High Temperature Steam Electrolysis: Demonstration of Improved Long-Term Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. E. O'Brien; X. Zhang; R. C. O'Brien
2011-11-01
Long-term performance is an ongoing issue for hydrogen production based on high-temperature steam electrolysis (HTSE). For commercial deployment, solid-oxide electrolysis stacks must achieve high performance with long-term degradation rates of {approx}0.5%/1000 hours or lower. Significant progress has been achieved toward this goal over the past few years. This paper will provide details of progress achieved under the Idaho National Laboratory high temperature electrolysis research program. Recent long-term stack tests have achieved high initial performance with degradation rates less than 5%/khr. These tests utilize internally manifolded stacks with electrode-supported cells. The cell material sets are optimized for the electrolysis mode ofmore » operation. Details of the cells and stacks will be provided along with details of the test apparatus, procedures, and results.« less
RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: STACK TESTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
X, Zhang; J. E. O'Brien; R. C. O'Brien
2012-07-01
High temperature steam electrolysis is a promising technology for efficient sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-term durability of SOECs. Electrolytesupportedmore » and electrode-supported SOEC stacks were provided by Ceramatec Inc., Materials and Systems Research Inc. (MSRI), and Saint Gobain Advanced Materials (St. Gobain), respectively for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technology developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, respectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. A three-cell short stack provided by St. Gobain, however, showed rapid degradation in the electrolysis mode. Improvements on electrode materials, interconnect coatings, and electrolyteelectrode interface microstructures contribute to better durability of SOEC stacks.« less
High Temperature Electrolysis 4 kW Experiment Design, Operation, and Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.E. O'Brien; X. Zhang; K. DeWall
2012-09-01
This report provides results of long-term stack testing completed in the new high-temperature steam electrolysis multi-kW test facility recently developed at INL. The report includes detailed descriptions of the piping layout, steam generation and delivery system, test fixture, heat recuperation system, hot zone, instrumentation, and operating conditions. This facility has provided a demonstration of high-temperature steam electrolysis operation at the 4 kW scale with advanced cell and stack technology. This successful large-scale demonstration of high-temperature steam electrolysis will help to advance the technology toward near-term commercialization.
Improved Durability of SOEC Stacks for High Temperature Electrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. O'Brien; Robert C. O'Brien; Xiaoyu Zhang
2013-01-01
High temperature steam electrolysis is a promising technology for efficient and sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology can be realized. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-termmore » durability of SOECs. Electrolyte-supported and electrode-supported SOEC stacks were provided by Ceramatec Inc. and Materials and Systems Research Inc. (MSRI), respectively, for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technologies developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, espectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. Optimization of electrode materials, interconnect coatings, and electrolyte-electrode interface microstructures contribute to better durability of SOEC stacks.« less
RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: SINGLE CELL TESTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
X. Zhang; J. E. O'Brien; R. C. O'Brien
2012-07-01
An experimental investigation on the performance and durability of single solid oxide electrolysis cells (SOECs) is under way at the Idaho National Laboratory. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOECs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. A new test apparatus has been developed for single cell and small stack tests from different vendors. Single cells from Ceramatec Inc. show improved durability compared to our previous stack tests. Single cells from Materials and Systems Research Inc. (MSRI) demonstrate low degradation both in fuel cellmore » and electrolysis modes. Single cells from Saint Gobain Advanced Materials (St. Gobain) show stable performance in fuel cell mode, but rapid degradation in the electrolysis mode. Electrolyte-electrode delamination is found to have significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the microstructure help to mitigate degradation. Polarization scans and AC impedance measurements are performed during the tests to characterize the cell performance and degradation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. E. O'Brien; R. C. O'Brien; X. Zhang
2011-11-01
Performance characterization and durability testing have been completed on two five-cell high-temperature electrolysis stacks constructed with advanced cell and stack technologies. The solid oxide cells incorporate a negative-electrode-supported multi-layer design with nickel-zirconia cermet negative electrodes, thin-film yttria-stabilized zirconia electrolytes, and multi-layer lanthanum ferrite-based positive electrodes. The per-cell active area is 100 cm2. The stack is internally manifolded with compliant mica-glass seals. Treated metallic interconnects with integral flow channels separate the cells. Stack compression is accomplished by means of a custom spring-loaded test fixture. Initial stack performance characterization was determined through a series of DC potential sweeps in both fuel cellmore » and electrolysis modes of operation. Results of these sweeps indicated very good initial performance, with area-specific resistance values less than 0.5 ?.cm2. Long-term durability testing was performed with A test duration of 1000 hours. Overall performance degradation was less than 10% over the 1000-hour period. Final stack performance characterization was again determined by a series of DC potential sweeps at the same flow conditions as the initial sweeps in both electrolysis and fuel cell modes of operation. A final sweep in the fuel cell mode indicated a power density of 0.356 W/cm2, with average per-cell voltage of 0.71 V at a current of 50 A.« less
Sugnaux, Marc; Happe, Manuel; Cachelin, Christian Pierre; Gloriod, Olivier; Huguenin, Gérald; Blatter, Maxime; Fischer, Fabian
2016-12-01
Ethanol, electricity, hydrogen and methane were produced in a two stage bioethanol refinery setup based on a 10L microbial fuel cell (MFC) and a 33L microbial electrolysis cell (MEC). The MFC was a triple stack for ethanol and electricity co-generation. The stack configuration produced more ethanol with faster glucose consumption the higher the stack potential. Under electrolytic conditions ethanol productivity outperformed standard conditions and reached 96.3% of the theoretically best case. At lower external loads currents and working potentials oscillated in a self-synchronized manner over all three MFC units in the stack. In the second refining stage, fermentation waste was converted into methane, using the scale up MEC stack. The bioelectric methanisation reached 91% efficiency at room temperature with an applied voltage of 1.5V using nickel cathodes. The two stage bioethanol refining process employing bioelectrochemical reactors produces more energy vectors than is possible with today's ethanol distilleries. Copyright © 2016 Elsevier Ltd. All rights reserved.
Short protection device for stack of electrolytic cells
Katz, M.; Schroll, C.R.
1984-11-29
The present invention relates to a device for preventing the electrical shorting of a stack of electrolytic cells during an extended period of operation. The device has application to fuel cell and other electrolytic cell stacks operating in low or high temperature corrosive environments. It is of particular importance for use in a stack of fuel cells operating with molten metal carbonate electrolyte for the production of electric power. Also, the device may have application in similar technology involving stacks of electrolytic cells for electrolysis to decompose chemical compounds.
Zheng, Yun; Wang, Jianchen; Yu, Bo; Zhang, Wenqiang; Chen, Jing; Qiao, Jinli; Zhang, Jiujun
2017-03-06
High-temperature solid oxide electrolysis cells (SOECs) are advanced electrochemical energy storage and conversion devices with high conversion/energy efficiencies. They offer attractive high-temperature co-electrolysis routes that reduce extra CO 2 emissions, enable large-scale energy storage/conversion and facilitate the integration of renewable energies into the electric grid. Exciting new research has focused on CO 2 electrochemical activation/conversion through a co-electrolysis process based on the assumption that difficult C[double bond, length as m-dash]O double bonds can be activated effectively through this electrochemical method. Based on existing investigations, this paper puts forth a comprehensive overview of recent and past developments in co-electrolysis with SOECs for CO 2 conversion and utilization. Here, we discuss in detail the approaches of CO 2 conversion, the developmental history, the basic principles, the economic feasibility of CO 2 /H 2 O co-electrolysis, and the diverse range of fuel electrodes as well as oxygen electrode materials. SOEC performance measurements, characterization and simulations are classified and presented in this paper. SOEC cell and stack designs, fabrications and scale-ups are also summarized and described. In particular, insights into CO 2 electrochemical conversions, solid oxide cell material behaviors and degradation mechanisms are highlighted to obtain a better understanding of the high temperature electrolysis process in SOECs. Proposed research directions are also outlined to provide guidelines for future research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant L. Hawkes; James E. O'Brien; Greg Tao
2011-11-01
A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated at the Idaho National Laboratory for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified formore » this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Single-cell and five-cell results will be presented. Flow distribution through both models is discussed. Flow enters from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down ''U'' shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, oxygen-electrode and steam-electrode current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal efficiency, cell electrical efficiency, and Gibbs free energy are discussed and reported herein.« less
Static regenerative fuel cell system for use in space
NASA Technical Reports Server (NTRS)
Levy, Alexander H. (Inventor); VanDine, Leslie L. (Inventor); Trocciola, John C. (Inventor)
1989-01-01
The cell stack can be operated as a fuel cell stack or as an electrolysis cell stack. The stack consists of a series of alternate fuel cell subassemblies with intervening electrolysis cell subassemblies, and interspersed cooling plates. The water produced and consumed in the two modes of operation migrates between adjacent cell subassemblies. The component plates are annular with a central hydrogen plenum and integral internal oxygen manifolds. No fluid pumps are needed to operate the stack in either mode.
Summary Report on Solid-oxide Electrolysis Cell Testing and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.E. O'Brien; X. Zhang; R.C. O'Brien
2012-01-01
Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells (SOECs) for large-scale hydrogen production from steam over a temperature range of 800 to 900 C. From 2003 to 2009, this work was sponsored by the United States Department of Energy Nuclear Hydrogen Initiative, under the Office of Nuclear Energy. Starting in 2010, the high-temperature electrolysis (HTE) research program has been sponsored by the INL Next Generation Nuclear Plant Project. This report provides a summaryof program activities performed in Fiscal Year (FY) 2011 and the first quarter of FY-12, with a focus on small-scale testing and cellmore » development activities. HTE research priorities during this period have included the development and testing of SOEC and stack designs that exhibit high-efficiency initial performance and low, long-term degradation rates. This report includes contributions from INL and five industry partners: Materials and Systems Research, Incorporated (MSRI); Versa Power Systems, Incorporated (VPS); Ceramatec, Incorporated; National Aeronautics and Space Administration - Glenn Research Center (NASA - GRC); and the St. Gobain Advanced Materials Division. These industry partners have developed SOEC cells and stacks for in-house testing in the electrolysis mode and independent testing at INL. Additional fundamental research and post-test physical examinations have been performed at two university partners: Massachusetts Institute of Technology (MIT) and the University of Connecticut. Summaries of these activities and test results are also presented in this report.« less
DEGRADATION ISSUES IN SOLID OXIDE CELLS DURING HIGH TEMPERATURE ELECTROLYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. S. Sohal; J. E. O'Brien; C. M. Stoots
2012-02-01
Idaho National Laboratory (INL) is performing high-temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of various ongoing INL and INL sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and a list of issues that need to be addressed in future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problemsmore » between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INL's test results on high temperature electrolysis (HTE) using solid oxide cells do not provide a clear evidence whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the solid oxide electrolysis cells showed that the hydrogen electrode and interconnect get partially oxidized and become non-conductive. This is most likely caused by the hydrogen stream composition and flow rate during cool down. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation due to large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. University of Utah (Virkar) has developed a SOEC model based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic non-equilibrium. This model is under continued development. It shows that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, within the electrolyte. The chemical potential within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just under the oxygen electrode (anode)/electrolyte interface, leading to electrode delamination. This theory is being further refined and tested by introducing some electronic conduction in the electrolyte.« less
DEGRADATION ISSUES IN SOLID OXIDE CELLS DURING HIGH TEMPERATURE ELECTROLYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. E. O'Brien; C. M. Stoots; V. I. Sharma
2010-06-01
Idaho National Laboratory (INL) is performing high-temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of various ongoing INL and INL sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and a list of issues that need to be addressed in future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problemsmore » between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INL’s test results on high temperature electrolysis (HTE) using solid oxide cells do not provide a clear evidence whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the solid oxide electrolysis cells showed that the hydrogen electrode and interconnect get partially oxidized and become non-conductive. This is most likely caused by the hydrogen stream composition and flow rate during cool down. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation due to large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. University of Utah (Virkar) has developed a SOEC model based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic non-equilibrium. This model is under continued development. It shows that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, within the electrolyte. The chemical potential within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just under the oxygen electrode (anode)/electrolyte interface, leading to electrode delamination. This theory is being further refined and tested by introducing some electronic conduction in the electrolyte.« less
NASA Astrophysics Data System (ADS)
Wendel, C. H.; Kazempoor, P.; Braun, R. J.
2015-02-01
Electrical energy storage (EES) is an important component of the future electric grid. Given that no other widely available technology meets all the EES requirements, reversible (or regenerative) solid oxide cells (ReSOCs) working in both fuel cell (power producing) and electrolysis (fuel producing) modes are envisioned as a technology capable of providing highly efficient and cost-effective EES. However, there are still many challenges and questions from cell materials development to system level operation of ReSOCs that should be addressed before widespread application. This paper presents a novel system based on ReSOCs that employ a thermal management strategy of promoting exothermic methanation within the ReSOC cell-stack to provide thermal energy for the endothermic steam/CO2 electrolysis reactions during charging mode (fuel producing). This approach also serves to enhance the energy density of the stored gases. Modeling and parametric analysis of an energy storage concept is performed using a physically based ReSOC stack model coupled with thermodynamic system component models. Results indicate that roundtrip efficiencies greater than 70% can be achieved at intermediate stack temperature (680 °C) and elevated stack pressure (20 bar). The optimal operating condition arises from a tradeoff between stack efficiency and auxiliary power requirements from balance of plant hardware.
Experimental design, operation, and results of a 4 kW high temperature steam electrolysis experiment
Zhang, Xiaoyu; O'Brien, James E.; Tao, Greg; ...
2015-08-06
High temperature steam electrolysis (HTSE) is a promising technology for large-scale hydrogen production. However, research on HTSE performance above the kW level is limited. This paper presents the results of 4 kW HTSE long-term test completed in a multi-kW test facility recently developed at the Idaho National Laboratory (INL). The 4 kW HTSE unit included two solid oxide electrolysis stacks operating in parallel, each of which included 40 electrode-supported planar cells. A current density of 0.41 A/cm2 was used for the long-term operation, resulting in a hydrogen production rate about 25 slpm. A demonstration of 920 hours stable operation wasmore » achieved. The paper also includes detailed descriptions of the piping layout, steam generation and delivery system, test fixture, heat recuperation system, hot zone, instrumentation, and operating conditions. As a result, this successful demonstration of multi-kW scale HTSE unit will help to advance the technology toward near-term commercialization.« less
High Temperature Electrolysis Pressurized Experiment Design, Operation, and Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.E. O'Brien; X. Zhang; G.K. Housley
2012-09-01
A new facility has been developed at the Idaho National Laboratory for pressurized testing of solid oxide electrolysis stacks. Pressurized operation is envisioned for large-scale hydrogen production plants, yielding higher overall efficiencies when the hydrogen product is to be delivered at elevated pressure for tank storage or pipelines. Pressurized operation also supports higher mass flow rates of the process gases with smaller components. The test stand can accommodate planar cells with dimensions up to 8.5 cm x 8.5 cm and stacks of up to 25 cells. It is also suitable for testing other cell and stack geometries including tubular cells.more » The pressure boundary for these tests is a water-cooled spool-piece pressure vessel designed for operation up to 5 MPa. Pressurized operation of a ten-cell internally manifolded solid oxide electrolysis stack has been successfully demonstrated up 1.5 MPa. The stack is internally manifolded and operates in cross-flow with an inverted-U flow pattern. Feed-throughs for gas inlets/outlets, power, and instrumentation are all located in the bottom flange. The entire spool piece, with the exception of the bottom flange, can be lifted to allow access to the internal furnace and test fixture. Lifting is accomplished with a motorized threaded drive mechanism attached to a rigid structural frame. Stack mechanical compression is accomplished using springs that are located inside of the pressure boundary, but outside of the hot zone. Initial stack heatup and performance characterization occurs at ambient pressure followed by lowering and sealing of the pressure vessel and subsequent pressurization. Pressure equalization between the anode and cathode sides of the cells and the stack surroundings is ensured by combining all of the process gases downstream of the stack. Steady pressure is maintained by means of a backpressure regulator and a digital pressure controller. A full description of the pressurized test apparatus is provided in this report. Results of initial testing showed the expected increase in open-cell voltage associated with elevated pressure. However, stack performance in terms of area-specific resistance was enhanced at elevated pressure due to better gas diffusion through the porous electrodes of the cells. Some issues such as cracked cells and seals were encountered during testing. Full resolution of these issues will require additional testing to identify the optimum test configurations and protocols.« less
Durability evaluation of reversible solid oxide cells
NASA Astrophysics Data System (ADS)
Zhang, Xiaoyu; O'Brien, James E.; O'Brien, Robert C.; Housley, Gregory K.
2013-11-01
An experimental investigation on the performance and durability of single solid oxide cells (SOCs) is under way at the Idaho National Laboratory. Reversible operation of SOCs includes electricity generation in the fuel cell mode and hydrogen generation in the electrolysis mode. Degradation is a more significant issue when operating SOCs in the electrolysis mode. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOCs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. Cells were obtained from four industrial partners. Cells from Ceramatec Inc. and Materials and Systems Research Inc. (MSRI) showed improved durability in electrolysis mode compared to previous stack tests. Cells from Saint Gobain Advanced Materials Inc. (St. Gobain) and SOFCPower Inc. demonstrated stable performance in the fuel cell mode, but rapid degradation in the electrolysis mode, especially at high current density. Electrolyte-electrode delamination was found to have a significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the electrode microstructure helped to mitigate degradation. Polarization scans and AC impedance measurements were performed during the tests to characterize cell performance and degradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, Jie; Minh, Nguyen
This report summarizes the work performed for the program entitled “High Performance Flexible Reversible Solid Oxide Fuel Cell” under Cooperative Agreement DE-FC36-04GO14351 for the U. S. Department of Energy. The overall objective of this project is to demonstrate a single modular stack that generates electricity from a variety of fuels (hydrogen and other fuels such as biomass, distributed natural gas, etc.) and when operated in the reverse mode, produces hydrogen from steam. This project has evaluated and selected baseline cell materials, developed a set of materials for oxygen and hydrogen electrodes, and optimized electrode microstructures for reversible solid oxide fuelmore » cells (RSOFCs); and demonstrated the feasibility and operation of a RSOFC multi-cell stack. A 10-cell reversible SOFC stack was operated over 1000 hours alternating between fuel cell (with hydrogen and methane as fuel) and steam electrolysis modes. The stack ran very successfully with high power density of 480 mW/cm2 at 0.7V and 80% fuel utilization in fuel cell mode and >6 SLPM hydrogen production in steam electrolysis mode using about 1.1 kW electrical power. The hydrogen generation is equivalent to a specific capability of 2.59 Nm3/m2 with electrical energy demand of 3 kWh/Nm3. The performance stability in electrolysis mode was improved vastly during the program with a degradation rate reduction from 8000 to 200 mohm-cm2/1000 hrs. This was accomplished by increasing the activity and improving microstructure of the oxygen electrode. Both cost estimate and technology assessment were conducted. Besides the flexibility running under both fuel cell mode and electrolysis mode, the reversible SOFC system has the potentials for low cost and high efficient hydrogen production through steam electrolysis. The cost for hydrogen production at large scale was estimated at ~$2.7/kg H2, comparing favorably with other electrolysis techology.« less
NASA Astrophysics Data System (ADS)
Schlupp, Meike V. F.; Kim, Ji Woo; Brevet, Aude; Rado, Cyril; Couturier, Karine; Vogt, Ulrich F.; Lefebvre-Joud, Florence; Züttel, Andreas
2014-12-01
We investigated the ability of (La0.8Sr0.2)(Mn0.5Co0.5)O3-δ (LSMC) and La(Ni0.6Fe0.4)O3-δ (LNF) contact coatings to avoid the transport of Cr from steel interconnects to solid oxide electrolysis electrodes, especially to the anode. The transport of chromium from commercial Crofer 22 APU (ThyssenKrupp) and K41X (AISI441, Aperam Isbergues) steels through LSMC and LNF contact coatings into adjacent (La0.8Sr0.2)MnO3-δ (LSM) oxygen electrodes was investigated in an oxygen atmosphere at 700 °C. Chromium concentrations of up to 4 atom% were detected in the contact coatings after thermal treatments for 3000 h, which also lead to the presence of chromium in adjacent LSM electrodes. Introduction of a dense (Co,Mn)3O4 coating between steel and contact coating was necessary to prevent the diffusion of chromium into contact coatings and electrodes and should lead to extended stack performance and lifetime.
Regenerative fuel cell study for satellites in GEO orbit
NASA Technical Reports Server (NTRS)
Levy, Alexander; Vandine, Leslie L.; Stedman, James K.
1987-01-01
Summarized are the results of a 12-month study to identify high performance regenerative hydrogen-oxygen fuel cell concepts for geosynchronous satellite application. Emphasis was placed on concepts with the potential for high energy density (W-hr/lb) and passive means for water and heat management to maximize system reliability. Both polymer membrane and alkaline electrolyte fuel cells were considered, with emphasis on the alkaline cell because of its high performance, advanced state of development, and proven ability to operate in a launch and space environment. Three alkaline system concepts were studied. The first, the integrated design, utilized a configuration in which the fuel cell and electrolysis cells are alternately stacked inside a pressure vessel. Product water is transferred by diffusion during electrolysis and waste heat is conducted through the pressure wall, thus using completely passive means for transfer and control. The second alkaline system, the dedicated design, uses a separate fuel cell and electrolysis stack so that each unit can be optimized in size and weight based on its orbital operating period. The third design was a dual function stack configuration, in which each cell can operate in both fuel cell and electrolysis mode, thus eliminating the need for two separate stacks and associated equipment. Results indicate that using near term technology energy densities between 46 and 52 W-hr/lb can be achieved at efficiencies of 55 percent. System densities of 115 W-hr/lb are contemplated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. C. O'Brien; J. E. O'Brien; C. M. Stoots
A series of 5 cm by 5 cm bi-supported Solid Oxide Electrolysis Cells (SOEC) were produced by NASA for the Idaho National Laboratory (INL) and tested under the INL High Temperature Steam Electrolysis program. The results from the experimental demonstration of cell operation for both hydrogen production and operation as fuel cells is presented. An overview of the cell technology, test apparatus and performance analysis is also provided. The INL High Temperature Steam Electrolysis laboratory has developed significant test infrastructure in support of single cell and stack performance analyses. An overview of the single cell test apparatus is presented. Themore » test data presented in this paper is representative of a first batch of NASA's prototypic 5 cm by 5 cm SOEC single cells. Clearly a significant relationship between the operational current density and cell degradation rate is evident. While the performance of these cells was lower than anticipated, in-house testing at NASA Glenn has yielded significantly higher performance and lower degradation rates with subsequent production batches of cells. Current post-test microstructure analyses of the cells tested at INL will be published in a future paper. Modification to cell compositions and cell reduction techniques will be altered in the next series of cells to be delivered to INL with the aim to decrease the cell degradation rate while allowing for higher operational current densities to be sustained. Results from the testing of new batches of single cells will be presented in a future paper.« less
Fuel cell power supply with oxidant and fuel gas switching
McElroy, James F.; Chludzinski, Paul J.; Dantowitz, Philip
1987-01-01
This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation.
Fuel cell power supply with oxidant and fuel gas switching
McElroy, J.F.; Chludzinski, P.J.; Dantowitz, P.
1987-04-14
This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation. 2 figs.
High Performance, Low Cost Hydrogen Generation from Renewable Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayers, Katherine; Dalton, Luke; Roemer, Andy
Renewable hydrogen from proton exchange membrane (PEM) electrolysis is gaining strong interest in Europe, especially in Germany where wind penetration is already at critical levels for grid stability. For this application as well as biogas conversion and vehicle fueling, megawatt (MW) scale electrolysis is required. Proton has established a technology roadmap to achieve the necessary cost reductions and manufacturing scale up to maintain U.S. competitiveness in these markets. This project represents a highly successful example of the potential for cost reduction in PEM electrolysis, and provides the initial stack design and manufacturing development for Proton’s MW scale product launch. Themore » majority of the program focused on the bipolar assembly, from electrochemical modeling to subscale stack development through prototyping and manufacturing qualification for a large active area cell platform. Feasibility for an advanced membrane electrode assembly (MEA) with 50% reduction in catalyst loading was also demonstrated. Based on the progress in this program and other parallel efforts, H2A analysis shows the status of PEM electrolysis technology dropping below $3.50/kg production costs, exceeding the 2015 target.« less
Low-Cost High-Pressure Hydrogen Generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cropley, Cecelia C.; Norman, Timothy J.
Electrolysis of water, particularly in conjunction with renewable energy sources, is potentially a cost-effective and environmentally friendly method of producing hydrogen at dispersed forecourt sites, such as automotive fueling stations. The primary feedstock for an electrolyzer is electricity, which could be produced by renewable sources such as wind or solar that do not produce carbon dioxide or other greenhouse gas emissions. However, state-of-the-art electrolyzer systems are not economically competitive for forecourt hydrogen production due to their high capital and operating costs, particularly the cost of the electricity used by the electrolyzer stack. In this project, Giner Electrochemical Systems, LLC (GES)more » developed a low cost, high efficiency proton-exchange membrane (PEM) electrolysis system for hydrogen production at moderate pressure (300 to 400 psig). The electrolyzer stack operates at differential pressure, with hydrogen produced at moderate pressure while oxygen is evolved at near-atmospheric pressure, reducing the cost of the water feed and oxygen handling subsystems. The project included basic research on catalysts and membranes to improve the efficiency of the electrolysis reaction as well as development of advanced materials and component fabrication methods to reduce the capital cost of the electrolyzer stack and system. The project culminated in delivery of a prototype electrolyzer module to the National Renewable Energy Laboratory for testing at the National Wind Technology Center. Electrolysis cell efficiency of 72% (based on the lower heating value of hydrogen) was demonstrated using an advanced high-strength membrane developed in this project. This membrane would enable the electrolyzer system to exceed the DOE 2012 efficiency target of 69%. GES significantly reduced the capital cost of a PEM electrolyzer stack through development of low cost components and fabrication methods, including a 60% reduction in stack parts count. Economic analysis indicates that hydrogen could be produced for $3.79 per gge at an electricity cost of $0.05/kWh by the lower-cost PEM electrolyzer developed in this project, assuming high-volume production of large-scale electrolyzer systems.« less
Large Scale PEM Electrolysis to Enable Renewable Hydrogen Fuel Production
2010-02-10
PEM Fuel Cell Anode + -Cathode e- e- e- e- Electric load...BOP system. • Enables new product launch (C- Series) Proton PEM cell stack for UK Vanguard subs 18UNCLASSIFIED: Dist A. Approved for public release...UNCLASSIFIED: Dist A. Approved for public release “Large Scale PEM Electrolysis to Enable Renewable Hydrogen Fuel Production” Alternative Energy
NASA Astrophysics Data System (ADS)
Wendel, Christopher H.; Kazempoor, Pejman; Braun, Robert J.
2016-01-01
Reversible solid oxide cell (ReSOC) systems are being increasingly considered for electrical energy storage, although much work remains before they can be realized, including cell materials development and system design optimization. These systems store electricity by generating a synthetic fuel in electrolysis mode and subsequently recover electricity by electrochemically oxidizing the stored fuel in fuel cell mode. System thermal management is improved by promoting methane synthesis internal to the ReSOC stack. Within this strategy, the cell-stack operating conditions are highly impactful on system performance and optimizing these parameters to suit both operating modes is critical to achieving high roundtrip efficiency. Preliminary analysis shows the thermoneutral voltage to be a useful parameter for analyzing ReSOC systems and the focus of this study is to quantitatively examine how it is affected by ReSOC operating conditions. The results reveal that the thermoneutral voltage is generally reduced by increased pressure, and reductions in temperature, fuel utilization, and hydrogen-to-carbon ratio. Based on the thermodynamic analysis, many different combinations of these operating conditions are expected to promote efficient energy storage. Pressurized systems can achieve high efficiency at higher temperature and fuel utilization, while non-pressurized systems may require lower stack temperature and suffer from reduced energy density.
PEM Electrolyzer Incorporating an Advanced Low-Cost Membrane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamdan, Monjid
The Department of Energy (DOE) has identified hydrogen production by electrolysis of water at forecourt stations as a critical technology for transition to the hydrogen economy; however, the cost of hydrogen produced by present commercially available electrolysis systems is considerably higher than the DOE 2015 and 2020 cost targets. Analyses of proton-exchange membrane (PEM) electrolyzer systems indicate that reductions in electricity consumption and electrolyzer stack and system capital cost are required to meet the DOE cost targets. The primary objective is to develop and demonstrate a cost-effective energy-based system for electrolytic generation of hydrogen. The goal is to increase PEMmore » electrolyzer efficiency and to reduce electrolyzer stack and system capital cost to meet the DOE cost targets for distributed electrolysis. To accomplish this objective, work was conducted by a team consisting of Giner, Inc. (Giner), Virginia Polytechnic Institute & University (VT), and domnick hunter group, a subsidiary of Parker Hannifin (Parker). The project focused on four (4) key areas: (1) development of a high-efficiency, high-strength membrane; (2) development of a long-life cell-separator; (3) scale-up of cell active area to 290 cm2 (from 160 cm²); and (4) development of a prototype commercial electrolyzer system. In each of the key stack development areas Giner and our team members conducted focused development in laboratory-scale hardware, with analytical support as necessary, followed by life-testing of the most promising candidate materials. Selected components were then scaled up and incorporated into low-cost scaled-up stack hardware. The project culminated in the fabrication and testing of a highly efficient electrolyzer system for production of 0.5 kg/hr hydrogen and validation of the stack and system in testing at the National Renewable Energy Laboratory (NREL).« less
Generation of High Pressure Oxygen via Electrochemical Pumping in a Multi-stage Electrolysis Stack
NASA Technical Reports Server (NTRS)
Setlock, John A (Inventor); Green, Robert D (Inventor); Farmer, Serene (Inventor)
2016-01-01
An oxygen pump can produce high-purity high-pressure oxygen. Oxygen ions (O.sup.2-) are electrochemically pumped through a multi-stage electrolysis stack of cells. Each cell includes an oxygen-ion conducting solid-state electrolyte between cathode and anode sides. Oxygen dissociates into the ions at the cathode side. The ions migrate across the electrolyte and recombine at the anode side. An insulator is between adjacent cells to electrically isolate each individual cell. Each cell receives a similar volt potential. Recombined oxygen from a previous stage can diffuse through the insulator to reach the cathode side of the next stage. Each successive stage similarly incrementally pressurizes the oxygen to produce a final elevated pressure.
Generation of High Pressure Oxygen via Electrochemical Pumping in a Multi-Stage Electrolysis Stack
NASA Technical Reports Server (NTRS)
Setlock, John A (Inventor); Green, Robert D (Inventor); Farmer, Serene (Inventor)
2017-01-01
An oxygen pump can produce high-purity high-pressure oxygen. Oxygen ions (O(2-)) are electrochemically pumped through a multi-stage electrolysis stack of cells. Each cell includes an oxygen-ion conducting solid-state electrolyte between cathode and anode sides. Oxygen dissociates into the ions at the cathode side. The ions migrate across the electrolyte and recombine at the anode side. An insulator is between adjacent cells to electrically isolate each individual cell. Each cell receives a similar volt potential. Recombined oxygen from a previous stage can diffuse through the insulator to reach the cathode side of the next stage. Each successive stage similarly incrementally pressurizes the oxygen to produce a final elevated pressure.
Thermodynamics and Transport Phenomena in High Temperature Steam Electrolysis Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. O'Brien
2012-03-01
Hydrogen can be produced from water splitting with relatively high efficiency using high temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high temperature process heat. The overall thermal-to-hydrogen efficiency for high temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. An overview of high temperature electrolysis technologymore » will be presented, including basic thermodynamics, experimental methods, heat and mass transfer phenomena, and computational fluid dynamics modeling.« less
Electrodialysis operation with buffer solution
Hryn, John N [Naperville, IL; Daniels, Edward J [Orland Park, IL; Krumdick, Greg K [Crete, IL
2009-12-15
A new method for improving the efficiency of electrodialysis (ED) cells and stacks, in particular those used in chemical synthesis. The process entails adding a buffer solution to the stack for subsequent depletion in the stack during electrolysis. The buffer solution is regenerated continuously after depletion. This buffer process serves to control the hydrogen ion or hydroxide ion concentration so as to protect the active sites of electrodialysis membranes. The process enables electrodialysis processing options for products that are sensitive to pH changes.
Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant L. Hawkes; Michael G. McKellar
2009-11-01
A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the powermore » cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.« less
Pressurized electrolysis stack with thermal expansion capability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourgeois, Richard Scott
The present techniques provide systems and methods for mounting an electrolyzer stack in an outer shell so as to allow for differential thermal expansion of the electrolyzer stack and shell. Generally, an electrolyzer stack may be formed from a material with a high coefficient of thermal expansion, while the shell may be formed from a material having a lower coefficient of thermal expansion. The differences between the coefficients of thermal expansion may lead to damage to the electrolyzer stack as the shell may restrain the thermal expansion of the electrolyzer stack. To allow for the differences in thermal expansion, themore » electrolyzer stack may be mounted within the shell leaving a space between the electrolyzer stack and shell. The space between the electrolyzer stack and the shell may be filled with a non-conductive fluid to further equalize pressure inside and outside of the electrolyzer stack.« less
Pressurized Testing of Solid Oxide Electrolysis Stacks with Advanced Electrode-Supported Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. E. O'Brien; X. Zhang; G. K. Housley
2012-06-01
A new facility has been developed at the Idaho National Laboratory for pressurized testing of solid oxide electrolysis stacks. Pressurized operation is envisioned for large-scale hydrogen production plants, yielding higher overall efficiencies when the hydrogen product is to be delivered at elevated pressure for tank storage or pipelines. Pressurized operation also supports higher mass flow rates of the process gases with smaller components. The test stand can accommodate cell dimensions up to 8.5 cm x 8.5 cm and stacks of up to 25 cells. The pressure boundary for these tests is a water-cooled spool-piece pressure vessel designed for operation upmore » to 5 MPa. The stack is internally manifolded and operates in cross-flow with an inverted-U flow pattern. Feed-throughs for gas inlets/outlets, power, and instrumentation are all located in the bottom flange. The entire spool piece, with the exception of the bottom flange, can be lifted to allow access to the internal furnace and test fixture. Lifting is accomplished with a motorized threaded drive mechanism attached to a rigid structural frame. Stack mechanical compression is accomplished using springs that are located inside of the pressure boundary, but outside of the hot zone. Initial stack heatup and performance characterization occurs at ambient pressure followed by lowering and sealing of the pressure vessel and subsequent pressurization. Pressure equalization between the anode and cathode sides of the cells and the stack surroundings is ensured by combining all of the process gases downstream of the stack. Steady pressure is maintained by means of a backpressure regulator and a digital pressure controller. A full description of the pressurized test apparatus is provided in this paper.« less
Renewable Fuels-to-Grid Integration | Energy Systems Integration Facility |
hydrogen, other than electrolysis. Read more about this research. Partnerships Photo of a polymer electrolyte membrane stack in a laboratory Giner NREL helped evaluate a large-scale polymer electrolyte
DOE Office of Scientific and Technical Information (OSTI.GOV)
JaeHwa Koh; DuckJoo Yoon; Chang H. Oh
2010-07-01
An electrolyzer model for the analysis of a hydrogen-production system using a solid oxide electrolysis cell (SOEC) has been developed, and the effects for principal parameters have been estimated by sensitivity studies based on the developed model. The main parameters considered are current density, area specific resistance, temperature, pressure, and molar fraction and flow rates in the inlet and outlet. Finally, a simple model for a high-temperature hydrogen-production system using the solid oxide electrolysis cell integrated with very high temperature reactors is estimated.
NASA Astrophysics Data System (ADS)
Wendel, Christopher H.; Gao, Zhan; Barnett, Scott A.; Braun, Robert J.
2015-06-01
Electrical energy storage is expected to be a critical component of the future world energy system, performing load-leveling operations to enable increased penetration of renewable and distributed generation. Reversible solid oxide cells, operating sequentially between power-producing fuel cell mode and fuel-producing electrolysis mode, have the capability to provide highly efficient, scalable electricity storage. However, challenges ranging from cell performance and durability to system integration must be addressed before widespread adoption. One central challenge of the system design is establishing effective thermal management in the two distinct operating modes. This work leverages an operating strategy to use carbonaceous reactant species and operate at intermediate stack temperature (650 °C) to promote exothermic fuel-synthesis reactions that thermally self-sustain the electrolysis process. We present performance of a doped lanthanum-gallate (LSGM) electrolyte solid oxide cell that shows high efficiency in both operating modes at 650 °C. A physically based electrochemical model is calibrated to represent the cell performance and used to simulate roundtrip operation for conditions unique to these reversible systems. Design decisions related to system operation are evaluated using the cell model including current density, fuel and oxidant reactant compositions, and flow configuration. The analysis reveals tradeoffs between electrical efficiency, thermal management, energy density, and durability.
Hydrogen Production from Nuclear Energy via High Temperature Electrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. O'Brien; Carl M. Stoots; J. Stephen Herring
2006-04-01
This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production.
LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. O'Brien
2010-08-01
Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demandmore » for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a “hydrogen economy.” The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.« less
Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition
NASA Astrophysics Data System (ADS)
Karamat, S.; Sonuşen, S.; Çelik, Ü.; Uysallı, Y.; Oral, A.
2016-04-01
In chemical vapor deposition, the higher growth temperature roughens the surface of the metal catalyst and a delicate method is necessary for the transfer of graphene from metal catalyst to the desired substrates. In this work, we grow graphene on Pt and Cu foil via ambient pressure chemical vapor deposition (AP-CVD) method and further alkaline water electrolysis was used to peel off graphene from the metallic catalyst. We used different electrolytes i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH) and barium hydroxide Ba(OH)2 for electrolysis, hydrogen bubbles evolved at the Pt cathode (graphene/Pt/PMMA stack) and as a result graphene layer peeled off from the substrate without damage. The peeling time for KOH and LiOH was ∼6 min and for NaOH and Ba(OH)2 it was ∼15 min. KOH and LiOH peeled off graphene very efficiently as compared to NaOH and Ba(OH)2 from the Pt electrode. In case of copper, the peeling time is ∼3-5 min. Different characterizations like optical microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy were done to analyze the as grown and transferred graphene samples.
NASA Astrophysics Data System (ADS)
Liu, Xiaojuan; Wu, Tao; Dai, Zengxin; Tao, Keran; Shi, Yong; Peng, Chuang; Zhou, Xiaohang; Chen, George Z.
2016-03-01
Stacked electrolysers with titanium bipolar plates are constructed for electrodeposition of polypyrrole electrodes for supercapacitors. The cathode side of the bipolar Ti plates are pre-coated with activated carbon. In this new design, half electrolysis occurs which significantly lowers the deposition voltage. The deposited electrodes are tested in a symmetrical unit cell supercapacitor and an asymmetrical supercapacitor stack. Both devices show excellent energy storage performances and the capacitance values are very close to the design value, suggesting a very high current efficiency during the electrodeposition. The electrolyser stack offers multi-fold benefits for preparation of conducting polymer electrodes, i.e. low energy consumption, facile control of the electrode capacitance and simultaneous preparation of a number of identical electrodes. Therefore, the stacked bipolar electrolyser is a technology advance that offers an engineering solution for mass production of electrodeposited conducting polymer electrodes for supercapacitors.
Non-Platinum Group Metal OER/ORR Catalysts for Alkaline Membrane Fuel Cells and Electrolyzers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danilovic, Nemanja; Ayers, Katherine
Regenerative fuel cells (RFC) are energy storage devices that capture electrical energy in the form of hydrogen, with potential application for backup power and energy storage in remote locations, unmanned missions, and renewable energy capture. A unitized regenerative fuel cell (URFC) combines two separate electrochemical devices (fuel cell and electrolyzer) into one stack. The stack cost is driven by the platinum group metal (PGM) catalysts and the flow field components designed to withstand high potentials in acidic environments. Since the stack is the most expensive subcomponent of both the fuel cell and electrolyzer system, combining the two devices results inmore » substantial reduction in capital cost. However, in the past, combining the two stacks sacrificed device performance (operating cost) largely because the fuel cell had to operate with the thick electrolysis membranes in a URFC configuration, and due to water management issues in switching modes. Recent work in membrane-based electrolysis has resulted in more mechanically robust designs and materials that allow much thinner membranes, and work in flow cell design such as flow batteries has shown improved water transport through channel design and wet-proofing approaches. Therefore, the URFC concept is worth revisiting. At the same time, alkaline exchange membrane (AEM) devices are gathering attention due to the promise of PGM and valve metal elimination from the stack and a resulting strategic and capital cost benefit as compared with proton exchange membrane (PEM) systems. The result is a lower capital cost system that has half the precious metal group (PGM) catalysts, membrane and other stack component materials compared with discrete RFCs, although at the sacrifice of performance (operating cost). Proton has identified innovative AEM based RFC's to fulfill the role of low capital cost energy storage device owing to the use of non-precious metal containing electrodes, that enables certain markets where higher operating costs can be tolerated.« less
The analysis of energy efficiency in water electrolysis under high temperature and high pressure
NASA Astrophysics Data System (ADS)
Hourng, L. W.; Tsai, T. T.; Lin, M. Y.
2017-11-01
This paper aims to analyze the energy efficiency of water electrolysis under high pressure and high temperature conditions. The effects of temperature and pressure on four different kinds of reaction mechanisms, namely, reversible voltage, activation polarization, ohmic polarization, and concentration polarization, are investigated in details. Results show that the ohmic and concentration over-potentials are increased as temperature is increased, however, the reversible and activation over-potentials are decreased as temperature is increased. Therefore, the net efficiency is enhanced as temperature is increased. The efficiency of water electrolysis at 350°C/100 bars is increased about 17%, compared with that at 80°C/1bar.
Cryoelectrolysis—electrolytic processes in a frozen physiological saline medium
Lugnani, Franco; Macchioro, Matteo
2017-01-01
Background Cryoelectrolysis is a new minimally invasive tissue ablation surgical technique that combines the ablation techniques of electrolytic ablation with cryosurgery. The goal of this study is to examine the hypothesis that electrolysis can take place in a frozen aqueous saline solution. Method To examine the hypothesis we performed a cryoelectrolytic ablation protocol in which electrolysis and cryosurgery are delivered simultaneously in a tissue simulant made of physiological saline gel with a pH dye. We measured current flow, voltage and extents of freezing and pH dye staining. Results Using optical measurements and measurements of currents, we have shown that electrolysis can occur in frozen physiological saline, at high subzero freezing temperatures, above the eutectic temperature of the frozen salt solution. It was observed that electrolysis occurs when the tissue resides at high subzero temperatures during the freezing stage and essentially throughout the entire thawing stage. We also found that during thawing, the frozen lesion temperature raises rapidly to high subfreezing values and remains at those values throughout the thawing stage. Substantial electrolysis occurs during the thawing stage. Another interesting finding is that electro-osmotic flows affect the process of cryoelectrolysis at the anode and cathode, in different ways. Discussion The results showing that electrical current flow and electrolysis occur in frozen saline solutions imply a mechanism involving ionic movement in the fluid concentrated saline solution channels between ice crystals, at high subfreezing temperatures. Temperatures higher than the eutectic are required for the brine to be fluid. The particular pattern of temperature and electrical currents during the thawing stage of frozen tissue, can be explained by the large amounts of energy that must be removed at the outer edge of the frozen lesion because of the solid/liquid phase transformation on that interface. Conclusion Electrolysis can occur in a frozen domain at high subfreezing temperature, probably above the eutectic. It appears that the most effective period for delivering electrolytic currents in cryoelectrolysis is during the high subzero temperatures stage while freezing and immediately after cooling has stopped, throughout the thawing stage. PMID:28123904
Cryoelectrolysis-electrolytic processes in a frozen physiological saline medium.
Lugnani, Franco; Macchioro, Matteo; Rubinsky, Boris
2017-01-01
Cryoelectrolysis is a new minimally invasive tissue ablation surgical technique that combines the ablation techniques of electrolytic ablation with cryosurgery. The goal of this study is to examine the hypothesis that electrolysis can take place in a frozen aqueous saline solution. To examine the hypothesis we performed a cryoelectrolytic ablation protocol in which electrolysis and cryosurgery are delivered simultaneously in a tissue simulant made of physiological saline gel with a pH dye. We measured current flow, voltage and extents of freezing and pH dye staining. Using optical measurements and measurements of currents, we have shown that electrolysis can occur in frozen physiological saline, at high subzero freezing temperatures, above the eutectic temperature of the frozen salt solution. It was observed that electrolysis occurs when the tissue resides at high subzero temperatures during the freezing stage and essentially throughout the entire thawing stage. We also found that during thawing, the frozen lesion temperature raises rapidly to high subfreezing values and remains at those values throughout the thawing stage. Substantial electrolysis occurs during the thawing stage. Another interesting finding is that electro-osmotic flows affect the process of cryoelectrolysis at the anode and cathode, in different ways. The results showing that electrical current flow and electrolysis occur in frozen saline solutions imply a mechanism involving ionic movement in the fluid concentrated saline solution channels between ice crystals, at high subfreezing temperatures. Temperatures higher than the eutectic are required for the brine to be fluid. The particular pattern of temperature and electrical currents during the thawing stage of frozen tissue, can be explained by the large amounts of energy that must be removed at the outer edge of the frozen lesion because of the solid/liquid phase transformation on that interface. Electrolysis can occur in a frozen domain at high subfreezing temperature, probably above the eutectic. It appears that the most effective period for delivering electrolytic currents in cryoelectrolysis is during the high subzero temperatures stage while freezing and immediately after cooling has stopped, throughout the thawing stage.
Gadolinia-Doped Ceria Cathodes for Electrolysis of CO2
NASA Technical Reports Server (NTRS)
Adler, Stuart B.
2009-01-01
Gadolinia-doped ceria, or GDC, (Gd(0.4)Ce(0.6)O(2-delta), where the value of delta in this material varies, depending on the temperature and oxygen concentration in the atmosphere in which it is being used) has shown promise as a cathode material for high-temperature electrolysis of carbon dioxide in solid oxide electrolysis cells. The polarization resistance of a GDC electrode is significantly less than that of an otherwise equivalent electrode made of any of several other materials that are now in use or under consideration for use as cathodes for reduction of carbon dioxide. In addition, GDC shows no sign of deterioration under typical temperature and gas-mixture operating conditions of a high-temperature electrolyzer. Electrolysis of CO2 is of interest to NASA as a way of generating O2 from the CO2 in the Martian atmosphere. On Earth, a combination of electrolysis of CO2 and electrolysis of H2O might prove useful as a means of generating synthesis gas (syngas) from the exhaust gas of a coal- or natural-gas-fired power plant, thereby reducing the emission of CO2 into the atmosphere. The syngas a mixture of CO and H2 could be used as a raw material in the manufacture, via the Fisher-Tropsch process, of synthetic fuels, lubrication oils, and other hydrocarbon prod
NREL and Fraunhofer ISE to Collaborate on Hydrogen and Fuel Cell Research |
(R&D) activities to accelerate progress in these fields. NREL's long-term research and accelerate progress toward shared R&D goals and to ensure sustainable use of hydrogen and fuel cell Fraunhofer ISE in the following areas: Electrolysis, including cell, stack, and system R&D and
Lunar production of oxygen by electrolysis
NASA Technical Reports Server (NTRS)
Keller, Rudolf
1991-01-01
Two approaches to prepare oxygen from lunar resources by direct electrolysis are discussed. Silicates can be melted or dissolved in a fused salt and electrolyzed with oxygen evolved at the anode. Direct melting and electrolysis is potentially a very simple process, but high temperatures of 1400-1500 C are required, which aggravates materials problems. Operating temperatures can be lowered to about 1000 C by employing a molten salt flux. In this case, however, losses of electrolyte components must be avoided. Experimentation on both approaches is progressing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael G. McKellar; Manohar S. Sohal; Lila Mulloth
2010-03-01
NASA has been evaluating two closed-loop atmosphere revitalization architectures based on Sabatier and Bosch carbon dioxide, CO2, reduction technologies. The CO2 and steam, H2O, co-electrolysis process is another option that NASA has investigated. Utilizing recent advances in the fuel cell technology sector, the Idaho National Laboratory, INL, has developed a CO2 and H2O co-electrolysis process to produce oxygen and syngas (carbon monoxide, CO and hydrogen, H2 mixture) for terrestrial (energy production) application. The technology is a combined process that involves steam electrolysis, CO2 electrolysis, and the reverse water gas shift (RWGS) reaction. A number of process models have been developedmore » and analyzed to determine the theoretical power required to recover oxygen, O2, in each case. These models include the current Sabatier and Bosch technologies and combinations of those processes with high-temperature co-electrolysis. The cases of constant CO2 supply and constant O2 production were evaluated. In addition, a process model of the hydrogenation process with co-electrolysis was developed and compared. Sabatier processes require the least amount of energy input per kg of oxygen produced. If co-electrolysis replaces solid polymer electrolyte (SPE) electrolysis within the Sabatier architecture, the power requirement is reduced by over 10%, but only if heat recuperation is used. Sabatier processes, however, require external water to achieve the lower power results. Under conditions of constant incoming carbon dioxide flow, the Sabatier architectures require more power than the other architectures. The Bosch, Boudouard with co-electrolysis, and the hydrogenation with co-electrolysis processes require little or no external water. The Bosch and hydrogenation processes produce water within their reactors, which aids in reducing the power requirement for electrolysis. The Boudouard with co-electrolysis process has a higher electrolysis power requirement because carbon dioxide is split instead of water, which has a lower heat of formation. Hydrogenation with co-electrolysis offers the best overall power performance for two reasons: it requires no external water, and it produces its own water, which reduces the power requirement for co-electrolysis.« less
Song, Young-Hyun; Hidayat, Syarif; Kim, Han-Ki; Park, Joo-Yang
2016-06-01
The aim of this work was to use substrate without buffer solution in a microbial reverse-electrodialysis electrolysis cell (MREC) for hydrogen production under continuous flow condition (10 cell pairs of RED stacks, HRT=5, 7.5, and 15h). Decreasing in the HRT (increasing in the organic matter) made cell current stable and increased. Hydrogen gas was produced at a rate of 0.61m(3)-H2/m(3)-Van/d in H-MREC, with a COD removal efficiency of 81% (1.55g/L/d) and a Coulombic efficiency of 41%. This MREC system without buffer solution could successfully produce hydrogen gas at a consistent rate. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bernadowski, Timothy Adam, Jr.
Carbon dioxide in the Martian atmosphere can be converted to oxygen during high temperature electrolysis for use in life-support and fuel systems on manned missions to the red planet. During electrolysis of carbon dioxide to produce oxygen, carbon can deposit on the electrolysis cell resulting in lower efficiency and possibly cell damage. This would be detrimental, especially when the oxygen product is used as the key element of a space life support system. In this thesis, a theoretical model was developed to predict hazardous carbon deposition conditions under various operating conditions within the Martian atmosphere. The model can be used as a guide to determine the ideal operating conditions of the high-temperature oxygen production system. A parallel experimental investigation is underway to evaluate the accuracy of the theoretical model. The experimental design, cell fabrication, and some preliminary results as well as future work recommendations are also presented in this thesis.
NASA Technical Reports Server (NTRS)
Valdez, Thomas I.; Billings, Keith J.; Kisor, Adam; Bennett, William R.; Jakupca, Ian J.; Burke, Kenneth; Hoberecht, Mark A.
2012-01-01
Regenerative fuel cells provide a pathway to energy storage system development that are game changers for NASA missions. The fuel cell/ electrolysis MEA performance requirements 0.92 V/ 1.44 V at 200 mA/cm2 can be met. Fuel Cell MEAs have been incorporated into advanced NFT stacks. Electrolyzer stack development in progress. Fuel Cell MEA performance is a strong function of membrane selection, membrane selection will be driven by durability requirements. Electrolyzer MEA performance is catalysts driven, catalyst selection will be driven by durability requirements. Round Trip Efficiency, based on a cell performance, is approximately 65%.
NASA Technical Reports Server (NTRS)
1975-01-01
Solid polymer electrolyte technology used in a water electrolysis system (WES) to generate oxygen and hydrogen for manned space station applications was investigated. A four-man rated, low pressure breadboard water electrolysis system with the necessary instrumentation and controls was fabricated and tested. A six man rated, high pressure, high temperature, advanced preprototype WES was developed. This configuration included the design and development of an advanced water electrolysis module, capable of operation at 400 psig and 200 F, and a dynamic phase separator/pump in place of a passive phase separator design. Evaluation of this system demonstrated the goal of safe, unattended automated operation at high pressure and high temperature with an accumulated gas generation time of over 1000 hours.
NASA Astrophysics Data System (ADS)
Mingyi, Liu; Bo, Yu; Jingming, Xu; Jing, Chen
High-temperature steam electrolysis (HTSE), a reversible process of solid oxide fuel cell (SOFC) in principle, is a promising method for highly efficient large-scale hydrogen production. In our study, the overall efficiency of the HTSE system was calculated through electrochemical and thermodynamic analysis. A thermodynamic model in regards to the efficiency of the HTSE system was established and the quantitative effects of three key parameters, electrical efficiency (η el), electrolysis efficiency (η es), and thermal efficiency (η th) on the overall efficiency (η overall) of the HTSE system were investigated. Results showed that the contribution of η el, η es, η th to the overall efficiency were about 70%, 22%, and 8%, respectively. As temperatures increased from 500 °C to 1000 °C, the effect of η el on η overall decreased gradually and the η es effect remained almost constant, while the η th effect increased gradually. The overall efficiency of the high-temperature gas-cooled reactor (HTGR) coupled with the HTSE system under different conditions was also calculated. With the increase of electrical, electrolysis, and thermal efficiency, the overall efficiencies were anticipated to increase from 33% to a maximum of 59% at 1000 °C, which is over two times higher than that of the conventional alkaline water electrolysis.
NASA Astrophysics Data System (ADS)
Skafte, Theis Løye; Blennow, Peter; Hjelm, Johan; Graves, Christopher
2018-01-01
Reduction of CO2 to CO and O2 in the solid oxide electrolysis cell (SOEC) has the potential to play a crucial role in closing the CO2 loop. Carbon deposition in nickel-based cells is however fatal and must be considered during CO2 electrolysis. Here, the effect of operating parameters is investigated systematically using simple current-potential experiments. Due to variations of local conditions, it is shown that higher current density and lower fuel electrode porosity will cause local carbon formation at the electrochemical reaction sites despite operating with a CO outlet concentration outside the thermodynamic carbon formation region. Attempts at mitigating the issue by coating the composite nickel/yttria-stabilized zirconia electrode with carbon-inhibiting nanoparticles and by sulfur passivation proved unsuccessful. Increasing the fuel electrode porosity is shown to mitigate the problem, but only to a certain extent. This work shows that a typical SOEC stack converting CO2 to CO and O2 is limited to as little as 15-45% conversion due to risk of carbon formation. Furthermore, cells operated in CO2-electrolysis mode are poisoned by reactant gases containing ppb-levels of sulfur, in contrast to ppm-levels for operation in fuel cell mode.
Carbon dioxide and water vapor high temperature electrolysis
NASA Technical Reports Server (NTRS)
Isenberg, Arnold O.; Verostko, Charles E.
1989-01-01
The design, fabrication, breadboard testing, and the data base obtained for solid oxide electrolysis systems that have applications for planetary manned missions and habitats are reviewed. The breadboard tested contains sixteen tubular cells in a closely packed bundle for the electrolysis of carbon dioxide and water vapor. The discussion covers energy requirements, volume, weight, and operational characteristics related to the measurement of the reactant and product gas compositions, temperature distribution along the electrolyzer tubular cells and through the bundle, and thermal energy losses. The reliability of individual cell performance in the bundle configuration is assessed.
Progress in Aluminum Electrolysis Control and Future Direction for Smart Aluminum Electrolysis Plant
NASA Astrophysics Data System (ADS)
Zhang, Hongliang; Li, Tianshuang; Li, Jie; Yang, Shuai; Zou, Zhong
2017-02-01
The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and highly corrosive conditions. However, these conditions have restricted the measurement of key control parameters, making the control of aluminum reduction cells a difficult problem in the industry. Because aluminum electrolysis control systems have a significant economic influence, substantial research has been conducted on control algorithms, control systems and information systems for aluminum reduction cells. This article first summarizes the development of control systems and then focuses on the progress made since 2000, including alumina concentration control, temperature control and electrolyte molecular ratio control, fault diagnosis, cell condition prediction and control system expansion. Based on these studies, the concept of a smart aluminum electrolysis plant is proposed. The frame construction, key problems and current progress are introduced. Finally, several future directions are discussed.
NASA Astrophysics Data System (ADS)
Menon, Vikram; Fu, Qingxi; Janardhanan, Vinod M.; Deutschmann, Olaf
2015-01-01
High temperature co-electrolysis of H2O and CO2 offers a promising route for syngas (H2, CO) production via efficient use of heat and electricity. The performance of a SOEC during co-electrolysis is investigated by focusing on the interactions between transport processes and electrochemical parameters. Electrochemistry at the three-phase boundary is modeled by a modified Butler-Volmer approach that considers H2O electrolysis and CO2 electrolysis, individually, as electrochemically active charge transfer pathways. The model is independent of the geometrical structure. A 42-step elementary heterogeneous reaction mechanism for the thermo-catalytic chemistry in the fuel electrode, the dusty gas model (DGM) to account for multi-component diffusion through porous media, and a plug flow model for flow through the channels are used in the model. Two sets of experimental data are reproduced by the simulations, in order to deduce parameters of the electrochemical model. The influence of micro-structural properties, inlet cathode gas velocity, and temperature are discussed. Reaction flow analysis is performed, at OCV, to study methane production characteristics and kinetics during co-electrolysis. Simulations are carried out for configurations ranging from simple one-dimensional electrochemical button cells to quasi-two-dimensional co-flow planar cells, to demonstrate the effectiveness of the computational tool for performance and design optimization.
Regenerative Fuel Cell Test Rig at Glenn Research Center
NASA Technical Reports Server (NTRS)
Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.; Scullin, Vincent J.; Bents, David J.
2003-01-01
The regenerative fuel cell development effort at Glenn Research Center (GRC) involves the integration of a dedicated fuel cell and electrolyzer into an energy storage system test rig. The test rig consists of a fuel cell stack, an electrolysis stack, cooling pumps, a water transfer pump, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, interconnecting tubing, nitrogen purge provisions, and instrumentation for control and monitoring purposes. The regenerative fuel cell (RFC) thus formed is a completely closed system which is capable of autonomous cyclic operation. The test rig provides direct current (DC) load and DC power supply to simulate power consumption and solar power input. In addition, chillers are used as the heat sink to dissipate the waste heat from the electrochemical stack operation. Various vents and nitrogen (N2) sources are included in case inert purging is necessary to safe the RFC test rig.
LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. L. Hawkes; J. E. O'Brien; M. G. McKellar
2011-11-01
Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expandsmore » the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.« less
Syngas production by high temperature steam/CO2 coelectrolysis using solid oxide electrolysis cells.
Chen, Xinbing; Guan, Chengzhi; Xiao, Guoping; Du, Xianlong; Wang, Jian-Qiang
2015-01-01
High temperature (HT) steam/CO2 coelectrolysis with solid oxide electrolysis cells (SOECs) using the electricity and heat generated from clean energies is an important alternative for syngas production without fossil fuel consumption and greenhouse gas emissions. Herein, reaction characteristics and the outlet syngas composition of HT steam/CO2 coelectrolysis under different operating conditions, including distinct inlet gas compositions and electrolysis current densities, are systematically studied at 800 °C using commercially available SOECs. The HT coelectrolysis process, which has comparable performance to HT steam electrolysis, is more active than the HT CO2 electrolysis process, indicating the important contribution of the reverse water-gas shift reaction in the formation of CO. The outlet syngas composition from HT steam/CO2 coelectrolysis is very sensitive to the operating conditions, indicating the feasibility of controlling the syngas composition by varying these conditions. Maximum steam and CO2 utilizations of 77% and 76% are achieved at 1.0 A cm(-2) with an inlet gas composition of 20% H2/40% steam/40% CO2.
The Economic Potential of Nuclear-Renewable Hybrid Energy Systems Producing Hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruth, Mark; Cutler, Dylan; Flores-Espino, Francisco
This report is one in a series of reports that Idaho National Laboratory and the Joint Institute for Strategic Energy Analysis are publishing that address the technical and economic aspects of nuclear-renewable hybrid energy systems (N-R HESs). This report discusses an analysis of the economic potential of a tightly coupled N-R HES that produces electricity and hydrogen. Both low and high temperature electrolysis options are considered in the analysis. Low-temperature electrolysis requires only electricity to convert water to hydrogen. High temperature electrolysis requires less electricity because it uses both electricity and heat to provide the energy necessary to electrolyze water.more » The study finds that, to be profitable, the examined high-temperature electrosis and low-temperature electrosis N-R HES configurations that produce hydrogen require higher electricity prices, more electricity price volatility, higher natural gas prices, or higher capacity payments than the reference case values of these parameters considered in this analysis.« less
Coupled electro-thermal field in a high current electrolysis cell or liquid metal batteries
Cai, Liwei; Ni, Haiou; Lu, Gui-Min; Yu, Jian-Guo
2018-01-01
Coupled electro-thermal field exists widely in chemical batteries and electrolysis industry. In this study, a three-dimensional numerical model, which is based on the finite-element software ANSYS, has been built to simulate the electro-thermal field in a magnesium electrolysis cell. The adjustment of the relative position of the anode and cathode can change the energy consumption of the magnesium electrolysis process significantly. Besides, the current intensity has a nonlinear effect on heat balance, and the effects of heat transfer coefficients, electrolysis and air temperature on the heat balance have been released to maintain the thermal stability in a magnesium electrolysis cell. The relationship between structure as well as process parameters and electro-thermal field has been obtained and the simulation results can provide experience for the scale-up design in liquid metal batteries. PMID:29515848
NASA Technical Reports Server (NTRS)
Isenberg, Arnold O.; Cusick, Robert J.
1988-01-01
The direct electrochemical reduction of carbon dioxide (CO2) is achieved without catalysts and at sufficiently high temperatures to avoid carbon formation. The tubular electrolysis cell consists of thin layers of anode, electrolyte, cathode and cell interconnection. The electrolyte is made from yttria-stabilized zirconia which is an oxygen ion conductor at elevated temperatures. Anode and cell interconnection materials are complex oxides and are electronic conductors. The cathode material is a composite metal-ceramic structure. Cell performance characteristics have been determined using varying feed gas compositions and degrees of electrochemical decomposition. Cell test data are used to project the performance of a three-person CO2-electrolysis breadboard system.
Electrolysis Performance Improvement Concept Study (EPICS) flight experiment phase C/D
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Lee, M. G.
1995-01-01
The overall purpose of the Electrolysis Performance Improvement Concept Study flight experiment is to demonstrate and validate in a microgravity environment the Static Feed Electrolyzer concept as well as investigate the effect of microgravity on water electrolysis performance. The scope of the experiment includes variations in microstructural characteristics of electrodes and current densities in a static feed electrolysis cell configuration. The results of the flight experiment will be used to improve efficiency of the static feed electrolysis process and other electrochemical regenerative life support processes by reducing power and expanding the operational range. Specific technologies that will benefit include water electrolysis for propulsion, energy storage, life support, extravehicular activity, in-space manufacturing and in-space science in addition to other electrochemical regenerative life support technologies such as electrochemical carbon dioxide and oxygen separation, electrochemical oxygen compression and water vapor electrolysis. The Electrolysis Performance Improvement Concept Study flight experiment design incorporates two primary hardware assemblies: the Mechanical/Electrochemical Assembly and the Control/Monitor Instrumentation. The Mechanical/Electrochemical Assembly contains three separate integrated electrolysis cells along with supporting pressure and temperature control components. The Control/Monitor Instrumentation controls the operation of the experiment via the Mechanical/Electrochemical Assembly components and provides for monitoring and control of critical parameters and storage of experimental data.
Membrane water-flow rate in electrolyzer cells with a solid polymer electrolyte (SPE)
NASA Astrophysics Data System (ADS)
Li, Xiaojin; Qu, Shuguo; Yu, Hongmei; Hou, Ming; Shao, Zhigang; Yi, Baolian
Water-flow rate across Nafion membrane in SPE electrolyzer cells was measured and modelled. From the analysis of water transport mechanisms in SPE water electrolysis, the water-flow rate through membrane can be described by the electro-osmotic drag. The calculated electro-osmotic drag coefficients, n d, for the membrane in SPE electrolysis cells at different temperatures were compared with literature and in good agreement with those of Ge et al. and Ise et al. To describe the water-flow rate through membrane more accurately, a linear fit of n d as a function of temperature for the membrane in SPE water electrolysis was proposed in this paper. This paper studied the membrane water-flow rate experimentally and mathematically, which is of importance in the designing and optimization of the process of SPE water electrolysis. This paper also provided a novel method for measuring the electro-osmotic drag coefficient of Nafion membrane in contact with liquid water, acid and methanol solutions, etc.
