrie is doorbroken. De eecten van de excitatie en ruimtelijk verdeling van dit natriumelektron op het proces van elektronen- overdracht zijn onderzocht voor botsingsenergie¨en vari¨erend van 0.5 keV tot 6.0 keV. De metingen laten zien dat het eect van laserexcitatie een bezettingstoe- name van de beschouwde singlet heliumtoestanden betekent, ongeacht de uitlijning van het natrium 3p elektron. Dit is simpelweg te begrijpen uit het feit dat het 3p natrium elektron minder sterk gebonden is en elektro- nenoverdracht makkelijker gaat. Daarnaast is de uitlijning van het aanges- lagen elektron van invloed op de elektronenoverdracht. De resultaten zijn vergeleken met berekeningen van S.E. Nielsen en T.H. Rod [13], die de elek- tronoverdracht beschrijven in een model waarbij het betrokken elektron zich beweegt in bepaalde eectieve potentiaalvelden. De goede overeenkomsten van onze metingen met de berekeningen rechtvaardigen de theoretische be- nadering van Nielsen en Rod. 118?Samenvatting In het tweede gedeelte van het proefschrift worden botsingen beschouwd tussen helium- en neonatomen. Hierbij wordt nu niet gekeken naar bots- ingsproducten die zich manifesteren door bepaald licht uit te zenden, maar een elektron emitteren met een bepaalde energie. Verschillende soorten `eind'producten kunnen elektronen uitzenden, waaronder de negatieve ion- toestanden. Het elektronenspectrum, gemeten voor dit botsingssysteem, vertoont twee pieken die het spectrum domineren bij 16.2 eV en 19.4 eV voor verschillende botsingsenergie¨en tussen de 0.35 keV en 6.0 keV. Deze piekstructuren wijzen op de vorming van de kort-levende, negatieve iontoe- standen Ne-(2p 5 3s 2 ) en He-(1s2s 2 ) ten gevolge van de overdracht van e en elektron: He 0 + Ne 0 -! He-(1s2s 2 ) +Ne + (2p 5 ) 3 10- 14 s -! He 0 (1s 2 ) +Ne + + e- (19.37 eV) He 0 + Ne 0 -! He + (1s) +Ne-(2p 5 3s 2 ) 2:5 10- 13 s -! He + (1s) +Ne 0 (2p 6 ) +e- (16.15 eV) De meetresultaten vertonen een fenomeen waarbij de bezettingen van de negatieve iontoestanden een oscillerend gedrag vertonen als functie van de botsingssnelheid. Dit duidt op interferentie tussen de twee bijna-ontaarde moleculaire toestanden [He- + Ne + ] en[He + + Ne-]. Het is echter zeer op- merkelijk dat deze oscillatie wordt waargenomen in een experiment als deze, waarin de uitgezonden elektronen worden gemeten ongeacht de afbuighoek van het heliumatoom. Dit impliceert een speciek aanslagmechanisme van de moleculaire negatieve iontoestanden. Nader beschouwing van het bots- ingssysteem laat zien dat het instantane molecuul twee overgangen moet ondergaan voordat de negatieve iontoestanden gevormd worden. Als gevolg hiervan is de snelheid waarmee het negatieve en positieve ion uit elkaar be- wegen nagenoeg onafhankelijk van de afbuighoek van het helium projectiel en is oscillatie mogelijk waarneembaar. De wisselwerking tussen de twee beschouwde moleculaire toestanden impliceert gecorreleerde overdracht van twee elektronen: He- + Ne + 2e- ! He + + Ne- Door het quasi-resonante systeem als resonant te beschouwen kan het fenomeen kwalitatief goed verklaard worden. 119?Samenvatting Inhet laatstedeelwordt de bevolkingvanauto¨oniserende natriumtoestanden bekeken in He +=0 + Na botsingen. In tegenstelling tot de voorgaande exper- imenten waarin elektronenoverdracht beschouwd werd, betreft het hier een excitatiemechanisme. De beschouwde `eind'producten, i.e. de auto¨oniserende natriumtoestanden, bestaan in het algemeen kort en gaan over naar een stabiele iontoestand onder uitzending van een elektron met een toestands- karakteristieke kinetische energie. Door de elektronenspectra te meten bij verschillende botsingsenergie¨en, wordt de bezetting van de auto¨oniserende toestanden onderzocht. Ook hier wordt het eect van laserexcitatie en laser- polarisatie van het natriumatoom op de vorming van deze toestanden, en de mate waarin, bekeken. De metingen laten zien dat zowel in He + -Na als in He 0 -Na botsingen de invloed van de ruimtelijk uitlijning van het buitenste natriumelektron op de elektronenspectra nihil is. Dit impliceert dat het betrokken 3p elektron hoofdzakelijk een passieve rol speelt in de vorming van auto¨oniserende toe- standen: het blijft hoofdzakelijk de 3p toestand bezetten als een `toeschouwer' zonder een overgang te maken naar een andere toestand. Dit wordt boven- dien bevestigd door het feit dat wanneer een fractie natriumatomen aange- slagen wordt naar de p toestand dit een even grote reductie betekent van onder meer de populatie van de auto¨oniserende toestand Na(2p 5 3s 2 ). De verwachte grote toename van Na(2p 5 3p 2 ) toestanden, in geval van Na(3p) doelwitten, is niet waargenomen. 120?121?122
Liquid-vapor phase relations in the Si-O system: A calorically constrained van der Waals-type model
NASA Astrophysics Data System (ADS)
Connolly, James A. D.
