Sample records for temperature fourier transform

  1. Thermal stabilization of static single-mirror Fourier transform spectrometers

    NASA Astrophysics Data System (ADS)

    Schardt, Michael; Schwaller, Christian; Tremmel, Anton J.; Koch, Alexander W.

    2017-05-01

    Fourier transform spectroscopy has become a standard method for spectral analysis of infrared light. With this method, an interferogram is created by two beam interference which is subsequently Fourier-transformed. Most Fourier transform spectrometers used today provide the interferogram in the temporal domain. In contrast, static Fourier transform spectrometers generate interferograms in the spatial domain. One example of this type of spectrometer is the static single-mirror Fourier transform spectrometer which offers a high etendue in combination with a simple, miniaturized optics design. As no moving parts are required, it also features a high vibration resistance and high measurement rates. However, it is susceptible to temperature variations. In this paper, we therefore discuss the main sources for temperature-induced errors in static single-mirror Fourier transform spectrometers: changes in the refractive index of the optical components used, variations of the detector sensitivity, and thermal expansion of the housing. As these errors manifest themselves in temperature-dependent wavenumber shifts and intensity shifts, they prevent static single-mirror Fourier transform spectrometers from delivering long-term stable spectra. To eliminate these shifts, we additionally present a work concept for the thermal stabilization of the spectrometer. With this stabilization, static single-mirror Fourier transform spectrometers are made suitable for infrared process spectroscopy under harsh thermal environmental conditions. As the static single-mirror Fourier transform spectrometer uses the so-called source-doubling principle, many of the mentioned findings are transferable to other designs of static Fourier transform spectrometers based on the same principle.

  2. Application and sensitivity investigation of Fourier transforms for microwave radiometric inversions

    NASA Technical Reports Server (NTRS)

    Holmes, J. J.; Balanis, C. A.

    1974-01-01

    Existing microwave radiometer technology now provides a suitable method for remote determination of the ocean surface's absolute brightness temperature. To extract the brightness temperature of the water from the antenna temperature equation, an unstable Fredholm integral equation of the first kind was solved. Fast Fourier Transform techniques were used to invert the integral after it is placed into a cross-correlation form. Application and verification of the methods to a two-dimensional modeling of a laboratory wave tank system were included. The instability of the Fredholm equation was then demonstrated and a restoration procedure was included which smooths the resulting oscillations. With the recent availability and advances of Fast Fourier Transform techniques, the method presented becomes very attractive in the evaluation of large quantities of data. Actual radiometric measurements of sea water are inverted using the restoration method, incorporating the advantages of the Fast Fourier Transform algorithm for computations.

  3. Application of Fourier transforms for microwave radiometric inversions

    NASA Technical Reports Server (NTRS)

    Holmes, J. J.; Balanis, C. A.; Truman, W. M.

    1975-01-01

    Existing microwave radiometer technology now provides a suitable method for remote determination of the ocean surface's absolute brightness temperature. To extract the brightness temperature of the water from the antenna temperature, an unstable Fredholm integral equation of the first kind is solved. Fourier transform techniques are used to invert the integral after it is placed into a cross correlation form. Application and verification of the methods to a two-dimensional modeling of a laboratory wave tank system are included. The instability of the ill-posed Fredholm equation is examined and a restoration procedure is included which smooths the resulting oscillations. With the recent availability and advances of fast Fourier transform (FFT) techniques, the method presented becomes very attractive in the evaluation of large quantities of data.

  4. Variable-temperature Fourier transform near-infrared imaging spectroscopy of the deuterium/hydrogen exchange in liquid D₂O.

    PubMed

    Unger, Miriam; Ozaki, Yukihiro; Siesler, Heinz W

    2014-01-01

    In the present publication, the deuterium/hydrogen (D/H) exchange of liquid D2O exposed to water vapor of the surrounding atmosphere has been studied by variable-temperature Fourier transform near-infrared (FT-NIR) imaging spectroscopy. Apart from the visualization of the exchange process in the time-resolved FT-NIR images, kinetic parameters and the activation energy for this D/H exchange reaction have been derived from the Arrhenius plot of the variable-temperature spectroscopic data.

  5. Modulated Fourier Transform Raman Fiber-Optic Spectroscopy

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Cooper, John B. (Inventor); Wise, Kent L. (Inventor)

    2000-01-01

    A modification to a commercial Fourier Transform (FT) Raman spectrometer is presented for the elimination of thermal backgrounds in the FT Raman spectra. The modification involves the use of a mechanical optical chopper to modulate the continuous wave laser, remote collection of the signal via fiber optics, and connection of a dual-phase digital-signal-processor (DSP) lock-in amplifier between the detector and the spectrometer's collection electronics to demodulate and filter the optical signals. The resulting Modulated Fourier Transform Raman Fiber-Optic Spectrometer is capable of completely eliminating thermal backgrounds at temperatures exceeding 300 C.

  6. Vibrational spectroscopy and DFT calculations of flavonoid derriobtusone A

    NASA Astrophysics Data System (ADS)

    Marques, A. N. L.; Mendes Filho, J.; Freire, P. T. C.; Santos, H. S.; Albuquerque, M. R. J. R.; Bandeira, P. N.; Leite, R. V.; Braz-Filho, R.; Gusmão, G. O. M.; Nogueira, C. E. S.; Teixeira, A. M. R.

    2017-02-01

    Flavonoids are secondary metabolites of plants which perform various functions. One subclass of flavonoid is auronol that can present immunostimulating activity. In this work Fourier-Transform Infrared with Attenuated Total Reflectance (FTIR-ATR) and Fourier-Transform Raman (FT-Raman) spectra of an auronol, derriobtusone A (C18H12O4), were obtained at room temperature. Theoretical calculations using Density Functional Theory (DFT) were performed in order to assign the normal modes and to interpret the spectra of the derriobtusone A molecule. The FTIR-ATR and FT-Raman spectra of the crystal, were recorded at room temperature in the regions 600 cm-1 to 4000 cm-1 and 40 cm-1 to 4000 cm-1, respectively. The normal modes of vibrations were obtained using Density Functional Theory with B3LYP functional and 6-31G+ (d,p) basis set. The calculated frequencies are in good agreement with those obtained experimentally. Detailed assignments of the normal modes present in both the Fourier-Transform infrared and the Fourier-Transform Raman spectra of the crystal are given.

  7. Fourier transform infrared and Raman spectroscopic characterization of homogeneous solution concentration gradients near a container wall at different temperatures

    NASA Technical Reports Server (NTRS)

    Loo, B. H.; Burns, D. H.; Lee, Y. G. L.; Emerson, M. T.

    1991-01-01

    Fourier transform infrared (FTIR) and Raman spectroscopic techniques were used to study the solution concentration gradient in succino nitrile-rich and water-rich homogeneous solutions. The spectroscopic data shows significant concentration dependency. Although FTIR-attenuated total reflectance could not yield surface spectra since the evanescent infrared wave penetrated deep into the bulk solution, it showed that water-rich clusters were decreased at higher temperatures. This result is consistent with the calorimetric results reported earlier.

  8. Three-dimensional vector modeling and restoration of flat finite wave tank radiometric measurements

    NASA Technical Reports Server (NTRS)

    Truman, W. M.; Balanis, C. A.; Holmes, J. J.

    1977-01-01

    In this paper, a three-dimensional Fourier transform inversion method describing the interaction between water surface emitted radiation from a flat finite wave tank and antenna radiation characteristics is reported. The transform technique represents the scanning of the antenna mathematically as a correlation. Computation time is reduced by using the efficient and economical fast Fourier transform algorithm. To verify the inversion method, computations have been made and compared with known data and other available results. The technique has been used to restore data of the finite wave tank system and other available antenna temperature measurements made at the Cape Cod Canal. The restored brightness temperatures serve as better representations of the emitted radiation than the measured antenna temperatures.

  9. Phase-shift detection in a Fourier-transform method for temperature sensing using a tapered fiber microknot resonator.

    PubMed

    Larocque, Hugo; Lu, Ping; Bao, Xiaoyi

    2016-04-01

    Phase-shift detection in a fast-Fourier-transform (FFT)-based spectrum analysis technique for temperature sensing using a tapered fiber microknot resonator is proposed and demonstrated. Multiple transmission peaks in the FFT spectrum of the device were identified as optical modes having completed different amounts of round trips within the ring structure. Temperature variation induced phase shifts for each set of peaks were characterized, and experimental results show that different peaks have distinct temperature sensitivities reaching values up to -0.542  rad/°C, which is about 10 times greater than that of a regular adiabatic taper Mach-Zehnder interferometer when using similar phase-tracking schemes.

  10. [Combustion temperature measurement of pyrotechnic composition using remote sensing Fourier transform infrared spectrometry].

    PubMed

    Zhou, Xin-li; Li, Yan; Liu, Zu-liang; Zhu, Chang-jiang; Wang, Jun-de; Lu, Chun-xu

    2002-10-01

    In this paper, combustion characterization of pyrotechnic composition is investigated using a remote sensing Fourier transform infrared spectrometry. The emission spectra have been recorded between 4,700 and 740 cm-1 with a spectral resolution of 4 cm-1. The combustion temperature can be determined remotely from spectral line intensity distribution of the fine structure of the emission fundamental band of gaseous products such as HF. The relationship between combustion temperature and combustion time has been given. Results show that there is a violent mutative temperature field with bigger temperature gradient near combustion surface. It reveals that the method of temperature measurement using remote sensing FTIR for flame temperature of unstable, violent and short time combustion on real time is a rapid, accurate and sensitive technique without interference the flame temperature field. Potential prospects of temperature measurement, gas product concentration measurement and combustion mechanism are also revealed.

  11. The investigation of the bio-oil produced by hydrothermal liquefaction of Spirulina platensis using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Kostyukevich, Yury; Vlaskin, Mikhail; Vladimirov, Gleb; Zherebker, Alexander; Kononikhin, Alexey; Popov, Igor; Nikolaev, Eugene

    2017-04-01

    We report the investigation of the hydrothermal liquefaction products of the Spirulina platensis microalgae by using the Fourier transform ion cyclotron resonance mass spectrometry. The hydrothermal liquefaction produced two fractions: one with boiling temperature below 300℃ and the dense residue that remained in the reactor. It was observed that N 2 and N classes of compounds that dominate in the positive ESI Fourier transform ion cyclotron resonance spectra for both fractions, and that the light fraction is considerably more saturated then the heavy one. The performed hydrogen/deuterium exchange reaction indicated the presence of the onium compounds in the bio-oil.

  12. Hyper-spectral imaging of aircraft exhaust plumes

    NASA Astrophysics Data System (ADS)

    Bowen, Spencer; Bradley, Kenneth; Gross, Kevin; Perram, Glen; Marciniak, Michael

    2008-10-01

    An imaging Fourier-transform spectrometer has been used to determine low spatial resolution temperature and chemical species concentration distributions of aircraft jet engine exhaust plumes. An overview of the imaging Fourier transform spectrometer and the methodology of the project is presented. Results to date are shared and future work is discussed. Exhaust plume data from a Turbine Technologies, LTD, SR-30 turbojet engine at three engine settings was collected using a Telops Field-portable Imaging Radiometric Spectrometer Technology Mid-Wave Extended (FIRST-MWE). Although the plume exhibited high temporal frequency fluctuations, temporal averaging of hyper-spectral data-cubes produced steady-state distributions, which, when co-added and Fourier transformed, produced workable spectra. These spectra were then reduced using a simplified gaseous effluent model to fit forward-modeled spectra obtained from the Line-By-Line Radiative Transfer Model (LBLRTM) and the high-resolution transmission (HITRAN) molecular absorption database to determine approximate temperature and concentration distributions. It is theorized that further development of the physical model will produce better agreement between measured and modeled data.

  13. Matching-pursuit/split-operator-Fourier-transform computations of thermal correlation functions.

    PubMed

    Chen, Xin; Wu, Yinghua; Batista, Victor S

    2005-02-08

    A rigorous and practical methodology for evaluating thermal-equilibrium density matrices, finite-temperature time-dependent expectation values, and time-correlation functions is described. The method involves an extension of the matching-pursuit/split-operator-Fourier-transform method to the solution of the Bloch equation via imaginary-time propagation of the density matrix and the evaluation of Heisenberg time-evolution operators through real-time propagation in dynamically adaptive coherent-state representations.

  14. Investigation of second grade fluid through temperature dependent thermal conductivity and non-Fourier heat flux

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Ahmad, Salman; Khan, M. Ijaz; Alsaedi, A.; Waqas, M.

    2018-06-01

    Here we investigated stagnation point flow of second grade fluid over a stretchable cylinder. Heat transfer is characterized by non-Fourier law of heat flux and thermal stratification. Temperature dependent thermal conductivity and activation energy are also accounted. Transformations procedure is applying to transform the governing PDE's into ODE's. Obtained system of ODE's are solved analytically by HAM. Influence of flow variables on velocity, temperature, concentration, skin friction and Sherwood number are analyzed. Obtained outcome shows that velocity enhanced through curvature parameter, viscoelastic parameter and velocities ratio variable. Temperature decays for larger Prandtl number, thermal stratification, thermal relaxation and curvature parameter. Sherwood number and concentration field show opposite behavior for higher estimation of activation energy, reaction rate, curvature parameter and Schmidt number.

  15. Use of Fourier transforms for asynoptic mapping: Applications to the Upper Atmosphere Research Satellite microwave limb sounder

    NASA Technical Reports Server (NTRS)

    Elson, Lee S.; Froidevaux, Lucien

    1993-01-01

    Fourier analysis has been applied to data obtained from limb viewing instruments on the Upper Atmosphere Research Satellite. A coordinate system rotation facilitates the efficient computation of Fourier transforms in the temporal and longitudinal domains. Fields such as ozone (O3), chlorine monoxide (ClO), temperature, and water vapor have been transformed by this process. The transforms have been inverted to provide maps of these quantities at selected times, providing a method of accurate time interpolation. Maps obtained by this process show evidence of both horizontal and vertical transport of important trace species such as O3 and ClO. An examination of the polar regions indicates that large-scale planetary variations are likely to play a significant role in transporting midstratospheric O3 into the polar regions. There is also evidence that downward transport occurs, providing a means of moving O3 into the polar vortex at lower altitudes. The transforms themselves show the structure and propagation characteristics of wave variations.

  16. Fourier transform spectrometry for fiber-optic sensor systems

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Tuma, Margaret L.; Sotomayor, Jorge L.; Flatico, Joseph M.

    1993-01-01

    An integrated-optic Mach-Zehnder interferometer is used as a Fourier transform spectrometer to analyze the input and output spectra of a temperature-sensing thin-film etalon. This type of spectrometer has an advantage over conventional grating spectrometers because it is better suited for use with time-division-multiplexed sensor networks. In addition, this spectrometer has the potential for low cost due to its use of a component that could be manufactured in large quantities for the optical communications industry.

  17. An optical Fourier transform coprocessor with direct phase determination.

    PubMed

    Macfaden, Alexander J; Gordon, George S D; Wilkinson, Timothy D

    2017-10-20

    The Fourier transform is a ubiquitous mathematical operation which arises naturally in optics. We propose and demonstrate a practical method to optically evaluate a complex-to-complex discrete Fourier transform. By implementing the Fourier transform optically we can overcome the limiting O(nlogn) complexity of fast Fourier transform algorithms. Efficiently extracting the phase from the well-known optical Fourier transform is challenging. By appropriately decomposing the input and exploiting symmetries of the Fourier transform we are able to determine the phase directly from straightforward intensity measurements, creating an optical Fourier transform with O(n) apparent complexity. Performing larger optical Fourier transforms requires higher resolution spatial light modulators, but the execution time remains unchanged. This method could unlock the potential of the optical Fourier transform to permit 2D complex-to-complex discrete Fourier transforms with a performance that is currently untenable, with applications across information processing and computational physics.

  18. Fourier Transform Spectroscopy of two trace gases namely Methane and Carbon monoxide for planetary and atmospheric research application

    NASA Astrophysics Data System (ADS)

    Hashemi, R.; Dudaryonok, A. S.; Lavrentieva, N. N.; Vandaele, A. C.; Vander Auwera, J.; Tyuterev, AV Nikitin G., VI; Sung, K.; Smith, M. A. H.; Devi, V. M.; Predoi-Cross, A.

    2017-02-01

    Two atmospheric trace gases, namely methane and carbon monoxide have been considered in this study. Fourier transform absorption spectra of the 2-0 band of 12C16O mixed with CO2 have been recorded at total pressures from 156 to 1212 hPa and at 4 different temperatures between 240 K and 283 K. CO2 pressure-induced line broadening and line shift coefficients, and the associated temperature dependence have been measured in an multi-spectrum non-linear least squares analysis using Voigt profiles with an asymmetric profile due to line mixing. The measured CO2-broadening and CO2-shift parameters were compared with theoretical values, calculated by collaborators. In addition, the CO2-broadening and shift coefficients have been calculated for individual temperatures using the Exponential Power Gap (EPG) semi-empirical method. We also discuss the retrieved line shape parameters for Methane transitions in the spectral range known as the Methane Octad. We used high resolution spectra of pure methane and of dilute mixtures of methane in dry air, recorded with high signal to noise ratio at temperatures between 148 K and room temperature using the Bruker IFS 125 HR Fourier transform spectrometer (FTS) at the Jet Propulsion Laboratory, Pasadena, California. Theoretical calculations for line parameters have been performed and the results are compared with the previously published values and with the line parameters available in the GEISA2015 [1] and HITRAN2012 [2] databases.

  19. Linearly exact parallel closures for slab geometry

    NASA Astrophysics Data System (ADS)

    Ji, Jeong-Young; Held, Eric D.; Jhang, Hogun

    2013-08-01

    Parallel closures are obtained by solving a linearized kinetic equation with a model collision operator using the Fourier transform method. The closures expressed in wave number space are exact for time-dependent linear problems to within the limits of the model collision operator. In the adiabatic, collisionless limit, an inverse Fourier transform is performed to obtain integral (nonlocal) parallel closures in real space; parallel heat flow and viscosity closures for density, temperature, and flow velocity equations replace Braginskii's parallel closure relations, and parallel flow velocity and heat flow closures for density and temperature equations replace Spitzer's parallel transport relations. It is verified that the closures reproduce the exact linear response function of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] for Landau damping given a temperature gradient. In contrast to their approximate closures where the vanishing viscosity coefficient numerically gives an exact response, our closures relate the heat flow and nonvanishing viscosity to temperature and flow velocity (gradients).

  20. Fourier transform spectrometer for spectral emissivity measurement in the temperature range between 60 and 1500°C

    NASA Astrophysics Data System (ADS)

    Dai, Jingmin; Wang, Xinbei; Yuan, Guibin

    2005-01-01

    A new spectral emissivity measurement system has been developed at Harbin Institute of Technology (HIT) by using a Fourier transform infrared (FTIR) spectrometer. The spectral range between 0.6 and 25 µm was covered by a photovoltaic HgCdTe and a silicon photodiode detector. A SiC heater with a black hole was employed for heating the sample. The temperature of the sample can be controlled in a range between 60 and 1500°C with an error of less than 1°C. The system was calibrated against two high quality reference blackbodies: a low temperature heat-pipe blackbody operated in the temperature range between 60°C and 300°C and a high temperature blackbody with SiC heater operated in the temperature range between 300°C and 1500°C. Several tests were done for this new system. The estimated uncertainty of emissivity measurement is better than 3%.

  1. Implementation of quantum and classical discrete fractional Fourier transforms.

    PubMed

    Weimann, Steffen; Perez-Leija, Armando; Lebugle, Maxime; Keil, Robert; Tichy, Malte; Gräfe, Markus; Heilmann, René; Nolte, Stefan; Moya-Cessa, Hector; Weihs, Gregor; Christodoulides, Demetrios N; Szameit, Alexander

    2016-03-23

    Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools.

  2. Implementation of quantum and classical discrete fractional Fourier transforms

    PubMed Central

    Weimann, Steffen; Perez-Leija, Armando; Lebugle, Maxime; Keil, Robert; Tichy, Malte; Gräfe, Markus; Heilmann, René; Nolte, Stefan; Moya-Cessa, Hector; Weihs, Gregor; Christodoulides, Demetrios N.; Szameit, Alexander

    2016-01-01

    Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools. PMID:27006089

  3. A Unified Method of Finding Laplace Transforms, Fourier Transforms, and Fourier Series. [and] An Inversion Method for Laplace Transforms, Fourier Transforms, and Fourier Series. Integral Transforms and Series Expansions. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Units 324 and 325.

    ERIC Educational Resources Information Center

    Grimm, C. A.

    This document contains two units that examine integral transforms and series expansions. In the first module, the user is expected to learn how to use the unified method presented to obtain Laplace transforms, Fourier transforms, complex Fourier series, real Fourier series, and half-range sine series for given piecewise continuous functions. In…

  4. Fourier transform infrared spectroscopy study on order-disorder transition in Langmuir-Blodgett films of 7-(2-octadecyloxycarbonylethyl)guanine before and after recognition to cytidine

    NASA Astrophysics Data System (ADS)

    Miao, Wangen; Luo, Xuzhong; Wu, Sanxie; Liang, Yingqiu

    2004-01-01

    Order-disorder transitions of 9-monolayer Langmuir-Blodgett (LB) films of 7-(2-octadecyloxycarbonylethyl)guanine (ODCG) before and after recognition to cytidine were investigated by Fourier transform infrared (FTIR) spectroscopy. The different order-disorder transitions suggest that molecular recognition between ODCG and cytidine influence these two LB films on the order-disorder process of alkyl tailchain. Cleavage of the multi-hydrogen bonds was also observed by the infrared spectroscopy at elevated temperature.

  5. Fourier transform infrared spectroscopy study on order-disorder transition in Langmuir-Blodgett films of 7-(2-octadecyloxycarbonylethyl)guanine before and after recognition to cytidine.

    PubMed

    Miao, Wangen; Luo, Xuzhong; Wu, Sanxie; Liang, Yingqiu

    2004-01-01

    Order-disorder transitions of 9-monolayer Langmuir-Blodgett (LB) films of 7-(2-octadecyloxycarbonylethyl)guanine (ODCG) before and after recognition to cytidine were investigated by Fourier transform infrared (FTIR) spectroscopy. The different order-disorder transitions suggest that molecular recognition between ODCG and cytidine influence these two LB films on the order-disorder process of alkyl tailchain. Cleavage of the multi-hydrogen bonds was also observed by the infrared spectroscopy at elevated temperature.