Effect of sintering temperature on the electrolysis of TiO2
NASA Astrophysics Data System (ADS)
Li, Ze-quan; Ru, Li-yue; Bai, Cheng-guang; Zhang, Na; Wang, Hai-hua
2012-07-01
The effects of sintering temperature on the microstructure and the conductivity of TiO2 cathodes were studied by examining the phase composition, microstructure, and element contents of the sintered cathodes and the cathodic products using X-ray diffraction and scanning electronic microscopy-energy dispersive spectrometry. The oxygen vacancy, conductivity, average pore diameter, and specific surface area of the sintered cathodes were detected by X-ray photoelectron spectroscopy, four-point probe, and ASPA 2010. The results showed that TiO2 phase transformations occurred, and oxygen vacancies formed with the increase of sintering temperature. The cathodic conductivity improved, but the average pore diameter and the effective response area of the TiO2 cathode were reduced when the sintering temperature increased. These phenomena could weaken the contact between reaction ions and electrons and also had the same effect on the cathodes and the molten salt. Moreover, they were disadvantageous to ion migration, so a lower sintering temperature was favorable for the microstructure of electrolysis. Consequently, the cathodic conductivity may be improved, but the microstructure became compact with the increase of sintering temperature. The cathodic products at different temperatures indicated that the cathodic conductivity was more important for electrolysis.
NASA Technical Reports Server (NTRS)
Gordon, L. H.; Phillips, B. R.; Evangelista, J.
1978-01-01
Computer program represents attempt to understand and model characteristics of electrolysis cells. It allows user to determine how cell efficiency is affected by temperature, pressure, current density, electrolyte concentration, characteristic dimensions, membrane resistance, and electrolyte circulation rate. It also calculates ratio of bubble velocity to electrolyte velocity for anode and cathode chambers.
NASA Astrophysics Data System (ADS)
Negroni, Garry Inocentes
Vehicle-integrated photovoltaic electricity can be applied towards aspiration of hydrogen-oxygen-steam gas produced through alkaline electrolysis and reductions in auxiliary alternator load for reducing hydrocarbon emissions in low nitrogen oxide indirect-injection compression-ignition engines. Aspiration of 0.516 ± 0.007 liters-per-minute of gas produced through alkaline electrolysis of potassium-hydroxide 2wt.% improves full-load performance; however, part-load performance decreases due to auto-ignition of aspirated gas prior to top-dead center. Alternator load reductions offer improved part-load and full-load performance with practical limitations resulting from accessory electrical loads. In an additive approach, solar electrolysis can electrochemically convert solar photovoltaic electricity into a gas comprised of stoichiometric hydrogen and oxygen gas. Aspiration of this hydrogen-oxygen gas enhances combustion properties decreasing emissions and increased combustion efficiency in light-duty diesel vehicles. The 316L stainless steel (SS) electrolyser plates are arranged with two anodes and three cathodes space with four bipolar plates delineating four stacks in parallel with five cells per stack. The electrolyser was tested using potassium hydroxide 2 wt.% and hydronium 3wt.% at measured voltage and current inputs. The flow rate output from the reservoir cell was measured in parallel with the V and I inputs producing a regression model correlating current input to flow rate. KOH 2 wt.% produced 0.005 LPM/W, while H9O44 3 wt.% produced less at 0.00126 LPM/W. In a subtractive approach, solar energy can be used to charge a larger energy storage device, as is with plug-in electric vehicles, in order to alleviate the engine of the mechanical load placed upon it by the vehicles electrical accessories through the alternator. Solar electrolysis can improve part-load emissions and full-load performance. The average solar-to-battery efficiency based on the OEM rated efficiency was 11.4%. The average voltage efficiency of the electrolyser during dynamometer testing was 69.16%, producing a solar-to-electrolysis efficiency of 7.88%. At varying engine speeds, HC emissions decreased an average of 54.4% at multiple engine speeds at part-load, while CO2 increased by 2.54% due to oxygen enrichment of intake air. However, the auto-ignition of a small amount of hydrogen (0.0035% of diesel fuel energy) had a negative impact on part-load power (-3.671%) and torque (-3.296%). Full-load sweep testing showed an increase in peak power (1.562%) and peak torque (2.608%). Solar electrolysis gas aspiration reduced soot opacity by 31.5%. The alternator-less part-load step tests show average HC and CO2 emissions decrease on average 25.05% and 1.14% respectively. The test also indicates an increase in average part-load power (1.57%) and torque (2.12%). Alternator-less operation can reduce soot opacity by 56.76%. Full-load testing of the vehicle with alternator unplugged indicates that alternator load upon an engine increase with engine ne speed even with no load and no pilot excitation. Alternator load elimination's performance and emissions improvements should be considered, however, practical limitations exist in winter-night, summer-midday scenarios and for longer duration of operation.
Advancements in oxygen generation and humidity control by water vapor electrolysis
NASA Technical Reports Server (NTRS)
Heppner, D. B.; Sudar, M.; Lee, M. C.
1988-01-01
Regenerative processes for the revitalization of manned spacecraft atmospheres or other manned habitats are essential for realization of long-term space missions. These processes include oxygen generation through water electrolysis. One promising technique of water electrolysis is the direct conversion of the water vapor contained in the cabin air to oxygen. This technique is the subject of the present program on water vapor electrolysis development. The objectives were to incorporate technology improvements developed under other similar electrochemical programs and add new ones; design and fabricate a mutli-cell electrochemical module and a testing facility; and demonstrate through testing the improvements. Each aspect of the water vapor electrolysis cell was reviewed. The materials of construction and sizing of each element were investigated analytically and sometime experimentally. In addition, operational considerations such as temperature control in response to inlet conditions were investigated. Three specific quantitative goals were established.
NASA Astrophysics Data System (ADS)
Wantha, Channarong
2018-02-01
This paper reports on the experimental and simulation studies of the influence of stack geometries and different mean pressures on the cold end temperature of the stack in the thermoacoustic refrigeration system. The stack geometry was tested, including spiral stack, circular pore stack and pin array stack. The results of this study show that the mean pressure of the gas in the system has a significant impact on the cold end temperature of the stack. The mean pressure of the gas in the system corresponds to thermal penetration depth, which results in a better cold end temperature of the stack. The results also show that the cold end temperature of the pin array stack decreases more than that of the spiral stack and circular pore stack geometry by approximately 63% and 70%, respectively. In addition, the thermal area and viscous area of the stack are analyzed to explain the results of such temperatures of thermoacoustic stacks.
Kusnezoff, Mihails; Trofimenko, Nikolai; Müller, Martin; Michaelis, Alexander
2016-11-08
The solid oxide cell is a basis for highly efficient and reversible electrochemical energy conversion. A single cell based on a planar electrolyte substrate as support (ESC) is often utilized for SOFC/SOEC stack manufacturing and fulfills necessary requirements for application in small, medium and large scale fuel cell and electrolysis systems. Thickness of the electrolyte substrate, and its ionic conductivity limits the power density of the ESC. To improve the performance of this cell type in SOFC/SOEC mode, alternative fuel electrodes, on the basis of Ni/CGO as well as electrolytes with reduced thickness, have been applied. Furthermore, different interlayers on the air side have been tested to avoid the electrode delamination and to reduce the cell degradation in electrolysis mode. Finally, the influence of the contacting layer on cell performance, especially for cells with an ultrathin electrolyte and thin electrode layers, has been investigated. It has been found that Ni/CGO outperform traditional Ni/8YSZ electrodes and the introduction of a ScSZ interlayer substantially reduces the degradation rate of ESC in electrolysis mode. Furthermore, it was demonstrated that, for thin electrodes, the application of contacting layers with good conductivity and adhesion to current collectors improves performance significantly.
Fabrication and characterization of solid oxide cells for energy conversion and storage
NASA Astrophysics Data System (ADS)
Yang, Chenghao
2011-12-01
There has been an increasing interest in clean and renewable energy generation for highlighted energy and environmental concerns. Solid oxide cells (SOCs) have been considered as one of the promising technologies, since they can be operated efficiently both in electrolysis mode by generating hydrogen through steam electrolysis and fuel cell mode by electrochemically combining fuel with oxidant. The present work is devoted to performing a fundamental study of SOC in both fuel cell mode for power generation and electrolysis mode for fuel production. The research work on SOCs that can be operated reversibly for power generation and fuel production has been conducted in the following six projects: (1) High performance solid oxide electrolysis cell (SOEC) Fabrication of novel structured SOEC oxygen electrode with the conventional and commercial solid oxide fuel cell materials by screen-printing and infiltration fabrication methods. The microstructure, electrochemical properties and durability of SOECs has been investigated. It was found that the LSM infiltrated cell has an area specific resistance (ASR) of 0.20 Ω cm2 at 900°C at open circuit voltage with 50% absolute humidity (AH), which is relatively lower than that of the cell with LSM-YSZ oxygen electrode made by a conventional mixing method. Electrolysis cell with LSM infiltrated oxygen electrode has demonstrated stable performance under electrolysis operation with 0.33 A/cm2 and 50 vol.% AH at 800°C. (2) Advanced performance high temperature micro-tubular solid oxide fuel cell (MT-SOFC) Phase-inversion, dip-coating, high temperature co-sintering process and impregnation method were used to fabricate micro-tubular solid oxide fuel cell. The micro-structure of the micro-tubular fuel cell will be investigated and the power output and thermal robustness has been evaluated. High performance and rapid start-up behavior have been achieved, indicates that the MT-SOFC developed in this work can be a promising technology for portable applications. (3) Promising intermediate temperature micro-tubular solid oxide fuel cells for portable power supply applications Maximum power densities of 0.5, 0.38 and 0.27 W/cm2 have been obtained using H2-15% H2O as fuel at 550, 600 and 650°C, respectively. Quick thermal cycles performed on the intermediate temperature MT-SOFC stability demonstrate that the cell has robust performance stability for portable applications. (4) Micro-tubular solid oxide cell (MT-SOC) for steam electrolysis The electrochemical properties of MT-SOC will be investigated in detail in electrolysis mode. The mechanism of the novel hydrogen electrode structure benefiting the cell performance will be demonstrated systematically. The high electrochemical performance of the MT-SOC in electrolysis mode indicates that MT-SOC can provide an efficient hydrogen generation process. (5) Micro-tubular solid oxide cell (MT-SOC) for steam and CO2 co-electrolysis The MT-SOC will be operated in co-electrolysis mode for steam and CO 2, which will provide an efficient approach to generate syngas (H2+CO) without consuming fossil fuels. This can potentially provide an alternative superior approach for carbon sequestration which has been a critical issue facing the sustainability of our society. (6) Steam and CO2 co-electrolysis using solid oxide cells fabricated by freeze-drying tape-casting Tri-layer scaffolds have been prepared by freeze-drying tape casting process and the electrode catalysts are obtained by infiltrating the porous electrode substrates. Button cells will be tested for co-electrolysis of steam and CO2. The mechanism and efficiency of steam and CO2 co-electrolysis will be systemically investigated. In conclusion, SOCs have been fabricated with conventional materials and evaluated, but their performance has been found to be limited in either SOFC or SOEC mode. The cell performance has been significantly improved by employing an infiltrated LSM-YSZ electrode, due to dramatically decreased polarization resistance. However, mass transport limitation has been observed, particularly in electrolysis mode. By utilizing micro-tubular SOCs with novel hydrogen electrode produced via a phase inversion method, mass transport limitation has been mitigated. Finally, mass transport has been further improved by using cells with electrodes fabricated through a freeze-drying tape-casting method. (Abstract shortened by UMI.)
Probing Temperature Inside Planar SOFC Short Stack, Modules, and Stack Series
NASA Astrophysics Data System (ADS)
Yu, Rong; Guan, Wanbing; Zhou, Xiao-Dong
2017-02-01
Probing temperature inside a solid oxide fuel cell (SOFC) stack lies at the heart of the development of high-performance and stable SOFC systems. In this article, we report our recent work on the direct measurements of the temperature in three types of SOFC systems: a 5-cell short stack, a 30-cell stack module, and a stack series consisting of two 30-cell stack modules. The dependence of temperature on the gas flow rate and current density was studied under a current sweep or steady-state operation. During the current sweep, the temperature inside the 5-cell stack decreased with increasing current, while it increased significantly at the bottom and top of the 30-cell stack. During a steady-state operation, the temperature of the 5-cell stack was stable while it was increased in the 30-cell stack. In the stack series, the maximum temperature gradient reached 190°C when the gas was not preheated. If the gas was preheated and the temperature gradient was reduced to 23°C in the stack series with the presence of a preheating gas and segmented temperature control, this resulted in a low degradation rate.
Improved water electrolysis using magnetic heating of FeC-Ni core-shell nanoparticles
NASA Astrophysics Data System (ADS)
Niether, Christiane; Faure, Stéphane; Bordet, Alexis; Deseure, Jonathan; Chatenet, Marian; Carrey, Julian; Chaudret, Bruno; Rouet, Alain
2018-06-01
Water electrolysis enables the storage of renewable electricity via the chemical bonds of hydrogen. However, proton-exchange-membrane electrolysers are impeded by the high cost and low availability of their noble-metal electrocatalysts, whereas alkaline electrolysers operate at a low power density. Here, we demonstrate that electrocatalytic reactions relevant for water splitting can be improved by employing magnetic heating of noble-metal-free catalysts. Using nickel-coated iron carbide nanoparticles, which are prone to magnetic heating under high-frequency alternating magnetic fields, the overpotential (at 20 mA cm-2) required for oxygen evolution in an alkaline water-electrolysis flow-cell was decreased by 200 mV and that for hydrogen evolution was decreased by 100 mV. This enhancement of oxygen-evolution kinetics is equivalent to a rise of the cell temperature to 200 °C, but in practice it increased by 5 °C only. This work suggests that, in the future, water splitting near the equilibrium voltage could be possible at room temperature, which is currently beyond reach in the classic approach to water electrolysis.
Prajapati, Kalp Bhusan; Singh, Rajesh
2018-05-10
In present study batch tests were performed to investigate the enhancement in methane production under bio-electrolysis anaerobic co-digestion of sewage sludge and food waste. The bio-electrolysis reactor system (B-EL) yield more methane 148.5 ml/g COD in comparison to reactor system without bio-electrolysis (B-CONT) 125.1 ml/g COD. Whereas bio-electrolysis reactor system (C-EL) Iron Scraps amended yield lesser methane (51.2 ml/g COD) in comparison to control bio-electrolysis reactor system without Iron scraps (C-CONT - 114.4 ml/g COD). Richard and Exponential model were best fitted for cumulative methane production and biogas production rates respectively as revealed modelling study. The best model fit for the different reactors was compared by Akaike's Information Criterion (AIC) and Bayesian Information Criterion (BIC). The bioelectrolysis process seems to be an emerging technology with lesser the loss in cellulase specific activity with increasing temperature from 50 to 80 °C. Copyright © 2018 Elsevier Ltd. All rights reserved.
A Vivens Ex Vivo Study on the Synergistic Effect of Electrolysis and Freezing on the Cell Nucleus.
Lugnani, Franco; Zanconati, Fabrizio; Marcuzzo, Thomas; Bottin, Cristina; Mikus, Paul; Guenther, Enric; Klein, Nina; Rubinsky, Liel; Stehling, Michael K; Rubinsky, Boris
2015-01-01
Freezing-cryosurgery, and electrolysis-electrochemical therapy (EChT), are two important minimally invasive surgery tissue ablation technologies. Despite major advantages they also have some disadvantages. Cryosurgery cannot induce cell death at high subzero freezing temperatures and requires multiple freeze thaw cycles, while EChT requires high concentrations of electrolytic products-which makes it a lengthy procedure. Based on the observation that freezing increases the concentration of solutes (including products of electrolysis) in the frozen region and permeabilizes the cell membrane to these products, this study examines the hypothesis that there could be a synergistic effect between freezing and electrolysis in their use together for tissue ablation. Using an animal model we refer to as vivens ex vivo, which may be of value in reducing the use of animals for experiments, combined with a Hematoxylin stain of the nucleus, we show that there are clinically relevant protocols in which the cell nucleus appears intact when electrolysis and freezing are used separately but is affected by certain combinations of electrolysis and freezing.
Watson, Valerie J; Hatzell, Marta; Logan, Bruce E
2015-11-01
A microbial reverse-electrodialysis electrolysis cell (MREC) was used to produce hydrogen gas from fermentation wastewater without the need for additional electrical energy. Increasing the number of cell pairs in the reverse electrodialysis stack from 5 to 10 doubled the maximum current produced from 60 A/m(3) to 120 A/m(3) using acetate. However, more rapid COD removal required a decrease in the anolyte hydraulic retention time (HRT) from 24 to 12 h to stabilize anode potentials. Hydrogen production using a fermentation wastewater (10 cell pairs, HRT=8 h) reached 0.9±0.1 L H2/Lreactor/d (1.1±0.1 L H2/g-COD), with 58±5% COD removal and a coulombic efficiency of 74±5%. These results demonstrated that consistent rates of hydrogen gas production could be achieved using an MREC if effluent anolyte COD concentrations are sufficient to produce stable anode potentials. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Greg, G.; Virkar, Anil, V.; Bandopadhyay, Sukumar
2009-06-30
Developing safe, reliable, cost-effective, and efficient hydrogen-electricity co-generation systems is an important step in the quest for national energy security and minimized reliance on foreign oil. This project aimed to, through materials research, develop a cost-effective advanced technology cogenerating hydrogen and electricity directly from distributed natural gas and/or coal-derived fuels. This advanced technology was built upon a novel hybrid module composed of solid-oxide fuel-assisted electrolysis cells (SOFECs) and solid-oxide fuel cells (SOFCs), both of which were in planar, anode-supported designs. A SOFEC is an electrochemical device, in which an oxidizable fuel and steam are fed to the anode and cathode,more » respectively. Steam on the cathode is split into oxygen ions that are transported through an oxygen ion-conducting electrolyte (i.e. YSZ) to oxidize the anode fuel. The dissociated hydrogen and residual steam are exhausted from the SOFEC cathode and then separated by condensation of the steam to produce pure hydrogen. The rationale was that in such an approach fuel provides a chemical potential replacing the external power conventionally used to drive electrolysis cells (i.e. solid oxide electrolysis cells). A SOFC is similar to the SOFEC by replacing cathode steam with air for power generation. To fulfill the cogeneration objective, a hybrid module comprising reversible SOFEC stacks and SOFC stacks was designed that planar SOFECs and SOFCs were manifolded in such a way that the anodes of both the SOFCs and the SOFECs were fed the same fuel, (i.e. natural gas or coal-derived fuel). Hydrogen was produced by SOFECs and electricity was generated by SOFCs within the same hybrid system. A stand-alone 5 kW system comprising three SOFEC-SOFC hybrid modules and three dedicated SOFC stacks, balance-of-plant components (including a tailgas-fired steam generator and tailgas-fired process heaters), and electronic controls was designed, though an overall integrated system assembly was not completed because of limited resources. An inexpensive metallic interconnects fabrication process was developed in-house. BOP components were fabricated and evaluated under the forecasted operating conditions. Proof-of-concept demonstration of cogenerating hydrogen and electricity was performed, and demonstrated SOFEC operational stability over 360 hours with no significant degradation. Cost analysis was performed for providing an economic assessment of the cost of hydrogen production using the targeted hybrid technology, and for guiding future research and development.« less
Transient analysis of a solid oxide fuel cell stack with crossflow configuration
NASA Astrophysics Data System (ADS)
Yuan, P.; Liu, S. F.
2018-05-01
This study investigates the transient response of the cell temperature and current density of a solid oxide fuel cell having 6 stacks with crossflow configuration. A commercial software repeatedly solves the governing equations of each stack, and get the convergent results of the whole SOFC stack. The preliminary results indicate that the average current density of each stack is similar to others, so the power output between different stacks are uniform. Moreover, the average cell temperature among stacks is different, and the central stacks have higher temperature due to its harder heat dissipation. For the operating control, the cell temperature difference among stacks is worth to concern because the temperature difference will be over 10 °C in the analysis case. The increasing of the inlet flow rate of the fuel and air will short the transient state, increase the average current density, and drop the cell temperature difference among the stacks. Therefore, the inlet flow rate is an important factor for transient performance of a SOFC stack.
NASA Technical Reports Server (NTRS)
Hughes, W. L.
1973-01-01
Theoretical and experimental studies on high pressure electrolysis producing hydrogen and oxygen for energy storage and reconversion are reported. Moderate temperature, high pressure hydrogen/oxygen fuel cells with nickel electrodes are investigated for effects of pressure, temperature, and membrane porosity. Test results from an aphodid burner turbine generator combination obtained 40 percent kilowatt hours out of the fuel cell divided by kilowatt hours into the electrolyzer. It is concluded that high pressure hydrogenation of organic materials can be used to synthesize hydrozenes and methanes for making synthetic vehicular fuels.
The Application of Electrolysis Method to Reduce Ammonia Content in Liquid Waste of Tofu
NASA Astrophysics Data System (ADS)
Prabowo, S.; Nurlaili; Muflihah; Tindangen, R. A.; Sukemi
2018-04-01
Ammonia (NH3) is known as an important chemical in industrial sector. It is also known as harmful pollutant. Ammonia is a weak base, a gas in room temperature and has 330°C of BP. The aims of research were to investigate the effect of voltage (4 to 12 volt), time (1 to 30 min.), concentration of ammonia (0.01 to 0.05 M) and potassium hydroxide concentration on the ammonia content in aqueous solution by using electrolysis method with platinum as electrodes. The ammonia content was analysed by using UV-Vis spectrophotometer. The result showed that an increment in the voltage, time and potassium hydroxide concentration could increase the amount of converted ammonia. The optimum condition to reduce the ammonia content by using electrolysis method was 10 V of electrical voltage, 25 min. of electrolysis time and 0.04 M of potassium hydroxide concentration. At the optimum condition, the electrolysis method could decrease 81.13% of ammonia content in liquid waste of tofu.
Phosphonate removal from discharged circulating cooling water using iron-carbon micro-electrolysis.
Zhou, Zhen; Qiao, Weimin; Lin, Yangbo; Shen, Xuelian; Hu, Dalong; Zhang, Jianqiao; Jiang, Lu-Man; Wang, Luochun
2014-01-01
Phosphonate is a commonly used corrosion and scale inhibitor for a circulating cooling water (CCW) system. Its discharge could cause eutrophication of receiving waters. The iron-carbon (Fe/C) micro-electrolysis technology was used to degrade and remove phosphonate from discharged CCW. The influences of initial pH, Fe/C ratio (FCR) and temperature on phosphonate removal were investigated in a series of batch tests and optimized by response surface methodology. The quadratic model of phosphonate removal was obtained with satisfactory degrees of fitness. The optimum conditions with total phosphorus removal efficiency of 95% were obtained at pH 7.0, FCR of 1.25, and temperature of 45 °C. The phosphonate removal mechanisms were also studied. Phosphonate removal occurred predominantly via two consecutive reactive phases: the degradation of phosphonate complexes (Ca-phosphonate) and the precipitation of Fe/C micro-electrolysis products (PO₄(3-), Ca²⁺ and Fe³⁺).
Development of a static feed water electrolysis system
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Lantz, J. B.; Hallick, T. M.
1982-01-01
A one person level oxygen generation subsystem was developed and production of the one person oxygen metabolic requirements, 0.82 kg, per day was demonstrated without the need for condenser/separators or electrolyte pumps. During 650 hours of shakedown, design verification, and endurance testing, cell voltages averaged 1.62 V at 206 mA/sq cm and at average operating temperature as low as 326 K, virtually corresponding to the state of the art performance previously established for single cells. This high efficiency and low waste heat generation prevented maintenance of the 339 K design temperature without supplemental heating. Improved water electrolysis cell frames were designed, new injection molds were fabricated, and a series of frames was molded. A modified three fluid pressure controller was developed and a static feed water electrolysis that requires no electrolyte in the static feed compartment was developed and successfully evaluated.
High Temperature Electrolysis using Electrode-Supported Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. E. O'Brien; C. M. Stoots
2010-07-01
An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production. The cells currently under study were developed primarily for the fuel cell mode of operation. Results presented in this paper were obtained from single cells, with an active area of 16 cm2 per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes (~10 µm thick), nickel-YSZ steam/hydrogen electrodes (~1400 µm thick), and manganite (LSM) air-side electrodes (~90 µm thick). The purpose of the present study was to document and compare the performance and degradation ratesmore » of these cells in the fuel cell mode and in the electrolysis mode under various operating conditions. Initial performance was documented through a series of DC potential sweeps and AC impedance spectroscopy measurements. Degradation was determined through long-duration testing, first in the fuel cell mode, then in the electrolysis mode over more than 500 hours of operation. Results indicate accelerated degradation rates in the electrolysis mode compared to the fuel cell mode, possibly due to electrode delamination. The paper also includes details of the single-cell test apparatus developed specifically for these experiments.« less
NASA Astrophysics Data System (ADS)
Bogoslovskii, S. Yu; Kuznetsov, N. N.; Boldyrev, V. S.
2017-11-01
Electrochlorination parameters were optimized in flowing and non-flowing modes for a cell with a volume of 1 l. At a current density of 0.1 A/cm2 in the range of flow rates from 0.8 to 6.0 l/h with a temperature of the initial solution below 20°C the outlet temperature is maintained close to the optimal 40°C. The pH of the solution during electrolysis increases to 8.8 ÷ 9.4. There was studied a process in which a solution with a temperature of 7-8°C and a concentration of sodium chloride of 25 and 35 g/l in non-flowing cell was used. The dependence of the concentration of active chlorine on the electrolysis time varies with the concentration of the initial solution of sodium chloride. In case of chloride concentration of 25 g/l virtually linear relationship makes it easy to choose the time of electrolysis with the aim of obtaining the needed concentration of the product.
Yang, Ruihong; ZHU, Jianzhong; Li, Yingliu; Zhang, Hui
2016-01-01
Through a variety of material screening experiments, Al was selected as the added metal and constituted a multiple micro-electrolysis system of Fe/C/Al. The metal proportion of alloy-structured filler was also analyzed with the best Fe/C/Al ratio of 3:1:1. The regular Fe/C/Al multiple micro-electrolysis fillers were prepared using a high-temperature anaerobic roasting method. The optimum conditions for oil refinery wastewater treated by Fe/C/Al multiple micro-electrolysis were determined to be an initial pH value of 3, reaction time of 80 min, and 0.05 mol/L Na2SO4 additive concentration. The reaction mechanism of the treatment of oil refinery wastewater by Fe/C/Al micro-electrolysis was investigated. The process of the treatment of oil refinery wastewater with multiple micro-electrolysis conforms to the third-order reaction kinetics. The gas chromatography–mass spectrometry (GC–MS) used to analyze the organic compounds of the oil refinery wastewater before and after treatment and the Ultraviolet–visible spectroscopy (UV–VIS) absorption spectrum analyzed the degradation process of organic compounds in oil refinery wastewater. The treatment effect of Fe/C/Al multiple micro-electrolysis was examined in the continuous experiment under the optimum conditions, which showed high organic compound removal and stable treatment efficiency. PMID:27136574
Yang, Ruihong; Zhu, Jianzhong; Li, Yingliu; Zhang, Hui
2016-04-29
Through a variety of material screening experiments, Al was selected as the added metal and constituted a multiple micro-electrolysis system of Fe/C/Al. The metal proportion of alloy-structured filler was also analyzed with the best Fe/C/Al ratio of 3:1:1. The regular Fe/C/Al multiple micro-electrolysis fillers were prepared using a high-temperature anaerobic roasting method. The optimum conditions for oil refinery wastewater treated by Fe/C/Al multiple micro-electrolysis were determined to be an initial pH value of 3, reaction time of 80 min, and 0.05 mol/L Na₂SO₄ additive concentration. The reaction mechanism of the treatment of oil refinery wastewater by Fe/C/Al micro-electrolysis was investigated. The process of the treatment of oil refinery wastewater with multiple micro-electrolysis conforms to the third-order reaction kinetics. The gas chromatography-mass spectrometry (GC-MS) used to analyze the organic compounds of the oil refinery wastewater before and after treatment and the Ultraviolet-visible spectroscopy (UV-VIS) absorption spectrum analyzed the degradation process of organic compounds in oil refinery wastewater. The treatment effect of Fe/C/Al multiple micro-electrolysis was examined in the continuous experiment under the optimum conditions, which showed high organic compound removal and stable treatment efficiency.
Oxygen and iron production by electrolytic smelting of lunar soil
NASA Technical Reports Server (NTRS)
Colson, R. O.; Haskin, L. A.
1991-01-01
Oxygen, present in abundance in nearly all lunar materials, can theoretically be extracted by molten silicate electrolysis from any known lunar rock. Derivation of oxygen by this method has been amply demonstrated experimentally in silicate melts of a variety of compositions. This work can be divided into three categories: (1) measurement of solubilities of metals (atomic) in silicate melts; (2) electrolysis experiments under various conditions of temperature, container material, electrode configuration, current density, melt composition, and sample mass (100 to 2000 mg) measuring energy required and character of resulting products; and (3) theoretical assessment of compositional requirements for steady state operations of an electrolysis cell.
High temperature electrolysis for syngas production
Stoots, Carl M [Idaho Falls, ID; O'Brien, James E [Idaho Falls, ID; Herring, James Stephen [Idaho Falls, ID; Lessing, Paul A [Idaho Falls, ID; Hawkes, Grant L [Sugar City, ID; Hartvigsen, Joseph J [Kaysville, UT
2011-05-31
Syngas components hydrogen and carbon monoxide may be formed by the decomposition of carbon dioxide and water or steam by a solid-oxide electrolysis cell to form carbon monoxide and hydrogen, a portion of which may be reacted with carbon dioxide to form carbon monoxide. One or more of the components for the process, such as steam, energy, or electricity, may be provided using a nuclear power source.
NASA Astrophysics Data System (ADS)
Li, Tao
2018-06-01
The complexity of aluminum electrolysis process leads the temperature for aluminum reduction cells hard to measure directly. However, temperature is the control center of aluminum production. To solve this problem, combining some aluminum plant's practice data, this paper presents a Soft-sensing model of temperature for aluminum electrolysis process on Improved Twin Support Vector Regression (ITSVR). ITSVR eliminates the slow learning speed of Support Vector Regression (SVR) and the over-fit risk of Twin Support Vector Regression (TSVR) by introducing a regularization term into the objective function of TSVR, which ensures the structural risk minimization principle and lower computational complexity. Finally, the model with some other parameters as auxiliary variable, predicts the temperature by ITSVR. The simulation result shows Soft-sensing model based on ITSVR has short time-consuming and better generalization.
NASA Astrophysics Data System (ADS)
Kim, Si-Won; Bae, Yonggyun; Yoon, Kyung Joong; Lee, Jong-Ho; Lee, Jong-Heun; Hong, Jongsup
2018-02-01
To mitigate CO2 emissions, its reduction by high-temperature electrolysis using solid oxide cells is extensively investigated, for which excessive steam supply is assumed. However, such condition may degrade its feasibility due to massive energy required for generating hot steam, implying the needs for lowering steam demand. In this study, high-temperature electrolysis of CO2-enriched mixtures by using fuel-electrode supported La0.6Sr0.4CoO3/YSZ/Ni-YSZ solid oxide cells is considered to satisfy such needs. The effect of internal and external steam supply on its electrochemical performance and gas productivity is elucidated. It is shown that the steam produced in-situ inside the fuel-electrode by a reverse water gas shift reaction may decrease significantly the electrochemical resistance of dry CO2-fed operations, attributed to self-sustaining positive thermo-electrochemical reaction loop. This mechanism is conspicuous at low current density, whereas it is no longer effective at high current density in which total reactant concentrations for electrolysis is critical. To overcome such limitations, a small amount of external steam supply to the CO2-enriched feed stream may be needed, but this lowers the CO2 conversion and CO/H2 selectivity. Based on these results, it is discussed that there can be minimum steam supply sufficient for guaranteeing both low electrochemical resistance and high gas productivity.
Water electrolysis on La 1-xSr xCoO 3-δ perovskite electrocatalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mefford, J. Tyler; Rong, Xi; Abakumov, Artem M.
2016-03-23
Perovskite oxides are attractive candidates as catalysts for the electrolysis of water in alkaline energy storage and conversion systems. However, the rational design of active catalysts has been hampered by the lack of understanding of the mechanism of water electrolysis on perovskite surfaces. Key parameters that have been overlooked include the role of oxygen vacancies, B–O bond covalency, and redox activity of lattice oxygen species. Here we present a series of cobaltite perovskites where the covalency of the Co–O bond and the concentration of oxygen vacancies are controlled through Sr 2+ substitution into La 1-xSr xCoO 3-δ. We attempt tomore » rationalize the high activities of La 1-xSr xCoO 3-δ through the electronic structure and participation of lattice oxygen in the mechanism of water electrolysis as revealed through ab initio modelling. Using this approach, we report a material, SrCoO 2.7, with a high, room temperature-specific activity and mass activity towards alkaline water electrolysis.« less
Water electrolysis on La 1-xSr xCoO 3-δ perovskite electrocatalysts
Mefford, J. Tyler; Rong, Xi; Abakumov, Artem M.; ...
2016-03-23
Here, perovskite oxides are attractive candidates as catalysts for the electrolysis of water in alkaline energy storage and conversion systems. However, the rational design of active catalysts has been hampered by the lack of understanding of the mechanism of water electrolysis on perovskite surfaces. Key parameters that have been overlooked include the role of oxygen vacancies, B–O bond covalency, and redox activity of lattice oxygen species. Here we present a series of cobaltite perovskites where the covalency of the Co–O bond and the concentration of oxygen vacancies are controlled through Sr 2+ substitution into La 1–xSr xCoO 3–δ. We attemptmore » to rationalize the high activities of La 1–xSr xCoO 3–δ through the electronic structure and participation of lattice oxygen in the mechanism of water electrolysis as revealed through ab initio modelling. Using this approach, we report a material, SrCoO 2.7, with a high, room temperature-specific activity and mass activity towards alkaline water electrolysis.« less
A Vivens Ex Vivo Study on the Synergistic Effect of Electrolysis and Freezing on the Cell Nucleus
Lugnani, Franco; Zanconati, Fabrizio; Marcuzzo, Thomas; Bottin, Cristina; Mikus, Paul; Guenther, Enric; Klein, Nina; Rubinsky, Liel; Stehling, Michael K.; Rubinsky, Boris
2015-01-01
Freezing—cryosurgery, and electrolysis—electrochemical therapy (EChT), are two important minimally invasive surgery tissue ablation technologies. Despite major advantages they also have some disadvantages. Cryosurgery cannot induce cell death at high subzero freezing temperatures and requires multiple freeze thaw cycles, while EChT requires high concentrations of electrolytic products—which makes it a lengthy procedure. Based on the observation that freezing increases the concentration of solutes (including products of electrolysis) in the frozen region and permeabilizes the cell membrane to these products, this study examines the hypothesis that there could be a synergistic effect between freezing and electrolysis in their use together for tissue ablation. Using an animal model we refer to as vivens ex vivo, which may be of value in reducing the use of animals for experiments, combined with a Hematoxylin stain of the nucleus, we show that there are clinically relevant protocols in which the cell nucleus appears intact when electrolysis and freezing are used separately but is affected by certain combinations of electrolysis and freezing. PMID:26695185
Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts
Mefford, J. Tyler; Rong, Xi; Abakumov, Artem M.; Hardin, William G.; Dai, Sheng; Kolpak, Alexie M.; Johnston, Keith P.; Stevenson, Keith J.
2016-01-01
Perovskite oxides are attractive candidates as catalysts for the electrolysis of water in alkaline energy storage and conversion systems. However, the rational design of active catalysts has been hampered by the lack of understanding of the mechanism of water electrolysis on perovskite surfaces. Key parameters that have been overlooked include the role of oxygen vacancies, B–O bond covalency, and redox activity of lattice oxygen species. Here we present a series of cobaltite perovskites where the covalency of the Co–O bond and the concentration of oxygen vacancies are controlled through Sr2+ substitution into La1−xSrxCoO3−δ. We attempt to rationalize the high activities of La1−xSrxCoO3−δ through the electronic structure and participation of lattice oxygen in the mechanism of water electrolysis as revealed through ab initio modelling. Using this approach, we report a material, SrCoO2.7, with a high, room temperature-specific activity and mass activity towards alkaline water electrolysis. PMID:27006166
An electrolytic process for ultra fine beryllium
NASA Technical Reports Server (NTRS)
Lidman, W. G.; Griffiths, V.
1972-01-01
Studies were made on the electrolysis of a molten BeCl2-NaCl bath using a mercury cathode and beryllium anode. A quasi-amalgam was obtained. The beryllium was consolidated by direct hot pressing of the amalgam at temperatures in the range of 800 C and using pressures of 5,000, 10,000 and 20,000 psi. The work confirms the ability to produce ultrafine beryllium particles by electrolysis.
NASA Astrophysics Data System (ADS)
Duboviks, V.; Lomberg, M.; Maher, R. C.; Cohen, L. F.; Brandon, N. P.; Offer, G. J.
2015-10-01
One of the attractive applications for reversible Solid Oxide Cells (SOCs) is to convert CO2 into CO via high temperature electrolysis, which is particularly important for biogas upgrading. To improve biogas utility, the CO2 component can be converted into fuel via electrolysis. A significant issue for SOC operation on biogas is carbon-induced catalyst deactivation. Nickel is widely used in SOC electrodes for reasons of cost and performance, but it has a low tolerance to carbon deposition. Two different modes of carbon formation on Ni-based electrodes are proposed in the present work based on ex-situ Raman measurements which are in agreement with previous studies. While copper is known to be resistant towards carbon formation, two significant issues have prevented its application in SOC electrodes - namely its relatively low melting temperature, inhibiting high temperature sintering, and low catalytic activity for hydrogen oxidation. In this study, the electrodes were prepared through a low temperature metal infiltration technique. Since the metal infiltration technique avoids high sintering temperatures, Cu-Ce0.9Gd0.1O2-δ (Cu-CGO) electrodes were fabricated and tested as an alternative to Ni-CGO electrodes. We demonstrate that the performance of Cu-CGO electrodes is equivalent to Ni-CGO electrodes, whilst carbon formation is fully suppressed when operated on biogas mixture.
Hydrogen Generation by Koh-Ethanol Plasma Electrolysis Using Double Compartement Reactor
NASA Astrophysics Data System (ADS)
Saksono, Nelson; Sasiang, Johannes; Dewi Rosalina, Chandra; Budikania, Trisutanti
2018-03-01
This study has successfully investigated the generation of hydrogen using double compartment reactor with plasma electrolysis process. Double compartment reactor is designed to achieve high discharged voltage, high concentration, and also reduce the energy consumption. The experimental results showed the use of double compartment reactor increased the productivity ratio 90 times higher compared to Faraday electrolysis process. The highest hydrogen production obtained is 26.50 mmol/min while the energy consumption can reach up 1.71 kJ/mmol H2 at 0.01 M KOH solution. It was shown that KOH concentration, addition of ethanol, cathode depth, and temperature have important effects on hydrogen production, energy consumption, and process efficiency.
Bio-Fuel Production Assisted with High Temperature Steam Electrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant Hawkes; James O'Brien; Michael McKellar
2012-06-01
Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oilmore » and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier.« less
Fuel Cell Electric Vehicle Powered by Renewable Hydrogen
None
2018-02-14
The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.
Fuel Cell Electric Vehicle Powered by Renewable Hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.
NASA Astrophysics Data System (ADS)
Guan, Xiaofei; Pal, Uday B.; Powell, Adam C.
2013-10-01
Magnesium is recovered from partially oxidized scrap alloy by combining refining and solid oxide membrane (SOM) electrolysis. In this combined process, a molten salt eutectic flux (45 wt.% MgF2-55 wt.% CaF2) containing 10 wt.% MgO and 2 wt.% YF3 was used as the medium for magnesium recovery. During refining, magnesium and its oxide are dissolved from the scrap into the molten flux. Forming gas is bubbled through the flux and the dissolved magnesium is removed via the gas phase and condensed in a separate condenser at a lower temperature. The molten flux has a finite solubility for magnesium and acts as a selective medium for magnesium dissolution, but not aluminum or iron, and therefore the magnesium recovered has high purity. After refining, SOM electrolysis is performed in the same reactor to enable electrolysis of the dissolved magnesium oxide in the molten flux producing magnesium at the cathode and oxygen at the SOM anode. During SOM electrolysis, it is necessary to decrease the concentration of the dissolved magnesium in the flux to improve the faradaic current efficiency and prevent degradation of the SOM. Thus, for both refining and SOM electrolysis, it is very important to measure and control the magnesium solubility in the molten flux. High magnesium solubility facilitates refining whereas lower solubility benefits the SOM electrolysis process. Computational fluid dynamics modeling was employed to simulate the flow behavior of the flux stirred by the forming gas. Based on the modeling results, an optimized design of the stirring tubes and its placement in the flux are determined for efficiently removing the dissolved magnesium and also increasing the efficiency of the SOM electrolysis process.
Magnesium Electrorefining in Non-Aqueous Electrolyte at Room Temperature
NASA Astrophysics Data System (ADS)
Kwon, Kyungjung; Park, Jesik; Kusumah, Priyandi; Dilasari, Bonita; Kim, Hansu; Lee, Churl Kyoung
Magnesium, of which application is often limited by its poor corrosion resistance, is more vulnerable to corrosion with existence of metal impurities such as Fe. Therefore, for the refining and recycling of magnesium, high temperature electrolysis using molten salts has been frequently adopted. In this report, the purification of magnesium scrap by electrolysis at room temperature is investigated with non-aqueous electrolytes. An aprotic solvent of tetrahydrofuran (THF) was used as a solvent of the electrolyte. Magnesium scrap was used as anode materials and ethyl magnesium bromide (EtMgBr) was dissolved in THF for magnesium source. The purified magnesium can be uniformly electrodeposited on copper electrode under potentiostatic conditions. The deposits were confirmed by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analysis.
NASA Astrophysics Data System (ADS)
Zheng, Haoyu; Tian, Yunfeng; Zhang, Lingling; Chi, Bo; Pu, Jian; Jian, Li
2018-04-01
High-temperature H2O/CO2 co-electrolysis through reversible solid oxide electrolysis cell (SOEC) provides potentially a feasible and eco-friendly way to convert electrical energy into chemicals stored in syngas. In this work, La0.8Sr0.2Co0.8Ni0.2O3-δ (LSCN) impregnated Gd0.1Ce0.9O1.95 (GDC)-(La0.8Sr0.2)0.95MnO3-δ (LSM) composite oxygen electrode is studied as high-performance electrode for H2O/CO2 co-electrolysis. The LSCN impregnated cell exhibits competitive performance with the peak power density of 1057 mW cm-2 at 800 °C in solid oxide fuel cell (SOFC) mode; in co-electrolysis mode, the current density can reach 1.60 A cm-2 at 1.5 V at 800 °C with H2O/CO2 ratio of 2/1. With LSCN nanoparticles dispersed on the surface of GDC-LSM to maximize the reaction active sites, the LSCN impregnated cell shows significant enhanced electrochemical performance at both SOEC and SOFC modes. The influence of feed gas composition (H2O-H2-CO2) and operating voltages on the performance of co-electrolysis are discussed in detail. The cell shows a very stable performance without obvious degradation for more than 100 h. Post-test characterization is analyzed in detail by multiple measurements.
Zhang, Wenming; Zhu, Sha; Bai, Yunping; Xi, Ning; Wang, Shaoyang; Bian, Yang; Li, Xiaowei; Zhang, Yucang
2015-05-20
The temperature/pH dual sensitivity reed hemicellulose-based hydrogels have been prepared through glow discharge electrolysis plasma (GDEP). The effect of different discharge voltages on the temperature and pH response performance of reed hemicellulose-based hydrogels was inspected, and the formation mechanism, deswelling behaviors of reed hemicellulose-based hydrogels were also discussed. At the same time, infrared spectroscopy (FT-IR), scanning differential thermal analysis (DSC) and scanning electron microscope (SEM) were adopted to characterize the structure, phase transformation behaviors and microstructure of hydrogels. It turned out to be that all reed hemicellulose-based hydrogels had a double sensitivity to temperature and pH, and their phase transition temperatures were all approximately 33 °C, as well as the deswelling dynamics met the first model. In addition, the hydrogel (TPRH-3), under discharge voltage 600 V, was more sensitive to temperature and pH and had higher deswelling ratio. Copyright © 2015 Elsevier Ltd. All rights reserved.
Carbon dioxide electrolysis using a ceramic electrolyte. [for space processing
NASA Technical Reports Server (NTRS)
Erstfeld, T. E.; Mullins, O., Jr.; Williams, R. J.
1979-01-01
This paper discusses the results of an experimental study of the electrical aspects of carbon dioxide electrolysis using a ceramic electrolyte. The electrolyte compositions used in this study are 8% Y2O3 stabilized ZrO2, 7.5% CaO stabilized ZrO2, and 5% Y2O3 stabilized ThO2. Results indicate that the 8% Y2O3 stabilized ZrO2 is the best material to use for electrolysis, in terms of current as a function of voltage and temperature, and in terms of efficiency of oxide ion flow through it. The poorest results were obtained with the 5% Y2O3 stabilized ThO2 composition. An electrolysis system which might be employed to reclaim oxygen and carbon from effluents of space manufacturing, assuming that an industry would have to electrolyze 258,000 tonnes of CO2 per year, is predicted to require a total cell area of 110,000 sq m of 1 mm thickness and electrical capacity of 441 MW.
NASA Astrophysics Data System (ADS)
Wang, Zengjie; Guan, Chunyang; Liu, Qiaochu; Xue, Jilai
Molten salts electrolysis method to prepare Al-RE alloys has attracted increasing attention recently. CaCl2 and Na3AlF6 were the most often used melts for this purpose. In this work, Al-Sc alloys prepared by electrolytic deposition process in both CaCl2 and Na3AlF6 melts were investigated, respectively. It was found that Sc distributes almost uniformly and Sc contents increase with increasing current intensity in both melts. Current efficiency was measured for comparison among various current densities applied. The alloy products were analyzed using XRD and SEM, where the formation behaviors of Al-Sc intermetallics were investigated in details. The experimental and theoretical results demonstrate that Al3Sc and Al0.968Sc0.032 are the major precipitates in the Al-Sc alloys prepared by molten electrolysis. The results are useful for selection and optimization of the molten salts compositions and the parameters of electrolysis operation.
Primary and secondary electrical space power based on advanced PEM systems
NASA Technical Reports Server (NTRS)
Vanderborgh, N. E.; Hedstrom, J. C.; Stroh, K. R.; Huff, J. R.
1993-01-01
For new space ventures, power continues to be a pacing function for mission planning and experiment endurance. Although electrochemical power is a well demonstrated space power technology, current hardware limitations impact future mission viability. In order to document and augment electrochemical technology, a series of experiments for the National Aeronautics and Space Administration Lewis Research Center (NASA LeRC) are underway at the Los Alamos National Laboratory that define operational parameters on contemporary proton exchange membrane (PEM) hardware operating with hydrogen and oxygen reactants. Because of the high efficiency possible for water electrolysis, this hardware is also thought part of a secondary battery design built around stored reactants - the so-called regenerative fuel cell. An overview of stack testing at Los Alamos and of analyses related to regenerative fuel cell systems are provided in this paper. Finally, this paper describes work looking at innovative concepts that remove complexity from stack hardware with the specific intent of higher system reliability. This new concept offers the potential for unprecedented electrochemical power system energy densities.
Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manohar S. Sohal; J. Stephen Herring
2008-07-01
Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazardsmore » related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable oxygen standards and practices for minimum safety requirements. A summary of operational hazards, along with oxygen safety and emergency procedures, are provided.« less
NASA Astrophysics Data System (ADS)
Cai, Zhuo-fei; Zhang, Zhi-mei; Guo, Zhan-cheng; Tang, Hui-qing
2012-06-01
V2O5 sintered pellets and graphite rods were employed as the cathode and the anode, respectively; a molten CaCl2-NaCl salt was used as the electrolyte. Then, V2O5 was directly reduced to metal vanadium by the Fray-Farthing-Chen (FFC) method at 873 K to realize low-temperature electrolysis. Two typical experimental conditions, electrolysis time and voltage, were taken into account to investigate the current efficiency and remaining oxygen content in electrolyzed products. The composition and microstructure of the products were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). SEM observations show that a higher voltage (1.8-3.4 V) and a longer electrolysis time (2-5 h) can improve the product quality separately, that is, a lower remaining oxygen content and a more uniform microstructure. The products with an oxygen content of 0.205wt% are successfully obtained below 3.4 V for 10 h. However, the current efficiency is low, and further work is required.
Electrosynthesis and characterization of zinc tungstate nanoparticles
NASA Astrophysics Data System (ADS)
Rahimi-Nasrabadi, Mehdi; Pourmortazavi, Seied Mahdi; Ganjali, Mohammad Reza; Hajimirsadeghi, Seiedeh Somayyeh; Zahedi, Mir Mahdi
2013-09-01
Zinc tungstate nanoparticles with different sizes are produced through an electrolysis process including a zinc plate anode in sodium tungstate solution. The shape and size of the product was found to be controlled by varying reaction parameters such as electrolysis voltage, stirring rate of electrolyte solution and temperature. The morphological (SEM) characterization analysis was performed on the product and UV-Vis spectrophotometry and FT-IR spectroscopy was utilized to characterize the electrodeposited nanoparticles. Study of the particle size of the product versus the electrolysis voltage showed that, increasing the voltage from 4 to 8 V, led to the particle size of zinc tungstate to decrease, but further increasing the voltage from 8 to 12 V, the particle size of the produced particles increased. The size and shape of the product was also found to be dependent on the stirring rate and temperature of the electrolyte solution. X-ray diffraction (XRD), scanning electron microscopy (SEM), FT-IR spectroscopy, and photoluminescence, were used to study the structure as well as composition of the nano-material prepared under optimum conditions.
Electrolytic production of oxygen from lunar resources
NASA Technical Reports Server (NTRS)
Keller, Rudolf
1991-01-01
Some of the most promising approaches to extract oxygen from lunar resources involve electrochemical oxygen generation. In a concept called magma electrolysis, suitable oxides (silicates) which are molten at 1300 to 1500 C are then electrolyzed. Residual melt can be discarded after partial electrolysis. Alternatively, lunar soil may be dissolved in a molten salt and electrolyzed. In this approach, temperatures are lower and melt conductances higher, but electrolyte constituents need to be preserved. In a different approach ilmenite is reduced by hydrogen and the resulting water is electrolyzed.
SPE propulsion electrolyzer for NASA's integrated propulsion test article
NASA Technical Reports Server (NTRS)
1991-01-01
Hamilton Standard has delivered a 3000 PSI SPE Propulsion Electrolyzer Stack and Special Test Fixture to the NASA Lyndon B. Johnson Space Center (JSC) Integrated Propulsion Test Article (IPTA) program in June 1990, per contract NAS9-18030. This prototype unit demonstrates the feasibility of SPE-high pressure water electrolysis for future space applications such as Space Station propulsion and Lunar/Mars energy storage. The SPE-Propulsion Electrolyzer has met or exceeded all IPTA program goals. It continues to function as the primary hydrogen and oxygen source for the IPTA test bed at the NASA/JSC Propulsion and Power Division Thermochemical Test Branch.
Perovskite Sr2Fe1.5Mo0.5O6-δ as electrode materials for symmetrical solid oxide electrolysis cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Qiang; Yang, Chenghao; Dong, Xihui
2010-10-01
Perovskite Sr2Fe1.5Mo0.5O6-δ (SFM) has been successfully prepared by a microwave-assisted combustion method in air and employed as both anode and cathode in symmetrical solid oxide electrolysis cells (SOECs) for hydrogen production for the first time in this work. Influence of cell operating temperature, absolute humidity (AH) as well as applied direct current (DC) on the impedance of single cells with the configuration of SFM|La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM)|SFM has been evaluated. Under open circuit conditions and 60 vol.% AH, the cell polarization resistance, RP is as low as 0.26 Ω cm2 at 900 °C. An electrolysis current of 0.88 A cm-2 and amore » hydrogen production rate as high as 380 mL cm-2 h have been achieved at 900 °C with an electrolysis voltage of 1.3 V and 60 vol.% AH. Further, the cell has demonstrated good stability in the long-term steam electrolysis test. The results showed that the cell electrolysis performance was even better than that of the reported strontium doped lanthanum manganite (LSM) – yttria stabilized zirconia (YSZ)|YSZ|Ni–YSZ cell, indicating that SFM could be a very promising electrode material for the practical application of SOEC technology.« less
Innovative model-based flow rate optimization for vanadium redox flow batteries
NASA Astrophysics Data System (ADS)
König, S.; Suriyah, M. R.; Leibfried, T.
2016-11-01
In this paper, an innovative approach is presented to optimize the flow rate of a 6-kW vanadium redox flow battery with realistic stack dimensions. Efficiency is derived using a multi-physics battery model and a newly proposed instantaneous efficiency determination technique. An optimization algorithm is applied to identify optimal flow rates for operation points defined by state-of-charge (SoC) and current. The proposed method is evaluated against the conventional approach of applying Faraday's first law of electrolysis, scaled to the so-called flow factor. To make a fair comparison, the flow factor is also optimized by simulating cycles with different charging/discharging currents. It is shown through the obtained results that the efficiency is increased by up to 1.2% points; in addition, discharge capacity is also increased by up to 1.0 kWh or 5.4%. Detailed loss analysis is carried out for the cycles with maximum and minimum charging/discharging currents. It is shown that the proposed method minimizes the sum of losses caused by concentration over-potential, pumping and diffusion. Furthermore, for the deployed Nafion 115 membrane, it is observed that diffusion losses increase with stack SoC. Therefore, to decrease stack SoC and lower diffusion losses, a higher flow rate during charging than during discharging is reasonable.
An analysis of degradation phenomena in polymer electrolyte membrane water electrolysis
NASA Astrophysics Data System (ADS)
Rakousky, Christoph; Reimer, Uwe; Wippermann, Klaus; Carmo, Marcelo; Lueke, Wiebke; Stolten, Detlef
2016-09-01
The durability of a polymer electrolyte membrane (PEM) water electrolysis single cell, assembled with regular porous transport layers (PTLs) is investigated for just over 1000 h. We observe a significant degradation rate of 194 μV h-1 and conclude that 78% of the detectable degradation can be explained by an increase in ohmic resistance, arising from the anodic Ti-PTL. Analysis of the polarization curves also indicates a decrease in the anodic exchange current density, j0, that results from the over-time contamination of the anode with Ti species. Furthermore, the average Pt-cathode particle size increases during the test, but we do not believe this phenomenon makes a significant contribution to increased cell voltages. To validate the anode Ti-PTL as a crucial source of increasing resistance, a second cell is assembled using Pt-coated Ti-PTLs. This yields a substantially reduced degradation rate of only 12 μV h-1, indicating that a non-corroding anode PTL is vital for PEM electrolyzers. It is our hope that forthcoming tailored PTLs will not only contribute to fast progress on cost-efficient stacks, but also to its long-term application of PEM electrolyzers involved in industrial processes.
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jiao, Feng
2016-01-01
This report summarizes the Phase I research and development work performed during the March 13, 2015 to July 13, 2016 period. The proposal for this work was submitted in response to NASA Research Announcement NNH14ZOA001N, "Space Technology Research, Development, Demonstration, and Infusion 2014 (SpaceTech-REDDI-2014)," Appendix 14GCD-C2 "Game Changing Development Program, Advanced Oxygen Recovery for Spacecraft Life Support Systems Appendix" The Task Agreement for this Phase I work is Document Control Number: GCDP-02-TA-15015. The objective of the Phase I project was to demonstrate in laboratories two Engineering Development Units (EDU) that perform critical functions of the low temperature carbon dioxide electrolysis and the catalytic conversion of carbon monoxide into carbon and carbon dioxide. The low temperature carbon dioxide electrolysis EDU was built by the University of Delaware with Dr. Feng Jiao as the principal investigator in charge of this EDU development (under NASA Contract NNC15CA04C). The carbon monoxide catalytic conversion EDU was built by the NASA Glenn Research Center with Kenneth Burke as the principal investigator and overall project leader for the development of both EDUs. Both EDUs were successfully developed and demonstrated the critical functions for each process. The carbon dioxide electrolysis EDU was delivered to the NASA Johnson Space Center and the carbon monoxide catalytic conversion EDU was delivered to the NASA Marshall Spaceflight Center.
Lunar oxygen and metal for use in near-earth space - Magma electrolysis
NASA Technical Reports Server (NTRS)
Colson, Russell O.; Haskin, Larry A.
1990-01-01
The unique conditions on the moon, such as vacuum, absence of many reagents common on the earth, and presence of very nontraditional 'ores', suggest that a unique and nontraditional process for extracting materials from the ores may prove the most practical. An investigation has begun into unfluxed silicate electrolysis as a method for extracting oxygen, Fe, and Si from lunar regolith. The advantages of the process include simplicity of concept, absence of need to supply reagents from the earth, and low power and mass requirements for the processing plant. Disadvantages include the need for uninterrupted high temperature and the highly corrosive nature of the high-temperature silicate melts, which has made identifying suitable electrode and container materials difficult.
Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides.
Bi, Lei; Boulfrad, Samir; Traversa, Enrico
2014-12-21
Energy crisis and environmental problems caused by the conventional combustion of fossil fuels boost the development of renewable and sustainable energies. H2 is regarded as a clean fuel for many applications and it also serves as an energy carrier for many renewable energy sources, such as solar and wind power. Among all the technologies for H2 production, steam electrolysis by solid oxide electrolysis cells (SOECs) has attracted much attention due to its high efficiency and low environmental impact, provided that the needed electrical power is generated from renewable sources. However, the deployment of SOECs based on conventional oxygen-ion conductors is limited by several issues, such as high operating temperature, hydrogen purification from water, and electrode stability. To avoid these problems, proton-conducting oxides are proposed as electrolyte materials for SOECs. This review paper provides a broad overview of the research progresses made for proton-conducting SOECs, summarizing the past work and finding the problems for the development of proton-conducting SOECs, as well as pointing out potential development directions.
Nanostructured F doped IrO2 electro-catalyst powders for PEM based water electrolysis
NASA Astrophysics Data System (ADS)
Kadakia, Karan Sandeep; Jampani, Prashanth H.; Velikokhatnyi, Oleg I.; Datta, Moni Kanchan; Park, Sung Kyoo; Hong, Dae Ho; Chung, Sung Jae; Kumta, Prashant N.
2014-12-01
Fluorine doped iridium oxide (IrO2:F) powders with varying F content ranging from 0 to 20 wt.% has been synthesized by using a modification of the Adams fusion method. The precursors (IrCl4 and NH4F) are mixed with NaNO3 and heated to elevated temperatures to form high surface area nanomaterials as electro-catalysts for PEM based water electrolysis. The catalysts were then coated on a porous Ti substrate and have been studied for the oxygen evolution reaction in PEM based water electrolysis. The IrO2:F with an optimum composition of IrO2:10 wt.% F shows remarkably superior electrochemical activity and chemical stability compared to pure IrO2. The results have also been supported via kinetic studies by conducting rotating disk electrode (RDE) experiments. The RDE studies confirm that the electro-catalysts follow the two electron transfer reaction for electrolysis with calculated activation energy of ∼25 kJ mol-1. Single full cell tests conducted also validate the superior electrochemical activity of the 10 wt.% F doped IrO2.
NASA Technical Reports Server (NTRS)
Minh, N. Q.; Chung, B. W.; Doshi, R.; Lear, G. R.; Montgomery, K.; Ong, E. T.
1999-01-01
Use of the Martian atmosphere (95% CO2) to produce oxygen (for propellant and life support) can significantly lower the required launch mass and dramatically reduce the total cost for Mars missions. Zirconia electrolysis cells are one of the technologies being considered for oxygen generation from carbon dioxide in Mars In Situ Resource Utilization (ISRU) production plants. The attractive features of the zirconia cell for this application include simple operation and lightweight, low volume system. A zirconia electrolysis cell is an all-solid state device, based on oxygen-ion conducting zirconia electrolytes, that electrochemically reduces carbon dioxide to oxygen and carbon monoxide. The cell consists of two porous electrodes (the anode and cathode) separated by a dense zirconia electrolyte. Typical zirconia cells contain an electrolyte layer which is 200 to 400 micrometer thick. The electrical conductivity requirement for the electrolyte necessitates an operating temperature of 9000 to 10000C. Recently, the fabrication of zirconia cells by the tape calendering has been evaluated. This fabrication process provides a simple means of making cells having very thin electrolytes (5 to 30 micrometers). Thin zirconia electrolytes reduce cell ohmic losses, permitting efficient operation at lower temperatures (8000C or below). Thus, tape-calendered cells provides not only the potential of low temperature operation but also the flexibility in operating temperatures. This paper describes the fabrication of zirconia cells by the tape calendering method and discusses the performance results obtained to date.
Direct LiT Electrolysis in a Metallic Fusion Blanket
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, Luke
2016-09-30
A process that simplifies the extraction of tritium from molten lithium-based breeding blankets was developed. The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fusion/fission reactors is critical in order to maintain low concentrations. This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Extraction is complicated due to required low tritium concentration limits and because of the high affinity of tritium formore » the blanket. This work identified, developed and tested the use of ceramic lithium ion conductors capable of recovering hydrogen and deuterium through an electrolysis step at high temperatures.« less
Direct Lit Electrolysis In A Metallic Lithium Fusion Blanket
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colon-Mercado, H.; Babineau, D.; Elvington, M.
2015-10-13
A process that simplifies the extraction of tritium from molten lithium based breeding blankets was developed. The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fission/fusion reactors is critical in order to maintained low concentrations. This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Because of the high affinity of tritium for the blanket, extraction is complicated at the required low levels. This workmore » identified, developed and tested the use of ceramic lithium ion conductors capable of recovering the hydrogen and deuterium thru an electrolysis step at high temperatures. « less
Advances in Molten Oxide Electrolysis for the Production of Oxygen and Metals from Lunar Regolith
NASA Technical Reports Server (NTRS)
Sadoway, Donald R.; Sirk, Aislinn; Sibille, Laurent; Melendez, Orlando; Lueck, Dale; Curreri, Peter; Dominquez, Jesus; Whitlow, Jonathan
2008-01-01
As part of an In-Situ Resource Utilization infrastructure to sustain long term-human presence on the lunar surface, the production of oxygen and metals by electrolysis of lunar regolith has been the subject of major scrutiny. There is a reasonably large body of literature characterizing the candidate solvent electrolytes, including ionic liquids, molten salts, fluxed oxides, and pure molten regolith itself. In the light of this information and in consideration of available electrolytic technologies, the authors have determined that direct molten oxide electrolysis at temperatures of approx 1600 C is the most promising avenue for further development. Results from ongoing studies as well as those of previous workers will be presented. Topics include materials selection and testing, electrode stability, gas capture and analysis, and cell operation during feeding and tapping.
Lee, Chi-Yuan; Weng, Fang-Bor; Kuo, Yzu-Wei; Tsai, Chao-Hsuan; Cheng, Yen-Ting; Cheng, Chih-Kai; Lin, Jyun-Ting
2016-01-01
In the chemical reaction that proceeds in a high-temperature proton exchange membrane fuel cell stack (HT-PEMFC stack), the internal local temperature, voltage, pressure, flow and current nonuniformity may cause poor membrane material durability and nonuniform fuel distribution, thus influencing the performance and lifetime of the fuel cell stack. In this paper micro-electro-mechanical systems (MEMS) are utilized to develop a high-temperature electrochemical environment-resistant five-in-one micro-sensor embedded in the cathode channel plate of an HT-PEMFC stack, and materials and process parameters are appropriately selected to protect the micro-sensor against failure or destruction during long-term operation. In-situ measurement of the local temperature, voltage, pressure, flow and current distributions in the HT-PEMFC stack is carried out. This integrated micro-sensor has five functions, and is favorably characterized by small size, good acid resistance and temperature resistance, quick response, real-time measurement, and the goal is being able to be put in any place for measurement without affecting the performance of the battery. PMID:27763559
Lee, Chi-Yuan; Weng, Fang-Bor; Kuo, Yzu-Wei; Tsai, Chao-Hsuan; Cheng, Yen-Ting; Cheng, Chih-Kai; Lin, Jyun-Ting
2016-10-18
In the chemical reaction that proceeds in a high-temperature proton exchange membrane fuel cell stack (HT-PEMFC stack), the internal local temperature, voltage, pressure, flow and current nonuniformity may cause poor membrane material durability and nonuniform fuel distribution, thus influencing the performance and lifetime of the fuel cell stack. In this paper micro-electro-mechanical systems (MEMS) are utilized to develop a high-temperature electrochemical environment-resistant five-in-one micro-sensor embedded in the cathode channel plate of an HT-PEMFC stack, and materials and process parameters are appropriately selected to protect the micro-sensor against failure or destruction during long-term operation. In-situ measurement of the local temperature, voltage, pressure, flow and current distributions in the HT-PEMFC stack is carried out. This integrated micro-sensor has five functions, and is favorably characterized by small size, good acid resistance and temperature resistance, quick response, real-time measurement, and the goal is being able to be put in any place for measurement without affecting the performance of the battery.