2016-09-01
This work explores the use of several van der Waals (vW)-type equations of state (EoS) for predicting vaporous phase relations and speciation in the Si-O system, with emphasis on the azeotropic boiling curve of SiO2-rich liquid. Comparison with the observed Rb and Hg boiling curves demonstrates that prediction accuracy is improved if the a-parameter of the EoS, which characterizes vW forces, is constrained by ambient pressure heat capacities. All EoS considered accurately reproduce metal boiling curve trajectories, but absent knowledge of the true critical compressibility factor, critical temperatures remain uncertain by ~500 K. The EoS plausibly represent the termination of the azeotropic boiling curve of silica-rich liquid by a critical point across which the dominant Si oxidation state changes abruptly from the tetravalent state characteristic of the liquid to the divalent state characteristic of the vapor. The azeotropic composition diverges from silica toward metal-rich compositions with increasing temperature. Consequently, silica boiling is divariant and atmospheric loss after a giant impact would enrich residual silicate liquids in reduced silicon. Two major sources of uncertainty in the boiling curve prediction are the heat capacity of silica liquid, which may decay during depolymerization from the near-Dulong-Petit limit heat capacity of the ionic liquid to value characteristic of the molecular liquid, and the unknown liquid affinity of silicon monoxide. Extremal scenarios for these uncertainties yield critical temperatures and compositions of 5200-6200 K and Si1.1O2-Si1.4O2. The lowest critical temperatures are marginally consistent with shock experiments and are therefore considered more probable.
The first report of the vanC₁ gene in Enterococcus faecium isolated from a human clinical specimen.
Sun, Mingyue; Wang, Yue; Chen, Zhongju; Zhu, Xuhui; Tian, Lei; Sun, Ziyong
2014-09-01
The vanC₁ gene, which is chromosomally located, confers resistance to vancomycin and serves as a species marker for Enterococcus gallinarum. Enterococcus faecium TJ4031 was isolated from a blood culture and harbours the vanC₁gene. Polymerase chain reaction (PCR) assays were performed to detect vanXYc and vanTc genes. Only the vanXYc gene was found in the E. faecium TJ4031 isolate. The minimum inhibitory concentrations of vancomycin and teicoplanin were 2 µg/mL and 1 µg/mL, respectively. Real-time reverse transcription-PCR results revealed that the vanC₁ and vanXYc genes were not expressed. Pulsed-field gel electrophoresis and southern hybridisation results showed that the vanC₁ gene was encoded in the chromosome. E. faecalis isolated from animals has been reported to harbour vanC₁gene. However, this study is the first to report the presence of the vanC₁gene in E. faecium of human origin. Additionally, our research showed the vanC₁gene cannot serve as a species-specific gene of E. gallinarum and that it is able to be transferred between bacteria. Although the resistance marker is not expressed in the strain, our results showed that E. faecium could acquire the vanC₁gene from different species.
2007-12-01
warmtebelastingtests vast te stellen en (sit-and-reach, stand-and-reach. abductie referentiewaarden te bepalen door het van de arnen, anteflexie van de armen ...volgende, bewegingbeperkingtests: sit-and-reach, stand-and-reach. abductie van de armen , anteflexie van de armen en beperking van zicht. Bij de sit-and...gebogen op de rand van een tafel en houdt de armen zo ver mogeijk gestrekt naar voren op tafel. Daarbij wordt de afstand vanaf de rand van de tafel tot
Boyd, David A.; Willey, Barbara M.; Fawcett, Darlene; Gillani, Nazira; Mulvey, Michael R.