  6. A Fourier transform spectrometer for site testing at Dome A

    NASA Astrophysics Data System (ADS)

    Li, Xin-Xing; Paine, Scott; Yao, Qi-Jun; Shi, Sheng-Cai; Matsuo, Hiroshi; Yang, Ji; Zhang, Qi-Zhou

    2009-07-01

    Observations in tera-hertz astronomy can only be done at a site with good atmospheric transmission at millimeter and submillimeter wavelengths. With extremely dry weather and calm atmosphere resulted by high altitude and cold temperature, Dome A (or Dome Argus), Antarctica, is possibly the best site on this earth for THz astronomy. To evaluate the site condition there, we are constructing a Fourier Transform Spectrometer (FTS) based on Martin-Puplett interferometer to measure the atmospheric transmission in the frequency range of 0.75~15THz. The whole FTS system is designed for unattended and outdoor (temperatures even below -70 degrees Celsius) operation. Its total power consumption is estimated to be approximately 200W. This contribution will give a brief overview of this FTS development.

  7. Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear

    DOEpatents

    Westerfield, Curtis L.; Morris, John S.; Agnew, Stephen F.

    1997-01-01

    Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear. A cell is described which, in combination with Fourier transform IR spectroscopy, permits the spectroscopic investigation of boundary layers under conditions of high temperature, high pressure and shear.

  8. Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear

    DOEpatents

    Westerfield, C.L.; Morris, J.S.; Agnew, S.F.

    1997-01-14

    Diamond anvil cell is described for spectroscopic investigation of materials at high temperature, high pressure and shear. A cell is described which, in combination with Fourier transform IR spectroscopy, permits the spectroscopic investigation of boundary layers under conditions of high temperature, high pressure and shear. 4 figs.

  9. Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy

    DOE PAGES

    Paul, J.; Dey, P.; Tokumoto, T.; ...

    2014-10-07

    The dephasing of excitons in a modulation doped single quantum well was carefully measured using time integrated four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. These are the first 2DFT measurements performed on a modulation doped single quantum well. The inhomogeneous and homogeneous excitonic line widths were obtained from the diagonal and cross-diagonal profiles of the 2DFT spectra. The laser excitation density and temperature were varied and 2DFT spectra were collected. A very rapid increase of the dephasing decay, and as a result, an increase in the cross-diagonal 2DFT linewidths with temperature was observed. Furthermore, the lineshapes of themore » 2DFT spectra suggest the presence of excitation induced dephasing and excitation induced shift.« less

  10. Calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS)

    NASA Technical Reports Server (NTRS)

    Best, F. A.; Revercomb, H. E.; Bingham, G. E.; Knuteson, R. O.; Tobin, D. C.; LaPorte, D. D.; Smith, W. L.

    2001-01-01

    The NASA New Millennium Program's Geostationary Imaging Fourier Transform Spectrometer (GIFTS) requires highly accurate radiometric and spectral calibration in order to carry out its mission to provide water vapor, wind, temperature, and trace gas profiling from geostationary orbit. A calibration concept has been developed for the GIFTS Phase A instrument design. The in-flight calibration is performed using views of two on-board blackbody sources along with cold space. A radiometric calibration uncertainty analysis has been developed and used to show that the expected performance for GIFTS exceeds its top level requirement to measure brightness temperature to better than 1 K. For the Phase A GIFTS design, the spectral calibration is established by the highly stable diode laser used as the reference for interferogram sampling, and verified with comparisons to atmospheric calculations.

  11. Supercritical Fluid Chromatography/Fourier Transform Infrared Spectroscopy Of Food Components

    NASA Astrophysics Data System (ADS)

    Calvey, Elizabeth M.; Page, Samuel W.; Taylor, Larry T.

    1989-12-01

    Supercritical fluid (SF) technologies are being investigated extensively for applications in food processing. The number of SF-related patents issued testifies to the level of interest. Among the properties of materials at temperatures and pressures above their critical points (supercritical fluids) is density-dependent solvating power. Supercritical CO2 is of particular interest to the food industry because of its low critical temperature (31.3°C) and low toxicity. Many of the components in food matrices react or degrade at elevated temperatures and may be adversely affected by high temperature extractions. Likewise, these components may not be amenable to GC analyses. Our SF research has been in the development of methods employing supercritical fluid chromatography (SFC) and extraction (SFE) coupled to a Fourier transform infrared (FT-IR) spectrometer to investigate food composition. The effects of processing techniques on the isomeric fatty acid content of edible oils and the analysis of lipid oxidation products using SFC/FT-IR with a flow-cell interface are described.

  12. Far-infrared Fourier Transform Spectroscopy Measurements of Mn12-acetate.

    NASA Astrophysics Data System (ADS)

    Tu, Jiufeng; Suzuki, Yoko; Mertes, K. M.; Sarachik, M. P.; Agladze, N. I.; Sievers, A. J.; Rumberger, E. M.; Hendrickson, D. N.; Christou, G.

    2004-03-01

    The transmission spectra of both powder samples and assemblies of single crystals of Mn_12-acetate were measured in the far infrared region (2.0 - 20 cm-1) using a Fourier transform technique. The energies of the observed aborption lines agree with those obtained by Mukhin et al. [1] using the backwards wave oscillator technique. The temperature dependence of the aborption lines, as well as the presence of additional absorption lines, will be discussed. [1] A. A. Mukhin, V. D. Travkin, A. K. Zvesdin, A. Caneschi, D. Gatteschi and R. Sessoli, Physica B 284-288 (2000) 1221-1222

  13. A Short Biography of Joseph Fourier and Historical Development of Fourier Series and Fourier Transforms

    ERIC Educational Resources Information Center

    Debnath, Lokenath

    2012-01-01

    This article deals with a brief biographical sketch of Joseph Fourier, his first celebrated work on analytical theory of heat, his first great discovery of Fourier series and Fourier transforms. Included is a historical development of Fourier series and Fourier transforms with their properties, importance and applications. Special emphasis is made…

  14. Extracting Micro-Doppler Radar Signatures from Rotating Targets Using Fourier-Bessel Transform and Time-Frequency Analysis

    DTIC Science & Technology

    2014-10-16

    Time-Frequency analysis, Short-Time Fourier Transform, Wigner Ville Distribution, Fourier Bessel Transform, Fractional Fourier Transform. I...INTRODUCTION Most widely used time-frequency transforms are short-time Fourier Transform (STFT) and Wigner Ville distribution (WVD). In STFT, time and...frequency resolutions are limited by the size of window function used in calculating STFT. For mono-component signals, WVD gives the best time and frequency

  15. Fourier Transform Ultrasound Spectroscopy for the determination of wave propagation parameters.

    PubMed

    Pal, Barnana

    2017-01-01

    The reported results for ultrasonic wave attenuation constant (α) in pure water show noticeable inconsistency in magnitude. A "Propagating-Wave" model analysis of the most popular pulse-echo technique indicates that this is a consequence of the inherent wave propagation characteristics in a bounded medium. In the present work Fourier Transform Ultrasound Spectroscopy (FTUS) is adopted to determine ultrasonic wave propagation parameters, the wave number (k) and attenuation constant (α) at 1MHz frequency in tri-distilled water at room temperature (25°C). Pulse-echo signals obtained under same experimental conditions regarding the exciting input signal and reflecting boundary wall of the water container for various lengths of water columns are captured. The Fast Fourier Transform (FFT) components of the echo signals are taken to compute k, α and r, the reflection constant at the boundary, using Oak Ridge and Oxford method. The results are compared with existing literature values. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Temperature-dependent Study of Isobutanol Decomposition

    DTIC Science & Technology

    2012-11-01

    dimensional Al2O3 alumina CO2 carbon dioxide FTIR Fourier transform infrared Pd palladium Rh rhodium TPD temperature-programmed desorption TPO...that increasing temperature promotes aldehyde formation on the surface of each catalyst. In addition, it is shown that palladium (Pd) activates the...formation of aldehydes and CO2 at a lower temperature than a rhodium (Rh) catalyst. 15. SUBJECT TERMS Isobutanol, FTIR, spectroscopy 16. SECURITY

  17. The Fourier analysis of biological transients.

    PubMed

    Harris, C M

    1998-08-31

    With modern computing technology the digital implementation of the Fourier transform is widely available, mostly in the form of the fast Fourier transform (FFT). Although the FFT has become almost synonymous with the Fourier transform, it is a fast numerical technique for computing the discrete Fourier transform (DFT) of a finite sequence of sampled data. The DFT is not directly equivalent to the continuous Fourier transform of the underlying biological signal, which becomes important when analyzing biological transients. Although this distinction is well known by some, for many it leads to confusion in how to interpret the FFT of biological data, and in how to precondition data so as to yield a more accurate Fourier transform using the FFT. We review here the fundamentals of Fourier analysis with emphasis on the analysis of transient signals. As an example of a transient, we consider the human saccade to illustrate the pitfalls and advantages of various Fourier analyses.

  18. SIELETERS: A Static Fourier Transform Infrared Imaging Spectrometer for Airborne Hyperspectral Measurements

    DTIC Science & Technology

    2009-10-01

    cryostat and cooled at a temperature under 77K by a Stirling cryocooler , as represented on the following Figure 5 : Cryostat...Figure 5. Detector cryostat and cryocooler The read-out frequency of the detectors is adapted to the ground speed of the plane above...Cold shield Detector plane Cryocoole r Cryocoole r compresso r Fixed frame Roll frame Pitch frame Yaw frame SIELETERS: a Static Fourier

  19. Fourier transform magnitudes are unique pattern recognition templates.

    PubMed

    Gardenier, P H; McCallum, B C; Bates, R H

    1986-01-01

    Fourier transform magnitudes are commonly used in the generation of templates in pattern recognition applications. We report on recent advances in Fourier phase retrieval which are relevant to pattern recognition. We emphasise in particular that the intrinsic form of a finite, positive image is, in general, uniquely related to the magnitude of its Fourier transform. We state conditions under which the Fourier phase can be reconstructed from samples of the Fourier magnitude, and describe a method of achieving this. Computational examples of restoration of Fourier phase (and hence, by Fourier transformation, the intrinsic form of the image) from samples of the Fourier magnitude are also presented.

  20. The investigation of the effect of thermal treatment on bentonites from Turkey with Fourier transform infrared and solid state nuclear magnetic resonance spectroscopic methods.

    PubMed

    Erdoğan Alver, Burcu; Alver, Ozgür

    2012-08-01

    There is a great deal of interest in the building industry in burned clays for production of building materials. Therefore, the effect of heat treatment on natural bentonite from Turkey was investigated by Fourier transform infrared (FT-IR) between the region of 4000-400cm(-1) and (29)Si, (27)Al magic angle spinning nuclear magnetic resonance (MAS NMR) measurement techniques at various temperatures between 200 and 700°C for 2h. The structural changes were also investigated upon heat treatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Reducing aberration effect of Fourier transform lens by modifying Fourier spectrum of diffractive optical element in beam shaping optical system.

    PubMed

    Zhang, Fang; Zhu, Jing; Song, Qiang; Yue, Weirui; Liu, Jingdan; Wang, Jian; Situ, Guohai; Huang, Huijie

    2015-10-20

    In general, Fourier transform lenses are considered as ideal in the design algorithms of diffractive optical elements (DOEs). However, the inherent aberrations of a real Fourier transform lens disturb the far field pattern. The difference between the generated pattern and the expected design will impact the system performance. Therefore, a method for modifying the Fourier spectrum of DOEs without introducing other optical elements to reduce the aberration effect of the Fourier transform lens is proposed. By applying this method, beam shaping performance is improved markedly for the optical system with a real Fourier transform lens. The experiments carried out with a commercial Fourier transform lens give evidence for this method. The method is capable of reducing the system complexity as well as improving its performance.

  2. Reference Interferometer Using a Semiconductor Laser/LED Reference Source in a Cryogenic Fourier-Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Martino, Anthony J.; Cornwell, Donald M.

    1998-01-01

    A combination of a single mode AlGaAs laser diode and broadband LED was used in a Michelson interferometer to provide reference signals in a Fourier transform spectrometer, the Composite Infrared Spectrometer, on the Cassini mission to Saturn. The narrowband light from the laser produced continuous fringes throughout the travel of the interferometer, which were used to control the velocity of the scan mechanism and to trigger data sampling. The broadband light from the LED produced a burst of fringes at zero path difference, which was used as a fixed position reference. The system, including the sources, the interferometer, and the detectors, was designed to work both at room temperature and instrument operating temperature of 170 Kelvin. One major challenge that was overcome was preservation, from room temperature to 170 K, of alignment sufficient for high modulation of fringes from the broadband source. Another was the shift of the source spectra about 30 nm toward shorter wavelengths upon cooldown.

  3. Electronic part of the optical correlation function at finite temperature: the S-matrix expansion

    NASA Astrophysics Data System (ADS)

    Tavares, M.; Marques, G. E.; Tejedor, C.

    1998-12-01

    We present an extension to finite temperature of the Mahan-Nozières-De Dominicis framework to obtain the electronic part of the current-current correlation function. Its Fourier transform gives the absorption and emission spectra of doped low-dimensional semiconductors. We show the meaning of the new finite-temperature contributions characterizing the electronic part.

  4. Fractional finite Fourier transform.

    PubMed

    Khare, Kedar; George, Nicholas

    2004-07-01

    We show that a fractional version of the finite Fourier transform may be defined by using prolate spheroidal wave functions of order zero. The transform is linear and additive in its index and asymptotically goes over to Namias's definition of the fractional Fourier transform. As a special case of this definition, it is shown that the finite Fourier transform may be inverted by using information over a finite range of frequencies in Fourier space, the inversion being sensitive to noise. Numerical illustrations for both forward (fractional) and inverse finite transforms are provided.

  5. Kinetics of lisinopril intramolecular cyclization in solid phase monitored by Fourier transform infrared microscopy.

    PubMed

    Widjaja, Effendi; Tan, Wei Jian

    2008-08-01

    The solid-state intramolecular cyclization of lisinopril to diketopiperazine was investigated by in situ Fourier transform infrared (FT-IR) microscopy. Using a controllable heating cell, the isothermal transformation was monitored in situ at 147.5, 150, 152.5, 155, and 157.5 degrees C. The collected time-dependent FT-IR spectra at each isothermal temperature were preprocessed and analyzed using a multivariate chemometric approach. The pure component spectra of the observable component (lisinopril and diketopiperazine) were resolved and their time-dependent relative contributions were also determined. Model-free and various model fitting methods were implemented in the kinetic analysis to estimate the activation energy of the intramolecular cyclization reaction. Arrhenius plots indicate that the activation energy is circa 327 kJ/mol.

  6. Topics In Chemical Instrumentation: Fourier Transformations for Chemists Part I. Introduction to the Fourier Transform.

    ERIC Educational Resources Information Center

    Glasser, L.

    1987-01-01

    This paper explores how Fourier Transform (FT) mimics spectral transformation, how this property can be exploited to advantage in spectroscopy, and how the FT can be used in data treatment. A table displays a number of important FT serial/spectral pairs related by Fourier Transformations. A bibliography and listing of computer software related to…

  7. Computationally efficient method for Fourier transform of highly chirped pulses for laser and parametric amplifier modeling.

    PubMed

    Andrianov, Alexey; Szabo, Aron; Sergeev, Alexander; Kim, Arkady; Chvykov, Vladimir; Kalashnikov, Mikhail

    2016-11-14

    We developed an improved approach to calculate the Fourier transform of signals with arbitrary large quadratic phase which can be efficiently implemented in numerical simulations utilizing Fast Fourier transform. The proposed algorithm significantly reduces the computational cost of Fourier transform of a highly chirped and stretched pulse by splitting it into two separate transforms of almost transform limited pulses, thereby reducing the required grid size roughly by a factor of the pulse stretching. The application of our improved Fourier transform algorithm in the split-step method for numerical modeling of CPA and OPCPA shows excellent agreement with standard algorithms.

  8. Fourier transform spectroscopy for future planetary missions

    NASA Astrophysics Data System (ADS)

    Brasunas, John; Kolasinski, John; Kostiuk, Ted; Hewagama, Tilak

    2017-01-01

    Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system. Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, we have developed CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. We discuss the roadmap for making CIRS-lite a viable candidate for future planetary missions, including the recent increased emphasis on ocean worlds (Europa, Encelatus, Titan) and also on smaller payloads such as CubeSats and SmallSats.

  9. Thermal behavior of silicone rubber-based ceramizable composites characterized by Fourier transform infrared (FT-IR) spectroscopy and microcalorimetry.

    PubMed

    Anyszka, Rafał; Bieliński, Dariusz M; Jędrzejczyk, Marcin

    2013-12-01

    Ceramizable (ceramifiable) silicone rubber-based composites are commonly used for cable insulation. These materials are able to create a protective ceramic layer during fire due to the ceramization process, which occurs at high temperature. When the temperature is increased, the polymer matrix is degraded and filler particles stick together by the fluxing agent, producing a solid, continuous ceramic phase that protects the copper wire from heat and mechanical stress. Despite increasing interest in these materials that has resulted in growing applications in the cable industry, their thermal behavior and ceramization process are still insufficiently described in the literature. In this paper, the thermal behavior of ceramizable silicone rubber-based composites is studied using microcalorimetry and Fourier transform infrared spectroscopy. The analysis of the experimental data made it possible to develop complete information on the mechanism of composite ceramization.

  10. Structural and magnetic properties of nanocrystalline NiFe2O4 thin film prepared by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Chavan, Apparao R.; Chilwar, R. R.; Shisode, M. V.; Hivrekar, Mahesh M.; Mande, V. K.; Jadhav, K. M.

    2018-05-01

    The nanocrystalline NiFe2O4 thin film has been prepared using a spray pyrolysis technique on glass substrate. The prepared thin film was characterized by using X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR), and Field Emission-Scanning Electron Microscopy (FE-SEM) characterization techniques for the structural and microstructural analysis. The magnetic property was measured using vibrating sample magnetometer (VSM) at room temperature. X-ray diffraction studies show the formation of single phase spinel structure of the thin film. The octahedral and tetrahedral vibration in the sample was studied by Fourier transform infrared (FT-IR) spectra. Magnetic hysteresis loop was recorded for thin film at room temperature. At 15 kOe, saturation magnetization (Ms) was found to increase while coercivity (Hc) decreases with thickness of the NiFe2O4 thin film.

  11. Laser Mode Behavior of the Cassini CIRS Fourier Transform Spectrometer at Saturn

    NASA Technical Reports Server (NTRS)

    Brasunas, John C.

    2012-01-01

    The CIRS Fourier transform spectrometer aboard the NASA/ESA/ASI Cassini orbiter has been acquiring spectra of the Saturnian system since 2004. The CIRS reference interferometer employs a laser diode to trigger the interferogram sampling. Although the control of laser diode drive current and operating temperature are stringent enough to restrict laser wavelength variation to a small fraction of CIRS finest resolution element, the CIRS instrument does need to be restarted every year or two, at which time it may start in a new laser mode. By monitoring the Mylar absorption features in uncalibrated spectra due to the beam splitter Mylar substrate, it can be shown that these jumps are to adjacent modes and that most of the eight-year operation so far is restricted to three adjacent modes. For a given mode, the wavelength stability appears consistent with the stability of the laser diode drive curren.t and operating temperature.

  12. Preparation and characterization of novel carbon dioxide adsorbents based on polyethylenimine-modified Halloysite nanotubes.

    PubMed

    Cai, Haohao; Bao, Feng; Gao, Jie; Chen, Tao; Wang, Si; Ma, Rui

    2015-01-01

    New nano-sized carbon dioxide (CO2) adsorbents based on Halloysite nanotubes impregnated with polyethylenimine (PEI) were designed and synthesized, which were excellent adsorbents for the capture of CO2 at room temperature and had relatively high CO2 adsorption capacity. The prepared adsorbents were characterized by various techniques such as Fourier transform infrared spectrometry, gel permeation chromatography, dynamic light scattering, thermogravimetry, thermogravimetry-Fourier transform-infrared spectrometry, scanning electron microscopy and transmission electron microscopy. The adsorption characteristics and capacity were studied at room temperature, the highest CO2 adsorption capacity of 156.6 mg/g-PEI was obtained and the optimal adsorption capacity can reach a maximum value of 54.8 mg/g-adsorbent. The experiment indicated that this kind of adsorbent has a high stability at 80°C and PEI-impregnated adsorbents showed good reversibility and stability during cyclic adsorption-regeneration tests.

  13. Effects of two-temperature parameter and thermal nonlocal parameter on transient responses of a half-space subjected to ramp-type heating

    NASA Astrophysics Data System (ADS)

    Xue, Zhang-Na; Yu, Ya-Jun; Tian, Xiao-Geng

    2017-07-01

    Based upon the coupled thermoelasticity and Green and Lindsay theory, the new governing equations of two-temperature thermoelastic theory with thermal nonlocal parameter is formulated. To more realistically model thermal loading of a half-space surface, a linear temperature ramping function is adopted. Laplace transform techniques are used to get the general analytical solutions in Laplace domain, and the inverse Laplace transforms based on Fourier expansion techniques are numerically implemented to obtain the numerical solutions in time domain. Specific attention is paid to study the effect of thermal nonlocal parameter, ramping time, and two-temperature parameter on the distributions of temperature, displacement and stress distribution.

  14. Homotopic solutions for unsteady second grade liquid utilizing non-Fourier double diffusion concept

    NASA Astrophysics Data System (ADS)

    Sohail, A.; Khan, W. A.; Khan, M.; Shah, S. I. A.

    Main purpose of the current work is to investigate the features of unsteady Cattaneo-Christov heat and mass flux models on the second grade fluid over a stretching surface. The characteristics of unsteady Cattaneo-Christov heat and mass flux models are incorporated in the energy and concentration equations. The unsteady Cattaneo-Christov heat and mass flux models are the generalization of Fourier's and Fick's laws in which the time space upper-convected derivative are utilized to describe the heat conduction and mass diffusion phenomena. The suitable transformations are used to alter the governing partial differential equations into the ordinary differential equations. The resulting problem under consideration is solved analytically by using the homotopy analysis method (HAM). The effect of non-dimensional pertinent parameters on the temperature and concentration distribution are deliberated by using graphs and tables. Results show that the temperature and concentration profiles diminish for augmented values of the thermal and concentration relaxation parameters. Additionally, it is perceived that the temperature and concentration profiles are higher in case of classical Fourier's and Fick's laws as compared to non-Fourier's and non-Fick's laws.