NASA Astrophysics Data System (ADS)
Pohjoranta, Antti; Halinen, Matias; Pennanen, Jari; Kiviaho, Jari
2015-03-01
Generalized predictive control (GPC) is applied to control the maximum temperature in a solid oxide fuel cell (SOFC) stack and the temperature difference over the stack. GPC is a model predictive control method and the models utilized in this work are ARX-type (autoregressive with extra input), multiple input-multiple output, polynomial models that were identified from experimental data obtained from experiments with a complete SOFC system. The proposed control is evaluated by simulation with various input-output combinations, with and without constraints. A comparison with conventional proportional-integral-derivative (PID) control is also made. It is shown that if only the stack maximum temperature is controlled, a standard PID controller can be used to obtain output performance comparable to that obtained with the significantly more complex model predictive controller. However, in order to control the temperature difference over the stack, both the stack minimum and the maximum temperature need to be controlled and this cannot be done with a single PID controller. In such a case the model predictive controller provides a feasible and effective solution.
Vertical melting of a stack of membranes
NASA Astrophysics Data System (ADS)
Borelli, M. E. S.; Kleinert, H.; Schakel, A. M. J.
2001-02-01
A stack of tensionless membranes with nonlinear curvature energy and vertical harmonic interaction is studied. At low temperatures, the system forms a lamellar phase. At a critical temperature, the stack disorders vertically in a melting-like transition.
NASA Astrophysics Data System (ADS)
Amores, Ernesto; Rodríguez, Jesús; Oviedo, José; de Lucas-Consuegra, Antonio
2017-06-01
Alkaline water electrolysis powered by renewable energy sources is one of the most promising strategies for environmentally friendly hydrogen production. However, wind and solar energy sources are highly dependent on weather conditions. As a result, power fluctuations affect the electrolyzer and cause several negative effects. Considering these limiting effects which reduce the water electrolysis efficiency, a novel operation strategy is proposed in this study. It is based on pumping the electrolyte according to the current density supplied by a solar PV module, in order to achieve the suitable fluid dynamics conditions in an electrolysis cell. To this aim, a mathematical model including the influence of electrode-membrane distance, temperature and electrolyte flow rate has been developed and used as optimization tool. The obtained results confirm the convenience of the selected strategy, especially when the electrolyzer is powered by renewable energies.
Stang, Carolin; Harnisch, Falk
2016-01-08
Remarkably, coulombic efficiency (CE, about 50 % at 1 Farad equivalent), and product composition resulting from aqueous Kolbe electrolysis are independent of reactor temperature and initial pH value. Although numerous studies on Kolbe electrolysis are available, the interrelations of different reaction parameters (e.g., acid concentration, pH, and especially electrolytic conductivity) are not addressed. A systematic analysis based on cyclic voltammetry reveals that solely the electrolytic conductivity impacts the current-voltage behavior. When using supporting electrolytes, not only their concentration, but also the type is decisive. We show that higher concentrations of KNO3 result in reduced CE and thus in significant increase in electric energy demand per converted molecule, whereas Na2 SO4 allows improved space-time yields. Pros and cons of adding supporting electrolytes are discussed in a final cost assessment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Conceptual design study of a six-man solid electrolyte system for oxygen reclamation
NASA Technical Reports Server (NTRS)
Morris, J. P.; Wu, C. K.; Elikan, L.; Bifano, N. J.; Holman, R. R.
1972-01-01
A six-man solid electrolyte oxygen regeneration system (SEORS) that will produce 12.5 lbs/day of oxygen has been designed. The SEORS will simultaneously electrolyze both carbon dioxide and water vapor and be suitable for coupling with a carbon dioxide concentration system of either molecular sieve, solid amine or hydrogen depolarized electrochemical type. The total system will occupy approximately 19 cu ft (34.5 in. x .26 in. x 36 in. high) and will weigh approximately 500 pounds. It is estimated that the total electrical power required will be 1783 watts. The system consists of three major components; electrolyzer, hydrogen diffuser, and carbon deposition reactor. There are 108 electrolysis stacks of 12 cells each in the electrolyzer. Only 2/3 of the 108 stacks will be operated at a time; the remainder will be held in reserve. The design calls for 96 palladium membranes for hydrogen removal to give 60 percent redundancy. Four carbon deposition reactors are employed. The iron catalyst tube in each reactor weighs 7.1 lb and 100 percent redundancy is allowed.
Geometry effects on cooling in a standing wave cylindrical thermoacousic resonator
NASA Astrophysics Data System (ADS)
Mohd-Ghazali, Normah; Ghazali, Ahmad Dairobi; Ali, Irwan Shah; Rahman, Muhammad Aminullah A.
2012-06-01
Numerous reports have established the refrigeration applications of thermoacoustic cooling without compressors and refrigerants. Significant cooling effects can be obtained in a thermoacoustic resonator fitted with a heat exchanging stack and operated at resonance frequency. Past studies, however, have hardly referred to the fundamental relationship between resonant frequency and the resonator geometry. This paper reports the thermoacoustic cooling effects at resonance obtained by changing the diameter of the resonator while holding the length constant and vice versa. Experiments were completed at atmospheric pressure with air as the working fluid using a number of pvc tubes having parallel plate stack from Mylar. The temperature difference measured across the stack showed that a volume increase in the working fluid in general increases the temperature gradient for the quarter-and half-wavelength resonators. Doubling the diameter from 30 mm to 60 mm produced the highest temperature difference due to the greater number of stack plates resulting in a higher overall thermoacaoustic cooling. Increasing the resonator length only produced a small increase in temperature gradient since the resonant frequency at operation is only slightly changed. Investigation on the aspect ratio exhibits no influence on the temperature difference across the stack. This study have shown that the resonator length and diameter do affect the temperature difference across the thermoacoustic stack, and further research should be done to consider the contribution of the stack mass on the overall desired thermoacoustic cooling.
Flow Characteristics of a Multiple Nozzle Exhaust Gas Eductor System.
1981-03-01
these exhaust gases are a temperatures significantly above those of conventionally powered ships. A few of the problems caused by these high temperatures ...systems designed for marine gas turbine applications must substantially cool exhaust gases , present an exterior stack surface temperature which will not...stack in. H 02 R - Gas constant for air, 53.34 ft-lbf/Ibm-R s - Entropy, Btu/Ibm-R S - Primary dimension of mixing stack T - Absolute temperature , R
NASA Astrophysics Data System (ADS)
Fang, Qingping; Berger, Cornelius M.; Menzler, Norbert H.; Bram, Martin; Blum, Ludger
2016-12-01
Iron-air rechargeable oxide batteries (ROB) comprising solid oxide cells (SOC) as energy converters and Fe/metal-oxide redox couples were characterized using planar SOC stacks. The charge and discharge of the battery correspond to the operations in the electrolysis and fuel cell modes, respectively, but with a stagnant atmosphere consisting of hydrogen and steam. A novel method was employed to establish the stagnant atmosphere for battery testing during normal SOC operation without complicated modification to the test bench and stack/battery concept. Manipulation of the gas compositions during battery operation was not necessary, but the influence of the leakage current from the testing system had to be considered. Batteries incorporating Fe2O3/8YSZ, Fe2O3/CaO and Fe2O3/ZrO2 storage materials were characterized at 800 °C. A maximum charge capacity of 30.4 Ah per layer (with an 80 cm2 active cell area) with ∼0.5 mol Fe was reached with a current of 12 A. The charge capacity lost 11% after ∼130 ROB cycles due to the increased agglomeration of active materials and formation of a dense oxide layer on the surface. The round trip efficiencies of the tested batteries were ≤84% due to the large internal resistance. With state-of-the-art cells, the round trip efficiency can be further improved.
Experimental study of the electrolysis of silicate melts
NASA Technical Reports Server (NTRS)
Keller, R.; Larimer, K. T.
1991-01-01
To produce oxygen from lunar resources, it may be feasible to melt and electrolyze local silicate ores. This possibility was explored experimentally with synthesized melts of appropriate compositions. Platinum electrodes were employed at a melt temperature of 1425 C. When silicon components of the melt were reduced, the platinum cathode degraded rapidly, which prompted the substitution of a graphite cathode substrate. Discrete particles containing iron or titanium were found in the solidified electrolyte after three hours of electrolysis. Electrolyte conductivities did not decrease substantially, but the escape of gas bubbles, in some cases, appeared to be hindered by high viscosity of the melt.
Development of a non-cryogenic nitrogen/oxygen supply system. [for spacecraft environments
NASA Technical Reports Server (NTRS)
1977-01-01
Modular components were refined or replaced to improve the performance of the electrolysis module in a system which generates both oxygen and hydrogen from hydrazine hydrate. Significant mechanical and electrical performance improvements were achieved in the cathode. Improvements were also made in the phase separation area but at considerable cost in time and money and to the detriment of other investigative areas. Only the pump/bubble separator failed in a manner necessitating redesign. Its failure was, however, due to its being operated above the temperature range for which it was designed. The basic electrolysis cell design was not changed.
Regenerative Performance of the NASA Symmetrical Solid Oxide Fuel Cell Design
NASA Technical Reports Server (NTRS)
Cable, Thomas L.; Setlock, John A.; Farmer, Serene C.; Eckel, Andy J.
2009-01-01
The NASA Glenn Research Center is developing both a novel cell design (BSC) and a novel ceramic fabrication technique to produce fuel cells predicted to exceed a specific power density of 1.0 kW/kg. The NASA Glenn cell design has taken a completely different approach among planar designs by removing the metal interconnect and returning to the use of a thin, doped LaCrO3 interconnect. The cell is structurally symmetrical. Both electrodes support the thin electrolyte and contain micro-channels for gas flow-- a geometry referred to as a bi-electrode supported cell or BSC. The cell characteristics have been demonstrated under both SOFC and SOE conditions. Electrolysis tests verify that this cell design operates at very high electrochemical voltage efficiencies (EVE) and high H2O conversion percentages, even at the low flow rates predicted for closed loop systems encountered in unmanned aerial vehicle (UAV) applications. For UAVs the volume, weight and the efficiency are critical as they determine the size of the water tank, the solar panel size, and other system requirements. For UAVs, regenerative solid oxide fuel cell stacks (RSOFC) use solar panels during daylight to generate power for electrolysis and then operate in fuel cell mode during the night to power the UAV and electronics. Recent studies, performed by NASA for a more electric commercial aircraft, evaluated SOFCs for auxiliary power units (APUs). System studies were also conducted for regenerative RSOFC systems. One common requirement for aerospace SOFCs and RSOFCs, determined independently in each application study, was the need for high specific power density and volume density, on the order of 1.0 kW/kg and greater than 1.0 kW/L. Until recently the best reported performance for SOFCs was 0.2 kW/kg or less for stacks. NASA Glenn is working to prototype the light weight, low volume BSC design for such high specific power aerospace applications.
NASA Astrophysics Data System (ADS)
Rechtsman, Mikael; de Gironcoli, Stefano; Ceder, Gerbrand; Marzari, Nicola
2003-03-01
The (111) surfaces of FCC metals can develop anomalous thermal expansion properties at high temperatures (e.g. for the case of Ag(111)), and display floating stacking faults during homoepitaxial growth in the presence of surfactants. Inspired by the results of high-temperature ensemble-DFT molecular dynamics simulations, we investigate here the relative stability of FCC and HCP stacking in simple and transition metals (Al, Ag, Zn), searching for a structural phase transition taking place at the surface layer in the high-temperature regime. We use a combination of total-energy structural relaxations and linear-response perturbation theory to determine the surface phonon dispersions, and then the relative free energies in the quasi-harmonic approximation. Our results in Al show that the vibrational entropy strongly favors HCP stacking, substantially offsetting the energetic cost of the stacking fault that becomes favored close to the melting temperature. Besides its fundamental interest, HCP phonon softening is relevant in determining the relative stability of small islands during homoeptiaxial growth.
High power multiple wavelength diode laser stack for DPSSL application without temperature control
NASA Astrophysics Data System (ADS)
Hou, Dong; Yin, Xia; Wang, Jingwei; Chen, Shi; Zhan, Yun; Li, Xiaoning; Fan, Yingmin; Liu, Xingsheng
2018-02-01
High power diode laser stack is widely used in pumping solid-state laser for years. Normally an integrated temperature control module is required for stabilizing the output power of solid-state laser, as the output power of the solid-state laser highly depends on the emission wavelength and the wavelength shift of diode lasers according to the temperature changes. However the temperature control module is inconvenient for this application, due to its large dimension, high electric power consumption and extra adding a complicated controlling system. Furthermore, it takes dozens of seconds to stabilize the output power when the laser system is turned on. In this work, a compact hard soldered high power conduction cooled diode laser stack with multiple wavelengths is developed for stabilizing the output power of solid-state laser in a certain temperature range. The stack consists of 5 laser bars with the pitch of 0.43mm. The peak output power of each bar in the diode laser stack reaches as much as 557W and the combined lasing wavelength spectrum profile spans 15nm. The solidstate laser, structured with multiple wavelength diode laser stacks, allows the ambient temperature change of 65°C without suddenly degrading the optical performance.
High-temperature electrolysis of synthetic seawater using solid oxide electrolyzer cells
NASA Astrophysics Data System (ADS)
Lim, Chee Kuan; Liu, Qinglin; Zhou, Juan; Sun, Qiang; Chan, Siew Hwa
2017-02-01
A Ni-YSZ/YSZ/LSCF-GDC solid oxide electrolyzer cell (SOEC) is used to investigate the effects of seawater electrolysis for hydrogen production through electrolyzing steam produced from simulated seawater bath. Steam electrolysis using an SOEC with its fuel electrode contaminated by sea salt is also investigated. Steam produced from seawater is found to be free of contaminants, which are present in the seawater. Similar electrochemical performance is observed from the polarization curves and impedance spectra when using steam produced from pure water and seawater. Their short-term degradation rates are similar, which are registered at 15% 1000 h-1 for both cases. For the case of direct sea salt contamination in an SOEC's fuel electrode, both the uncontaminated and contaminated cells exhibit rather similar performance as observed from the polarization curves and impedance spectra. The difference in ASR values from the polarization curves and impedance spectra between the uncontaminated and contaminated cell are all within a 10% range. Rather similar short-term degradation rates of 15% 1000 h-1 and 16% 1000 h-1 are recorded for the uncontaminated and contaminated cells, respectively. Post-mortem analysis shows that the sea salt impregnated into the cell has been vaporized at a typical SOEC operating temperature of 800 °C over the period of operation.
The recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor.
Ren, Xiulian; Wei, Qifeng; Hu, Surong; Wei, Sijie
2010-09-15
This paper reports the optimization of the process parameters for recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor. The experiments were carried out in an ammoniacal ammonium chloride system. The influence of composition of electrolytes, pH, stirring rate, current density and temperature, on cathodic current efficiency, specific power consumption and anodic dissolution of Zn were investigated. The results indicate that the cathode current efficiency increases and the hydrogen evolution decreased with increasing the cathode current density. The partial current for electrodeposition of Zn has liner relationship with omega(1/2) (omega: rotation rate). The highest current efficiency for dissolving zinc was obtained when NH(4)Cl concentration was 53.46 g L(-1) and the anodic dissolution of zinc was determined by mass transfer rate at stirring rate 0-300 r min(-1). Increase in temperature benefits to improve CE and dissolution of Zn, and reduce cell voltage. Initial pH of electrolytes plays an important role in the deposition and anodic dissolution of Zn. The results of single factor experiment show that about 50% energy consumption was saved for electrodeposition of Zn in the anion-exchange membrane electrolysis reactor. Copyright 2010 Elsevier B.V. All rights reserved.
Lunar Metal Oxide Electrolysis with Oxygen and Photovoltaic Array Production Applications
NASA Technical Reports Server (NTRS)
Curreri, P. A.; Ethridge, E.; Hudson, S.; Sen, S.
2006-01-01
This paper presents the results of a Marshall Space Flight Center funded effort to conduct an experimental demonstration of the processing of simulated lunar resources by the molten oxide electrolysis (MOE) process to produce oxygen and metal from lunar resources to support human exploration of space. Oxygen extracted from lunar materials can be used for life support and propellant, and silicon and metallic elements produced can be used for in situ fabrication of thin-film solar cells for power production. The Moon is rich in mineral resources, but it is almost devoid of chemical reducing agents, therefore, molten oxide electrolysis, MOE, is chosen for extraction, since the electron is the most practical reducing agent. MOE was also chosen for following reasons. First, electrolytic processing offers uncommon versatility in its insensitivity to feedstock composition. Secondly, oxide melts boast the twin key attributes of highest solubilizing capacity for regolith and lowest volatility of any candidate electrolytes. The former is critical in ensuring high productivity since cell current is limited by reactant solubility, while the latter simplifies cell design by obviating the need for a gas-tight reactor to contain evaporation losses as would be the case with a gas or liquid phase fluoride reagent operating at such high temperatures. In the experiments reported here, melts containing iron oxide were electrolyzed in a low temperature supporting oxide electrolyte (developed by D. Sadoway, MIT). The production of oxygen and reduced iron were observed. Electrolysis was also performed on the supporting electrolyte with JSC-1 Lunar Simulant. The cell current for the supporting electrolyte alone is negligible while the current for the electrolyte with JSC-1 shows significant current and a peak at about -0.6 V indicating reductive reaction in the simulant.
Composite anode La0.8Sr0.2MnO3 impregnated with cobalt oxide for steam electrolysis
NASA Astrophysics Data System (ADS)
Li, Shisong; Cheng, Jigui; Xie, Kui; Li, Peipei; Wu, Yucheng
2013-12-01
Oxygen-ion conducting solid oxide electrolyzer (SOE) has attracted a great deal of interest because it converts electrical energy into chemical energy directly. The oxygen evolution reaction (OER) is occurred at the anode of solid oxide electrolyzer as the O2- being oxidized and form O2 gas, which is considered as one of the major cause of overpotentials in steam electrolyzers. This paper investigates the electrolysis of steam based on cobalt oxide impregnated La0.8Sr0.2MnO3 (LSM) composite anode in an oxide-ion-conducting solid oxide electrolyzer. The conductivity of LSM is studied versus temperature and oxygen partial pressure and correlated to the electrochemical properties of the composite electrodes in symmetric cells at 800 °C. Different contents of Co3O4 (wt.1%, 2%, 4%, 6%, 8%, 10%) were impregnated into LSM electrode and it was found that the polarization resistance (Rp) of symmetric cells gradually improved from 1.16 Ω•cm2 (LSM) to 0.24 Ω•cm2 (wt.10%Co3O4-LSM). Steam electrolysis based on LSM and wt.6%Co3O4-LSM anode electrolyzers are tested at 800°C and the AC impedance spectroscopy results indicated that the Rp of high frequency process significantly decreased from1.1 Ω•cm2 (LSM) to 0.5 Ω•cm2 (wt.6%Co3O4-LSM) under 1.8V electrolysis voltage and the Rp of low frequency process decreased from 14.9 Ω•cm2 to 5.7 Ω•cm2. Electrochemical catalyst Co3O4 can efficiently improve the electrode and enhance the performance of high temperature solid oxide electrolyzer.
Online estimation of internal stack temperatures in solid oxide fuel cell power generating units
NASA Astrophysics Data System (ADS)
Dolenc, B.; Vrečko, D.; Juričić, Ɖ.; Pohjoranta, A.; Pianese, C.
2016-12-01
Thermal stress is one of the main factors affecting the degradation rate of solid oxide fuel cell (SOFC) stacks. In order to mitigate the possibility of fatal thermal stress, stack temperatures and the corresponding thermal gradients need to be continuously controlled during operation. Due to the fact that in future commercial applications the use of temperature sensors embedded within the stack is impractical, the use of estimators appears to be a viable option. In this paper we present an efficient and consistent approach to data-driven design of the estimator for maximum and minimum stack temperatures intended (i) to be of high precision, (ii) to be simple to implement on conventional platforms like programmable logic controllers, and (iii) to maintain reliability in spite of degradation processes. By careful application of subspace identification, supported by physical arguments, we derive a simple estimator structure capable of producing estimates with 3% error irrespective of the evolving stack degradation. The degradation drift is handled without any explicit modelling. The approach is experimentally validated on a 10 kW SOFC system.
NASA Astrophysics Data System (ADS)
Robaiah, M.; Rusop, M.; Abdullah, S.; Khusaimi, Z.; Azhan, H.; Fadzlinatul, M. Y.; Salifairus, M. J.; Asli, N. A.
2018-05-01
Palm oil has been used as the carbon source to synthesize carbon nanotubes (CNTs) on silicon substrates using the thermal chemical vapor deposition (CVD) method. Meanwhile, silicon has been applied using two techniques, which are stacked technique and non-stacked technique. The CNTs were grown at the constant time of 30 minutes with various synthesis temperatures of 750 °C, 850 °C and 950 °C. The CNTs were characterized using micro-Raman spectroscopy and field emission scanning electron microscopy (FESEM). It was found that the density, growth rate, diameter and length of the CNTs produced were affected by the synthesis temperature. Moreover, the structure slightly changes were observed between CNTs obtained in SS and NSS. The synthesize temperature of 750 °C was considered as the suitable temperature for the production of CNTs due to low ID/IG ratio, which for stacked is 0.89 and non-stacked are 0.90. The possible explanation for the different morphology of the produced CNTs was also discussed.
Zhang, Jun; Xie, Kui; Wei, Haoshan; Qin, Qingqing; Qi, Wentao; Yang, Liming; Ruan, Cong; Wu, Yucheng
2014-01-01
In this work, redox-active Mn or Cr is introduced to the B site of redox stable perovskite Sr0.95Ti0.9Nb0.1O3.00 to create oxygen vacancies in situ after reduction for high-temperature CO2 electrolysis. Combined analysis using X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric analysis confirms the change of the chemical formula from oxidized Sr0.95Ti0.9Nb0.1O3.00 to reduced Sr0.95Ti0.9Nb0.1O2.90 for the bare sample. By contrast, a significant concentration of oxygen vacancy is additionally formed in situ for Mn- or Cr-doped samples by reducing the oxidized Sr0.95Ti0.8Nb0.1M0.1O3.00 (M = Mn, Cr) to Sr0.95Ti0.8Nb0.1M0.1O2.85. The ionic conductivities of the Mn- and Cr-doped titanate improve by approximately 2 times higher than bare titanate in an oxidizing atmosphere and 3–6 times higher in a reducing atmosphere at intermediate temperatures. A remarkable chemical accommodation of CO2 molecules is achieved on the surface of the reduced and doped titanate, and the chemical desorption temperature reaches a common carbonate decomposition temperature. The electrical properties of the cathode materials are investigated and correlated with the electrochemical performance of the composite electrodes. Direct CO2 electrolysis at composite cathodes is investigated in solid-oxide electrolyzers. The electrode polarizations and current efficiencies are observed to be significantly improved with the Mn- or Cr-doped titanate cathodes. PMID:25403738
Stacking-fault nucleation on Ir(111).
Busse, Carsten; Polop, Celia; Müller, Michael; Albe, Karsten; Linke, Udo; Michely, Thomas
2003-08-01
Variable temperature scanning tunneling microscopy experiments reveal that in Ir(111) homoepitaxy islands nucleate and grow both in the regular fcc stacking and in the faulted hcp stacking. Analysis of this effect in dependence on deposition temperature leads to an atomistic model of stacking-fault formation: The large, metastable stacking-fault islands grow by sufficiently fast addition of adatoms to small mobile adatom clusters which occupy in thermal equilibrium the hcp sites with a significant probability. Using parameters derived independently by field ion microscopy, the model accurately describes the results for Ir(111) and is expected to be valid also for other surfaces.
NASA Technical Reports Server (NTRS)
Khetpal, Deepak; Ducret, Andrew C.; Sadoway, Donald R.
2003-01-01
For the exploration of other bodies in the solar system, electrochemical processing is arguably the most versatile technology for conversion of local resources into usable commodities: by electrolysis one can, in principle, produce (1) breathable oxygen, (2) silicon for the fabrication of solar cells, (3) various reactive metals for use as electrodes in advanced storage batteries, and (4) structural metals such as steel and aluminum. Even so, to date there has been no sustained effort to develop such processes, in part due to the inadequacy of the database. The objective here is to identify chemistries capable of sustaining molten oxide electrolysis in the cited applications and to examine the behavior of laboratory-scale cells designed to generate oxygen and to produce metal. The basic research includes the study of the underlying high-temperature physical chemistry of oxide melts representative of lunar regolith and of Martian soil. To move beyond empirical approaches to process development, the thermodynamic and transport properties of oxide melts are being studied to help set the limits of composition and temperature for the processing trials conducted in laboratory-scale electrolysis cells. The goal of this investigation is to deliver a working prototype cell that can use lunar regolith and Martian soil to produce breathable oxygen along with metal by-product. Additionally, the process can be generalized to permit adaptation to accommodate different feedstock chemistries, such as those that will be encountered on other bodies in the solar system. The expected results of this research include: (1) the identification of appropriate electrolyte chemistries; (2) the selection of candidate anode and cathode materials compatible with electrolytes named above; and (3) performance data from a laboratory-scale cell producing oxygen and metal. On the strength of these results it should be possible to assess the technical viability of molten oxide electrolysis for in situ resource utilization on the Moon and Mars. In parallel, there may be commercial applications here on earth, such as new green technologies for metals extraction and for treatment of hazardous waste, e.g., fixing heavy metals.
The electrolysis time on electrosynthesis of hydroxyapatite with bipolar membrane
NASA Astrophysics Data System (ADS)
Nur, Adrian; Jumari, Arif; Budiman, Anatta Wahyu; Puspitaningtyas, Stella Febianti; Cahyaningrum, Suci; Nazriati, Nazriati; Fajaroh, Fauziatul
2018-02-01
The electrochemical method with bipolar membrane has been successfully used for the synthesis of hydroxyapatite. In this work, we have developed 2 chambers electrolysis system separated by a bipolar membrane. The membrane was used to separate cations (H+ ions produced by the oxidation of water at the anode) and anions (OH- ions produced by the reduction of water at the cathode). With this system, we have designed that OH- ions still stay in the anions chamber because OH- ions was very substantial in the hydroxyapatite particles formation. The aim of this paper was to compare the electrolysis time on electrosynthesis of hydroxyapatite with and without the bipolar membrane. The electrosynthesis was performed at 500 mA/cm2 for 0.5 to 2 hours at room temperature and under ultrasonic cleaner to void agglomeration with and without the bipolar membrane. The electrosynthesis of hydroxyapatite with the bipolar membrane more effective than without the bipolar membrane. The hydroxyapatite has been appeared at 0.5 h of the electrolysis time with the bipolar membrane (at the cathode chamber) while it hasn't been seen without the bipolar membrane. The bipolar membrane prevents OH- ions migrate to the cation chamber. The formation of HA becomes more effective because OH- ions just formed HA particle.
Phases of a stack of membranes in a large number of dimensions of configuration space
NASA Astrophysics Data System (ADS)
Borelli, M. E.; Kleinert, H.
2001-05-01
The phase diagram of a stack of tensionless membranes with nonlinear curvature energy and vertical harmonic interaction is calculated exactly in a large number of dimensions of configuration space. At low temperatures, the system forms a lamellar phase with spontaneously broken translational symmetry in the vertical direction. At a critical temperature, the stack disorders vertically in a meltinglike transition. The critical temperature is determined as a function of the interlayer separation l.
Segmental and local dynamics of stacked thin films of poly(methyl methacrylate)
NASA Astrophysics Data System (ADS)
Hayashi, Tatsuhiko; Fukao, Koji
2014-02-01
The glass transition temperature and the dynamics of the α and β processes have been investigated using differential scanning calorimetry and dielectric relaxation spectroscopy during successive annealing processes above the glass transition temperature for stacked thin films of poly(methyl methacrylate) (PMMA) of various thicknesses. The glass transition temperature and the dynamics of the α process (segmental motion) of as-stacked PMMA thin films exhibit thin-film-like behavior, insofar as the glass transition temperature is depressed and the dynamics of the α process are faster than those of the bulk system. Annealing at high temperature causes the glass transition temperature to increase from the reduced value and causes the dynamics of the α process to become slower approaching those of the bulk. Contrary to the segmental motion, the relaxation time of the β process (local motion) of the stacked PMMA thin films is almost equal to that of the bulk PMMA and is unaffected by the annealing process. However, the relaxation strengths of both the α process and β process show a strong correlation between each other. The sum of the relaxation strengths remains almost unchanged, while the individual relaxation strengths change during the annealing process. The fragility index of the stacked PMMA thin films increases with annealing, which suggests that the glassy state of the stacked thin films changes from strong to fragile.
Method and device for electroextraction of heavy metals from technological solutions and wastewater
Khalemsky, Aron Mikhailov; Payusov, Sergei Abramovic; Kelner, Leonid; Jo, Jae
2005-05-03
The basic principles of the method for heavy metals electroextraction from technological solutions and wastewater includes pretreating to remove Chromium-6 and high concentrations of heavy metals and periodically treating in a six-electrode bipolar cylindrical electroreactor made of non-conducting material to achieve lower accepted levels of impurities. Six cylindrical steel electrodes form two triode stacks and are fed with three-phase alternating current of commercial frequency (50-60 Hz), which can be pulsed. Each phase of the three-phase current is connected to three electrodes of one triode stack or in parallel to two triode stacks. The parallel connection of three-phase current to two triode stacks is performed so that the same phase of the three phase current is connected in parallel with each two opposite electrodes of six electrodes located along the periphery, or with two adjacent electrodes. A bipolar stationary aluminum electrode is situated in the inter-electrode space. In one of the embodiments, the bipolar electrode is made of a perforated heat-resistant plastic container filled with secondary aluminum and duralumin scrap. In another embodiment, the bipolar electrode of aluminum or duralumin scrap may be made without a perforated container and is placed in the inter-electrode space as a bulk scrap. In this case, to prevent shorts, each of six steel electrodes is placed in isolated perforated plastic shell with holes of 5 mm in diameter. Non-ferrous metals are extracted in a form of ferrite-chromites, and aluminates as well as hydroxyl salts deposited in the inter-electrode space without electrolysis deposits on electrodes. Deposits are separated from solution by known methods of filtration.
Advancements in water vapor electrolysis technology. [for Space Station ECLSS
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Heppner, Dennis B.; Sudar, Martin
1988-01-01
The paper describes a technology development program whose goal is to develop water vapor electrolysis (WVE) hardware that can be used selectively as localized topping capability in areas of high metabolic activity without oversizing the central air revitalization system on long-duration manned space missions. The WVE will be used primarily to generate O2 for the crew cabin but also to provide partial humidity control by removing water vapor from the cabin atmosphere. The electrochemically based WVE interfaces with cabin air which is controlled in the following ranges: dry bulb temperature of 292 to 300 K; dew point temperature of 278 to 289 K; relative humidity of 25 to 75 percent; and pressure of 101 + or - 1.4 kPa. Design requirements, construction details, and results for both single-cell and multicell module testing are presented, and the preliminary sizing of a multiperson subsystem is discussed.
Ye, Lingting; Zhang, Minyi; Huang, Ping; Guo, Guocong; Hong, Maochun; Li, Chunsen; Irvine, John T. S.; Xie, Kui
2017-01-01
Sustainable future energy scenarios require significant efficiency improvements in both electricity generation and storage. High-temperature solid oxide cells, and in particular carbon dioxide electrolysers, afford chemical storage of available electricity that can both stabilize and extend the utilization of renewables. Here we present a double doping strategy to facilitate CO2 reduction at perovskite titanate cathode surfaces, promoting adsorption/activation by making use of redox active dopants such as Mn linked to oxygen vacancies and dopants such as Ni that afford metal nanoparticle exsolution. Combined experimental characterization and first-principle calculations reveal that the adsorbed and activated CO2 adopts an intermediate chemical state between a carbon dioxide molecule and a carbonate ion. The dual doping strategy provides optimal performance with no degradation being observed after 100 h of high-temperature operation and 10 redox cycles, suggesting a reliable cathode material for CO2 electrolysis. PMID:28300066
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Xiong, Rui; Yi, Fan; Yin, Di; Ke, Manzhu; Li, Changzhen; Liu, Zhengyou; Shi, Jing
2005-05-01
High quality and large-sized Rb 0.3MoO 3 single crystals were synthesized by molten salt electrolysis method. X-ray diffraction (XRD) patterns and rocking curves, as well as the white beam Laue diffraction of X-ray images show the crystals grown by this method have high quality. The lattice constants evaluated from XRD patterns are a0=1.87 nm, b0=0.75 nm, c0=1.00 nm, β=118.83∘. The in situ selected area electron diffraction (SAED) patterns along the [101¯], [11¯1¯] and [103¯] zone axes at room temperature indicate that the Rb 0.3MoO 3 crystal possess perfect C-centered symmetry. Temperature dependence of the resistivity shows this compound undergoes a metal to semiconductor transition at 183 K.
NASA Astrophysics Data System (ADS)
Saksono, Nelson; Putri, Dita Amelia; Suminar, Dian Ratna
2017-03-01
Contact Glow Discharge Electrolysis (CGDE) method is one of Plasma Electrolysis technology which has been approved to degrade organic waste water because it is very productive in producing hydroxyl radical. This study aims to degrade Remazol Red by CGDE method and evaluate important parameters that have influent in degradation process of Remazol Red in Batik dye waste water in batch system. The kind of electrolyte (acid and base) and the addition of metal ion such as Fe2+ have affected Remazol Red degradation percentage. Ultraviolet-Visible (UV-Vis) absorption spectra were used to monitor the degradation process. The result of study showed that percentage degradation was 99.97% which obtained by using NaCl 0.02 M with addition Fe2+ 20 ppm, applied voltage 700 volt, anode depth 0.5 cm, initial concentration of Remazol Red 250 ppm and the temperature of solutions was maintained 50-60 ˚C.
Power-to-Syngas: An Enabling Technology for the Transition of the Energy System?
Foit, Severin R; Vinke, Izaak C; de Haart, Lambertus G J; Eichel, Rüdiger-A
2017-05-08
Power-to-X concepts promise a reduction of greenhouse gas emissions simultaneously guaranteeing a safe energy supply even at high share of renewable power generation, thus becoming a cornerstone of a sustainable energy system. Power-to-syngas, that is, the electrochemical conversion of steam and carbon dioxide with the use of renewably generated electricity to syngas for the production of synfuels and high-value chemicals, offers an efficient technology to couple different energy-intense sectors, such as "traffic and transportation" and "chemical industry". Syngas produced by co-electrolysis can thus be regarded as a key-enabling step for a transition of the energy system, which offers additionally features of CO 2 -valorization and closed carbon cycles. Here, we discuss advantages and current limitations of low- and high-temperature co-electrolysis. Advances in both fundamental understanding of the basic reaction schemes and stable high-performance materials are essential to further promote co-electrolysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A novel approach to model the transient behavior of solid-oxide fuel cell stacks
NASA Astrophysics Data System (ADS)
Menon, Vikram; Janardhanan, Vinod M.; Tischer, Steffen; Deutschmann, Olaf
2012-09-01
This paper presents a novel approach to model the transient behavior of solid-oxide fuel cell (SOFC) stacks in two and three dimensions. A hierarchical model is developed by decoupling the temperature of the solid phase from the fluid phase. The solution of the temperature field is considered as an elliptic problem, while each channel within the stack is modeled as a marching problem. This paper presents the numerical model and cluster algorithm for coupling between the solid phase and fluid phase. For demonstration purposes, results are presented for a stack operated on pre-reformed hydrocarbon fuel. Transient response to load changes is studied by introducing step changes in cell potential and current. Furthermore, the effect of boundary conditions and stack materials on response time and internal temperature distribution is investigated.
Temperature dependent photoluminescence and micromapping of multiple stacks InAs quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Ming, E-mail: ming.xu@lgep.supelec.fr; Jaffré, Alexandre, E-mail: ming.xu@lgep.supelec.fr; Alvarez, José, E-mail: ming.xu@lgep.supelec.fr
2015-02-27
We utilized temperature dependent photoluminescence (PL) techniques to investigate 1, 3 and 5 stack InGaAs quantum dots (QDs) grown on cross-hatch patterns. PL mapping can well reproduce the QDs distribution as AFM and position dependency of QD growth. It is possible to observe crystallographic dependent PL. The temperature dependent spectra exhibit the QDs energy distribution which reflects the size and shape. The inter-dot carrier coupling effect is observed and translated as a red shift of 120mV on the [1–10] direction peak is observed at 30K on 1 stack with regards to 3 stacks samples, which is assigned to lateral coupling.
Thermal stress analysis of a planar SOFC stack
NASA Astrophysics Data System (ADS)
Lin, Chih-Kuang; Chen, Tsung-Ting; Chyou, Yau-Pin; Chiang, Lieh-Kwang
The aim of this study is, by using finite element analysis (FEA), to characterize the thermal stress distribution in a planar solid oxide fuel cell (SOFC) stack during various stages. The temperature profiles generated by an integrated thermo-electrochemical model were applied to calculate the thermal stress distributions in a multiple-cell SOFC stack by using a three-dimensional (3D) FEA model. The constructed 3D FEA model consists of the complete components used in a practical SOFC stack, including positive electrode-electrolyte-negative electrode (PEN) assembly, interconnect, nickel mesh, and gas-tight glass-ceramic seals. Incorporation of the glass-ceramic sealant, which was never considered in previous studies, into the 3D FEA model would produce more realistic results in thermal stress analysis and enhance the reliability of predicting potential failure locations in an SOFC stack. The effects of stack support condition, viscous behavior of the glass-ceramic sealant, temperature gradient, and thermal expansion mismatch between components were characterized. Modeling results indicated that a change in the support condition at the bottom frame of the SOFC stack would not cause significant changes in thermal stress distribution. Thermal stress distribution did not differ significantly in each unit cell of the multiple-cell stack due to a comparable in-plane temperature profile. By considering the viscous characteristics of the glass-ceramic sealant at temperatures above the glass-transition temperature, relaxation of thermal stresses in the PEN was predicted. The thermal expansion behavior of the metallic interconnect/frame had a greater influence on the thermal stress distribution in the PEN than did that of the glass-ceramic sealant due to the domination of interconnect/frame in the volume of a planar SOFC assembly.
NASA Technical Reports Server (NTRS)
Curreri, P. A.; Ethridge, E.; Hudson, S.; Sen, S.
2006-01-01
This paper presents the results of a Marshall Space Flight Center funded effort to conduct an experimental demonstration of the processing of simulated lunar resources by the molten oxide electrolysis (MOE) process to produce oxygen and metal from lunar resources to support human exploration of space. Oxygen extracted from lunar materials can be used for life support and propellant, and silicon and metallic elements produced can be used for in situ fabrication of thin-film solar cells for power production. The Moon is rich in mineral resources, but it is almost devoid of chemical reducing agents, therefore, molten oxide electrolysis, MOE, is chosen for extraction, since the electron is the most practical reducing agent. MOE was also chosen for following reasons. First, electrolytic processing offers uncommon versatility in its insensitivity to feedstock composition. Secondly, oxide melts boast the twin key attributes of highest solubilizing capacity for regolith and lowest volatility of any candidate electrolytes. The former is critical in ensuring high productivity since cell current is limited by reactant solubility, while the latter simplifies cell design by obviating the need for a gas-tight reactor to contain evaporation losses as would be the case with a gas or liquid phase fluoride reagent operating at such high temperatures. In the experiments reported here, melts containing iron oxide were electrolyzed in a low temperature supporting oxide electrolyte (developed by D. Sadoway, MIT).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwin A. Harvego; James E. O'Brien; Michael G. McKellar
2012-11-01
Results of a system evaluation and lifecycle cost analysis are presented for a commercial-scale high-temperature electrolysis (HTE) central hydrogen production plant. The plant design relies on grid electricity to power the electrolysis process and system components, and industrial natural gas to provide process heat. The HYSYS process analysis software was used to evaluate the reference central plant design capable of producing 50,000 kg/day of hydrogen. The HYSYS software performs mass and energy balances across all components to allow optimization of the design using a detailed process flow sheet and realistic operating conditions specified by the analyst. The lifecycle cost analysismore » was performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes Microsoft Excel spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. The results of the lifecycle analyses indicate that for a 10% internal rate of return, a large central commercial-scale hydrogen production plant can produce 50,000 kg/day of hydrogen at an average cost of $2.68/kg. When the cost of carbon sequestration is taken into account, the average cost of hydrogen production increases by $0.40/kg to $3.08/kg.« less
Characterization of Time-Dependent Behavior of Ramming Paste Used in an Aluminum Electrolysis Cell
NASA Astrophysics Data System (ADS)
Orangi, Sakineh; Picard, Donald; Alamdari, Houshang; Ziegler, Donald; Fafard, Mario
2015-12-01
A new methodology was proposed for the characterization of time-dependent behavior of materials in order to develop a constitutive model. The material used for the characterization was ramming paste, a porous material used in an aluminum electrolysis cell, which is baked in place under varying loads induced by the thermal expansion of other components of the cell. In order to develop a constitutive model representing the paste mechanical behavior, it was necessary to get some insight into its behavior using samples which had been baked at different temperatures ranging from 200 to 1000 °C. Creep stages, effect of testing temperature on the creep, creep-recovery, as well as nonlinear creep were observed for designing a constitutive law. Uniaxial creep-recovery tests were carried out at two temperatures on the baked paste: ambient and higher. Results showed that the shape of creep curves was similar to a typical creep; recovery happened and the creep was shown to be nonlinear. Those experimental observations and the identification of nonlinear parameters of developed constitutive model demonstrated that the baked paste experiences nonlinear viscoelastic-viscoplastic behavior at different temperatures.
Water Electrolysis Propulsion System Testing
1974-11-01
3 98 11 Design Characteristics, Flightweight 0. 1 Pound Thrust 112 Engine 12 Steady State Temperature With 0. 1 Lbf. Molybdenum 136 Chamber 13 Run...the cell. This resulted in a local- ized high membrane temperature and softening of the material. The[I observed cratering or indentations at the...data also indicates that the high voltage in Cell No. 1 can- not be attributed entirely to the amubient temperature , because tile voltage is higher than
Oxygen Production from Lunar Regolith using Ionic Liquids
NASA Technical Reports Server (NTRS)
Paley, Mark Steven; Karr, Laurel J.; Curreri, Peter
2009-01-01
The objective of this work and future follow-on work is to develop a safe, efficient, and recyclable method for oxygen and/or metals extraction from lunar regolith, in support of establishing a manned lunar outpost. The approach is to solubilize the oxides that comprise lunar regolith in media consisting of ionic liquids (ILs) and/or their mixtures at temperatures at or below 300 C. Once in solution, electrolysis can either be performed in-situ to generate oxygen at the anode and hydrogen and/or metals (silicon, iron, aluminum, titanium, etc.) at the cathode. Alternatively, the water that is generated during the solubilization process can be distilled out and condensed into a separate IL and then electrolysized to produce hydrogen and oxygen. In the case of lunar regolith, this method could theoretically produce 44g oxygen per 100g of regolith. The oxygen can be used for human life support and/or as an oxidizer for rocket fuels, and the metals can be used as raw materials for construction and/or device fabrication. Moreover, the hydrogen produced can be used to re-generate the acidic medium, which can then be used to process additional regolith, thereby making the materials recyclable and limiting upmass requirements. An important advantage of IL acid systems is that they are much "greener" and safer than conventional materials used for regolith processing such as sulfuric or hydrochloric acids. They have very low vapor pressures, which means that they contain virtually no toxic and/or flammable volatile content, they are relatively non-corrosive, and they can exhibit good stability in harsh environments (extreme temperatures, hard vacuum, etc.). Furthermore, regolith processing can be achieved at lower temperatures than other processes such as molten oxide electrolysis or hydrogen reduction, thereby reducing initial power requirements. Six ILs have been synthesized and tested for their capability to dissolve lunar simulant, and for electrochemical and thermal stability. The results showed that ILs can be very efficient electrolytes; in particular IL/phosphoric-acid mixtures appear extremely promising for solubilizing lunar simulant. Results from preliminary experiments for distillation of water produced from the oxygen within the metal oxides of the simulant and the hydrogen from the acid indicates that over 75% of the oxygen from the simulant can be harvested as water at a temperature of 150 C. A method for collection of oxygen from electrolysis of the water derived from solubilizing simulant was developed by using a liquid nitrogen trap to liquefy and collect the oxygen. Although precise quantification of the liquid oxygen trapped is difficult to obtain, the amount of hydrogen and oxygen collected from electrolysis of water in this system was greater than 98%. This set-up also included a portable mass spectrometer for the identification of gases released from electrolysis cells. Regeneration of ILs through re-protonation was also demonstrated. Four sequential re-generations of an IL following solubilization of simulant showed no significant differences in amounts of simulant dissolved. Follow-on work for this project should include more studies of IL/phosphoric acid systems. Also, much more work is necessary for defining methods for electrolysis and purification of metals from regolith solubilized in ILs, and for developing a system to use the produced hydrogen to regenerate the spent IL. Finally, design and development of flight breadboard and prototype hardware is required.
Hatzell, Marta C; Ivanov, Ivan; Cusick, Roland D; Zhu, Xiuping; Logan, Bruce E
2014-01-28
Currently, there is an enormous amount of energy available from salinity gradients, which could be used for clean hydrogen production. Through the use of a favorable oxygen reduction reaction (ORR) cathode, the projected electrical energy generated by a single pass ammonium bicarbonate reverse electrodialysis (RED) system approached 78 W h m(-3). However, if RED is operated with the less favorable (higher overpotential) hydrogen evolution electrode and hydrogen gas is harvested, the energy recovered increases by as much ~1.5× to 118 W h m(-3). Indirect hydrogen production through coupling an RED stack with an external electrolysis system was only projected to achieve 35 W h m(-3) or ~1/3 of that produced through direct hydrogen generation.
Difluoro-and Trifluoromethylation of Electron-Deficient Alkenes in an Electrochemical Microreactor.
Arai, Kenta; Watts, Kevin; Wirth, Thomas
2014-02-01
Electrochemical microreactors, which have electrodes integrated into the flow path, can afford rapid and efficient electrochemical reactions without redox reagents due to the intrinsic properties of short diffusion distances. Taking advantage of electrochemical microreactors, Kolbe electrolysis of di-and trifluoroacetic acid in the presence of various electron-deficient alkenes was performed under constant current at continuous flow at room temperature. As a result, di-and trifluoromethylated compounds were effectively produced in either equal or higher yields than identical reactions under batch conditions previously reported by Uneyamas group. The strategy of using electrochemical microreactor technology is useful for an effective fluoromethylation of alkenes based on Kolbe electrolysis in significantly shortened reaction times.
Electrochemical cell stack assembly
Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.
2010-06-22
Multiple stacks of tubular electrochemical cells having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films arranged in parallel on stamped conductive interconnect sheets or ferrules. The stack allows one or more electrochemical cell to malfunction without disabling the entire stack. Stack efficiency is enhanced through simplified gas manifolding, gas recycling, reduced operating temperature and improved heat distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Recknagle, Kurtis P.; Yokuda, Satoru T.; Jarboe, Daniel T.
2006-04-07
This report summarizes a parametric analysis performed to determine the effect of varying the percent on-cell reformation (OCR) of methane on the thermal and electrical performance for a generic, planar solid oxide fuel cell (SOFC) stack design. OCR of methane can be beneficial to an SOFC stack because the reaction (steam-methane reformation) is endothermic and can remove excess heat generated by the electrochemical reactions directly from the cell. The heat removed is proportional to the amount of methane reformed on the cell. Methane can be partially pre-reformed externally, then supplied to the stack, where rapid reaction kinetics on the anodemore » ensures complete conversion. Thus, the thermal load varies with methane concentration entering the stack, as does the coupled scalar distributions, including the temperature and electrical current density. The endotherm due to the reformation reaction can cause a temperature depression on the anode near the fuel inlet, resulting in large thermal gradients. This effect depends on factors that include methane concentration, local temperature, and stack geometry.« less
Temperature dependence of stacking faults in catalyst-free GaAs nanopillars.
Shapiro, Joshua N; Lin, Andrew; Ratsch, Christian; Huffaker, D L
2013-11-29
Impressive opto-electronic devices and transistors have recently been fabricated from GaAs nanopillars grown by catalyst-free selective-area epitaxy, but this growth technique has always resulted in high densities of stacking faults. A stacking fault occurs when atoms on the growing (111) surface occupy the sites of a hexagonal-close-pack (hcp) lattice instead of the normal face-centered-cubic (fcc) lattice sites. When stacking faults occur consecutively, the crystal structure is locally wurtzite instead of zinc-blende, and the resulting band offsets are known to negatively impact device performance. Here we present experimental and theoretical evidence that indicate stacking fault formation is related to the size of the critical nucleus, which is temperature dependent. The difference in energy between the hcp and fcc orientation of small nuclei is computed using density-function theory. The minimum energy difference of 0.22 eV is calculated for a nucleus with 21 atoms, so the population of nuclei in the hcp orientation is expected to decrease as the nucleus grows larger. The experiment shows that stacking fault occurrence is dramatically reduced from 22% to 3% by raising the growth temperature from 730 to 790 ° C. These data are interpreted using classical nucleation theory which dictates a larger critical nucleus at higher growth temperature.
Glass transition dynamics of stacked thin polymer films
NASA Astrophysics Data System (ADS)
Fukao, Koji; Terasawa, Takehide; Oda, Yuto; Nakamura, Kenji; Tahara, Daisuke
2011-10-01
The glass transition dynamics of stacked thin films of polystyrene and poly(2-chlorostyrene) were investigated using differential scanning calorimetry and dielectric relaxation spectroscopy. The glass transition temperature Tg of as-stacked thin polystyrene films has a strong depression from that of the bulk samples. However, after annealing at high temperatures above Tg, the stacked thin films exhibit glass transition at a temperature almost equal to the Tg of the bulk system. The α-process dynamics of stacked thin films of poly(2-chlorostyrene) show a time evolution from single-thin-film-like dynamics to bulk-like dynamics during the isothermal annealing process. The relaxation rate of the α process becomes smaller with increase in the annealing time. The time scale for the evolution of the α dynamics during the annealing process is very long compared with that for the reptation dynamics. At the same time, the temperature dependence of the relaxation time for the α process changes from Arrhenius-like to Vogel-Fulcher-Tammann dependence with increase of the annealing time. The fragility index increases and the distribution of the α-relaxation times becomes smaller with increase in the annealing time for isothermal annealing. The observed change in the α process is discussed with respect to the interfacial interaction between the thin layers of stacked thin polymer films.
NASA Astrophysics Data System (ADS)
Yoshiba, Fumihiko; Morita, Hiroshi; Yoshikawa, Masahiro; Mugikura, Yoshihiro; Izaki, Yoshiyuki; Watanabe, Takao; Komoda, Mineo; Masuda, Yuji; Zaima, Nobuyuki
Following the development of a 10 kW-class MCFC stack with a reactive area of 0.44 and 1.03 m 2, which applies a Li/Na carbonate electrolyte and a press stamping separator, many tests have now been carried out. In the installation tests, the observed cell voltages of the 0.44 m 2/10 kW-class stack agreed with the voltage predicted from the test results of the 100 cm 2 bench scale cell. This agreement proves that the installing procedure of the bench scale cell can be applied to the 0.44 m 2/10 kW-class stacks. The temperature distribution analysis model applied to the 100 kW-class stack was modified to calculate the temperature distribution of the 0.44 m 2/10 kW-class stack. Taking the heat loss and the heat transfer effect of the stack holder into account, the calculated temperature was close to the measured temperature; this result proves that the modification was adequate for the temperature analysis model. In the high current density operating tests on the 0.44 m 2/10 kW-class stack, an electrical power density of 2.46 kW/m 2 was recorded at an operating current density of 3000 A/m 2. In the endurance test on the 0.44 m 2/10 kW-class stack, however, unexpected Ni shortening occurred during the operating period 2500-4500 h, which had been caused by a defective formation of the electrolyte matrix. The shortening seems to have been caused by the crack, which appeared in the electrolyte matrix. The voltage degradation rate of the 0.44 m 2/10 kW-class stack was 0.52% over 1000 h, which proves that the matrix was inadequate for a long life expectancy of the MCFC stack. A final endurance test was carried out on the 1.03 m 2/10 kW-class stack, of which the matrix had been revised. The fuel utilisation and the leakage of anode gas never changed during the 10,000 h operating test. This result suggests that no shortening occurred during the 10,000 h endurance test. The cell voltage degradation rate was around 0.2-0.3% over 1000 h in the 1.03 m 2/10 kW-class stack. According to a comparison of the stack electricity generating performance of the 0.44 m 2 and the 1.03 m 2/10 kW-class stack under the same operating conditions, the performance of the 1.03 m 2 stack was lower at the beginning of the endurance test, however, its performance exceeded the performance of the 0.44 m 2/10 kW-class stack during the 10,000 h operating test. By carrying out the high current density operating test and the 10,000-hour endurance test using commercial sized 10 kW-class stacks, the stability of the MCFC stack with a Li/Na carbonate electrolyte and a press stamping separator has been proven.
NASA Astrophysics Data System (ADS)
Gheribi, Aïmen E.; Poncsák, Sándor; Guérard, Sébastien; Bilodeau, Jean-François; Kiss, László; Chartrand, Patrice
2017-03-01
During aluminium electrolysis, a ledge of frozen electrolytes is generally formed, attached to the sides of the cells. This ledge acts as a protective layer, preventing erosion and chemical attacks of both the electrolyte melt and the liquid aluminium on the side wall materials. The control of the sideledge thickness is thus essential in ensuring a reasonable lifetime for the cells. The key property for modelling and predicting the sideledge thickness as a function of temperature and electrolyte composition is the thermal conductivity. Unfortunately, almost no data is available on the thermal conductivity of the sideledge. The aim of this work is to alleviate this lack of data. For seven different samples of sideledge microstructures, recovered from post-mortem industrial electrolysis cells, the thermal diffusivity, the density, and the phase compositions were measured in the temperature range of 423 K to 873 K. The thermal diffusivity was measured with a laser flash technique and the average phase compositions by X-ray diffraction analysis. The thermal conductivity of the sideledge is deduced from the present experimental thermal diffusivity and density, and the thermodynamically assessed heat capacity. In addition to the present experimental work, a theoretical model for the prediction of the effective thermal transport properties of the sideledge microstructure is also proposed. The proposed model considers an equivalent microstructure and depends on phase fractions, porosity, and temperature. The strength of the model lies in the fact that only a few key physical properties are required for its parametrization and they can be predicted with a good accuracy via first principles calculations. It is shown that the theoretical predictions are in a good agreement with the present experimental measurements.
Solid oxide membrane (SOM) process for ytterbium and silicon production from their oxides
NASA Astrophysics Data System (ADS)
Jiang, Yihong
The Solid oxide membrane (SOM) electrolysis is an innovative green technology that produces technologically important metals directly from their respective oxides. A yttria-stabilized zirconia (YSZ) tube, closed at one end is employed to separate the molten salt containing dissolved metal oxides from the anode inside the YSZ tube. When the applied electric potential between the cathode in the molten salt and the anode exceeds the dissociation potential of the desired metal oxides, oxygen ions in the molten salt migrate through the YSZ membrane and are oxidized at the anode while the dissolved metal cations in the flux are reduced to the desired metal at the cathode. Compared with existing metal production processes, the SOM process has many advantages such as one unit operation, less energy consumption, lower capital costs and zero carbon emission. Successful implementation of the SOM electrolysis process would provide a way to mitigate the negative environmental impact of the metal industry. Successful demonstration of producing ytterbium (Yb) and silicon (Si) directly from their respective oxides utilizing the SOM electrolysis process is presented in this dissertation. During the SOM electrolysis process, Yb2O3 was reduced to Yb metal on an inert cathode. The melting point of the supporting electrolyte (LiF-YbF3-Yb2O3) was determined by differential thermal analysis (DTA). Static stability testing confirmed that the YSZ tube was stable with the flux at operating temperature. Yb metal deposit on the cathode was confirmed by scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). During the SOM electrolysis process for silicon production, a fluoride based flux based on BaF2, MgF2, and YF3 was engineered to serve as the liquid electrolyte for dissolving silicon dioxide. YSZ tube was used to separate the molten salt from an anode current collector in the liquid silver. Liquid tin was chosen as cathode to dissolve the reduced silicon during SOM electrolysis. After electrolysis, upon cooling, silicon crystals precipitated out from the Si-Sn liquid alloy. The presence of high-purity silicon crystals in the liquid tin cathode was confirmed by SEM/EDS. The fluoride based flux was also optimized to improve YSZ membrane stability for long-term use.
Technology advancement of the static feed water electrolysis process
NASA Technical Reports Server (NTRS)
Jensen, F. C.; Schubert, F. H.
1977-01-01
Some results are presented of a research and development program to continue the development of a method to generate oxygen for crew metabolic consumption during extended manned space flights. The concept being pursued is that of static feed water electrolysis. Specific major results of the work included: (1) completion of a 30-day electrode test using a Life Systems, Inc.-developed high performance catalyst. During startup the cell voltages were as low as 1.38 V at current densities of 108 mA/sq cm (100 ASF) and temperatures of 355 K (180 F). At the end of 30 days of testing the cell voltages were still only 1.42 V at 108 mA/sq cm, (2) determination that the Static Feed Water Electrolysis Module does not release an aerosol of the cell electrolyte into the product gas streams after a break-in period of 24 hours following a new electrolyte charge, and (3) completion of a detailed design analysis of an electrochemical Oxygen Generation Subsystem at a three-man level (4.19 kg/day (9.24 lb/day) of oxygen).
Field-Assisted Splitting of Pure Water Based on Deep-Sub-Debye-Length Nanogap Electrochemical Cells.
Wang, Yifei; Narayanan, S R; Wu, Wei
2017-08-22
Owing to the low conductivity of pure water, using an electrolyte is common for achieving efficient water electrolysis. In this paper, we have fundamentally broken through this common sense by using deep-sub-Debye-length nanogap electrochemical cells to achieve efficient electrolysis of pure water (without any added electrolyte) at room temperature. A field-assisted effect resulted from overlapped electrical double layers can greatly enhance water molecules ionization and mass transport, leading to electron-transfer limited reactions. We have named this process "virtual breakdown mechanism" (which is completely different from traditional mechanisms) that couples the two half-reactions together, greatly reducing the energy losses arising from ion transport. This fundamental discovery has been theoretically discussed in this paper and experimentally demonstrated in a group of electrochemical cells with nanogaps between two electrodes down to 37 nm. On the basis of our nanogap electrochemical cells, the electrolysis current density from pure water can be significantly larger than that from 1 mol/L sodium hydroxide solution, indicating the much better performance of pure water splitting as a potential for on-demand clean hydrogen production.
Static Feed Water Electrolysis Subsystem Testing and Component Development
NASA Technical Reports Server (NTRS)
Koszenski, E. P.; Schubert, F. H.; Burke, K. A.
1983-01-01
A program was carried out to develop and test advanced electrochemical cells/modules and critical electromechanical components for a static feed (alkaline electrolyte) water electrolysis oxygen generation subsystem. The accomplishments were refurbishment of a previously developed subsystem and successful demonstration for a total of 2980 hours of normal operation; achievement of sustained one-person level oxygen generation performance with state-of-the-art cell voltages averaging 1.61 V at 191 ASF for an operating temperature of 128F (equivalent to 1.51V when normalized to 180F); endurance testing and demonstration of reliable performance of the three-fluid pressure controller for 8650 hours; design and development of a fluid control assembly for this subsystem and demonstration of its performance; development and demonstration at the single cell and module levels of a unitized core composite cell that provides expanded differential pressure tolerance capability; fabrication and evaluation of a feed water electrolyte elimination five-cell module; and successful demonstration of an electrolysis module pressurization technique that can be used in place of nitrogen gas during the standby mode of operation to maintain system pressure and differential pressures.
NASA Astrophysics Data System (ADS)
1992-07-01
A summary report is given on the results of hydrogen energy research and development achieved during 1991 under the Sunshine Project. In hydrogen manufacturing, regenerative cells that can also generate power as fuel cells were discussed by using solid macromolecular electrolytic films for the case where no electrolysis is carried out with water electrolysis. Yttria stabilized zirconia (YSZ), an oxide solid electrolyte was used for the basic research on high-temperature steam electrolysis. Compositions of hydrogen storage alloys and their deterioration mechanisms were investigated to develop hydrogen transportation and storage technologies. High-density hydrides were searched, and fluidization due to paraffin was discussed. Electrode materials and forming technologies were discussed to develop a hydrogen to power conversion system using hydrogen storage alloys as reversible electrodes. Hydrogen-oxygen combustion was studied in terms of reactive theories, and so was the control of ignition and combustion using ultraviolet ray ignition plasma. Studies were made on hydrogen brittlement in welds on materials in hydrogen utilization and its preventive measures. Surveys were given on technical movements and development problems in high-efficiency, pollution-free hydrogen combustion turbines.
Development of an advanced static feed water electrolysis module. [for spacecraft
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Wynveen, R. A.; Jensen, F. C.; Quattrone, P. D.
1975-01-01
A Static Feed Water Electrolysis Module (SFWEM) was developed to produce 0.92 kg/day (2.0 lb/day) of oxygen (O2). Specific objectives of the program's scope were to (1) eliminate the need for feed water cavity degassing, (2) eliminate the need for subsystem condenser/separators, (3) increase current density capability while decreasing electrolysis cell power (i.e., cell voltage) requirements, and (4) eliminate subsystem rotating parts and incorporate control and monitor instrumentation. A six-cell, one-man capacity module having an active area of 0.00929 sq m (0.10 sq ft) per cell was designed, fabricated, assembled, and subjected to 111 days (2664 hr) of parametric and endurance testing. The SFWEM was successfully operated over a current density range of 0 to 1076 mA/sq cm (0 to 1000 ASF), pressures of ambient to 2067 kN/sq m (300 psia), and temperatures of ambient to 366 K (200 F). During a 94-day endurance test, the SFWEM successfully demonstrated operation without the need for feed water compartment degassing.
The Influence of the Density of Coconut Fiber as Stack in Thermo-Acoustics Refrigeration System
NASA Astrophysics Data System (ADS)
Hartulistiyoso, E.; Yulianto, M.; Sucahyo, L.
2018-05-01
An experimental study of using coconut fiber as stack with varying density in thermo-acoustics refrigeration system has been done. Stack is a device which is described as the “heart” in thermo-acoustics refrigeration system. The length of stack is a fix parameter in this experiment. The performance of the coconut fiber was evaluated from the density of stack (varied from 30%, 50% and 70%), position of stack (varied from 0 to 34 cm from the sound generator), and frequency of sound generator (varied from 150 Hz, 200Hz, 250Hz and 300Hz). The inside, outside, and environment temperatures were collected every second using Data Acquisition (DAQ). The result showed that the increase of stack density will increase the performance of thermo-acoustics refrigeration system. The higher density produced temperature differences in cold side and hot side of 5.4°C. In addition, the position of stack and frequency of sound generator have an important role in the performance of thermo-acoustics refrigeration system for all variations of the density.
Jiao, Chen-Xu; Xing, Bao-Yan; Zhao, Jian-Guo; Geng, Yu; Li, Zuo-Peng
2014-01-01
Graphene is well known owing to its astonishing properties: stronger than diamond, more conductive than copper and more flexible than rubber. Because of its potential uses in industry, researchers have been searching for less toxicity ways to make graphene in large amount with lower cost. We demonstrated an efficient method to prepare graphene by high temperature electrolysis technique. High resolution scanning electron microscopy and raman spectroscopy were used to characterize the microstructure of graphene. Graphene was assembled into the supercapacitor and its performance of electrochemical capacitor was investigated by constant current charge and discharge, cyclic voltammetry and AC impedance. The results showed that the micro-morphology of the prepared graphene was multilayer and it was favorable when the electrolytic voltage was 1.5 V. When the current density is 1 mA/cm(2), the specific capacitance of the graphene supercapacitor can reach 78.01 F/g in 6 mol/L KOH electrolyte, which was an increase of 114% compared with 36.43 F/g of conventional KOH electrolyte.
NASA Astrophysics Data System (ADS)
Alam, Noor; Pandey, K. M.
2017-08-01
In this paper, work has been carried out experimentally for the investigation of the effects of variation incurrent, voltage, temperature, chemical concentration and reaction time on the amount of hydroxy gas produced. Further effects on the overall electrolysis efficiency of advance alkaline water is also studied. The hydroxy gas (HHO) has been produced experimentally by the electrolysis of alkaline water with parallel plate electrode of 316L-grade stainless steel. The electrode has been selected on the basis of corrosion resistance and inertness with respect to electrolyte (KOH). The process used for the production of HHO is conventional as compared to the other production processes because of reduced energy consumption, less maintenance and low setup cost. From the experimental results, it has been observed that with increase in voltage, temperature and electrolyte concentration of alkaline solution, the production of hydroxy gas has increased about 30 to 40% with reduction in electrical energy consumption.
Lunar oxygen and metal for use in near-Earth space: Magma electrolysis
NASA Technical Reports Server (NTRS)
Colson, Russell O.; Haskin, Larry A.