2008-01-01
Enterococcus faecalis N06-0364, exhibiting a vancomycin MIC of 8 μg/ml, was found to harbor a novel d-Ala-d-Ser gene cluster, designated vanL. The vanL gene cluster was similar in organization to the vanC operon, but the VanT serine racemase was encoded by two separate genes, vanTmL (membrane binding) and vanTrL (racemase). PMID:18458129
NASA Astrophysics Data System (ADS)
Awasthi, Anjali; Awasthi, Aashees
2017-06-01
The acoustic non-linearity parameter (B/A) for binary mixtures of 2-chloroethanol with 2-dimethylethanolamine (2-DMAE) and 2-diethylethanolamine (2-DEAE) are evaluated using Tong Dong, Beyer and Beyer-Tong Dong coefficients at varying concentrations and temperatures ranging from 293.15 to 313.15 K. The nonlinearity parameter is used to calculate various molecular properties such as internal pressure, cohesive energy density, Van der waals' constant, distance of closest approach, diffusion coefficient and rotational correlation time. Additionally, the intermediate quantities like temperature and pressure derivatives of sound velocity and phase shift parameter as a function of temperature are also deduced. The extent of intermolecular interactions, anharmonicity and structural configuration of the binaries under investigation are discussed in terms of excess non-linearity parameter (B/A)E.
Versatile apparatus for thermoelectric characterization of oxides at high temperatures
NASA Astrophysics Data System (ADS)
Schrade, Matthias; Fjeld, Harald; Norby, Truls; Finstad, Terje G.
2014-10-01
An apparatus for measuring the Seebeck coefficient and electrical conductivity is presented and characterized. The device can be used in a wide temperature range from room temperature to 1050 °C and in all common atmospheres, including oxidizing, reducing, humid, and inert. The apparatus is suitable for samples with different geometries (disk-, bar-shaped), allowing a complete thermoelectric characterization (including thermal conductivity) on a single sample. The Seebeck coefficient α can be measured in both sample directions (in-plane and cross-plane) simultaneously. Electrical conductivity is measured via the van der Pauw method. Perovskite-type CaMnO3 and the misfit cobalt oxide (Ca2CoO3)q(CoO2) are studied to demonstrate the temperature range and to investigate the variation of the electrical properties as a function of the measurement atmosphere.
Versatile apparatus for thermoelectric characterization of oxides at high temperatures.
Schrade, Matthias; Fjeld, Harald; Norby, Truls; Finstad, Terje G
2014-10-01
An apparatus for measuring the Seebeck coefficient and electrical conductivity is presented and characterized. The device can be used in a wide temperature range from room temperature to 1050 °C and in all common atmospheres, including oxidizing, reducing, humid, and inert. The apparatus is suitable for samples with different geometries (disk-, bar-shaped), allowing a complete thermoelectric characterization (including thermal conductivity) on a single sample. The Seebeck coefficient α can be measured in both sample directions (in-plane and cross-plane) simultaneously. Electrical conductivity is measured via the van der Pauw method. Perovskite-type CaMnO3 and the misfit cobalt oxide (Ca2CoO3)q(CoO2) are studied to demonstrate the temperature range and to investigate the variation of the electrical properties as a function of the measurement atmosphere.
Code of Federal Regulations, 2014 CFR
2014-04-01
... for inspection by Customs officials upon reasonable notice. (3) If the container does not exit the U.S... 19 Customs Duties 1 2014-04-01 2014-04-01 false Lift vans, cargo vans, shipping tanks, skids... Traffic § 10.41a Lift vans, cargo vans, shipping tanks, skids, pallets, and similar instruments of...
Code of Federal Regulations, 2012 CFR
2012-04-01
... for inspection by Customs officials upon reasonable notice. (3) If the container does not exit the U.S... 19 Customs Duties 1 2012-04-01 2012-04-01 false Lift vans, cargo vans, shipping tanks, skids... Traffic § 10.41a Lift vans, cargo vans, shipping tanks, skids, pallets, and similar instruments of...