  15. The fractional Fourier transform and applications

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Swarztrauber, Paul N.

    1991-01-01

    This paper describes the 'fractional Fourier transform', which admits computation by an algorithm that has complexity proportional to the fast Fourier transform algorithm. Whereas the discrete Fourier transform (DFT) is based on integral roots of unity e exp -2(pi)i/n, the fractional Fourier transform is based on fractional roots of unity e exp -2(pi)i(alpha), where alpha is arbitrary. The fractional Fourier transform and the corresponding fast algorithm are useful for such applications as computing DFTs of sequences with prime lengths, computing DFTs of sparse sequences, analyzing sequences with noninteger periodicities, performing high-resolution trigonometric interpolation, detecting lines in noisy images, and detecting signals with linearly drifting frequencies. In many cases, the resulting algorithms are faster by arbitrarily large factors than conventional techniques.

  16. The τq-Fourier transform: Covariance and uniqueness

    NASA Astrophysics Data System (ADS)

    Kalogeropoulos, Nikolaos

    2018-05-01

    We propose an alternative definition for a Tsallis entropy composition-inspired Fourier transform, which we call “τq-Fourier transform”. We comment about the underlying “covariance” on the set of algebraic fields that motivates its introduction. We see that the definition of the τq-Fourier transform is automatically invertible in the proper context. Based on recent results in Fourier analysis, it turns that the τq-Fourier transform is essentially unique under the assumption of the exchange of the point-wise product of functions with their convolution.

  17. Hypercomplex Fourier transforms of color images.

    PubMed

    Ell, Todd A; Sangwine, Stephen J

    2007-01-01

    Fourier transforms are a fundamental tool in signal and image processing, yet, until recently, there was no definition of a Fourier transform applicable to color images in a holistic manner. In this paper, hypercomplex numbers, specifically quaternions, are used to define a Fourier transform applicable to color images. The properties of the transform are developed, and it is shown that the transform may be computed using two standard complex fast Fourier transforms. The resulting spectrum is explained in terms of familiar phase and modulus concepts, and a new concept of hypercomplex axis. A method for visualizing the spectrum using color graphics is also presented. Finally, a convolution operational formula in the spectral domain is discussed.

  18. Transformed Fourier and Fick equations for the control of heat and mass diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guenneau, S.; Petiteau, D.; Zerrad, M.

    We review recent advances in the control of diffusion processes in thermodynamics and life sciences through geometric transforms in the Fourier and Fick equations, which govern heat and mass diffusion, respectively. We propose to further encompass transport properties in the transformed equations, whereby the temperature is governed by a three-dimensional, time-dependent, anisotropic heterogeneous convection-diffusion equation, which is a parabolic partial differential equation combining the diffusion equation and the advection equation. We perform two dimensional finite element computations for cloaks, concentrators and rotators of a complex shape in the transient regime. We precise that in contrast to invisibility cloaks for waves,more » the temperature (or mass concentration) inside a diffusion cloak crucially depends upon time, its distance from the source, and the diffusivity of the invisibility region. However, heat (or mass) diffusion outside cloaks, concentrators and rotators is unaffected by their presence, whatever their shape or position. Finally, we propose simplified designs of layered cylindrical and spherical diffusion cloaks that might foster experimental efforts in thermal and biochemical metamaterials.« less

  19. Causal Correlation Functions and Fourier Transforms: Application in Calculating Pressure Induced Shifts

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.

    2012-01-01

    By adopting a concept from signal processing, instead of starting from the correlation functions which are even, one considers the causal correlation functions whose Fourier transforms become complex. Their real and imaginary parts multiplied by 2 are the Fourier transforms of the original correlations and the subsequent Hilbert transforms, respectively. Thus, by taking this step one can complete the two previously needed transforms. However, to obviate performing the Cauchy principal integrations required in the Hilbert transforms is the greatest advantage. Meanwhile, because the causal correlations are well-bounded within the time domain and band limited in the frequency domain, one can replace their Fourier transforms by the discrete Fourier transforms and the latter can be carried out with the FFT algorithm. This replacement is justified by sampling theory because the Fourier transforms can be derived from the discrete Fourier transforms with the Nyquis rate without any distortions. We apply this method in calculating pressure induced shifts of H2O lines and obtain more reliable values. By comparing the calculated shifts with those in HITRAN 2008 and by screening both of them with the pair identity and the smooth variation rules, one can conclude many of shift values in HITRAN are not correct.

  20. PASSIVELY ESTIMATING INDEX OF REFRACTION FOR SPECULAR REFLECTORS USING POLARIMETRIC HYPERSPECTRAL IMAGING

    DTIC Science & Technology

    2016-12-22

    23 6 Band-averaged radiance image with checkerboard is shown in the upper left. The 2-D Fourier transform of the image is...red is 1) that is multiplied by the Fourier transform of the original image. The inverse Fourier transform is then taken to get the final image with...Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 IFTS Imaging Fourier Transform Spectrometer

  1. Gas Measurement Using Static Fourier Transform Infrared Spectrometers.

    PubMed

    Köhler, Michael H; Schardt, Michael; Rauscher, Markus S; Koch, Alexander W

    2017-11-13

    Online monitoring of gases in industrial processes is an ambitious task due to adverse conditions such as mechanical vibrations and temperature fluctuations. Whereas conventional Fourier transform infrared (FTIR) spectrometers use rather complex optical and mechanical designs to ensure stable operation, static FTIR spectrometers do not require moving parts and thus offer inherent stability at comparatively low costs. Therefore, we present a novel, compact gas measurement system using a static single-mirror Fourier transform spectrometer (sSMFTS). The system works in the mid-infrared range from 650 cm - 1 to 1250 cm - 1 and can be operated with a customized White cell, yielding optical path lengths of up to 120 cm for highly sensitive quantification of gas concentrations. To validate the system, we measure different concentrations of 1,1,1,2-Tetrafluoroethane (R134a) and perform a PLS regression analysis of the acquired infrared spectra. Thereby, the measured absorption spectra show good agreement with reference data. Since the system additionally permits measurement rates of up to 200 Hz and high signal-to-noise ratios, an application in process analysis appears promising.

  2. Gas Measurement Using Static Fourier Transform Infrared Spectrometers

    PubMed Central

    Schardt, Michael; Rauscher, Markus S.; Koch, Alexander W.

    2017-01-01

    Online monitoring of gases in industrial processes is an ambitious task due to adverse conditions such as mechanical vibrations and temperature fluctuations. Whereas conventional Fourier transform infrared (FTIR) spectrometers use rather complex optical and mechanical designs to ensure stable operation, static FTIR spectrometers do not require moving parts and thus offer inherent stability at comparatively low costs. Therefore, we present a novel, compact gas measurement system using a static single-mirror Fourier transform spectrometer (sSMFTS). The system works in the mid-infrared range from 650 cm−1 to 1250 cm−1 and can be operated with a customized White cell, yielding optical path lengths of up to 120 cm for highly sensitive quantification of gas concentrations. To validate the system, we measure different concentrations of 1,1,1,2-Tetrafluoroethane (R134a) and perform a PLS regression analysis of the acquired infrared spectra. Thereby, the measured absorption spectra show good agreement with reference data. Since the system additionally permits measurement rates of up to 200 Hz and high signal-to-noise ratios, an application in process analysis appears promising. PMID:29137193

  3. Hilbert-Huang Transform: A Spectral Analysis Tool Applied to Sunspot Number and Total Solar Irradiance Variations, as well as Near-Surface Atmospheric Variables

    NASA Astrophysics Data System (ADS)

    Barnhart, B. L.; Eichinger, W. E.; Prueger, J. H.

    2010-12-01

    Hilbert-Huang transform (HHT) is a relatively new data analysis tool which is used to analyze nonstationary and nonlinear time series data. It consists of an algorithm, called empirical mode decomposition (EMD), which extracts the cyclic components embedded within time series data, as well as Hilbert spectral analysis (HSA) which displays the time and frequency dependent energy contributions from each component in the form of a spectrogram. The method can be considered a generalized form of Fourier analysis which can describe the intrinsic cycles of data with basis functions whose amplitudes and phases may vary with time. The HHT will be introduced and compared to current spectral analysis tools such as Fourier analysis, short-time Fourier analysis, wavelet analysis and Wigner-Ville distributions. A number of applications are also presented which demonstrate the strengths and limitations of the tool, including analyzing sunspot number variability and total solar irradiance proxies as well as global averaged temperature and carbon dioxide concentration. Also, near-surface atmospheric quantities such as temperature and wind velocity are analyzed to demonstrate the nonstationarity of the atmosphere.

  4. A method of power analysis based on piecewise discrete Fourier transform

    NASA Astrophysics Data System (ADS)

    Xin, Miaomiao; Zhang, Yanchi; Xie, Da

    2018-04-01

    The paper analyzes the existing feature extraction methods. The characteristics of discrete Fourier transform and piecewise aggregation approximation are analyzed. Combining with the advantages of the two methods, a new piecewise discrete Fourier transform is proposed. And the method is used to analyze the lighting power of a large customer in this paper. The time series feature maps of four different cases are compared with the original data, discrete Fourier transform, piecewise aggregation approximation and piecewise discrete Fourier transform. This new method can reflect both the overall trend of electricity change and its internal changes in electrical analysis.

  5. Fourier Transforms Simplified: Computing an Infrared Spectrum from an Interferogram

    ERIC Educational Resources Information Center

    Hanley, Quentin S.

    2012-01-01

    Fourier transforms are used widely in chemistry and allied sciences. Examples include infrared, nuclear magnetic resonance, and mass spectroscopies. A thorough understanding of Fourier methods assists the understanding of microscopy, X-ray diffraction, and diffraction gratings. The theory of Fourier transforms has been presented in this "Journal",…

  6. Anaerobic digestion of solid slaughterhouse waste: study of biological stabilization by Fourier Transform infrared spectroscopy and thermogravimetry combined with mass spectrometry.

    PubMed

    Cuetos, María José; Gómez, Xiomar; Otero, Marta; Morán, Antonio

    2010-07-01

    In this paper, Fourier Transform infrared spectroscopy (FTIR) along with thermogravimetric analysis together with mass spectrometry (TG-MS analysis) were employed to study the organic matter transformation attained under anaerobic digestion of slaughterhouse waste and to establish the stability of the digestates obtained when compared with fresh wastes. Digestate samples studied were obtained from successful digestion and failed systems treating slaughterhouse waste and the organic fraction of municipal solid wastes. The FTIR spectra and TG profiles from well stabilized products (from successful digestion systems) showed an increase in the aromaticity degree and the reduction of volatile content and aliphatic structures as stabilization proceeded. On the other hand, the FTIR spectra of non-stable reactors showed a high aliphaticity degree and fat content. When comparing differential thermogravimetry (DTG) profiles of the feed and digestate samples obtained from all successful anaerobic systems, a reduction in the intensity of the low-temperature range (approximately 300 degrees C) peak was observed, while the weight loss experienced at high-temperature (450-550 degrees C) was variable for the different systems. Compared to the original waste, the intensity of the weight loss peak in the high-temperature range decreased in the reactors with higher hydraulic retention time (HRT) whereas its intensity increased and the peak was displaced to higher temperatures for the digesters with lower HRT.

  7. A fast algorithm for vertex-frequency representations of signals on graphs

    PubMed Central

    Jestrović, Iva; Coyle, James L.; Sejdić, Ervin

    2016-01-01

    The windowed Fourier transform (short time Fourier transform) and the S-transform are widely used signal processing tools for extracting frequency information from non-stationary signals. Previously, the windowed Fourier transform had been adopted for signals on graphs and has been shown to be very useful for extracting vertex-frequency information from graphs. However, high computational complexity makes these algorithms impractical. We sought to develop a fast windowed graph Fourier transform and a fast graph S-transform requiring significantly shorter computation time. The proposed schemes have been tested with synthetic test graph signals and real graph signals derived from electroencephalography recordings made during swallowing. The results showed that the proposed schemes provide significantly lower computation time in comparison with the standard windowed graph Fourier transform and the fast graph S-transform. Also, the results showed that noise has no effect on the results of the algorithm for the fast windowed graph Fourier transform or on the graph S-transform. Finally, we showed that graphs can be reconstructed from the vertex-frequency representations obtained with the proposed algorithms. PMID:28479645

  8. Missing texture reconstruction method based on error reduction algorithm using Fourier transform magnitude estimation scheme.

    PubMed

    Ogawa, Takahiro; Haseyama, Miki

    2013-03-01

    A missing texture reconstruction method based on an error reduction (ER) algorithm, including a novel estimation scheme of Fourier transform magnitudes is presented in this brief. In our method, Fourier transform magnitude is estimated for a target patch including missing areas, and the missing intensities are estimated by retrieving its phase based on the ER algorithm. Specifically, by monitoring errors converged in the ER algorithm, known patches whose Fourier transform magnitudes are similar to that of the target patch are selected from the target image. In the second approach, the Fourier transform magnitude of the target patch is estimated from those of the selected known patches and their corresponding errors. Consequently, by using the ER algorithm, we can estimate both the Fourier transform magnitudes and phases to reconstruct the missing areas.

  9. The Fourier transforms for the spatially homogeneous Boltzmann equation and Landau equation

    NASA Astrophysics Data System (ADS)

    Meng, Fei; Liu, Fang

    2018-03-01

    In this paper, we study the Fourier transforms for two equations arising in the kinetic theory. The first equation is the spatially homogeneous Boltzmann equation. The Fourier transform of the spatially homogeneous Boltzmann equation has been first addressed by Bobylev (Sov Sci Rev C Math Phys 7:111-233, 1988) in the Maxwellian case. Alexandre et al. (Arch Ration Mech Anal 152(4):327-355, 2000) investigated the Fourier transform of the gain operator for the Boltzmann operator in the cut-off case. Recently, the Fourier transform of the Boltzmann equation is extended to hard or soft potential with cut-off by Kirsch and Rjasanow (J Stat Phys 129:483-492, 2007). We shall first establish the relation between the results in Alexandre et al. (2000) and Kirsch and Rjasanow (2007) for the Fourier transform of the Boltzmann operator in the cut-off case. Then we give the Fourier transform of the spatially homogeneous Boltzmann equation in the non cut-off case. It is shown that our results cover previous works (Bobylev 1988; Kirsch and Rjasanow 2007). The second equation is the spatially homogeneous Landau equation, which can be obtained as a limit of the Boltzmann equation when grazing collisions prevail. Following the method in Kirsch and Rjasanow (2007), we can also derive the Fourier transform for Landau equation.

  10. Hydrogen and Nitrogen Broadened Ethane and Propane Absorption Cross Sections

    NASA Astrophysics Data System (ADS)

    Hargreaves, Robert J.; Appadoo, Dominique; Billinghurst, Brant E.; Bernath, Peter F.

    2015-06-01

    High-resolution infrared absorption cross sections are presented for the ν9 band of ethane (C2H6) at 823 cm-1. These cross sections make use of spectra recorded at the Australian Synchrotron using a Fourier transform infrared spectrometer with maximum resolution of 0.00096 cm-1. The spectra have been recorded at 150, 120 and 90 K for hydrogen and nitrogen broadened C2H6. They cover appropriate temperatures, pressures and broadening gases associated with the atmospheres of the Outer Planets and Titan, and will improve atmospheric retrievals. The THz/Far-IR beamline at the Australian Synchrotron is unique in combining a high-resolution Fourier transform spectrometer with an 'enclosive flow cooling' (EFC) cell designed to study molecules at low temperatures. The EFC cell is advantageous at temperatures for which the vapor pressure is very low, such as C2H6 at 90 K. Hydrogen broadened absorption cross sections of propane between 700 and 1200 cm-1 will also be presented based on spectra obtained at the Canadian Light Source.

  11. Precise and fast spatial-frequency analysis using the iterative local Fourier transform.

    PubMed

    Lee, Sukmock; Choi, Heejoo; Kim, Dae Wook

    2016-09-19

    The use of the discrete Fourier transform has decreased since the introduction of the fast Fourier transform (fFT), which is a numerically efficient computing process. This paper presents the iterative local Fourier transform (ilFT), a set of new processing algorithms that iteratively apply the discrete Fourier transform within a local and optimal frequency domain. The new technique achieves 210 times higher frequency resolution than the fFT within a comparable computation time. The method's superb computing efficiency, high resolution, spectrum zoom-in capability, and overall performance are evaluated and compared to other advanced high-resolution Fourier transform techniques, such as the fFT combined with several fitting methods. The effectiveness of the ilFT is demonstrated through the data analysis of a set of Talbot self-images (1280 × 1024 pixels) obtained with an experimental setup using grating in a diverging beam produced by a coherent point source.

  12. HIGH-RESOLUTION FOURIER TRANSFORM INFRARED SPECTRUM OF THE ν2 + ν12 BAND OF ETHYLENE (12C2H4)

    NASA Astrophysics Data System (ADS)

    Lebron, G. B.; Tan, T. L.

    2013-09-01

    The high-resolution Fourier transform infrared absorption spectrum of the ν2 + ν12 combination band of normal ethylene (12C2H4) in the 3050-3105 cm-1 region was recorded at a resolution of 0.0063 cm-1 and at an ambient temperature of 296 K. Upper state rovibrational analysis was carried out using a standard Watson's Hamiltonian in asymmetric reduction in Ir representation. The band center, rotational constants and centrifugal distortion constants up to quartic terms of the upper ν2 + ν12 = 1 state were determined from the final fit that included 102 infrared transitions. The root-mean-square deviation of the fit was 0.000729 cm-1.

  13. Development of a parallel demodulation system used for extrinsic Fabry-Perot interferometer and fiber Bragg grating sensors.

    PubMed

    Jiang, Junfeng; Liu, Tiegen; Zhang, Yimo; Liu, Lina; Zha, Ying; Zhang, Fan; Wang, Yunxin; Long, Pin

    2006-01-20

    A parallel demodulation system for extrinsic Fabry-Perot interferometer (EFPI) and fiber Bragg grating (FBG) sensors is presented, which is based on a Michelson interferometer and combines the methods of low-coherence interference and a Fourier-transform spectrum. The parallel demodulation theory is modeled with Fourier-transform spectrum technology, and a signal separation method with an EFPI and FBG is proposed. The design of an optical path difference scanning and sampling method without a reference light is described. Experiments show that the parallel demodulation system has good spectrum demodulation and low-coherence interference demodulation performance. It can realize simultaneous strain and temperature measurements while keeping the whole system configuration less complex.

  14. Solar radiometry at millimeter wavelengths. [Fast Fourier Transformation solutions

    NASA Technical Reports Server (NTRS)

    Henze, W.

    1974-01-01

    In the area of resolution enhancement, the use of Fast Fourier Transform programs was investigated for possible application to millimeter wavelength maps of the sun. A difficulty arises with the La Posta maps in that they are limited to 35 arc-minutes square while the smeared out solar image is larger than that. A list of possible cometary emission lines near 13 millimeters is presented. Although preparation of the list was inspired by the appearance of Comet Kohoutek, the results are applicable to any future comet. The brightness temperature of the sun at 8.6 millimeters was measured using the moon as a calibration source. The result does not confirm a deep absorption feature as apparently observed by earlier workers.

  15. Properties of the Magnitude Terms of Orthogonal Scaling Functions.

    PubMed

    Tay, Peter C; Havlicek, Joseph P; Acton, Scott T; Hossack, John A

    2010-09-01

    The spectrum of the convolution of two continuous functions can be determined as the continuous Fourier transform of the cross-correlation function. The same can be said about the spectrum of the convolution of two infinite discrete sequences, which can be determined as the discrete time Fourier transform of the cross-correlation function of the two sequences. In current digital signal processing, the spectrum of the contiuous Fourier transform and the discrete time Fourier transform are approximately determined by numerical integration or by densely taking the discrete Fourier transform. It has been shown that all three transforms share many analogous properties. In this paper we will show another useful property of determining the spectrum terms of the convolution of two finite length sequences by determining the discrete Fourier transform of the modified cross-correlation function. In addition, two properties of the magnitude terms of orthogonal wavelet scaling functions are developed. These properties are used as constraints for an exhaustive search to determine an robust lower bound on conjoint localization of orthogonal scaling functions.

  16. The effective temperature of Peptide ions dissociated by sustained off-resonance irradiation collisional activation in fourier transform mass spectrometry.

    PubMed

    Schnier, P D; Jurchen, J C; Williams, E R

    1999-01-28

    A method for determining the internal energy of biomolecule ions activated by collisions is demonstrated. The dissociation kinetics of protonated leucine enkephalin and doubly protonated bradykinin were measured using sustained off-resonance irradiation (SORI) collisionally activated dissociation (CAD) in a Fourier transform mass spectrometer. Dissociation rate constants are obtained from these kinetic data. In combination with Arrhenius parameters measured with blackbody infrared radiative dissociation, the "effective" temperatures of these ions are obtained. Effects of excitation voltage and frequency and the ion cell pressure were investigated. With typical SORI-CAD experimental conditions, the effective temperatures of these peptide ions range between 200 and 400 degrees C. Higher temperatures can be easily obtained for ions that require more internal energy to dissociate. The effective temperatures of both protonated leucine enkephalin and doubly protonated bradykinin measured with the same experimental conditions are similar. Effective temperatures for protonated leucine enkephalin can also be obtained from the branching ratio of the b(4) and (M + H - H(2)O)(+) pathways. Values obtained from this method are in good agreement with those obtained from the overall dissociation rate constants. Protonated leucine enkephalin is an excellent "thermometer" ion and should be well suited to establishing effective temperatures of ions activated by other dissociation techniques, such as infrared photodissociation, as well as ionization methods, such as matrix assisted laser desorption/ionization.

  17. The Effective Temperature of Peptide Ions Dissociated by Sustained Off-Resonance Irradiation Collisional Activation in Fourier Transform Mass Spectrometry

    PubMed Central

    Schnier, Paul D.; Jurchen, John C.; Williams, Evan R.