1990-01-01
Because it is energetically easier to get material from the Moon to Earth orbit than from the Earth itself, the Moon is a potentially valuable source of materials for use in space. The unique conditions on the Moon, such as vacuum, absence of many reagents common on the Earth, and the presence of very nontraditional ores suggest that a unique and nontraditional process for extracting materials from the ores may prove the most practical. With this in mind, an investigation of unfluxed silicate electrolysis as a method for extracting oxygen, iron, and silicon from lunar regolith was initiated and is discussed. The advantages of the process include simplicity of concept, absence of need to supply reagents from Earth, and low power and mass requirements for the processing plant. Disadvantages include the need for uninterrupted high temperature and the highly corrosive nature of the high-temperature silicate melts which has made identifying suitable electrode and container materials difficult.
Numerical simulation of a mini PEMFC stack
NASA Astrophysics Data System (ADS)
Liu, Zhixiang; Mao, Zongqiang; Wang, Cheng; Zhuge, Weilin; Zhang, Yangjun
Fuel cell modeling and simulation has aroused much attention recently because it can probe transport and reaction mechanism. In this paper, a computational fuel cell dynamics (CFCD) method was applied to simulate a proton exchange membrane fuel cell (PEMFC) stack for the first time. The air cooling mini fuel cell stack consisted of six cells, in which the active area was 8 cm 2 (2 cm × 4 cm). With reasonable simplification, the computational elements were effectively reduced and allowed a simulation which could be conducted on a personal computer without large-scale parallel computation. The results indicated that the temperature gradient inside the fuel cell stack was determined by the flow rate of the cooling air. If the air flow rate is too low, the stack could not be effectively cooled and the temperature will rise to a range that might cause unstable stack operation.
Bartolucci, Veronica
2017-01-01
This work presents a hardware/software data acquisition system developed for monitoring the temperature in real time of the cells in Air-Cooled Polymer Electrolyte Fuel Cells (AC-PEFC). These fuel cells are of great interest because they can carry out, in a single operation, the processes of oxidation and refrigeration. This allows reduction of weight, volume, cost and complexity of the control system in the AC-PEFC. In this type of PEFC (and in general in any PEFC), the reliable monitoring of temperature along the entire surface of the stack is fundamental, since a suitable temperature and a regular distribution thereof, are key for a better performance of the stack and a longer lifetime under the best operating conditions. The developed data acquisition (DAQ) system can perform non-intrusive temperature measurements of each individual cell of an AC-PEFC stack of any power (from watts to kilowatts). The stack power is related to the temperature gradient; i.e., a higher power corresponds to a higher stack surface, and consequently higher temperature difference between the coldest and the hottest point. The developed DAQ system has been implemented with the low-cost open-source platform Arduino, and it is completed with a modular virtual instrument that has been developed using NI LabVIEW. Temperature vs time evolution of all the cells of an AC-PEFC both together and individually can be registered and supervised. The paper explains comprehensively the developed DAQ system together with experimental results that demonstrate the suitability of the system. PMID:28698497
Segura, Francisca; Bartolucci, Veronica; Andújar, José Manuel
2017-07-09
This work presents a hardware/software data acquisition system developed for monitoring the temperature in real time of the cells in Air-Cooled Polymer Electrolyte Fuel Cells (AC-PEFC). These fuel cells are of great interest because they can carry out, in a single operation, the processes of oxidation and refrigeration. This allows reduction of weight, volume, cost and complexity of the control system in the AC-PEFC. In this type of PEFC (and in general in any PEFC), the reliable monitoring of temperature along the entire surface of the stack is fundamental, since a suitable temperature and a regular distribution thereof, are key for a better performance of the stack and a longer lifetime under the best operating conditions. The developed data acquisition (DAQ) system can perform non-intrusive temperature measurements of each individual cell of an AC-PEFC stack of any power (from watts to kilowatts). The stack power is related to the temperature gradient; i.e., a higher power corresponds to a higher stack surface, and consequently higher temperature difference between the coldest and the hottest point. The developed DAQ system has been implemented with the low-cost open-source platform Arduino, and it is completed with a modular virtual instrument that has been developed using NI LabVIEW. Temperature vs time evolution of all the cells of an AC-PEFC both together and individually can be registered and supervised. The paper explains comprehensively the developed DAQ system together with experimental results that demonstrate the suitability of the system.
NASA Astrophysics Data System (ADS)
Chanda, Debabrata; Hnát, Jaromir; Bystron, Tomas; Paidar, Martin; Bouzek, Karel
2017-04-01
In this work, the Ni-Co spinel oxides are synthesized via different methods and using different calcination temperatures. Properties of the prepared materials are compared. The best route is selected and used to prepare a Ni1+xCo2-xO4 (-1 ≤ x ≤ 1) series of materials in order to investigate their catalytic activity towards the oxygen evolution reaction (OER). The results show that hydroxide preparation yields NiCo2O4 oxide with the highest activity. 325 °C is identified as the optimum calcination temperature. Subsequently, the catalysts are tested in an electrolysis cell. To prepare an anode catalyst layer based on NiCo2O4 catalyst on top of a nickel foam substrate for membrane electrode assembly (MEA) construction, following polymer binders are used: anion-selective quaternized polyphenylene oxide (qPPO), inert polytetrafluoroethylene (PTFE®), and cation-selective Nafion®. qPPO ionomer containing MEA exhibited highest OER activity. The current density obtained using a MEA containing qPPO binder attains a value of 135 mA cm-2 at a cell voltage of 1.85 V. After 7 h chronopotentiometric experiment at a constant current density of 225 mA cm-2, the MEA employing PTFE® binder shows higher stability than the other binders in alkaline water electrolysis at 50 °C. Under similar conditions, stability of the PTFE®-binding MEA is examined for 135 h.
A study of water electrolysis using ionic polymer-metal composite for solar energy storage
NASA Astrophysics Data System (ADS)
Keow, Alicia; Chen, Zheng
2017-04-01
Hydrogen gas can be harvested via the electrolysis of water. The gas is then fed into a proton exchange membrane fuel cell (PEMFC) to produce electricity with clean emission. Ionic polymer-metal composite (IPMC), which is made from electroplating a proton-conductive polymer film called Nafion encourages ion migration and dissociation of water under application of external voltage. This property has been proven to be able to act as catalyst for the electrolysis of pure water. This renewable energy system is inspired by photosynthesis. By using solar panels to gather sunlight as the source of energy, the generation of electricity required to activate the IPMC electrolyser is acquired. The hydrogen gas is collected as storable fuel and can be converted back into energy using a commercial fuel cell. The goal of this research is to create a round-trip energy efficient system which can harvest solar energy, store them in the form of hydrogen gas and convert the stored hydrogen back to electricity through the use of fuel cell with minimal overall losses. The effect of increasing the surface area of contact is explored through etching of the polymer electrolyte membrane (PEM) with argon plasma or manually sanding the surface and how it affects the increase of energy conversion efficiency of the electrolyser. In addition, the relationship between temperature and the IPMC is studied. Experimental results demonstrated that increases in temperature of water and changes in surface area contact correlate with gas generation.
Temperature-dependent stability of stacking faults in Al, Cu and Ni: first-principles analysis.
Bhogra, Meha; Ramamurty, U; Waghmare, Umesh V
2014-09-24
We present comparative analysis of microscopic mechanisms relevant to plastic deformation of the face-centered cubic (FCC) metals Al, Cu, and Ni, through determination of the temperature-dependent free energies of intrinsic and unstable stacking faults along [1 1̄ 0] and [1 2̄ 1] on the (1 1 1) plane using first-principles density-functional-theory-based calculations. We show that vibrational contribution results in significant decrease in the free energy of barriers and intrinsic stacking faults (ISFs) of Al, Cu, and Ni with temperature, confirming an important role of thermal fluctuations in the stability of stacking faults (SFs) and deformation at elevated temperatures. In contrast to Al and Ni, the vibrational spectrum of the unstable stacking fault (USF[1 2̄ 1]) in Cu reveals structural instabilities, indicating that the energy barrier (γusf) along the (1 1 1)[1 2̄ 1] slip system in Cu, determined by typical first-principles calculations, is an overestimate, and its commonly used interpretation as the energy release rate needed for dislocation nucleation, as proposed by Rice (1992 J. Mech. Phys. Solids 40 239), should be taken with caution.
Testing of a Shrouded, Short Mixing Stack Gas Eductor Model Using High Temperature Primary Flow.
1982-10-01
problem but of less significance than the heated surfaces of shipboard structure. Various types of electronic equipments and sensors carried by a combatant...here was to validate current procedures by comparison with previous data it was not considered essential to rein- stall these sensors or duplicate...sec) 205 tABLE XIX Mixing Stack Temperatura Data, Model B Thermocouple Axial Mixing Stack Temperature _ mbjr Posii--- .. (I IF) . Uptake 180 850 950
NASA Astrophysics Data System (ADS)
Mironov, Mikhail; Gusev, Vitalyi; Auregan, Yves; Lotton, Pierrick; Bruneau, Michel; Piatakov, Pavel
2002-08-01
It is demonstrated that the differentially heated stack, the heart of all thermoacoustic devices, provides a source of streaming additional to those associated with Reynolds stresses in quasi-unidirectional gas flow. This source of streaming is related to temperature-induced asymmetry in the generation of vortices and turbulence near the stack ends. The asymmetry of the hydrodynamic effects in an otherwise geometrically symmetric stack is due to the temperature difference between stack ends. The proposed mechanism of streaming excitation in annular thermoacoustic devices operates even in the absence of thermo-viscous interaction of sound waves with resonator walls. copyright 2002 Acoustical Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
A.M. Gandrik
2012-04-01
This white paper is intended to compare the technical and economic feasibility of syngas generation using the SRI gasification process coupled to several high-temperature gas-cooled reactors (HTGRs) with more traditional HTGR-integrated syngas generation techniques, including: (1) Gasification with high-temperature steam electrolysis (HTSE); (2) Steam methane reforming (SMR); and (3) Gasification with SMR with and without CO2 sequestration.
Bipolar nickel-hydrogen battery design
NASA Technical Reports Server (NTRS)
Koehler, C. W.; Applewhite, A. Z.; Kuo, Y.
1985-01-01
The initial design for the NASA-Lewis advanced nickel-hydrogen battery is discussed. Fabrication of two 10-cell boilerplate battery stacks will soon begin. The test batteries will undergo characterization testing and low Earth orbit life cycling. The design effectively deals with waste heat generated in the cell stack. Stack temperatures and temperature gradients are maintained to acceptable limits by utilizing the bipolar conduction plate as a heat path to the active cooling fluid panel external to the edge of the cell stack. The thermal design and mechanical design of the battery stack together maintain a materials balance within the cell. An electrolyte seal on each cell frame prohibits electrolyte bridging. An oxygen recombination site and electrolyte reservoir/separator design does not allow oxygen to leave the cell in which it was generated.
An Electrochemistry Study of Cryoelectrolysis in Frozen Physiological Saline.
Manuel, Thomas J; Munnangi, Pujita; Rubinsky, Boris
2017-07-01
Cryoelectrolysis is a new minimally invasive tissue ablation surgical technique that combines the processes of electrolysis and solid/liquid phase transformation (freezing). This study investigated this new technique by measuring the pH front propagation and the changes in resistance in a tissue simulant made of physiological saline gel with a pH dye as a function of the sample temperature in the high subzero range above the eutectic. Results demonstrated that effective electrolysis can occur in a high subzero freezing milieu and that the propagation of the pH front is only weakly dependent on temperature. These observations are consistent with a mechanism involving ionic movement through the concentrated saline solution channels between ice crystals at subfreezing temperatures above the eutectic. Moreover, results suggest that Joule heating in these microchannels may cause local microscopic melting, the observed weak dependence of pH front propagation on temperature, and the large changes in resistance with time. A final insight provided by the results is that the pH front propagation from the anode is more rapid than from the cathode, a feature indicative of the electro-osmotic flow from the cathode to the anode. The findings in this paper may be critical for designing future cryoelectrolytic ablation surgery protocols.
NASA Technical Reports Server (NTRS)
Dominguez, Jesus; Sibille, Laurent
2010-01-01
The technology of direct electrolysis of molten lunar regolith to produce oxygen and molten metal alloys has progressed greatly in the last few years. The development of long-lasting inert anodes and cathode designs as well as techniques for the removal of molten products from the reactor has been demonstrated. The containment of chemically aggressive oxide and metal melts is very difficult at the operating temperatures ca. 1600 C. Containing the molten oxides in a regolith shell can solve this technical issue and can be achieved by designing a self-heating reactor in which the electrolytic currents generate enough Joule heat to create a molten bath.
Thermo-Mechanical and Electrochemistry Modeling of Planar SOFC Stacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaleel, Mohammad A.; Recknagle, Kurtis P.; Lin, Zijing
2002-12-01
Modeling activities at PNNL support design and development of modular SOFC systems. The SOFC stack modeling capability at PNNL has developed to a level at which planar stack designs can be compared and optimized for startup performance. Thermal-fluids and stress modeling is being performed to predict the transient temperature distribution and to determine the thermal stresses based on the temperature distribution. Current efforts also include the development of a model for calculating current density, cell voltage, and heat production in SOFC stacks with hydrogen or other fuels. The model includes the heat generation from both Joule heating and chemical reactions.more » It also accounts for species production and destruction via mass balance. The model is being linked to the finite element code MARC to allow for the evaluation of temperatures and stresses during steady state operations.« less
Lifetime of Sodium Beta-Alumina Membranes in Molten Sodium Hydroxide
2008-07-01
ABSTRACT Summary: Sodium metal can be made by electrolysis of molten sodium hydroxide in sodium beta-alumina membrane electrolysis cells... electrolysis of molten sodium hydroxide in sodium ”-alumina membrane electrolysis cells. However, there are some uncertainties about the lifetime of the...the properties of the membrane degrade upon long term contact with molten sodium hydroxide. Electrolysis cells were designed, but it proved
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flaherty, Julia E.; Glissmeyer, John A.
2015-03-18
Tests were performed to evaluate a sample conditioning unit for stack monitoring at Hanford Tank Waste Treatment and Immobilization Plant (WTP) exhaust stacks with elevated air temperatures. The LV-S2, LV-S3, HV-S3A and HV-S3B exhaust stacks are expected to have elevated air temperature and dew point. At these emission points, exhaust temperatures are too high to deliver the air sample directly to the required stack monitoring equipment. As a result, a sample conditioning system is considered to cool and dry the air prior to its delivery to the stack monitoring system. The method proposed for the sample conditioning is a dilutionmore » system that will introduce cooler, dry air to the air sample stream. This method of sample conditioning is meant to reduce the sample temperature while avoiding condensation of moisture in the sample stream. An additional constraint is that the ANSI/HPS N13.1-1999 standard states that at least 50% of the 10 μm aerodynamic diameter (AD) particles present in the stack free stream must be delivered to the sample collector. In other words, depositional loss of particles should be limited to 50% in the sampling, transport, and conditioning systems. Based on estimates of particle penetration through the LV-S3 sampling system, the diluter should perform with about 80% penetration or better to ensure that the total sampling system passes the 50% or greater penetration criterion.« less
Strong carrier localization in stacking faults in semipolar (11-22) GaN
NASA Astrophysics Data System (ADS)
Okur, Serdal; Monavarian, Morteza; Das, Saikat; Izyumskaya, Natalia; Zhang, Fan; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit
2015-03-01
The effects of stacking faults (SFs) on optical processes in epitaxially grown semipolar (1122) GaN on m-sapphire substrate have been investigated in detail using steady-state photoluminescence (PL) and time- and polarization-resolved PL. We demonstrate that the carrier recombination dynamics are substantially influenced due to strong carrier localization in the stacking faults. In addition to nonradiative recombination, carrier trapping/detrapping and carrier transfer between the stacking faults and donors are also found to be among the mechanisms affecting the recombination dynamics at different temperatures. PL decay times of both I1-type BSF and 3.31 eV SF (E-type BSF or prismatic stacking fault) do not show temperature dependence up to 80 K while 3.31 eV SF exhibits longer PL decay times (~3 ns) at low temperatures as compared to I1-type BSF (~1 ns), indicative of lower efficiency for radiative recombination. After 80 K, PL decay times decreased by power of ~-1 and ~-2 for 3.31 eV SF and I1-type BSF, respectively. It is obtained from radiative decay times with respect to temperature that the carrier localization becomes higher in I1-type BSF compared to 3.31 eV SF increasing the temperature. I1-type BSF also shows higher PL intensity, which is attributed to larger density, and therefore, larger contribution to recombination dynamics as compared to other type of stacking faults. Polarization-resolved PL measurements also revealed that the degree of polarization for the I1-type BSF (0.30) was twice that for the 3.31 eV SF.
NASA Astrophysics Data System (ADS)
Lamy, Claude; Jaubert, Thomas; Baranton, Stève; Coutanceau, Christophe
2014-01-01
The electrocatalytic oxidation of ethanol was investigated in a Proton Exchange Membrane Electrolysis Cell (PEMEC) working at low temperature (20°C) on several Pt-based catalysts (Pt/C, PtSn/C, PtSnRu/C) in order to produce very clean hydrogen by electrolysis of a biomass compound. The electrocatalytic activity was determined by cyclic voltammetry and the rate of hydrogen evolution was measured for each catalyst at different current densities. The cell voltages UEtOH were recorded as a function of time for each current density. At 100 mA cm-2, i.e. 0.5 A with the 5 cm2 surface area PEMEC used, the cell voltage did not exceed 0.9 V for an evolution rate of about 220 cm3 of hydrogen per hour and the electrical energy consumed was less than 2.3 kWh (Nm3)-1, i.e. less than one half of the energy needed for water electrolysis (4.7 kWh (Nm3)-1 at UH2O = 2 V). This result is valid for the decomposition of any organic compound, particularly those originated from biomass resource, provided that their electro-oxidation rate is sufficient (>100 mA cm-2) at a relatively low cell voltage (Ucell < 1 V) which necessitates the development of efficient electrocatalysts for the electrochemical decomposition of this compound.
NASA Technical Reports Server (NTRS)
Bowman, Elizabeth M.; Carpenter, Joyce; Roy, Robert J.; Van Keuren, Steve; Wilson, Mark E.
2015-01-01
Since 2007, the Oxygen Generation System (OGS) on board the International Space Station (ISS) has been producing oxygen for crew respiration via water electrolysis. As water is consumed in the OGS recirculating water loop, make-up water is furnished by the ISS potable water bus. A rise in Total Organic Carbon (TOC) was observed beginning in February, 2011, which continues through the present date. Increasing TOC is of concern because the organic constituents responsible for the TOC were unknown and had not been identified; hence their impacts on the operation of the electrolytic cell stack components and on microorganism growth rates and types are unknown. Identification of the compounds responsible for the TOC increase, their sources, and estimates of their loadings in the OGA as well as possible mitigation strategies are presented.
NASA Astrophysics Data System (ADS)
Gago, A. S.; Ansar, S. A.; Saruhan, B.; Schulz, U.; Lettenmeier, P.; Cañas, N. A.; Gazdzicki, P.; Morawietz, T.; Hiesgen, R.; Arnold, J.; Friedrich, K. A.
2016-03-01
Proton exchange membrane (PEM) electrolysis is a promising technology for large H2 production from surplus electricity from renewable sources. However, the electrolyser stack is costly due to the manufacture of bipolar plates (BPP). Stainless steel can be used as an alternative, but it must be coated. Herein, dense titanium coatings are produced on stainless steel substrates by vacuum plasma spraying (VPS). Further surface modification of the Ti coating with Pt (8 wt% Pt/Ti) deposited by physical vapour deposition (PVD) magnetron sputtering reduces the interfacial contact resistance (ICR). The Ti and Pt/Ti coatings are characterised by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron microscopy (XPS). Subsequently, the coatings are evaluated in simulated and real PEM electrolyser environments, and they managed to fully protect the stainless steel substrate. In contrast, the absence of the thermally sprayed Ti layer between Pt and stainless steel leads to pitting corrosion. The Pt/Ti coating is tested in a PEM electrolyser cell for almost 200 h, exhibiting an average degradation rate of 26.5 μV h-1. The results reported here demonstrate the possibility of using stainless steel as a base material for the stack of a PEM electrolyser.
Mars Propellant Production with Ionic Liquids Project
NASA Technical Reports Server (NTRS)
Falker, John; Thompson, Karen; Zeitlin, Nancy; Muscatello, Anthony
2015-01-01
This project seeks to develop a single vessel for carbon dioxide (CO2) capture and electrolysis for in situ Mars propellant production by eliminating several steps of CO2 processing, two cryocoolers, a high temperature reactor, a recycle pump, and a water condenser; thus greatly reducing mass, volume, and power.
Electric utility acid fuel cell stack technology advancement
NASA Astrophysics Data System (ADS)
Congdon, J. V.; Goller, G. J.; Greising, G. J.; Obrien, J. J.; Randall, S. A.; Sandelli, G. J.; Breault, R. D.; Austin, G. W.; Bopse, S.; Coykendall, R. D.
1984-11-01
The principal effort under this program was directed at the fuel cell stack technology required to accomplish the initial feasibility demonstrations of increased cell stack operating pressures and temperatures, increased cell active area, incorporation of the ribbed substrate cell configuration at the bove conditions, and the introduction of higher performance electrocatalysts. The program results were successful with the primary accomplishments being: (1) fabrication of 10 sq ft ribbed substrate, cell components including higher performing electrocatalysts; (2) assembly of a 10 sq ft, 30-cell short stack; and (3) initial test of this stack at 120 psia and 405 F. These accomplishments demonstrate the feasibility of fabricating and handling large area cells using materials and processes that are oriented to low cost manufacture. An additional accomplishment under the program was the testing of two 3.7 sq ft short stacks at 12 psia/405 F to 5400 and 4500 hours respectively. These tests demonstrate the durability of the components and the cell stack configuration to a nominal 5000 hours at the higher pressure and temperature condition planned for the next electric utility power plant.
Electric utility acid fuel cell stack technology advancement
NASA Technical Reports Server (NTRS)
Congdon, J. V.; Goller, G. J.; Greising, G. J.; Obrien, J. J.; Randall, S. A.; Sandelli, G. J.; Breault, R. D.; Austin, G. W.; Bopse, S.; Coykendall, R. D.
1984-01-01
The principal effort under this program was directed at the fuel cell stack technology required to accomplish the initial feasibility demonstrations of increased cell stack operating pressures and temperatures, increased cell active area, incorporation of the ribbed substrate cell configuration at the bove conditions, and the introduction of higher performance electrocatalysts. The program results were successful with the primary accomplishments being: (1) fabrication of 10 sq ft ribbed substrate, cell components including higher performing electrocatalysts; (2) assembly of a 10 sq ft, 30-cell short stack; and (3) initial test of this stack at 120 psia and 405 F. These accomplishments demonstrate the feasibility of fabricating and handling large area cells using materials and processes that are oriented to low cost manufacture. An additional accomplishment under the program was the testing of two 3.7 sq ft short stacks at 12 psia/405 F to 5400 and 4500 hours respectively. These tests demonstrate the durability of the components and the cell stack configuration to a nominal 5000 hours at the higher pressure and temperature condition planned for the next electric utility power plant.
NASA Astrophysics Data System (ADS)
Graves, Christopher Ronald
Great quantities of hydrocarbon fuels will be needed for the foreseeable future, even if electricity based energy carriers begin to partially replace liquid hydrocarbons in the transportation sector. Fossil fuels and biomass are the most common feedstocks for production of hydrocarbon fuels. However, using renewable or nuclear energy, carbon dioxide and water can be recycled into sustainable hydrocarbon fuels in non-biological processes which remove oxygen from CO2 and H2O (the reverse of fuel combustion). Capture of CO2 from the atmosphere would enable a closed-loop carbon-neutral fuel cycle. The purpose of this work was to develop critical components of a system that recycles CO2 into liquid hydrocarbon fuels. The concept is examined at several scales, beginning with a broad scope analysis of large-scale sustainable energy systems and ultimately studying electrolysis of CO 2 and H2O in high temperature solid oxide cells as the heart of the energy conversion, in the form of three experimental studies. The contributions of these studies include discoveries about electrochemistry and materials that could significantly improve the overall energy use and economics of the CO2-to-fuels system. The broad scale study begins by assessing the sustainability and practicality of the various energy carriers that could replace petroleum-derived hydrocarbon fuels, including other hydrocarbons, hydrogen, and storage of electricity on-board vehicles in batteries, ultracapacitors, and flywheels. Any energy carrier can store the energy of any energy source. This sets the context for CO2 recycling -- sustainable energy sources like solar and wind power can be used to provide the most energy-dense, convenient fuels which can be readily used in the existing infrastructure. The many ways to recycle CO2 into hydrocarbons, based on thermolysis, thermochemical loops, electrolysis, and photoelectrolysis of CO2 and/or H 2O, are critically reviewed. A process based on high temperature co-electrolysis of CO2 and H2O to produce syngas (CO/H2 mixture) is identified as a promising method. High temperature electrolysis makes very efficient use of electricity and heat (near-100% electricity-to-syngas efficiency), provides high reaction rates, and the syngas produced can be catalytically converted to hydrocarbons in well-known fuel synthesis reactors (e.g. Fischer-Tropsch). The experimental studies of high temperature electrolysis are made at different scales -- at the cell level, electrode level, and in materials and microstructure development. The results include cell performance and durability, insight into electrode reaction mechanisms, and new high-performance electrode materials. The experimental studies make extensive use of electrochemical impedance spectroscopy and systematic variation of test conditions to examine the electrochemical phenomena. Variation of the material composition itself within families of related materials was an additional parameter used in the electrode level and materials studies that revealed more information than studying a single material would have. Using full cells, the performance and durability of a solid oxide cell applied for co-electrolysis of CO2 and H2O was investigated. High initial performance was observed but the long-term durability needs to be improved. Based on these results, an analysis of the energy balance and economics of an electrolysis-based synthetic fuel production process, including CO2 air capture and Fischer-Tropsch fuel synthesis, determined that the system can feasibly operate at 70% electricity-to-liquid fuel efficiency (higher heating value basis) and that the price of electricity needed to produce competitive synthetic gasoline (at USD2/gal, or 0.53/L, wholesale) is 2-3 U.S. cents per kWh. For 3/gal (0.78/L) gasoline, 4-5 cents per kWh is needed. Fuel production may already be economical in some regions that have inexpensive renewable electricity, such as Iceland. The dominant costs of the process are the electricity cost and the capital cost of the electrolyzer, and this capital cost is significantly increased when operating intermittently (on renewable power sources such as solar and wind). Low cell internal resistance, low degradation, and low manufacturing cost each contribute to a low electrolyzer capital cost, and can be traded off. One straightforward path to affordability is by improving the durability of the high current density cell operation (≥1 A/cm2) that is already possible with these cells. The negative-electrode, a composite of nickel and yttria-stabilized zirconia (YSZ), is often the major site of cell degradation, including in the co-electrolysis results presented here. To better understand the reaction mechanisms at the negative-electrode that limit performance and durability, different metal electrodes including nickel were studied using a simplified point-contact electrode geometry with a well-defined three-phase boundary (TPB; the electrode/electrolyte/gas interface where the electrochemical reactions take place). The simple geometry is useful for isolating the electrochemical properties without the effects of the complex microstructure of technological porous electrodes. Widely different impedance responses of the different metals to the same changes in test conditions (gas composition, temperature, and polarization) were observed, indicating that the same reaction mechanisms are not shared by the different metals, contrary to some recent studies. Evidence was also found that supports the explanation that impurities segregated to the TPB play a major role and are largely responsible for inconsistencies in the electrode kinetics literature. The significance of microstructure at the TPB was also revealed -- the electrode polarization resistance was reduced by an order of magnitude when subjected to extreme conditions of oxidation-reduction and strong cathodic polarization, which induced the formation of a micro/nanostructured TPB. Possible reaction mechanisms for H2O/CO2 reduction and H2/CO oxidation are discussed. Novel ceramic materials based on molybdates with varying Mo valence were synthesized as possible alternative negative-electrode materials. The phase, stability, microstructure and electrical conductivity were characterized. The electrochemical activity for H2O/CO2 reduction and H2/CO oxidation was studied using simplified geometry electrodes, similar to the metals study. Unique phenomena were observed for some of the molybdate materials -- they decomposed into multiple phases and formed a nanostructured surface upon exposure to operating conditions (in certain reducing atmospheres). The new phases and surface features enhanced the electronic conductivity and electrocatalytic activity. Preparing an electrode by performing controlled decomposition to form multiple desirable phases and a desirable microstructure (which can take place in situ) using these materials is a novel way to produce potentially high-performance electrodes for solid oxide cells. By modifying the composition, it was possible to prevent decomposition. Other members of the molybdate family exhibited similarly high electronic conductivity and electrocatalytic activity but did not decompose. The high activity was the result of a different mechanism, probably related to the defect chemistry of the material. The polarization resistances of the best molybdate materials were two orders of magnitude lower than that of donor-doped strontium titanates. Many of the molybdate materials were significantly activated by cathodic polarization, and they exhibited higher performance for cathodic (electrolysis) polarization than anodic (fuel cell) polarization, which makes them especially interesting for use in electrolysis electrodes. Whereas nearly all of the molybdates showed higher performance for H2O electrolysis than CO2 electrolysis, one with vanadium showed nearly equal performance, and a non-molybdate which exhibits some complementary properties to the best molybdates, Gd-doped ceria in nanoparticle form, was found to be an excellent electrocatalyst for CO2 electrolysis and CO oxidation (moreso than for H2O/H2 for which it is known to be good).
40 CFR Appendix M to Part 51 - Recommended Test Methods for State Implementation Plans
Code of Federal Regulations, 2010 CFR
2010-07-01
... different temperature within 60 °C (108 °F) of the temperature at which the cyclone is to be used and... property sized and shaped for cleaning the nozzle, cyclone, filter holder, and probe or probe liner, with... stack temperatures from 38 to 260 °C (100 to 500 °F) and stack moisture up to 50 percent. Also, the...
Variable Temperature Performance of a Si(Li) Detector Stack
NASA Technical Reports Server (NTRS)
Hubbard, G. Scott; McMurray, Robert E., Jr.; Keller, R. G.; Wercinski, P. F.; Walton, J. T.; Wong, Y. K.
1994-01-01
New experimental data is presented which displays 137Cs resolution of both single Si(Li) devices and a detector stack 2 cm in height as a function of temperature (85 K greater than or equal to T greater than or equal to 245 K). We also discuss variations in photopeak shape which indicate that detector charge collection may be temperature dependent over the range of interest.
Nitrogen: A New Class of π-Bonding Partner in Hetero π-Stacking Interaction.
Ramanathan, N; Sankaran, K; Sundararajan, K
2017-11-30
Spectroscopy under isolated conditions at low temperatures is an excellent tool to characterize the aggregates stabilized through weak interactions. Within the framework of weak interactions, the π-stacking interactions are considered unconventional with the limited experimental proofs, wherein the bonding associates are either aromatic and heterocyclic compounds or their combinations. Besides aromatic compounds, π-stacking networks can even be realized with molecules possessing electron rich π-clouds. In this work, the N 2 molecule as a possible π-bonding partner is explored for the first time in which hetero π-stacking was achieved between pyrrole and N 2 precursors. The matrix isolation experiments performed by seeding pyrrole and N 2 mixtures in an Ar matrix at low temperatures with subsequent infrared spectral characterization revealed the generation of adducts stabilized through a π(pyrrole)···π(N 2 ) interaction. Under identical conditions with the likelihood of two competing π-stacking and hydrogen-bonding interactions in pyrrole-N 2 associates, π-stacking dominates energetically over hydrogen-bonding interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elder, J.C.; Littlefield, L.G.; Tillery, M.I.
1978-06-01
A preliminary design of a prototype particulate stack sampler (PPSS) has been prepared, and development of several components is under way. The objective of this Environmental Protection Agency (EPA)-sponsored program is to develop and demonstrate a prototype sampler with capabilities similar to EPA Method 5 apparatus but without some of the more troublesome aspects. Features of the new design include higher sampling flow; display (on demand) of all variables and periodic calculation of percent isokinetic, sample volume, and stack velocity; automatic control of probe and filter heaters; stainless steel surfaces in contact with the sample stream; single-point particle size separationmore » in the probe nozzle; null-probe capability in the nozzle; and lower weight in the components of the sampling train. Design considerations will limit use of the PPSS to stack gas temperatures under approximately 300/sup 0/C, which will exclude sampling some high-temperature stacks such as incinerators. Although need for filter weighing has not been eliminated in the new design, introduction of a variable-slit virtual impactor nozzle may eliminate the need for mass analysis of particles washed from the probe. Component development has shown some promise for continuous humidity measurement by an in-line wet-bulb, dry-bulb psychrometer.« less
21 CFR 886.4250 - Ophthalmic electrolysis unit.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ophthalmic electrolysis unit. 886.4250 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4250 Ophthalmic electrolysis unit. (a) Identification. An ophthalmic electrolysis unit is an AC-powered or battery-powered device intended to destroy...
21 CFR 886.4250 - Ophthalmic electrolysis unit.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ophthalmic electrolysis unit. 886.4250 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4250 Ophthalmic electrolysis unit. (a) Identification. An ophthalmic electrolysis unit is an AC-powered or battery-powered device intended to destroy...
21 CFR 886.4250 - Ophthalmic electrolysis unit.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ophthalmic electrolysis unit. 886.4250 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4250 Ophthalmic electrolysis unit. (a) Identification. An ophthalmic electrolysis unit is an AC-powered or battery-powered device intended to destroy...
21 CFR 886.4250 - Ophthalmic electrolysis unit.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ophthalmic electrolysis unit. 886.4250 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4250 Ophthalmic electrolysis unit. (a) Identification. An ophthalmic electrolysis unit is an AC-powered or battery-powered device intended to destroy...
21 CFR 886.4250 - Ophthalmic electrolysis unit.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic electrolysis unit. 886.4250 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4250 Ophthalmic electrolysis unit. (a) Identification. An ophthalmic electrolysis unit is an AC-powered or battery-powered device intended to destroy...
Qiu, Cuicui; Yuan, Shi; Li, Xiang; Wang, Huijiao; Bakheet, Belal; Komarneni, Sridhar; Wang, Yujue
2014-09-15
Electrolysis and ozonation are two commonly used technologies for treating wastewaters contaminated with nitrophenol pollutants. However, they are often handicapped by their slow kinetics and low yields of total organic carbon (TOC) mineralization. To improve TOC mineralization efficiency, we combined electrolysis using a boron-doped diamond (BDD) anode with ozonation (electrolysis-O3) to treat a p-nitrophenol (PNP) aqueous solution. Up to 91% TOC was removed after 60 min of the electrolysis-O3 process. In comparison, only 20 and 44% TOC was respectively removed by individual electrolysis and ozonation treatment conducted under similar reaction conditions. The result indicates that when electrolysis and ozonation are applied simultaneously, they have a significant synergy for PNP mineralization. This synergy can be mainly attributed to (i) the rapid degradation of PNP to carboxylic acids (e.g., oxalic acid and acetic acid) by O3, which would otherwise take a much longer time by electrolysis alone, and (ii) the effective mineralization of the ozone-refractory carboxylic acids to CO2 by OH generated from multiple sources in the electrolysis-O3 system. The result suggests that combining electrolysis with ozonation can provide a simple and effective way to mutually compensate the limitations of the two processes for degradation of phenolic pollutants. Copyright © 2014 Elsevier B.V. All rights reserved.
Desulfurization from Bauxite Water Slurry (BWS) Electrolysis
NASA Astrophysics Data System (ADS)
Gong, Xuzhong; Ge, Lan; Wang, Zhi; Zhuang, Siyuan; Wang, Yuhua; Ren, Lihui; Wang, Mingyong
2016-02-01
Feasibility of high-sulfur bauxite electrolysis desulfurization was examined using the electrochemical characterization, XRD, DTA, and FTIR. The cyclic voltammetry curves indicated that bauxite water slurry (BWS) electrolysis in NaOH system was controlled by diffusion. Additionally, the desulfurization effect of NaCl as the electrolyte was significantly better than that of NaOH as an electrolyte. As the stirring rate increased, the desulfurization ratio in NaCl system was not increased obviously, while the desulfurization ratio in NaOH system increased significantly, indicating further that electrolysis desulfurization in NaOH solution was controlled by diffusion. According to XRD, DTA, and FTIR analysis, the characteristic peaks of sulfur-containing phase in bauxite after electrolysis weakened or disappeared, indicating that the pyrite in bauxite was removed from electrolysis. Finally, the electrolytic desulfurization technology of bauxite was proposed based on the characteristics of BWS electrolysis.
Kamoi, Mizuka; Mashima, Yukihiko; Kawashima, Motoko; Tsubota, Kazuo
2005-06-01
To report the efficacy of electrolysis as a treatment of corneal opacities in a young patient with the superficial variant of granular corneal dystrophy. Interventional case report. An 11-year-old boy presented with subepithelial opacities in both eyes. His visual acuity was 0.2 in the left eye; he received corneal electrolysis under topical anesthesia. The electrolysis, which required only 5 minutes, resulted in the disappearance of the subepithelial opacities. His visual acuity improved to 0.4 on the next day and was 1.0 eight months later. The corneal curvature and thickness were not altered by the electrolysis. Corneal electrolysis proved to be an effective treatment for subepithelial opacities, and we recommend electrolysis as an effective and simple treatment for young patients with SGCD.
Electrolysis Performance Improvement and Validation Experiment
NASA Technical Reports Server (NTRS)
Schubert, Franz H.
1992-01-01
Viewgraphs on electrolysis performance improvement and validation experiment are presented. Topics covered include: water electrolysis: an ever increasing need/role for space missions; static feed electrolysis (SFE) technology: a concept developed for space applications; experiment objectives: why test in microgravity environment; and experiment description: approach, hardware description, test sequence and schedule.
Alkaline Ammonia Electrolysis on Electrodeposited Platinum for Controllable Hydrogen Production.
Gwak, Jieun; Choun, Myounghoon; Lee, Jaeyoung
2016-02-19
Ammonia is beginning to attract a great deal of attention as an alternative energy source carrier, because clean hydrogen can be produced through electrolytic processes without the emission of COx . In this study, we deposited various shapes of Pt catalysts under potentiostatic mode; the electrocatalytic oxidation behavior of ammonia using these catalysts was studied in alkaline media. The electrodeposited Pt was characterized by both qualitative and quantitative analysis. To discover the optimal structure and the effect of ammonia concentration, the bulk pH value, reaction temperature, and applied current of ammonia oxidation were investigated using potential sweep and galvanostatic methods. Finally, ammonia electrolysis was conducted using a zero-gap cell, producing highly pure hydrogen with an energy efficiency over 80 %. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Sibille, Laurent; Dominguez, Jesus A.
2012-01-01
The technology of direct electrolysis of molten lunar regolith to produce oxygen and molten metal alloys has progressed greatly in the last few years. The development of long-lasting inert anodes and cathode designs as well as techniques for the removal of molten products from the reactor has been demonstrated. The containment of chemically aggressive oxide and metal melts is very difficult at the operating temperatures ca. 1600 C. Containing the molten oxides in a regolith shell can solve this technical issue and can be achieved by designing a Joule-heated (sometimes called 'self-heating') reactor in which the electrolytic currents generate enough Joule heat to create a molten bath. Solutions obtained by multiphysics modeling allow the identification of the critical dimensions of concept reactors.
Production of Oxygen from Lunar Regolith by Molten Oxide Electrolysis
NASA Technical Reports Server (NTRS)
Curreri, Peter A.
2009-01-01
This paper describes the use of the molten oxide electrolysis (MOE) process for the extraction of oxygen for life support and propellant, and silicon and metallic elements for use in fabrication on the Moon. The Moon is rich in mineral resources, but it is almost devoid of chemical reducing agents, therefore, molten oxide electrolysis is ideal for extraction, since the electron is the only practical reducing agent. MOE has several advantages over other extraction methods. First, electrolytic processing offers uncommon versatility in its insensitivity to feedstock composition. Secondly, oxide melts boast the twin key attributes of highest solubilizing capacity for regolith and lowest volatility of any candidate electrolytes. The former is critical in ensuring high productivity since cell current is limited by reactant solubility, while the latter simplifies cell design by obviating the need for a gas-tight reactor to contain evaporation losses as would be the case with a gas or liquid phase fluoride reagent operating at such high temperatures. Alternatively, MOE requires no import of consumable reagents (e.g. fluorine and carbon) as other processes do, and does not rely on interfacing multiple processes to obtain refined products. Electrolytic processing has the advantage of selectivity of reaction in the presence of a multi-component feed. Products from lunar regolith can be extracted in sequence according to the stabilities of their oxides as expressed by the values of the free energy of oxide formation (e.g. chromium, manganese, Fe, Si, Ti, Al, magnesium, and calcium). Previous work has demonstrated the viability of producing Fe and oxygen from oxide mixtures similar in composition to lunar regolith by molten oxide electrolysis (electrowinning), also called magma electrolysis having shown electrolytic extraction of Si from regolith simulant. This paper describes recent advances in demonstrating the MOE process by a joint project with participation by NASA KSC and MSFC, and Ohio State University and MIT. Progress in measuring cell efficiency for oxygen production, development of non reacting electrodes, and cell feeding and withdrawal will be discussed.
Torrell, M; García-Rodríguez, S; Morata, A; Penelas, G; Tarancón, A
2015-01-01
The use of cermets as fuel electrodes for solid oxide electrolysis cells requires permanent circulation of reducing gas, e.g. H2 or CO, so called safe gas, in order to avoid oxidation of the metallic phase. Replacing metallic based electrodes by pure oxides is therefore proposed as an advantage for the industrial application of solid oxide electrolyzers. In this work, full-ceramic symmetrical solid oxide electrolysis cells have been investigated for steam/CO2 co-electrolysis. Electrolyte supported cells with La(0.75)Sr(0.25)Cr(0.5)Mn(0.5)O3-δ reversible electrodes have been fabricated and tested in co-electrolysis mode using different fuel compositions, from pure H2O to pure CO2, at temperatures between 850-900 °C. Electrochemical impedance spectroscopy and galvanostatic measurements have been carried out for the mechanistic understanding of the symmetrical cell performance. The content of H2 and CO in the product gas has been measured by in-line gas micro-chromatography. The effect of employing H2 as a safe gas has also been investigated. Maximum density currents of 750 mA cm(-2) and 620 mA cm(-2) have been applied at 1.7 V for pure H2O and for H2O : CO2 ratios of 1 : 1, respectively. Remarkable results were obtained for hydrogen-free fuel compositions, which confirmed the interest of using ceramic oxides as a fuel electrode candidate to reduce or completely avoid the use of safe gas in operation minimizing the contribution of the reverse water shift reaction (RWSR) in the process. H2 : CO ratios close to two were obtained for hydrogen-free tests fulfilling the basic requirements for synthetic fuel production. An important increase in the operation voltage was detected under continuous operation leading to a dramatic failure by delaminating of the oxygen electrode.
NASA Astrophysics Data System (ADS)
Nishida, R. T.; Beale, S. B.; Pharoah, J. G.; de Haart, L. G. J.; Blum, L.
2018-01-01
This work is among the first where the results of an extensive experimental research programme are compared to performance calculations of a comprehensive computational fluid dynamics model for a solid oxide fuel cell stack. The model, which combines electrochemical reactions with momentum, heat, and mass transport, is used to obtain results for an established industrial-scale fuel cell stack design with complex manifolds. To validate the model, comparisons with experimentally gathered voltage and temperature data are made for the Jülich Mark-F, 18-cell stack operating in a test furnace. Good agreement is obtained between the model and experiment results for cell voltages and temperature distributions, confirming the validity of the computational methodology for stack design. The transient effects during ramp up of current in the experiment may explain a lower average voltage than model predictions for the power curve.
NASA Astrophysics Data System (ADS)
Bae, Joongmyeon; Lim, Sungkwang; Jee, Hyunjin; Kim, Jung Hyun; Yoo, Young-Sung; Lee, Taehee
We are developing 1 kW class solid oxide fuel cell (SOFC) system for residential power generation (RPG) application supported by Korean Government. Anode-supported single cells with thin electrolyte layer of YSZ (yttria-stabilized zirconia) or ScSZ (scandia-stabilized zirconia) for intermediate temperature operation (650-750 °C), respectively, were fabricated and small stacks were built and evaluated. The LSCF/ScSZ/Ni-YSZ single cell showed performance of 543 mW cm -2 at 650 °C and 1680 mW cm -2 at 750 °C. The voltage of 15-cell stack based on 5 cm × 5 cm single cell (LSM/YSZ/Ni-YSZ) at 150 mW was 12.5 V in hydrogen as fuel of 120 sccm per cell at 750 °C and decreased to about 10.9 V at 500 h operation time. A 5-cell stack based on the LSCF/YSZ/FL/Ni-YSZ showed the maximum power density of 30 W, 25 W and 20 W at 750 °C, 700 °C and 650 °C, respectively. LSCF/ScSZ/Ni-YSZ-based stack showed better performance than LSCF/YSZ/Ni-YSZ stack from the experiment temperature range. I- V characteristics by using hydrogen gas and reformate gas of methane as fuel were investigated at 750 °C in LSCF/ScSZ/FL/Ni-YSZ-based 5-cell stack.
High-Temperature Performance of Stacked Silicon Nanowires for Thermoelectric Power Generation
NASA Astrophysics Data System (ADS)
Stranz, Andrej; Waag, Andreas; Peiner, Erwin
2013-07-01
Deep reactive-ion etching at cryogenic temperatures (cryo-DRIE) has been used to produce arrays of silicon nanowires (NWs) for thermoelectric (TE) power generation devices. Using cryo-DRIE, we were able to fabricate NWs of large aspect ratios (up to 32) using a photoresist mask. Roughening of the NW sidewalls occurred, which has been recognized as beneficial for low thermal conductivity. Generated NWs, which were 7 μm in length and 220 nm to 270 nm in diameter, were robust enough to be stacked with a bulk silicon chip as a common top contact to the NWs. Mechanical support of the NW array, which can be created by filling the free space between the NWs using silicon oxide or polyimide, was not required. The Seebeck voltage, measured across multiple stacks of up to 16 bulk silicon dies, revealed negligible thermal interface resistance. With stacked silicon NWs, we observed Seebeck voltages that were an order of magnitude higher than those observed for bulk silicon. Degradation of the TE performance of silicon NWs was not observed for temperatures up to 470°C and temperature gradients up to 170 K.
NASA Astrophysics Data System (ADS)
Ruiu, Tiziana; Dreizler, Andreas M.; Mitzel, Jens; Gülzow, Erich
2016-01-01
Nowadays, the operating temperature of polymer electrolyte membrane fuel cell stacks is typically limited to 80 °C due to water management issues of membrane materials. In the present work, short-term operation at elevated temperatures up to 120 °C and long-term steady-state operation under automotive relevant conditions at 80 °C are examined using a 30-cell stack developed at DLR. The high temperature behavior is investigated by using temperature cycles between 90 and 120 °C without adjustment of the gases dew points, to simulate a short-period temperature increase, possibly caused by an extended power demand and/or limited heat removal. This galvanostatic test demonstrates a fully reversible performance decrease of 21 ± 1% during each thermal cycle. The irreversible degradation rate is about a factor of 6 higher compared to the one determined by the long-term test. The 1200-h test at 80 °C demonstrates linear stack voltage decay with acceptable degradation rate, apart from a malfunction of the air compressor, which results in increased catalyst degradation effects on individual cells. This interpretation is based on an end-of-life characterization, aimed to investigate catalyst, electrode and membrane degradation, by determining hydrogen crossover rates, high frequency resistances, electrochemically active surface areas and catalyst particle sizes.
Study on component interface evolution of a solid oxide fuel cell stack after long term operation
NASA Astrophysics Data System (ADS)
Yang, Jiajun; Huang, Wei; Wang, Xiaochun; Li, Jun; Yan, Dong; Pu, Jian; Chi, Bo; Li, Jian
2018-05-01
A 5-cell solid oxide fuel cell (SOFC) stack with external manifold structure is assembled and underwent a durability test with an output of 250 W for nearly 4400 h when current density and operating temperature are 355 mA/cm2 and 750 °C. Cells used in the stack are anode-supported cells (ASC) with yttria-stabilized zirconia (YSZ) electrolytes, Ni/YSZ hydrogen electrodes, and YSZ based composite cathode. The dimension of the cell is 150 × 150 mm (active area: 130 × 130 mm). Ceramic-glass sealant is used in the stack to keep the gas tightness between cells, interconnects and manifolds. Pure hydrogen and dry air are used as fuel and oxidant respectively. The stack has a maximum output of 340 W at 562 mA/cm2 current density at 750 °C. The stack shows a degradation of 1.5% per 1000 h during the test with 2 thermal cycles to room temperature. After the test, the stack was dissembled and examined. The relationship between microstructure changes of interfaces and degradation in the stack are discussed. The microstructure evolution of interfaces between electrode, contact material and current collector are unveiled and their relationship with the degradation is discussed.
NASA Astrophysics Data System (ADS)
Yi, Xuenong; Wang, Yulin
2017-06-01
A combined process of micro-electrolysis, two-phase anaerobic, aerobic and electrolysis was investigated for the treatment of oxidized modified starch wastewater (OMSW). Optimum ranges for important operating variables were experimentally determined and the treated water was tested for reuse in the production process of corn starch. The optimum hydraulic retention time (HRT) of micro-electrolysis, methanation reactor, aerobic process and electrolysis process were 5, 24, 12 and 3 h, respectively. The addition of iron-carbon fillers to the acidification reactor was 200 mg/L while the best current density of electrolysis was 300 A/m2. The biodegradability was improved from 0.12 to 0.34 by micro-electrolysis. The whole treatment was found to be effective with removal of 96 % of the chemical oxygen demand (COD), 0.71 L/day of methane energy recovery. In addition, active chlorine production (15,720 mg/L) was obtained by electrolysis. The advantage of this hybrid process is that, through appropriate control of reaction conditions, effect from high concentration of salt on the treatment was avoided. Moreover, the process also produced the material needed in the production of oxidized starch while remaining emission-free and solved the problem of high process cost.
Electrochemical Features of the Ferric Sulfate Leaching of CuFeS2/C Aggregates.
1984-11-28
HCl at room temperature by linear sweep f’ -" !, voltametry Ai potentiostatic electrolysis. For example, they found #i j n one case that the anodic...converter and Model 175 potential sweep generator. Potentlo- * dynamic polarization experiments were designed to examine the nature :of the half-cell
NASA Astrophysics Data System (ADS)
Yang, Tao; Shaula, Aliaksandr; Pukazhselvan, D.; Ramasamy, Devaraj; Deng, Jiguang; da Silva, E. L.; Duarte, Ricardo; Saraiva, Jorge A.
2017-12-01
The polarization behavior of Ba0.5Sr0.5Co0.8Fe0.2O3-δ-BaCe0.4Zr0.4Y0.2O3-δ (BSCF-BCZY) electrode under steam electrolysis conditions was studied in detail. The composite oxygen electrode supported by BCZY electrolyzer has been assessed as a function of temperature (T), water vapor partial pressures (pH2O), and bias polarization voltage for electrodes of comparable microstructure. The Electrochemical impedance spectra show two depressed arcs in general without bias polarization. And the electrode resistance became smaller with the increase of the bias polarization under the same water vapor partial pressures. The total resistance of the electrode was shown to be significantly affected by temperature, with the same level of pH2O and bias polarization voltage. This result highlights BSCF-BCZY as an effective oxygen electrode under moderate polarization and pH2O conditions.
On-Board Hydrogen Gas Production System For Stirling Engines
Johansson, Lennart N.
2004-06-29
A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.
NASA Technical Reports Server (NTRS)
Schreiner, Samuel S.; Dominguez, Jesus A.; Sibille, Laurent; Hoffman, Jeffrey A.
2015-01-01
We present a parametric sizing model for a Molten Electrolysis Reactor that produces oxygen and molten metals from lunar regolith. The model has a foundation of regolith material properties validated using data from Apollo samples and simulants. A multiphysics simulation of an MRE reactor is developed and leveraged to generate a vast database of reactor performance and design trends. A novel design methodology is created which utilizes this database to parametrically design an MRE reactor that 1) can sustain the required mass of molten regolith, current, and operating temperature to meet the desired oxygen production level, 2) can operate for long durations via joule heated, cold wall operation in which molten regolith does not touch the reactor side walls, 3) can support a range of electrode separations to enable operational flexibility. Mass, power, and performance estimates for an MRE reactor are presented for a range of oxygen production levels. The effects of several design variables are explored, including operating temperature, regolith type/composition, batch time, and the degree of operational flexibility.
NASA Astrophysics Data System (ADS)
Pan, Zehua; Liu, Qinglin; Lyu, Renzhi; Li, Ping; Chan, Siew Hwa
2018-02-01
In this work, the effects of the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) electrode-yttria stabilized zirconia (YSZ) electrolyte interface on the stability of LSCF electrodes under high-current electrolysis are studied. Six different half-cells with different configurations are tested at 800 °C for 264 h under an electrolysis current of 1 A cm-2. A few concluding remarks can be drawn by comparing the behaviors of different cells. Firstly, it is confirmed that the formation of SrZrO3 at the interface will lead to the delamination of air electrode. Thus, the formation of SrZrO3 should be strictly prevented. Secondly, increasing sintering temperature can decrease the degradation rate of polarization resistance, RP, for LSCF electrodes. Thirdly, the increase of ohmic resistance, RS, comes from structural changes as the degradation rate in percentage is similar for cells with different electrolytes and electrodes. Fourthly, the LSCF electrode after the electrolysis test shows recrystallization and lattice shrink which could be the reason for the degradation of LSCF electrodes on Gd0.1Ce0.9O2-δ (GDC) electrolytes. Lastly, comparing all the samples, the cell composed of YSZ electrolyte, dense GDC interlayer and LSCF electrode sintered at 1000 °C can be used for future study on the degradation mechanisms of the LSCF air electrode and the electrolyte.
Study on Self-start up of Polymer Electrolyte Fuel Cell Stack at Subzero Temperature
NASA Astrophysics Data System (ADS)
Shirato, Hiroyasu; Hoshina, Hideo; Yamakoshi, Yukiyasu; Tomita, Kazuhiko; Oka, Yoshiaki
This paper aims to boot up polymer electrolyte fuel cells at subzero temperature without energy from outside and compass the conditions. Visualization tests of water drainage and voltage-current density characteristics provided the selection of a serpentine type as a channel of a fuel cell separator for cold region. The successful start-up of the cell at subzero temperature requires suitable current densities corresponding to the ambient temperature since the lower the temperature is, the lower the cell voltage soon after the start-up is. Suitable amount of exhausted energy is also necessary for the successful self start-up. Humidification using potassium acetate 30 mass% solution provides increased impedance of the cell and inhibits the water freezing owing to its dispersal to the electrode compared to no humidification. A stack laminated 25 sheets of the serpentine type separators enables stabilized power generation at normal temperature. The stack is also bootable with no energy from outside at 263K.
Influence factors of the inter-nanowire thermal contact resistance in the stacked nanowires
NASA Astrophysics Data System (ADS)
Wu, Dongxu; Huang, Congliang; Zhong, Jinxin; Lin, Zizhen
2018-05-01
The inter-nanowire thermal contact resistance is important for tuning the thermal conductivity of a nanocomposite for thermoelectric applications. In this paper, the stacked copper nanowires are applied for studying the thermal contact resistance. The stacked copper nanowires are firstly made by the cold-pressing method, and then the nanowire stacks are treated by sintering treatment. With the effect of the volumetric fraction of nanowires in the stack and the influence of the sintering-temperature on the thermal contact resistance discussed, results show that: The thermal conductivity of the 150-nm copper nanowires can be enlarged almost 2 times with the volumetric fraction increased from 32 to 56% because of the enlarged contact-area and contact number of a copper nanowire. When the sintering temperature increases from 293 to 673 K, the thermal conductivity of the stacked 300-nm nanowires could be enlarged almost 2.5 times by the sintering treatment, because of the improved lattice property of the contact zone. In conclusion, application of a high volumetric fraction or/and a sintering-treatment are effectivity to tune the inter-nanowire thermal contact resistance, and thus to tailor the thermal conductivity of a nanowire network or stack.
A fuel cell balance of plant test facility
NASA Astrophysics Data System (ADS)
Dicks, A. L.; Martin, P. A.
Much attention is focused in the fuel cell community on the development of reliable stack technology, but to successfully exploit fuel cells, they must form part of integrated power generation systems. No universal test facilities exist to evaluate SOFC stacks and comparatively little research has been undertaken concerning the issues of the rest of the system, or balance of plant (BOP). BG, in collaboration with Eniricerche, has therefore recently designed and built a test facility to evaluate different configurations of the BOP equipment for a 1-5 kWe solid oxide fuel cell (SOFC) stack. Within this BOP project, integrated, dynamic models have been developed. These have shown that three characteristic response times exist when the stack load is changed and that three independent control loops are required to manage the almost instantaneous change in power output from an SOFC stack, maintain the fuel utilisation and control the stack temperature. Control strategies and plant simplifications, arising from the dynamic modelling, have also been implemented in the BOP test facility. An SOFC simulator was designed and integrated into the control system of the test rig to behave as a real SOFC stack, allowing the development of control strategies without the need for a real stack. A novel combustor has been specifically designed, built and demonstrated to be capable of burning the low calorific anode exhaust gas from an SOFC using the oxygen depleted cathode stream. High temperature, low cost, shell and tube heat exchangers have been shown to be suitable for SOFC systems. Sealing of high temperature anode recirculation fans has, however, been shown to be a major issue and identified as a key area for further investigation.
Mascia, Michele; Monasterio, Sara; Vacca, Annalisa; Palmas, Simonetta
2016-12-05
An electrochemical treatment was investigated to remove Microcystis aeruginosa from water. A fixed bed reactor in flow was tested, which was equipped with electrodes constituted by stacks of grids electrically connected in parallel, with the electric field parallel to the fluid flow. Conductive diamond were used as anodes, platinised Ti as cathode. Electrolyses were performed in continuous and in batch recirculated mode with flow rates corresponding to Re from 10 to 160, current densities in the range 10-60Am(-2) and Cl(-) concentrations up to 600gm(-3). The absorbance of chlorophyll-a pigment and the concentration of products and by-products of electrolysis were measured. In continuous experiments without algae in the inlet stream, total oxidants concentrations as equivalent Cl2, of about 0.7gCl2m(-3) were measured; the maximum values were obtained at Re=10 and i=25Am(-2), with values strongly dependent on the concentration of Cl(-). The highest algae inactivation was obtained under the operative conditions of maximum generation of oxidants; in the presence of microalgae the oxidants concentrations were generally below the detection limit. Results indicated that most of the bulk oxidants electrogenerated is constituted by active chlorine. The prevailing mechanism of M. aeruginosa inactivation is the disinfection by bulk oxidants. The experimental data were quantitatively interpreted through a simple plug flow model, in which the axial dispersion accounts for the non-ideal flow behaviour of the system; the model was successfully used to simulate the performances of the reactor in the single-stack configuration used for the experiments and in multi-stack configurations. Copyright © 2016 Elsevier B.V. All rights reserved.
High Efficiency Stacked Organic Light-Emitting Diodes Employing Li2O as a Connecting Layer
NASA Astrophysics Data System (ADS)
Kanno, Hiroshi; Hamada, Yuji; Nishimura, Kazuki; Okumoto, Kenji; Saito, Nobuo; Ishida, Hiroki; Takahashi, Hisakazu; Shibata, Kenichi; Mameno, Kazunobu
2006-12-01
We demonstrate the high-efficiency stacked organic light-emitting diodes (OLEDs) introducing new connecting layers. In the green stacked OLEDs, the external efficiencies increase proportionally to the number of the stacked units without suffering the decrease in power efficiency. The current, power and external efficiencies at 0.5 mA/cm2 of the stacked OLED with six stacked units (6-stacked OLED) have reached 235 cd/A, 46.6 lm/W, and 65.8%, respectively. Furthermore, we have applied the connecting layers to a white stacked OLED and fabricated an active-matrix full-color display with a low temperature polysilicon thin film transistor backplane. In the device, the current efficiency of the white 2-stacked OLED is enhanced by a factor of 2.2. The initial luminance drop is significantly suppressed for the white 2-stacked OLED compared to 1-stacked OLED. The proposed white stacked OLED technology can be applied to a full-color display for a practical use.
Multilayer Piezoelectric Stack Actuator Characterization
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph
2008-01-01
Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.
Manual of phosphoric acid fuel cell stack three-dimensional model and computer program
NASA Technical Reports Server (NTRS)
Lu, C. Y.; Alkasab, K. A.
1984-01-01
A detailed distributed mathematical model of phosphoric acid fuel cell stack have been developed, with the FORTRAN computer program, for analyzing the temperature distribution in the stack and the associated current density distribution on the cell plates. Energy, mass, and electrochemical analyses in the stack were combined to develop the model. Several reasonable assumptions were made to solve this mathematical model by means of the finite differences numerical method.
Nakajima, Norihito; Nakano, Takashi; Harada, Fumiue; Taniguchi, Hiromasa; Yokoyama, Isao; Hirose, Jun; Daikoku, Eriko; Sano, Kouichi
2004-05-01
Tap water is one of the causative factors of hospital infections. We examined the disinfective potential of electrolysis and mechanism of disinfection, and clarified the disinfective effect of electrolysis on tap water contaminated with bacteria, and discussed its clinical applications. Tap waters artificially contaminated with Pseudomonas aeruginosa, Escherichia coli, Legionella pneumophila, and Staphylococcus aureus could be sterilized by electrolysis at 20-30 mA for 5 min. A high-density suspension (10(6) CFU/ml) of a spore forming bacterium, Bacillus subtilis was not completely sterilized by electrolysis at 50 mA up to 30 min, but a low-density suspension (10(5) CFU/ml) was totally sterilized by electrolysis at 50 mA for 5 min. Electrolyzed P. aeruginosa changed morphologically, that is, there was bleb formation on the cell wall and irregular aggregation of cytoplasmic small granules. Moreover, cytoplasmic enzyme, nitrate reductase, was inactivated by the electrolysis. On the other hand, genomic DNA of the electrolyzed bacteria was not degenerated, therefore, their DNA polymerase activity was not completely inactivated. Consequently, the major agent in electrolysis for bactericidal action was considered to be free chlorine, and the possible bactericidal mechanism was by destruction of bacterial membranes, followed by the aggregation of peripheral cytoplasmic proteins. Electrolysis of tap water for both disinfecting contaminating bacteria and increasing the disinfectant capacity was considered effective with some limitations, particularly against high-density contamination by spore-forming bacteria. In clinical settings, electrolysis of tap water is considered effective to disinfect water for hand washing in operation theatres, and bathing water for immunocompromised hosts.
Production of Oxygen from Lunar Regolith using Molten Oxide Electrolysis
NASA Technical Reports Server (NTRS)
Sibille, Laurent; Sadoway, Donald R.; Sirk, Aislinn; Tripathy, Prabhat; Melendez, Orlando; Standish, Evan; Dominquez, Jesus A.; Stefanescu, Doru M.; Curreri, Peter A.; Poizeau, Sophie
2009-01-01
This slide presentation reviews the possible use of molten oxide electrolysis to extract oxygen from the Lunar Regolith. The presentation asserts that molten regolith electrolysis has advanced to be a useful method for production of oxygen and metals in situ on the Moon. The work has demonstrated an 8 hour batch of electrolysis at 5 amps using Iridium inert anodes.
Thermoacoustic enhancements for nuclear fuel rods and other high temperature applications
Garrett, Steven L.; Smith, James A.; Kotter, Dale K.
2017-05-09
A nuclear thermoacoustic device includes a housing defining an interior chamber and a portion of nuclear fuel disposed in the interior chamber. A stack is disposed in the interior chamber and has a hot end and a cold end. The stack is spaced from the portion of nuclear fuel with the hot end directed toward the portion of nuclear fuel. The stack and portion of nuclear fuel are positioned such that an acoustic standing wave is produced in the interior chamber. A frequency of the acoustic standing wave depends on a temperature in the interior chamber.
Jung, Youmi; Yoon, Yeojoon; Hong, Eunkyung; Kwon, Minhwan; Kang, Joon-Wun
2013-07-15
Since ballast water affects the ocean ecosystem, the International Maritime Organization (IMO) sets a standard for ballast water management and might impose much tighter regulations in the future. The aim of this study is to evaluate the inactivation efficiency of ozonation, electrolysis, and an ozonation-electrolysis combined process, using B. subtilis spores. In seawater ozonation, HOBr is the key active substance for inactivation, because of rapid reactivity of ozone with Br(-) in seawater. In seawater electrolysis, it is also HOBr, but not HOCl, because of the rapid reaction of HOCl with Br(-), which has not been recognized carefully, even though many electrolysis technologies have been approved by the IMO. Inactivation pattern was different in ozonation and electrolysis, which has some limitations with the tailing or lag-phase, respectively. However, each deficiency can be overcome with a combined process, which is most effective as a sequential application of ozonation followed by electrolysis. Copyright © 2013 Elsevier Ltd. All rights reserved.