Code of Federal Regulations, 2013 CFR
2013-04-01
... for inspection by Customs officials upon reasonable notice. (3) If the container does not exit the U.S... 19 Customs Duties 1 2013-04-01 2013-04-01 false Lift vans, cargo vans, shipping tanks, skids... Traffic § 10.41a Lift vans, cargo vans, shipping tanks, skids, pallets, and similar instruments of...
Pressure Dependence of the Radial Breathing Mode of Carbon Nanotubes: The Effect of Fluid Adsorption
NASA Astrophysics Data System (ADS)
Longhurst, M. J.; Quirke, N.
2007-04-01
The pressure dependence of shifts in the vibrational modes of individual carbon nanotubes is strongly affected by the nature of the pressure transmitting medium as a result of adsorption at the nanotube surface. The adsorbate is treated as an elastic shell which couples with the radial breathing mode (RBM) of the nanotube via van der Waal interactions. Using analytical methods as well as molecular simulation, we observe a low frequency breathing mode for the adsorbed fluid at ˜50cm-1, as well as diameter dependent upshifts in the RBM frequency with pressure, suggesting metallic nanotubes may wet more than semiconducting ones.
1992-09-01
omzettings rendementen van circa 75% gehaad bij een ingangs- energie van 280 mJ. De mogelijkheden tot bet halen van een hoger rendement lijken...of rep-rate, beam quality and astigmatism DImi-Thu-B~mO ITA1EiM-tT-h lF I~~ ~~’ IAPR2 8 1993~ I ~Xtbai Uiitdw FJ.M. van Putten J.C. van den Heuvel RJ.L...Influence of rep-rate. beam quality and astigmatism author(s) : F.J.M. van Putten, I.C. van den Heuvel, R.J.L. Lerou institute : TNO Physics and
Naval Air Systems Command Mobile Facility Program
2009-11-03
Julie Trossbach 301-757-3073 Database Manager – Emi McCutcheon 301-757- 8347 BFM – Michelle Moorman 301-757-8328 Comptroller Analyst – Kathy...Jamie McDonald (757) 444-1428 NAVAIR Mobile Facilities MFTool/Database AIR 6.7.6.2 Emi McCutcheon (301) 757-8347 NAVAIR Mobile Facilities Logistics...requirement for mobile trailer -type vans for peculiar jet aircraft maintenance – Needed dust free, temperature & humidity-controlled maintenance
Investigating Efficient Tar Management from Biomass and Waste to Energy Gasification Processes
2015-04-01
Non-thermal plasma systems, including low-pressure glow, radio frequency and corona discharges , offer high chemical selectivity and relatively...Chemosphere 2007;68(10):1821-9; Van Durme, Jim, et. al; Abatement and degredation pathways of toluene of indoor air by positive corona discharge . xi... discharges including high temperature plasma torchesviii, microwaveix, coronax and as related to this study, gliding arc nonthermal plasmaxi and catalystsxii
NASA Astrophysics Data System (ADS)
Williams, Robert W.; Schlücker, Sebastian; Hudson, Bruce S.
2008-01-01
A scaled quantum mechanical harmonic force field (SQMFF) corrected for anharmonicity is obtained for the 23 K L-alanine crystal structure using van der Waals corrected periodic boundary condition density functional theory (DFT) calculations with the PBE functional. Scale factors are obtained with comparisons to inelastic neutron scattering (INS), Raman, and FT-IR spectra of polycrystalline L-alanine at 15-23 K. Calculated frequencies for all 153 normal modes differ from observed frequencies with a standard deviation of 6 wavenumbers. Non-bonded external k = 0 lattice modes are included, but assignments to these modes are presently ambiguous. The extension of SQMFF methodology to lattice modes is new, as are the procedures used here for providing corrections for anharmonicity and van der Waals interactions in DFT calculations on crystals. First principles Born-Oppenheimer molecular dynamics (BOMD) calculations are performed on the L-alanine crystal structure at a series of classical temperatures ranging from 23 K to 600 K. Corrections for zero-point energy (ZPE) are estimated by finding the classical temperature that reproduces the mean square displacements (MSDs) measured from the diffraction data at 23 K. External k = 0 lattice motions are weakly coupled to bonded internal modes.