    2005-01-01

    A method for determining the internal energy of biomolecule ions activated by collisions is demonstrated. The dissociation kinetics of protonated leucine enkephalin and doubly protonated bradykinin were measured using sustained off-resonance irradiation (SORI) collisionally activated dissociation (CAD) in a Fourier transform mass spectrometer. Dissociation rate constants are obtained from these kinetic data. In combination with Arrhenius parameters measured with blackbody infrared radiative dissociation, the “effective” temperatures of these ions are obtained. Effects of excitation voltage and frequency and the ion cell pressure were investigated. With typical SORI–CAD experimental conditions, the effective temperatures of these peptide ions range between 200 and 400 °C. Higher temperatures can be easily obtained for ions that require more internal energy to dissociate. The effective temperatures of both protonated leucine enkephalin and doubly protonated bradykinin measured with the same experimental conditions are similar. Effective temperatures for protonated leucine enkephalin can also be obtained from the branching ratio of the b4 and (M + H − H2O)+ pathways. Values obtained from this method are in good agreement with those obtained from the overall dissociation rate constants. Protonated leucine enkephalin is an excellent “thermometer” ion and should be well suited to establishing effective temperatures of ions activated by other dissociation techniques, such as infrared photodissociation, as well as ionization methods, such as matrix assisted laser desorption/ionization. PMID:16614752

  18. [Study on Differential Optical Absorption Spectroscopy Data Processing Based on Chirp-Z Transformation].

    PubMed

    Zheng, Hai-ming; Li, Guang-jie; Wu, Hao

    2015-06-01

    Differential optical absorption spectroscopy (DOAS) is a commonly used atmospheric pollution monitoring method. Denoising of monitoring spectral data will improve the inversion accuracy. Fourier transform filtering method is effectively capable of filtering out the noise in the spectral data. But the algorithm itself can introduce errors. In this paper, a chirp-z transform method is put forward. By means of the local thinning of Fourier transform spectrum, it can retain the denoising effect of Fourier transform and compensate the error of the algorithm, which will further improve the inversion accuracy. The paper study on the concentration retrieving of SO2 and NO2. The results show that simple division causes bigger error and is not very stable. Chirp-z transform is proved to be more accurate than Fourier transform. Results of the frequency spectrum analysis show that Fourier transform cannot solve the distortion and weakening problems of characteristic absorption spectrum. Chirp-z transform shows ability in fine refactoring of specific frequency spectrum.

  19. Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry

    NASA Astrophysics Data System (ADS)

    Özgenç, Özlem; Durmaz, Sefa; Boyaci, Ismail Hakki; Eksi-Kocak, Haslet

    2017-01-01

    In this study, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and Fourier-transform Raman (FT-Raman) spectroscopy techniques were used to determine changes in the chemical structure of heat-treated woods. For this purpose, scots pine (Pinus sylvestris L.), oriental beech (Fagus orientalis L.), and oriental spruce (Picea orientalis L.) wood species were heat-treated at different temperatures. The effect of chemical changes on the FT-Raman and ATR-FTIR bands or ratios of heat-treated wood was related with the OH association of cellulose, functional groups, and the aromatic system of lignin. The effects of heat treatment on the carbohydrate and lignin peaks varied depending on the wood species. The spectral changes that occurred after heat treatment reflected the progress of the condensation reaction of lignin. Degradation of hemicelluloses led to a decrease in free hydroxyl groups. High temperature caused crystalline cellulose to increase due to the degradation of amorphous cellulose.

  20. Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry.

    PubMed

    Özgenç, Özlem; Durmaz, Sefa; Boyaci, Ismail Hakki; Eksi-Kocak, Haslet

    2017-01-15

    In this study, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and Fourier-transform Raman (FT-Raman) spectroscopy techniques were used to determine changes in the chemical structure of heat-treated woods. For this purpose, scots pine (Pinus sylvestris L.), oriental beech (Fagus orientalis L.), and oriental spruce (Picea orientalis L.) wood species were heat-treated at different temperatures. The effect of chemical changes on the FT-Raman and ATR-FTIR bands or ratios of heat-treated wood was related with the OH association of cellulose, functional groups, and the aromatic system of lignin. The effects of heat treatment on the carbohydrate and lignin peaks varied depending on the wood species. The spectral changes that occurred after heat treatment reflected the progress of the condensation reaction of lignin. Degradation of hemicelluloses led to a decrease in free hydroxyl groups. High temperature caused crystalline cellulose to increase due to the degradation of amorphous cellulose. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deus, R.C.; Cortés, J.A., E-mail: leandrosrr89@gmail.com; Ramirez, M.A.

    Highlights: • CeO{sub 2} nanoparticles were obtained by microwave-hydrothermal method. • Rietveld refinement reveals a cubic structure. • KOH mineralizer agent exhibit weak agglomeration at low temperature and shorter time. - Abstract: The structural and photoluminescent properties at room temperature of CeO{sub 2} and La-doped CeO{sub 2} particles were undertaken. The obtained particles were synthesized by a microwave-assisted hydrothermal method (MAH) under different lanthanum contents. X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman), Ultra-violet spectroscopy (UV–vis) and photoluminescence (PL) measurements were carried out. XRD revealed that the powders are free of secondary phases and crystallize in themore » cubic structure. Raman data show that increasing La doping content increase oxygen vacancies due to lattice expansion. The UV/vis absorption spectroscopy suggested the presence of intermediate energy levels in the band gap of structurally ordered powders. Lanthanum addition creates oxygen vacancies and shifts the photoluminescence in the low energy range leading to intense PL emission.« less

  2. Fourier removal of stripe artifacts in IRAS images

    NASA Technical Reports Server (NTRS)

    Van Buren, Dave

    1987-01-01

    By working in the Fourier plane, approximate removal of stripe artifacts in IRAS images can be effected. The image of interest is smoothed and subtracted from the original, giving the high-spatial-frequency part. This 'filtered' image is then clipped to remove point sources and then Fourier transformed. Subtracting the Fourier components contributing to the stripes in this image from the Fourier transform of the original and transforming back to the image plane yields substantial removal of the stripes.

  3. A method for turbine blade temperature data segmentation

    NASA Astrophysics Data System (ADS)

    Feng, Chi; Wang, Li; Gao, Shan

    2017-08-01

    Turbine blade, as one of the key components of the engine, operates in the badly working conditions. In order to better monitor the temperature status of turbine blades, research on temperature distribution of working blades is significant. The paper applies discrete Fourier transform to develop mathematical models, and the changes of period and peaks are summarized. The changing trends of temperature are reflected in each blade. The trends can be treated as one of the bases of the blade condition monitoring and fault diagnosis.

  4. Electro-Optical Imaging Fourier-Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Zhou, Hanying

    2006-01-01

    An electro-optical (E-O) imaging Fourier-transform spectrometer (IFTS), now under development, is a prototype of improved imaging spectrometers to be used for hyperspectral imaging, especially in the infrared spectral region. Unlike both imaging and non-imaging traditional Fourier-transform spectrometers, the E-O IFTS does not contain any moving parts. Elimination of the moving parts and the associated actuator mechanisms and supporting structures would increase reliability while enabling reductions in size and mass, relative to traditional Fourier-transform spectrometers that offer equivalent capabilities. Elimination of moving parts would also eliminate the vibrations caused by the motions of those parts. Figure 1 schematically depicts a traditional Fourier-transform spectrometer, wherein a critical time delay is varied by translating one the mirrors of a Michelson interferometer. The time-dependent optical output is a periodic representation of the input spectrum. Data characterizing the input spectrum are generated through fast-Fourier-transform (FFT) post-processing of the output in conjunction with the varying time delay.

  5. Measuring charge nonuniformity in MOS devices

    NASA Technical Reports Server (NTRS)

    Maserjian, J.; Zamani, N.

    1980-01-01

    Convenient method of determining inherent lateral charge non-uniformities along silicon dioxide/silicon interface of metal-oxide-semiconductor (MOS) employs rapid measurement of capacitance of interface as function of voltage at liquid nitrogen temperature. Charge distribution is extracted by fast-Fourier-transform analysis of capacitance voltage (C-V) measurement.

  6. VizieR Online Data Catalog: IR absorbance spectra of CH4, C2H6, C3H8 & C4H10 (Turner+, 2018)

    NASA Astrophysics Data System (ADS)

    Turner, A. M.; Abplanalp, M. J.; Blair, T. J.; Dayuha, R.; Kaiser, R. I.

    2018-03-01

    In situ infrared data were collected by a Nicolet 6700 Fourier Transform Infrared Spectrometer at 4cm-1 resolution throughout the irradiation and temperature programmed desorption (TPD). (2 data files).

  7. Slit Function Measurement of An Imaging Spectrograph Using Fourier Transform Techniques

    NASA Technical Reports Server (NTRS)

    Park, Hongwoo; Swimyard, Bruce; Jakobsen, Peter; Moseley, Harvey; Greenhouse, Matthew

    2004-01-01

    Knowledge of a spectrograph slit function is necessary to interpret the unresolved lines in an observed spectrum. A theoretical slit function can be calculated from the sizes of the entrance slit, the detector aperture when it functions as an exit slit, the dispersion characteristic of the disperser, and the point spread function of the spectrograph. A measured slit function is preferred to the theoretical one for the correct interpretation of the spectral data. In a scanning spectrometer with a single exit slit, the slit function is easily measured. In a fixed grating/or disperser spectrograph, illuminating the entrance slit with a near monochromatic light from a pre-monochrmator or a tunable laser and varying the wavelength of the incident light can measure the slit function. Even though the latter technique had been used successfully for the slit function measurements, it had been very laborious and it would be prohibitive to an imaging spectrograph or a multi-object spectrograph that has a large field of view. We explore an alternative technique that is manageable for the measurements. In the proposed technique, the imaging spectrograph is used as a detector of a Fourier transform spectrometer. This method can be applied not only to an IR spectrograph but also has a potential to a visible/UV spectrograph including a wedge filter spectrograph. This technique will require a blackbody source of known temperature and a bolometer to characterize the interferometer part of the Fourier Transform spectrometer. This pa?er will describe the alternative slit function measurement technique using a Fourier transform spectrometer.

  8. Determination of glass transition temperature of reduced graphene oxide-poly(vinyl alcohol) composites using temperature dependent Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Mahendia, Suman; Heena; Kandhol, Geeta; Deshpande, Uday P.; Kumar, Shyam

    2016-05-01

    In the present work, structural properties of reduced graphene oxide (RGO) synthesized using modified Hummer's method and its composites with Poly(vinyl alcohol) (PVA) fabricated using solution-cast method have been studied. The structural properties of prepared samples have been systematically studied through UV-Visible absorption, Raman, Fourier Transform Infrared (FTIR) and Differential Scanning Calorimeter (DSC) spectroscopy. Infrared spectroscopy indicates the grafting of PVA chains with graphene layer through the formation of H-bonding linkage in the composites. Temperature-dependent FTIR spectra of PVA-RGO composite films were recorded to obtain the glass transition temperature (Tg) and to study its molecular origin. From these spectra the values of Tg were obtained using two-dimensional (2D) mapping of the first derivative of the absorbance intensity with respect to temperature (dA/dT), over the space of wavenumber and temperature. The value of Tg obtained for pure PVA increases from 78 °C to 92 °C after loading 0.5 wt.% of RGO in PVA and can be attributed to the strong H-bonding interaction between polymer chains and grafted solid surface of RGO. These results are in good agreement with those obtained from DSC analysis. This clearly indicates that the thermal behavior of PVA gets modified with loading of RGO.

  9. Geometric interpretations of the Discrete Fourier Transform (DFT)

    NASA Technical Reports Server (NTRS)

    Campbell, C. W.

    1984-01-01

    One, two, and three dimensional Discrete Fourier Transforms (DFT) and geometric interpretations of their periodicities are presented. These operators are examined for their relationship with the two sided, continuous Fourier transform. Discrete or continuous transforms of real functions have certain symmetry properties. The symmetries are examined for the one, two, and three dimensional cases. Extension to higher dimension is straight forward.

  10. Deconvolution of Stark broadened spectra for multi-point density measurements in a flow Z-pinch

    DOE PAGES

    Vogman, G. V.; Shumlak, U.

    2011-10-13

    Stark broadened emission spectra, once separated from other broadening effects, provide a convenient non-perturbing means of making plasma density measurements. A deconvolution technique has been developed to measure plasma densities in the ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are captured at 20 locations using a multi-chord spectroscopic system. Spectra that are time- and chord-integrated are well approximated by a Voigt function. The proposed method simultaneously resolves plasma electron density and ion temperature by deconvolving the spectral Voigt profile into constituent functions: a Gaussian functionmore » associated with instrument effects and Doppler broadening by temperature; and a Lorentzian function associated with Stark broadening by electron density. The method uses analytic Fourier transforms of the constituent functions to fit the Voigt profile in the Fourier domain. The method is discussed and compared to a basic least-squares fit. The Fourier transform fitting routine requires fewer fitting parameters and shows promise in being less susceptible to instrumental noise and to contamination from neighboring spectral lines. The method is evaluated and tested using simulated lines and is applied to experimental data for the 229.69 nm C III line from multiple chords to determine plasma density and temperature across the diameter of the pinch. As a result, these measurements are used to gain a better understanding of Z-pinch equilibria.« less

  11. Deconvolution of Stark broadened spectra for multi-point density measurements in a flow Z-pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogman, G. V.; Shumlak, U.

    2011-10-15

    Stark broadened emission spectra, once separated from other broadening effects, provide a convenient non-perturbing means of making plasma density measurements. A deconvolution technique has been developed to measure plasma densities in the ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are captured at 20 locations using a multi-chord spectroscopic system. Spectra that are time- and chord-integrated are well approximated by a Voigt function. The proposed method simultaneously resolves plasma electron density and ion temperature by deconvolving the spectral Voigt profile into constituent functions: a Gaussian functionmore » associated with instrument effects and Doppler broadening by temperature; and a Lorentzian function associated with Stark broadening by electron density. The method uses analytic Fourier transforms of the constituent functions to fit the Voigt profile in the Fourier domain. The method is discussed and compared to a basic least-squares fit. The Fourier transform fitting routine requires fewer fitting parameters and shows promise in being less susceptible to instrumental noise and to contamination from neighboring spectral lines. The method is evaluated and tested using simulated lines and is applied to experimental data for the 229.69 nm C III line from multiple chords to determine plasma density and temperature across the diameter of the pinch. These measurements are used to gain a better understanding of Z-pinch equilibria.« less

  12. The visible absorption spectrum of NO3 measured by high-resolution Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Orphal, J.; Fellows, C. E.; Flaud, P.-M.

    2003-02-01

    The visible absorption spectrum of the nitrate radical NO3 has been measured using high-resolution Fourier transform spectroscopy. The spectrum was recorded at 294 K using a resolution of 0.6 cm-1 (corresponding to 0.026 nm at 662 nm) and covers the 12600-21500 cm-1 region (465-794 nm). Compared to absorption spectra of NO3 recorded previously, the new data show improvements concerning absolute wavelength calibration (uncertainty 0.02 cm-1), and spectral resolution. A new interpretation and model of the temperature dependence of the strong (0-0) band around 662 nm are proposed. The results are important for long-path tropospheric absorption measurements of NO3 and optical remote sensing of the Earth's atmosphere from space.

  13. An Introduction to Fast Fourier Transforms through the Study of Oscillating Reactions.

    ERIC Educational Resources Information Center

    Eastman, M. P.; And Others

    1986-01-01

    Discusses an experiment designed to introduce students to the basic principles of the fast Fourier transform and Fourier smoothing through transformation of time-dependent optical absorption data from an oscillating reaction. Uses the Belousov-Zhabotinskii reaction. Describes the experimental setup and data analysis techniques.

  14. Fourier Transforms for Chemists Part III. Fourier Transforms in Data Treatment.

    ERIC Educational Resources Information Center

    Glasser, L.

    1987-01-01

    Discusses the factors affecting the behavior of a spectral function. Lists some important properties of Fourier transform (FT) pairs that are helpful when using the FT. Notes that these properties of the mathematical formulation have identical counterparts in the physical behavior of FT systems. (TW)

  15. Determination of Fourier Transforms on an Instructional Analog Computer

    ERIC Educational Resources Information Center

    Anderson, Owen T.; Greenwood, Stephen R.

    1974-01-01

    An analog computer program to find and display the Fourier transform of some real, even functions is described. Oscilloscope traces are shown for Fourier transforms of a rectangular pulse, a Gaussian, a cosine wave, and a delayed narrow pulse. Instructional uses of the program are discussed briefly. (DT)

  16. The application and improvement of Fourier transform spectrometer experiment

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-min; Gao, En-duo; Zhou, Feng-qi; Wang, Lan-lan; Feng, Xiao-hua; Qi, Jin-quan; Ji, Cheng; Wang, Luning

    2017-08-01

    According to teaching and experimental requirements of Optoelectronic information science and Engineering, in order to consolidate theoretical knowledge and improve the students practical ability, the Fourier transform spectrometer ( FTS) experiment, its design, application and improvement are discussed in this paper. The measurement principle and instrument structure of Fourier transform spectrometer are introduced, and the spectrums of several common Laser devices are measured. Based on the analysis of spectrum and test, several possible improvement methods are proposed. It also helps students to understand the application of Fourier transform in physics.

  17. Validating data analysis of broadband laser ranging

    NASA Astrophysics Data System (ADS)

    Rhodes, M.; Catenacci, J.; Howard, M.; La Lone, B.; Kostinski, N.; Perry, D.; Bennett, C.; Patterson, J.

    2018-03-01

    Broadband laser ranging combines spectral interferometry and a dispersive Fourier transform to achieve high-repetition-rate measurements of the position of a moving surface. Telecommunications fiber is a convenient tool for generating the large linear dispersions required for a dispersive Fourier transform, but standard fiber also has higher-order dispersion that distorts the Fourier transform. Imperfections in the dispersive Fourier transform significantly complicate the ranging signal and must be dealt with to make high-precision measurements. We describe in detail an analysis process for interpreting ranging data when standard telecommunications fiber is used to perform an imperfect dispersive Fourier transform. This analysis process is experimentally validated over a 27-cm scan of static positions, showing an accuracy of 50 μm and a root-mean-square precision of 4.7 μm.

  18. The morphing of geographical features by Fourier transformation.

    PubMed

    Li, Jingzhong; Liu, Pengcheng; Yu, Wenhao; Cheng, Xiaoqiang

    2018-01-01

    This paper presents a morphing model of vector geographical data based on Fourier transformation. This model involves three main steps. They are conversion from vector data to Fourier series, generation of intermediate function by combination of the two Fourier series concerning a large scale and a small scale, and reverse conversion from combination function to vector data. By mirror processing, the model can also be used for morphing of linear features. Experimental results show that this method is sensitive to scale variations and it can be used for vector map features' continuous scale transformation. The efficiency of this model is linearly related to the point number of shape boundary and the interceptive value n of Fourier expansion. The effect of morphing by Fourier transformation is plausible and the efficiency of the algorithm is acceptable.

  19. Analyzing Fourier Transforms for NASA DFRC's Fiber Optic Strain Sensing System

    NASA Technical Reports Server (NTRS)

    Fiechtner, Kaitlyn Leann

    2010-01-01

    This document provides a basic overview of the fiber optic technology used for sensing stress, strain, and temperature. Also, the document summarizes the research concerning speed and accuracy of the possible mathematical algorithms that can be used for NASA DFRC's Fiber Optic Strain Sensing (FOSS) system.

  20. Modification of vital wheat gluten with phosphoric acid to produce high free-solution capacity

    USDA-ARS?s Scientific Manuscript database

    Wheat gluten reacts with phosphoric acid to produce natural superabsorbent gels. The gel properties are defined by Fourier Transform Infra-red (FTIR) spectroscopy, 2-dimensional gel electrophoresis (2DE), and uptake of water, salt solutions, and aqueous ethanol. Temperatures above 120'C and dry cond...

  1. Fast Implicit Methods For Elliptic Moving Interface Problems

    DTIC Science & Technology

    2015-12-11

    analyzed, and tested for the Fourier transform of piecewise polynomials given on d-dimensional simplices in D-dimensional Euclidean space. These transforms...evaluation, and one to three orders of magnitude slower than the classical uniform Fast Fourier Transform. Second, bilinear quadratures ---which...a fast algorithm was derived, analyzed, and tested for the Fourier transform of pi ecewise polynomials given on d-dimensional simplices in D

  2. The scale of the Fourier transform: a point of view of the fractional Fourier transform

    NASA Astrophysics Data System (ADS)

    Jimenez, C. J.; Vilardy, J. M.; Salinas, S.; Mattos, L.; Torres, C. O.

    2017-01-01

    In this paper using the Fourier transform of order fractional, the ray transfer matrix for the symmetrical optical systems type ABCD and the formulae by Collins for the diffraction, we obtain explicitly the expression for scaled Fourier transform conventional; this result is the great importance in optical signal processing because it offers the possibility of scaling the size of output the Fourier distribution of the system, only by manipulating the distance of the diffraction object toward the thin lens, this research also emphasizes on practical limits when a finite spherical converging lens aperture is used. Digital simulation was carried out using the numerical platform of Matlab 7.1.

  3. Environmentally Benign Repair of Composites Using High Temperature Cyanate Ester Nanocomposites

    DTIC Science & Technology

    2010-10-01

    temperature by magnetic stirring. Thermogravimetric analysis (TG) measurements were performed on a TG model Q50 (TA Instruments, Inc.) to determine the...standard 1259-85. These experiments were also compared with thermogravimetric analysis (TGA) in both dynamic heating and isothermal conditions. The...characterized with thermogravimetric analysis (TG) and Fourier transform infrared spectroscopy (FT-IR). For the TG, about 20 mg of sample was placed in

  4. First signal from a broadband cryogenic preamplifier cooled by circulating liquid nitrogen in a 7 T Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Choi, Myoung Choul; Lee, Jeong Min; Lee, Se Gyu; Choi, Sang Hwan; Choi, Yeon Suk; Lee, Kyung Jae; Kim, SeungYong; Kim, Hyun Sik; Stahl, Stefan

    2012-12-18

    Despite the outstanding performance of Fourier transform ion cyclotron/mass spectrometry (FTICR/MS), the complexity of the cellular proteome or natural compounds presents considerable challenges. Sensitivity is a key performance parameter of a FTICR mass spectrometer. By improving this parameter, the dynamic range of the instrument can be increased to improve the detection signal of low-abundance compounds or fragment ion peaks. In order to improve sensitivity, a cryogenic detection system was developed by the KBSI (Korean Basic Science Institute) in collaboration with Stahl-Electronics (Mettenheim, Germany). A simple, efficient liquid circulation cooling system was designed and a cryogenic preamplifier implemented inside a FTICR mass spectrometer. This cooling system circulates a cryoliquid from a Dewar to the "liquid circulation unit" through a CF flange to cool a copper block and a cryopreamplifier; the cooling medium is subsequently exhausted into the air. The cryopreamplifier can be operated over a very wide temperature range, from room temperature to low temperature environments (4.2 K). First, ion signals detected by the cryopreamplifier using a circulating liquid nitrogen cooling system were observed and showed a signal-to-noise ratio (S/N) about 130% better than that obtained at room temperature.