Giasin, Khaled; Ayvar-Soberanis, Sabino
2016-07-28
The rise in cutting temperatures during the machining process can influence the final quality of the machined part. The impact of cutting temperatures is more critical when machining composite-metal stacks and fiber metal laminates due to the stacking nature of those hybrids which subjects the composite to heat from direct contact with metallic part of the stack and the evacuated hot chips. In this paper, the workpiece surface temperature of two grades of fiber metal laminates commercially know as GLARE is investigated. An experimental study was carried out using thermocouples and infrared thermography to determine the emissivity of the upper, lower and side surfaces of GLARE laminates. In addition, infrared thermography was used to determine the maximum temperature of the bottom surface of machined holes during drilling GLARE under dry and minimum quantity lubrication (MQL) cooling conditions under different cutting parameters. The results showed that during the machining process, the workpiece surface temperature increased with the increase in feed rate and fiber orientation influenced the developed temperature in the laminate.
Giasin, Khaled; Ayvar-Soberanis, Sabino
2016-01-01
The rise in cutting temperatures during the machining process can influence the final quality of the machined part. The impact of cutting temperatures is more critical when machining composite-metal stacks and fiber metal laminates due to the stacking nature of those hybrids which subjects the composite to heat from direct contact with metallic part of the stack and the evacuated hot chips. In this paper, the workpiece surface temperature of two grades of fiber metal laminates commercially know as GLARE is investigated. An experimental study was carried out using thermocouples and infrared thermography to determine the emissivity of the upper, lower and side surfaces of GLARE laminates. In addition, infrared thermography was used to determine the maximum temperature of the bottom surface of machined holes during drilling GLARE under dry and minimum quantity lubrication (MQL) cooling conditions under different cutting parameters. The results showed that during the machining process, the workpiece surface temperature increased with the increase in feed rate and fiber orientation influenced the developed temperature in the laminate. PMID:28773757
NASA Astrophysics Data System (ADS)
Grüebler, Martin U.; Widmer, Silv; Korner-Nievergelt, Fränzi; Naef-Daenzer, Beat
2014-07-01
The microclimate of potential roost-sites is likely to be a crucial determinant in the optimal roost-site selection of endotherms, in particular during the winter season of temperate zones. Available roost-sites for birds and mammals in European high trunk orchards are mainly tree cavities, wood stacks and artificial nest boxes. However, little is known about the microclimatic patterns inside cavities and thermal advantages of using these winter roost-sites. Here, we simultaneously investigate the thermal patterns of winter roost-sites in relation to winter ambient temperature and their insulation capacity. While tree cavities and wood stacks strongly buffered the daily cycle of temperature changes, nest boxes showed low buffering capacity. The buffering effect of tree cavities was stronger at extreme ambient temperatures compared to temperatures around zero. Heat sources inside roosts amplified Δ T (i.e., the difference between inside and outside temperatures), particularly in the closed roosts of nest boxes and tree cavities, and less in the open wood stacks with stronger circulation of air. Positive Δ T due to the installation of a heat source increased in cold ambient temperatures. These results suggest that orchard habitats in winter show a spatiotemporal mosaic of sites providing different thermal benefits varying over time and in relation to ambient temperatures. At cold temperatures tree cavities provide significantly higher thermal benefits than nest boxes or wood stacks. Thus, in winter ecology of hole-using endotherms, the availability of tree cavities may be an important characteristic of winter habitat quality.
Miyagawa, Takuya; Fujie, Toshinori; Ferdinandus; Vo Doan, Tat Thang; Sato, Hirotaka; Takeoka, Shinji
2016-12-14
In this paper, a microthermograph, temperature mapping with high spatial resolution, was established using luminescent molecules embedded ultrathin polymeric films (nanosheets), and demonstrated in a living small animal to map out and visualize temperature shift due to animal's muscular activity. Herein, we report super flexible and self-adhesive (no need of glue) nanothermosensor consisting of stacked two different polymeric nanosheets with thermosensitive (Eu-tris (dinaphthoylmethane)-bis-trioctylphosphine oxide: EuDT) and insensitive (Rhodamine 800) dyes being embedded. Such stacked nanosheets allow for the ratiometric thermometry, with which the undesired luminescence intensity shift due to focal drift or animal's z-axis displacement is eliminated and the desired intensity shift solely due to the temperature shift of the sample (living muscle) can be acquired. With the stacked luminescent nanosheets, we achieved the first-ever demonstration of video filming of chronologically changing temperature-shift distribution from the rest state to the active state of the muscles in the living animal. The polymer nanosheet engineering and in vivo microthermography presented in the paper are promising technologies to microscopically explore the heat production and heat transfer in living cells, tissues, and organisms with high spatial resolution beyond what existing thermometric technologies such as infrared thermography have ever achieved.
The Characterisation of a PEM Fuel-Cell System with a Focus on UAS Applications
2014-01-01
consumption at rated output Approximately 580 ml/min (at normal conditions) Maximum permissible cell temperature Operation: 50 °C; starting: 45 °C...serves to control the temperature of the stack as well as to provide oxygen for the reaction. Fur- thermore, the theoretically computed airflow rate is...The stack temperature has a significant effect on the performance of a fuel cell. Therefore, an understanding of how a fuel cell functions across a
Transient nanobubbles in short-time electrolysis
NASA Astrophysics Data System (ADS)
Svetovoy, Vitaly B.; Sanders, Remco G. P.; Elwenspoek, Miko C.
2013-05-01
Water electrolysis in a microsystem is observed and analyzed on a short-time scale of ∼10 μs. The very unusual properties of the process are stressed. An extremely high current density is observed because the process is not limited by the diffusion of electroactive species. The high current is accompanied by a high relative supersaturation, S > 1000, that results in homogeneous nucleation of bubbles. On the short-time scale only nanobubbles can be formed. These nanobubbles densely cover the electrodes and aggregate at a later time to microbubbles. The effect is significantly intensified with a small increase of temperature. Application of alternating polarity voltage pulses produces bubbles containing a mixture of hydrogen and oxygen. Spontaneous reaction between gases is observed for stoichiometric bubbles with sizes smaller than ∼150 nm. Such bubbles disintegrate violently affecting the surfaces of the electrodes.
Electrochemical hydrogenation of thiophene on SPE electrodes
NASA Astrophysics Data System (ADS)
Huang, Haiyan; Yuan, Penghui; Yu, Ying; Chung, Keng H.
2017-01-01
Electrochemical reduction desulfurization is a promising technology for petroleum refining which is environmental friendly, low cost and able to achieve a high degree of automation. Electrochemical hydrogenation of thiophene was performed in a three-electrode system which SPE electrode was the working electrode. The electrochemical desulfurization was studied by cyclic voltammetry and bulk electrolysis with coulometry (BEC) techniques. The results of cyclic voltammetry showed that the electrochemical hydrogenation reduction reaction occurred at -0.4V. The BEC results showed that the currents generated from thiophene hydrogenation reactions increased with temperature. According to Arrhenius equation, activation energy of thiophene electrolysis was calculated and lower activation energy value indicated it was diffusion controlled reaction. From the products of electrolytic reactions, the mechanisms of electrochemical hydrogenation of thiophene were proposed, consisting of two pathways: openingring followed by hydrogenation, and hydrogenation followed by ring opening.
High Yield Chemical Vapor Deposition Growth of High Quality Large-Area AB Stacked Bilayer Graphene
Liu, Lixin; Zhou, Hailong; Cheng, Rui; Yu, Woo Jong; Liu, Yuan; Chen, Yu; Shaw, Jonathan; Zhong, Xing; Huang, Yu; Duan, Xiangfeng
2012-01-01
Bernal stacked (AB stacked) bilayer graphene is of significant interest for functional electronic and photonic devices due to the feasibility to continuously tune its band gap with a vertical electrical field. Mechanical exfoliation can be used to produce AB stacked bilayer graphene flakes but typically with the sizes limited to a few micrometers. Chemical vapor deposition (CVD) has been recently explored for the synthesis of bilayer graphene but usually with limited coverage and a mixture of AB and randomly stacked structures. Herein we report a rational approach to produce large-area high quality AB stacked bilayer graphene. We show that the self-limiting effect of graphene growth on Cu foil can be broken by using a high H2/CH4 ratio in a low pressure CVD process to enable the continued growth of bilayer graphene. A high temperature and low pressure nucleation step is found to be critical for the formation of bilayer graphene nuclei with high AB stacking ratio. A rational design of a two-step CVD process is developed for the growth of bilayer graphene with high AB stacking ratio (up to 90 %) and high coverage (up to 99 %). The electrical transport studies demonstrated that devices made of the as-grown bilayer graphene exhibit typical characteristics of AB stacked bilayer graphene with the highest carrier mobility exceeding 4,000 cm2/V·s at room temperature, comparable to that of the exfoliated bilayer graphene. PMID:22906199
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hancock, David, W.
2012-02-14
Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology formore » air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.« less
Development of on-site PAFC stacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hotta, K.; Matsumoto, Y.; Horiuchi, H.
1996-12-31
PAFC (Phosphoric Acid Fuel Cell) has been researched for commercial use and demonstration plants have been installed in various sites. However, PAFC don`t have a enough stability yet, so more research and development must be required in the future. Especially, cell stack needs a proper state of three phases (liquid, gas and solid) interface. It is very difficult technology to keep this condition for a long time. In the small size cell with the electrode area of 100 cm{sup 2}, gas flow and temperature distributions show uniformity. But in the large size cell with the electrode area of 4000 cm{supmore » 2}, the temperature distributions show non-uniformity. These distributions would cause to be shorten the cell life. Because these distributions make hot-spot and gas poverty in limited parts. So we inserted thermocouples in short-stack for measuring three-dimensional temperature distributions and observed effects of current density and gas utilization on temperature.« less
Effect of shroud geometry on the effectiveness of a short mixing stack gas eductor model
NASA Astrophysics Data System (ADS)
Kavalis, A. E.
1983-06-01
An existing apparatus for testing models of gas eductor systems using high temperature primary flow was modified to provide improved control and performance over a wide range of gas temperature and flow rates. Secondary flow pumping, temperature and pressure data were recorded for two gas eductor system models. The first, previously tested under hot flow conditions, consists of a primary plate with four tilted-angled nozzles and a slotted, shrouded mixing stack with two diffuser rings (overall L/D = 1.5). A portable pyrometer with a surface probe was used for the second model in order to identify any hot spots at the external surface of the mixing stack, shroud and diffuser rings. The second model is shown to have almost the same mixing and pumping performance with the first one but to exhibit much lower shroud and diffuser surface temperatures.
Effect on combined cycle efficiency of stack gas temperature constraints to avoid acid corrosion
NASA Technical Reports Server (NTRS)
Nainiger, J. J.
1980-01-01
To avoid condensation of sulfuric acid in the gas turbine exhaust when burning fuel oils contaning sulfur, the exhaust stack temperature and cold-end heat exchanger surfaces must be kept above the condensation temperature. Raising the exhaust stack temperature, however, results in lower combined cycle efficiency compared to that achievable by a combined cycle burning a sulfur-free fuel. The maximum difference in efficiency between the use of sulfur-free and fuels containing 0.8 percent sulfur is found to be less than one percentage point. The effect of using a ceramic thermal barrier coating (TBC) and a fuel containing sulfur is also evaluated. The combined-cycle efficiency gain using a TBC with a fuel containing sulfur compared to a sulfur-free fuel without TBC is 0.6 to 1.0 percentage points with air-cooled gas turbines and 1.6 to 1.8 percentage points with water-cooled gas turbines.
NASA Astrophysics Data System (ADS)
Chernov, Ya. B.; Filatov, E. S.
2017-08-01
The kinetics of thermal diffusion boriding in a melt based on calcium chloride with a boron oxide additive is studied using reversed current. The main temperature, concentration, and current parameters of the process are determined. The phase composition of the coating is determined by a metallographic method.
Electronic Asymmetry by Compositionally Braking Inversion Symmetry
NASA Astrophysics Data System (ADS)
Warusawithana, Maitri
2005-03-01
By stacking molecular layers of 3 different perovskite titanate phases, BaTiO3, SrTiO3 and CaTiO3 with atomic layer control, we construct nanostructures where global inversion symmetry is broken. With the structures clamped to the substrate, the stacking order gives rise to asymmetric strain fields. The dielectric response show asymmetric field tuning consistent with the symmetry of the stacking order. By analyzing the temperature and frequency dependence of the complex dielectric constant, we show that the response comes from activated switching of dipoles between two asymmetric states separated by an energy barrier. We find the size of average dipole units from the temperature dependence of the linewidth of field tuning curves to be around 10 unit cells in all the different nanostructures we investigate. At low temperatures we observe a deviation from the kinetic response suggesting a further growth in correlations. Pyrocurrent measurements confirm this observation indicating a phase transition to a ferro-like state. We explain the high temperature dipoles as single unit cell cross sectional columns correlated via the strain fields in the stacking direction, with the height somewhat short of the film thickness possibly due to some form of weak disorder.
Measurement of heat conduction through stacked screens
NASA Technical Reports Server (NTRS)
Lewis, M. A.; Kuriyama, T.; Kuriyama, F.; Radebaugh, R.
1998-01-01
This paper describes the experimental apparatus for the measurement of heat conduction through stacked screens as well as some experimental results taken with the apparatus. Screens are stacked in a fiberglass-epoxy cylinder, which is 24.4 mm in diameter and 55 mm in length. The cold end of the stacked screens is cooled by a Gifford-McMahon (GM) cryocooler at cryogenic temperature, and the hot end is maintained at room temperature. Heat conduction through the screens is determined from the temperature gradient in a calibrated heat flow sensor mounted between the cold end of the stacked screens and the GM cryocooler. The samples used for these experiments consisted of 400-mesh stainless steel screens, 400-mesh phosphor bronze screens, and two different porosities of 325-mesh stainless steel screens. The wire diameter of the 400-mesh stainless steel and phosphor bronze screens was 25.4 micrometers and the 325-mesh stainless steel screen wire diameters were 22.9 micrometers and 27.9 micrometers. Standard porosity values were used for the experimental data with additional porosity values used on selected experiments. The experimental results showed that the helium gas between each screen enhanced the heat conduction through the stacked screens by several orders of magnitude compared to that in vacuum. The conduction degradation factor is the ratio of actual heat conduction to the heat conduction where the regenerator material is assumed to be a solid rod of the same cross sectional area as the metal fraction of the screen. This factor was about 0.1 for the stainless steel and 0.022 for the phosphor bronze, and almost constant for the temperature range of 40 to 80 K at the cold end.
Measurement of heat conduction through stacked screens.
Lewis, M A; Kuriyama, T; Kuriyama, F; Radebaugh, R
1998-01-01
This paper describes the experimental apparatus for the measurement of heat conduction through stacked screens as well as some experimental results taken with the apparatus. Screens are stacked in a fiberglass-epoxy cylinder, which is 24.4 mm in diameter and 55 mm in length. The cold end of the stacked screens is cooled by a Gifford-McMahon (GM) cryocooler at cryogenic temperature, and the hot end is maintained at room temperature. Heat conduction through the screens is determined from the temperature gradient in a calibrated heat flow sensor mounted between the cold end of the stacked screens and the GM cryocooler. The samples used for these experiments consisted of 400-mesh stainless steel screens, 400-mesh phosphor bronze screens, and two different porosities of 325-mesh stainless steel screens. The wire diameter of the 400-mesh stainless steel and phosphor bronze screens was 25.4 micrometers and the 325-mesh stainless steel screen wire diameters were 22.9 micrometers and 27.9 micrometers. Standard porosity values were used for the experimental data with additional porosity values used on selected experiments. The experimental results showed that the helium gas between each screen enhanced the heat conduction through the stacked screens by several orders of magnitude compared to that in vacuum. The conduction degradation factor is the ratio of actual heat conduction to the heat conduction where the regenerator material is assumed to be a solid rod of the same cross sectional area as the metal fraction of the screen. This factor was about 0.1 for the stainless steel and 0.022 for the phosphor bronze, and almost constant for the temperature range of 40 to 80 K at the cold end.
Solid-State Water Electrolysis with an Alkaline Membrane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, YJ; Chen, G; Mendoza, AJ
2012-06-06
We report high-performance, durable alkaline membrane water electrolysis in a solid-state cell. An anion exchange membrane (AEM) and catalyst layer ionomer for hydroxide ion conduction were used without the addition of liquid electrolyte. At 50 degrees C, an AEM electrolysis cell using iridium oxide as the anode catalyst and Pt black as the cathode catalyst exhibited a current density of 399 mA/cm(2) at 1.80 V. We found that the durability of the AEM-based electrolysis cell could be improved by incorporating a highly durable ionomer in the catalyst layer and optimizing the water feed configuration. We demonstrated an AEM-based electrolysis cellmore » with a lifetime of > 535 h. These first-time results of water electrolysis in a solid-state membrane cell are promising for low-cost, scalable hydrogen production.« less
Yuan, Haiping; Zhu, Nanwen; Song, Lijie
2010-06-01
The potential benefits of electrolysis-conditioned sludge dewatering treatment were investigated in this paper. Focuses were placed on effectiveness and factors affecting such novel application of electrolysis process. Experiments have demonstrated that a significant improvement of sludge dewaterability evaluated by capillary suction time (CST) could be obtained at a relative low value of electrolysis voltage. A Box-Behnken experimental design based on the response surface methodology (RSM) was applied to evaluate the optimum of the influencing variables. The optimal values for electrolysis voltage, electrode distance and electrolysis time are 21 V, 5 cm and 12 min, respectively, at which the CST reduction efficiency of 18.8+/-3.1% could be achieved, this agreed with that predicted by an established polynomial model in this study. (c) 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Zhongwei; Yan, Taihong; Zheng, Weifang
2013-07-01
The electrochemical reduction of uranyl nitrate is a green, mild way to make uranous ions. Undivided electrolyzers whose maintenance is less but their conversion ratio and current efficiency are low, have been chosen. However, at the beginning of undivided electrolysis, high current efficiency can also be maintained. Divided electrolyzers' conversion ratio and current efficiency is much higher because the re-oxidation of uranous on anode is avoided, but their maintenance costs are more, because in radioactive environment the membrane has to be changed after several operations. In this paper, a combined method of uranous production is proposed which consists of 2more » stages: undivided electrolysis (early stage) and divided electrolysis (late stage) to benefit from the advantages of both electrolysis modes. The performance of the combined method was tested. The results show that in combined mode, after 200 min long electrolysis (80 min undivided electrolysis and 120 min divided electrolysis), U(IV) yield can achieve 92.3% (500 ml feed, U 199 g/l, 72 cm{sup 2} cathode, 120 mA/cm{sup 2}). Compared with divided mode, about 1/3 working time in divided electrolyzer is reduced to achieve the same U(IV) yield. If 120 min long undivided electrolysis was taken, more than 1/2 working time can be reduced in divided electrolyzer, which means that about half of the maintenance cost can also be reduced. (authors)« less
NASA Astrophysics Data System (ADS)
Mastropasqua, L.; Campanari, S.; Brouwer, J.
2017-12-01
The need to experimentally understand the detailed performance of SOFC stacks under operating conditions typical of commercial SOFC systems has prompted this two-part study. The steady state performance of a 6-cell short stack of yttria (Y2O3) stabilised zirconia (YSZ) with Ni/YSZ anodes and composite Sr-doped lanthanum manganite (LaMnO3, LSM)/YSZ cathodes is experimentally evaluated. In Part A, the stack characterisation is carried out by means of sensitivity analyses on the fuel utilisation factor and the steam-to-carbon ratio. Electrical and environmental performances are assessed and the results are compared with a commercial full-scale micro-CHP system, which comprises the same cells. The results show that the measured temperature dynamics of the short stack in a test stand environment are on the order of many minutes; therefore, one cannot neglect temperature dynamics for a precise measurement of the steady state polarisation behaviour. The overall polarisation performance is comparable to that of the full stack employed in the micro-CHP system, confirming the good representation that short-stack analyses can give of the entire SOFC module. The environmental performance is measured verifying the negligible values of NO emissions (<10 ppb) across the whole polarisation curve.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piyush Sabharwal
2009-07-01
Two hydrogen production processes, both powered by a Next Generation Nuclear Plant (NGNP), are currently under investigation at Idaho National Laboratory. The first is high-temperature steam electrolysis, which uses both heat and electricity; the second is thermo-chemical production through the sulfur iodine process primarily using heat. Both processes require a high temperature (>850°C) for enhanced efficiency; temperatures indicative of the NGNP. Safety and licensing mandates prudently dictate that the NGNP and the hydrogen production facility be physically isolated, perhaps requiring separation of over 100 m.
Treatment of high salinity organic wastewater by membrane electrolysis
NASA Astrophysics Data System (ADS)
Dongfang, Shen; Jinghuan, Ma; Ying, Liu; Chenguang, Zhao
2018-03-01
The effects of different operating conditions on the treatment of electrolytic wastewater were investigated by analyzing the removal rate of ammonia and COD before and after wastewater treatment by cation exchange membrane. Experiment shows that as the running time increases the electrolysis effect first increases after the smooth. The removal rate of ammonia will increase with the increase of current density, and the removal rate of COD will increase first and then decrease with the increase of current density. The increase of the temperature of the electrolytic solution will slowly increase the COD removal rate to saturation, but does not affect the removal of ammonia nitrogen. When the flow rate is less than 60L / h, the change of influent flow rate will not affect the removal of ammonia nitrogen, but the effect on COD is small, which will increase and decrease slightly. After the experiment, the surface of the cation exchange membrane was analyzed by cold field scanning electron microscopy and X-ray energy dispersive spectrometer. The surface contamination and the pollutant were determined. The experimental results showed that the aggregates were mainly chlorinated Sodium, calcium and magnesium inorganic salts, which will change the morphology of the film to reduce porosity, reduce the mass transfer efficiency, affecting the electrolysis effect.
Composite membranes for alkaline electrolysis based on polysulfone and mineral fillers
NASA Astrophysics Data System (ADS)
Burnat, Dariusz; Schlupp, Meike; Wichser, Adrian; Lothenbach, Barbara; Gorbar, Michal; Züttel, Andreas; Vogt, Ulrich F.
2015-09-01
Mineral-based membranes for high temperature alkaline electrolysis were developed by a phase inversion process with polysulfone as binder. The long-term stability of new mineral fillers: wollastonite, forsterite and barite was assessed by 8000 h-long leaching experiments (5.5 M KOH, 85 °C) combined with thermodynamic modelling. Barite has released only 6.22 10-4 M of Ba ions into the electrolyte and was selected as promising filler material, due to its excellent stability. Barite-based membranes, prepared by the phase inversion process, were further studied. The resistivity of these membranes in 5.5 M KOH was investigated as a function of membrane thickness and total porosity, hydrodynamic porosity as well as gas purities determined by conducting electrolysis at ambient conditions. It was found that a dense top layer resulting from the phase inversion process, shows resistivity values up to 451.0 ± 22 Ω cm, which is two orders of magnitude higher than a porous bulk membrane microstructure (3.89 Ω cm). Developed membranes provided hydrogen purity of 99.83 at 200 mA cm-2, which is comparable to previously used chrysotile membranes and higher than commercial state-of-the-art Zirfon 500utp membrane. These cost-effective polysulfone - barite membranes are promising candidates as asbestos replacement for commercial applications.
Low-Energy Catalytic Electrolysis for Simultaneous Hydrogen Evolution and Lignin Depolymerization.
Du, Xu; Liu, Wei; Zhang, Zhe; Mulyadi, Arie; Brittain, Alex; Gong, Jian; Deng, Yulin
2017-03-09
Here, a new proton-exchange-membrane electrolysis is presented, in which lignin was used as the hydrogen source at the anode for hydrogen production. Either polyoxometalate (POM) or FeCl 3 was used as the catalyst and charge-transfer agent at the anode. Over 90 % Faraday efficiency was achieved. In a thermal-insulation reactor, the heat energy could be maintained at a very low level for continuous operation. Compared to the best alkaline-water electrolysis reported in literature, the electrical-energy consumption could be 40 % lower with lignin electrolysis. At the anode, the Kraft lignin (KL) was oxidized to aromatic chemicals by POM or FeCl 3 , and reduced POM or Fe ions were regenerated during the electrolysis. Structure analysis of the residual KL indicated a reduction of the amount of hydroxyl groups and the cleavage of ether bonds. The results suggest that POM- or FeCl 3 -mediated electrolysis can significantly reduce the electrolysis energy consumption in hydrogen production and, simultaneously, depolymerize lignin to low-molecular-weight value-added aromatic chemicals. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Ben; Tian, Xiaofei; Yu, Lian; Wu, Zhenqiang
2016-12-01
Pigments in molasses wastewater (MWW) effluent, such as melanoidins, were considered as kinds of the most recalcitrant and hazardous colorant contaminants to the environment. In this study, de-coloring the MWW by a synergistic combination of micro-electrolysis with bio-treatment was performed. Aiming to a high de-colorization yield, levels of nutrition source supplies, MWW dilution ratio, and micro-electrolysis reaction time were optimized accordingly. For a diluted (50 %, v/v) MWW, an maximum overall de-colorization yield (97.1 ± 0.5 %, for absorbance at 475 nm) was achieved through the bio-electrolysis treatment. In electrolysis bio-treatment, the positive effect of micro-electrolysis was also revealed by a promoted growth of fungal biomass as well as activities of ligninolytic enzymes. Activities of lignin peroxidase, manganese peroxidase, and laccase were promoted by 111.2, 103.9, and 7.7 %, respectively. This study also implied that the bio-treatment and the micro-electrolysis had different efficiencies on removal of pigments with distinct polarities.
Suzuki segregation in a binary Cu-Si alloy.
Mendis, Budhika G; Jones, Ian P; Smallman, Raymond E
2004-01-01
Suzuki segregation to stacking faults and coherent twin boundaries has been investigated in a Cu-7.15 at.% Si alloy, heat-treated at temperatures of 275, 400 and 550 degrees C, using field-emission gun transmission electron microscopy. Silicon enrichment was observed at the stacking fault plane and decreased monotonically with increasing annealing temperature. This increase in the concentration of solute at the fault is due to the stacking fault energy being lowered at higher values of the electron-to-atom ratio of the alloy. From a McLean isotherm, the binding energy for segregation was calculated to be -0.021 +/- 0.019 eV atom(-1). Hardly any segregation was observed to coherent twin boundaries in the same alloy. This is because a twin has a lower interfacial energy than a stacking fault, so that the driving force for segregation is diminished.
Effects of cooling system parameters on heat transfer in PAFC stack. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali A.
1985-01-01
Analytical and experimental study for the effects of cooling system parameters on the heat transfer and temperature distribution in the electrode plates of a phosphoric acid fuel-cell has been conducted. An experimental set-up that simulates the operating conditions prevailing in a phosphoric-acid fuel-cell stack was designed and constructed. The set-up was then used to measure the overall heat transfer coefficient, the thermal contact resistance, and the electrode temperature distribution for two different cooling plate configurations. Two types of cooling plate configurations, serpentine and straight, were tested. Air, water, and oil were used as coolants. Measurements for the heat transfer coefficient and the thermal contact resistance were made for various flow rates ranging from 16 to 88 Kg/hr, and stack clamping pressure ranging from O to 3448 Kpa. The experimental results for the overall heat transfer coefficient were utilized to derive mathematical relations for the overall heat transfer coefficient as a function of stack clamping pressure and Reynolds number for the three coolants. The empirically derived formulas were incorporated in a previously developed computer program to predict electrodes temperature distribution and the performance of the stack cooling system. The results obtained were then compared with those available in the literature. The comparison showed maximum deviation of +/- 11%.
Spring Constants for Stacks of Curved Leaves of Pyrolytic Boron Nitride
NASA Technical Reports Server (NTRS)
Kaforey, M. L.; Deeb, C. W.; Matthiesen, D. H.
1999-01-01
Stacks of curved leaves of pyrolytic boron nitride (PBN) were deflected and the force versus deflection data was recorded. From this data, the spring constant for a given spring geometry (radius of curvature of a leaf, width of a leaf, thickness of a leaf, and number of leaves in the stack) was determined. These experiments were performed at room temperature, 500 C and 1000 C. However, temperature was not found to affect the spring constant. The measured values were generally within one order of magnitude of predictions made using a previously derived equation for a simply supported cylindrical section with a line force at the center.
A Small-Scale and Low-Cost Apparatus for the Electrolysis of Water
ERIC Educational Resources Information Center
Eggeen, Per-Odd; Kvittingen, Lise
2004-01-01
The construction of two simple, inexpensive apparatuses that clearly show the electrolysis of water are described. Traditionally the electrolysis of water is conducted in a Hofmann apparatus which is expensive and fragile.
Electrolysis Propulsion for Spacecraft Applications
NASA Technical Reports Server (NTRS)
deGroot, Wim A.; Arrington, Lynn A.; McElroy, James F.; Mitlitsky, Fred; Weisberg, Andrew H.; Carter, Preston H., II; Myers, Blake; Reed, Brian D.
1997-01-01
Electrolysis propulsion has been recognized over the last several decades as a viable option to meet many satellite and spacecraft propulsion requirements. This technology, however, was never used for in-space missions. In the same time frame, water based fuel cells have flown in a number of missions. These systems have many components similar to electrolysis propulsion systems. Recent advances in component technology include: lightweight tankage, water vapor feed electrolysis, fuel cell technology, and thrust chamber materials for propulsion. Taken together, these developments make propulsion and/or power using electrolysis/fuel cell technology very attractive as separate or integrated systems. A water electrolysis propulsion testbed was constructed and tested in a joint NASA/Hamilton Standard/Lawrence Livermore National Laboratories program to demonstrate these technology developments for propulsion. The results from these testbed experiments using a I-N thruster are presented. A concept to integrate a propulsion system and a fuel cell system into a unitized spacecraft propulsion and power system is outlined.
Hsu, Guoo-Shyng Wang; Lu, Yi-Fa; Hsu, Shun-Yao
2017-10-01
Electrolyzed water is a sustainable disinfectant, which can comply with food safety regulations and is environmentally friendly. A two-factor central composite design was adopted for studying the effects of electrolysis time and electric potential on the chlorine generation efficiency of electrolyzed deep ocean water (DOW). DOW was electrolyzed in a glass electrolyzing cell equipped with platinum-plated titanium anode and cathode. The results showed that chlorine concentration reached maximal level in the batch process. Prolonged electrolysis reduced chlorine concentration in the electrolyte and was detrimental to electrolysis efficiency, especially under high electric potential conditions. Therefore, the optimal choice of electrolysis time depends on the electrolyzable chloride in DOW and cell potential adopted for electrolysis. The higher the electric potential, the faster the chlorine level reaches its maximum, but the lower the electric efficiency will be. Copyright © 2016. Published by Elsevier B.V.
Partial oxidation of methane (POM) assisted solid oxide co-electrolysis
Chen, Fanglin; Wang, Yao
2017-02-21
Methods for simultaneous syngas generation by opposite sides of a solid oxide co-electrolysis cell are provided. The method can comprise exposing a cathode side of the solid oxide co-electrolysis cell to a cathode-side feed stream; supplying electricity to the solid oxide co-electrolysis cell such that the cathode side produces a product stream comprising hydrogen gas and carbon monoxide gas while supplying oxygen ions to an anode side of the solid oxide co-electrolysis cell; and exposing the anode side of the solid oxide co-electrolysis cell to an anode-side feed stream. The cathode-side feed stream comprises water and carbon dioxide, and the anode-side feed stream comprises methane gas such that the methane gas reacts with the oxygen ions to produce hydrogen and carbon monoxide. The cathode-side feed stream can further comprise nitrogen, hydrogen, or a mixture thereof.
Enhancing the efficiency of zero valent iron by electrolysis: Performance and reaction mechanism.
Xiong, Zhaokun; Lai, Bo; Yang, Ping
2018-03-01
Electrolysis was applied to enhance the efficiency of micron-size zero valent iron (mFe 0 ) and thereby promote p-nitrophenol (PNP) removal. The rate of PNP removal by mFe 0 with electrolysis was determined in cylindrical electrolysis reactor that employed annular aluminum plate cathode as a function of experimental factors, including initial pH, mFe 0 dosage and current density. The rate constants of PNP removal by Ele-mFe 0 were 1.72-144.50-fold greater than those by pristine mFe 0 under various tested conditions. The electrolysis-induced improvement could be primarily ascribed to stimulated mFe 0 corrosion, as evidenced by Fe 2+ release. The application of electrolysis could extend the working pH range of mFe 0 from 3.0 to 6.0 to 3.0-10.0 for PNP removal. Additionally, intermediates analysis and scavengers experiments unraveled the reduction capacity of mFe 0 was accelerated in the presence of electrolysis instead of oxidation. Moreover, the electrolysis effect could also delay passivation of mFe 0 under acidic condition, as evidenced by SEM-EDS, XRD, and XPS analysis after long-term operation. This is mainly due to increased electromigration meaning that iron corrosion products (iron hydroxides and oxides) are not primarily formed in the vicinity of the mFe 0 or at its surface. In the presence of electrolysis, the effect of electric field significantly promoted the efficiency of electromigration, thereby enhanced mFe 0 corrosion and eventually accelerated the PNP removal rates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Derave, Wim; Straumann, Nadine; Olek, Robert A; Hespel, Peter
2006-12-01
Electrical field stimulation of isolated, incubated rodent skeletal muscles is a frequently used model to study the effects of contractions on muscle metabolism. In this study, this model was used to investigate the effects of electrically stimulated contractions on creatine transport. Soleus and extensor digitorum longus muscles of male NMRI mice (35-50 g) were incubated in an oxygenated Krebs buffer between platinum electrodes. Muscles were exposed to [(14)C]creatine for 30 min after either 12 min of repeated tetanic isometric contractions (contractions) or electrical stimulation of only the buffer before incubation of the muscle (electrolysis). Electrolysis was also investigated in the presence of the reactive oxygen species (ROS) scavenging enzymes superoxide dismutase (SOD) and catalase. Both contractions and (to a lesser degree) electrolysis stimulated creatine transport severalfold over basal. The amount of electrolysis, but not contractile activity, induced (determined) creatine transport stimulation. Incubation with SOD and catalase at 100 and 200 U/ml decreased electrolysis-induced creatine transport by approximately 50 and approximately 100%, respectively. The electrolysis effects on creatine uptake were completely inhibited by beta-guanidino propionic acid, a competitive inhibitor of (creatine for) the creatine transporter (CRT), and were accompanied by increased cell surface expression of CRT. Muscle glucose transport was not affected by electrolysis. The present results indicate that electrical field stimulation of incubated mouse muscles, independently of contractions per se, stimulates creatine transport by a mechanism that depends on electrolysis-induced formation of ROS in the incubation buffer. The increased creatine uptake is paralleled by an increased cell surface expression of the creatine transporter.
Stacking-dependent electronic property of trilayer graphene epitaxially grown on Ru(0001)
NASA Astrophysics Data System (ADS)
Que, Yande; Xiao, Wende; Chen, Hui; Wang, Dongfei; Du, Shixuan; Gao, Hong-Jun
2015-12-01
The growth, atomic structure, and electronic property of trilayer graphene (TLG) on Ru(0001) were studied by low temperature scanning tunneling microscopy and spectroscopy in combined with tight-binding approximation (TBA) calculations. TLG on Ru(0001) shows a flat surface with a hexagonal lattice due to the screening effect of the bottom two layers and the AB-stacking in the top two layers. The coexistence of AA- and AB-stacking in the bottom two layers leads to three different stacking orders of TLG, namely, ABA-, ABC-, and ABB-stacking. STS measurements combined with TBA calculations reveal that the density of states of TLG with ABC- and ABB-stacking is characterized by one and two sharp peaks near to the Fermi level, respectively, in contrast to the V-shaped feature of TLG with ABA-stacking. Our work demonstrates that TLG on Ru(0001) might be an ideal platform for exploring stacking-dependent electronic properties of graphene.
NASA Astrophysics Data System (ADS)
Yoo, Y.-S.; Park, J.-W.; Park, J.-K.; Lim, H.-C.; Oh, J.-M.; Bae, J.-M.
Recent results on intermediate temperature-operating solid oxide fuel cells (IT-SOFC) are mainly focused on getting the higher performance of single cell at lower operating temperature, especially using planar type. We have started a project to develop 1 kW-class SOFC system for Residential Power Generation(RPG) application. For a 1 kW-class SOFC stack that can be operated at intermediate temperatures, we have developed anode-supported, planar type SOFC to have advantages for commercialization of SOFCs considering mass production and using cost-effective interconnects such as ferritic stainless steels. At higher temperature, performance of SOFC can be increased due to higher electrochemical activity of electrodes and lower ohmic losses, but the surface of metallic interconnects at cathode side is rapidly oxidized into resistive oxide scale. For efficient operation of SOFC at reduced temperature at, firstly we have developed alternative cathode materials of LSCF instead of LSM to get higher performance of electrodes, and secondly introduced functional-layered structure at anode side. The I-V and AC impedance characteristics of improved single cells and small stacks were evaluated at intermediate temperatures (650°C and 750°C) using hydrogen gas as a fuel.
Space Station propulsion electrolysis system - 'A technology challenge'
NASA Technical Reports Server (NTRS)
Le, Michael
1989-01-01
The Space Station propulsion system will utilize a water electrolysis system to produce the required eight-to-one ratio of gaseous hydrogen and oxygen propellants. This paper summarizes the state of the art in water electrolysis technologies and the supporting development programs at the NASA Lyndon B. Johnson Space Center. Preliminary proof of concept test data from a fully integrated propulsion testbed are discussed. The technical challenges facing the development of the high-pressure water electrolysis system are discussed.
NASA Astrophysics Data System (ADS)
Wang, Qingyu; He, Lingfeng; Shi, Liang; Chen, Xiaogang; Chen, Xin; Xu, Zizhen; Zhang, Yongli
2018-03-01
Using high temperature activated sodium flying ash and carboxymethyl chitosan as raw material to prepare carboxymethylchitosan wrapping fly-ash adsorbent (CWF), combined with iron-carbon micro-electrolysis treatment of simulated and actual printing and dyeing wastewater. The conditions for obtaining are from the literature: the best condition for CWF to treat simulated printing and dyeing wastewater pretreated with iron-carbon micro-electrolysis is that the mixing time is 10min, the resting time is 30 min, pH=6, and the adsorbent dosage is 0.75 g/L. The results showed that COD removal efficiency and decoloration rate were above 97 %, and turbidity removal rate was over 90 %. The optimum dyeing conditions were used to treat the dyeing wastewater. The decolorization rate was 97.30 %, the removal efficiency of COD was 92.44 %, and the turbidity removal rate was 90.37 %.
Yoon, Yeojoon; Jung, Youmi; Kwon, Minhwan; Cho, Eunha; Kang, Joon-Wun
2013-01-01
Abstract Effects of various electrodes and prefiltration to minimize disinfection byproducts (DBPs) in electrochemical water disinfection was evaluated. The target microorganism, Escherichia coli O157:H7, was effectively inactivated even applying a solar-charged storage battery for the electrolysis process. Extent of microbial inactivation decreased with lower water temperature and higher pH in the free chlorine disinfection system. The RuO2/Ti electrode was most efficient because it produced the lowest concentration of chlorate and the highest generation of free chlorine. Prefiltration using a ceramic filter inhibited formation of halogenated DBPs because it removed precursors of DBPs. For safe point-of-use water treatment, the use of a hybrid prefiltration stage with the electrolysis system is strongly recommended to reduce risks from DBPs. The system is particularly suited to use in developing regions. PMID:24381482
A Survey of Alternative Oxygen Production Technologies
NASA Technical Reports Server (NTRS)
Lueck, Dale E.; Parrish, Clyde F.; Buttner, William J.; Surma, Jan M.; Delgado, H. (Technical Monitor)
2000-01-01
Utilization of the Martian atmosphere for the production of fuel and oxygen has been extensively studied. The baseline fuel production process is a Sabatier reactor, which produces methane and water from carbon dioxide and hydrogen. The oxygen produced from the electrolysis of the water is only half of that needed for methane-based rocket propellant, and additional oxygen is needed for breathing air, fuel cells and other energy sources. Zirconia electrolysis cells for the direct reduction of CO2 are being developed as an alternative means of producing oxygen, but present many challenges for a large-scale oxygen production system. The very high operating temperatures and fragile nature of the cells coupled with fairly high operating voltages leave room for improvement. This paper will survey alternative oxygen production technologies, present data on operating characteristics, materials of construction, and some preliminary laboratory results on attempts to implement each.
NASA Astrophysics Data System (ADS)
Sahu, Omprakash
2017-10-01
The sugar cane industry is one of the most water demanding industries. Sugar industries consume and generate excess amount of water. The generated water contains organic compounds, which would cause pollution. The aim of this research work is to study the effectiveness of metal compound for treatment of sugar industry waste water by thermolysis and electrolysis process. The result shows ferrous metal catalyst shows 80 and 85 % chemical oxygen demand and color removal at pH 6, optimum mass loading 4 kg/m3, treatment temperature 85 °C and treatment time 9 h. When ferrous material was used as electrode, maximum 81 % chemical oxygen demand and 84 % color removal at pH 6, current density 156 Am-2, treatment time 120 min and anode consumption 0.7 g for 1.5 L wastewater were obtained.
An investigation of energy balances in palladium cathode electrolysis experiments
NASA Astrophysics Data System (ADS)
Longhurst, G. R.; Dolan, T. J.; Henriksen, G. L.
1990-09-01
A series of experiments was performed at the Idaho National Engineering Laboratory (INEL) to investigate mechanisms that may contribute to energy flows in electrolysis cells like those of Fleischmann and Pons. Ordinary water (H2O), heavy water (D2O), and a mixture of the two were used in the INEL experiments. Cathodes used include a 51-μm Pd foil and 1-mm diameter extruded wire Pd rods in straight and coiled configurations. Energy balances in these experiments revealed no significant net gain or net loss of energy. Cell overpotential curves were fit well with a Tafel equation, with parameters dependent on electrode configuration, electrolyte composition, and temperature. Water evaporation and interactions of hydrogen isotopes with the Pd cathode were evaluated and found not to be significant to energy balances. No ionizing radiation, tritium production, or other evidence of fusion reactions was observed in the INEL experiments.
NASA Technical Reports Server (NTRS)
Donakowski, T. D.; Escher, W. J. D.; Gregory, D. P.
1977-01-01
The concept of an advanced-technology (viz., 1985 technology) nuclear-electrolytic water electrolysis facility was assessed for hydrogen production cost and efficiency expectations. The facility integrates (1) a high-temperature gas-cooled nuclear reactor (HTGR) operating a binary work cycle, (2) direct-current (d-c) electricity generation via acyclic generators, and (3) high-current-density, high-pressure electrolyzers using a solid polymer electrolyte (SPE). All subsystems are close-coupled and optimally interfaced for hydrogen production alone (i.e., without separate production of electrical power). Pipeline-pressure hydrogen and oxygen are produced at 6900 kPa (1000 psi). We found that this advanced facility would produce hydrogen at costs that were approximately half those associated with contemporary-technology nuclear electrolysis: $5.36 versus $10.86/million Btu, respectively. The nuclear-heat-to-hydrogen-energy conversion efficiency for the advanced system was estimated as 43%, versus 25% for the contemporary system.
Opitz, Alexander K; Nenning, Andreas; Rameshan, Christoph; Rameshan, Raffael; Blume, Raoul; Hävecker, Michael; Knop-Gericke, Axel; Rupprechter, Günther; Fleig, Jürgen; Klötzer, Bernhard
2015-01-01
In the search for optimized cathode materials for high-temperature electrolysis, mixed conducting oxides are highly promising candidates. This study deals with fundamentally novel insights into the relation between surface chemistry and electrocatalytic activity of lanthanum ferrite based electrolysis cathodes. For this means, near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) and impedance spectroscopy experiments were performed simultaneously on electrochemically polarized La0.6Sr0.4FeO3−δ (LSF) thin film electrodes. Under cathodic polarization the formation of Fe0 on the LSF surface could be observed, which was accompanied by a strong improvement of the electrochemical water splitting activity of the electrodes. This correlation suggests a fundamentally different water splitting mechanism in presence of the metallic iron species and may open novel paths in the search for electrodes with increased water splitting activity. PMID:25557533
Attenuated Allergenic Activity of Ovomucoid After Electrolysis
Kido, Jun
2015-01-01
Ovomucoid (OMC) is the most prominent allergen causing hen's egg allergy, containing disulfide (S-S) bonds that may be responsible for its allergic action. As S-S bonds may be reduced during electrolysis, this study was undertaken to evaluate modulation of the allergic action of OMC after electrolysis. Electrolysis was carried out for 1% OMC containing 1% sodium chloride for 30 minutes with a voltage difference of 90 V, 0.23 A (30 mA/cm2). Protein assays, amino acid measurement, and mass spectrometry in untreated OMC and OMC on both the anode and cathode sides after electrolysis were performed. Moreover, 21 patients with IgE-mediated hen's egg allergy were evaluated by using the skin prick test (SPT) for untreated OMC and OMC after electrolysis. The allergic action of OMC was reduced after electrolysis on both the anode and cathode sides when evaluated by the SPT. The modifications of OMC on electrolysis caused the loss of 2 distinct peptide fragments (57E-63K and 123H-128R) as seen on matrix-associated laser desorption/ionization time-of-flight mass spectrometry. The total free SH groups in OMC were increased on the cathode side. Although the regions of S-S broken bonds were not determined in this study, the change in S-S bonds in OMC on both the anode and cathode sides may reduce the allergenic activity. PMID:26333707
NASA Astrophysics Data System (ADS)
Katase, Takayoshi; Endo, Kenji; Ohta, Hiromichi
2016-02-01
Compared to state-of-the-art modulation techniques, protonation is the most ideal to control the electrical and optical properties of transition metal oxides (TMOs) due to its intrinsic non-volatile operation. However, the protonation of TMOs is not typically utilized for solid-state devices because of imperative high-temperature annealing treatment in hydrogen source. Although one solution for room temperature (RT) protonation of TMOs is liquid-phase electrochemistry, it is unsuited for practical purposes due to liquid-leakage problem. Herein we demonstrate solid-state RT-protonation of vanadium dioxide (VO2), which is a well-known thermochromic TMO. We fabricated the three terminal thin-film-transistor structure on an insulating VO2 film using a water-infiltrated nanoporous glass, which serves as a solid electrolyte. For gate voltage application, water electrolysis and protonation/deprotonation of VO2 film surface occurred, leading to reversible metal-insulator phase conversion of ~11-nm-thick VO2 layer. The protonation was clearly accompanied by the structural change from an insulating monoclinic to a metallic tetragonal phase. Present results offer a new route for the development of electro-optically active solid-state devices with TMO materials by engineering RT protonation.
Improving carbon dioxide yields and cell efficiencies for ethanol oxidation by potential scanning
NASA Astrophysics Data System (ADS)
Majidi, Pasha; Pickup, Peter G.
2014-12-01
An ethanol electrolysis cell with aqueous ethanol supplied to the anode and nitrogen at the cathode has been operated under potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At ambient temperature, faradaic yields of CO2 as high as 26% have been achieved, while only transient CO2 production was observed at constant potential. Yields increased substantially at higher temperatures, with maximum values at Pt anodes reaching 45% at constant potential and 65% under potential cycling conditions. Use of a PtRu anode increased the cell efficiency by decreasing the anode potential, but this was offset by decreased CO2 yields. Nonetheless, cycling increased the efficiency relative to constant potential. The maximum yields at PtRu and 80 °C were 13% at constant potential and 32% under potential cycling. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO, which occurs at lower potentials on PtRu than on Pt. These results will be important in the optimization of operating conditions for direct ethanol fuel cells and for the electrolysis of ethanol to produce clean hydrogen.
NASA Astrophysics Data System (ADS)
Namwong, Lawit; Authayanun, Suthida; Saebea, Dang; Patcharavorachot, Yaneeporn; Arpornwichanop, Amornchai
2016-11-01
Proton-conducting solid oxide electrolysis cells (SOEC-H+) are a promising technology that can utilize carbon dioxide to produce syngas. In this work, a detailed electrochemical model was developed to predict the behavior of SOEC-H+ and to prove the assumption that the syngas is produced through a reversible water gas-shift (RWGS) reaction. The simulation results obtained from the model, which took into account all of the cell voltage losses (i.e., ohmic, activation, and concentration losses), were validated using experimental data to evaluate the unknown parameters. The developed model was employed to examine the structural and operational parameters. It is found that the cathode-supported SOEC-H+ is the best configuration because it requires the lowest cell potential. SOEC-H+ operated favorably at high temperatures and low pressures. Furthermore, the simulation results revealed that the optimal S/C molar ratio for syngas production, which can be used for methanol synthesis, is approximately 3.9 (at a constant temperature and pressure). The SOEC-H+ was optimized using a response surface methodology, which was used to determine the optimal operating conditions to minimize the cell potential and maximize the carbon dioxide flow rate.
Anodes for alkaline electrolysis
Soloveichik, Grigorii Lev [Latham, NY
2011-02-01
A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.
NASA Astrophysics Data System (ADS)
Liu, Yongfeng; Lehnert, Werner; Janßen, Holger; Samsun, Remzi Can; Stolten, Detlef
2016-04-01
This paper presents an extensive review of research on the development of auxiliary power units with enhanced reformate tolerance for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). Developments in diesel reforming for fuel cells as auxiliary power units (APUs), single fuel cells and stacks and systems are outlined in detail and key findings are presented. Summaries of HT-PEMFC APU applications and start-up times for HT-PEMFC systems are then given. A summary of cooling HT-PEMFC stacks using a classic schematic diagram of a 24-cell HT-PEMFC stack, with a cooling plate for every third cell, is also presented as part of a stack analysis. Finally, a summary of CO tolerances for fuel cells is given, along with the effects of different CO volume fractions on polarization curves, the fraction of CO coverage, hydrogen coverage, anode overpotential and cell potential.
Photoluminescence enhancement through vertical stacking of defect-engineered Ge on Si quantum dots
NASA Astrophysics Data System (ADS)
Groiss, Heiko; Spindlberger, Lukas; Oberhumer, Peter; Schäffler, Friedrich; Fromherz, Thomas; Grydlik, Martyna; Brehm, Moritz
2017-02-01
In this work, we show that the room-temperature photoluminescence intensity from Ge ion-bombarded (GIB) epitaxial Ge on Si quantum dots (QD) can be improved by their vertical stacking. We stress that the growth of GIB-QD multilayers is more demanding compared to all-crystalline epitaxial QDs, as a consequence of local amorphous regions within the GIB-QDs required during their genesis. We show that in spite of those amorphous regions, for accurately chosen growth temperatures of the Si spacer layers separating the GIB-QD layers, multiple GIB-QD layers can be stacked without detrimental break-down of epitaxial growth. Compared to a single GIB-QD layer, we observe a 650% increase in PL intensity for an eleven-layer GIB-QD stack, indicating that such multilayers are promising candidates as gain material for all-group-IV nano-photonic lasers.
Improved FCG-1 cell technology
NASA Astrophysics Data System (ADS)
Breault, R. D.; Congdon, J. V.; Coykendall, R. D.; Luoma, W. L.
1980-10-01
Fuel cell performance in the ribbed substrate cell configuration consistent with that projected for a commercial power plant is demonstrated. Tests were conducted on subscale cells and on two 20 cell stacks of 4.8 MW demonstrator size cell components. These tests evaluated cell stack materials, processes, components, and assembly configurations. The first task was to conduct a component development effort to introduce improvements in 3.7 square foot, ribbed substrate acid cell repeating parts which represented advances in performance, function, life, and lower cost for application in higher pressure and temperature power plants. Specific areas of change were the electrode substrate, catalyst, matrix, seals, separator plates, and coolers. Full sized ribbed substrate stack components incorporating more stable materials were evaluated at increased pressure (93 psia) and temperature (405 F) conditions. Two 20 cell stacks with a 3.7 square feet, ribbed substrate cell configuration were tested.
Choi, Tayoung; Ganapathy, Sriram; Jung, Jaehak; Savage, David R.; Lakshmanan, Balasubramanian; Vecasey, Pamela M.
2013-04-16
A system and method for detecting a low performing cell in a fuel cell stack using measured cell voltages. The method includes determining that the fuel cell stack is running, the stack coolant temperature is above a certain temperature and the stack current density is within a relatively low power range. The method further includes calculating the average cell voltage, and determining whether the difference between the average cell voltage and the minimum cell voltage is greater than a predetermined threshold. If the difference between the average cell voltage and the minimum cell voltage is greater than the predetermined threshold and the minimum cell voltage is less than another predetermined threshold, then the method increments a low performing cell timer. A ratio of the low performing cell timer and a system run timer is calculated to identify a low performing cell.
Spectral gain profile of a multi-stack terahertz quantum cascade laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachmann, D., E-mail: dominic.bachmann@tuwien.ac.at; Deutsch, C.; Krall, M.
2014-11-03
The spectral gain of a multi-stack terahertz quantum cascade laser, composed of three active regions with emission frequencies centered at 2.3, 2.7, and 3.0 THz, is studied as a function of driving current and temperature using terahertz time-domain spectroscopy. The optical gain associated with the particular quantum cascade stacks clamps at different driving currents and saturates to different values. We attribute these observations to varying pumping efficiencies of the respective upper laser states and to frequency dependent optical losses. The multi-stack active region exhibits a spectral gain full width at half-maximum of 1.1 THz. Bandwidth and spectral position of themore » measured gain match with the broadband laser emission. As the laser action ceases with increasing operating temperature, the gain at the dominant lasing frequency of 2.65 THz degrades sharply.« less
Electrically Conductive and Protective Coating for Planar SOFC Stacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jung-Pyung; Stevenson, Jeffry W.
Ferritic stainless steels are preferred interconnect materials for intermediate temperature SOFCs because of their resistance to oxidation, high formability and low cost. However, their protective oxide layer produces Cr-containing volatile species at SOFC operating temperatures and conditions, which can cause cathode poisoning. Electrically conducting spinel coatings have been developed to prevent cathode poisoning and to maintain an electrically conductive pathway through SOFC stacks. However, this coating is not compatible with the formation of stable, hermetic seals between the interconnect frame component and the ceramic cell. Thus, a new aluminizing process has been developed by PNNL to enable durable sealing, preventmore » Cr evaporation, and maintain electrical insulation between stack repeat units. Hence, two different types of coating need to have stable operation of SOFC stacks. This paper will focus on the electrically conductive coating process. Moreover, an advanced coating process, compatible with a non-electrically conductive coating will be« less
Lai, Bo; Zhou, Yuexi; Yang, Ping; Yang, Jinghui; Wang, Juling
2013-01-01
The degradation of 3,3'-iminobis-propanenitrile was investigated using the Fe(0)/GAC micro-electrolysis system. Effects of influent pH value, Fe(0)/GAC ratio and granular activated carbon (GAC) adsorption on the removal efficiency of the pollutant were studied in the Fe(0)/GAC micro-electrolysis system. The degradation of 3,3'-iminobis-propanenitrile was affected by influent pH, and a decrease of the influent pH values from 8.0 to 4.0 led to the increase of degradation efficiency. Granular activated carbon was added as cathode to form macroscopic galvanic cells between Fe(0) and GAC and enhance the current efficiency of the Fe(0)/GAC micro-electrolysis system. The GAC could only adsorb the pollutant and provide buffer capacity for the Fe(0)/GAC micro-electrolysis system, and the macroscopic galvanic cells of the Fe(0)/GAC micro-electrolysis system played a leading role in degradation of 3,3'-iminobis-propanenitrile. With the analysis of the degradation products with GC-MS, possible reaction pathway for the degradation of 3,3'-iminobis-propanenitrile by the Fe(0)/GAC micro-electrolysis system was suggested. Copyright © 2012 Elsevier Ltd. All rights reserved.
High performance of nitrogen and phosphorus removal in an electrolysis-integrated biofilter.
Gao, Y; Xie, Y W; Zhang, Q; Yu, Y X; Yang, L Y
A novel electrolysis-integrated biofilter system was developed in this study to evaluate the intensified removal of nitrogen and phosphorus from contaminated water. Two laboratory-scale biofilter systems were established, one with electrolysis (E-BF) and one without electrolysis (BF) as control. The dynamics of intensified nitrogen and phosphorus removal and the changes of inflow and outflow water qualities were also evaluated. The total nitrogen (TN) removal rate was 94.4% in our newly developed E-BF, but only 74.7% in the control BF. Ammonium removal rate was up to 95% in biofilters with or without electrolysis integration with an influent ammonium concentration of 40 mg/L, and the accumulation of nitrate and nitrite was much lower in the effluent of E-BF than that of BF. Thus electrolysis plays an important role in TN removal especially the nitrate and nitrite removal. Phosphorus removal was significantly enhanced, exceeding 90% in E-BF by chemical precipitation, physical adsorption, and flocculation of phosphorus because of the in situ formation of ferric ions by the anodizing of sacrificial iron anodes. Results from this study indicate that the electrolysis integrated biofilter is a promising solution for intensified nitrogen and phosphorus removal.
Preface–JES focus issue on electrolysis for increased renewable energy penetration
Pivovar, B.; Carmo, M.; Ayers, K.; ...
2016-10-22
The objective here of this special issue is to help identify the leading research being performed in the electrolysis area and provide context for the electrolysis advances that will be required for a larger role in tomorrow's energy system.
Climatic variability in Princess Elizabeth Land (East Antarctica) over the last 350 years
NASA Astrophysics Data System (ADS)
Ekaykin, Alexey A.; Vladimirova, Diana O.; Lipenkov, Vladimir Y.; Masson-Delmotte, Valérie
2017-01-01
We use isotopic composition (δD) data from six sites in Princess Elizabeth Land (PEL) in order to reconstruct air temperature variability in this sector of East Antarctica over the last 350 years. First, we use the present-day instrumental mean annual surface air temperature data to demonstrate that the studied region (between Russia's Progress, Vostok and Mirny research stations) is characterized by uniform temperature variability. We thus construct a stacked record of the temperature anomaly for the whole sector for the period of 1958-2015. A comparison of this series with the Southern Hemisphere climatic indices shows that the short-term inter-annual temperature variability is primarily governed by the Antarctic Oscillation (AAO) and Interdecadal Pacific Oscillation (IPO) modes of atmospheric variability. However, the low-frequency temperature variability (with period > 27 years) is mainly related to the anomalies of the Indian Ocean Dipole (IOD) mode. We then construct a stacked record of δD for the PEL for the period of 1654-2009 from individual normalized and filtered isotopic records obtained at six different sites (PEL2016
stacked record). We use a linear regression of this record and the stacked PEL temperature record (with an apparent slope of 9 ± 5.4 ‰ °C-1) to convert PEL2016 into a temperature scale. Analysis of PEL2016 shows a 1 ± 0.6 °C warming in this region over the last 3 centuries, with a particularly cold period from the mid-18th to the mid-19th century. A peak of cooling occurred in the 1840s - a feature previously observed in other Antarctic records. We reveal that PEL2016 correlates with a low-frequency component of IOD and suggest that the IOD mode influences the Antarctic climate by modulating the activity of cyclones that bring heat and moisture to Antarctica. We also compare PEL2016 with other Antarctic stacked isotopic records. This work is a contribution to the PAGES (Past Global Changes) and IPICS (International Partnerships in Ice Core Sciences) Antarctica 2k projects.
Computer-aided control of electrolysis of solid Nb2O5 in molten CaCl2.
Wu, Tian; Xiao, Wei; Jin, Xianbo; Liu, Chao; Wang, Dihua; Chen, George Z
2008-04-07
Low energy production of Nb powders via computer-aided control (CAC) of two-electrode electrolysis of porous Nb2O5 pellets (ca. 1.0 g) has been successfully demonstrated in molten CaCl2 at 1123 K. It was observed that potentiostatic electrolysis of the oxide in a three-electrode cell led to a cell voltage, i.e. the potential difference between the working (cathode) and counter (anode) electrodes, that decreased to a low and stable value within 1-2 h of the potential application until the end of the electrolysis (up to 12 h in this work). The cell voltage varied closely according to the current change. The stabilised cell voltage was below 2.5 V when the cathode potential was more positive than that for the reduction of Ca2+, leading to much lower energy consumption than that of constant voltage (>3.0 V) two-electrode electrolysis, as previously reported. Using a computer to program the variation of the cell voltage of two-electrode electrolysis according to that observed in the potentiostatic three-electrode electrolysis (0.05 V vs. Ca/Ca2+), a Nb powder with ca. 3900 ppm oxygen was produced in 12 h, with the energy consumption being 37.4% less than that of constant voltage two-electrode electrolysis at 3.0 V. Transmission electron microscopy revealed thin oxide layers (4-6 nm) on individual nodular particles (1-5 microm) of the obtained Nb powder. The oxide layer was likely formed in post-electrolysis processing operations, including washing in water, and contributed largely to the oxygen content in the obtained Nb powder.
Thermochemical water decomposition processes
NASA Technical Reports Server (NTRS)
Chao, R. E.
1974-01-01
Thermochemical processes which lead to the production of hydrogen and oxygen from water without the consumption of any other material have a number of advantages when compared to other processes such as water electrolysis. It is possible to operate a sequence of chemical steps with net work requirements equal to zero at temperatures well below the temperature required for water dissociation in a single step. Various types of procedures are discussed, giving attention to halide processes, reverse Deacon processes, iron oxide and carbon oxide processes, and metal and alkali metal processes. Economical questions are also considered.
NASA Astrophysics Data System (ADS)
Fesenko, L. N.; Pchelnikov, I. V.; Fedotov, R. V.
2017-11-01
The study presents the economic efficiency of direct electrolysis of natural waters in comparison with the waters artificially prepared by electrolysis of the 3% sodium salt solution. The study used sea water (Black sea water); mineral water (underground water of the Melikhovskaya station, “Ognennaya” hole); brackish water (underground water from the Grushevskaya station of the Aksai district); 3% solution of sodium salt. As a result, the dependences characterizing the direct electrolysis of natural waters with different mineralization, economic, and energy parties are shown. The rational area of the electrolysis for each of the investigated solution is determined. The cost of a kilogram of active chlorine obtained by the direct water electrolysis: Black sea from 17.2 to 18.3 RUB/kg; the Melikhovskaya station “Ognennaya” hole - 14.3 to 15.0 Rubles/kg; 3% solution of NaCl - 30 Rubles./kg; Grushevskogo St. - 63,0-73,0 Rubles/kg.
Ueda, Toyotoshi; Hara, Masanori; Odagawa, Ikumi; Shigihara, Takanori
2009-03-01
A new type of ultrasonic washer-disinfector-sterilizer, able to clean, disinfect and sterilize most kinds of reusable medical devices, has been developed by using the ultrasonic levitation function with umbrella-shape oscillators and ozone bubbling together with sterilization carried out by silver electrolysis. We have examined the biomedical and physicochemical performance of this instrument. Prokariotic and gram-negative Escherichia coli and eukariotic Saccharomyces cerevisiae were killed by silver electrolysis in 18 min and 1 min, respectively. Prokariotic and gram-positive Geobacillus stearothermophilus and Bacillus atrophaeus, which are most resistant to autoclave and gas sterilization, respectively, were killed by silver electrolysis within 20 min. Prokariotic and gram-negative Pseudomonas aeruginosa was also killed by silver electrolysis in 10 min. The intensity distribution of the ultrasonic levitation waves was homogeneous throughout the tank. The concentration of ozone gas was 2.57 mg/ kg. The concentration of dissolved silver ions was around 0.17 mg/L. The disulfide bond in proteins was confirmed to be destroyed by silver electrolysis.
NASA Astrophysics Data System (ADS)
Kim, Cheolhwan; Kim, Kyu-Jung; Ha, Man Yeong
To investigate the possibility of the portable application of a direct borohydride fuel cell (DBFC), weight reduction of the stack and high stacking of the cells are investigated for practical running conditions. For weight reduction, carbon graphite is adopted as the bipolar plate material even though it has disadvantages in tight stacking, which results in stacking loss from insufficient material strength. For high stacking, it is essential to have a uniform fuel distribution among cells and channels to maintain equal electric load on each cell. In particular, the design of the anode channel is important because active hydrogen generation causes non-uniformity in the fuel flow-field of the cells and channels. To reduce the disadvantages of stacking force margin and fuel maldistribution, an O-ring type-sealing system with an internal manifold and a parallel anode channel design is adopted, and the characteristics of a single and a five-cell fuel cell stack are analyzed. By adopting carbon graphite, the stack weight can be reduced by 4.2 times with 12% of performance degradation from the insufficient stacking force. When cells are stacked, the performance exceeds the single-cell performance because of the stack temperature increase from the reduction of the radiation area from the narrow stacking of cells.
Tests of by-pass diodes at cryogenic temperatures for the KATRIN magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gil, W.; Bolz, H.; Jansen, A.