Local corrugation and persistent charge density wave in ZrTe 3 with Ni intercalation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganose, Alex M.; Gannon, Liam; Fabrizi, Federica
Here, the mechanism of emergent bulk superconductivity in transition-metal intercalated ZrTe 3 is investigated by studying the effect of Ni doping on the band structure and charge density wave (CDW). The study reports theoretical and experimental results in the range of Ni 0.01ZrTe 3 to Ni 0.05ZrTe 3. In the highest doped samples, bulk superconductivity with T c < T CDW is observed, with a reduced T CDW compared with pure ZrTe 3. Relativistic ab initio calculations reveal that Ni incorporation occurs preferentially through intercalation in the van der Waals gap. Analysis of the structural and electronic effects of intercalationmore » indicate buckling of the Te sheets adjacent to the Ni site akin to a locally stabilized CDW-like lattice distortion. In contrast to the changes of T CDW observed in resistivity, experiments with low-temperature x-ray diffraction, angle-resolved-photoemission spectroscopy, as well as temperature-dependent resistivity reveal the nearly unchanged persistence of the CDW into the regime of bulk superconductivity. The CDW gap is found to be unchanged in its extent in momentum space, with the gap size also unchanged or possibly slightly reduced upon Ni intercalation. Both experimental observations suggest that superconductivity coexists with the CDW in Ni xZrTe 3.« less
Local corrugation and persistent charge density wave in ZrTe 3 with Ni intercalation
Ganose, Alex M.; Gannon, Liam; Fabrizi, Federica; ...
2018-04-03
Here, the mechanism of emergent bulk superconductivity in transition-metal intercalated ZrTe 3 is investigated by studying the effect of Ni doping on the band structure and charge density wave (CDW). The study reports theoretical and experimental results in the range of Ni 0.01ZrTe 3 to Ni 0.05ZrTe 3. In the highest doped samples, bulk superconductivity with T c < T CDW is observed, with a reduced T CDW compared with pure ZrTe 3. Relativistic ab initio calculations reveal that Ni incorporation occurs preferentially through intercalation in the van der Waals gap. Analysis of the structural and electronic effects of intercalationmore » indicate buckling of the Te sheets adjacent to the Ni site akin to a locally stabilized CDW-like lattice distortion. In contrast to the changes of T CDW observed in resistivity, experiments with low-temperature x-ray diffraction, angle-resolved-photoemission spectroscopy, as well as temperature-dependent resistivity reveal the nearly unchanged persistence of the CDW into the regime of bulk superconductivity. The CDW gap is found to be unchanged in its extent in momentum space, with the gap size also unchanged or possibly slightly reduced upon Ni intercalation. Both experimental observations suggest that superconductivity coexists with the CDW in Ni xZrTe 3.« less
Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries.
Zhu, YinBo; Wang, FengChao; Wu, HengAn
2016-08-07
Graphene confinement provides a new physical and mechanical environment with ultrahigh van der Waals pressure, resulting in new quasi-two-dimensional phases of few-layer ice. Polymorphic transition can occur in bilayer constrained water/ice system. Here, we perform a comprehensive study of the phase transition of AA-stacked bilayer water constrained within a graphene nanocapillary. The compression-limit and superheating-limit (phase) diagrams are obtained, based on the extensive molecular-dynamics simulations at numerous thermodynamic states. Liquid-to-solid, solid-to-solid, and solid-to-liquid-to-solid phase transitions are observed in the compression and superheating of bilayer water. Interestingly, there is a temperature threshold (∼275 K) in the compression-limit diagram, which indicates that the first-order and continuous-like phase transitions of bilayer water depend on the temperature. Two obviously different physical processes, compression and superheating, display similar structural evolution; that is, square ice-nanotube arrays (BL-VHDI) will bend first and then transform into bilayer triangular AA stacking ice (BL-AAI). The superheating limit of BL-VHDI exhibits local maxima, while that of BL-AAI increases monotonically. More importantly, from a mechanics point of view, we propose a novel mechanism of the transformation from BL-VHDI to BL-AAI, both for the compression and superheating limits. This structural transformation can be regarded as the "buckling failure" of the square-ice-nanotube columns, which is dominated by the lateral pressure.
Adsorption of the compounds encountered in monosaccharide dehydration in zeolite beta.