  5. Combined Characterization of the Time Response of Impression Materials via Traditional and FTIR Measurements

    PubMed Central

    Derchi, Giacomo; Manca, Enrico; Shayganpour, Amirreza; Barone, Antonio; Diaspro, Alberto; Salerno, Marco

    2015-01-01

    We investigated the temporal response of four dental impression materials, namely three siloxanes (Imprint 4, Flexitime, Aquasil) and one polyether (Impregum). The null hypothesis was that the nominal working times are confirmed by instrumental laboratory tests. We also aimed to identify alternative techniques with strong physical-chemical background for the assessment of temporal response. Traditional characterization was carried out by shark fin test device and durometer at both ambient and body temperature. Additionally, Fourier-transform infrared spectroscopy was performed at room temperature. From shark fin height and Shore hardness versus time the working time and the setting time of the materials were evaluated, respectively. These were in reasonable agreement with the nominal values, except for Impregum, which showed longer working time. Spectroscopy confirmed the different character of the two types of materials, and provided for Imprint 4 and Aquasil an independent evaluation of both evolution times, consistent with the results of the other techniques. Shark fin test and durometer measurements showed deviations in setting time, low sensitivity to temperature for Flexitime, and longer working time at higher temperature for Impregum. Deviations of working time appear in operating conditions from what specified by the manufacturers. Fourier-transform infrared spectroscopy can provide insight in the correlation between material properties and their composition and structure.

  6. Fourier Transform Infrared Spectroscopy of CF4 on the GEC Reference Cell

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Sharma, S. P.; Meyyappan, M.; Cruden, Brett A.; Arnold, Jim (Technical Monitor)

    2001-01-01

    Fourier Transform Infrared Spectroscopy (FTIR) has been used to characterize inductively coupled CF4 plasmas in a GEC Reference Cell in-situ In examining these FTIR spectra, several assumptions and approximations of FTIR analysis are addressed. This includes the density dependence of cross-sections, non-linear effects in the addition of overlapping bands and the effect of spatial variations in density and temperature, This analysis demonstrates that temperatures extracted from MR spectra may provide a poor estimate of the true neutral plasma temperature. The FTIR spectra are dominated by unreacted CF, accounting for 40-60% of the gas products. The amount of CF4 consumption is found to have a marked dependence on power, and is nearly independent of pressure in the range of 10-50 mtorr. Small amounts of C2F6 are observed at low power. Also observed are etching products from the quartz window SiF4 COF2 and CO which occur in approximately equal ratios and together account for less than 10% of the gas. The concentrations of these species are nearly independent of pressure. CFx radicals are below the detection limit of this apparatus (approx. 1012/cc).

  7. Transient in-plane thermal transport in nanofilms with internal heating

    PubMed Central

    Cao, Bing-Yang

    2016-01-01

    Wide applications of nanofilms in electronics necessitate an in-depth understanding of nanoscale thermal transport, which significantly deviates from Fourier's law. Great efforts have focused on the effective thermal conductivity under temperature difference, while it is still ambiguous whether the diffusion equation with an effective thermal conductivity can accurately characterize the nanoscale thermal transport with internal heating. In this work, transient in-plane thermal transport in nanofilms with internal heating is studied via Monte Carlo (MC) simulations in comparison to the heat diffusion model and mechanism analyses using Fourier transform. Phonon-boundary scattering leads to larger temperature rise and slower thermal response rate when compared with the heat diffusion model based on Fourier's law. The MC simulations are also compared with the diffusion model with effective thermal conductivity. In the first case of continuous internal heating, the diffusion model with effective thermal conductivity under-predicts the temperature rise by the MC simulations at the initial heating stage, while the deviation between them gradually decreases and vanishes with time. By contrast, for the one-pulse internal heating case, the diffusion model with effective thermal conductivity under-predicts both the peak temperature rise and the cooling rate, so the deviation can always exist. PMID:27118903

  8. Transient in-plane thermal transport in nanofilms with internal heating.

    PubMed

    Hua, Yu-Chao; Cao, Bing-Yang

    2016-02-01

    Wide applications of nanofilms in electronics necessitate an in-depth understanding of nanoscale thermal transport, which significantly deviates from Fourier's law. Great efforts have focused on the effective thermal conductivity under temperature difference, while it is still ambiguous whether the diffusion equation with an effective thermal conductivity can accurately characterize the nanoscale thermal transport with internal heating. In this work, transient in-plane thermal transport in nanofilms with internal heating is studied via Monte Carlo (MC) simulations in comparison to the heat diffusion model and mechanism analyses using Fourier transform. Phonon-boundary scattering leads to larger temperature rise and slower thermal response rate when compared with the heat diffusion model based on Fourier's law. The MC simulations are also compared with the diffusion model with effective thermal conductivity. In the first case of continuous internal heating, the diffusion model with effective thermal conductivity under-predicts the temperature rise by the MC simulations at the initial heating stage, while the deviation between them gradually decreases and vanishes with time. By contrast, for the one-pulse internal heating case, the diffusion model with effective thermal conductivity under-predicts both the peak temperature rise and the cooling rate, so the deviation can always exist.

  9. Research about vibration characteristics of timing chain system based on short-time Fourier transform

    NASA Astrophysics Data System (ADS)

    Xi, Jiaxin; Liu, Ning

    2017-09-01

    Vibration characteristic of timing chain system is very important for an engine. In this study, we used a bush roller chain drive system as an example to explain how to use mulitybody dynamic techniques and short-time Fourier transform to investigate vibration characteristics of timing chain system. Multibody dynamic simulation data as chain tension force and external excitation sources curves were provided for short-time Fourier transform study. The study results of short-time Fourier transform illustrate that there are two main vibration frequency domain of timing chain system, one is the low frequency vibration caused by crankshaft sprocket velocity and camshaft sprocket torque. Another is vibration around 1000Hz lead by hydraulic tensioner. Hence, short-time Fourier transform method is useful for basic research of vibration characteristics for timing chain system.

  10. Fourier transform mass spectrometry.

    PubMed

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-07-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook.

  11. Fourier Transform Mass Spectrometry

    PubMed Central

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-01-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook. PMID:21742802

  12. Properly used ''aliasing'' can give better resolution from fewer points in Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    D'Astous, Y.; Blanchard, M.

    1982-05-01

    In the past years, the Journal has published a number of articles1-5 devoted to the introduction of Fourier transform spectroscopy in the undergraduate labs. In most papers, the proposed experimental setup consists of a Michelson interferometer, a light source, a light detector, and a chart recorder. The student uses this setup to record an interferogram which is then Fourier transformed to obtain the spectrogram of the light source. Although attempts have been made to ease the task of performing the required Fourier transform,6 the use of computers and Cooley-Tukey's fast Fourier transform (FFT) algorithm7 is by far the simplest method to use. However, to be able to use FFT, one has to get a number of samples of the interferogram, a tedious job which should be kept to a minimum. (AIP)

  13. The morphing of geographical features by Fourier transformation

    PubMed Central

    Liu, Pengcheng; Yu, Wenhao; Cheng, Xiaoqiang

    2018-01-01

    This paper presents a morphing model of vector geographical data based on Fourier transformation. This model involves three main steps. They are conversion from vector data to Fourier series, generation of intermediate function by combination of the two Fourier series concerning a large scale and a small scale, and reverse conversion from combination function to vector data. By mirror processing, the model can also be used for morphing of linear features. Experimental results show that this method is sensitive to scale variations and it can be used for vector map features’ continuous scale transformation. The efficiency of this model is linearly related to the point number of shape boundary and the interceptive value n of Fourier expansion. The effect of morphing by Fourier transformation is plausible and the efficiency of the algorithm is acceptable. PMID:29351344

  14. Far-field radiation patterns of aperture antennas by the Winograd Fourier transform algorithm

    NASA Technical Reports Server (NTRS)

    Heisler, R.

    1978-01-01

    A more time-efficient algorithm for computing the discrete Fourier transform, the Winograd Fourier transform (WFT), is described. The WFT algorithm is compared with other transform algorithms. Results indicate that the WFT algorithm in antenna analysis appears to be a very successful application. Significant savings in cpu time will improve the computer turn around time and circumvent the need to resort to weekend runs.

  15. Representation of Complex Spectra in Auditory Cortex

    DTIC Science & Technology

    1997-01-01

    predict the response to any broadband dynamic sound. Fourier Transform Inverse Transform ∫ [.] exp(±2πjΩx±2πjwt) 2 1 2 / 1 1 a 2 1 2 / 1 1 a...Systems Research University of Maryland Spectro-Temporal Transform Ω wx = log f t w = “ripple velocity” Ω = “ripple frequency” Fourier Transform Inverse ... Transform ∫ [.] exp(±2πjΩx±2πjwt) Real functions in the spectro-temporal domain give rise to complex conjugate symmetric functions in the Fourier

  16. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2003-01-01

    Spectroscopic parameters (such as line position, intensity, broadening and shifting coefficients and their temperature dependences, line mixing coefficients etc.) for various molecular species of atmospheric interest are determined. In order to achieve these results, infrared spectra of several molecular bands are obtained using high-resolution recording instruments such as tunable diode laser spectrometer and Fourier transform spectrometers. Using sophisticated analysis routines (Multispectrum nonlinear least squares technique) these high-resolution infrared spectra are processed to determine the various spectral line parameters that are cited above. Spectra were taken using the McMath-Pierce Fourier transform spectrometer (FTS) at the National Solar Observatory on Kitt Peak, Arizona as well as the Bruker FTS at the Pacific Northwest National Laboratory (PNNL) at Richland, Washington. Most of the spectra are acquired not only at room temperature, but also at several different cold temperatures. This procedure is necessary to study the variation of the spectral line parameters as a function of temperature in order to simulate the Earth's and other planetary atmospheric environments. Depending upon the strength or weakness of the various bands recorded and analyzed, the length(s) of the absorption cells in which the gas samples under study are kept varied from a few centimeters up to several meters and the sample temperatures varied from approximately +30 C to -63 C. Research on several infrared bands of various molecular species and their isotopomers are undertaken. Those studies are briefly described.

  17. [Optical-fiber Fourier transform spectrometer].

    PubMed

    Liu, Yong; Li, Bao-sheng; Liu, Yan; Zhai, Yu-feng; Wang, An

    2006-10-01

    A novel Fourier transform spectrum analyzer based on a single mode fiber Mach-Zehnder interferometer is reported. An optical fiber Fourier transform spectrometer, with bulk optics components replaced by fiber optical components and with the moving mirror replaced by a piezoelectric element fiber stretcher was constructed. The output spectrum of a LD below threshold was measured. Experiment result agrees with that by using grating spectrum analyzer, showing the feasibility of the optic fiber Fourier transform spectrometer for practical spectrum measurement. Spectrum resolution -7 cm(-1) was obtained in our experiment. The resolution can be further improved by increasing the maximum optical path difference.

  18. Effect of annealing temperature on titania nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manikandan, K., E-mail: sanjaymani367@gmail.com; Arumugam, S., E-mail: sanjaymani367@gmail.com; Chandrasekaran, G.

    2014-04-24

    Titania polycrystalline samples are prepared by using sol-gel route hydrolyzing a alkoxide titanium precursor under acidic conditions. The as prepared samples are treated with different calcination temperatures. The anatase phase of titania forms when treated below 600°C, above that temperature the anatase phase tends to transform into the rutile phase of titania. The experimental determination of average grain size, phase formation, lattice parameters and the crystal structures of titania samples at different calcinations is done using X-ray diffraction (XRD). Fourier Transform Infra-red Spectroscopy (FTIR), UV-vis-NIR spectroscopy and Scanning Electron Microscopy (SEM) and Energy Dispersive Analysis X-ray are used to characterizemore » the samples to bring impact on the respective properties.« less

  19. Building a symbolic computer algebra toolbox to compute 2D Fourier transforms in polar coordinates.

    PubMed

    Dovlo, Edem; Baddour, Natalie

    2015-01-01

    The development of a symbolic computer algebra toolbox for the computation of two dimensional (2D) Fourier transforms in polar coordinates is presented. Multidimensional Fourier transforms are widely used in image processing, tomographic reconstructions and in fact any application that requires a multidimensional convolution. By examining a function in the frequency domain, additional information and insights may be obtained. The advantages of our method include: •The implementation of the 2D Fourier transform in polar coordinates within the toolbox via the combination of two significantly simpler transforms.•The modular approach along with the idea of lookup tables implemented help avoid the issue of indeterminate results which may occur when attempting to directly evaluate the transform.•The concept also helps prevent unnecessary computation of already known transforms thereby saving memory and processing time.

  20. Automatic Fourier transform and self-Fourier beams due to parabolic potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yiqi, E-mail: zhangyiqi@mail.xjtu.edu.cn; Liu, Xing; Belić, Milivoj R., E-mail: milivoj.belic@qatar.tamu.edu

    We investigate the propagation of light beams including Hermite–Gauss, Bessel–Gauss and finite energy Airy beams in a linear medium with parabolic potential. Expectedly, the beams undergo oscillation during propagation, but quite unexpectedly they also perform automatic Fourier transform, that is, periodic change from the beam to its Fourier transform and back. In addition to oscillation, the finite-energy Airy beams exhibit periodic inversion during propagation. The oscillating period of parity-asymmetric beams is twice that of the parity-symmetric beams. Based on the propagation in parabolic potential, we introduce a class of optically-interesting beams that are self-Fourier beams—that is, the beams whose Fouriermore » transforms are the beams themselves.« less

  1. A discrete Fourier transform for virtual memory machines

    NASA Technical Reports Server (NTRS)

    Galant, David C.

    1992-01-01

    An algebraic theory of the Discrete Fourier Transform is developed in great detail. Examination of the details of the theory leads to a computationally efficient fast Fourier transform for the use on computers with virtual memory. Such an algorithm is of great use on modern desktop machines. A FORTRAN coded version of the algorithm is given for the case when the sequence of numbers to be transformed is a power of two.

  2. A Simple Approach to Fourier Aliasing

    ERIC Educational Resources Information Center

    Foadi, James

    2007-01-01

    In the context of discrete Fourier transforms the idea of aliasing as due to approximation errors in the integral defining Fourier coefficients is introduced and explained. This has the positive pedagogical effect of getting to the heart of sampling and the discrete Fourier transform without having to delve into effective, but otherwise long and…

  3. A general spectral transformation simultaneously including a Fourier transformation and a Laplace transformation

    NASA Technical Reports Server (NTRS)

    Marko, H.

    1978-01-01

    A general spectral transformation is proposed and described. Its spectrum can be interpreted as a Fourier spectrum or a Laplace spectrum. The laws and functions of the method are discussed in comparison with the known transformations, and a sample application is shown.

  4. Fourier Analysis and Structure Determination: Part I: Fourier Transforms.

    ERIC Educational Resources Information Center

    Chesick, John P.

    1989-01-01

    Provides a brief introduction with some definitions and properties of Fourier transforms. Shows relations, ways of understanding the mathematics, and applications. Notes proofs are not included but references are given. First of three part series. (MVL)

  5. Fourier transform of delayed fluorescence as an indicator of herbicide concentration.

    PubMed

    Guo, Ya; Tan, Jinglu

    2014-12-21

    It is well known that delayed fluorescence (DF) from Photosystem II (PSII) of plant leaves can be potentially used to sense herbicide pollution and evaluate the effect of herbicides on plant leaves. The research of using DF as a measure of herbicides in the literature was mainly conducted in time domain and qualitative correlation was often obtained. Fourier transform is often used to analyze signals. Viewing DF signal in frequency domain through Fourier transform may allow separation of signal components and provide a quantitative method for sensing herbicides. However, there is a lack of an attempt to use Fourier transform of DF as an indicator of herbicide. In this work, the relationship between the Fourier transform of DF and herbicide concentration was theoretically modelled and analyzed, which immediately yielded a quantitative method to measure herbicide concentration in frequency domain. Experiments were performed to validate the developed method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Non linear optical studies on semiorganic single crystal: L-arginine 4-nitrophenalate 4-nitrophenol dihydrate (LAPP)

    NASA Astrophysics Data System (ADS)

    Mahadevan, M.; Sankar, P. K.; Vinitha, G.; Arivanandhan, M.; Ramachandran, K.; Anandan, P.

    2017-07-01

    L-arginine 4-nitrophenalate 4-nitrophenol dihydrate (LAPP) has been synthesized and grown by solution growth at room temperature using deionized water as a solvent. The various functional groups of the sample were identified by Fourier transform infra-red and Fourier transforms - Raman spectroscopic analyses. The Laser damage threshold of LAPP has been studied. Refractive index of LAPP single crystal was measured using Metricon prism coupler Instrument. The etching studies were carried out to study the quality of the grown crystals. The third order nonlinear optical properties of LAPP sample was analyzed by the Z-scan technique using 532 nm diode pumped CW Nd: YAG laser. The LAPP material exhibits negative optical nonlinearity. The results show that LAPP sample has potential applications in nonlinear optics and it can be exploited for optical limiting or switching.

  7. High-resolution Fourier transform measurements of air-induced broadening and shift coefficients in the 0002-0000 main isotopologue band of nitrous oxide

    NASA Astrophysics Data System (ADS)

    Werwein, Viktor; Li, Gang; Serdyukov, Anton; Brunzendorf, Jens; Werhahn, Olav; Ebert, Volker

    2018-06-01

    In the present study, we report highly accurate air-induced broadening and shift coefficients for the nitrous oxide (N2O) 0002-0000 band at 2.26 μm of the main isotopologue retrieved from high-resolution Fourier transform infrared (FTIR) measurements with metrologically determined pressure, temperature, absorption path length and chemical composition. Most of our retrieved air-broadening coefficients agree with previously generated datasets within the expanded (confidence interval of 95%) uncertainties. For the air-shift coefficients our results suggest a different rotational dependence compared to literature. The present study benefits from improved measurement conditions and a detailed metrological uncertainty description. Comparing to literature, the uncertainties of the previous broadening and shift coefficients are improved by a factor of up to 39 and up to 22, respectively.

  8. Thermal Infrared Spectroscopy of Saturn and Titan from Cassini

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Brasunas, J. C.; Carlson, R. C.; Flasar, F. M.; Kunde, V. G.; Mamoutkine, A. A.; Nixon, A.; Pearl, J. C.; Romani, P. N.; Simon-Miller, A. A.; hide

    2009-01-01

    The Cassini spacecraft completed its nominal mission at Saturn in 2008 and began its extended mission. Cassini carries the Composite Infrared Spectrometer (CIRS); a Fourier transform spectrometer that measures the composition, thermal structure and dynamics of the atmospheres of Saturn and Titan, and also the temperatures of other moons and the rings.

  9. Modification of vital wheat gluten with phosphoric acid to produce high free solution capacity

    USDA-ARS?s Scientific Manuscript database

    Wheat gluten reacts with phosphoric acid in the presence of urea to produce natural superabsorbent gels. Fourier Transform Infra-red (FT-IR) spectroscopy and two-dimensional gel electrophoresis (2DE) reveal chemical changes from the reaction. Temperatures above 120°C and dry conditions create the op...

  10. Study on sampling of continuous linear system based on generalized Fourier transform

    NASA Astrophysics Data System (ADS)

    Li, Huiguang

    2003-09-01

    In the research of signal and system, the signal's spectrum and the system's frequency characteristic can be discussed through Fourier Transform (FT) and Laplace Transform (LT). However, some singular signals such as impulse function and signum signal don't satisfy Riemann integration and Lebesgue integration. They are called generalized functions in Maths. This paper will introduce a new definition -- Generalized Fourier Transform (GFT) and will discuss generalized function, Fourier Transform and Laplace Transform under a unified frame. When the continuous linear system is sampled, this paper will propose a new method to judge whether the spectrum will overlap after generalized Fourier transform (GFT). Causal and non-causal systems are studied, and sampling method to maintain system's dynamic performance is presented. The results can be used on ordinary sampling and non-Nyquist sampling. The results also have practical meaning on research of "discretization of continuous linear system" and "non-Nyquist sampling of signal and system." Particularly, condition for ensuring controllability and observability of MIMO continuous systems in references 13 and 14 is just an applicable example of this paper.

  11. Passive Fourier-transform infrared spectroscopy of chemical plumes: an algorithm for quantitative interpretation and real-time background removal

    NASA Astrophysics Data System (ADS)

    Polak, Mark L.; Hall, Jeffrey L.; Herr, Kenneth C.

    1995-08-01

    We present a ratioing algorithm for quantitative analysis of the passive Fourier-transform infrared spectrum of a chemical plume. We show that the transmission of a near-field plume is given by tau plume = (Lobsd - Lbb-plume)/(Lbkgd - Lbb-plume), where tau plume is the frequency-dependent transmission of the plume, L obsd is the spectral radiance of the scene that contains the plume, Lbkgd is the spectral radiance of the same scene without the plume, and Lbb-plume is the spectral radiance of a blackbody at the plume temperature. The algorithm simultaneously achieves background removal, elimination of the spectrometer internal signature, and quantification of the plume spectral transmission. It has applications to both real-time processing for plume visualization and quantitative measurements of plume column densities. The plume temperature (Lbb-plume ), which is not always precisely known, can have a profound effect on the quantitative interpretation of the algorithm and is discussed in detail. Finally, we provide an illustrative example of the use of the algorithm on a trichloroethylene and acetone plume.

  12. Evaluation of co-pyrolysis petrochemical wastewater sludge with lignite in a thermogravimetric analyzer and a packed-bed reactor: Pyrolysis characteristics, kinetics, and products analysis.

    PubMed

    Mu, Lin; Chen, Jianbiao; Yao, Pikai; Zhou, Dapeng; Zhao, Liang; Yin, Hongchao

    2016-12-01

    Co-pyrolysis characteristics of petrochemical wastewater sludge and Huolinhe lignite were investigated using thermogravimetric analyzer and packed-bed reactor coupled with Fourier transform infrared spectrometer and gas chromatography. The pyrolysis characteristics of the blends at various sludge blending ratios were compared with those of the individual materials. Thermogravimetric experiments showed that the interactions between the blends were beneficial to generate more residues. In packed-bed reactor, synergetic effects promoted the release of gas products and left less liquid and solid products than those calculated by additive manner. Fourier transform infrared spectrometer analysis showed that main functional groups in chars gradually disappeared with pyrolysis temperatures increasing, and H 2 O, CH 4 , CO, and CO 2 appeared in volatiles during pyrolysis. Gas compositions analysis indicated that, the yields of H 2 and CO clearly increased as the pyrolysis temperature and sludge blending ratio increasing, while the changes of CH 4 and CO 2 yields were relatively complex. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Time, Temperature, and Cationic Dependence of Alkali Activation of Slag: Insights from Fourier Transform Infrared Spectroscopy and Spectral Deconvolution.