The Karlsruhe Tritium Neutrino experiment (KATRIN) requires a series of superconducting solenoid magnets for guiding beta-electrons from the source to the detector. By-pass diodes will operate at liquid helium temperatures to protect the superconducting magnets and bus bars in case of quenches. The operation conditions of the by-pass diodes depend on the different magnet systems of KATRIN. Therefore, different diode stacks are designed with adequate copper heat sinks assuming adiabatic conditions. The by-pass diode stacks have been submitted to cold tests both at liquid nitrogen and liquid helium temperatures for checking operation conditions. This report presents the test set upmore » and first results of the diode characteristics at 300 K and 77 K, as well as of endurance tests of the diode stacks at constant current load at 77 K and 4.2 K.« less
Correlated lateral phase separations in stacks of lipid membranes
NASA Astrophysics Data System (ADS)
Hoshino, Takuma; Komura, Shigeyuki; Andelman, David
2015-12-01
Motivated by the experimental study of Tayebi et al. [Nat. Mater. 11, 1074 (2012)] on phase separation of stacked multi-component lipid bilayers, we propose a model composed of stacked two-dimensional Ising spins. We study both its static and dynamical features using Monte Carlo simulations with Kawasaki spin exchange dynamics that conserves the order parameter. We show that at thermodynamical equilibrium, due to strong inter-layer correlations, the system forms a continuous columnar structure for any finite interaction across adjacent layers. Furthermore, the phase separation shows a faster dynamics as the inter-layer interaction is increased. This temporal behavior is mainly due to an effective deeper temperature quench because of the larger value of the critical temperature, Tc, for larger inter-layer interaction. When the temperature ratio, T/Tc, is kept fixed, the temporal growth exponent does not increase and even slightly decreases as a function of the increased inter-layer interaction.
Acoustic thermometry for detecting quenches in superconducting coils and conductor stacks
NASA Astrophysics Data System (ADS)
Marchevsky, M.; Gourlay, S. A.
2017-01-01
Quench detection capability is essential for reliable operation and protection of superconducting magnets, coils, cables, and machinery. We propose a quench detection technique based on sensing local temperature variations in the bulk of a superconducting winding by monitoring its transient acoustic response. Our approach is primarily aimed at coils and devices built with high-temperature superconductor materials where quench detection using standard voltage-based techniques may be inefficient due to the slow velocity of quench propagation. The acoustic sensing technique is non-invasive, fast, and capable of detecting temperature variations of less than 1 K in the interior of the superconductor cable stack in a 77 K cryogenic environment. We show results of finite element modeling and experiments conducted on a model superconductor stack demonstrating viability of the technique for practical quench detection, discuss sensitivity limits of the technique, and its various applications.
Cryogenic Piezoelectric Actuator
NASA Technical Reports Server (NTRS)
Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.
2009-01-01
In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.
Feng, Xing-Yao; Liu, Hong-Xia; Wang, Xing; Zhao, Lu; Fei, Chen-Xi; Liu, He-Lei
2017-12-01
The capacitance and leakage current properties of multilayer La 2 O 3 /Al 2 O 3 dielectric stacks and LaAlO 3 dielectric film are investigated in this paper. A clear promotion of capacitance properties is observed for multilayer La 2 O 3 /Al 2 O 3 stacks after post-deposition annealing (PDA) at 800 °C compared with PDA at 600 °C, which indicated the recombination of defects and dangling bonds performs better at the high-k/Si substrate interface for a higher annealing temperature. For LaAlO 3 dielectric film, compared with multilayer La 2 O 3 /Al 2 O 3 dielectric stacks, a clear promotion of trapped charges density (N ot ) and a degradation of interface trap density (D it ) can be obtained simultaneously. In addition, a significant improvement about leakage current property is observed for LaAlO 3 dielectric film compared with multilayer La 2 O 3 /Al 2 O 3 stacks at the same annealing condition. We also noticed that a better breakdown behavior for multilayer La 2 O 3 /Al 2 O 3 stack is achieved after annealing at a higher temperature for its less defects.
Whittaker, Carly; Yates, Nicola E; Powers, Stephen J; Misselbrook, Tom; Shield, Ian
2018-05-01
This study compares dry matter losses and quality changes during the storage of SRC willow as chips and as rods. A wood chip stack consisting of approximately 74 tonnes of fresh biomass, or 31 tonnes dry matter (DM) was built after harvesting in the spring. Three weeks later, four smaller stacks of rods with an average weight of 0.8 tonnes, or 0.4 tonnes DM were built. During the course of the experiment temperature recorders placed in the stacks found that the wood chip pile reached 60 °C within 10 days of construction, but the piles of rods remained mostly at ambient temperatures. Dry matter losses were calculated by using pre-weighed independent samples within the stacks and by weighing the whole stack before and after storage. After 6 months the wood chip stack showed a DM loss of between 19.8 and 22.6%, and mean losses of 23.1% were measured from the 17 independent samples. In comparison, the rod stacks showed an average stack DM loss of between 0 and 9%, and between 1.4% and 10.6% loss from the independent samples. Analysis of the stored material suggests that storing willow in small piles of rods produces a higher quality fuel in terms of lower moisture and ash content; however, it has a higher fine content compared to storage in chip form. Therefore, according to the two storage methods tested here, there may be a compromise between maximising the net dry matter yield from SRC willow and the final fine content of the fuel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blackburn, Bryan M.; Bishop, Sean; Gore, Colin
In this project, we improved the power output and voltage efficiency of our intermediate temperature solid oxide fuel cells (IT-SOFCs) with a focus on ~600 °C operation. At these temperatures and with the increased power density (i.e., fewer cells for same power output), the stack cost should be greatly reduced while extending durability. Most SOFC stacks operate at temperatures greater than 800 °C. This can greatly increase the cost of the system (stacks and BOP) as well as maintenance costs since the most common degradation mechanisms are thermally driven. Our approach uses no platinum group metal (PGM) materials and themore » lower operating temperature allows use of simple stainless steel interconnects and commercial off-the-shelf gaskets in the stack. Furthermore, for combined heating and power (CHP) applications the stack exhaust still provides “high quality” waste heat that can be recovered and used in a chiller or boiler. The anticipated performance, durability, and resulting cost improvements (< $700/kWe) will also move us closer to reaching the full potential of this technology for distributed generation (DG) and residential/commercial CHP. This includes eventual extension to cleaner, more efficient portable generators, auxiliary power units (APUs), and range extenders for transportation. The research added to the understanding of the area investigated by exploring various methods for increasing power density (Watts/square centimeter of active area in each cell) and increasing cell efficiency (increasing the open circuit voltage, or cell voltage with zero external electrical current). The results from this work demonstrated an optimized cell that had greater than 1 W/cm2 at 600 °C and greater than 1.6 W/cm2 at 650 °C. This was demonstrated in large format sizes using both 5 cm by 5 cm and 10 cm by 10 cm cells. Furthermore, this work demonstrated that high stability (no degradation over > 500 hours) can be achieved together with high performance in large format cells as large as 10 cm by 10 cm when operated at ~600 °C. The project culminated in the demonstration of a 12-cell stack using the porous anode-based SOFC technology.« less
NASA Astrophysics Data System (ADS)
Wu, Hongjun; Liu, Yue; Ji, Deqiang; Li, Zhida; Yi, Guanlin; Yuan, Dandan; Wang, Baohui; Zhang, Zhonghai; Wang, Peng
2017-09-01
Over-reliance on non-renewable fossil fuel leads to steadily increasing concentration of atmospheric CO2, which has been implicated as a critical factor contributing to global warming. The efficient conversion of CO2 into useful product is highly sought after both in academic and industry. Herein, a novel conversion strategy is proposed to one-step transform CO2/H2O into syngas (CO/H2) in molten salt with electrolysis method. All the energy consumption in this system are contributed from sustainable energy sources: concentrated solar light heats molten salt and solar cell supplies electricity for electrolysis. The eutectic Li0.85Na0.61K0.54CO3/nLiOH molten electrolyte is rationally designed with low melting point (<450 °C). The synthesized syngas contains very desirable content of H2 and CO, with tuneable molar ratios (H2/CO) from 0.6 to 7.8, and with an efficient faradaic efficiency of ∼94.5%. The synthesis of syngas from CO2 with renewable energy at a such low electrolytic temperature not only alleviates heat loss, mitigates system corrosion, and heightens operational safety, but also decreases the generation of methane, thus increases the yield of syngas, which is a remarkable technological breakthrough and this work thus represents a stride in sustainable conversion of CO2 to value-added product.
Electrochemical synthesis and characterization of zinc oxalate nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com; Roushani, Mahmoud; Department of Chemistry, Ilam University, Ilam
2013-03-15
Highlights: ► Synthesis of zinc oxalate nanoparticles via electrolysis of a zinc plate anode in sodium oxalate solutions. ► Design of a Taguchi orthogonal array to identify the optimal experimental conditions. ► Controlling the size and shape of particles via applied voltage and oxalate concentration. ► Characterization of zinc oxalate nanoparticles by SEM, UV–vis, FT-IR and TG–DTA. - Abstract: A rapid, clean and simple electrodeposition method was designed for the synthesis of zinc oxalate nanoparticles. Zinc oxalate nanoparticles in different size and shapes were electrodeposited by electrolysis of a zinc plate anode in sodium oxalate aqueous solutions. It was foundmore » that the size and shape of the product could be tuned by electrolysis voltage, oxalate ion concentration, and stirring rate of electrolyte solution. A Taguchi orthogonal array design was designed to identify the optimal experimental conditions. The morphological characterization of the product was carried out by scanning electron microscopy. UV–vis and FT-IR spectroscopies were also used to characterize the electrodeposited nanoparticles. The TG–DTA studies of the nanoparticles indicated that the main thermal degradation occurs in two steps over a temperature range of 350–430 °C. In contrast to the existing methods, the present study describes a process which can be easily scaled up for the production of nano-sized zinc oxalate powder.« less
40 CFR 60.1845 - What records must I keep for stack tests?
Code of Federal Regulations, 2010 CFR
2010-07-01
... recorded in the appropriate units of measure specified in table 2 or 4 of this subpart: (1) Dioxins/furans... temperature at the inlet of your particulate matter control device during all stack tests for dioxins/furans...
Shang, S L; Wang, W Y; Wang, Y; Du, Y; Zhang, J X; Patel, A D; Liu, Z K
2012-04-18
Variations of energy, stress, and magnetic moment of fcc Ni as a response to shear deformation and the associated ideal shear strength (τ(IS)), intrinsic (γ(SF)) and unstable (γ(US)) stacking fault energies have been studied in terms of first-principles calculations under both the alias and affine shear regimes within the {111} slip plane along the <112> and <110> directions. It is found that (i) the intrinsic stacking fault energy γ(SF) is nearly independent of the shear deformation regimes used, albeit a slightly smaller value is predicted by pure shear (with relaxation) compared to the one from simple shear (without relaxation); (ii) the minimum ideal shear strength τ(IS) is obtained by pure alias shear of {111}<112>; and (iii) the dissociation of the 1/2[110] dislocation into two partial Shockley dislocations (1/6[211] + 1/6[121]) is observed under pure alias shear of {111}<110>. Based on the quasiharmonic approach from first-principles phonon calculations, the predicted γ(SF) has been extended to finite temperatures. In particular, using a proposed quasistatic approach on the basis of the predicted volume versus temperature relation, the temperature dependence of τ(IS) is also obtained. Both the γ(SF) and the τ(IS) of fcc Ni decrease with increasing temperature. The computed ideal shear strengths as well as the intrinsic and unstable stacking fault energies are in favorable accord with experiments and other predictions in the literature.
NASA Astrophysics Data System (ADS)
Becker, J.; Morkötter, S.; Treu, J.; Sonner, M.; Speckbacher, M.; Döblinger, M.; Abstreiter, G.; Finley, J. J.; Koblmüller, G.
2018-03-01
We explore the effects of random and short-period crystal-phase intermixing in InAs nanowires (NW) on the carrier trapping and thermal activation behavior using correlated optical and electrical transport spectroscopy. The polytypic InAs NWs are grown by catalyst-free molecular beam epitaxy under different temperatures, resulting in different fractions of wurtzite (WZ) and zincblende (ZB) and variable short-period (˜1-4 nm) WZ/ZB stacking sequences. Temperature-dependent microphotoluminescence (μ PL) studies reveal that variations in the WZ/ZB stacking govern the emission energy and carrier confinement properties. The optical transition energies are modeled for a wide range of WZ/ZB stacking sequences using a Kronig-Penney type effective mass approximation, while comparison with experimental results suggests that polarization sheet charges on the order of ˜0.0016-0.08 C/m along the WZ/ZB interfaces need to be considered to best describe the data. The thermal activation characteristics of carriers trapped inside the short-period WZ/ZB structure are directly reproduced in the temperature-dependent carrier density evolution (4-300 K) probed by four-terminal (4T) NW-field effect transistor measurements. In particular, we find that activation of carriers in-between ˜1016-1017c m-3 follows a two-step process, with activation at low temperature attributed to WZ/ZB traps and activation at high temperature being linked to surface states and electron accumulation at the InAs NW surface.
Electrolysis Apparatus and a Method of Hydrodynamic Cavitation Protection.
1974-09-17
AD-DO01 178 ELECTROLYSIS APPARATUS AND A METHOD OF HYDRODYNAMIC CAVITATION PROTECTION Earl Quandt, et al Department of the Navy Washington, D. C. 17...213" 261123 , Navy Case No. 57,238 ELECTROLYSIS APPARATUS AND A METHOD OF HYDRODYNAMIC CAVITATION PROTECTION 1 ABSTRACT Method of and apparatus for
Tarnovskaia, E V; Siurin, S A; Chashchin, V P
2010-01-01
Findings are that occupational factors in nickel electrolysis workshops induce respiratory and peripheral nervous system diseases. Electrolysis workers demonstrate the highest prevalence and risk of occupational diseases. The authors make a conclusion on necessity to improve prophylactic methods for occupational disorders in these workers.
NASA Astrophysics Data System (ADS)
Guan, Xiaofei; Pal, Uday B.; Powell, Adam C.
2014-06-01
This paper reports a solid oxide membrane (SOM) electrolysis experiment using an LSM(La0.8Sr0.2MnO3-δ)-Inconel inert anode current collector for production of magnesium and oxygen directly from magnesium oxide at 1423 K (1150 °C). The electrochemical performance of the SOM cell was evaluated by means of various electrochemical techniques including electrochemical impedance spectroscopy, potentiodynamic scan, and electrolysis. Electronic transference numbers of the flux were measured to assess the magnesium dissolution in the flux during SOM electrolysis. The effects of magnesium solubility in the flux on the current efficiency and the SOM stability during electrolysis are discussed. An inverse correlation between the electronic transference number of the flux and the current efficiency of the SOM electrolysis was observed. Based on the experimental results, a new equivalent circuit of the SOM electrolysis process is presented. A general electrochemical polarization model of SOM process for magnesium and oxygen gas production is developed, and the maximum allowable applied potential to avoid zirconia dissociation is calculated as well. The modeling results suggest that a high electronic resistance of the flux and a relatively low electronic resistance of SOM are required to achieve membrane stability, high current efficiency, and high production rates of magnesium and oxygen.
Shimakoshi, Hisashi; Luo, Zhongli; Inaba, Takuya; Hisaeda, Yoshio
2016-06-21
The electrolysis of benzotrichloride at -0.9 V vs. Ag/AgCl in the presence of the B12 model complex, heptamethyl cobyrinate perchlorate, in ethanol under aerobic conditions using an undivided cell equipped with a platinum mesh cathode and a zinc plate anode produced ethylbenzoate in 56% yield with 92% selectivity. The corresponding esters were obtained when the electrolysis was carried out in various alcohols such as methanol, n-propanol, and i-propanol. Benzoyl chloride was detected by GC-MS during the electrolysis as an intermediate for the ester formation. When the electrolysis was carried out under anaerobic conditions, partially dechlorinated products, 1,1,2,2-tetrachloro-1,2-diphenylethane and 1,2-dichlorostilibenes (E and Z forms), were obtained instead of an ester. ESR spin-trapping experiments using 5,5,-dimethylpyrroline N-oxide (DMPO) revealed that the corresponding oxygen-centered radical and carbon-centered radical were steadily generated during the electrolyses under aerobic and anaerobic conditions, respectively. Applications of the aerobic electrolysis to various organic halides, such as substituted benzotrichlorides, are described. Furthermore, the formation of amides with moderate yields by the aerobic electrolysis of benzotrichloride catalyzed by the B12 model complex in the presence of amines in acetonitrile is reported.
Stacking-dependent electronic property of trilayer graphene epitaxially grown on Ru(0001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Que, Yande; Xiao, Wende, E-mail: wdxiao@iphy.ac.cn, E-mail: hjgao@iphy.ac.cn; Chen, Hui
The growth, atomic structure, and electronic property of trilayer graphene (TLG) on Ru(0001) were studied by low temperature scanning tunneling microscopy and spectroscopy in combined with tight-binding approximation (TBA) calculations. TLG on Ru(0001) shows a flat surface with a hexagonal lattice due to the screening effect of the bottom two layers and the AB-stacking in the top two layers. The coexistence of AA- and AB-stacking in the bottom two layers leads to three different stacking orders of TLG, namely, ABA-, ABC-, and ABB-stacking. STS measurements combined with TBA calculations reveal that the density of states of TLG with ABC- andmore » ABB-stacking is characterized by one and two sharp peaks near to the Fermi level, respectively, in contrast to the V-shaped feature of TLG with ABA-stacking. Our work demonstrates that TLG on Ru(0001) might be an ideal platform for exploring stacking-dependent electronic properties of graphene.« less
A review of polymer electrolyte membrane fuel cell stack testing
NASA Astrophysics Data System (ADS)
Miller, M.; Bazylak, A.
This paper presents an overview of polymer electrolyte membrane fuel cell (PEMFC) stack testing. Stack testing is critical for evaluating and demonstrating the viability and durability required for commercial applications. Single cell performance cannot be employed alone to fully derive the expected performance of PEMFC stacks, due to the non-uniformity in potential, temperature, and reactant and product flow distributions observed in stacks. In this paper, we provide a comprehensive review of the state-of-the art in PEMFC testing. We discuss the main topics of investigation, including single cell vs. stack-level performance, cell voltage uniformity, influence of operating conditions, durability and degradation, dynamic operation, and stack demonstrations. We also present opportunities for future work, including the need to verify the impact of stack size and cell voltage uniformity on performance, determine operating conditions for achieving a balance between electrical efficiency and flooding/dry-out, meet lifetime requirements through endurance testing, and develop a stronger understanding of degradation.
Extent and relevance of stacking disorder in “ice Ic”
Kuhs, Werner F.; Sippel, Christian; Falenty, Andrzej; Hansen, Thomas C.
2012-01-01
A solid water phase commonly known as “cubic ice” or “ice Ic” is frequently encountered in various transitions between the solid, liquid, and gaseous phases of the water substance. It may form, e.g., by water freezing or vapor deposition in the Earth’s atmosphere or in extraterrestrial environments, and plays a central role in various cryopreservation techniques; its formation is observed over a wide temperature range from about 120 K up to the melting point of ice. There was multiple and compelling evidence in the past that this phase is not truly cubic but composed of disordered cubic and hexagonal stacking sequences. The complexity of the stacking disorder, however, appears to have been largely overlooked in most of the literature. By analyzing neutron diffraction data with our stacking-disorder model, we show that correlations between next-nearest layers are clearly developed, leading to marked deviations from a simple random stacking in almost all investigated cases. We follow the evolution of the stacking disorder as a function of time and temperature at conditions relevant to atmospheric processes; a continuous transformation toward normal hexagonal ice is observed. We establish a quantitative link between the crystallite size established by diffraction and electron microscopic images of the material; the crystallite size evolves from several nanometers into the micrometer range with progressive annealing. The crystallites are isometric with markedly rough surfaces parallel to the stacking direction, which has implications for atmospheric sciences. PMID:23236184
NASA Astrophysics Data System (ADS)
Gillespie, M. I.; Kriek, R. J.
2017-12-01
A membraneless Divergent Electrode-Flow-Through (DEFT™) alkaline electrolyser, for unlocking profitable hydrogen production by combining a simplistic, inexpensive, modular and durable design, capable of overcoming existing technology current density thresholds, is ideal for decentralised renewable hydrogen production, with the only requirement of electrolytic flow to facilitate high purity product gas separation. Scale-up of the technology was performed, representing a deviation from the original tested stack design, incorporating elongated electrodes housed in a filter press assembly. The pilot plant operating parameters were limited to a low flow velocity range (0.03 m s-1 -0.04 m s-1) with an electrode gap of 2.5 mm. Performance of this pilot plant demonstrated repeatability to results previously obtained. Mesh electrodes with geometric area of 344.32 cm2 were used for plant performance testing. A NiO anode and Ni cathode combination developed optimal performance yielding 508 mA cm-2 at 2 VDC in contrast to a Ni anode and cathode combination providing 467 mA cm-2 at 2.26 VDC at 0.04 m s-1, 30% KOH and 80 °C. An IrO2/RuO2/TiO2 anode and Pt cathode combination underwent catalyst deactivation. Owing to the nature of the gas/liquid separation system, gas qualities were inadequate compared to results achieved previously. Future improvements will provide qualities similar to results achieved before.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nogues, Gilles, E-mail: gilles.nogues@neel.cnrs.fr; Den Hertog, Martien; Inst. NEEL, CNRS, F-38042 Grenoble
We perform correlated studies of individual GaN nanowires in scanning electron microscopy combined to low temperature cathodoluminescence, microphotoluminescence, and scanning transmission electron microscopy. We show that some nanowires exhibit well localized regions emitting light at the energy of a stacking fault bound exciton (3.42 eV) and are able to observe the presence of a single stacking fault in these regions. Precise measurements of the cathodoluminescence signal in the vicinity of the stacking fault give access to the exciton diffusion length near this location.
Engineering support for magnetohydrodynamic power plant analysis and design studies
NASA Technical Reports Server (NTRS)
Carlson, A. W.; Chait, I. L.; Marchmont, G.; Rogali, R.; Shikar, D.
1980-01-01
The major factors which influence the economic engineering selection of stack inlet temperatures in combined cycle MHD powerplants are identified and the range of suitable stack inlet temperatures under typical operating conditions is indicated. Engineering data and cost estimates are provided for four separately fired high temperature air heater (HTAH) system designs for HTAH system thermal capacity levels of 100, 250, 500 and 1000 MWt. An engineering survey of coal drying and pulverizing equipment for MHD powerplant application is presented as well as capital and operating cost estimates for varying degrees of coal pulverization.
NASA Astrophysics Data System (ADS)
Schuller, G.; Vázquez, F. Vidal; Waiblinger, W.; Auvinen, S.; Ribeirinha, P.
2017-04-01
In this work a methanol steam reforming (MSR) reactor has been operated thermally coupled to a high temperature polymer electrolyte fuel cell stack (HT-PEMFC) utilizing its waste heat. The operating temperature of the coupled system was 180 °C which is significantly lower than the conventional operating temperature of the MSR process which is around 250 °C. A newly designed heat exchanger reformer has been developed by VTT (Technical Research Center of Finland LTD) and was equipped with commercially available CuO/ZnO/Al2O3 (BASF RP-60) catalyst. The liquid cooled, 165 cm2, 12-cell stack used for the measurements was supplied by Serenergy A/S. The off-heat from the electrochemical fuel cell reaction was transferred to the reforming reactor using triethylene glycol (TEG) as heat transfer fluid. The system was operated up to 0.4 A cm-2 generating an electrical power output of 427 Wel. A total stack waste heat utilization of 86.4% was achieved. It has been shown that it is possible to transfer sufficient heat from the fuel cell stack to the liquid circuit in order to provide the needed amount for vaporizing and reforming of the methanol-water-mixture. Furthermore a set of recommendations is given for future system design considerations.
40 CFR 98.62 - GHGs to report.
Code of Federal Regulations, 2012 CFR
2012-07-01
... electrolysis cells. (b) CO2 emissions from anode consumption during electrolysis in all prebake and Søderberg electrolysis cells. (c) CO2 emissions from on-site anode baking. (d) You must report under subpart C of this part (General Stationary Fuel Combustion Sources) the emissions of CO2, N2O, and CH4 emissions from...
40 CFR 98.62 - GHGs to report.
Code of Federal Regulations, 2013 CFR
2013-07-01
... electrolysis cells. (b) CO2 emissions from anode consumption during electrolysis in all prebake and Søderberg electrolysis cells. (c) CO2 emissions from on-site anode baking. (d) You must report under subpart C of this part (General Stationary Fuel Combustion Sources) the emissions of CO2, N2O, and CH4 emissions from...
40 CFR 98.62 - GHGs to report.
Code of Federal Regulations, 2014 CFR
2014-07-01
... electrolysis cells. (b) CO2 emissions from anode consumption during electrolysis in all prebake and Søderberg electrolysis cells. (c) CO2 emissions from on-site anode baking. (d) You must report under subpart C of this part (General Stationary Fuel Combustion Sources) the emissions of CO2, N2O, and CH4 emissions from...
Electrolysis of metal oxides in MgCl2 based molten salts with an inert graphite anode.
Yuan, Yating; Li, Wei; Chen, Hualin; Wang, Zhiyong; Jin, Xianbo; Chen, George Z
2016-08-15
Electrolysis of solid metal oxides has been demonstrated in MgCl2-NaCl-KCl melt at 700 °C taking the electrolysis of Ta2O5 as an example. Both the cathodic and anodic processes have been investigated using cyclic voltammetry, and potentiostatic and constant voltage electrolysis, with the cathodic products analysed by XRD and SEM and the anodic products by GC. Fast electrolysis of Ta2O5 against a graphite anode has been realized at a cell voltage of 2 V, or a total overpotential of about 400 mV. The energy consumption was about 1 kW h kgTa(-1) with a nearly 100% Ta recovery. The cathodic product was nanometer Ta powder with sizes of about 50 nm. The main anodic product was Cl2 gas, together with about 1 mol% O2 gas and trace amounts of CO. The graphite anode was found to be an excellent inert anode. These results promise an environmentally-friendly and energy efficient method for metal extraction by electrolysis of metal oxides in MgCl2 based molten salts.
Tin recovery from tin slag using electrolysis method
NASA Astrophysics Data System (ADS)
Jumari, Arif; Purwanto, Agus; Nur, Adrian; Budiman, Annata Wahyu; Lerian, Metty; Paramita, Fransisca A.
2018-02-01
The process in industry, including in mining industry, would surely give negative effect such as waste polluting to the environment. Some of waste could be potentially reutilized to be a commodity with the higher economic value. Tin slag is one of them. The aim of this research was to recover the tin contained in tin slag. Before coming to the electrolysis, tin slag must be treated by dissolution. The grinded tin slag was dissolved into HCl solution to form a slurry. During dissolution, the slurry was agitated and heated, and finally filtered. The filtrate obtained was then electrolyzed. During the process of electrolysis, solid material precipitated on the used cathode. The precipitated solid was then separated and dried. The solid was then analyzed using XRD, XRF and SEM. The XRD analysis showed that the longest time of dissolution and electrolysis the highest the purity obtained in the product. The SEM analysis showed that the longest time of electrolysis the smallest tin particle obtained. Optimum time achieved in this research was 2 hours for the recovering time and 3 hours for the electrolysis time, with 9% tin recovered.
Stacking of purines in water: the role of dipolar interactions in caffeine.
Tavagnacco, L; Di Fonzo, S; D'Amico, F; Masciovecchio, C; Brady, J W; Cesàro, A
2016-05-11
During the last few decades it has been ascertained that base stacking is one of the major contributions stabilizing nucleic acid conformations. However, the understanding of the nature of the interactions involved in the stacking process remains under debate and it is a subject of theoretical and experimental studies. Structural similarity between purine bases (guanine and adenine) in DNA and the caffeine molecule makes caffeine an excellent model for the purine bases. The present study clearly shows that dipolar interactions play a fundamental role in determining stacking of purine molecules in solution. In order to reach this achievement, polarized ultraviolet Raman resonant scattering experiments have been carried out on caffeine aqueous solutions as a function of concentration and temperature. The investigation pointed out at the aggregation and solvation properties, particularly at elevated temperatures. Kubo-Anderson theory was used as a framework to investigate the non-coincidence effect (NCE) occurring in the totally symmetric breathing modes of the purine rings, and in the bending modes of the methyl groups of caffeine. The NCE concentration dependence shows that caffeine aggregation at 80 °C occurs by planar stacking of the hydrophobic faces. The data clearly indicate that dipolar interactions determine the reorientational motion of the molecules in solution and are the driving force for the stacking of caffeine. In parallel, the observed dephasing times imply a change in caffeine interactions as a function of temperature and concentration. A decrease, at low water content, of the dephasing time for the ring breathing vibration mode indicates that self-association alters the solvation structure that is detectable at low concentration. These results are in agreement with simulation predictions and serve as an important validation of the models used in those calculations.
Role of stacking disorder in ice nucleation
NASA Astrophysics Data System (ADS)
Lupi, Laura; Hudait, Arpa; Peters, Baron; Grünwald, Michael; Gotchy Mullen, Ryan; Nguyen, Andrew H.; Molinero, Valeria
2017-11-01
The freezing of water affects the processes that determine Earth’s climate. Therefore, accurate weather and climate forecasts hinge on good predictions of ice nucleation rates. Such rate predictions are based on extrapolations using classical nucleation theory, which assumes that the structure of nanometre-sized ice crystallites corresponds to that of hexagonal ice, the thermodynamically stable form of bulk ice. However, simulations with various water models find that ice nucleated and grown under atmospheric temperatures is at all sizes stacking-disordered, consisting of random sequences of cubic and hexagonal ice layers. This implies that stacking-disordered ice crystallites either are more stable than hexagonal ice crystallites or form because of non-equilibrium dynamical effects. Both scenarios challenge central tenets of classical nucleation theory. Here we use rare-event sampling and free energy calculations with the mW water model to show that the entropy of mixing cubic and hexagonal layers makes stacking-disordered ice the stable phase for crystallites up to a size of at least 100,000 molecules. We find that stacking-disordered critical crystallites at 230 kelvin are about 14 kilojoules per mole of crystallite more stable than hexagonal crystallites, making their ice nucleation rates more than three orders of magnitude higher than predicted by classical nucleation theory. This effect on nucleation rates is temperature dependent, being the most pronounced at the warmest conditions, and should affect the modelling of cloud formation and ice particle numbers, which are very sensitive to the temperature dependence of ice nucleation rates. We conclude that classical nucleation theory needs to be corrected to include the dependence of the crystallization driving force on the size of the ice crystallite when interpreting and extrapolating ice nucleation rates from experimental laboratory conditions to the temperatures that occur in clouds.
Role of stacking disorder in ice nucleation.
Lupi, Laura; Hudait, Arpa; Peters, Baron; Grünwald, Michael; Gotchy Mullen, Ryan; Nguyen, Andrew H; Molinero, Valeria
2017-11-08
The freezing of water affects the processes that determine Earth's climate. Therefore, accurate weather and climate forecasts hinge on good predictions of ice nucleation rates. Such rate predictions are based on extrapolations using classical nucleation theory, which assumes that the structure of nanometre-sized ice crystallites corresponds to that of hexagonal ice, the thermodynamically stable form of bulk ice. However, simulations with various water models find that ice nucleated and grown under atmospheric temperatures is at all sizes stacking-disordered, consisting of random sequences of cubic and hexagonal ice layers. This implies that stacking-disordered ice crystallites either are more stable than hexagonal ice crystallites or form because of non-equilibrium dynamical effects. Both scenarios challenge central tenets of classical nucleation theory. Here we use rare-event sampling and free energy calculations with the mW water model to show that the entropy of mixing cubic and hexagonal layers makes stacking-disordered ice the stable phase for crystallites up to a size of at least 100,000 molecules. We find that stacking-disordered critical crystallites at 230 kelvin are about 14 kilojoules per mole of crystallite more stable than hexagonal crystallites, making their ice nucleation rates more than three orders of magnitude higher than predicted by classical nucleation theory. This effect on nucleation rates is temperature dependent, being the most pronounced at the warmest conditions, and should affect the modelling of cloud formation and ice particle numbers, which are very sensitive to the temperature dependence of ice nucleation rates. We conclude that classical nucleation theory needs to be corrected to include the dependence of the crystallization driving force on the size of the ice crystallite when interpreting and extrapolating ice nucleation rates from experimental laboratory conditions to the temperatures that occur in clouds.
Reductive dehalogenation of disinfection byproducts by an activated carbon-based electrode system.
Li, Yuanqing; Kemper, Jerome M; Datuin, Gwen; Akey, Ann; Mitch, William A; Luthy, Richard G
2016-07-01
Low molecular weight, uncharged, halogenated disinfection byproducts (DBPs) are poorly removed by the reverse osmosis and advanced oxidation process treatment units often applied for further treatment of municipal wastewater for potable reuse. Granular activated carbon (GAC) treatment effectively sorbed 22 halogenated DBPs. Conversion of the GAC to a cathode within an electrolysis cell resulted in significant degradation of the 22 halogenated DBPs by reductive electrolysis at -1 V vs. Standard Hydrogen Electrode (SHE). The lowest removal efficiency over 6 h electrolysis was for trichloromethane (chloroform; 47%) but removal efficiencies were >90% for 13 of the 22 DBPs. In all cases, DBP degradation was higher than in electrolysis-free controls, and degradation was verified by the production of halides as reduction products. Activated carbons and charcoal were more effective than graphite for electrolysis, with graphite featuring poor sorption for the DBPs. A subset of halogenated DBPs (e.g., haloacetonitriles, chloropicrin) were degraded upon sorption to the GAC, even without electrolysis. Using chloropicrin as a model, experiments indicated that this loss was attributable to the partial reduction of sorbed chloropicrin from reducing equivalents in the GAC. Reducing equivalents depleted by these reactions could be restored when the GAC was treated by reductive electrolysis. GAC treatment of an advanced treatment train effluent for potable reuse effectively reduced the concentrations of chloroform, bromodichloromethane and dichloroacetonitrile measured in the column influent to below the method detection limits. Treatment of the GAC by reductive electrolysis at -1 V vs. SHE over 12 h resulted in significant degradation of the chloroform (63%), bromodichloromethane (96%) and dichloroacetonitrile (99%) accumulated on the GAC. The results suggest that DBPs in advanced treatment train effluents could be captured and degraded continuously by reductive electrolysis using a GAC-based cathode. Copyright © 2016 Elsevier Ltd. All rights reserved.
Transient deformational properties of high temperature alloys used in solid oxide fuel cell stacks
NASA Astrophysics Data System (ADS)
Molla, Tesfaye Tadesse; Kwok, Kawai; Frandsen, Henrik Lund
2017-05-01
Stresses and probability of failure during operation of solid oxide fuel cells (SOFCs) is affected by the deformational properties of the different components of the SOFC stack. Though the overall stress relaxes with time during steady state operation, large stresses would normally appear through transients in operation including temporary shut downs. These stresses are highly affected by the transient creep behavior of metallic components in the SOFC stack. This study investigates whether a variation of the so-called Chaboche's unified power law together with isotropic hardening can represent the transient behavior of Crofer 22 APU, a typical iron-chromium alloy used in SOFC stacks. The material parameters for the model are determined by measurements involving relaxation and constant strain rate experiments. The constitutive law is implemented into commercial finite element software using a user-defined material model. This is used to validate the developed constitutive law to experiments with constant strain rate, cyclic and creep experiments. The predictions from the developed model are found to agree well with experimental data. It is therefore concluded that Chaboche's unified power law can be applied to describe the high temperature inelastic deformational behaviors of Crofer 22 APU used for metallic interconnects in SOFC stacks.
Scappucci, G; Klesse, W M; Hamilton, A R; Capellini, G; Jaeger, D L; Bischof, M R; Reidy, R F; Gorman, B P; Simmons, M Y
2012-09-12
Stacking of two-dimensional electron gases (2DEGs) obtained by δ-doping of Ge and patterned by scanning probe lithography is a promising approach to realize ultrascaled 3D epitaxial circuits, where multiple layers of active electronic components are integrated both vertically and horizontally. We use atom probe tomography and magnetotransport to correlate the real space 3D atomic distribution of dopants in the crystal with the quantum correction to the conductivity observed at low temperatures, probing if closely stacked δ-layers in Ge behave as independent 2DEGs. We find that at a separation of 9 nm the stacked-2DEGs, while interacting, still maintain their individuality in terms of electron transport and show long phase coherence lengths (∼220 nm). Strong vertical electron confinement is crucial to this finding, resulting in an interlayer scattering time much longer (∼1000 × ) than the scattering time within the dopant plane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hong; Lin, Hua-Tay; Stafford, Mr Randy
2016-01-01
Testing and characterization of large prototype lead zirconate titanate (PZT) stacks present substantial technical challenges to electronic systems. The work in this study shows that an alternative approach can be pursued by using subunits extracted from prototype stacks. Piezoelectric and dielectric integrity was maintained even though the PZT plate specimens experienced an additional loading process involved with the extraction after factory poling. Extracted 10-layer plate specimens were studied by an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 108 cycles, both at room temperature (22 C) and at 50 C. The elevated temperature had amore » defined impact on the fatigue of PZT stacks. About 48 and 28% reductions were observed in the piezoelectric and dielectric coefficients, respectively, after 108 cycles at 50 C, compared with reductions of 25 and 15% in the respective coefficients at 22 C. At the same time, the loss tangent varied to a limited extent. The evolution of PZT electrode interfacial layers or nearby dielectric layers should account for the difference in the fatigue rates of piezoelectric and dielectric coefficients. But the basic contribution to observed fatigue may result from the buildup of a bias field that finally suppressed the motion of the domain walls. Finally, monitoring of dielectric coefficients can be an effective tool for on-line lifetime prediction of PZT stacks in service if a failure criterion is defined properly.« less
NASA Astrophysics Data System (ADS)
Wang, Hong; Lee, Sung-Min; Lin, Hua-Tay; Stafford, Randy
2016-04-01
Testing and characterization of large prototype lead zirconate titanate (PZT) stacks present substantial technical challenges to electronic systems. The work in this study shows that an alternative approach can be pursued by using subunits extracted from prototype stacks. Piezoelectric and dielectric integrity was maintained even though the PZT plate specimens experienced an additional loading process involved with the extraction after factory poling. Extracted 10-layer plate specimens were studied by an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 108 cycles, both at room temperature (22°C) and at 50°C. The elevated temperature had a defined impact on the fatigue of PZT stacks. About 48 and 28% reductions were observed in the piezoelectric and dielectric coefficients, respectively, after 108 cycles at 50°C, compared with reductions of 25 and 15% in the respective coefficients at 22°C. At the same time, the loss tangent varied to a limited extent. The evolution of PZT-electrode interfacial layers or nearby dielectric layers should account for the difference in the fatigue rates of piezoelectric and dielectric coefficients. But the basic contribution to observed fatigue may result from the buildup of a bias field that finally suppressed the motion of the domain walls. Finally, monitoring of dielectric coefficients can be an effective tool for on-line lifetime prediction of PZT stacks in service if a failure criterion is defined properly.
NASA Astrophysics Data System (ADS)
Riyanto; Agustiningsih, W. A.
2018-04-01
Disinfection of coliform and E. Coli in water has been performed by electrolysis using carbon electrodes. Carbon electrodes were used as an anode and cathode with a purity of 98.31% based on SEM-EDS analysis. This study was conducted using electrolysis powered by electric field using carbon electrode as the anode and cathode. Electrolysis method was carried out using variations of time (30, 60, 90, 120 minutes at a voltage of 5 V) and voltage (5, 10, 15, 20 V for 30 minutes) to determine the effect of the disinfection of the bacteria. The results showed the number of coliform and E. coli in water before and after electrolysis was 190 and 22 MPN/100 mL, respectively. The standards quality of drinking water No. 492/Menkes/Per/IV/2010 requires the zero content of coliform and E. Coli. Electrolysis with the variation of time and potential can reduce the number of coliforms and E. Coli but was not in accordance with the standards. The effect of hydrogen peroxide (H2O2) to the electrochemical disinfection was determined using UV-Vis spectrophotometer. The levels of H2O2 formed increased as soon after the duration of electrolysis voltage but was not a significant influence to the mortality of coliform and E.coli.
Cold start dynamics and temperature sliding observer design of an automotive SOFC APU
NASA Astrophysics Data System (ADS)
Lin, Po-Hsu; Hong, Che-Wun
This paper presents a dynamic model for studying the cold start dynamics and observer design of an auxiliary power unit (APU) for automotive applications. The APU is embedded with a solid oxide fuel cell (SOFC) stack which is a quiet and pollutant-free electric generator; however, it suffers from slow start problem from ambient conditions. The SOFC APU system equips with an after-burner to accelerate the start-up transient in this research. The combustion chamber burns the residual fuel (and air) left from the SOFC to raise the exhaust temperature to preheat the SOFC stack through an energy recovery unit. Since thermal effect is the dominant factor that influences the SOFC transient and steady performance, a nonlinear real-time sliding observer for stack temperature was implemented into the system dynamics to monitor the temperature variation for future controller design. The simulation results show that a 100 W APU system in this research takes about 2 min (in theory) for start-up without considering the thermal limitation of the cell fracture.
Sampled-time control of a microbial fuel cell stack
NASA Astrophysics Data System (ADS)
Boghani, Hitesh C.; Dinsdale, Richard M.; Guwy, Alan J.; Premier, Giuliano C.
2017-07-01
Research into microbial fuel cells (MFCs) has reached the point where cubic metre-scale systems and stacks are being built and tested. Apart from performance enhancement through catalysis, materials and design, an important research area for industrial applicability is stack control, which can enhance MFCs stack power output. An MFC stack is controlled using a sampled-time digital control strategy, which has the advantage of intermittent operation with consequent power saving, and when used in a hybrid series stack connectivity, can avoid voltage reversals. A MFC stack comprising four tubular MFCs was operated hydraulically in series. Each MFC was connected to an independent controller and the stack was connected electrically in series, creating a hybrid-series connectivity. The voltage of each MFC in the stack was controlled such that the overall series stack voltage generated was the algebraic sum (1.26 V) of the individual MFC voltages (0.32, 0.32, 0.32 and 0.3). The controllers were able to control the individual voltages to the point where 2.52 mA was drawn from the stack at a load of 499.9 Ω (delivering 3.18 mW). The controllers were able to reject the disturbances and perturbations caused by electrical loading, temperature and substrate concentration.
Electrolysis of Water in the Secondary School Science Laboratory with Inexpensive Microfluidics
ERIC Educational Resources Information Center
Davis, T. A.; Athey, S. L.; Vandevender, M. L.; Crihfield, C. L.; Kolanko, C. C. E.; Shao, S.; Ellington, M. C. G.; Dicks, J. K.; Carver, J. S.; Holland, L. A.
2015-01-01
This activity allows students to visualize the electrolysis of water in a microfluidic device in under 1 min. Instructional materials are provided to demonstrate how the activity meets West Virginia content standards and objectives. Electrolysis of water is a standard chemistry experiment, but the typical laboratory apparatus (e.g., Hoffman cell)…
NASA Technical Reports Server (NTRS)
Porter, F. J., Jr.
1972-01-01
Solid polymer electrolyte technology in a water electrolysis system along with ancillary components to generate oxygen and hydrogen for a manned space station application are considered. Standard commercial components are utilized wherever possible. Presented are the results of investigations, surveys, tests, conclusions and recommendations for future development efforts.
Heat Measurements in Electrolytic Metal-Deuteride Experiments
2015-10-16
zirconia, and zeolites ) prepared by Dr. D. Kidwell at NRL, we attempted to measure excess energy and He production. After operating tens of experiments...we have found that D2 exposure to Pd-filled zeolites and PdNiZrOx catalysts leads to higher temperatures than does H2 exposure. However, we have not...Reactions, SuperWave™, electrolysis, deuterium, zeolite , silica, yttria stabilized zirconia, palladium. 16. SECURITY CLASSIFICATION OF
Systems Engineering Provides Successful High Temperature Steam Electrolysis Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles V. Park; Emmanuel Ohene Opare, Jr.
2011-06-01
This paper describes two Systems Engineering Studies completed at the Idaho National Laboratory (INL) to support development of the High Temperature Stream Electrolysis (HTSE) process. HTSE produces hydrogen from water using nuclear power and was selected by the Department of Energy (DOE) for integration with the Next Generation Nuclear Plant (NGNP). The first study was a reliability, availability and maintainability (RAM) analysis to identify critical areas for technology development based on available information regarding expected component performance. An HTSE process baseline flowsheet at commercial scale was used as a basis. The NGNP project also established a process and capability tomore » perform future RAM analyses. The analysis identified which components had the greatest impact on HTSE process availability and indicated that the HTSE process could achieve over 90% availability. The second study developed a series of life-cycle cost estimates for the various scale-ups required to demonstrate the HTSE process. Both studies were useful in identifying near- and long-term efforts necessary for successful HTSE process deployment. The size of demonstrations to support scale-up was refined, which is essential to estimate near- and long-term cost and schedule. The life-cycle funding profile, with high-level allocations, was identified as the program transitions from experiment scale R&D to engineering scale demonstration.« less
High Temperature Electrolysis for Hydrogen Production from Nuclear Energy – TechnologySummary
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. E. O'Brien; C. M. Stoots; J. S. Herring
2010-02-01
The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research andmore » development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.« less
Boukhrissa, Athir; Ferrag-Siagh, Fatiha; Rouidi, Lina-Mounia; Chemat, Smaïn; Aït-Amar, Hamid
2017-10-01
We examined the removal of abamectin by the electro-Fenton (EF) process and the feasibility of biological treatment after degradation. The effect of the operating parameters showed that abamectin (Aba) degradation was enhanced with increasing temperature. Response surface analysis of the central composite design led to the following optimal conditions for the abatement of chemical oxygen demand: 45.5 °C, 5 mg L -1 , 150 mA, and 0.15 mmol L -1 for the temperature, initial Aba concentration, current intensity, and catalyst concentration, respectively. Under these conditions, 68.01% of the organic matter was removed and 94% of Aba was degraded after 5 h and 20 min of electrolysis, respectively. A biodegradability test, which was performed on a solution electrolyzed at 47 °C, 9 mg L -1 , 150 mA, and 0.15 mmol L -1 , confirms that the ratio of biological oxygen demand/chemical oxygen demand increased appreciably from 0.0584 to 0.64 after 5 h of electrolysis. This increased ratio is slightly above the limit of biodegradability (0.4). These results show the relevance of the EF process and its effectiveness for abamectin degradation. We conclude that biological treatment can be combined with the EF process for total mineralization.
NASA Technical Reports Server (NTRS)
Shumar, J. W.; Berger, T. A.
1978-01-01
A solid electrolyte cell with improved sealing characteristics was examined. A tube cell was designed, developed, fabricated, and tested. Design concepts incorporated in the tube cell to improve its sealing capability included minimizing the number of seals per cell and moving seals to lower temperature regions. The advanced tube cell design consists of one high temperature ceramic cement seal, one high temperature gasket seal, and three low temperature silicone elastomer seals. The two high temperature seals in the tube cell design represent a significant improvement over the ten high temperature precious metal seals required by the electrolyzer drum design. For the tube cell design the solid electrolyte was 8 mole percent yttria stabilized zirconium oxide slip cast into the shape of a tube with electrodes applied on the inside and outside surfaces.
Jain, S; Qiao, L
2018-06-21
This work explored the mechanism of spontaneous combustion of hydrogen-oxygen mixtures inside nanobubbles (which were generated by water electrolysis) using reactive molecular dynamic simulations based on the first-principles derived reactive force field ReaxFF. The effects of surface-assisted dissociation of H 2 and O 2 gases that produced H and O radicals were examined. Additionally, the ignition outcome and species evolution as a function of the initial system pressure (or bubble size) were studied. A significant amount of hydrogen peroxide (H 2 O 2 ), 6-140 times water (H 2 O), was observed in the combustion products. This was attributed to the low-temperature (∼300 K) and high-pressure (2-80 atm) conditions at which the chemical reactions were taking place. In addition, the rate of consumption of H 2 and O 2 molecules was found to increase with an increase in added H and O radical concentrations and initial system pressure. The rate at which heat was being lost from the combustion chamber (nanobubbles) was also compared to the rate at which heat was being released from the chemical reactions. Only a slight rise in the reaction temperature was observed (∼68 K), signifying that, at such small scales, heat losses dominate. The resulting chemistry was quite different from macroscopic combustion, which usually takes place at a much higher temperatures of above 1000 K.
NASA Astrophysics Data System (ADS)
Kattke, K. J.; Braun, R. J.
2011-08-01
A novel, highly integrated tubular SOFC system intended for small-scale power is characterized through a series of sensitivity analyses and parametric studies using a previously developed high-fidelity simulation tool. The high-fidelity tubular SOFC system modeling tool is utilized to simulate system-wide performance and capture the thermofluidic coupling between system components. Stack performance prediction is based on 66 anode-supported tubular cells individually evaluated with a 1-D electrochemical cell model coupled to a 3-D computational fluid dynamics model of the cell surroundings. Radiation is the dominate stack cooling mechanism accounting for 66-92% of total heat loss at the outer surface of all cells at baseline conditions. An average temperature difference of nearly 125 °C provides a large driving force for radiation heat transfer from the stack to the cylindrical enclosure surrounding the tube bundle. Consequently, cell power and voltage disparities within the stack are largely a function of the radiation view factor from an individual tube to the surrounding stack can wall. The cells which are connected in electrical series, vary in power from 7.6 to 10.8 W (with a standard deviation, σ = 1.2 W) and cell voltage varies from 0.52 to 0.73 V (with σ = 81 mV) at the simulation baseline conditions. It is observed that high cell voltage and power outputs directly correspond to tubular cells with the smallest radiation view factor to the enclosure wall, and vice versa for tubes exhibiting low performance. Results also reveal effective control variables and operating strategies along with an improved understanding of the effect that design modifications have on system performance. By decreasing the air flowrate into the system by 10%, the stack can wall temperature increases by about 6% which increases the minimum cell voltage to 0.62 V and reduces deviations in cell power and voltage by 31%. A low baseline fuel utilization is increased by decreasing the fuel flowrate and by increasing the stack current demand. Simulation results reveal fuel flow as a poor control variable because excessive tail-gas combustor temperatures limit fuel flow to below 110% of the baseline flowrate. Additionally, system efficiency becomes inversely proportional to fuel utilization over the practical fuel flow range. Stack current is found to be an effective control variable in this type of system because system efficiency becomes directly proportional to fuel utilization. Further, the integrated system acts to dampen temperature spikes when fuel utilization is altered by varying current demand. Radiation remains the dominate heat transfer mechanism within the stack even if stack surfaces are polished lowering emissivities to 0.2. Furthermore, the sensitivity studies point to an optimal system insulation thickness that balances the overall system volume and total conductive heat loss.
Design of optimum solid oxide membrane electrolysis cells for metals production
Guan, Xiaofei; Pal, Uday B.
2015-12-24
Oxide to metal conversion is one of the most energy-intensive steps in the value chain for metals production. Solid oxide membrane (SOM) electrolysis process provides a general route for directly reducing various metal oxides to their respective metals, alloys, or intermetallics. Because of its lower energy use and ability to use inert anode resulting in zero carbon emission, SOM electrolysis process emerges as a promising technology that can replace the state-of-the-art metals production processes. In this paper, a careful study of the SOM electrolysis process using equivalent DC circuit modeling is performed and correlated to the experimental results. Finally, amore » discussion on relative importance of each resistive element in the circuit and on possible ways of lowering the rate-limiting resistive elements provides a generic guideline for designing optimum SOM electrolysis cells.« less
Liu, Guangli; Zhou, Ying; Luo, Haiping; Cheng, Xing; Zhang, Renduo; Teng, Wenkai
2015-12-01
The aim of this study was to investigate different microbial electrolysis desalination cells for malic acid production. The systems included microbial electrolysis desalination and chemical-production cell (MEDCC), microbial electrolysis desalination cell (MEDC) with bipolar membrane and anion exchange membrane (BP-A MEDC), MEDC with bipolar membrane and cation exchange membrane (BP-C MEDC), and modified microbial desalination cell (M-MDC). The microbial electrolysis desalination cells performed differently in terms of malic acid production and energy consumption. The MEDCC performed best with the highest malic acid production rate (18.4 ± 0.6 mmol/Lh) and the lowest energy consumption (0.35 ± 0.14 kWh/kg). The best performance of MEDCC was attributable to the neutral pH condition in the anode chamber, the lowest internal resistance, and the highest Geobacter percentage of the anode biofilm population among all the reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Magnetic Resonance Imaging of Electrolysis.
Meir, Arie; Hjouj, Mohammad; Rubinsky, Liel; Rubinsky, Boris
2015-01-01
This study explores the hypothesis that Magnetic Resonance Imaging (MRI) can image the process of electrolysis by detecting pH fronts. The study has relevance to real time control of cell ablation with electrolysis. To investigate the hypothesis we compare the following MR imaging sequences: T1 weighted, T2 weighted and Proton Density (PD), with optical images acquired using pH-sensitive dyes embedded in a physiological saline agar solution phantom treated with electrolysis and discrete measurements with a pH microprobe. We further demonstrate the biological relevance of our work using a bacterial E. Coli model, grown on the phantom. The results demonstrate the ability of MRI to image electrolysis produced pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E. Coli model grown on the phantom. The results are promising and invite further experimental research. PMID:25659942
Technology advancement of the static feed water electrolysis process
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Wynveen, R. A.
1977-01-01
A program to advance the technology of oxygen- and hydrogen-generating subsystems based on water electrolysis was studied. Major emphasis was placed on static feed water electrolysis, a concept characterized by low power consumption and high intrinsic reliability. The static feed based oxygen generation subsystem consists basically of three subassemblies: (1) a combined water electrolysis and product gas dehumidifier module; (2) a product gas pressure controller and; (3) a cyclically filled water feed tank. Development activities were completed at the subsystem as well as at the component level. An extensive test program including single cell, subsystem and integrated system testing was completed with the required test support accessories designed, fabricated, and assembled. Mini-product assurance activities were included throughout all phases of program activities. An extensive number of supporting technology studies were conducted to advance the technology base of the static feed water electrolysis process and to resolve problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fillo, J.A.
1980-01-01
Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high-temperature electrolysis of approx. 50 to 65% are projected for fusion reactors using high-temperatures blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Recknagle, Kurtis P.; Koeppel, Brian J.; Sun, Xin
2007-04-30
Numerical simulations were performed to determine the effect that varying the percent on-cell steam-methane reformation would have on the thermal, electrical, and mechanical performance of generic, planar solid oxide fuel cell stacks. The study was performed using three-dimensional model geometries for cross-, co-, and counter-flow configuration stacks of 10x10- and 20x20-cm cell sizes. The analysis predicted the stress and temperature difference would be minimized for the 10x10-cm counter- and cross-flow stacks when 40 to 50% of the reformation reaction occurred on the anode. Gross electrical power density was virtually unaffected by the reforming. The co-flow stack benefited most from themore » on-cell reforming and had the lowest anode stresses of the 20x20-cm stacks. The analyses also suggest that airflows associated with 15% air utilization may be required for cooling the larger (20x20-cm) stacks.« less
NASA Astrophysics Data System (ADS)
Watson, Benjamin I.; Williams, John W.; Russell, James M.; Jackson, Stephen T.; Shane, Linda; Lowell, Thomas V.
2018-02-01
Our understanding of deglacial climate history in the southern Great Lakes region of the United States is primarily based upon fossil pollen data, with few independent and multi-proxy climate reconstructions. Here we introduce a new, well-dated fossil pollen record from Stotzel-Leis, OH, and a new deglacial temperature record based on branched glycerol dialkyl glycerol tetraethers (brGDGTs) at Silver Lake, OH. We compare these new data to previously published records and to a regional stack of pollen-based temperature reconstructions from Stotzel-Leis, Silver Lake, and three other well-dated sites. The new and previously published pollen records at Stotzel-Leis are similar, but our new age model brings vegetation events into closer alignment with known climatic events such as the Younger Dryas (YD). brGDGT-inferred temperatures correlate strongly with pollen-based regional temperature reconstructions, with the strongest correlation obtained for a global soil-based brGDGT calibration (r2 = 0.88), lending confidence to the deglacial reconstructions and the use of brGDGT and regional pollen stacks as paleotemperature proxies in eastern North America. However, individual pollen records show large differences in timing, rates, and amplitudes of inferred temperature change, indicating caution with paleoclimatic inferences based on single-site pollen records. From 16.0 to 10.0ka, both proxies indicate that regional temperatures rose by ∼10 °C, roughly double the ∼5 °C estimates for the Northern Hemisphere reported in prior syntheses. Change-point analysis of the pollen stack shows accelerated warming at 14.0 ± 1.2ka, cooling at 12.6 ± 0.4ka, and warming from 11.6 ± 0.5ka into the Holocene. The timing of Bølling-Allerød (B-A) warming and YD onset in our records lag by ∼300-500 years those reported in syntheses of temperature records from the northern mid-latitudes. This discrepancy is too large to be attributed to uncertainties in radiocarbon dating, and correlation between pollen and brGDGT temperature reconstructions rules out vegetation lags as a cause. However, the YD termination appears synchronous among the brGDGT record, regional pollen stack, and Northern Hemisphere stack. The cause of the larger and lagged temperature changes in the southern Great Lakes relative to Northern Hemisphere averages remains unclear, but may be due to the effects of continentality and ice sheet extent on regional climate evolution.
Watson, Benjamin I.; Williams, John W.; Russell, James M.; Jackson, Stephen T.; Shane, Linda; Lowell, Thomas V.
2018-01-01
Our understanding of deglacial climate history in the southern Great Lakes region of the United States is primarily based upon fossil pollen data, with few independent and multi-proxy climate reconstructions. Here we introduce a new, well-dated fossil pollen record from Stotzel-Leis, OH, and a new deglacial temperature record based on branched glycerol dialkyl glycerol tetraethers (brGDGTs) at Silver Lake, OH. We compare these new data to previously published records and to a regional stack of pollen-based temperature reconstructions from Stotzel-Leis, Silver Lake, and three other well-dated sites. The new and previously published pollen records at Stotzel-Leis are similar, but our new age model brings vegetation events into closer alignment with known climatic events such as the Younger Dryas (YD). brGDGT-inferred temperatures correlate strongly with pollen-based regional temperature reconstructions, with the strongest correlation obtained for a global soil-based brGDGT calibration (r2 = 0.88), lending confidence to the deglacial reconstructions and the use of brGDGT and regional pollen stacks as paleotemperature proxies in eastern North America. However, individual pollen records show large differences in timing, rates, and amplitudes of inferred temperature change, indicating caution with paleoclimatic inferences based on single-site pollen records. From 16.0 to 10.0ka, both proxies indicate that regional temperatures rose by ∼10 °C, roughly double the ∼5 °C estimates for the Northern Hemisphere reported in prior syntheses. Change-point analysis of the pollen stack shows accelerated warming at 14.0 ± 1.2ka, cooling at 12.6 ± 0.4ka, and warming from 11.6 ± 0.5ka into the Holocene. The timing of Bølling-Allerød (B-A) warming and YD onset in our records lag by ∼300–500 years those reported in syntheses of temperature records from the northern mid-latitudes. This discrepancy is too large to be attributed to uncertainties in radiocarbon dating, and correlation between pollen and brGDGT temperature reconstructions rules out vegetation lags as a cause. However, the YD termination appears synchronous among the brGDGT record, regional pollen stack, and Northern Hemisphere stack. The cause of the larger and lagged temperature changes in the southern Great Lakes relative to Northern Hemisphere averages remains unclear, but may be due to the effects of continentality and ice sheet extent on regional climate evolution.
Rhombohedral Multilayer Graphene: A Magneto-Raman Scattering Study.
Henni, Younes; Ojeda Collado, Hector Pablo; Nogajewski, Karol; Molas, Maciej R; Usaj, Gonzalo; Balseiro, Carlos A; Orlita, Milan; Potemski, Marek; Faugeras, Clement
2016-06-08
Graphene layers are known to stack in two stable configurations, namely, ABA or ABC stacking, with drastically distinct electronic properties. Unlike the ABA stacking, little has been done to experimentally investigate the electronic properties of ABC graphene multilayers. Here, we report on the first magneto optical study of a large ABC domain in a graphene multilayer flake, with ABC sequences exceeding 17 graphene sheets. ABC-stacked multilayers can be fingerprinted with a characteristic electronic Raman scattering response, which persists even at room temperatures. Tracing the magnetic field evolution of the inter Landau level excitations from this domain gives strong evidence for the existence of a dispersionless electronic band near the Fermi level, characteristic of such stacking. Our findings present a simple yet powerful approach to probe ABC stacking in graphene multilayer flakes, where this highly degenerated band appears as an appealing candidate to host strongly correlated states.
NASA Astrophysics Data System (ADS)
Stelter, Michael; Reinert, Andreas; Mai, Björn Erik; Kuznecov, Mihail
A solid oxide fuel cell (SOFC) stack module is presented that is designed for operation on diesel reformate in an auxiliary power unit (APU). The stack was designed using a top-down approach, based on a specification of an APU system that is installed on board of vehicles. The stack design is planar, modular and scalable with stamped sheet metal interconnectors. It features thin membrane electrode assemblies (MEAs), such as electrolyte supported cells (ESC) and operates at elevated temperatures around 800 °C. The stack has a low pressure drop in both the anode and the cathode to facilitate a simple system layout. An overview of the technical targets met so far is given. A stack power density of 0.2 kW l -1 has been demonstrated in a fully integrated, thermally self-sustaining APU prototype running with diesel and without an external water supply.
NASA Astrophysics Data System (ADS)
Desai, A. B.; Desai, K. P.; Naik, H. B.; Atrey, M. D.
2017-02-01
Thermoacoustic engines (TAEs) are devices which convert heat energy into useful acoustic work whereas thermoacoustic refrigerators (TARs) convert acoustic work into temperature gradient. These devices work without any moving component. Study presented here comprises of a combination system i.e. thermoacoustic engine driven thermoacoustic refrigerator (TADTAR). This system has no moving component and hence it is easy to fabricate but at the same time it is very challenging to design and construct optimized system with comparable performance. The work presented here aims to apply optimization technique to TADTAR in the form of response surface methodology (RSM). Significance of stack position and stack length for engine stack, stack position and stack length for refrigerator stack are investigated in current work. Results from RSM are compared with results from simulations using Design Environment for Low-amplitude Thermoacoustic Energy conversion (DeltaEC) for compliance.
Commercial materials as cathode for hydrogen production in microbial electrolysis cell.
Farhangi, Sara; Ebrahimi, Sirous; Niasar, Mojtaba Shariati
2014-10-01
The use of commercial electrodes as cathodes in a single-chamber microbial electrolysis cell has been investigated. The cell was operated in sequencing batch mode and the performance of the electrodes was compared with carbon cloth containing 0.5 mg Pt cm(-2). Overall H2 recovery [Formula: see text] was 66.7 ± 1.4, 58.7 ± 1.1 and 55.5 ± 1.5 % for Pt/CC, Ni and Ti mesh electrodes, respectively. Columbic efficiencies of the three cathodes were in the same range (74.8 ± 1.5, 77.6 ± 1.7 and 75.7 ± 1.2 % for Pt/CC, Ni and Ti mesh electrodes, respectively). A similar performance for the three cathodes under near-neutral pH and ambient temperature was obtained. The commercial electrodes are much cheaper than carbon cloth containing Pt. Low cost and good performance of these electrodes suggest they are suitable cathode materials for large scale application.
Photoelectrochemical Performance of the Ag(III)-Based Oxygen-Evolving Catalyst.
Sordello, Fabrizio; Ghibaudo, Manuel; Minero, Claudio
2017-07-19
We report the electrosynthesis of a water oxidation catalyst based on Ag oxides (AgCat). The deposited AgCat is composed of mixed valence crystalline Ag oxides with the presence of particle aggregates whose size is ∼1 μm. This catalyst, coupled with TiO 2 and hematite, and under photoelectrochemical conditions, substantially increases photocurrents in a wide range of applied potentials compared with bare and Co-Pi-modified photocatalysts. AgCat can sustain current densities comparable with other water oxidation catalysts. Dark bulk electrolysis demonstrated that AgCat is stable and can sustain high turnover number in operative conditions. Oxygen evolution from water occurs in mild conditions: pH = 2-13, room temperature and pressure, and moderate overpotentials (600 mV) compatible with the coupling with semiconducting oxides as sensitizers. Using hematite in sustained electrolysis O 2 production is significant, both in the dark and under irradiation, after an initial slow induction time in which modification of surface species occurs.
NASA Astrophysics Data System (ADS)
Mitov, M.; Chorbadzhiyska, E.; Nalbandian, L.; Hubenova, Y.
2017-07-01
The development of cost-effective cathodes, operating at neutral pH and ambient temperatures, is a crucial challenge for the practical application of microbial electrolysis cell (MEC) technology. In this study, NiW and NiMo co-deposits produced by electroplating on Ni-foam are explored as cathodes in MEC. The fabricated electrodes exhibit higher corrosion stability and enhanced electrocatalytic activity towards hydrogen evolution reaction in neutral electrolyte compared to the bare Ni-foam. NiW/Ni-foam electrodes possess six times higher intrinsic catalytic activity, estimated from data obtained by linear voltammetry and chronoamperometry. The newly developed electrodes are applied as cathodes in single-chamber membrane-free MEC reactors, inoculated with wastewater and activated sludge from a municipal wastewater treatment plant. Cathodic hydrogen recovery of 79% and 89% by using NiW and NiMo cathodes, respectively, is achieved at applied voltage of 0.6 V. The obtained results reveal potential for practical application of used catalysts in MEC.