León, Marta; Swift, T Dallas; Nikolakis, Vladimiros; Vlachos, Dionisios G
2013-06-04
A comprehensive study of the adsorption of the compounds involved in the reaction of dehydration of fructose to 5-hydroxymethyl furfural (HMF) on the zeolite H-BEA with SiO2/Al2O3 = 18 has been carried out. Furthermore, a method for the estimation of the real adsorption loading from the experimentally measured excess adsorption is developed and applied to calculate the adsorption isotherms both in the case of single-solute and multisolute mixtures. It was found that zeolite H-BEA adsorbs HMF and levulinic acid from water mixtures to greater extent than sugars and formic acid, which prefer to partition in the aqueous phase. HMF and levulinic acid adsorption isotherms could be fitted in a Redlich-Peterson isotherm model, while the adsorption of formic acid is better fitted using the Freundlich model and sugars via the Henry model. Adsorption loadings decreased with increasing temperature (0, 25, and 40 °C), which is characteristic of an exothermic process. From the temperature dependence of the isotherms, the limiting heat of adsorption at zero coverage was determined using van't Hoff equation. Given the importance and the complexity of multicomponent systems, several experiments of adsorption of multisolute solutions have been carried out. In most of the cases, the ideal adsorbed solution theory (IAST) has been proven to satisfactorily predict adsorption from multisolute mixtures using as input the single-solute isotherms.
Liquid-liquid critical point in a simple analytical model of water.
Urbic, Tomaz
2016-10-01
A statistical model for a simple three-dimensional Mercedes-Benz model of water was used to study phase diagrams. This model on a simple level describes the thermal and volumetric properties of waterlike molecules. A molecule is presented as a soft sphere with four directions in which hydrogen bonds can be formed. Two neighboring waters can interact through a van der Waals interaction or an orientation-dependent hydrogen-bonding interaction. For pure water, we explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility and found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations. The model exhibits also two critical points for liquid-gas transition and transition between low-density and high-density fluid. Coexistence curves and a Widom line for the maximum and minimum in thermal expansion coefficient divides the phase space of the model into three parts: in one part we have gas region, in the second a high-density liquid, and the third region contains low-density liquid.
Study of magnetism in Cr doped (Bi1-xSbx)2Te3
NASA Astrophysics Data System (ADS)
Richardella, Anthony; Kandala, Abhinav; Kempinger, Susan; Samarth, Nitin; Grutter, Alex; Borchers, Julie
2015-03-01
The quantum anomalous Hall (QAH) effect was first observed in Cr doped films of the topological insulator (TI) (Bi1-xSbx)2Te3. This ferromagnetic TI opens a gap at the Dirac point and, when the Fermi energy lies inside this gap, a quantized QAH conductance can be observed. The origin of ferromagnetism in this material is still not well understood with the mechanism typically attributed to either a high van-Vleck susceptibility or a carrier mediated RKKY like interaction. To elucidate this we have studied Cry(Bi1-xSbx)2-yTe3 thin films grown by MBE on SrTiO3 (STO) substrates using polarized neutron reflectivity (PNR) while in-situ backgating the film to change the position of the Fermi energy. The films are also characterized by XRD, AFM, TEM and low temperature transport measurements. PNR measurements provide a direct measure of the depth dependent magnetization of a sample. We use this to study how the magnetization changes as the Fermi energy is moved towards the Dirac point. Funded by DARPA and ARO-MURI.
Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy
NASA Astrophysics Data System (ADS)
Klots, A. R.; Newaz, A. K. M.; Wang, Bin; Prasai, D.; Krzyzanowska, H.; Lin, Junhao; Caudel, D.; Ghimire, N. J.; Yan, J.; Ivanov, B. L.; Velizhanin, K. A.; Burger, A.; Mandrus, D. G.; Tolk, N. H.; Pantelides, S. T.; Bolotin, K. I.
2014-10-01
The optical response of semiconducting monolayer transition-metal dichalcogenides (TMDCs) is dominated by strongly bound excitons that are stable even at room temperature. However, substrate-related effects such as screening and disorder in currently available specimens mask many anticipated physical phenomena and limit device applications of TMDCs. Here, we demonstrate that that these undesirable effects are strongly suppressed in suspended devices. Extremely robust (photogain > 1,000) and fast (response time < 1 ms) photoresponse allow us to study, for the first time, the formation, binding energies, and dissociation mechanisms of excitons in TMDCs through photocurrent spectroscopy. By analyzing the spectral positions of peaks in the photocurrent and by comparing them with first-principles calculations, we obtain binding energies, band gaps and spin-orbit splitting in monolayer TMDCs. For monolayer MoS2, in particular, we obtain an extremely large binding energy for band-edge excitons, Ebind >= 570 meV. Along with band-edge excitons, we observe excitons associated with a van Hove singularity of rather unique nature. The analysis of the source-drain voltage dependence of photocurrent spectra reveals exciton dissociation and photoconversion mechanisms in TMDCs.