    PubMed

    Dakhane, Akash; Madavarapu, Sateesh Babu; Marzke, Robert; Neithalath, Narayanan

    2017-08-01

    The use of waste/by-product materials, such as slag or fly ash, activated using alkaline agents to create binding materials for construction applications (in lieu of portland cement) is on the rise. The influence of activation parameters (SiO 2 to Na 2 O ratio or M s of the activator, Na 2 O to slag ratio or n, cation type K + or Na + ) on the process and extent of alkali activation of slag under ambient and elevated temperature curing, evaluated through spectroscopic techniques, is reported in this paper. Fourier transform infrared spectroscopy along with a Fourier self-deconvolution method is used. The major spectral band of interest lies in the wavenumber range of ∼950 cm -1 , corresponding to the antisymmetric stretching vibration of Si-O-T (T = Si or Al) bonds. The variation in the spectra with time from 6 h to 28 days is attributed to the incorporation of Al in the gel structure and the enhancement in degree of polymerization of the gel. 29 Si nuclear magnetic resonance spectroscopy is used to quantify the Al incorporation with time, which is found to be higher when Na silicate is used as the activator. The Si-O-T bond wavenumbers are also generally lower for the Na silicate activated systems.

  14. Structure in the 3D Galaxy Distribution. III. Fourier Transforming the Universe: Phase and Power Spectra

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.; Way, M. J.; Gazis, P. G.

    2017-01-01

    We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform of finely binned galaxy positions. In both cases, deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multipoint hierarchy. We identify some threads of modern large-scale inference methodology that will presumably yield detections in new wider and deeper surveys.

  15. Building a symbolic computer algebra toolbox to compute 2D Fourier transforms in polar coordinates

    PubMed Central

    Dovlo, Edem; Baddour, Natalie

    2015-01-01

    The development of a symbolic computer algebra toolbox for the computation of two dimensional (2D) Fourier transforms in polar coordinates is presented. Multidimensional Fourier transforms are widely used in image processing, tomographic reconstructions and in fact any application that requires a multidimensional convolution. By examining a function in the frequency domain, additional information and insights may be obtained. The advantages of our method include: • The implementation of the 2D Fourier transform in polar coordinates within the toolbox via the combination of two significantly simpler transforms. • The modular approach along with the idea of lookup tables implemented help avoid the issue of indeterminate results which may occur when attempting to directly evaluate the transform. • The concept also helps prevent unnecessary computation of already known transforms thereby saving memory and processing time. PMID:26150988

  16. Performance of the Wavelet Decomposition on Massively Parallel Architectures

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek A.; LeMoigne, Jacqueline; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    Traditionally, Fourier Transforms have been utilized for performing signal analysis and representation. But although it is straightforward to reconstruct a signal from its Fourier transform, no local description of the signal is included in its Fourier representation. To alleviate this problem, Windowed Fourier transforms and then wavelet transforms have been introduced, and it has been proven that wavelets give a better localization than traditional Fourier transforms, as well as a better division of the time- or space-frequency plane than Windowed Fourier transforms. Because of these properties and after the development of several fast algorithms for computing the wavelet representation of any signal, in particular the Multi-Resolution Analysis (MRA) developed by Mallat, wavelet transforms have increasingly been applied to signal analysis problems, especially real-life problems, in which speed is critical. In this paper we present and compare efficient wavelet decomposition algorithms on different parallel architectures. We report and analyze experimental measurements, using NASA remotely sensed images. Results show that our algorithms achieve significant performance gains on current high performance parallel systems, and meet scientific applications and multimedia requirements. The extensive performance measurements collected over a number of high-performance computer systems have revealed important architectural characteristics of these systems, in relation to the processing demands of the wavelet decomposition of digital images.

  17. Realistic Analytical Polyhedral MRI Phantoms

    PubMed Central

    Ngo, Tri M.; Fung, George S. K.; Han, Shuo; Chen, Min; Prince, Jerry L.; Tsui, Benjamin M. W.; McVeigh, Elliot R.; Herzka, Daniel A.

    2015-01-01

    Purpose Analytical phantoms have closed form Fourier transform expressions and are used to simulate MRI acquisitions. Existing 3D analytical phantoms are unable to accurately model shapes of biomedical interest. It is demonstrated that polyhedral analytical phantoms have closed form Fourier transform expressions and can accurately represent 3D biomedical shapes. Theory The derivations of the Fourier transform of a polygon and polyhedron are presented. Methods The Fourier transform of a polyhedron was implemented and its accuracy in representing faceted and smooth surfaces was characterized. Realistic anthropomorphic polyhedral brain and torso phantoms were constructed and their use in simulated 3D/2D MRI acquisitions was described. Results Using polyhedra, the Fourier transform of faceted shapes can be computed to within machine precision. Smooth surfaces can be approximated with increasing accuracy by increasing the number of facets in the polyhedron; the additional accumulated numerical imprecision of the Fourier transform of polyhedra with many faces remained small. Simulations of 3D/2D brain and 2D torso cine acquisitions produced realistic reconstructions free of high frequency edge aliasing as compared to equivalent voxelized/rasterized phantoms. Conclusion Analytical polyhedral phantoms are easy to construct and can accurately simulate shapes of biomedical interest. PMID:26479724

  18. A Comparison of Optical versus Hardware Fourier Transforms.

    DTIC Science & Technology

    1983-10-31

    AD- R136 223 A COMPRISON’OF OPTICAL ERSUS HARDWARE FOURIER i/i.TRANSFORMS(U) VIRGINIA POLYTECHNIC INST AND STATE UNIV BLACKSBURG DEPT OF PHYSICS S P...transform and its inverse filtered Fourier transform obtained with the Digital Image Processing (DIP) hardware system located at the School of Aerospace...transparencies, and provided to us by Dr. Ralph G. Allen, Director of the Laser Effects Branch (Division of Radiation Sciences). The DIP system consisted of: an

  19. Fourier analysis and signal processing by use of the Moebius inversion formula

    NASA Technical Reports Server (NTRS)

    Reed, Irving S.; Yu, Xiaoli; Shih, Ming-Tang; Tufts, Donald W.; Truong, T. K.

    1990-01-01

    A novel Fourier technique for digital signal processing is developed. This approach to Fourier analysis is based on the number-theoretic method of the Moebius inversion of series. The Fourier transform method developed is shown also to yield the convolution of two signals. A computer simulation shows that this method for finding Fourier coefficients is quite suitable for digital signal processing. It competes with the classical FFT (fast Fourier transform) approach in terms of accuracy, complexity, and speed.

  20. Fourier-transform-based model for carrier transport in semiconductor heterostructures: Longitudinal optical phonon scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lü, X.; Schrottke, L.; Grahn, H. T.

    We present scattering rates for electrons at longitudinal optical phonons within a model completely formulated in the Fourier domain. The total intersubband scattering rates are obtained by averaging over the intrasubband electron distributions. The rates consist of the Fourier components of the electron wave functions and a contribution depending only on the intersubband energies and the intrasubband carrier distributions. The energy-dependent part can be reproduced by a rational function, which allows for the separation of the scattering rates into a dipole-like contribution, an overlap-like contribution, and a contribution which can be neglected for low and intermediate carrier densities of themore » initial subband. For a balance between accuracy and computation time, the number of Fourier components can be adjusted. This approach facilitates an efficient design of complex heterostructures with realistic, temperature- and carrier density-dependent rates.« less

  1. Double Fourier analysis for Emotion Identification in Voiced Speech

    NASA Astrophysics Data System (ADS)

    Sierra-Sosa, D.; Bastidas, M.; Ortiz P., D.; Quintero, O. L.

    2016-04-01

    We propose a novel analysis alternative, based on two Fourier Transforms for emotion recognition from speech. Fourier analysis allows for display and synthesizes different signals, in terms of power spectral density distributions. A spectrogram of the voice signal is obtained performing a short time Fourier Transform with Gaussian windows, this spectrogram portraits frequency related features, such as vocal tract resonances and quasi-periodic excitations during voiced sounds. Emotions induce such characteristics in speech, which become apparent in spectrogram time-frequency distributions. Later, the signal time-frequency representation from spectrogram is considered an image, and processed through a 2-dimensional Fourier Transform in order to perform the spatial Fourier analysis from it. Finally features related with emotions in voiced speech are extracted and presented.

  2. Rapid update of discrete Fourier transform for real-time signal processing

    NASA Astrophysics Data System (ADS)

    Sherlock, Barry G.; Kakad, Yogendra P.

    2001-10-01

    In many identification and target recognition applications, the incoming signal will have properties that render it amenable to analysis or processing in the Fourier domain. In such applications, however, it is usually essential that the identification or target recognition be performed in real time. An important constraint upon real-time processing in the Fourier domain is the time taken to perform the Discrete Fourier Transform (DFT). Ideally, a new Fourier transform should be obtained after the arrival of every new data point. However, the Fast Fourier Transform (FFT) algorithm requires on the order of N log2 N operations, where N is the length of the transform, and this usually makes calculation of the transform for every new data point computationally prohibitive. In this paper, we develop an algorithm to update the existing DFT to represent the new data series that results when a new signal point is received. Updating the DFT in this way uses less computational order by a factor of log2 N. The algorithm can be modified to work in the presence of data window functions. This is a considerable advantage, because windowing is often necessary to reduce edge effects that occur because the implicit periodicity of the Fourier transform is not exhibited by the real-world signal. Versions are developed in this paper for use with the boxcar window, the split triangular, Hanning, Hamming, and Blackman windows. Generalization of these results to 2D is also presented.

  3. Fourier transform-wavefront reconstruction for the pyramid wavefront sensor

    NASA Astrophysics Data System (ADS)

    Quirós-Pacheco, Fernando; Correia, Carlos; Esposito, Simone

    The application of Fourier-transform reconstruction techniques to the pyramid wavefront sensor has been investigated. A preliminary study based on end-to-end simulations of an adaptive optics system with ≈40x40 subapertures and actuators shows that the performance of the Fourier-transform reconstructor (FTR) is of the same order of magnitude than the one obtained with a conventional matrix-vector multiply (MVM) method.

  4. Polarization Ratio Determination with Two Identical Linearly Polarized Antennas

    DTIC Science & Technology

    2017-01-17

    Fourier transform analysis of 21 measurements with one of the antennas rotating about its axis a circular polarization ratio is derived which can be...deter- mined directly from a discrete Fourier transform (DFT) of (5). However, leakage between closely spaced DFT bins requires improving the... Fourier transform and a mechanical antenna rotation to separate the principal and opposite circular polarization components followed by a basis

  5. Generalized prolate spheroidal wave functions for optical finite fractional Fourier and linear canonical transforms.

    PubMed

    Pei, Soo-Chang; Ding, Jian-Jiun

    2005-03-01

    Prolate spheroidal wave functions (PSWFs) are known to be useful for analyzing the properties of the finite-extension Fourier transform (fi-FT). We extend the theory of PSWFs for the finite-extension fractional Fourier transform, the finite-extension linear canonical transform, and the finite-extension offset linear canonical transform. These finite transforms are more flexible than the fi-FT and can model much more generalized optical systems. We also illustrate how to use the generalized prolate spheroidal functions we derive to analyze the energy-preservation ratio, the self-imaging phenomenon, and the resonance phenomenon of the finite-sized one-stage or multiple-stage optical systems.

  6. Theory and operational rules for the discrete Hankel transform.

    PubMed

    Baddour, Natalie; Chouinard, Ugo

    2015-04-01

    Previous definitions of a discrete Hankel transform (DHT) have focused on methods to approximate the continuous Hankel integral transform. In this paper, we propose and evaluate the theory of a DHT that is shown to arise from a discretization scheme based on the theory of Fourier-Bessel expansions. The proposed transform also possesses requisite orthogonality properties which lead to invertibility of the transform. The standard set of shift, modulation, multiplication, and convolution rules are derived. In addition to the theory of the actual manipulated quantities which stand in their own right, this DHT can be used to approximate the continuous forward and inverse Hankel transform in the same manner that the discrete Fourier transform is known to be able to approximate the continuous Fourier transform.

  7. Sequential measurement of conjugate variables as an alternative quantum state tomography.

    PubMed

    Di Lorenzo, Antonio

    2013-01-04

    It is shown how it is possible to reconstruct the initial state of a one-dimensional system by sequentially measuring two conjugate variables. The procedure relies on the quasicharacteristic function, the Fourier transform of the Wigner quasiprobability. The proper characteristic function obtained by Fourier transforming the experimentally accessible joint probability of observing "position" then "momentum" (or vice versa) can be expressed as a product of the quasicharacteristic function of the two detectors and that unknown of the quantum system. This allows state reconstruction through the sequence (1) data collection, (2) Fourier transform, (3) algebraic operation, and (4) inverse Fourier transform. The strength of the measurement should be intermediate for the procedure to work.

  8. Photonic fractional Fourier transformer with a single dispersive device.

    PubMed

    Cuadrado-Laborde, C; Carrascosa, A; Díez, A; Cruz, J L; Andres, M V

    2013-04-08

    In this work we used the temporal analog of spatial Fresnel diffraction to design a temporal fractional Fourier transformer with a single dispersive device, in this way avoiding the use of quadratic phase modulators. We demonstrate that a single dispersive passive device inherently provides the fractional Fourier transform of an incident optical pulse. The relationships linking the fractional Fourier transform order and scaling factor with the dispersion parameters are derived. We first provide some numerical results in order to prove the validity of our proposal, using a fiber Bragg grating as the dispersive device. Next, we experimentally demonstrate the feasibility of this proposal by using a spool of a standard optical fiber as the dispersive device.

  9. The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) on-board blackbody calibration system

    NASA Astrophysics Data System (ADS)

    Best, Fred A.; Revercomb, Henry E.; Knuteson, Robert O.; Tobin, David C.; Ellington, Scott D.; Werner, Mark W.; Adler, Douglas P.; Garcia, Raymond K.; Taylor, Joseph K.; Ciganovich, Nick N.; Smith, William L., Sr.; Bingham, Gail E.; Elwell, John D.; Scott, Deron K.

    2005-01-01

    The NASA New Millennium Program's Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) instrument provides enormous advances in water vapor, wind, temperature, and trace gas profiling from geostationary orbit. The top-level instrument calibration requirement is to measure brightness temperature to better than 1 K (3 sigma) over a broad range of atmospheric brightness temperatures, with a reproducibility of +/-0.2 K. For in-flight radiometric calibration, GIFTS uses views of two on-board blackbody sources (290 K and 255 K) along with cold space, sequenced at regular programmable intervals. The blackbody references are cavities that follow the UW Atmospheric Emitted Radiance Interferometer (AERI) design, scaled to the GIFTS beam size. The cavity spectral emissivity is better than 0.998 with an absolute uncertainty of less than 0.001. Absolute blackbody temperature uncertainties are estimated at 0.07 K. This paper describes the detailed design of the GIFTS on-board calibration system that recently underwent its Critical Design Review. The blackbody cavities use ultra-stable thermistors to measure temperature, and are coated with high emissivity black paint. Monte Carlo modeling has been performed to calculate the cavity emissivity. Both absolute temperature and emissivity measurements are traceable to NIST, and detailed uncertainty budgets have been developed and used to show the overall system meets accuracy requirements. The blackbody controller is housed on a single electronics board and provides precise selectable set point temperature control, thermistor resistance measurement, and the digital interface to the GIFTS instrument. Plans for the NIST traceable ground calibration of the on-board blackbody system have also been developed and are presented in this paper.

  10. Determination of chlorine concentration using single temperature modulated semiconductor gas sensor

    NASA Astrophysics Data System (ADS)

    Woźniak, Ł.; Kalinowski, P.; Jasiński, G.; Jasiński, P.

    2016-11-01

    A periodic temperature modulation using sinusoidal heater voltage was applied to a commercial SnO2 semiconductor gas sensor. Resulting resistance response of the sensor was analyzed using a feature extraction method based on Fast Fourier Transformation (FFT). The amplitudes of the higher harmonics of the FFT from the dynamic nonlinear responses of measured gas were further utilized as an input for Artificial Neuron Network (ANN). Determination of the concentration of chlorine was performed. Moreover, this work evaluates the sensor performance upon sinusoidal temperature modulation.

  11. The physicochemical properties of the low-temperature ionic liquid silver bromide-1-butyl-3-methylimidazolium bromide

    NASA Astrophysics Data System (ADS)

    Grishina, E. P.; Ramenskaya, L. M.; Pimenova, A. M.

    2009-11-01

    The physicochemical properties of the low-temperature ionic liquid based on 1-butyl-3-methylimidazolium bromide (BMImBr) and silver bromide were studied. Differential scanning calorimetry, Fourier transform IR spectroscopy, densimetry, viscometry, and conductometry measurements were performed to determine the dependences of the parameters under study on the concentration of AgBr. It was shown that the temperature and concentration behavior of the physicochemical properties of BMImBr-AgBr melts characterized the interaction between the system components with the formation of complex particles.

  12. In Situ Analysis of a High-Temperature Cure Reaction in Real Time Using Modulated Fiber-Optic FT-Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Aust, Jeffrey F.; Cooper, John B.; Wise, Kent L.; Jensen, Brian J.

    1999-01-01

    The vibrational spectrum of a high-temperature (330 C) polymerization reaction was successfully monitored in real time with the use of a modulated fiber-optic Fourier transform (FT)-Raman spectrometer. A phenylethynyl-terminated monomer was cured, and spectral evidence for two different reaction products was acquired. The products are a conjugated polyene chain and a cyclized trimer. This is the first report describing the use of FT-Raman spectroscopy to monitor a high temperature (greater than 250 C) reaction in real time.

  13. Teaching Fourier optics through ray matrices

    NASA Astrophysics Data System (ADS)

    Moreno, I.; Sánchez-López, M. M.; Ferreira, C.; Davis, J. A.; Mateos, F.

    2005-03-01

    In this work we examine the use of ray-transfer matrices for teaching and for deriving some topics in a Fourier optics course, exploiting the mathematical simplicity of ray matrices compared to diffraction integrals. A simple analysis of the physical meaning of the elements of the ray matrix provides a fast derivation of the conditions to obtain the optical Fourier transform. We extend this derivation to fractional Fourier transform optical systems, and derive the order of the transform from the ray matrix. Some examples are provided to stress this point of view, both with classical and with graded index lenses. This formulation cannot replace the complete explanation of Fourier optics provided by the wave theory, but it is a complementary tool useful to simplify many aspects of Fourier optics and to relate them to geometrical optics.

  14. Signal processing applications of massively parallel charge domain computing devices

    NASA Technical Reports Server (NTRS)

    Fijany, Amir (Inventor); Barhen, Jacob (Inventor); Toomarian, Nikzad (Inventor)

    1999-01-01

    The present invention is embodied in a charge coupled device (CCD)/charge injection device (CID) architecture capable of performing a Fourier transform by simultaneous matrix vector multiplication (MVM) operations in respective plural CCD/CID arrays in parallel in O(1) steps. For example, in one embodiment, a first CCD/CID array stores charge packets representing a first matrix operator based upon permutations of a Hartley transform and computes the Fourier transform of an incoming vector. A second CCD/CID array stores charge packets representing a second matrix operator based upon different permutations of a Hartley transform and computes the Fourier transform of an incoming vector. The incoming vector is applied to the inputs of the two CCD/CID arrays simultaneously, and the real and imaginary parts of the Fourier transform are produced simultaneously in the time required to perform a single MVM operation in a CCD/CID array.

  15. The Effects of Alkali and Temperature on the Hydrolysis Rate of N-methylpyrrolidone

    NASA Astrophysics Data System (ADS)

    Ou, Yu Jing; Wang, Xiao Mei; Lei Li, Chun; Zhu, Ya Long; Li, Xiao Long

    2017-12-01

    By studying the hydrolysis of N-methylpyrrolidone, it was found that the effects of NaOH concentration and temperature on N-methylpyrrolidone's hydrolysis were remarkable. Fourier transform infrared (FTIR) and Gel Permeation Chromatography (GPC) detected that the mainly hydrolyzate was 4-(methylamino)butyric acid, and the hydrolyzate can generate polymers, which of molecular weight increases with temperature rising. The results of Gas Chromatography (GC) and moisture meter test showed that adding alkaline and raising temperature can aggravate hydrolysis of NMP. This study provide theoretical basis for recycling solvent (NMP) in the production of polyphenylene sulfide (PPS).

  16. Apparatus for direct-to-digital spatially-heterodyned holography

    DOEpatents

    Thomas, Clarence E.; Hanson, Gregory R.

    2006-12-12

    An apparatus operable to record a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis includes: a laser; a beamsplitter optically coupled to the laser; an object optically coupled to the beamsplitter; a focusing lens optically coupled to both the beamsplitter and the object; a digital recorder optically coupled to the focusing lens; and a computer that performs a Fourier transform, applies a digital filter, and performs an inverse Fourier transform. A reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis which is recorded by the digital recorder, and the computer transforms the recorded spatially low-frequency heterodyne hologram including spatially heterodyne fringes and shifts axes in Fourier space to sit on top of a heterodyne carrier frequency defined by an angle between the reference beam and the object beam and cuts off signals around an original origin before performing the inverse Fourier transform.