NASA Technical Reports Server (NTRS)
1980-01-01
Experimental electrolysis cells using various platinum catalyzed carbon electrodes were tested. When operated at 200 mA/sq cm current density using 50 w/o acid at 50 C and 1 atm, a reference cell required 1.22 volts and degraded rapidly. After several improvements were incorporated into electrodes and the test cell configuration, a later cell required only 0.77 volts under identical operating conditions. At a lower current density, 100 mA/sq cm, the cell required only 0.63 volts. Kinetic studies on metal electrodes, measurements of temperature effects on electrode kinetics, investigations of electrocatalytic activities of metal electrodes over a wide range of acid concentrations, cyclic voltametric studies and evaluation of alternate catalysts were also conducted. From diffusivity experiments, a cation exchange membrane material, P-4010, exhibited an excellent diffusion coefficient, more than two orders of magnitude lower than that of rubber. Ionic resistivity measurements of eight materials showed that microporous rubber had the lowest resistivity.
NASA Astrophysics Data System (ADS)
Žukovič, M.; Borovský, M.; Bobák, A.
2018-05-01
We study a stacked triangular lattice Ising model with both intra- and inter-plane antiferromagnetic interactions in a field, by Monte Carlo simulation. We find only one phase transition from a paramagnetic to a partially disordered phase, which is of second order and 3D XY universality class. At low temperatures we identify two highly degenerate phases: at smaller (larger) fields the system shows long-range ordering in the stacking direction (within planes) but not in the planes (stacking direction). Nevertheless, crossovers to these phases do not have a character of conventional phase transitions but rather linear-chain-like excitations.
ERIC Educational Resources Information Center
Sia, Ding Teng; Treagust, David F.; Chandrasegaran, A. L.
2012-01-01
This study was conducted with 330 Form 4 (grade 10) students (aged 15-16 years) who were involved in a course of instruction on electrolysis concepts. The main purposes of this study were (1) to assess high school chemistry students' understanding of 19 major principles of electrolysis using a recently developed 2-tier multiple-choice diagnostic…
Ju, Xinxin; Wu, Shubiao; Zhang, Yansheng; Dong, Renjie
2014-08-01
A novel electrolysis-integrated tidal flow constructed wetland (CW) system was developed in this study. The dynamics of intensified nitrogen and phosphorus removal and that of hydrogen sulphide control were evaluated. Ammonium removal of up to 80% was achieved with an inflow concentration of 60 mg/L in wetland systems with and without electrolysis integration. Effluent nitrate concentration decreased from 2 mg/L to less than 0.5 mg/L with the decrease in current intensity from 1.5 mA/cm(2) to 0.57 mA/cm(2) in the electrolysis-integrated wetland system, thus indicating that the current intensity of electrolysis plays an important role in nitrogen transformations. Phosphorus removal was significantly enhanced, exceeding 95% in the electrolysis-integrated CW system because of the in-situ formation of a ferric iron coagulant through the electro-dissolution of a sacrificial iron anode. Moreover, the electrolyzed wetland system effectively inhibits sulphide accumulation as a result of a sulphide precipitation coupled with ferrous-iron electro-dissolution and/or an inhibition of bacterial sulphate reduction under increased aerobic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Electrolysis with diamond anodes: Eventually, there are refractory species!
Mena, Ismael F; Cotillas, Salvador; Díaz, Elena; Sáez, Cristina; Rodríguez, Juan J; Cañizares, P; Mohedano, Ángel F; Rodrigo, Manuel A
2018-03-01
In this work, synthetic wastewater polluted with ionic liquid 1-butyl-3-methylimidazolium (Bmim) bis(trifluoromethanesulfonyl)imide (NTf 2 ) undergoes four electrolytic treatments with diamond anodes (bare electrolysis, electrolysis enhanced with peroxosulfate promoters, irradiated with UV light and with US) and results obtained were compared with those obtained with the application of Catalytic Wet Peroxide Oxidation (CWPO). Despite its complex heterocyclic structure, Bmim + cation is successfully depleted with the five technologies tested, being transformed into intermediates that eventually can be mineralized. Photoelectrolysis attained the lowest concentration of intermediates, while CWPO is the technology less efficient in their degradation. However, the most surprising result is that concentration of NTf 2 - anion does not change during the five advanced oxidation processes tested, pointing out its strong refractory character, being the first species that exhibits this character in wastewater undergoing electrolysis with diamond. This means that the hydroxyl and sulfate radicals mediated oxidation and the direct electrolysis are inefficient for breaking the C-S, C-F and S-N bounds of the NTf 2 - anion, which is a very interesting mechanistic information to understand the complex processes undergone in electrolysis with diamond. Copyright © 2017 Elsevier Ltd. All rights reserved.
Electrolysis treatment of trichiasis by using ultra-fine needle.
Sakarya, Yasar; Sakarya, Rabia; Yildirim, Aydin
2010-01-01
To determine the safety and efficacy of electrolysis treatment of trichiasis by using ultrafine needle. The medical records of 24 lids of 24 patients who underwent electrolysis treatment for trichiasis by the same surgeon (Y.S.) during the period from May 2006 through December 2008 were reviewed. The average age of the 24 patients was 59.2 years (range, 43 to 76 years). Thirteen of the patients were women. The results were considered satisfactory if no recurrence of trichiasis occurred for at least 6 months after the last electrolysis procedure. Sixteen of the 24 patients (66.6%) had a satisfactory result with 1 treatment. Of the 8 patients (33.3%) who had an unsatisfactory result, while 5 (20.8%) responded well to 1 additional electrolysis, 3 (12.5%) responded well to 2 additional electrolyses to the recurrent cilia. The procedure was well tolerated by the patients. All eyelids healed within 2 weeks after treatment without any scarring. Faint hypopigmentation was visible in 2 patients (8.3%). Mild notching of eyelid occurred in 4 patients (16.6%). Electrolysis treatment by using ultrafine (55-microm thickness) needle is an effective and safe method for treatment of trichiasis with many advantages over other recognized modalities of therapy.
NASA Technical Reports Server (NTRS)
Han, J.; Keller, L. P.; Brearley, A. J.; Danielson, L. R.
2016-01-01
Hibonite (CaAl12O19) is a primary, highly refractory phase occurring in many Ca-Al-rich inclusions (CAIs) from different chondrite groups, except CI chondrites. Hibonite is predicted to be one of the earliest minerals to condense during cooling of the solar nebula at higher temperatures than any other major CAI mineral. Therefore, hibonite has great potential to reveal the processes and conditions of the very early, high-temperature stages of the solar nebular evolution. Previous microstructural studies of hibonite in CAIs and their Wark-Lovering (WL) rims showed the presence of numerous stacking defects in hibonite. These defects are interpreted as the modification of the stacking sequences of spinel and Ca-containing blocks within the ideal hexagonal hibonite structure, as shown by experimental studies of reaction-sintered ceramic CaO-Al2O3 compounds. We performed preliminary experiments in the CaO-Al2O3-MgO system to understand the formation processes and conditions of defect-structured hibonite found in meteorites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yu; Guo, Jianqiu; Goue, Ouloide
Recently, we reported on the formation of overlapping rhombus-shaped stacking faults from scratches left over by the chemical mechanical polishing during high temperature annealing of PVT-grown 4H–SiC wafer. These stacking faults are restricted to regions with high N-doped areas of the wafer. The type of these stacking faults were determined to be Shockley stacking faults by analyzing the behavior of their area contrast using synchrotron white beam X-ray topography studies. A model was proposed to explain the formation mechanism of the rhombus shaped stacking faults based on double Shockley fault nucleation and propagation. In this paper, we have experimentally verifiedmore » this model by characterizing the configuration of the bounding partials of the stacking faults on both surfaces using synchrotron topography in back reflection geometry. As predicted by the model, on both the Si and C faces, the leading partials bounding the rhombus-shaped stacking faults are 30° Si-core and the trailing partials are 30° C-core. Finally, using high resolution transmission electron microscopy, we have verified that the enclosed stacking fault is a double Shockley type.« less
Creep Mechanisms of a Ni-Co-Based-Wrought Superalloy with Low Stacking Fault Energy
NASA Astrophysics Data System (ADS)
Tian, Chenggang; Xu, Ling; Cui, Chuanyong; Sun, Xiaofeng
2015-10-01
In order to study the influences of stress and temperature on the creep deformation mechanisms of a newly developed Ni-Co-based superalloy with low stacking fault energy, creep experiments were carried out under a stress range of 345 to 840 MPa and a temperature range of 923 K to 1088 K (650 °C to 815 °C). The mechanisms operated under the various creep conditions were identified and the reasons for their transformation were well discussed. A deformation mechanism map under different creep conditions was summarized, which provides a qualitative representation of the operative creep mechanisms as a function of stress and temperature.
2018-01-01
A gravimetric method for the quantitative assessment of the products of electrolysis of water is presented. In this approach, the electrolysis cell was directly powered by 9 V batteries. Prior to electrolysis, a known amount of potassium hydrogen phthalate (KHP) was added to the cathode compartment, and an excess amount of KHCO3 was added to the anode compartment electrolyte. During electrolysis, cathode and anode compartments produced OH−(aq) and H+(aq) ions, respectively. Electrolytically produced OH−(aq) neutralized the KHP, and the completion of this neutralization was detected by a visual indicator color change. Electrolytically produced H+(aq) reacted with HCO3 −(aq) liberating CO2(g) from the anode compartment. Concurrent liberation of H2(g) and O2(g) at the cathode and anode, respectively, resulted in a decrease in the mass of the cell. Mass of the electrolysis cell was monitored. Liberation of CO2(g) resulted in a pronounced effect of a decrease in mass. Experimentally determined decrease in mass (53.7 g/Faraday) agreed with that predicted from Faraday's laws of electrolysis (53.0 g/Faraday). The efficacy of the cell was tested to quantify the acid content in household vinegar samples. Accurate results were obtained for vinegar analysis with a precision better than 5% in most cases. The cell offers the advantages of coulometric method and additionally simplifies the circuitry by eliminating the use of a constant current power source or a coulometer. PMID:29629210
Melaku, Samuel; Gebeyehu, Zewdu; Dabke, Rajeev B
2018-01-01
A gravimetric method for the quantitative assessment of the products of electrolysis of water is presented. In this approach, the electrolysis cell was directly powered by 9 V batteries. Prior to electrolysis, a known amount of potassium hydrogen phthalate (KHP) was added to the cathode compartment, and an excess amount of KHCO 3 was added to the anode compartment electrolyte. During electrolysis, cathode and anode compartments produced OH - (aq) and H + (aq) ions, respectively. Electrolytically produced OH - (aq) neutralized the KHP, and the completion of this neutralization was detected by a visual indicator color change. Electrolytically produced H + (aq) reacted with HCO 3 - (aq) liberating CO 2 (g) from the anode compartment. Concurrent liberation of H 2 (g) and O 2 (g) at the cathode and anode, respectively, resulted in a decrease in the mass of the cell. Mass of the electrolysis cell was monitored. Liberation of CO 2 (g) resulted in a pronounced effect of a decrease in mass. Experimentally determined decrease in mass (53.7 g/Faraday) agreed with that predicted from Faraday's laws of electrolysis (53.0 g/Faraday). The efficacy of the cell was tested to quantify the acid content in household vinegar samples. Accurate results were obtained for vinegar analysis with a precision better than 5% in most cases. The cell offers the advantages of coulometric method and additionally simplifies the circuitry by eliminating the use of a constant current power source or a coulometer.
Driving force of stacking-fault formation in SiC p-i-n diodes.
Ha, S; Skowronski, M; Sumakeris, J J; Paisley, M J; Das, M K
2004-04-30
The driving force of stacking-fault expansion in SiC p-i-n diodes was investigated using optical emission microscopy and transmission electron microscopy. The stacking-fault expansion and properties of the partial dislocations were inconsistent with any stress as the driving force. A thermodynamic free energy difference between the perfect and a faulted structure is suggested as a plausible driving force in the tested diodes, indicating that hexagonal polytypes of silicon carbide are metastable at room temperature.
Wenisch, Robert; Lungwitz, Frank; Hanf, Daniel; Heller, René; Zscharschuch, Jens; Hübner, René; von Borany, Johannes; Abrasonis, Gintautas; Gemming, Sibylle; Escobar-Galindo, Ramon; Krause, Matthias
2018-06-13
A new cluster tool for in situ real-time processing and depth-resolved compositional, structural and optical characterization of thin films at temperatures from -100 to 800 °C is described. The implemented techniques comprise magnetron sputtering, ion irradiation, Rutherford backscattering spectrometry, Raman spectroscopy, and spectroscopic ellipsometry. The capability of the cluster tool is demonstrated for a layer stack MgO/amorphous Si (∼60 nm)/Ag (∼30 nm), deposited at room temperature and crystallized with partial layer exchange by heating up to 650 °C. Its initial and final composition, stacking order, and structure were monitored in situ in real time and a reaction progress was defined as a function of time and temperature.
Phase transformation of TiO2 powder prepared by TiCl4 hydrolysis-electrolysis
NASA Astrophysics Data System (ADS)
Nur, Adrian; Purwanto, Agus; Jumari, Arif; Dyartanti, Endah R.; A. N., Richard Leonardo; Gultom, Barry Januari
2017-01-01
Metal oxide combined with graphite becomes an interesting composition. TiO2 is a good candidate for Li ion battery anode because of low cost, availability sufficient, and environmentally friendly. The form of TiO2 crystals is highly depended on the synthesis method used. The electrochemical method is beginning to emerge as a valuable option for preparing TiO2 powders. Using the electrochemical method, the particle phase can easily be controlled by simply adjusting the imposed current or potential to the system. The present work aims to investigate the effects of electrode distance in the electrolysis of TiCl4 solution to the phase transformation of anatase to rutile. The homogeneous solution for the electro-synthesis of TiO2 powders was TiCl4 in ethanol solution. The electrolysis was carried out in an electrochemical cell consisting of two carbon electrodes with dimensions of (5×2) cm. The electrodes were set parallel with various distances of 2.6 cm, 3 cm, and 4 cm between the electrodes and were immersed in the electrolytic solution at a depth of 2 cm. The electrodes were connected to the positive and negative terminals of a DC power supply (Zhaoxin PS-3005D). The electro-synthesis was performed galvanostatically at 2.5 hours and a voltage 10 V under constant stirring at room temperature. Phase transformation from anatase to rutile occurred at 2.6 cm to 3 cm electrode distance.
ERIC Educational Resources Information Center
Dabke, Rajeev B.; Gebeyehu, Zewdu
2012-01-01
A simple 3-h physical chemistry undergraduate experiment for the quantitative analysis of acetic acid in household vinegar is presented. The laboratory experiment combines titration concept with electrolysis and an application of the gas laws. A vinegar sample was placed in the cathode compartment of the electrolysis cell. Electrolysis of water…
Water electrolysis system refurbishment and testing
NASA Technical Reports Server (NTRS)
Greenough, B. M.
1972-01-01
The electrolytic oxygen generator for the back-up water electrolysis system in a 90-day manned test was refurbished, improved and subjected to a 182-day bench test. The performance of the system during the test demonstrated the soundness of the basic electrolysis concept, the high development status of the automatic controls which allowed completely hands-off operation, and the capability for orbital operation. Some design improvements are indicated.
de-Miguel-Valtierra, Lorena; Salom-Moreno, Jaime; Fernández-de-Las-Peñas, César; Cleland, Joshua A; Arias-Buría, José L
2018-05-16
This randomized clinical trial compared the effects of adding US-guided percutaneous electrolysis into a program consisting of manual therapy and exercise on pain, related-disability, function and pressure sensitivity in subacromial pain syndrome. Fifty patients with subacromial pain syndrome were randomized into manual therapy and exercise or percutaneous electrolysis group. All patients received the same manual therapy and exercise program, one session per week for 5 consecutive weeks. Patients assigned to the electrolysis group also received the application of percutaneous electrolysis at each session. The primary outcome was Disabilities of the Arm, Shoulder and Hand (DASH). Secondary outcomes included pain, function (Shoulder Pain and Disability Index-SPADI) pressure pain thresholds (PPTs) and Global Rating of Change (GROC). They were assessed at baseline, post-treatment, and 3, and 6 months after treatment. Both groups showed similar improvements in the primary outcome (DASH) at all follow-ups (P=0.051). Subjects receiving manual therapy, exercise, and percutaneous electrolysis showed significantly greater changes in shoulder pain (P<0.001) and SPADI (P<0.001) than those receiving manual therapy and exercise alone at all follow-ups. Effect sizes were large (SMD>0.91) for shoulder pain and function at 3 and 6 months in favour of the percutaneous electrolysis group. No between-groups differences in PPT were found. The current clinical trial found that the inclusion of US-guided percutaneous electrolysis in combination with manual therapy and exercise resulted in no significant differences for related-disability (DASH) than the application of manual therapy and exercise alone in patients with subacromial pain syndrome. Nevertheless, differences were reported for some secondary outcomes such as shoulder pain and function (SPADI). Whether or not these effects are reliable should be addressed in future studies Perspective This study found that the inclusion of US-guided percutaneous electrolysis into a manual therapy and exercise program resulted in no significant differences for disability and pressure pain sensitivity than the application of manual therapy and exercise alone in patients with subacromial pain syndrome. Copyright © 2018. Published by Elsevier Inc.
Thermal modeling of the lithium/polymer battery
NASA Astrophysics Data System (ADS)
Pals, C. R.
1994-10-01
Research in the area of advanced batteries for electric-vehicle applications has increased steadily since the 1990 zero-emission-vehicle mandate of the California Air Resources Board. Due to their design flexibility and potentially high energy and power densities, lithium/polymer batteries are an emerging technology for electric-vehicle applications. Thermal modeling of lithium/polymer batteries is particularly important because the transport properties of the system depend exponentially on temperature. Two models have been presented for assessment of the thermal behavior of lithium/polymer batteries. The one-cell model predicts the cell potential, the concentration profiles, and the heat-generation rate during discharge. The cell-stack model predicts temperature profiles and heat transfer limitations of the battery. Due to the variation of ionic conductivity and salt diffusion coefficient with temperature, the performance of the lithium/polymer battery is greatly affected by temperature. Because of this variation, it is important to optimize the cell operating temperature and design a thermal management system for the battery. Since the thermal conductivity of the polymer electrolyte is very low, heat is not easily conducted in the direction perpendicular to cell layers. Temperature profiles in the cells are not as significant as expected because heat-generation rates in warmer areas of the cell stack are lower than heat-generation rates in cooler areas of the stack. This nonuniform heat-generation rate flattens the temperature profile. Temperature profiles as calculated by this model are not as steep as those calculated by previous models that assume a uniform heat-generation rate.
NASA Astrophysics Data System (ADS)
Dudek, M.; Podsadna, J.; Jaszczur, M.
2016-09-01
In the present work, the feasibility of using a high temperature gas cooled nuclear reactor (HTR) for electricity generation and hydrogen production are analysed. The HTR is combined with a steam and a gas turbine, as well as with the system for heat delivery for medium temperature hydrogen production. Industrial-scale hydrogen production using copper-chlorine (Cu-Cl) thermochemical cycle is considered and compared with high temperature electrolysis. Presented cycle shows a very promising route for continuous, efficient, large-scale and environmentally benign hydrogen production without CO2 emissions. The results show that the integration of a high temperature helium reactor, with a combined cycle for electric power generation and hydrogen production, may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs.
PROCESS OF SEPARATING PLUTONIUM VALUES BY ELECTRODEPOSITION
Whal, A.C.
1958-04-15
A process is described of separating plutonium values from an aqueous solution by electrodeposition. The process consists of subjecting an aqueous 0.1 to 1.0 N nitric acid solution containing plutonium ions to electrolysis between inert metallic electrodes. A current density of one milliampere io one ampere per square centimeter of cathode surface and a temperature between 10 and 60 d C are maintained. Plutonium is electrodeposited on the cathode surface and recovered.
Multi-channel temperature measurement system for automotive battery stack
NASA Astrophysics Data System (ADS)
Lewczuk, Radoslaw; Wojtkowski, Wojciech
2017-08-01
A multi-channel temperature measurement system for monitoring of automotive battery stack is presented in the paper. The presented system is a complete battery temperature measuring system for hybrid / electric vehicles that incorporates multi-channel temperature measurements with digital temperature sensors communicating through 1-Wire buses, individual 1-Wire bus for each sensor for parallel computing (parallel measurements instead of sequential), FPGA device which collects data from sensors and translates it for CAN bus frames. CAN bus is incorporated for communication with car Battery Management System and uses additional CAN bus controller which communicates with FPGA device through SPI bus. The described system can parallel measure up to 12 temperatures but can be easily extended in the future in case of additional needs. The structure of the system as well as particular devices are described in the paper. Selected results of experimental investigations which show proper operation of the system are presented as well.
HYFIRE II: fusion/high-temperature electrolysis conceptual-design study. Annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fillo, J.A.
1983-08-01
As in the previous HYFIRE design study, the current study focuses on coupling a Tokamak fusion reactor with a high-temperature blanket to a High-Temperature Electrolyzer (HTE) process to produce hydrogen and oxygen. Scaling of the STARFIRE reactor to allow a blanket power to 6000 MW(th) is also assumed. The primary difference between the two studies is the maximum inlet steam temperature to the electrolyzer. This temperature is decreased from approx. 1300/sup 0/ to approx. 1150/sup 0/C, which is closer to the maximum projected temperature of the Westinghouse fuel cell design. The process flow conditions change but the basic design philosophymore » and approaches to process design remain the same as before. Westinghouse assisted in the study in the areas of systems design integration, plasma engineering, balance-of-plant design, and electrolyzer technology.« less
Application of electrolysis to inactivation of antibacterials in clinical use.
Nakano, Takashi; Hirose, Jun; Kobayashi, Toyohide; Hiro, Naoki; Kondo, Fumitake; Tamai, Hiroshi; Tanaka, Kazuhiko; Sano, Kouichi
2013-04-01
Contamination of surface water by antibacterial pharmaceuticals (antibacterials) from clinical settings may affect aquatic organisms, plants growth, and environmental floral bacteria. One of the methods to decrease the contamination is inactivation of antibacterials before being discharged to the sewage system. Recently, we reported the novel method based on electrolysis for detoxifying wastewater containing antineoplastics. In the present study, to clarify whether the electrolysis method is applicable to the inactivation of antibacterials, we electrolyzed solutions of 10 groups of individual antibacterials including amikacin sulfate (AMK) and a mixture (MIX) of some commercial antibacterials commonly prescribed at hospitals, and measured their antibacterial activities. AMK was inactivated in its antibacterial activities and its concentration decreased by electrolysis in a time-dependent manner. Eighty to ninety-nine percent of almost all antibacterials and MIX were inactivated within 6h of electrolysis. Additionally, cytotoxicity was not detected in any of the electrolyzed solutions of antibacterials and MIX by the Molt-4-based cytotoxicity test. Copyright © 2012 Elsevier Inc. All rights reserved.
Sheybani, Roya; Meng, Ellis
2015-01-01
Recombination of electrolysis gases (oxidation of hydrogen and reduction of oxygen) is an important factor in operation efficiency of devices employing electrolysis such as actuators and also unitized regenerative fuel cells. Several methods of improving recombination speed and repeatability were developed for application to electrolysis microactuators with Nafion®-coated catalytic electrodes. Decreasing the electrolysis chamber volume increased the speed, consistency, and repeatability of the gas recombination rate. To further improve recombination performance, methods to increase the catalyst surface area, hydrophobicity, and availability were developed and evaluated. Of these, including in the electrolyte pyrolyzed-Nafion®-coated Pt segments contained in the actuator chamber accelerated recombination by increasing the catalyst surface area and decreasing the gas transport diffusion path. This approach also reduced variability in recombination encountered under varying actuator orientation (resulting in differing catalyst/gas bubble proximity) and increased the rate of recombination by 2.3 times across all actuator orientations. Repeatability of complete recombination for different generated gas volumes was studied through cycling. PMID:26251561
Akhmal Saadon, Syaiful; Sathishkumar, Palanivel; Mohd Yusoff, Abdull Rahim; Hakim Wirzal, Mohd Dzul; Rahmalan, Muhammad Taufiq; Nur, Hadi
2016-08-01
In this study, the zinc oxide (ZnO) layer was synthesised on the surface of Zn plates by three different techniques, i.e. electrolysis, hydrogen peroxide and heat treatment. The synthesised ZnO layers were characterised using scanning electron microscopy, X-ray diffraction, UV-visible diffuse reflectance and photoluminescence spectroscopy. The photocatalytic activity of the ZnO layer was further assessed against methylene blue (MB) degradation under UV irradiation. The photocatalytic degradation of MB was achieved up to 84%, 79% and 65% within 1 h for ZnO layers synthesised by electrolysis, heat and hydrogen peroxide treatment, respectively. The reusability results show that electrolysis and heat-treated ZnO layers have considerable photocatalytic stability. Furthermore, the results confirmed that the photocatalytic efficiency of ZnO was directly associated with the thickness and enlarged surface area of the layer. Finally, this study proved that the ZnO layers synthesised by electrolysis and heat treatment had shown better operational stability and reusability.
[Measurement of pancreatic microcirculation using hydrogen gas generated by electrolysis in dogs].
Nishiwaki, H; Satake, K; Ko, I; Tanaka, H; Kanazawa, G; Nagai, Y; Umeyama, K
1986-11-01
Measurements of pancreatic microflow were investigated using hydrogen gas generated by electrolysis in dog. After laparatomy under general anesthesia, uncinate process of the pancreas was punctured by a needle electrode for electrolysis and determination of hydrogen gas. The consecutive measurements of pancreatic microflow revealed the good reproducibility at the same point of the pancreas. The simultaneous measurements of pancreatic microflow by electrolysis and pancreatic tissue blood flow by H2 inhalation method were carried out at the same point of the pancreas. Correlation analysis of both measurements revealed coefficient of 0.751 and a significant relationship was observed (p less than 0.05). However, the value was a little higher in pancreatic microflow as compared with pancreatic tissue blood flow. Pancreatic microflow and pancreatic exocrine secretion increased after intravenous administration of Dopamine and Secretin (10 micrograms/kg/min). It is concluded that the measurement of pancreatic microflow by hydrogen gas generated by electrolysis is a useful method on understanding the microcirculation of the pancreas.
NASA Astrophysics Data System (ADS)
Okada, Aoi; Nishio, Johji; Iijima, Ryosuke; Ota, Chiharu; Goryu, Akihiro; Miyazato, Masaki; Ryo, Mina; Shinohe, Takashi; Miyajima, Masaaki; Kato, Tomohisa; Yonezawa, Yoshiyuki; Okumura, Hajime
2018-06-01
To investigate the mechanism of contraction/expansion behavior of Shockley stacking faults (SSFs) in 4H-SiC p–i–n diodes, the dependences of the SSF behavior on temperature and injection current density were investigated by electroluminescence image observation. We investigated the dependences of both triangle- and bar-shaped SSFs on the injection current density at four temperature levels. All SSFs in this study show similar temperature and injection current density dependences. We found that the expansion of SSFs at a high current density was converted to contraction at a certain value as the current decreased and that the value is temperature-dependent. It has been confirmed that SSF behavior, which was considered complex or peculiar, might be explained mainly by the energy change caused by SSFs.
System Design of a Natural Gas PEM Fuel Cell Power Plant for Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joe Ferrall, Tim Rehg, Vesna Stanic
2000-09-30
The following conclusions are made based on this analysis effort: (1) High-temperature PEM data are not available; (2) Stack development effort for Phase II is required; (3) System results are by definition preliminary, mostly due to the immaturity of the high-temperature stack; other components of the system are relatively well defined; (4) The Grotthuss conduction mechanism yields the preferred system characteristics; the Grotthuss conduction mechanism is also much less technically mature than the vehicle mechanism; (5) Fuel processor technology is available today and can be procured for Phase II (steam or ATR); (6) The immaturity of high-temperature membrane technology requiresmore » that a robust system design be developed in Phase II that is capable of operating over a wide temperature and pressure range - (a) Unpressurized or Pressurized PEM (Grotthuss mechanism) at 140 C, Highest temperature most favorable, Lowest water requirement most favorable, Pressurized recommended for base loaded operation, Unpressurized may be preferred for load following; (b) Pressurized PEM (vehicle mechanism) at about 100 C, Pressure required for saturation, Fuel cell technology currently available, stack development required. The system analysis and screening evaluation resulted in the identification of the following components for the most promising system: (1) Steam reforming fuel processor; (2) Grotthuss mechanism fuel cell stack operating at 140 C; (3) Means to deliver system waste heat to a cogeneration unit; (4) Pressurized system utilizing a turbocompressor for a base-load power application. If duty cycling is anticipated, the benefits of compression may be offset due to complexity of control. In this case (and even in the base loaded case), the turbocompressor can be replaced with a blower for low-pressure operation.« less
Stainless steel anodes for alkaline water electrolysis and methods of making
Soloveichik, Grigorii Lev
2014-01-21
The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.
Arias-Buría, José L.; Truyols-Domínguez, Sebastián; Valero-Alcaide, Raquel; Salom-Moreno, Jaime; Atín-Arratibel, María A.; Fernández-de-las-Peñas, César
2015-01-01
Objective. To compare effects of ultrasound- (US-) guided percutaneous electrolysis combined with an eccentric exercise program of the rotator cuff muscles in subacromial pain syndrome. Methods. Thirty-six patients were randomized and assigned into US-guided percutaneous electrolysis (n = 17) group or exercise (n = 19) group. Patients were asked to perform an eccentric exercise program of the rotator cuff muscles twice every day for 4 weeks. Participants assigned to US-guided percutaneous electrolysis group also received the application of galvanic current through acupuncture needle on each session once a week (total 4 sessions). Shoulder pain (NPRS) and disability (DASH) were assessed at baseline, after 2 sessions, and 1 week after the last session. Results. The ANOVA revealed significant Group∗Time interactions for shoulder pain and disability (all, P < 0.01): individuals receiving US-guided percutaneous electrolysis combined with the eccentric exercises experienced greater improvement than those receiving eccentric exercise alone. Conclusions. US-guided percutaneous electrolysis combined with eccentric exercises resulted in small better outcomes at short term compared to when only eccentric exercises were applied in subacromial pain syndrome. The effect was statistically and clinically significant for shoulder pain but below minimal clinical difference for function. Future studies should investigate the long-term effects and potential placebo effect of this intervention. PMID:26649058
Thermal Casimir and Casimir–Polder interactions in N parallel 2D Dirac materials
NASA Astrophysics Data System (ADS)
Khusnutdinov, Nail; Kashapov, Rashid; Woods, Lilia M.
2018-07-01
The Casimir and Casimir–Polder interactions are investigated in a stack of equally spaced graphene layers. The optical response of the individual graphene is taken into account using gauge invariant components of the polarization tensor extended to the whole complex frequency plane. The planar symmetry for the electromagnetic boundary conditions is further used to obtain explicit forms for the Casimir energy stored in the stack and the Casimir–Polder energy between an atom above the stack. Our calculations show that these fluctuation induced interactions experience strong thermal effects due to the graphene Dirac-like energy spectrum. The spatial dispersion and temperature dependence in the optical response are also found to be important for enhancing the interactions especially at smaller separations. Analytical expressions for low and high temperature limits and their comparison with corresponding expressions for an infinitely conducting planar stack are further used to expand our understanding of Casimir and Casimir–Polder energies in Dirac materials. Our results may be useful to experimentalists as new ways to probe thermal effects at the nanoscale in such universal interactions.
NASA Technical Reports Server (NTRS)
Ott, Thomas
1994-01-01
This program was initiated to replace labor-intensive ply-by-ply layup of composite I-beam posts and angle stiffeners used in the Space Station Freedom (SSF) rack structure. Hot drape forming (HDF) has been successfully implemented by BCAG for 777 composite I-stringers and by Bell Helicopter/Textron for the V-22 I-stingers. The two companies utilize two vastly different approaches to the I-beam fabrication process. A drape down process is used by Bell Helicopter where the compacted ply charge is placed on top of a forming mandrel and heated. When the heated ply charge reached a set temperature, vacuum pressure is applied and the plies are formed over the mandrel. The BCAG 777 process utilizes an inverted forming process where the ply stack is placed on a forming table and the mandrel is inverted and placed upon the ply stack. A heating and vacuum bladder underneath the ply stack form the play stack up onto the mandrels after reaching the temperature setpoint. Both methods have their advantages, but the drape down process was selected for SSF because it was more versatile and could be fabricated from readily available components.
Velasco, J Marquez; Giamini, S A; Kelaidis, N; Tsipas, P; Tsoutsou, D; Kordas, G; Raptis, Y S; Boukos, N; Dimoulas, A
2015-10-09
Controlling the number of layers of graphene grown by chemical vapor deposition is crucial for large scale graphene application. We propose here an etching process of graphene which can be applied immediately after growth to control the number of layers. We use nickel (Ni) foil at high temperature (T = 900 °C) to produce multilayer-AB-stacked-graphene (MLG). The etching process is based on annealing the samples in a hydrogen/argon atmosphere at a relatively low temperature (T = 450 °C) inside the growth chamber. The extent of etching is mainly controlled by the annealing process duration. Using Raman spectroscopy we demonstrate that the number of layers was reduced, changing from MLG to few-layer-AB-stacked-graphene and in some cases to randomly oriented few layer graphene near the substrate. Furthermore, our method offers the significant advantage that it does not introduce defects in the samples, maintaining their original high quality. This fact and the low temperature our method uses make it a good candidate for controlling the layer number of already grown graphene in processes with a low thermal budget.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheckelton, John P.; Plumb, Kemp W.; Trump, Benjamin A.
Insulating Nb3Cl8 is a layered chloride consisting of two-dimensional triangular layers of Seff = 1/2 Nb3Cl13 clusters at room temperature. Magnetic susceptibility measurement show a sharp, hysteretic drop to a temperature independent value below T = 90 K. Specific heat measurements show that the transition is first order, with ΔS ≈ 5 J K-1 mol-1 f.u.-1, and a low temperature T-linear contribution originating from defect spins. Neutron and X-ray diffraction show a lowering of symmetry from trigonal P[3 with combining macron]m1 to monoclinic C2/m symmetry, with a change in layer stacking from –AB–AB– to –AB'–BC'–CA'– and no observed magnetic order.more » This lowering of symmetry and rearrangement of successive layers evades geometric magnetic frustration to form a singlet ground state. It is the lowest temperature at which a change in stacking sequence is known to occur in a van der Waals solid, occurs in the absence of orbital degeneracies, and suggests that designer 2-D heterostructures may be able to undergo similar phase transitions.« less
Zhang, Zhenchao
2017-12-01
In this study, a combined process was developed that included micro-electrolysis, Fenton oxidation and coagulation to treat oilfield fracturing wastewater. Micro-electrolysis and Fenton oxidation were applied to reduce chemical oxygen demand (COD) organic load and to enhance organic components gradability, respectively. Orthogonal experiment were employed to investigate the influence factors of micro-electrolysis and Fenton oxidation on COD removal efficiency. For micro-electrolysis, the optimum conditions were: pH, 3; iron-carbon dosage, 50 mg/L; mass ratio of iron-carbon, 2:3; reaction time, 60 min. For Fenton oxidation, a total reaction time of 90 min, a H 2 O 2 dosage of 12 mg/L, with a H 2 O 2 /Fe 2+ mole ratio of 30, pH of 3 were selected to achieve optimum oxidation. The optimum conditions in coagulation process: pH, cationic polyacrylamide dosage, mixing speed and time is 4.3, 2 mg/L, 150 rpm and 30 s, respectively. In the continuous treatment process under optimized conditions, the COD of oily wastewater fell 56.95%, 46.23%, 30.67%, respectively, from last stage and the total COD removal efficiency reached 83.94% (from 4,314 to 693 mg/L). In the overall treatment process under optimized conditions, the COD of oily wastewater was reduced from 4,314 to 637 mg/L, and the COD removal efficiency reached 85.23%. The contribution of each stage is 68.45% (micro-electrolysis), 24.07% (Fenton oxidation), 7.48% (coagulation), respectively. Micro-electrolysis is the uppermost influencing process on COD removal. Compared with the COD removal efficiency of three processes on raw wastewater under optimized conditions: the COD removal efficiency of single micro-electrolysis, single Fenton oxidation, single coagulation is 58.34%, 44.88% and 39.72%, respectively. Experiments proved the effect of combined process is marvelous and the overall water quality of the final effluent could meet the class III national wastewater discharge standard of petrochemical industry of China (GB8978-1996).
Characterization of Piezoelectric Stacks for Space Applications
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Jones, Christopher; Aldrich, Jack; Blodget, Chad; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph
2008-01-01
Future NASA missions are increasingly seeking to actuate mechanisms to precision levels in the nanometer range and below. Co-fired multilayer piezoelectric stacks offer the required actuation precision that is needed for such mechanisms. To obtain performance statistics and determine reliability for extended use, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and high temperatures and voltages. In order to study the lifetime performance of these stacks, five actuators were driven sinusoidally for up to ten billion cycles. An automated data acquisition system was developed and implemented to monitor each stack's electrical current and voltage waveforms over the life of the test. As part of the monitoring tests, the displacement, impedance, capacitance and leakage current were measured to assess the operation degradation. This paper presents some of the results of this effort.
Stacking of ZnSe/ZnCdSe Multi-Quantum Wells on GaAs (100) by Epitaxial Lift-Off
NASA Astrophysics Data System (ADS)
Eldose, N. M.; Zhu, J.; Mavridi, N.; Prior, Kevin; Moug, R. T.
2018-05-01
Here we present stacking of GaAs/ZnSe/ZnCdSe single-quantum well (QW) structures using epitaxial lift-off (ELO). Molecular beam epitaxy (MBE)-grown II-VI QW structure was lifted using our standard ELO technique. The QW structures were transferred onto glass plates and then subsequent layers stacked on top of each other to form a triple-QW structure. This was compared to an MBE-grown multiple-QW (MQW) structure of similar design. Low-temperature (77 K) photoluminescence (PL) spectroscopy was used to compare the two structures and showed no obvious degradation of the ELO stacked layer. It was observed that by stacking the single QW layer on itself we could increase the PL emission intensity beyond that of the grown MQW structure while maintaining narrow line width.
Opitz, Alexander K; Nenning, Andreas; Rameshan, Christoph; Kubicek, Markus; Götsch, Thomas; Blume, Raoul; Hävecker, Michael; Knop-Gericke, Axel; Rupprechter, Günther; Klötzer, Bernhard; Fleig, Jürgen
2017-10-18
Any substantial move of energy sources from fossil fuels to renewable resources requires large scale storage of excess energy, for example, via power to fuel processes. In this respect electrochemical reduction of CO 2 may become very important, since it offers a method of sustainable CO production, which is a crucial prerequisite for synthesis of sustainable fuels. Carbon dioxide reduction in solid oxide electrolysis cells (SOECs) is particularly promising owing to the high operating temperature, which leads to both improved thermodynamics and fast kinetics. Additionally, compared to purely chemical CO formation on oxide catalysts, SOECs have the outstanding advantage that the catalytically active oxygen vacancies are continuously formed at the counter electrode, and move to the working electrode where they reactivate the oxide surface without the need of a preceding chemical (e.g., by H 2 ) or thermal reduction step. In the present work, the surface chemistry of (La,Sr)FeO 3-δ and (La,Sr)CrO 3-δ based perovskite-type electrodes was studied during electrochemical CO 2 reduction by means of near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) at SOEC operating temperatures. These measurements revealed the formation of a carbonate intermediate, which develops on the oxide surface only upon cathodic polarization (i.e., under sufficiently reducing conditions). The amount of this adsorbate increases with increasing oxygen vacancy concentration of the electrode material, thus suggesting vacant oxygen lattice sites as the predominant adsorption sites for carbon dioxide. The correlation of carbonate coverage and cathodic polarization indicates that an electron transfer is required to form the carbonate and thus to activate CO 2 on the oxide surface. The results also suggest that acceptor doped oxides with high electron concentration and high oxygen vacancy concentration may be particularly suited for CO 2 reduction. In contrast to water splitting, the CO 2 electrolysis reaction was not significantly affected by metallic particles, which were exsolved from the perovskite electrodes upon cathodic polarization. Carbon formation on the electrode surface was only observed under very strong cathodic conditions, and the carbon could be easily removed by retracting the applied voltage without damaging the electrode, which is particularly promising from an application point of view.
Feasibility study of NaOH regeneration in acid gas removal unit using membrane electrolysis
NASA Astrophysics Data System (ADS)
Taufany, Fadlilatul; Pratama, Alvian; Romzuddin, Muhammad
2017-05-01
The world's energy demand is increasing with the development of human civilization. Due to limited energy resource, after 2020 fossil fuels thus is predicted will be replaced by renewable resources. Taking an example, one of the potential renewable energy to be considered is biogas, as its high content of methane, which can be produced via the fermentation process of the organic compounds under controlled anaerobic environment by utilizing the methanogen bacteria. However, prior the further use, this biogas must be purified from its impurities contents, i.e. acid gas of CO2 and H2S, up to 4% and 16 ppmv, respectively, in the acid gas removal unit. This such of purification efforts, will significantly increase the higher heating value of biogas, approximately from 600 to 900 Btu/Scf. During the purification process in this acid gas removal unit, NaOH solution is used as a liquid absorbent to reduce those acid gases content, in which the by-product of alkali salt (brine) was produced as waste. Here we report the feasibility study of the NaOH regeneration process in acid gas removal unit via membrane electrolysis technology, in which both the technical and economic aspects are taken account. To be precise in procedure, the anode semi-cell was filled with the brine solution, while the cathode semi-cell was filled with demineralized water, and those electrodes were separated by the cation exchange membrane. Furthermore, the applied potential was varied ranging from 5, 10, 15 and to 20 V, while the concentration of KCl electrolyte solutions were varied ranging from 0.01, 0.05, 0.1, and to 0.03 M. This study was conducted under controlled temperatures of 30 and 50 °C. Here we found that the % sodium recovery was increased along with the applied potential, temperature, and the decrease in KCl electrolyte concentration. We found that the best results, by means of the highest % sodium recovery, i.e. 97.26 %, was achieved under the experimental condition of temperature at 30 °C, applied potential at 15 V, and KCl electrolyte concentration at 0.01 M. At such electrolysis condition, the energy efficiency was calculated to be 0,009 M-NaOH/Wh, or was equal to operating cost at 0.04/kg-NaOH.
2017-01-01
Any substantial move of energy sources from fossil fuels to renewable resources requires large scale storage of excess energy, for example, via power to fuel processes. In this respect electrochemical reduction of CO2 may become very important, since it offers a method of sustainable CO production, which is a crucial prerequisite for synthesis of sustainable fuels. Carbon dioxide reduction in solid oxide electrolysis cells (SOECs) is particularly promising owing to the high operating temperature, which leads to both improved thermodynamics and fast kinetics. Additionally, compared to purely chemical CO formation on oxide catalysts, SOECs have the outstanding advantage that the catalytically active oxygen vacancies are continuously formed at the counter electrode, and move to the working electrode where they reactivate the oxide surface without the need of a preceding chemical (e.g., by H2) or thermal reduction step. In the present work, the surface chemistry of (La,Sr)FeO3−δ and (La,Sr)CrO3−δ based perovskite-type electrodes was studied during electrochemical CO2 reduction by means of near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) at SOEC operating temperatures. These measurements revealed the formation of a carbonate intermediate, which develops on the oxide surface only upon cathodic polarization (i.e., under sufficiently reducing conditions). The amount of this adsorbate increases with increasing oxygen vacancy concentration of the electrode material, thus suggesting vacant oxygen lattice sites as the predominant adsorption sites for carbon dioxide. The correlation of carbonate coverage and cathodic polarization indicates that an electron transfer is required to form the carbonate and thus to activate CO2 on the oxide surface. The results also suggest that acceptor doped oxides with high electron concentration and high oxygen vacancy concentration may be particularly suited for CO2 reduction. In contrast to water splitting, the CO2 electrolysis reaction was not significantly affected by metallic particles, which were exsolved from the perovskite electrodes upon cathodic polarization. Carbon formation on the electrode surface was only observed under very strong cathodic conditions, and the carbon could be easily removed by retracting the applied voltage without damaging the electrode, which is particularly promising from an application point of view. PMID:28933825
Effect of silicate ions on electrode overvoltage
NASA Technical Reports Server (NTRS)
Gras, J. M.; Seite, C.
1979-01-01
The influence of the addition of a silicate to a caustic solution (KOH) is studied in order to determine the degree to which silicates inhibit the corrosion of chrysotile under conditions of electrolysis at working temperatures of 100 C and above. In an alkaline solution containing various silicate concentrations, current density was increased and electrode overvoltage was measured. Results show that silicate ion concentrations in the electrolyte increase with temperature without effecting electrochemical performance up to 115 C at 700 MA/sqcm. At this point the concentration is about 0.5 g Si/100 g KOH. Beyond this limit, electrolytic performance rapidly degenerates due to severe oxidation of the electrodes.
NASA Technical Reports Server (NTRS)
Erstfield, T. E.; Williams, R. J.
1979-01-01
A thermodynamic analysis discusses the compositions of gaseous effluents from the reaction of carbon and chlorine and of hydrogen with lunar anorthite and ilmenite, respectively. The computations consider the effects of the indigenous volatiles on the solid/gas reactions and on the composition of the effluent gases. A theoretical parameterization of the high temperature electrolysis of such gases is given for several types of solid ceramic electrolytes, and the effect of oxygen removal on the effluents is computed. Potential chemical interactions between the gases and the ceramic electrolytes are analyzed and discussed.
Oxygen Activation and Photoelectrochemical Oxidation on Oxide Surfaces
2013-12-04
electrolysis followed by product determination from mass spectroscopy showed that acetophenone was produced with a 95% Faradaic efficiency. The H/D kinetic...vs. NHE) 10 electrode: scan rate, 100mV/s. (b) Plot of catalytic currents during electrolysis at −1.38 V, icat (background subtracted), vs...controlled potential electrolysis at 3.0 V at two boron doped diamond electrodes (~0.85 cm2). Red line: background current without added catalyst
Al/sub 2/S/sub 3/ preparation and use in electrolysis process for aluminum production
Hsu, C.C.; Loutfy, R.O.; Yao, N.P.
A continuous process for producing aluminum sulfide and for electrolyzing the aluminum sulfide to form metallic aluminum in which the aluminum sulfide is produced from aluminum oxide and COS or CS/sub 2/ in the presence of a chloride melt which also serves as the electrolysis bath. Circulation between the reactor and electrolysis cell is carried out to maintain the desired concentration of aluminum sulfide in the bath.
Tennakone, K
2016-10-01
Contact electrification of chloride-impregnated martian regolith particles due to eolian agitation and moisture condensation on coalesced oppositely charged grains may lead to spontaneous electrolysis that generates hypochlorite, chlorite, chlorate, and perchlorate with a concomitant reduction of water to hydrogen. This process is not curtailed even if moisture condenses as ice because chloride ionizes on the surface of ice. Limitations dictated by potentials needed for electrolysis and breakdown electric fields enable estimation of the required regolith grain size. The estimated dimension turns out to be of the same order of magnitude as the expected median size of martian regolith, and a simple calculation yields the optimum rate of perchlorate production. Key Words: Mars oxidants-Perchlorate-Dust electrification-Electrolysis. Astrobiology 16, 811-816.
The Use of Multi-Reactor Cascade Plasma Electrolysis for Linear Alkylbenzene Sulfonate Degradation
NASA Astrophysics Data System (ADS)
Saksono, Nelson; Ibrahim; Zainah; Budikania, Trisutanti
2018-03-01
Plasma electrolysis is a method that can produce large amounts of hydroxyl radicals to degrade organic waste. The purpose of this study is to improve the effectiveness of Linear alkylbenzene sulfonate (LAS) degradation by using multi-reactor cascade plasma electrolysis. The reactor which operated in circulation system, using 3 reactors series flow and 6 L of LAS with initial concentration of 100 ppm. The results show that the LAS degradation can be improved multi-reactor cascade plasma electrolysis. The greatest LAS degradation is achieved up to 81.91% with energy consumption of 2227.34 kJ/mmol that is obtained during 120 minutes by using 600 Volt, 0.03 M of KOH, and 0.5 cm of the anode depth.
Reed, David M.; Thomsen, Edwin C.; Li, Bin; ...
2015-11-21
Over the past several years, efforts have been focused on improving the performance of kW class stacks with increasing current density. The influence of the Nafion membrane resistance, an interdigitated design to reduce the pressure drop in the electrolyte circuit, the temperature of the electrolyte, and the electrode structure will be discussed and correlated to the electrical performance. Furthermore, improvements to the stack energy efficiency and how those translate to the overall system efficiency will also be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taniguchi, Chisato; Ichimura, Aiko; Ohtani, Noboru, E-mail: ohtani.noboru@kwansei.ac.jp
The formation of basal plane stacking faults in heavily nitrogen-doped 4H-SiC crystals was theoretically investigated. A novel theoretical model based on the so-called quantum well action mechanism was proposed; the model considers several factors, which were overlooked in a previously proposed model, and provides a detailed explanation of the annealing-induced formation of double layer Shockley-type stacking faults in heavily nitrogen-doped 4H-SiC crystals. We further revised the model to consider the carrier distribution in the depletion regions adjacent to the stacking fault and successfully explained the shrinkage of stacking faults during annealing at even higher temperatures. The model also succeeded inmore » accounting for the aluminum co-doping effect in heavily nitrogen-doped 4H-SiC crystals, in that the stacking fault formation is suppressed when aluminum acceptors are co-doped in the crystals.« less
Wei, Haoshan; Xie, Kui; Zhang, Jun; Zhang, Yong; Wang, Yan; Qin, Yongqiang; Cui, Jiewu; Yan, Jian; Wu, Yucheng
2014-01-01
In this paper, we report the in situ growth of NixCu1-x (x = 0, 0.25, 0.50, 0.75 and 1.0) alloy catalysts to anchor and decorate a redox-reversible Nb1.33Ti0.67O4 ceramic substrate with the aim of tailoring the electrocatalytic activity of the composite materials through direct exsolution of metal particles from the crystal lattice of a ceramic oxide in a reducing atmosphere at high temperatures. Combined analysis using XRD, SEM, EDS, TGA, TEM and XPS confirmed the completely reversible exsolution/dissolution of the NixCu1-x alloy particles during the redox cycling treatments. TEM results revealed that the alloy particles were exsolved to anchor onto the surface of highly electronically conducting Nb1.33Ti0.67O4 in the form of heterojunctions. The electrical properties of the nanosized NixCu1-x/Nb1.33Ti0.67O4 were systematically investigated and correlated to the electrochemical performance of the composite electrodes. A strong dependence of the improved electrode activity on the alloy compositions was observed in reducing atmospheres at high temperatures. Direct electrolysis of CO2 at the NixCu1-x/Nb1.33Ti0.67O4 composite cathodes was investigated in solid-oxide electrolysers. The CO2 splitting rates were observed to be positively correlated with the Ni composition; however, the Ni0.75Cu0.25 combined the advantages of metallic nickel and copper and therefore maximised the current efficiencies. PMID:24889679
NASA Astrophysics Data System (ADS)
Palau, A.; Vallès, F.; Rouco, V.; Coll, M.; Li, Z.; Pop, C.; Mundet, B.; Gàzquez, J.; Guzman, R.; Gutierrez, J.; Obradors, X.; Puig, T.
2018-07-01
In-field angular pinning performances at different temperatures have been analysed on chemical solution deposited (CSD) YBa2Cu3O7-x (YBCO) pristine films and nanocomposites. We show that with this analysis we are able to quantify the vortex pinning strength and energies, associated with different kinds of natural and artificial pinning defects, acting as efficient pinning centres at different regions of the H-T phase diagram. A good quantification of the variety of pinning defects active at different temperatures and magnetic fields provides a unique tool to design the best vortex pinning landscape under different operating conditions. We have found that by artificially introducing a unique defect in the YBCO matrix, the stacking faults, we are able to modify three different contributions to vortex pinning (isotropic-strong, anisotropic-strong, and isotropic-weak). The isotropic-strong contribution, widely studied in CSD YBCO nanocomposites, is associated with nanostrained regions induced at the partial dislocations surrounding the stacking faults. Moreover, the stacking fault itself acts as a planar defect which provides a very effective anisotropic-strong pinning at H//ab. Finally, the large presence of Cu-O cluster vacancies found in the stacking faults have been revealed as a source of isotropic-weak pinning sites, very active at low temperatures and high fields.
Tian, Di; Winter, Stephen M; Mailman, Aaron; Wong, Joanne W L; Yong, Wenjun; Yamaguchi, Hiroshi; Jia, Yating; Tse, John S; Desgreniers, Serge; Secco, Richard A; Julian, Stephen R; Jin, Changqing; Mito, Masaki; Ohishi, Yasuo; Oakley, Richard T
2015-11-11
Pressure-induced changes in the solid-state structures and transport properties of three oxobenzene-bridged bisdithiazolyl radicals 2 (R = H, F, Ph) over the range 0-15 GPa are described. All three materials experience compression of their π-stacked architecture, be it (i) 1D ABABAB π-stack (R = Ph), (ii) quasi-1D slipped π-stack (R = H), or (iii) 2D brick-wall π-stack (R = F). While R = H undergoes two structural phase transitions, neither of R = F, Ph display any phase change. All three radicals order as spin-canted antiferromagnets, but spin-canted ordering is lost at pressures <1.5 GPa. At room temperature, their electrical conductivity increases rapidly with pressure, and the thermal activation energy for conduction Eact is eliminated at pressures ranging from ∼3 GPa for R = F to ∼12 GPa for R = Ph, heralding formation of a highly correlated (or bad) metallic state. For R = F, H the pressure-induced Mott insulator to metal conversion has been tracked by measurements of optical conductivity at ambient temperature and electrical resistivity at low temperature. For R = F compression to 6.2 GPa leads to a quasiquadratic temperature dependence of the resistivity over the range 5-300 K, consistent with formation of a 2D Fermi liquid state. DFT band structure calculations suggest that the ease of metallization of these radicals can be ascribed to their multiorbital character. Mixing and overlap of SOMO- and LUMO-based bands affords an increased kinetic energy stabilization of the metallic state relative to a single SOMO-based band system.
Operating Experience Review of the INL HTE Gas Monitoring System
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. C. Cadwallader; K. G. DeWall
2010-06-01
This paper describes the operations of several types of gas monitors in use at the Idaho National Laboratory (INL) High Temperature Electrolysis Experiment (HTE) laboratory. The gases monitored at hydrogen, carbon monoxide, carbon dioxide, and oxygen. The operating time, calibration, and unwanted alarms are described. The calibration session time durations are described. Some simple statistics are given for the reliability of these monitors and the results are compared to operating experiences of other types of monitors.
Li, Peng; Liu, Zhipeng; Wang, Xuegang; Guo, Yadan; Wang, Lizhang
2017-08-01
Reactivity of sodium persulfate (PS) in the decolorization of methyl orange (MO) in aqueous solution using an iron-carbon micro-electrolysis (ICE) method was investigated. The effects of sodium persulfate doses, pH, Fe-to-C mass ratios, initial MO concentration as well as the reaction temperature were comprehensively studied in batch experiments. The ICE-PS coupled process was more suitable for wide ranges of pH, initial MO concentration and reaction temperature, accompanied by the reduction of Fe compared ICE. The MO removal efficiency improved substantially by ICE-PS technique, 76.03% for ICE and 91.27% for ICE-PS at experimental conditions of pH 3.0, Fe-to-C mass ratio 3:1, PS addition 10 mM and initial MO concentration 0.61 mM. Furthermore, the biodegradability index (BI) dramatically increased from 0.26 to 0.65. The binary hydroxyl and sulfate radicals that non-selectively degrade MO to the derivatives with small molecules are ascribed to ICE-PS method as detected by the UV-vis spectra. The PS activation resource was Fe 2+ through the hydroxyl radical quenching reaction by the additive tert-butanol (TBA). This study provides an in-depth theoretical understanding of the development and wide commercial application of the ICE technology to refractory industrial dye wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yilmazel, Yasemin D; Zhu, Xiuping; Kim, Kyoung-Yeol; Holmes, Dawn E; Logan, Bruce E
2018-02-01
Few microorganisms have been examined for current generation under thermophilic (40-65°C) or hyperthermophilic temperatures (≥80°C) in microbial electrochemical systems. Two iron-reducing archaea from the family Archaeoglobaceae, Ferroglobus placidus and Geoglobus ahangari, showed electro-active behavior leading to current generation at hyperthermophilic temperatures in single-chamber microbial electrolysis cells (MECs). A current density (j) of 0.68±0.11A/m 2 was attained in F. placidus MECs at 85°C, and 0.57±0.10A/m 2 in G. ahangari MECs at 80°C, with an applied voltage of 0.7V. Cyclic voltammetry (CV) showed that both strains produced a sigmoidal catalytic wave, with a mid-point potential of -0.39V (vs. Ag/AgCl) for F. placidus and -0.37V for G. ahangari. The comparison of CVs using spent medium and turnover CVs, coupled with the detection of peaks at the same potentials in both turnover and non-turnover conditions, suggested that mediators were not used for electron transfer and that both archaea produced current through direct contact with the electrode. These two archaeal species, and other hyperthermophilic exoelectrogens, have the potential to broaden the applications of microbial electrochemical technologies for producing biofuels and other bioelectrochemical products under extreme environmental conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater.
Cusick, Roland D; Bryan, Bill; Parker, Denny S; Merrill, Matthew D; Mehanna, Maha; Kiely, Patrick D; Liu, Guangli; Logan, Bruce E
2011-03-01
A pilot-scale (1,000 L) continuous flow microbial electrolysis cell was constructed and tested for current generation and COD removal with winery wastewater. The reactor contained 144 electrode pairs in 24 modules. Enrichment of an exoelectrogenic biofilm required ~60 days, which is longer than typically needed for laboratory reactors. Current generation was enhanced by ensuring adequate organic volatile fatty acid content (VFA/SCOD ≥ 0.5) and by raising the wastewater temperature (31 ± 1°C). Once enriched, SCOD removal (62 ± 20%) was consistent at a hydraulic retention time of 1 day (applied voltage of 0.9 V). Current generation reached a maximum of 7.4 A/m(3) by the planned end of the test (after 100 days). Gas production reached a maximum of 0.19 ± 0.04 L/L/day, although most of the product gas was converted to methane (86 ± 6%). In order to increase hydrogen recovery in future tests, better methods will be needed to isolate hydrogen gas produced at the cathode. These results show that inoculation and enrichment procedures are critical to the initial success of larger-scale systems. Acetate amendments, warmer temperatures, and pH control during startup were found to be critical for proper enrichment of exoelectrogenic biofilms and improved reactor performance.
Plasticity mechanisms in HfN at elevated and room temperature.
Vinson, Katherine; Yu, Xiao-Xiang; De Leon, Nicholas; Weinberger, Christopher R; Thompson, Gregory B
2016-10-06
HfN specimens deformed via four-point bend tests at room temperature and at 2300 °C (~0.7 T m ) showed increased plasticity response with temperature. Dynamic diffraction via transmission electron microscopy (TEM) revealed ⟨110⟩{111} as the primary slip system in both temperature regimes and ⟨110⟩{110} to be a secondary slip system activated at elevated temperature. Dislocation line lengths changed from a primarily linear to a curved morphology with increasing temperature suggestive of increased dislocation mobility being responsible for the brittle to ductile temperature transition. First principle generalized stacking fault energy calculations revealed an intrinsic stacking fault (ISF) along ⟨112⟩{111}, which is the partial dislocation direction for slip on these close packed planes. Though B1 structures, such as NaCl and HfC predominately slip on ⟨110⟩{110}, the ISF here is believed to facilitate slip on the {111} planes for this B1 HfN phase.
Multibeam collimator uses prism stack
NASA Technical Reports Server (NTRS)
Minott, P. O.
1981-01-01
Optical instrument creates many divergent light beams for surveying and machine element alignment applications. Angles and refractive indices of stack of prisms are selected to divert incoming laser beam by small increments, different for each prism. Angles of emerging beams thus differ by small, precisely-controlled amounts. Instrument is nearly immune to vibration, changes in gravitational force, temperature variations, and mechanical distortion.
Lecour, S; Baouali, A B; Maupoil, V; Chahine, R; Abadie, C; Javouhey-Donzel, A; Rochette, L; Nadeau, R
1998-03-01
The present study was designed to identify the free radicals generated during the electrolysis of the solution used to perfuse isolated rat heart Langendorff preparations. The high reactivity and very short half-life of oxygen free radicals make their detection and identification difficult. A diamagnetic organic molecule (spin trap) can be used to react with a specific radical to produce a more stable secondary radical or "spin adduct" detected by electron spin resonance (ESR). Isovolumic left ventricular systolic pressure (LVSP) and left ventricular end diastolic pressure (LVEDP) were measured by a fluid-filled latex balloon inserted into the left ventricle. The coronary flow was measured by effluent collection. Electrolysis was performed with constant currents of 0.5, 1, 1.5, 3, 5, 7.5, and 10 mA generated by a Grass stimulator and applied to the perfusion solution for 1 min. A group of experiments was done using a 1.5 mA current and a Krebs-Henseleit (K-H) solution containing free radical scavengers (superoxide dismutase (SOD): 100 IU/ml or mannitol: 50 mM). Heart function rapidly declined in hearts perfused with K-H buffer that had been electrolyzed for 1 min. The addition of mannitol (50 mM) to the perfusion solution had no effect on baseline cardiac function before electrolysis while SOD (100 IU/ml) increased the coronary flow. However, SOD was more effective than the mannitol in protecting the heart against decreased of cardiac function, 5 min after the end of electrolysis. Samples of the K-H medium subjected to electrolysis were collected in cuvettes containing a final concentration of 125 mM 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and analyzed by spectroscopy. The ESR spectrum consisted of a quartet signal (hyperfine couplings aN = aH = 14.9 G) originating from the hydroxyl adduct signal, DMPO-OH. The intensity of the DMPO-OH signal remained stable during the 60 s of electrolysis and the quantity of free radicals induced by electrolysis was directly proportional to the intensity of the current. The addition of mannitol and SOD to the perfusate scavenged the hydroxyl radicals present in the solution, suggesting that both hydroxyl and superoxide radicals were formed during electrolysis.
High temperature semiconductor diode laser pumps for high energy laser applications
NASA Astrophysics Data System (ADS)
Campbell, Jenna; Semenic, Tadej; Guinn, Keith; Leisher, Paul O.; Bhunia, Avijit; Mashanovitch, Milan; Renner, Daniel
2018-02-01
Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. To mitigate this thermal management burden, it is desirable for diode pumps to operate efficiently at high heat sink temperatures. In this work, we have developed a scalable cooling architecture, based on jet-impingement technology with industrial coolant, for efficient cooling of diode laser bars. We have demonstrated 60% electrical-to-optical efficiency from a 9xx nm two-bar laser stack operating with propylene-glycolwater coolant, at 50 °C coolant temperature. To our knowledge, this is the highest efficiency achieved from a diode stack using 50 °C industrial fluid coolant. The output power is greater than 100 W per bar. Stacks with additional laser bars are currently in development, as this cooler architecture is scalable to a 1 kW system. This work will enable compact and robust fiber-coupled diode pump modules for high energy laser applications.
Pumpless thermal management of water-cooled high-temperature proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Song, Tae-Won; Choi, Kyoung-Hwan; Kim, Ji-Rae; Yi, Jung S.
2011-05-01
Proton exchange membrane fuel cells (PEMFCs) have been considered for combined heat and power (CHP) applications, but cost reduction has remained an issue for commercialization. Among various types of PEMFC, the high-temperature (HT) PEMFC is gaining more attention due to the simplicity of the system, that will make the total system cost lower. A pumpless cooling concept is introduced to reduce the number of components of a HT PEMFC system even further and also decrease the parasitic power required for operating the system. In this concept, water is used as the coolant, and the buoyancy force caused by the density difference between vapour and liquid when operated above boiling temperate is utilized to circulate the coolant between the stack and the cooling device. In this study, the basic parameters required to design the cooling device are discussed, and the stable operation of the HT PEMFC stack in both the steady-state and during transient periods is demonstrated. It found that the pumpless cooling method provides more uniform temperature distribution within the stack, regardless of the direction of coolant flow.