Liquid-liquid critical point in a simple analytical model of water
NASA Astrophysics Data System (ADS)
Urbic, Tomaz
2016-10-01
A statistical model for a simple three-dimensional Mercedes-Benz model of water was used to study phase diagrams. This model on a simple level describes the thermal and volumetric properties of waterlike molecules. A molecule is presented as a soft sphere with four directions in which hydrogen bonds can be formed. Two neighboring waters can interact through a van der Waals interaction or an orientation-dependent hydrogen-bonding interaction. For pure water, we explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility and found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations. The model exhibits also two critical points for liquid-gas transition and transition between low-density and high-density fluid. Coexistence curves and a Widom line for the maximum and minimum in thermal expansion coefficient divides the phase space of the model into three parts: in one part we have gas region, in the second a high-density liquid, and the third region contains low-density liquid.
Phase shifting two coupled circadian pacemakers - Implications for jet lag
NASA Technical Reports Server (NTRS)
Gander, P. H.; Kronauer, R. E.; Graeber, R. C.
1985-01-01
Two Van der Pol oscillators with reciprocal linear velocity coupling are utilized to model the response of the human circadian timing system to abrupt displacements of the environmental time cues (zeitgebers). The core temperature rhythm and sleep-wake cycle simulated by the model are examined. The relationship between the masking of circadian rhythms by environmental variables and behavioral and physiological events and the rates of resynchronization is studied. The effects of zeitgeber phase shifts and zeitgeber strength on the resynchronization rates are analyzed. The influence of intrinsic pacemakers periods and coupling strength on resynchronization are investigated. The simulated data reveal that: resynchronization after a time zone shift depends on the magnitude of the shift; the time of day of the shift has little influence on resynchronization; the strength of zeitgebers affects the rate and direction of the resynchronization; the intrinsic pacemaker periods have a significant effect on resynchronization; and increasing the coupling between the oscillators results in an increase in the rate of resynchronization. The model data are compared to transmeridian flight studies data and similar resynchronization patterns are observed.
Structure and Electrical Conductivity of AgTaS 3
NASA Astrophysics Data System (ADS)
Kim, Changkeun; Yun, Hoseop; Lee, Youngju; Shin, Heekyoon; Liou, Kwangkyoung
1997-09-01
Single crystals of the compound AgTaS 3have been prepared through reactions of the elements with halide mixtures. The structure of AgTaS 3has been analyzed by single-crystal X-ray diffraction methods. AgTaS 3crystallizes in the space group D172h- Cmcmof the orthorhombic system with four formula units in a cell of dimensions a=3.378(2), b=14.070(5), c=7.756(3) Å. The structure of AgTaS 3consists of two-dimensional 2∞[TaS -3] layers separated by Ag +cations. The layer is composed of Ta-centered bicapped trigonal prisms stacked on top of each other by sharing triangular faces. These chains are linked to form the infinite two-dimensional 2∞[TaS -3] slabs. These layers are held together through van der Waals interactions, and Ag +ions reside in the distorted octahedral sites between the layers. The temperature dependence of the electrical conductivity along the needle axis of AgTaS 3shows the typical behavior of an extrinsic semiconductor.