  17. Physiochemical/Rheological Control of Nonmetallic Materials.

    DTIC Science & Technology

    1982-08-01

    CONCLUSIONS ... .. .. . .oo.. .. .. .. .. .. .. .... 23 APPENDIX A - Infrared Spectra of Nonmetallic Consumables .. ......... 24 77’. 1SN 7.. Tiii LIST OF...Spectrometer IR Infrared Spectroscopy GC Gas Chromatrography MS Mass Spectrometry * DSC Differenitial Scanning Calorimetry RT Room Temperature ET Elevated...Linear Heating Rate *FTIR Fourier Transform Infrared TGA Thermogravimetric Analysis Vi 1.0 INTRODUCTION AND SUOARY Over the past 10 years

  18. A TEMPERATURE- AND COMPOSITION-DEPENDENT STUDY, OF H2SO4 AEROSOL OPTICAL CONSTANTS USING FOURIER TRANSFORM AND TUNABLE DIODE LASER INFRARED SPECTROSCOPY. (R826767)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  19. Liquefaction behaviors of bamboo residues in a glycerol-based solvent using microwave energy

    Treesearch

    Jiulong Xie; Chung-Yun Hse; Todd F. Shupe; Jinqiu Qi; Hui Pan

    2014-01-01

    Liquefaction of bamboo was performed in glycerol–methanol as co-solvent using microwave energy and was evaluated by characterizing the liquefied residues. High efficiency conversion of bamboo was achieved under mild reaction conditions. Liquefaction temperature and time interacted to affect the liquefaction reaction. Fourier transform infrared analyzes of the residues...

  20. Generalized thermoelastic problem of an infinite body with a spherical cavity under dual-phase-lags

    NASA Astrophysics Data System (ADS)

    Karmakar, R.; Sur, A.; Kanoria, M.

    2016-07-01

    The aim of the present contribution is the determination of the thermoelastic temperatures, stress, displacement, and strain in an infinite isotropic elastic body with a spherical cavity in the context of the mechanism of the two-temperature generalized thermoelasticity theory (2TT). The two-temperature Lord-Shulman (2TLS) model and two-temperature dual-phase-lag (2TDP) model of thermoelasticity are combined into a unified formulation with unified parameters. The medium is assumed to be initially quiescent. The basic equations are written in the form of a vector matrix differential equation in the Laplace transform domain, which is then solved by the state-space approach. The expressions for the conductive temperature and elongation are obtained at small times. The numerical inversion of the transformed solutions is carried out by using the Fourier-series expansion technique. A comparative study is performed for the thermoelastic stresses, conductive temperature, thermodynamic temperature, displacement, and elongation computed by using the Lord-Shulman and dual-phase-lag models.

  1. Practical Sub-Nyquist Sampling via Array-Based Compressed Sensing Receiver Architecture

    DTIC Science & Technology

    2016-07-10

    different array ele- ments at different sub-Nyquist sampling rates. Signal processing inspired by the sparse fast Fourier transform allows for signal...reconstruction algorithms can be computationally demanding (REF). The related sparse Fourier transform algorithms aim to reduce the processing time nec- essary to...compute the DFT of frequency-sparse signals [7]. In particular, the sparse fast Fourier transform (sFFT) achieves processing time better than the

  2. Discrete fourier transform (DFT) analysis for applications using iterative transform methods

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H. (Inventor)

    2012-01-01

    According to various embodiments, a method is provided for determining aberration data for an optical system. The method comprises collecting a data signal, and generating a pre-transformation algorithm. The data is pre-transformed by multiplying the data with the pre-transformation algorithm. A discrete Fourier transform of the pre-transformed data is performed in an iterative loop. The method further comprises back-transforming the data to generate aberration data.

  3. Investigation on H-containing shallow trap of hydrogenated TiO2 with in situ Fourier transform infrared diffuse reflection spectroscopy.

    PubMed

    Han, Bing; Hang Hu, Yun

    2017-07-28

    A novel technique, high temperature high pressure in situ Fourier transform infrared diffuse reflection spectroscopy, was successfully used to investigate the formation and stability of shallow trap states in P25 TiO 2 nanoparticles. Two types of shallow traps (with and without H atoms) were identified. The H-containing shallow trap can be easily generated by heating in H 2 atmosphere. However, the trap is unstable in vacuum at 600 °C. In contrast, the H-free shallow trap, which can be formed by heating in vacuum, is stable even at 600 °C. The energy gaps between shallow trap states and the conduction band are 0.09 eV for H-containing shallow trap and 0.13 eV for H-free shallow trap, indicating that the H-containing shallow trap state is closer to the conduction band than that without H.

  4. STRUCTURE IN THE 3D GALAXY DISTRIBUTION: III. FOURIER TRANSFORMING THE UNIVERSE: PHASE AND POWER SPECTRA.

    PubMed

    Scargle, Jeffrey D; Way, M J; Gazis, P R

    2017-04-10

    We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform (FFT) of finely binned galaxy positions. In both cases deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multi-point hierarchy. We identify some threads of modern large scale inference methodology that will presumably yield detections in new wider and deeper surveys.

  5. STRUCTURE IN THE 3D GALAXY DISTRIBUTION: III. FOURIER TRANSFORMING THE UNIVERSE: PHASE AND POWER SPECTRA

    PubMed Central

    Scargle, Jeffrey D.; Way, M. J.; Gazis, P. R.

    2017-01-01

    We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform (FFT) of finely binned galaxy positions. In both cases deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multi-point hierarchy. We identify some threads of modern large scale inference methodology that will presumably yield detections in new wider and deeper surveys. PMID:29628519

  6. Structure in the 3D Galaxy Distribution: III. Fourier Transforming the Universe: Phase and Power Spectra

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.; Way, M. J.; Gazis, P. R.

    2017-01-01

    We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform (FFT) of finely binned galaxy positions. In both cases deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multi-point hierarchy. We identify some threads of modern large scale inference methodology that will presumably yield detections in new wider and deeper surveys.

  7. Simulating first order optical systems—algorithms for and composition of discrete linear canonical transforms

    NASA Astrophysics Data System (ADS)

    Healy, John J.

    2018-01-01

    The linear canonical transforms (LCTs) are a parameterised group of linear integral transforms. The LCTs encompass a number of well-known transformations as special cases, including the Fourier transform, fractional Fourier transform, and the Fresnel integral. They relate the scalar wave fields at the input and output of systems composed of thin lenses and free space, along with other quadratic phase systems. In this paper, we perform a systematic search of all algorithms based on up to five stages of magnification, chirp multiplication and Fourier transforms. Based on that search, we propose a novel algorithm, for which we present numerical results. We compare the sampling requirements of three algorithms. Finally, we discuss some issues surrounding the composition of discrete LCTs.

  8. The spatial variability of coastal surface water temperature during upwelling. [in Lake Superior

    NASA Technical Reports Server (NTRS)

    Scarpace, F. L.; Green, T., III

    1979-01-01

    Thermal scanner imagery acquired during a field experiment designed to study an upwelling event in Lake Superior is investigated. Temperature data were measured by the thermal scanner, with a spatial resolution of 7 m. These data were correlated with temperatures measured from boats. One- and two-dimensional Fourier transforms of the data were calculated and temperature variances as a function of wavenumber were plotted. A k-to-the-minus-three dependence of the temperature variance on wavenumber was found in the wavenumber range of 1-25/km. At wavenumbers greater than 25/km, a k-to-the-minus-five-thirds dependence was found.

  9. An Investigation into the Use of Spatially-Filtered Fourier Transforms to Classify Mammary Lesions.

    DTIC Science & Technology

    difference in Fourier space between lesioned breast tissue which would enable accurate computer classification of benign and malignant lesions. Low...separate benign and malignant breast tissue. However, no success was achieved when using two-dimensional Fourier transform and power spectrum analysis. (Author)

  10. Detection of Fast Moving and Accelerating Targets Compensating Range and Doppler Migration

    DTIC Science & Technology

    2014-06-01

    Radon -Fourier transform has been introduced to realize long- term coherent integration of the moving targets with range migration [8, 9]. Radon ...2010) Long-time coherent integration for radar target detection base on Radon -Fourier transform, in Proceedings of the IEEE Radar Conference, pp...432–436. 9. Xu, J., Yu, J., Peng, Y. & Xia, X. (2011) Radon -Fourier transform for radar target detection, I: Generalized Doppler filter bank, IEEE

  11. Mode Transitions in Hall Effect Thrusters

    DTIC Science & Technology

    2013-07-01

    bM = number of pixels per bin m = spoke order 0m = spoke order m = 0 em = electron mass, 9.1110 -31 kg im = Xe ion mass, 2.18×10 -25...periodogram spectral estimate, Arb Hz -1 eT = electron temperature eT = electron temperature parallel to magnetic field, eV eT  = electron ...Fourier transform of x(t)  = inverse angle from 2D DFT, deg-1  = mean electron energy, eV * = material dependent cross-over energy, eV xy

  12. A Primer of Fourier Transform NMR.

    ERIC Educational Resources Information Center

    Macomber, Roger S.

    1985-01-01

    Fourier transform nuclear magnetic resonance (NMR) is a new spectroscopic technique that is often omitted from undergraduate curricula because of lack of instructional materials. Therefore, information is provided to introduce students to the technique of data collection and transformation into the frequency domain. (JN)

  13. Geometric Representations for Discrete Fourier Transforms

    NASA Technical Reports Server (NTRS)

    Cambell, C. W.

    1986-01-01

    Simple geometric representations show symmetry and periodicity of discrete Fourier transforms (DFT's). Help in visualizing requirements for storing and manipulating transform value in computations. Representations useful in any number of dimensions, but particularly in one-, two-, and three-dimensional cases often encountered in practice.

  14. Sparsity guided empirical wavelet transform for fault diagnosis of rolling element bearings

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Zhao, Yang; Yi, Cai; Tsui, Kwok-Leung; Lin, Jianhui

    2018-02-01

    Rolling element bearings are widely used in various industrial machines, such as electric motors, generators, pumps, gearboxes, railway axles, turbines, and helicopter transmissions. Fault diagnosis of rolling element bearings is beneficial to preventing any unexpected accident and reducing economic loss. In the past years, many bearing fault detection methods have been developed. Recently, a new adaptive signal processing method called empirical wavelet transform attracts much attention from readers and engineers and its applications to bearing fault diagnosis have been reported. The main problem of empirical wavelet transform is that Fourier segments required in empirical wavelet transform are strongly dependent on the local maxima of the amplitudes of the Fourier spectrum of a signal, which connotes that Fourier segments are not always reliable and effective if the Fourier spectrum of the signal is complicated and overwhelmed by heavy noises and other strong vibration components. In this paper, sparsity guided empirical wavelet transform is proposed to automatically establish Fourier segments required in empirical wavelet transform for fault diagnosis of rolling element bearings. Industrial bearing fault signals caused by single and multiple railway axle bearing defects are used to verify the effectiveness of the proposed sparsity guided empirical wavelet transform. Results show that the proposed method can automatically discover Fourier segments required in empirical wavelet transform and reveal single and multiple railway axle bearing defects. Besides, some comparisons with three popular signal processing methods including ensemble empirical mode decomposition, the fast kurtogram and the fast spectral correlation are conducted to highlight the superiority of the proposed method.

  15. Fourier Transforms of Pulses Containing Exponential Leading and Trailing Profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warshaw, S I

    2001-07-15

    In this monograph we discuss a class of pulse shapes that have exponential rise and fall profiles, and evaluate their Fourier transforms. Such pulses can be used as models for time-varying processes that produce an initial exponential rise and end with the exponential decay of a specified physical quantity. Unipolar examples of such processes include the voltage record of an increasingly rapid charge followed by a damped discharge of a capacitor bank, and the amplitude of an electromagnetic pulse produced by a nuclear explosion. Bipolar examples include acoustic N waves propagating for long distances in the atmosphere that have resultedmore » from explosions in the air, and sonic booms generated by supersonic aircraft. These bipolar pulses have leading and trailing edges that appear to be exponential in character. To the author's knowledge the Fourier transforms of such pulses are not generally well-known or tabulated in Fourier transform compendia, and it is the purpose of this monograph to derive and present these transforms. These Fourier transforms are related to a definite integral of a ratio of exponential functions, whose evaluation we carry out in considerable detail. From this result we derive the Fourier transforms of other related functions. In all Figures showing plots of calculated curves, the actual numbers used for the function parameter values and dependent variables are arbitrary and non-dimensional, and are not identified with any particular physical phenomenon or model.« less

  16. A Short-Segment Fourier Transform Methodology

    DTIC Science & Technology

    2009-03-01

    defined sampling of the continuous-valued discrete-time Fourier transform, superresolution in the frequency domain and allowance of Dirac delta functions associated with pure sinusoidal input data components.

  17. 40 CFR 98.414 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... appropriate detector, infrared (IR), fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR... Compounds by Extractive Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy (incorporated by...

  18. 40 CFR 98.414 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... appropriate detector, infrared (IR), fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR... Compounds by Extractive Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy (incorporated by...

  19. 40 CFR 98.414 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... appropriate detector, infrared (IR), fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR... Compounds by Extractive Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy (incorporated by...

  20. 40 CFR 98.414 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... appropriate detector, infrared (IR), fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR... Compounds by Extractive Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy (incorporated by...

  1. Analysis and application of Fourier transform spectroscopy in atmospheric remote sensing

    NASA Technical Reports Server (NTRS)

    Park, J. H.

    1984-01-01

    An analysis method for Fourier transform spectroscopy is summarized with applications to various types of distortion in atmospheric absorption spectra. This analysis method includes the fast Fourier transform method for simulating the interferometric spectrum and the nonlinear least-squares method for retrieving the information from a measured spectrum. It is shown that spectral distortions can be simulated quite well and that the correct information can be retrieved from a distorted spectrum by this analysis technique.

  2. Robust alignment of chromatograms by statistically analyzing the shifts matrix generated by moving window fast Fourier transform cross-correlation.

    PubMed

    Zhang, Mingjing; Wen, Ming; Zhang, Zhi-Min; Lu, Hongmei; Liang, Yizeng; Zhan, Dejian

    2015-03-01

    Retention time shift is one of the most challenging problems during the preprocessing of massive chromatographic datasets. Here, an improved version of the moving window fast Fourier transform cross-correlation algorithm is presented to perform nonlinear and robust alignment of chromatograms by analyzing the shifts matrix generated by moving window procedure. The shifts matrix in retention time can be estimated by fast Fourier transform cross-correlation with a moving window procedure. The refined shift of each scan point can be obtained by calculating the mode of corresponding column of the shifts matrix. This version is simple, but more effective and robust than the previously published moving window fast Fourier transform cross-correlation method. It can handle nonlinear retention time shift robustly if proper window size has been selected. The window size is the only one parameter needed to adjust and optimize. The properties of the proposed method are investigated by comparison with the previous moving window fast Fourier transform cross-correlation and recursive alignment by fast Fourier transform using chromatographic datasets. The pattern recognition results of a gas chromatography mass spectrometry dataset of metabolic syndrome can be improved significantly after preprocessing by this method. Furthermore, the proposed method is available as an open source package at https://github.com/zmzhang/MWFFT2. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Implementation of the semiclassical quantum Fourier transform in a scalable system.

    PubMed

    Chiaverini, J; Britton, J; Leibfried, D; Knill, E; Barrett, M D; Blakestad, R B; Itano, W M; Jost, J D; Langer, C; Ozeri, R; Schaetz, T; Wineland, D J

    2005-05-13

    We report the implementation of the semiclassical quantum Fourier transform in a system of three beryllium ion qubits (two-level quantum systems) confined in a segmented multizone trap. The quantum Fourier transform is the crucial final step in Shor's algorithm, and it acts on a register of qubits to determine the periodicity of the quantum state's amplitudes. Because only probability amplitudes are required for this task, a more efficient semiclassical version can be used, for which only single-qubit operations conditioned on measurement outcomes are required. We apply the transform to several input states of different periodicities; the results enable the location of peaks corresponding to the original periods. This demonstration incorporates the key elements of a scalable ion-trap architecture, suggesting the future capability of applying the quantum Fourier transform to a large number of qubits as required for a useful quantum factoring algorithm.

  4. [Using 2-DCOS to identify the molecular spectrum peaks for the isomer in the multi-component mixture gases Fourier transform infrared analysis].

    PubMed

    Zhao, An-Xin; Tang, Xiao-Jun; Zhang, Zhong-Hua; Liu, Jun-Hua

    2014-10-01

    The generalized two-dimensional correlation spectroscopy and Fourier transform infrared were used to identify hydrocarbon isomers in the mixed gases for absorption spectra resolution enhancement. The Fourier transform infrared spectrum of n-butane and iso-butane and the two-dimensional correlation infrared spectrum of concentration perturbation were used for analysis as an example. The all band and the main absorption peak wavelengths of Fourier transform infrared spectrum for single component gas showed that the spectra are similar, and if they were mixed together, absorption peaks overlap and peak is difficult to identify. The synchronous and asynchronous spectrum of two-dimensional correlation spectrum can clearly identify the iso-butane and normal butane and their respective characteristic absorption peak intensity. Iso-butane has strong absorption characteristics spectrum lines at 2,893, 2,954 and 2,893 cm(-1), and n-butane at 2,895 and 2,965 cm(-1). The analysis result in this paper preliminary verified that the two-dimensional infrared correlation spectroscopy can be used for resolution enhancement in Fourier transform infrared spectrum quantitative analysis.

  5. Fourier transform spectroscopy for future planetary missions

    NASA Astrophysics Data System (ADS)

    Brasunas, John C.; Hewagama, Tilak; Kolasinski, John R.; Kostiuk, Theodor

    2015-11-01

    Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system.Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, NASA Goddard was funded via the Planetary Instrument Definition and Development Progrem (PIDDP) to develop CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. Following the initial validation of CIRS-lite operation in the laboratory, we have been acquiring atmospheric data in the 8-12 micron window at the 1.2 m telescope at the Goddard Geophysical and Astronomical Observatory (GGAO) in Greenbelt, MD. Targets so far have included Earth's atmosphere (in emission, and in absorption against the moon), and Venus.We will present the roadmap for making CIRS-lite a viable candidate for future planetary missions.

  6. Fourier transform-infrared studies of thin H2SO4/H2O films: Formation, water uptake, and solid-liquid phase changes

    NASA Technical Reports Server (NTRS)

    Middlebrook, Ann M.; Iraci, Laura T.; Mcneill, Laurie S.; Koehler, Birgit G.; Wilson, Margaret A.; Saastad, Ole W.; Tolbert, Margaret A.; Hanson, David R.

    1993-01-01

    Fourier transform-infrared (FTIR) spectroscopy was used to examine films representative of stratospheric sulfuric acid aerosols. Thin films of sulfuric acid were formed in situ by the condensed phase reaction of SO3 with H2O. FTIR spectra show that the sulfuric acid films absorb water while cooling in the presence of water vapor. Using stratospheric water pressures, the most dilute solutions observed were greater than 40 wt % before simultaneous ice formation and sulfuric acid freezing occurred. FTIR spectra also revealed that the sulfuric acid films crystallized mainly as sulfuric acid tetrahydrate (SAT). Crystallization occurred either when the composition was about 60 wt% H2SO4 or after ice formed on the films at temperatures 1-4 K below the ice frost point. Finally, we determined that the melting point for SAT depended on the background water pressure and was 216-219 K in the presence of 4 x 10(exp -4) Torr H2O. Our results suggest that once frozen, sulfuric acid aerosols in the stratosphere are likely to melt at these temperatures, 30 K colder than previously thought.

  7. Location of cholesterol in liposomes by using small-angle X-ray scattering (SAXS) data and the generalized indirect Fourier transformation (GIFT) method.

    PubMed

    Aburai, Kenichi; Ogura, Taku; Hyodo, Ryo; Sakai, Hideki; Abe, Masahiko; Glatter, Otto

    2013-01-01

    We investigated the location of cholesterol (Chol) in liposomes and its interaction with phospholipids using small-angle x-ray scattering (SAXS) data and applying the generalized indirect Fourier transformation (GIFT) method. The GIFT method has been applied to lamellar liquid crystal systems and it gives quantitative data on bilayer thickness, electron density profile, and membrane flexibility (Caillé parameter). When the GIFT method is applied to the SAXS data of dipalmitoylphosphatidylcholine (DPPC) alone (Chol [-]) or a DPPC/Chol = 7/3 mixed system (Chol [+], molar ratio), change in the bilayer thickness was insignificant in both systems. However, the electron density for the Chol (+) system was higher than that for the Chol (-) system at the location of hydrophilic groups of phospholipids, and whereas Caillé parameter value increased with temperature for the Chol (-) system, no significant change with temperature was observed in the Caillé parameter for the Chol (+) system. These results indicated that Chol is located in the vicinity of the hydrophilic group of the phospholipids and constricts the packing of the acyl chain of phospholipids in the bilayer.

  8. Effect of temperature on the magnetic properties of nano-sized M-type barium hexagonal ferrites

    NASA Astrophysics Data System (ADS)

    Tchouank Tekou Carol, T.; Sharma, Jyoti; Mohammed, J.; Kumar, Sachin; Srivastava, A. K.

    2017-07-01

    The application of M-type hexagonal ferrites in electronic devices is increasing with technological advancement. This is due to the possibility of improving the physical and magnetic properties to suit the desired application. Enhanced magnetic properties make hexagonal ferrites suitable for hyper frequency and radar absorbing application. In this paper, we investigated the effect of heat-treatment temperature on the structural and magnetic properties of M-type barium hexagonal ferrites with chemical composition Ba1-xAlxFe12-yMnyO19 (x=0.6 and y=0.3) synthesized by sol-gel auto-combustion method and sintered at 750°C, 850°C, 950°C and 1050°C. Characterisations of the prepared samples were done using Fourier transform-infrared (FT-IR), and vibrating sample magnetometer (VSM). The formation of M-type hexaferrite has been confirmed from XRD. The presence of two prominent peaks between 400 cm-1 and 600 cm-1 in the spectra of Fourier transform-infrared spectroscopy (FT-IR) also shows the formation of ferrite phase. Saturation magnetisation (MS), remnant magnetisation (Mr), coercivity (Hc) and squareness ratio (SR) were calculated from the M-H loop obtained from vibrating sample magnetometer (VSM).

  9. Comparative Variable Temperature Studies of Polyamide II with a Benchtop Fourier Transform and a Miniature Handheld Near-Infrared Spectrometer Using 2D-COS and PCMW-2D Analysis.

    PubMed

    Unger, Miriam; Pfeifer, Frank; Siesler, Heinz W

    2016-07-01

    The main objective of this communication is to compare the performance of a miniaturized handheld near-infrared (NIR) spectrometer with a benchtop Fourier transform near-infrared (FT-NIR) spectrometer. Generally, NIR spectroscopy is an extremely powerful analytical tool to study hydrogen-bonding changes of amide functionalities in solid and liquid materials and therefore variable temperature NIR measurements of polyamide II (PAII) have been selected as a case study. The information content of the measurement data has been further enhanced by exploiting the potential of two-dimensional correlation spectroscopy (2D-COS) and the perturbation correlation moving window two-dimensional (PCMW2D) evaluation technique. The data provide valuable insights not only into the changes of the hydrogen-bonding structure and the recrystallization of the hydrocarbon segments of the investigated PAII but also in their sequential order. Furthermore, it has been demonstrated that the 2D-COS and PCMW2D results derived from the spectra measured with the miniaturized NIR instrument are equivalent to the information extracted from the data obtained with the high-performance FT-NIR instrument. © The Author(s) 2016.