Shang, S L; Zacherl, C L; Fang, H Z; Wang, Y; Du, Y; Liu, Z K
2012-12-19
A systematic study of stacking fault energy (γ(SF)) resulting from induced alias shear deformation has been performed by means of first-principles calculations for dilute Ni-base superalloys (Ni(23)X and Ni(71)X) for various alloying elements (X) as a function of temperature. Twenty-six alloying elements are considered, i.e., Al, Co, Cr, Cu, Fe, Hf, Ir, Mn, Mo, Nb, Os, Pd, Pt, Re, Rh, Ru, Sc, Si, Ta, Tc, Ti, V, W, Y, Zn, and Zr. The temperature dependence of γ(SF) is computed using the proposed quasistatic approach based on a predicted γ(SF)-volume-temperature relationship. Besides γ(SF), equilibrium volume and the normalized stacking fault energy (Γ(SF) = γ(SF)/Gb, with G the shear modulus and b the Burgers vector) are also studied as a function of temperature for the 26 alloying elements. The following conclusions are obtained: all alloying elements X studied herein decrease the γ(SF) of fcc Ni, approximately the further the alloying element X is from Ni on the periodic table, the larger the decrease of γ(SF) for the dilute Ni-X alloy, and roughly the γ(SF) of Ni-X decreases with increasing equilibrium volume. In addition, the values of γ(SF) for all Ni-X systems decrease with increasing temperature (except for Ni-Cr at higher Cr content), and the largest decrease is observed for pure Ni. Similar to the case of the shear modulus, the variation of γ(SF) for Ni-X systems due to various alloying elements is traceable from the distribution of (magnetization) charge density: the spherical distribution of charge density around a Ni atom, especially a smaller sphere, results in a lower value of γ(SF) due to the facility of redistribution of charges. Computed stacking fault energies and the related properties are in favorable accord with available experimental and theoretical data.
ERIC Educational Resources Information Center
Smithenry, Dennis; Gassman, Christopher; Goodridge, Brandon; Petersen, Tom
1998-01-01
Explains the process of student and teacher collaboration on a project to develop a faster electrolysis mechanism. Provides a good example of the problem-based approach to science instruction and curriculum. (DDR)
Water Electrolysis for In-Situ Resource Utilization (ISRU)
NASA Technical Reports Server (NTRS)
Lee, Kristopher A.
2016-01-01
Sending humans to Mars for any significant amount of time will require capabilities and technologies that enable Earth independence. To move towards this independence, the resources found on Mars must be utilized to produce the items needed to sustain humans away from Earth. To accomplish this task, NASA is studying In Situ Resource Utilization (ISRU) systems and techniques to make use of the atmospheric carbon dioxide and the water found on Mars. Among other things, these substances can be harvested and processed to make oxygen and methane. Oxygen is essential, not only for sustaining the lives of the crew on Mars, but also as the oxidizer for an oxygen-methane propulsion system that could be utilized on a Mars ascent vehicle. Given the presence of water on Mars, the electrolysis of water is a common technique to produce the desired oxygen. Towards this goal, NASA designed and developed a Proton Exchange Membrane (PEM) water electrolysis system, which was originally slated to produce oxygen for propulsion and fuel cell use in the Mars Atmosphere and Regolith COllector/PrOcessor for Lander Operations (MARCO POLO) project. As part of the Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA) project, this same electrolysis system, originally targeted at enabling in situ propulsion and power, operated in a life-support scenario. During HESTIA testing at Johnson Space Center, the electrolysis system supplied oxygen to a chamber simulating a habitat housing four crewmembers. Inside the chamber, oxygen was removed from the atmosphere to simulate consumption by the crew, and the electrolysis system's oxygen was added to replenish it. The electrolysis system operated nominally throughout the duration of the HESTIA test campaign, and the oxygen levels in the life support chamber were maintained at the desired levels.
Gao, Y; Xie, Y W; Zhang, Q; Wang, A L; Yu, Y X; Yang, L Y
2017-01-01
A novel electrolysis-integrated horizontal subsurface-flow constructed wetland system (E-HFCWs) was developed for intensified removal of nitrogen and phosphorus contaminated water. The dynamics of nitrogen and phosphorus removal and that of main water qualities of inflow and outflow were also evaluated. The hydraulic retention time (HRT) greatly enhanced nitrate removal when the electrolysis current intensity was stabilized at 0.07 mA/cm 2 . When the HRT ranged from 2 h to 12 h, the removal rate of nitrate increased from 20% to 84%. Phosphorus (P) removal was also greatly enhanced-exceeding 90% when the HRT was longer than 4 h in the electrolysis-integrated HFCWs. This improved P removal is due to the in-situ formation of ferric ions by anodizing of sacrificial iron anodes, causing chemical precipitation, physical adsorption and flocculation of phosphorus. Thus, electrolysis plays an important role in nitrate and phosphorus removal. The diversity and communities of bacteria in the biofilm of substrate was established by the analysis of 16S rDNA gene sequences, and the biofilm was abundant with Comamonadaceae and Xanthomonadaceae bacteria in E-HFCWs. Test results illustrated that the electrolysis integrated with horizontal subsurface-flow constructed wetland is a feasible and effective technology for intensified nitrogen and phosphorus removal. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Xiao, Xiangjun; Xi, Xiaoli; Nie, Zuoren; Zhang, Liwen; Ma, Liwen
2017-02-01
A novel process of preparing cobalt, tungsten, and tungsten carbide powders from cemented carbide scrap by molten salt electrolysis has been investigated in this paper. In this experiment, WC-6Co and NaCl-KCl salt were used as sacrificial anode and electrolyte, respectively. The dissolution potential of cobalt and WC was determined by linear sweep voltammetry to be 0 and 0.6 V ( vs Ag/AgCl), respectively. Furthermore, the electrochemical behavior of cobalt and tungsten ions was investigated by a variety of electrochemical techniques. Results of cyclic voltammetry (CV) and square-wave voltammetry show that the cobalt and tungsten ions existed as Co2+ and W2+ on melts, respectively. The effect of applied voltage, electrolysis current, and electrolysis times on the composition of the product was studied. Results showed that pure cobalt powder can be obtained when the electrolysis potential is lower than 0.6 V or during low current and short times. Double-cathode and two-stage electrolysis was utilized for the preparation of cobalt, tungsten carbide, and tungsten powders. Additionally, X-ray diffraction results confirm that the product collected at cathodes 1 and 2 is pure Co and WC, respectively. Pure tungsten powder was obtained after electrolysis of the second part. Scanning electron microscope results show that the diameters of tungsten, tungsten carbide, and cobalt powder are smaller than 100, 200, and 200 nm, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael G. McKellar; Edwin A. Harvego; Anastasia A. Gandrik
2010-10-01
A design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The power conversion unit will be a Rankine steam cycle with a power conversion efficiency of 40%. The reference hydrogen production plantmore » operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 40.4% at a hydrogen production rate of 1.75 kg/s and an oxygen production rate of 13.8 kg/s. An economic analysis of this plant was performed with realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.67/kg of hydrogen assuming an internal rate of return, IRR, of 12% and a debt to equity ratio of 80%/20%. A second analysis shows that if the power cycle efficiency increases to 44.4%, the hydrogen production efficiency increases to 42.8% and the hydrogen and oxygen production rates are 1.85 kg/s and 14.6 kg/s respectively. At the higher power cycle efficiency and an IRR of 12% the cost of hydrogen production is $3.50/kg.« less
Iridium-Doped Ruthenium Oxide Catalyst for Oxygen Evolution
NASA Technical Reports Server (NTRS)
Valdez, Thomas I.; Narayan, Sri R.; Billings, Keith J.
2011-01-01
NASA requires a durable and efficient catalyst for the electrolysis of water in a polymer-electrolyte-membrane (PEM) cell. Ruthenium oxide in a slightly reduced form is known to be a very efficient catalyst for the anodic oxidation of water to oxygen, but it degrades rapidly, reducing efficiency. To combat this tendency of ruthenium oxide to change oxidation states, it is combined with iridium, which has a tendency to stabilize ruthenium oxide at oxygen evolution potentials. The novel oxygen evolution catalyst was fabricated under flowing argon in order to allow the iridium to preferentially react with oxygen from the ruthenium oxide, and not oxygen from the environment. Nanoparticulate iridium black and anhydrous ruthenium oxide are weighed out and mixed to 5 18 atomic percent. They are then heat treated at 300 C under flowing argon (in order to create an inert environment) for a minimum of 14 hours. This temperature was chosen because it is approximately the creep temperature of ruthenium oxide, and is below the sintering temperature of both materials. In general, the temperature should always be below the sintering temperature of both materials. The iridium- doped ruthenium oxide catalyst is then fabricated into a PEM-based membrane- electrode assembly (MEA), and then mounted into test cells. The result is an electrolyzer system that can sustain electrolysis at twice the current density, and at the same efficiency as commercial catalysts in the range of 100-200 mA/sq cm. At 200 mA/sq cm, this new system operates at an efficiency of 85 percent, which is 2 percent greater than commercially available catalysts. Testing has shown that this material is as stable as commercially available oxygen evolution catalysts. This means that this new catalyst can be used to regenerate fuel cell systems in space, and as a hydrogen generator on Earth.
NASA Astrophysics Data System (ADS)
Gharib, A.; Hagedorn, D.; Della Corte, A.; Fiamozzi Zignani, C.; Turtu, S.; Brown, D.; Rout, C.
2004-06-01
For the protection of the LHC superconducting magnets, about 2100 specially developed by-pass diodes were manufactured by DYNEX SEMICONDUCTOR LTD (Lincoln, GB) and about 1300 of these diodes were mounted into diode stacks and submitted to tests at cryogenic temperatures. To date about 800 dipole diode stacks and about 250 quadrupole diode stacks for the protection of the superconducting lattice dipole and lattice quadrupole magnets have been assembled at OCEM (Bologna,Italy) and successfully tested in liquid helium at ENEA (Frascati, Italy). This report gives an overview of the test results obtained so far. After a short description of the test installations and test procedures, a statistical analysis is presented for test data during diode production as well as for the performance of the diode stacks during testing in liquid helium, including failure rates and degradation of the diodes.
Hydrogen storage and integrated fuel cell assembly
Gross, Karl J.
2010-08-24
Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.
Synergistic Combination of Electrolysis and Electroporation for Tissue Ablation.
Stehling, Michael K; Guenther, Enric; Mikus, Paul; Klein, Nina; Rubinsky, Liel; Rubinsky, Boris
2016-01-01
Electrolysis, electrochemotherapy with reversible electroporation, nanosecond pulsed electric fields and irreversible electroporation are valuable non-thermal electricity based tissue ablation technologies. This paper reports results from the first large animal study of a new non-thermal tissue ablation technology that employs "Synergistic electrolysis and electroporation" (SEE). The goal of this pre-clinical study is to expand on earlier studies with small animals and use the pig liver to establish SEE treatment parameters of clinical utility. We examined two SEE methods. One of the methods employs multiple electrochemotherapy-type reversible electroporation magnitude pulses, designed in such a way that the charge delivered during the electroporation pulses generates the electrolytic products. The second SEE method combines the delivery of a small number of electrochemotherapy magnitude electroporation pulses with a low voltage electrolysis generating DC current in three different ways. We show that both methods can produce lesion with dimensions of clinical utility, without the need to inject drugs as in electrochemotherapy, faster than with conventional electrolysis and with lower electric fields than irreversible electroporation and nanosecond pulsed ablation.
Ju, Xinxin; Wu, Shubiao; Huang, Xu; Zhang, Yansheng; Dong, Renjie
2014-10-01
Intensified nutrient removal and odor control in a novel electrolysis-integrated tidal flow constructed wetland were evaluated. The average removal efficiencies of COD and NH4(+)-N were above 85% and 80% in the two experimental wetlands at influent COD concentration of 300 mg/L and ammonium nitrogen concentration of 60 mg/L regardless of electrolysis integration. Effluent nitrate concentration decreased from 2.5mg/L to 0.5mg/L with the reduction in current intensity from 1.5 mA/cm(2) to 0.57 mA/cm(2). This result reveals the important role of current intensity in nitrogen transformation. Owing to the ferrous and ferric iron coagulant formed through the electro-dissolution of the iron anode, electrolysis integration not only exerted a positive effect on phosphorus removal but also effectively inhibited sulfide accumulation for odor control. Although electrolysis operation enhanced nutrient removal and promoted the emission of CH4, no significant difference was observed in the microbial communities and abundance of the two experimental wetlands. Copyright © 2014 Elsevier Ltd. All rights reserved.
Synergistic Combination of Electrolysis and Electroporation for Tissue Ablation
Mikus, Paul; Klein, Nina; Rubinsky, Liel; Rubinsky, Boris
2016-01-01
Electrolysis, electrochemotherapy with reversible electroporation, nanosecond pulsed electric fields and irreversible electroporation are valuable non-thermal electricity based tissue ablation technologies. This paper reports results from the first large animal study of a new non-thermal tissue ablation technology that employs “Synergistic electrolysis and electroporation” (SEE). The goal of this pre-clinical study is to expand on earlier studies with small animals and use the pig liver to establish SEE treatment parameters of clinical utility. We examined two SEE methods. One of the methods employs multiple electrochemotherapy-type reversible electroporation magnitude pulses, designed in such a way that the charge delivered during the electroporation pulses generates the electrolytic products. The second SEE method combines the delivery of a small number of electrochemotherapy magnitude electroporation pulses with a low voltage electrolysis generating DC current in three different ways. We show that both methods can produce lesion with dimensions of clinical utility, without the need to inject drugs as in electrochemotherapy, faster than with conventional electrolysis and with lower electric fields than irreversible electroporation and nanosecond pulsed ablation. PMID:26866693
Endurance Test and Evaluation of Alkaline Water Electrolysis Cells
NASA Technical Reports Server (NTRS)
Kovach, Andrew J.; Schubert, Franz H.; Chang, B. J.; Larkins, Jim T.
1985-01-01
The overall objective of this program is to assess the state of alkaline water electrolysis cell technology and its potential as part of a Regenerative Fuel Cell System (RFCS) of a multikilowatt orbiting powerplant. The program evaluates the endurance capabilities of alkaline electrolyte water electrolysis cells under various operating conditions, including constant condition testing, cyclic testing and high pressure testing. The RFCS demanded the scale-up of existing cell hardware from 0.1 sq ft active electrode area to 1.0 sq ft active electrode area. A single water electrolysis cell and two six-cell modules of 1.0 sq ft active electrode area were designed and fabricated. The two six-cell 1.0 sq ft modules incorporate 1.0 sq ft utilized cores, which allow for minimization of module assembly complexity and increased tolerance to pressure differential. A water electrolysis subsystem was designed and fabricated to allow testing of the six-cell modules. After completing checkout, shakedown, design verification and parametric testing, a module was incorporated into the Regenerative Fuel Cell System Breadboard (RFCSB) for testing at Life Systems, Inc., and at NASA JSC.
Electrolysis of lunar soil to produce oxygen and metals
NASA Technical Reports Server (NTRS)
Colson, Russell O.; Haskin, Larry A.; Keller, R.
1991-01-01
The discussion of melt electrolysis consists of three sections. The implications of the chemistry and physics of fluxed and raw melts on melt electrolysis are discussed first. This includes discussion of the factor that influence melt resistivity, melt viscosity, oxygen production efficiency, and the theoretical energy required to produce oxygen. Second, the implications of phase equilibria and solubilities in silicate melts on the selection of materials for container and electrodes are discussed. The implications of proposed container and electrode materials on melt composition and how this effects expected resistivities, viscosities, as outlined in the first section are discussed. Finally, a general discussion of the basic features of both the fluxed and unfluxed melt electrolysis is given, including their advantages and disadvantages and how they compare with alternative processes.
Modelling and simulation of thermal behaviour of vanadium redox flow battery
NASA Astrophysics Data System (ADS)
Yan, Yitao; Li, Yifeng; Skyllas-Kazacos, Maria; Bao, Jie
2016-08-01
This paper extends previous thermal models of the vanadium redox flow battery to predict temperature profiles within multi-cell stacks. This involves modelling the thermal characteristics of the stack as a whole to modelling each individual cell. The study investigates the thermal behaviour for two different scenarios: during standby periods when the pumps are turned off, and in a residential power arbitrage scenario for two types of membranes. It was found that the temperature gradient across the cells is most significant during the standby case, with the simulation results showing completely different thermal behaviours between the two systems.
Core/coil assembly for use in superconducting magnets and method for assembling the same
Kassner, David A.
1979-01-01
A core/coil assembly for use in a superconducting magnet of the focusing or bending type used in syncronous particle accelerators comprising a coil assembly contained within an axial bore of the stacked, washer type, carbon steel laminations which comprise the magnet core assembly, and forming an interference fit with said laminations at the operating temperature of said magnet. Also a method for making such core/coil assemblies comprising the steps of cooling the coil assembly to cryogenic temperatures and drawing it rapidly upwards into the bore of said stacked laminations.
NASA Astrophysics Data System (ADS)
Nguyen, Gia Luong Huu
Fuel cells can produce electricity with high efficiency, low pollutants, and low noise. With the advent of fuel cell technologies, fuel cell systems have since been demonstrated as reliable power generators with power outputs from a few watts to a few megawatts. With proper equipment, fuel cell systems can produce heating and cooling, thus increased its overall efficiency. To increase the acceptance from electrical utilities and building owners, fuel cell systems must operate more dynamically and integrate well with renewable energy resources. This research studies the dynamic performance of fuel cells and the integration of fuel cells with other equipment in three levels: (i) the fuel cell stack operating on hydrogen and reformate gases, (ii) the fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit, and (iii) the hybrid energy system consisting of photovoltaic panels, fuel cell system, and energy storage. In the first part, this research studied the steady-state and dynamic performance of a high temperature PEM fuel cell stack. Collaborators at Aalborg University (Aalborg, Denmark) conducted experiments on a high temperature PEM fuel cell short stack at steady-state and transients. Along with the experimental activities, this research developed a first-principles dynamic model of a fuel cell stack. The dynamic model developed in this research was compared to the experimental results when operating on different reformate concentrations. Finally, the dynamic performance of the fuel cell stack for a rapid increase and rapid decrease in power was evaluated. The dynamic model well predicted the performance of the well-performing cells in the experimental fuel cell stack. The second part of the research studied the dynamic response of a high temperature PEM fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit with high thermal integration. After verifying the model performance with the obtained experimental data, the research studied the control of airflow to regulate the temperature of reactors within the fuel processor. The dynamic model provided a platform to test the dynamic response for different control gains. With sufficient sensing and appropriate control, a rapid response to maintain the temperature of the reactor despite an increase in power was possible. The third part of the research studied the use of a fuel cell in conjunction with photovoltaic panels, and energy storage to provide electricity for buildings. This research developed an optimization framework to determine the size of each device in the hybrid energy system to satisfy the electrical demands of buildings and yield the lowest cost. The advantage of having the fuel cell with photovoltaic and energy storage was the ability to operate the fuel cell at baseload at night, thus reducing the need for large battery systems to shift the solar power produced in the day to the night. In addition, the dispatchability of the fuel cell provided an extra degree of freedom necessary for unforeseen disturbances. An operation framework based on model predictive control showed that the method is suitable for optimizing the dispatch of the hybrid energy system.
NASA Astrophysics Data System (ADS)
Debroy, Sanghamitra; Pavan Kumar, V.; Vijaya Sekhar, K.; Acharyya, Swati Ghosh; Acharyya, Amit
2017-10-01
The present study reports a comprehensive molecular dynamics simulation of the effect of a) temperature (300-1073 K at intervals of every 100 K) and b) point defect on the mechanical behaviour of single (armchair and zigzag direction) and bilayer layer graphene (AA and AB stacking). Adaptive intermolecular reactive bond order (AIREBO) potential function was used to describe the many-body short-range interatomic interactions for the single layer graphene sheet. Moreover, Lennard Jones model was considered for bilayer graphene to incorporate the van der Waals interactions among the interlayers of graphene. The effect of temperature on the strain energy of single layer and bilayer graphene was studied in order to understand the difference in mechanical behaviour of the two systems. The strength of the pristine single layer graphene was found to be higher as compared to bilayer AA stacked graphene at all temperatures. It was observed at 1073 K and in the presence of vacancy defect the strength for single layer armchair sheet falls by 30% and for bilayer armchair sheet by 33% as compared to the pristine sheets at 300 K. The AB stacked graphene sheet was found to have a two-step rupture process. The strength of pristine AB sheet was found to decrease by 22% on increase of temperature from 300 K to 1073 K.
NASA Astrophysics Data System (ADS)
Szmyd, Janusz S.; Komatsu, Yosuke; Brus, Grzegorz; Ghigliazza, Francesco; Kimijima, Shinji; Ściążko, Anna
2014-09-01
This paper discusses the transient characteristics of the planar type SOFC cell stack, of which the standard output is 300 W. The transient response of the voltage to the manipulation of an electric current was investigated. The effects of the response and of the operating condition determined by the operating temperature of the stack were studied by mapping a current-voltage (I-V) correlation. The current-based fuel control (CBFC) was adopted for keeping the fuel utilization factor at constant while the value of the electric current was ramped at the constant rate. The present experimental study shows that the transient characteristics of the cell voltage are determined by primarily the operating temperature caused by the manipulation of the current. Particularly, the slope of the I-V curve and the overshoot found on the voltage was remarkably influenced by the operating temperature. The different values of the fuel utilization factor influence the height of the settled voltages. The CBFC has significance in determining the slope of the I-V characteristic, but the different values ofthe fuel utilization factor does not affect the slope as the operating temperature does. The CBFC essentially does not alter the amplitude of the overshoot on the voltage response, since this is dominated by the operating temperature and its change is caused by manipulating the current.
Membrane Cells for Brine Electrolysis.
ERIC Educational Resources Information Center
Tingle, M.
1982-01-01
Membrane cells were developed as alternatives to mercury and diaphragm cells for the electrolysis of brine. Compares the three types of cells, focusing on the advantages and disadvantages of membrane cells. (JN)
Co-flow anode/cathode supply heat exchanger for a solid-oxide fuel cell assembly
Haltiner, Jr., Karl J.; Kelly, Sean M.
2005-11-22
In a solid-oxide fuel cell assembly, a co-flow heat exchanger is provided in the flow paths of the reformate gas and the cathode air ahead of the fuel cell stack, the reformate gas being on one side of the exchanger and the cathode air being on the other. The reformate gas is at a substantially higher temperature than is desired in the stack, and the cathode gas is substantially cooler than desired. In the co-flow heat exchanger, the temperatures of the reformate and cathode streams converge to nearly the same temperature at the outlet of the exchanger. Preferably, the heat exchanger is formed within an integrated component manifold (ICM) for a solid-oxide fuel cell assembly.
Installation of Ohio's First Electrolysis-Based Hydrogen Fueling Station
NASA Technical Reports Server (NTRS)
Scheidegger, Brianne T.; Lively, Michael L.
2012-01-01
This paper describes progress made towards the installation of a hydrogen fueling station in Northeast Ohio. In collaboration with several entities in the Northeast Ohio area, the NASA Glenn Research Center is installing a hydrogen fueling station that uses electrolysis to generate hydrogen on-site. The installation of this station is scheduled for the spring of 2012 at the Greater Cleveland Regional Transit Authority s Hayden bus garage in East Cleveland. This will be the first electrolysis-based hydrogen fueling station in Ohio.
Experimental study of the electrolysis of silicate melts
NASA Technical Reports Server (NTRS)
Keller, Rudolf
1992-01-01
Melting and electrolyzing lunar silicates yields oxygen gas and potentially can be practiced in situ to produce oxygen. With the present experiments conducted with simulant oxides at 1425-1480 C, it was ascertained that oxygen can be obtained anodically at feasible rates and current efficiencies. An electrolysis cell was operated with platinum anodes in a sealed vessel, and the production of gas was monitored. In these electrolysis experiments, stability of anodes remained a problem, and iron and silicon did not reduce readily into the liquid silver cathode.
Electrolytic hydrogen production: An analysis and review
NASA Technical Reports Server (NTRS)
Evangelista, J.; Phillips, B.; Gordon, L.
1975-01-01
The thermodynamics of water electrolysis cells is presented, followed by a review of current and future technology of commercial cells. The irreversibilities involved are analyzed and the resulting equations assembled into a computer simulation model of electrolysis cell efficiency. The model is tested by comparing predictions based on the model to actual commercial cell performance, and a parametric investigation of operating conditions is performed. Finally, the simulation model is applied to a study of electrolysis cell dynamics through consideration of an ideal pulsed electrolyzer.
Principles and implementations of electrolysis systems for water splitting
Xiang, Chengxiang; Papadantonakis, Kimberly M.; Lewis, Nathan S.
2016-02-12
Efforts to develop renewable sources of carbon-neutral fuels have brought a renewed focus to research and development of sunlight-driven water-splitting systems. Electrolysis of water to produce H 2 and O 2 gases is the foundation of such systems, is conceptually and practically simple, and has been practiced both in the laboratory and industrially for many decades. In this Focus article, the fundamentals of water splitting and practices which distinguish commercial water-electrolysis systems from simple laboratory-scale demonstrations are described.
Advanced measurement techniques to characterize thermo-mechanical aspects of solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Malzbender, J.; Steinbrech, R. W.
Advanced characterization methods have been used to analyze the thermo-mechanical behaviour of solid oxide fuel cells in a model stack. The primarily experimental work included contacting studies, sealing of a model stack, thermal and re-oxidation cycling. Also an attempt was made to correlate cell fracture in the stack with pore sizes determined from computer tomography. The contacting studies were carried out using pressure sensitive foils. The load to achieve full contact on anode and cathode side of the cell was assessed and applied in the subsequent model stack test. The stack experiment permitted a detailed analysis of stack compaction during sealing. During steady state operation thermal and re-oxidation cycling the changes in open cell voltage and acoustic emissions were monitored. Significant softening of the sealant material was observed at low temperatures. Heating in the thermal cycling loop of the stack appeared to be less critical than the cooling. Re-oxidation cycling led to significant damage if a critical re-oxidation time was exceeded. Microstructural studies permitted further insight into the re-oxidation mechanism. Finally, the maximum defect size in the cell was determined by computer tomography. A limit of maximum anode stress was estimated and the result correlated this with the failure strength observed during the model stack testing.
NASA Astrophysics Data System (ADS)
Chen, Xin; Ye, Tingjin; Xu, Zizhen; Chen, Xiaogang; Shi, Liang; He, Lingfeng; Zhang, Yongli
2018-03-01
The carboxymethylchitosan cladding coal ash (CWF) was oxidized by the high temperature using coal ash and sodium carboxymethyl chitosan as raw and processed material for treatment of simulated and actual printing and dyeing wastewater over iron-carbon micro-electrolysis. The results on pH and CWF dosage for effluent dispose were evaluated by the decolorization rate, COD removal efficiency and turbidity removal rate. The experimental results indicated that the decolorization rate was first augmented and then declined with the increase of pH, and attained a peak value when pH was at 5-6. The COD removal efficiency augmented with the augmented of pH, and attained a peak value when pH was 6-7. The turbidity removal rate was first increases and afterwards decreases with the augment of pH, and attained a peak value when pH was at 5-6. Furthermore, the optimum pH for the treatment of simulated dyeing wastewater was 6 over iron-carbon micro-electrolysis, which indicated that the appropriate pH can promote the degradation of wastewater.
Chen, Kongfa; Liu, Shu-Sheng; Ai, Na; Koyama, Michihisa; Jiang, San Ping
2015-12-14
High temperature solid oxide cells (SOCs) are attractive for storage and regeneration of renewable energy by operating reversibly in solid oxide electrolysis cell (SOEC) and solid oxide fuel cell (SOFC) modes. However, the stability of SOCs, particularly the deterioration of the performance of oxygen electrodes in the SOEC operation mode, is the most critical issue in the development of high performance and durable SOCs. In this study, we investigate in detail the electrochemical activity and stability of La0.8Sr0.2MnO3 (LSM) oxygen electrodes in cyclic SOEC and SOFC modes. The results show that the deterioration of LSM oxygen electrodes caused by anodic polarization can be partially or completely recovered by subsequent cathodic polarization. Using in situ assembled LSM electrodes without pre-sintering, we demonstrate that the deteriorated LSM/YSZ interface can be repaired and regenerated by operating the cells under cathodic polarization conditions. This study for the first time establishes the foundation for the development of truly reversible and stable SOCs for hydrogen fuel production and electricity generation in cyclic SOEC and SOFC operation modes.
NASA Astrophysics Data System (ADS)
Novoselova, I. A.; Oliinyk, N. F.; Volkov, S. V.; Konchits, A. A.; Yanchuk, I. B.; Yefanov, V. S.; Kolesnik, S. P.; Karpets, M. V.
2008-05-01
Carbon nanotubes (CNTs) were synthesized from CO 2 dissolved in molten salts using the novel electrolytic method developed by the authors. The electrolysis were carried out under current and potential controls. To establish the actual current and potential ranges, the electroreduction of carbon dioxide dissolved in the halide melts under an excess pressure up to 15 bar was studied by cyclic voltammetry on glassy-carbon (GC) electrode at a temperature of 550 °C. The electrochemical-chemical-electrochemical mechanism of CO 2 electroreduction was offered for explanation of the obtained results. The structure, morphology, and electronic properties of the CNTs obtained were studied using SEM, TEM, X-ray and electron diffraction analysis, Raman and ESR spectroscopy. It was found that the majority of the CNTs are multi-walled (MWCNTs), have curved form, and most often agglomerate into bundles. Almost all CNTs are filled partly with electrolyte salt. Except MWCNTs the cathode product contains carbon nanofibers, nanographite, and amorphous carbon. The dependences of CNT's yield, their diameter, and structure peculiarities against the electrolysis regimes were established.
NASA Astrophysics Data System (ADS)
Qiu, Guohong; Jiang, Kai; Ma, Meng; Wang, Dihua; Jin, Xianbo; Chen, George Z.
2007-06-01
Previous work, mainly from this research group, is re-visited on electrochemical reduction of solid metal oxides, in the form of compacted powder, in molten CaCl2, aiming at further understanding of the roles of cationic and elemental calcium. The discussion focuses on six aspects: 1.) debate on two mechanisms proposed in the literature, i. e. electro-metallothermic reduction and electro-reduction (or electro-deoxidation), for the electrolytic removal of oxygen from solid metals or metal oxides in molten CaCl2; 2.) novel metallic cavity working electrodes for electrochemical investigations of compacted metal oxide powders in high temperature molten salts assisted by a quartz sealed Ag/AgCl reference electrode (650 ºC- 950 ºC); 3.) influence of elemental calcium on the background current observed during electrolysis of solid metal oxides in molten CaCl2; 4.) electrochemical insertion/ inclusion of cationic calcium into solid metal oxides; 5.) typical features of cyclic voltammetry and chronoamperometry (potentiostatic electrolysis) of metal oxide powders in molten CaCl2; and 6.) some kinetic considerations on the electrolytic removal of oxygen.
Natural gas-assisted steam electrolyzer
Pham, Ai-Quoc; Wallman, P. Henrik; Glass, Robert S.
2000-01-01
An efficient method of producing hydrogen by high temperature steam electrolysis that will lower the electricity consumption to an estimated 65 percent lower than has been achievable with previous steam electrolyzer systems. This is accomplished with a natural gas-assisted steam electrolyzer, which significantly reduces the electricity consumption. Since this natural gas-assisted steam electrolyzer replaces one unit of electrical energy by one unit of energy content in natural gas at one-quarter the cost, the hydrogen production cost will be significantly reduced. Also, it is possible to vary the ratio between the electricity and the natural gas supplied to the system in response to fluctuations in relative prices for these two energy sources. In one approach an appropriate catalyst on the anode side of the electrolyzer will promote the partial oxidation of natural gas to CO and hydrogen, called Syn-Gas, and the CO can also be shifted to CO.sub.2 to give additional hydrogen. In another approach the natural gas is used in the anode side of the electrolyzer to burn out the oxygen resulting from electrolysis, thus reducing or eliminating the potential difference across the electrolyzer membrane.
Applications of laser-induced breakdown spectroscopy in the aluminum electrolysis industry
NASA Astrophysics Data System (ADS)
Sun, Lanxiang; Yu, Haibin; Cong, Zhibo; Lu, Hui; Cao, Bin; Zeng, Peng; Dong, Wei; Li, Yang
2018-04-01
The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and corrosive conditions. Monitoring the molten aluminum and electrolyte components is very important for controlling the chemical reaction process. Due to the lack of fast methods to monitor the components, controlling aluminum reduction cells is difficult. In this work, laser-induced breakdown spectroscopy (LIBS) was applied to aluminum electrolysis. A new method for calculating the molecular ratio, which is an important control parameter that represents the acidity of the electrolyte, was proposed. Experiments were first performed on solid electrolyte samples to test the performance of the proposed method. Using this method, the average relative standard deviation (RSD) of the molecular ratio measurement was 0.39%, and the average root mean square error (RMSE) was 0.0236. These results prove that LIBS can accurately measure the molecular ratio. Then, in situ measurements of the molten aluminum and electrolyte were performed in industrial aluminum induction cells using the developed LIBS equipment. The spectra of the molten electrolyte were successfully obtained and were consistent with the spectra of the solid electrolyte.
MECHANICAL PROPERTY CHARACTERIZATIONS AND PERFORMANCE MODELING OF SOFC SEALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koeppel, Brian J.; Vetrano, John S.; Nguyen, Ba Nghiep
2008-03-26
This study provides modeling tools for the design of reliable seals for SOFC stacks. The work consists of 1) experimental testing to determine fundamental properties of SOFC sealing materials, and 2) numerical modeling of stacks and sealing systems. The material tests capture relevant temperature-dependent physical and mechanical data needed by the analytical models such as thermal expansion, strength, fracture toughness, and relaxation behavior for glass-ceramic seals and other materials. Testing has been performed on both homogenous specimens and multiple material assemblies to investigate the effect of interfacial reactions. A viscoelastic continuum damage model for a glass-ceramic seal was developed tomore » capture the nonlinear behavior of this material at high temperatures. This model was implemented in the MSC MARC finite element code and was used for a detailed analysis of a planar SOFC stack under thermal cycling conditions. Realistic thermal loads for the stack were obtained using PNNL’s in-house multiphysics solver. The accumulated seal damage and component stresses were evaluated for multiple thermal loading cycles, and regions of high seal damage susceptible to cracking were identified. Selected test results, numerical model development, and analysis results will be presented.« less
NASA Astrophysics Data System (ADS)
Platt, Sean P.; Attah, Isaac K.; Aziz, Saadullah; El-Shall, M. Samy
2015-05-01
Dimer radical cations of aromatic and polycyclic aromatic molecules are good model systems for a fundamental understanding of photoconductivity and ferromagnetism in organic materials which depend on the degree of charge delocalization. The structures of the dimer radical cations are difficult to determine theoretically since the potential energy surface is often very flat with multiple shallow minima representing two major classes of isomers adopting the stacked parallel or the T-shape structure. We present experimental results, based on mass-selected ion mobility measurements, on the gas phase structures of the naphthalene+ṡ ṡ naphthalene homodimer and the naphthalene+ṡ ṡ benzene heterodimer radical cations at different temperatures. Ion mobility studies reveal a persistence of the stacked parallel structure of the naphthalene+ṡ ṡ naphthalene homodimer in the temperature range 230-300 K. On the other hand, the results reveal that the naphthalene+ṡ ṡ benzene heterodimer is able to exhibit both the stacked parallel and T-shape structural isomers depending on the experimental conditions. Exploitation of the unique structural motifs among charged homo- and heteroaromatic-aromatic interactions may lead to new opportunities for molecular design and recognition involving charged aromatic systems.
Stresses and deformations in cross-ply composite tubes subjected to a uniform temperature change
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Cooper, D. E.; Cohen, D.
1986-01-01
This study investigates the effects of a uniform temperature change on the stresses and deformations of composite tubes and determines the accuracy of an approximate solution based on the principle of complementary virtual work. Interest centers on tube response away from the ends and so a planar elasticity approach is used. For the approximate solution a piecewise linear variation of stresses with the radial coordinate is assumed. The results from the approximate solution are compared with the elasticity solution. The stress predictions agree well, particularly peak interlaminar stresses. Surprisingly, the axial deformations also agree well, despite the fact that the deformations predicted by the approximate solution do not satisfy the interface displacement continuity conditions required by the elasticity solution. The study shows that the axial thermal expansion coefficient of tubes with a specific number of axial and circumferential layers depends on the stacking sequence. This is in contrast to classical lamination theory, which predicts that the expansion will be independent of the stacking arrangement. As expected, the sign and magnitude of the peak interlaminar stresses depend on stacking sequence. For tubes with a specific number of axial and circumferential layers, thermally induced interlaminar stresses can be controlled by altering stacking arrangement.
NASA Technical Reports Server (NTRS)
Sibille, Laurent; Sadoway, Donald; Tripathy, Prabhat; Standish, Evan; Sirk, Aislinn; Melendez, Orlando; Stefanescu, Doru
2010-01-01
Previously, we have demonstrated the production of oxygen by electrolysis of molten regolith simulants at temperatures near 1600 C. Using an inert anode and suitable cathode, direct electrolysis (no supporting electrolyte) of the molten silicate is carried out, resulting in the production of molten metallic products at the cathode and oxygen gas at the anode. Initial direct measurements of current efficiency have confirmed that the process offer potential advantages of high oxygen production rates in a smaller footprint facility landed on the moon, with a minimum of consumables brought from Earth. We now report the results of a scale-up effort toward the goal of achieving production rates equivalent to 1 metric ton O2/year, a benchmark established for the support of a lunar base. We previously reported on the electrochemical behavior of the molten electrolyte as dependent on anode material, sweep rate and electrolyte composition in batches of 20-200g and at currents of less than 0.5 A. In this paper, we present the results of experiments performed at currents up to 10 Amperes) and in larger volumes of regolith simulant (500 g - 1 kg) for longer durations of electrolysis. The technical development of critical design components is described, including: inert anodes capable of passing continuous currents of several Amperes, container materials selection, direct gas analysis capability to determine the gas components co-evolving with oxygen. To allow a continuous process, a system has been designed and tested to enable the withdrawal of cathodically-reduced molten metals and spent molten oxide electrolyte. The performance of the withdrawal system is presented and critiqued. The design of the electrolytic cell and the configuration of the furnace were supported by modeling the thermal environment of the system in an effort to realize a balance between external heating and internal joule heating. We will discuss the impact these simulations and experimental findings have on the design of a suitable prototype for lunar applications
Solid oxide fuel cell generator with removable modular fuel cell stack configurations
Gillett, J.E.; Dederer, J.T.; Zafred, P.R.; Collie, J.C.
1998-04-21
A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack. 8 figs.
Solid oxide fuel cell generator with removable modular fuel cell stack configurations
Gillett, James E.; Dederer, Jeffrey T.; Zafred, Paolo R.; Collie, Jeffrey C.
1998-01-01
A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack.
A high-performance aluminum-feed microfluidic fuel cell stack
NASA Astrophysics Data System (ADS)
Wang, Yifei; Leung, Dennis Y. C.
2016-12-01
In this paper, a six-cell microfluidic fuel cell (MFC) stack is demonstrated. Low-cost aluminum is fed directly to the stack, which produces hydrogen fuel on site, through the Al-H2O reaction. This design is not only cost-efficient, but also eliminates the need for hydrogen storage. Unlike the conventional MFC stacks which generally require complex electrolyte distribution and management, the present Al-feed MFC stack requires only a single electrolyte stream, flowing successively through individual cells, which is finally utilized for hydrogen generation. In this manner, the whole system is greatly simplified while the operational robustness is also improved. With 2 M sodium hydroxide solution as electrolyte and kitchen foil Al as fuel, the present six-cell stack (in series) exhibits an open circuit voltage of nearly 6 V and a peak power density of 180.6 mWcm-2 at room temperature. In addition, an energy density of 1 Whg-1(Al) is achieved, which is quite high and comparable with its proton exchange membrane-based counterparts. Finally, pumpless operation of the present stack, together with its practical applications are successfully demonstrated, including lightening LED lights, driving an electric fan, and cell phone charging.
Studies of the use of heat from high temperature nuclear sources for hydrogen production processes
NASA Technical Reports Server (NTRS)
Farbman, G. H.
1976-01-01
Future uses of hydrogen and hydrogen production processes that can meet the demand for hydrogen in the coming decades were considered. To do this, a projection was made of the market for hydrogen through the year 2000. Four hydrogen production processes were selected, from among water electrolysis, fossil based and thermochemical water decomposition systems, and evaluated, using a consistent set of ground rules, in terms of relative performance, economics, resource requirements, and technology status.
NASA Astrophysics Data System (ADS)
Mamyrbekova, Aigul'; Abzhalov, B. S.; Mamyrbekova, Aizhan
2017-07-01
The possibility of the electroprecipitation of copper powder via the cathodic reduction of an electrolyte solution containing copper(II) nitrate trihydrate and dimethyl sulfoxide (DMSO) is shown. The effect electrolysis conditions (current density, concentration and temperature of electrolyte) have on the dimensional characteristics of copper powder is studied. The size and shape of the particles of the powders were determined by means of electron microscopy; the qualitative composition of the powders, with X-ray diffraction.
1977-10-01
relatively low pressure increase (N15 lb/in. g), but could result in failure of the case in a prismatic cell configuration. Further heating to near the...Potential of a Li/S0C1 2 F Ceail vs. Temperature 77 17 Controlled Potential Electrolysis 80 18 SO2 in SOCl 2 , Infrared Spectrum 83 19 Beer’s Law Plot...variables involved. If the resistance of the contact area is near the design load range of the cell, the cell will discharge harmlessly (except at the end of
Electrochemical Deposition of High Purity Silicon from Molten Salts
NASA Astrophysics Data System (ADS)
Haarberg, Geir Martin
Several approaches were tried in order to develop an electrochemical route for producing high purity silicon from molten salts. SiO2, K2SiF6 and metallurgical silicon were used as the source of silicon. Molten electrolytes based on chloride (CaCl2-NaCl) and fluoride (LiF-KF) at temperatures from 550 - 900 oC were used. Transient electrochemical techniques were used to study the electrochemical behaviour of dissolved silicon species. Electrolysis experiments were carried out to deposit silicon.
Electrochemical Deposition of High Purity Silicon in Molten Salts
NASA Astrophysics Data System (ADS)
Haarberg, Geir Martin
Several approaches were tried in order to develop an electrochemical route for producing high purity silicon from molten salts. SiO2, K2SiF6 and metallurgical silicon were used as the source of silicon. Molten electrolytes based on chloride (CaCl2-NaCl) and fluoride (LiF-KF) at temperatures from 550 - 900 °C were used. Transient electrochemical techniques were used to study the electrochemical behaviour of dissolved silicon species. Electrolysis experiments were carried out to deposit silicon.
METHOD OF PRODUCING URANIUM METAL BY ELECTROLYSIS
Piper, R.D.
1962-09-01
A process is given for making uranium metal from oxidic material by electrolytic deposition on the cathode. The oxidic material admixed with two moles of carbon per one mole of uranium dioxide forms the anode, and the electrolyte is a mixture of from 40 to 75% of calcium fluoride or barium fluoride, 15 to 45% of uranium tetrafluoride, and from 10 to 20% of lithium fluoride or magnesium fluoride; the temperature of the electrolyte is between 1150 and 1175 deg C. (AEC)
Operating experience review of an INL gas monitoring system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cadwallader, Lee C.; DeWall, K. G.; Herring, J. S.
2015-03-12
This article describes the operations of several types of gas monitors in use at the Idaho National Laboratory (INL) High Temperature Electrolysis Experiment (HTE) laboratory. The gases monitored in the lab room are hydrogen, carbon monoxide, carbon dioxide, and oxygen. The operating time, calibration, and both actual and unwanted alarms are described. The calibration session time durations are described. In addition, some simple calculations are given to estimate the reliability of these monitors and the results are compared to operating experiences of other types of monitors.
Development status of a preprototype water electrolysis subsystem
NASA Technical Reports Server (NTRS)
Martin, R. B.; Erickson, A. C.
1981-01-01
A preprototype water electrolysis subsystem was designed and fabricated for NASA's advanced regenerative life support program. A solid polymer is used for the cell electrolyte. The electrolysis module has 12 cells that can generate 5.5 kg/day of oxygen for the metabolic requirements of three crewmembers, for cabin leakage, and for the oxygen and hydrogen required for carbon dioxide collection and reduction processes. The subsystem can be operated at a pressure between 276 and 2760 kN/sq m and in a continuous constant-current, cyclic, or standby mode. A microprocessor is used to aid in operating the subsystem. Sensors and controls provide fault detection and automatic shutdown. The results of development, demonstration, and parametric testing are presented. Modifications to enhance operation in an integrated and manned test are described. Prospective improvements for the electrolysis subsystem are discussed.
NASA Astrophysics Data System (ADS)
Yang, Shaohua; Wu, Lin; Yang, Fengli; Li, Mingzhou; Hu, Xianwei; Wang, Zhaowen; Shi, Zhongning; Gao, Bingliang
Aluminum-magnesium alloys were prepared from magnesium oxide by molten salt electrolysis method. 10w%RECl3-63.5w%KCl-23.5w%MgCl2-3w%MgO was taken as electrolyte. The results showed that RE could be attained in aluminum-magnesium alloy, and it was proved that the RE was reduced directly by aluminum. Magnesium in the alloy was produced by electrolysis on cathode. The content of RE in the alloy was about 0.8wt %-1.2wt%, and the content of Mg in the alloy was lwt%˜6wt% with electrolytic times. The highest current efficiency was 81.3% with 0.8A/cm2 current density. The process of electrolysis was controlled together by electrochemical polarization and concentration polarization.
Tahara, Keishiro; Pan, Ling; Yamaguchi, Ryoko; Shimakoshi, Hisashi; Abe, Masaaki; Hisaeda, Yoshio
2017-10-01
Among the coenzyme B 12 -dependent enzymes, methylmalonyl-CoA mutase (MMCM) catalyzes the carbon-skeleton rearrangement reaction between R-methylmalonyl-CoA and succinyl-CoA. Diethyl 2-bromomethyl-2-phenylmalonate, an alkyl bromide substrate having two different migrating groups (phenyl and carboxylic ester groups) on the β-carbon, was applied to the electrolysis mediated by a hydrophobic vitamin B 12 model complex, heptamethyl cobyrinate perchlorate in this study. The electrolysis of the substrate at -1.0V vs. Ag-AgCl by light irradiation afforded the simple reduced product (diethyl 2-methyl-2-phenylmalonate) and the phenyl migrated product (diethyl 2-benzyl-2-phenylmalonate), as well as the electrolysis of the substrate at -1.5V vs. Ag-AgCl in the dark. The electrolysis of the substrate at -2.0V vs. Ag-AgCl afforded the carboxylic ester migrated product (diethyl phenylsuccinate) as the major product. The selectivity for the migrating group was successfully tuned by controlling the electrolysis potential. We clarified that the cathodic chemistry of the Co(III) alkylated heptamethyl cobyrinate is critical for the selectivity of the migrating group through mechanistic investigations and comparisons to the simple vitamin B 12 model complex, an imine/oxime-type cobalt complex. Copyright © 2017 Elsevier Inc. All rights reserved.
ELECTROCHEMISTRY AND ON-CELL REFORMATION MODELING FOR SOLID OXIDE FUEL CELL STACKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Recknagle, Kurtis P.; Jarboe, Daniel T.; Johnson, Kenneth I.
2007-01-16
ABSTRACT Providing adequate and efficient cooling schemes for solid-oxide-fuel-cell (SOFC) stacks continues to be a challenge coincident with the development of larger, more powerful stacks. The endothermic steam-methane reformation reaction can provide cooling and improved system efficiency when performed directly on the electrochemically active anode. Rapid kinetics of the endothermic reaction typically causes a localized temperature depression on the anode near the fuel inlet. It is desirable to extend the endothermic effect over more of the cell area and mitigate the associated differences in temperature on the cell to alleviate subsequent thermal stresses. In this study, modeling tools validated formore » the prediction of fuel use, on-cell methane reforming, and the distribution of temperature within SOFC stacks, are employed to provide direction for modifying the catalytic activity of anode materials to control the methane conversion rate. Improvements in thermal management that can be achieved through on-cell reforming is predicted and discussed. Two operating scenarios are considered: one in which the methane fuel is fully pre-reformed, and another in which a substantial percentage of the methane is reformed on-cell. For the latter, a range of catalytic activity is considered and the predicted thermal effects on the cell are presented. Simulations of the cell electrochemical and thermal performance with and without on-cell reforming, including structural analyses, show a substantial decrease in thermal stresses for an on-cell reforming case with slowed methane conversion.« less
NASA Astrophysics Data System (ADS)
Tamura, Hiroyuki; Huix-Rotllant, Miquel; Burghardt, Irene; Olivier, Yoann; Beljonne, David
2015-09-01
Singlet excitons in π -stacked molecular crystals can split into two triplet excitons in a process called singlet fission that opens a route to carrier multiplication in photovoltaics. To resolve controversies about the mechanism of singlet fission, we have developed a first principles nonadiabatic quantum dynamical model that reveals the critical role of molecular stacking symmetry and provides a unified picture of coherent versus thermally activated singlet fission mechanisms in different acenes. The slip-stacked equilibrium packing structure of pentacene derivatives is found to enhance ultrafast singlet fission mediated by a coherent superexchange mechanism via higher-lying charge transfer states. By contrast, the electronic couplings for singlet fission strictly vanish at the C2 h symmetric equilibrium π stacking of rubrene. In this case, singlet fission is driven by excitations of symmetry-breaking intermolecular vibrations, rationalizing the experimentally observed temperature dependence. Design rules for optimal singlet fission materials therefore need to account for the interplay of molecular π -stacking symmetry and phonon-induced coherent or thermally activated mechanisms.
Optimization of hole generation in Ti/CFRP stacks
NASA Astrophysics Data System (ADS)
Ivanov, Y. N.; Pashkov, A. E.; Chashhin, N. S.
2018-03-01
The article aims to describe methods for improving the surface quality and hole accuracy in Ti/CFRP stacks by optimizing cutting methods and drill geometry. The research is based on the fundamentals of machine building, theory of probability, mathematical statistics, and experiment planning and manufacturing process optimization theories. Statistical processing of experiment data was carried out by means of Statistica 6 and Microsoft Excel 2010. Surface geometry in Ti stacks was analyzed using a Taylor Hobson Form Talysurf i200 Series Profilometer, and in CFRP stacks - using a Bruker ContourGT-Kl Optical Microscope. Hole shapes and sizes were analyzed using a Carl Zeiss CONTURA G2 Measuring machine, temperatures in cutting zones were recorded with a FLIR SC7000 Series Infrared Camera. Models of multivariate analysis of variance were developed. They show effects of drilling modes on surface quality and accuracy of holes in Ti/CFRP stacks. The task of multicriteria drilling process optimization was solved. Optimal cutting technologies which improve performance were developed. Methods for assessing thermal tool and material expansion effects on the accuracy of holes in Ti/CFRP/Ti stacks were developed.
NASA Astrophysics Data System (ADS)
Li, Jianqiang; Lu, Caijiang; Xu, Changbao; Zhong, Ming
2015-09-01
This paper develops a simple miniature magnetoelectric (ME) laminate FeCuNbSiB/PZT-stack made up of magnetostrictive Fe73.5Cu1Nb3Si13.5B9 (FeCuNbSiB) foils and piezoelectric Pb(Zr, Ti)O3 (PZT) multilayer stack vibrator. Resonant ME interactions of FeCuNbSiB/PZT-stack with different layers of FeCuNbSiB foil (L) are investigated in detail. The experimental results show that the ME voltage coefficient reaches maximum value of 141.5 (V/cm Oe) for FeCuNbSiB/PZT-stack with L = 6. The AC-magnetic sensitivities can reach 524.29 mV/Oe and 1.8 mV/Oe under resonance 91.6 kHz and off-resonance 1 kHz, respectively. The FeCuNbSiB/PZT-stack can distinguish small dc-magnetic field of ˜9 nT. The results indicate that the proposed ME composites are very promising for the cheap room-temperature magnetic field sensing technology.
Fuel cell stack monitoring and system control
Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.
2005-01-25
A control method for monitoring a fuel cell stack in a fuel cell system in which the actual voltage and actual current from the fuel cell stack are monitored. A preestablished relationship between voltage and current over the operating range of the fuel cell is established. A variance value between the actual measured voltage and the expected voltage magnitude for a given actual measured current is calculated and compared with a predetermined allowable variance. An output is generated if the calculated variance value exceeds the predetermined variance. The predetermined voltage-current for the fuel cell is symbolized as a polarization curve at given operating conditions of the fuel cell. Other polarization curves may be generated and used for fuel cell stack monitoring based on different operating pressures, temperatures, hydrogen quantities.
NASA Astrophysics Data System (ADS)
Xu, Hui Fang; Sun, Wen; Han, Xin Feng
2018-06-01
An analytical model of surface potential profiles and transfer characteristics for hetero stacked tunnel field-effect transistors (HS-TFETs) is presented for the first time, where hetero stacked materials are composed of two different bandgaps. The bandgap of the underlying layer is smaller than that of the upper layer. Under different device parameters (upper layer thickness, underlying layer thickness, and hetero stacked materials) and temperature, the validity of the model is demonstrated by the agreement of its results with the simulation results. Moreover, the results show that the HS-TFETs can obtain predominant performance with relatively slow changes of subthreshold swing (SS) over a wide drain current range, steep average subthreshold swing, high on-state current, and large on–off state current ratio.
Kobayashi, Toyohide; Hirose, Jun; Wu, Hong; Sano, Kouichi; Katsumata, Takahiro; Tsujibo, Hiroshi; Nakano, Takashi
2013-12-01
The recent development of antiviral drugs has led to concern that the release of the chemicals in surface water due to expanded medical use could induce drug-resistant mutant viruses in zoonosis. Many researchers have noted that the appearance of an oseltamivir (Tamiflu(®))-resistant avian influenza mutant virus, which may spread to humans, could be induced by oseltamivir contamination of surface water. Although past studies have reported electrolysis as a possible method for degradation of antineoplastics and antibacterials in water, the validity of the method for treatment of antiviral drugs is unknown. In this study, electrolysis was used to degrade an antiviral prodrug, oseltamivir, and a stable active form, oseltamivir carboxylate, and the degradation process was monitored with HPLC-UV and the neuraminidase inhibitory assay. HPLC-UV-detectable oseltamivir and oseltamivir carboxylate were decomposed by electrolysis within 60 min, and inhibitory activity of neuraminidase decreased below the detection limit of the assay used. Cytotoxic and genotoxic activity were not detected in electrolyzed fluid. These results indicate that electrolysis is a possible treatment for inactivation of the antiviral drug oseltamivir. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zeng, Yachao; Guo, Xiaoqian; Shao, Zhigang; Yu, Hongmei; Song, Wei; Wang, Zhiqiang; Zhang, Hongjie; Yi, Baolian
2017-02-01
A cost-effective nanoporous ultrathin film (NPUF) electrode based on nanoporous gold (NPG)/IrO2 composite has been constructed for proton exchange membrane (PEM) water electrolysis. The electrode was fabricated by integrating IrO2 nanoparticles into NPG through a facile dealloying and thermal decomposition method. The NPUF electrode is featured in its 3D interconnected nanoporosity and ultrathin thickness. The nanoporous ultrathin architecture is binder-free and beneficial for improving electrochemical active surface area, enhancing mass transport and facilitating releasing of oxygen produced during water electrolysis. Serving as anode, a single cell performance of 1.728 V (@ 2 A cm-2) has been achieved by NPUF electrode with a loading of IrO2 and Au at 86.43 and 100.0 μg cm-2 respectively, the electrolysis voltage is 58 mV lower than that of conventional electrode with an Ir loading an order of magnitude higher. The electrolysis voltage kept relatively constant up to 300 h (@250 mA cm-2) during the course of durability test, manifesting that NPUF electrode is promising for gas evolution.
NASA Technical Reports Server (NTRS)
McKellar, Michael G.; Stoots, Carl M.; Sohal, Manohar S.; Mulloth, Lila M.; Luna, Bernadette; Abney, Morgan B.
2010-01-01
CO2 acquisition and utilization technologies will have a vital role in designing sustainable and affordable life support and in situ fuel production architectures for human and robotic exploration of Moon and Mars. For long-term human exploration to be practical, reliable technologies have to be implemented to capture the metabolic CO2 from the cabin air and chemically reduce it to recover oxygen. Technologies that enable the in situ capture and conversion of atmospheric CO2 to fuel are essential for a viable human mission to Mars. This paper describes the concept and mathematical analysis of a closed-loop life support system based on combined electrolysis of CO2 and steam (co-electrolysis). Products of the coelectrolysis process include oxygen and syngas (CO and H2) that are suitable for life support and synthetic fuel production, respectively. The model was developed based on the performance of a co-electrolysis system developed at Idaho National Laboratory (INL). Individual and combined process models of the co-electrolysis and Sabatier, Bosch, Boudouard, and hydrogenation reactions are discussed and their performance analyses in terms of oxygen production and CO2 utilization are presented.
Three-Man Solid Electrolyte Carbon Dioxide Electrolysis Breadboard
NASA Technical Reports Server (NTRS)
Isenberg, Arnold O.
1989-01-01
The development of the Three-Man (2.2 lb CO2/man-day) Solid Electrolyte CO2 Electrolysis Breadboard consisted of a Phase 1 and 2 effort. The Phase 1 effort constituted fabrication of three electrolysis cell types and performing parametric testing, off-design testing, and cell life testing. The Phase 2 consisted of the preliminary design, incorporation of palladium (Pd) tubes for hydrogen separation from the electrolyzer cathode feed gases, design support testing, final design, fabrication, and performance testing of the breadboard system. The results of performance tests demonstrated that CO2 electrolysis in an oxygen reclamation system for long duration space-based habitats is feasible. Closure of the oxygen system loop, therefore, can be achieved by CO2 electrolysis. In a two step process the metabolic CO2 and H2O vapor are electrolyzed into O2, H2, and CO. The CO can subsequently be disproportionated into carbon and CO2 in a carbon deposition reactor and the CO2 in turn be recycled and electrolyzed for total O2 recovery. The development effort demonstrated electrolyzer system can be designed and built to operate safely and reliably and the incorporation of Pd tubes for hydrogen diffusion can be integrated safely with predictable performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
X. Zhang; J. E. O'Brien; R. C. O'Brien
2011-11-01
An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production. Results presented in this paper were obtained from single cells, with an active area of 16 cm{sup 2} per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes ({approx}10 {mu}m thick), nickel-YSZ steam/hydrogen electrodes ({approx}1400 {mu}m thick), and modified LSM or LSCF air-side electrodes ({approx}90 {mu}m thick). The purpose of the present study is to document and compare the performance and degradation rates of these cells in the fuel cell mode and in the electrolysismore » mode under various operating conditions. Initial performance was documented through a series of voltage-current (VI) sweeps and AC impedance spectroscopy measurements. Degradation was determined through long-term testing, first in the fuel cell mode, then in the electrolysis mode. Results generally indicate accelerated degradation rates in the electrolysis mode compared to the fuel cell mode, possibly due to electrode delamination. The paper also includes details of an improved single-cell test apparatus developed specifically for these experiments.« less
Analysis and Countermeasures of Wind Power Accommodation by Aluminum Electrolysis Pot-Lines in China
NASA Astrophysics Data System (ADS)
Zhang, Hongliang; Ran, Ling; He, Guixiong; Wang, Zhenyu; Li, Jie
2017-10-01
The unit energy consumption and its price have become the main obstacles for the future development of the aluminum electrolysis industry in China. Meanwhile, wind power is widely being abandoned because of its instability. In this study, a novel idea for wind power accommodation is proposed to achieve a win-win situation: the idea is for nearby aluminum electrolysis plants to absorb the wind power. The features of the wind power distribution and aluminum electrolysis industry are first summarized, and the concept of wind power accommodation by the aluminum industry is introduced. Then, based on the characteristics of aluminum reduction cells, the key problems, including the bus-bar status, thermal balance, and magnetohydrodynamics instabilities, are analyzed. In addition, a whole accommodation implementation plan for wind power by aluminum reduction is introduced to explain the theoretical value of accommodation, evaluation of the reduction cells, and the industrial experiment scheme. A numerical simulation of a typical scenario proves that there is large accommodation potential for the aluminum reduction cells. Aluminum electrolysis can accommodate wind power and remain stable under the proper technique and accommodation scheme, which will provide promising benefits for the aluminum plant and the wind energy plant.
Analysis of cavitation effect for water purifier using electrolysis
NASA Astrophysics Data System (ADS)
Shin, Dong Ho; Ko, Han Seo; Lee, Seung Ho
2015-11-01
Water is a limited and vital resource, so it should not be wasted by pollution. A development of new water purification technology is urgent nowadays since the original and biological treatments are not sufficient. The microbubble-aided method was investigated for removal of algal in this study since it overcomes demerits of the existing purification technologies. Thus, the cavitation effect in a venturi-type tube using the electrolysis was analyzed. Ruthenium-coated titanium plates were used as electrodes. Optimum electrode interval and applied power were determined for the electrolysis. Then, the optimized electrodes were installed in the venturi-type tube for generating cavitation. The cavitation effect could be enhanced without any byproduct by the bubbly flow induced by the electrolysis. The optimum mass flow rate and current were determined for the cavitation with the electrolysis. Finally, the visualization techniques were used to count the cell number of algal and microbubbles for the confirmation of the performance. As a result, the energy saving and high efficient water purifier was fabricated in this study. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean government (MEST) (No. 2013R1A2A2A01068653).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yujie; Gong, Sha; Wang, Zhen
The thermodynamic and kinetic parameters of an RNA base pair were obtained through a long-time molecular dynamics simulation of the opening-closing switch process of the base pair near its melting temperature. The thermodynamic parameters were in good agreement with the nearest-neighbor model. The opening rates showed strong temperature dependence, however, the closing rates showed only weak temperature dependence. The transition path time was weakly temperature dependent and was insensitive to the energy barrier. The diffusion constant exhibited super-Arrhenius behavior. The free energy barrier of breaking a single base stack results from the enthalpy increase, ΔH, caused by the disruption ofmore » hydrogen bonding and base-stacking interactions. The free energy barrier of base pair closing comes from the unfavorable entropy loss, ΔS, caused by the restriction of torsional angles. These results suggest that a one-dimensional free energy surface is sufficient to accurately describe the dynamics of base pair opening and closing, and the dynamics are Brownian.« less
Elimination of trench defects and V-pits from InGaN/GaN structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smalc-Koziorowska, Julita; Grzanka, Ewa; Czernecki, Robert
2015-03-09
The microstructural evolution of InGaN/GaN multiple quantum wells grown by metalorganic chemical vapor phase epitaxy was studied as a function of the growth temperature of the GaN quantum barriers (QBs). We observed the formation of basal stacking faults (BSFs) in GaN QBs grown at low temperature. The presence of BSFs terminated by stacking mismatch boundaries (SMBs) leads to the opening of the structure at the surface into a V-shaped trench loop. This trench may form above an SMB, thereby terminating the BSF, or above a junction between the SMB and a subsequent BSF. Fewer BSFs and thus fewer trench defectsmore » were observed in GaN QBs grown at temperatures higher than 830 °C. Further increase in the growth temperature of the GaN QBs led to the suppression of the threading dislocation opening into V-pits.« less
Stacking fault energies of face-centered cubic concentrated solid solution alloys
Zhao, Shijun; Stocks, G. Malcolm; Zhang, Yanwen
2017-06-22
We report the stacking fault energy (SFE) for a series of face-centered cubic (fcc) equiatomic concentrated solid solution alloys (CSAs) derived as subsystems from the NiCoFeCrMn and NiCoFeCrPd high entropy alloys based on ab initio calculations. At low temperatures, these CSAs display very low even negative SFEs, indicating that hexagonal close-pack ( hcp) is more energy favorable than fcc structure. The temperature dependence of SFE for some CSAs is studied. With increasing temperature, a hcp-to- fcc transition is revealed for those CSAs with negative SFEs, which can be attributed to the role of intrinsic vibrational entropy. The analysis of themore » vibrational modes suggests that the vibrational entropy arises from the high frequency states in the hcp structure that originate from local vibrational mode. Furthermore, our results underscore the importance of vibrational entropy in determining the temperature dependence of SFE for CSAs.« less
Low Temperature X-Ray Diffraction Study on CaFe2As2
NASA Astrophysics Data System (ADS)
Huyan, Shuyuan; Deng, Liangzi; Wu, Zheng; Zhao, Kui; Lv, Bing; Xue, Yiyu; Chu, Ching-Wu; B. Lv Collaboration; HPLT (Paul C. W. Chu) Team
For undoped CaFe2As2 single crystals, we observed that utilizing thermal treatments could stabilize two pure tetragonal phases PI and PII. Both phases are non-superconducting, while the superconductivity with a Tc up to 25 K can be induced through proper thermal treatment. Room temperature X-ray studies suggest that the origin of superconductivity arises from the interface of the mesoscopically stacked layers of PI and PII. To further investigate, a systematic low temperature X-ray study was conducted over a series of thermal treated CaFe2As2 single crystals. From which, we observed the phase aggregation of PI and PII upon cooling, more importantly, an ordered stacking structure exists at low temperature, which closely related to superconducting volume fraction and the ratio of PI and PII. These results further support the proposal of interface-enhanced superconductivity in undoped CaFe2As2. UT Dallas