Thermodiffusion as a means to manipulate liquid film dynamics on chemically patterned surfaces
Kalpathy, Sreeram K.; Shreyes, Amrita Ravi
2017-01-01
The model problem examined here is the stability of a thin liquid film consisting of two miscible components, resting on a chemically patterned solid substrate and heated from below. In addition to surface tension gradients, the temperature variations also induce gradients in the concentration of the film by virtue of thermodiffusion/Soret effects. We study the stability and dewetting behaviour due to the coupled interplay between thermal gradients, Soret effects, long-range van der Waals forces, and wettability gradient-driven flows. Linear stability analysis is first employed to predict growth rates and the critical Marangoni number for chemically homogeneous surfaces. Then, nonlinear simulations are performed to unravel the interfacial dynamics and possible locations of the film rupture on chemically patterned substrates. Results suggest that appropriate tuning of the Soret parameter and its direction, in conjunction with either heating or cooling, can help manipulate the location and time scales of the film rupture. The Soret effect can either potentially aid or oppose film instability depending on whether the thermal and solutal contributions to flow are cooperative or opposed to each other. PMID:28595391
Universality of magnetic-field-induced Bose-Einstein condensation of magnons
NASA Astrophysics Data System (ADS)
Shirasawa, Kazuki; Kurita, Nobuyuki; Tanaka, Hidekazu
2017-10-01
CsFeBr3 is an S =1 hexagonal antiferromagnet that has a singlet ground state owing to its large easy-plane single-ion anisotropy. The critical behavior of the magnetic-field-induced phase transition for a magnetic field parallel to the c axis, which can be described by the Bose-Einstein condensation (BEC) of magnons under the U (1 ) symmetry, was investigated via magnetization and specific heat measurements down to 0.1 K. For the specific heat measurement, we have developed a method of effectively suppressing the torque acting on a sample with strong anisotropy that uses the spin dimer compound Ba2CoSi2O6Cl2 with large and anisotropic Van Vleck paramagnetism. The temperature dependence of the transition field Hc(T ) was found to follow the power-law Hc(T ) -Hc∝Tϕ with a critical exponent of ϕ =1.50 ±0.02 and critical field of Hc=2.60 T . This result verifies the universality of the three-dimensional BEC of magnons described by ϕBEC=3 /2 .
Phillips-Jones, Mary K.; Channell, Guy; Kelsall, Claire J.; Hughes, Charlotte S.; Ashcroft, Alison E.; Patching, Simon G.; Dinu, Vlad; Gillis, Richard B.; Adams, Gary G.; Harding, Stephen E.
2017-01-01
VanA-type resistance to glycopeptide antibiotics in clinical enterococci is regulated by the VanSARA two-component signal transduction system. The nature of the molecular ligand that is recognised by the VanSA sensory component has not hitherto been identified. Here we employ purified, intact and active VanSA membrane protein (henceforth referred to as VanS) in analytical ultracentrifugation experiments to study VanS oligomeric state and conformation in the absence and presence of vancomycin. A combination of sedimentation velocity and sedimentation equilibrium in the analytical ultracentrifuge (SEDFIT, SEDFIT-MSTAR and MULTISIG analysis) showed that VanS in the absence of the ligand is almost entirely monomeric (molar mass M = 45.7 kDa) in dilute aqueous solution with a trace amount of high molar mass material (M ~ 200 kDa). The sedimentation coefficient s suggests the monomer adopts an extended conformation in aqueous solution with an equivalent aspect ratio of ~(12 ± 2). In the presence of vancomycin over a 33% increase in the sedimentation coefficient is observed with the appearance of additional higher s components, demonstrating an interaction, an observation consistent with our circular dichroism measurements. The two possible causes of this increase in s – either a ligand induced dimerization and/or compaction of the monomer are considered. PMID:28397853
Martirosyan, A; Saakian, David B
2011-08-01
We apply the Hamilton-Jacobi equation (HJE) formalism to solve the dynamics of the chemical master equation (CME). We found exact analytical expressions (in large system-size limit) for the probability distribution, including explicit expression for the dynamics of variance of distribution. We also give the solution for some simple cases of the model with time-dependent rates. We derived the results of the Van Kampen method from the HJE approach using a special ansatz. Using the Van Kampen method, we give a system of ordinary differential equations (ODEs) to define the variance in a two-dimensional case. We performed numerics for the CME with stationary noise. We give analytical criteria for the disappearance of bistability in the case of stationary noise in one-dimensional CMEs.
Generalized Case ``Van Kampen theory for electromagnetic oscillations in a magnetized plasma
NASA Astrophysics Data System (ADS)
Bairaktaris, F.; Hizanidis, K.; Ram, A. K.
2017-10-01
The Case-Van Kampen theory is set up to describe electrostatic oscillations in an unmagnetized plasma. Our generalization to electromagnetic oscillations in magnetized plasma is formulated in the relativistic position-momentum phase space of the particles. The relativistic Vlasov equation includes the ambient, homogeneous, magnetic field, and space-time dependent electromagnetic fields that satisfy Maxwell's equations. The standard linearization technique leads to an equation for the perturbed distribution function in terms of the electromagnetic fields. The eigenvalues and eigenfunctions are obtained from three integrals `` each integral being over two different components of the momentum vector. Results connecting phase velocity, frequency, and wave vector will be presented. Supported in part by the Hellenic National Programme on Controlled Thermonuclear Fusion associated with the EUROfusion Consortium, and by DoE Grant DE-FG02-91ER-54109.