  10. Fatty acidomics: Evaluation of the effects of thermal treatments on commercial mussels through an extended characterization of their free fatty acids by liquid chromatography - Fourier transform mass spectrometry.

    PubMed

    Losito, Ilario; Facchini, Laura; Valentini, Alessandra; Cataldi, Tommaso R I; Palmisano, Francesco

    2018-07-30

    An unprecedented characterization of free fatty acids (FFA) in the lipid extracts of fresh or thermally treated mussels of sp. Mytilus galloprovincialis, including up to 128 saturated, mono- or poly-unsaturated and 63 oxidized (i.e., modified by hydroxylic, carbonylic and/or epoxylic groups) compounds, was achieved using reverse phase chromatography coupled to electrospray ionization-Fourier transform single and tandem mass spectrometry (RPC-ESI-FTMS,MS/MS). Subsequent Principal Components Analysis (PCA) evidenced several effects of thermal treatments on the mussel FFA profiles. In particular, death-inducing low temperature treatments (freezing at -16 °C or refrigeration at 4 °C for several days) induced a peculiar increase in the incidence of FFA, whereas the effect was absent in mussels undergoing death upon prolonged storage at room temperature (25 °C, 6 h) or fast cooking (100 °C, 5 min). Alive mussels, either fresh or resulting from short term (up to 48 h) refrigeration were actually indistinguishable by PCA, although subtle seasonal effects were observed. Copyright © 2018. Published by Elsevier Ltd.

  11. A BASIC program for the removal of noise from reaction traces using Fourier filtering.

    PubMed

    Brittain, T

    1989-04-01

    Software for the removal of noise from reaction curves using the principle of Fourier filtering has been written in BASIC to execute on a PC. The program inputs reaction traces which are subjected to a rotation-inversion process, to produce functions suitable for Fourier analysis. Fourier transformation into the frequency domain is followed by multiplication of the transform by a rectangular filter function, to remove the noise frequencies. Inverse transformation then yields a noise-reduced reaction trace suitable for further analysis. The program is interactive at each stage and could easily be modified to remove noise from a range of input data types.

  12. Method for determining and displaying the spacial distribution of a spectral pattern of received light

    DOEpatents

    Bennett, C.L.

    1996-07-23

    An imaging Fourier transform spectrometer is described having a Fourier transform infrared spectrometer providing a series of images to a focal plane array camera. The focal plane array camera is clocked to a multiple of zero crossing occurrences as caused by a moving mirror of the Fourier transform infrared spectrometer and as detected by a laser detector such that the frame capture rate of the focal plane array camera corresponds to a multiple of the zero crossing rate of the Fourier transform infrared spectrometer. The images are transmitted to a computer for processing such that representations of the images as viewed in the light of an arbitrary spectral ``fingerprint`` pattern can be displayed on a monitor or otherwise stored and manipulated by the computer. 2 figs.

  13. Nonlinear Fourier transform—towards the construction of nonlinear Fourier modes

    NASA Astrophysics Data System (ADS)

    Saksida, Pavle

    2018-01-01

    We study a version of the nonlinear Fourier transform associated with ZS-AKNS systems. This version is suitable for the construction of nonlinear analogues of Fourier modes, and for the perturbation-theoretic study of their superposition. We provide an iterative scheme for computing the inverse of our transform. The relevant formulae are expressed in terms of Bell polynomials and functions related to them. In order to prove the validity of our iterative scheme, we show that our transform has the necessary analytic properties. We show that up to order three of the perturbation parameter, the nonlinear Fourier mode is a complex sinusoid modulated by the second Bernoulli polynomial. We describe an application of the nonlinear superposition of two modes to a problem of transmission through a nonlinear medium.

  14. 40 CFR 98.224 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy. (2) ASTM D6348-03 Standard Test Method for Determination of Gaseous Compounds by Extractive Direct Interface Fourier Transform...

  15. 40 CFR 98.224 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy. (2) ASTM D6348-03 Standard Test Method for Determination of Gaseous Compounds by Extractive Direct Interface Fourier Transform...

  16. 40 CFR 98.224 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy. (2) ASTM D6348-03 Standard Test Method for Determination of Gaseous Compounds by Extractive Direct Interface Fourier Transform...

  17. 40 CFR 98.224 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy. (2) ASTM D6348-03 Standard Test Method for Determination of Gaseous Compounds by Extractive Direct Interface Fourier Transform...

  18. Reduction and coding of synthetic aperture radar data with Fourier transforms

    NASA Technical Reports Server (NTRS)

    Tilley, David G.

    1995-01-01

    Recently, aboard the Space Radar Laboratory (SRL), the two roles of Fourier Transforms for ocean image synthesis and surface wave analysis have been implemented with a dedicated radar processor to significantly reduce Synthetic Aperture Radar (SAR) ocean data before transmission to the ground. The object was to archive the SAR image spectrum, rather than the SAR image itself, to reduce data volume and capture the essential descriptors of the surface wave field. SAR signal data are usually sampled and coded in the time domain for transmission to the ground where Fourier Transforms are applied both to individual radar pulses and to long sequences of radar pulses to form two-dimensional images. High resolution images of the ocean often contain no striking features and subtle image modulations by wind generated surface waves are only apparent when large ocean regions are studied, with Fourier transforms, to reveal periodic patterns created by wind stress over the surface wave field. Major ocean currents and atmospheric instability in coastal environments are apparent as large scale modulations of SAR imagery. This paper explores the possibility of computing complex Fourier spectrum codes representing SAR images, transmitting the coded spectra to Earth for data archives and creating scenes of surface wave signatures and air-sea interactions via inverse Fourier transformations with ground station processors.

  19. Simultaneous small-angle neutron scattering and Fourier transform infrared spectroscopic measurements on cocrystals of syndiotactic polystyrene with polyethylene glycol dimethyl ethers.

    PubMed

    Kaneko, Fumitoshi; Seto, Naoki; Sato, Shuma; Radulescu, Aurel; Schiavone, Maria Maddalena; Allgaier, Jürgen; Ute, Koichi

    2016-10-01

    Syndiotactic polystyrene (sPS) is a crystalline polymer which has a unique property; it is able to form cocrystals with a wide range of chemical compounds, in which the guest molecules are confined in the vacancies of the host sPS crystalline region. Recently, it has been found that even polyethylene glycol oligomers with a molecular weight of more than several hundreds can be introduced into the sPS crystalline region. It is quite important to know how such a long-chain molecule is stored in the host sPS lattice. To tackle this issue, a new simultaneous measurement method combing small-angle neutron scattering and Fourier transform infrared spectroscopy (SANS/FTIR), which has been recently developed by the authors, was applied to an sPS cocrystal with polyethylene glycol dimethyl ether with a molecular weight of 500 (PEGDME500). The temperature-dependent changes of the SANS profile and FTIR spectrum were followed from room temperature up to 413 K for a one-dimensionally oriented SANS/PEGDME500 cocrystal sample. The intensity of the reflections due to the stacking of crystalline lamellae showed a significant temperature dependence. The two-dimensional pattern in the high Q region of SANS also changed depending on temperature. The combined information obtained by SANS and FTIR suggested that PEGDME500 molecules are distributed in both the crystalline and amorphous regions in the low-temperature region close to room temperature, but they are predominantly included in the amorphous region in the high-temperature region. It was also suggested by the two-dimensional SANS profile that PEGDME500 molecules in the crystalline region have an elongated structure along the thickness direction of the crystalline lamellae.

  20. Simultaneous small-angle neutron scattering and Fourier transform infrared spectroscopic measurements on cocrystals of syndiotactic polystyrene with polyethylene glycol dimethyl ethers1

    PubMed Central

    Kaneko, Fumitoshi; Seto, Naoki; Sato, Shuma; Radulescu, Aurel; Schiavone, Maria Maddalena; Allgaier, Jürgen; Ute, Koichi

    2016-01-01

    Syndiotactic polystyrene (sPS) is a crystalline polymer which has a unique property; it is able to form cocrystals with a wide range of chemical compounds, in which the guest molecules are confined in the vacancies of the host sPS crystalline region. Recently, it has been found that even polyethylene glycol oligomers with a molecular weight of more than several hundreds can be introduced into the sPS crystalline region. It is quite important to know how such a long-chain molecule is stored in the host sPS lattice. To tackle this issue, a new simultaneous measurement method combing small-angle neutron scattering and Fourier transform infrared spectroscopy (SANS/FTIR), which has been recently developed by the authors, was applied to an sPS cocrystal with polyethylene glycol dimethyl ether with a molecular weight of 500 (PEGDME500). The temperature-dependent changes of the SANS profile and FTIR spectrum were followed from room temperature up to 413 K for a one-dimensionally oriented SANS/PEGDME500 cocrystal sample. The intensity of the reflections due to the stacking of crystalline lamellae showed a significant temperature dependence. The two-dimensional pattern in the high Q region of SANS also changed depending on temperature. The combined information obtained by SANS and FTIR suggested that PEGDME500 molecules are distributed in both the crystalline and amorphous regions in the low-temperature region close to room temperature, but they are predominantly included in the amorphous region in the high-temperature region. It was also suggested by the two-dimensional SANS profile that PEGDME500 molecules in the crystalline region have an elongated structure along the thickness direction of the crystalline lamellae. PMID:27738412

  1. Use of the fractional Fourier transform in {pi}/2 converters of laser modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyutin, A A

    2004-02-28

    The possibility of using the fractional Fourier transform (FrFT) in optical schemes for astigmatic {pi}/2 converters of Hermite-Gaussian modes to donut Laguerre-Gaussian modes is considered. Several schemes of converters based on the FrFT of the half-integer and irrational orders are presented. The lowest FrFT order than can be used in astigmatic mode converters is found. The properties of converters based on the fractional and ordinary Fourier transforms are compared. (laser beams)

  2. Restoration algorithms for imaging through atmospheric turbulence

    DTIC Science & Technology

    2017-02-18

    the Fourier spectrum of each frame. The reconstructed image is then obtained by taking the inverse Fourier transform of the average of all processed...with wipξq “ Gσp|Fpviqpξq|pq řM j“1Gσp|Fpvjqpξq|pq , where F denotes the Fourier transform (ξ are the frequencies) and Gσ is a Gaussian filter of...a combination of SIFT [26] and ORSA [14] algorithms) in order to remove affine transformations (translations, rotations and homothety). The authors

  3. Tomography: Three Dimensional Image Construction. Applications of Analysis to Medical Radiology. [and] Genetic Counseling. Applications of Probability to Medicine. [and] The Design of Honeycombs. Applications of Differential Equations to Biology. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Units 318, 456, 502.

    ERIC Educational Resources Information Center

    Solomon, Frederick; And Others.

    This document consists of three modules. The first looks at applications of analysis to medical radiology. The goals are to provide: 1) acquaintance with a significant applied mathematics problem utilizing Fourier Transforms; 2) generalization of the Fourier Transforms to two dimensions; 3) practice with Fourier Transforms; and 4) introduction to…

  4. A laboratory demonstration of high-resolution hard X-ray and gamma-ray imaging using Fourier-transform techniques

    NASA Technical Reports Server (NTRS)

    Palmer, David; Prince, Thomas A.

    1987-01-01

    A laboratory imaging system has been developed to study the use of Fourier-transform techniques in high-resolution hard X-ray and gamma-ray imaging, with particular emphasis on possible applications to high-energy astronomy. Considerations for the design of a Fourier-transform imager and the instrumentation used in the laboratory studies is described. Several analysis methods for image reconstruction are discussed including the CLEAN algorithm and maximum entropy methods. Images obtained using these methods are presented.

  5. Static harmonization of dynamically harmonized Fourier transform ion cyclotron resonance cell.

    PubMed

    Zhdanova, Ekaterina; Kostyukevich, Yury; Nikolaev, Eugene

    2017-08-01

    Static harmonization in the Fourier transform ion cyclotron resonance cell improves the resolving power of the cell and prevents dephasing of the ion cloud in the case of any trajectory of the charged particle, not necessarily axisymmetric cyclotron (as opposed to dynamic harmonization). We reveal that the Fourier transform ion cyclotron resonance cell with dynamic harmonization (paracell) is proved to be statically harmonized. The volume of the statically harmonized potential distribution increases with an increase in the number of trap segments.

  6. Fast Fourier Transform algorithm design and tradeoffs

    NASA Technical Reports Server (NTRS)

    Kamin, Ray A., III; Adams, George B., III

    1988-01-01

    The Fast Fourier Transform (FFT) is a mainstay of certain numerical techniques for solving fluid dynamics problems. The Connection Machine CM-2 is the target for an investigation into the design of multidimensional Single Instruction Stream/Multiple Data (SIMD) parallel FFT algorithms for high performance. Critical algorithm design issues are discussed, necessary machine performance measurements are identified and made, and the performance of the developed FFT programs are measured. Fast Fourier Transform programs are compared to the currently best Cray-2 FFT program.

  7. 40 CFR Appendix B to Subpart Uuuuu... - -HCl and HF Monitoring Provisions

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... extractive Fourier Transform Infrared Spectroscopy (FTIR) continuous emissions monitoring systems in appendix... Fourier Transform Infrared (FTIR) Spectroscopy” (incorporated by reference, see § 63.14), each applied...

  8. 40 CFR 98.54 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy in 40 CFR part 63, Appendix... Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy (incorporated by reference, see § 98.7...

  9. 40 CFR 98.54 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy in 40 CFR part 63, Appendix... Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy (incorporated by reference, see § 98.7...

  10. 40 CFR 98.54 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy in 40 CFR part 63, Appendix... Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy (incorporated by reference, see § 98.7...

  11. 40 CFR 98.54 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy in 40 CFR part 63, Appendix... Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy (incorporated by reference, see § 98.7...

  12. 40 CFR Appendix B to Subpart Uuuuu... - -HCl and HF Monitoring Provisions

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... extractive Fourier Transform Infrared Spectroscopy (FTIR) continuous emissions monitoring systems in appendix... Fourier Transform Infrared (FTIR) Spectroscopy” (incorporated by reference, see § 63.14), each applied...

  13. High Accuracy Evaluation of the Finite Fourier Transform Using Sampled Data

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1997-01-01

    Many system identification and signal processing procedures can be done advantageously in the frequency domain. A required preliminary step for this approach is the transformation of sampled time domain data into the frequency domain. The analytical tool used for this transformation is the finite Fourier transform. Inaccuracy in the transformation can degrade system identification and signal processing results. This work presents a method for evaluating the finite Fourier transform using cubic interpolation of sampled time domain data for high accuracy, and the chirp Zeta-transform for arbitrary frequency resolution. The accuracy of the technique is demonstrated in example cases where the transformation can be evaluated analytically. Arbitrary frequency resolution is shown to be important for capturing details of the data in the frequency domain. The technique is demonstrated using flight test data from a longitudinal maneuver of the F-18 High Alpha Research Vehicle.

  14. 3-D surface profilometry based on modulation measurement by applying wavelet transform method

    NASA Astrophysics Data System (ADS)

    Zhong, Min; Chen, Feng; Xiao, Chao; Wei, Yongchao

    2017-01-01

    A new analysis of 3-D surface profilometry based on modulation measurement technique by the application of Wavelet Transform method is proposed. As a tool excelling for its multi-resolution and localization in the time and frequency domains, Wavelet Transform method with good localized time-frequency analysis ability and effective de-noizing capacity can extract the modulation distribution more accurately than Fourier Transform method. Especially for the analysis of complex object, more details of the measured object can be well remained. In this paper, the theoretical derivation of Wavelet Transform method that obtains the modulation values from a captured fringe pattern is given. Both computer simulation and elementary experiment are used to show the validity of the proposed method by making a comparison with the results of Fourier Transform method. The results show that the Wavelet Transform method has a better performance than the Fourier Transform method in modulation values retrieval.

  15. 40 CFR Appendix B to Subpart Uuuuu - -HCl and HF Monitoring Provisions

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fourier Transform Infrared Spectroscopy (FTIR) continuous emissions monitoring systems in appendix B to... Fourier Transform Infrared (FTIR) Spectroscopy” (incorporated by reference, see § 63.14), each applied...

  16. Fourier Transform Infrared Absorption Spectroscopy for Quantitative Analysis of Gas Mixtures at Low Temperatures for Homeland Security Applications.

    PubMed

    Meier, D C; Benkstein, K D; Hurst, W S; Chu, P M

    2017-05-01

    Performance standard specifications for point chemical vapor detectors are established in ASTM E 2885-13 and ASTM E 2933-13. The performance evaluation of the detectors requires the accurate delivery of known concentrations of the chemical target to the system under test. Referee methods enable the analyte test concentration and associated uncertainties in the analyte test concentration to be validated by independent analysis, which is especially important for reactive analytes. This work extends the capability of a previously demonstrated method for using Fourier transform infrared (FT-IR) absorption spectroscopy for quantitatively evaluating the composition of vapor streams containing hazardous materials at Acute Exposure Guideline Levels (AEGL) to include test conditions colder than laboratory ambient temperatures. The described method covers the use of primary reference spectra to establish analyte concentrations, the generation of secondary reference spectra suitable for measuring analyte concentrations under specified testing environments, and the use of additional reference spectra and spectral profile strategies to mitigate the uncertainties due to impurities and water condensation within the low-temperature (7 °C, -5 °C) test cell. Important benefits of this approach include verification of the test analyte concentration with characterized uncertainties by in situ measurements co-located with the detector under test, near-real-time feedback, and broad applicability to toxic industrial chemicals.

  17. Fourier Transform Infrared Absorption Spectroscopy for Quantitative Analysis of Gas Mixtures at Low Temperatures for Homeland Security Applications

    PubMed Central

    Meier, D.C.; Benkstein, K.D.; Hurst, W.S.; Chu, P.M.

    2016-01-01

    Performance standard specifications for point chemical vapor detectors are established in ASTM E 2885-13 and ASTM E 2933-13. The performance evaluation of the detectors requires the accurate delivery of known concentrations of the chemical target to the system under test. Referee methods enable the analyte test concentration and associated uncertainties in the analyte test concentration to be validated by independent analysis, which is especially important for reactive analytes. This work extends the capability of a previously demonstrated method for using Fourier transform infrared (FT-IR) absorption spectroscopy for quantitatively evaluating the composition of vapor streams containing hazardous materials at Acute Exposure Guideline Levels (AEGL) to include test conditions colder than laboratory ambient temperatures. The described method covers the use of primary reference spectra to establish analyte concentrations, the generation of secondary reference spectra suitable for measuring analyte concentrations under specified testing environments, and the use of additional reference spectra and spectral profile strategies to mitigate the uncertainties due to impurities and water condensation within the low-temperature (7 °C, −5 °C) test cell. Important benefits of this approach include verification of the test analyte concentration with characterized uncertainties by in situ measurements co-located with the detector under test, near-real-time feedback, and broad applicability to toxic industrial chemicals. PMID:28090126

  18. An Evaluation of the Environmental Fate and Behavior of Munitions Materiel (Tetryl and Polar Metabolites of TNT) in Soil and Plant Systems. Environmental Fate and Behavior of Tetryl

    DTIC Science & Technology

    1992-03-01

    attempted to verify product identity and purity by GC with either Fourier transform infrared spectro.icopy (FTIR) or mass spectroscopy (MS) detection...ýl0 5 In-1 z U)-’i0oo -3g’i o -6o0 626o a i60 ito1 2i oo I ’ o [JfnVENUII8ER (cm- FIGURE 3,9. Fourier Transform Infrared Spectroscopy Spectrum of...Fourier Transform Infrared Spectroscopy Spectrum of Tetryl I-I F1U~IGUR Fourier Utransformlfret Spcrop S ectrum of TeasomtinPoutrl 0 , -39 i : : : -. . i

  19. Behavior of sulfur during coal pyrolysis

    USGS Publications Warehouse

    Shao, D.; Hutchinson, E.J.; Heidbrink, J.; Pan, W.-P.; Chou, C.-L.

    1994-01-01

    The behavior of sulfur in Illinois coals during pyrolysis was evaluated by thermogravimetry/ Fourier transform-infrared spectroscopy (TG/FT-IR) techniques. SO2, COS, and H2S were major gaseous sulfur-containing products observed during coal pyrolysis. The release rates of the gaseous sulfur species showed several peaks within the temperature ranges, which were due to the emission of different forms of sulfur in coal. ?? 1994.

  20. Monitoring Prepregs As They Cure

    NASA Technical Reports Server (NTRS)

    Young, P. R.; Gleason, J. R.; Chang, A. C.

    1986-01-01

    Quality IR spectra obtained in dynamic heating environment. New technique obtains quality infrared spectra on graphite-fiber-reinforced, polymeric-matrix-resin prepregs as they cure. Technique resulted from modification of diffuse reflectance/Fourier transform infrared (DR/FTIR) technique previously used to analyze environmentally exposed cured graphite composites. Technique contribute to better understanding of prepreg chemistry/temperature relationships and development of more efficient processing cycles for advanced materials.

  1. Laser beam shaping for studying thermally induced damage

    NASA Astrophysics Data System (ADS)

    Masina, Bathusile N.; Bodkin, Richard; Mwakikunga, Bonex; Forbes, Andrew

    2011-10-01

    This paper presents an implementation of a laser beam shaping system for both heating a diamond tool and measuring the resulting temperature optically. The influence the initial laser parameters have on the resultant temperature profiles is shown experimentally and theoretically. A CO2 laser beam was used as the source to raise the temperature of the diamond tool and the resultant temperature was measured by using the blackbody principle. We have successfully transformed a Gaussian beam profile into a flat-top beam profile by using a diffractive optical element as a phase element in conjunction with a Fourier transforming lens. In this paper, we have successfully demonstrated temperature profiles across the diamond tool surface using two laser beam profiles and two optical setups, thus allowing a study of temperature influences with and without thermal stress. The generation of such temperature profiles on the diamond tool in the laboratory is important in the study of changes that occur in diamond tools, particularly the reduced efficiency of such tools in applications where extreme heating due to friction is expected.

  2. Synthesis, Analysis, and Processing of Fractal Signals

    DTIC Science & Technology

    1991-10-01

    coordinator in hockey, squash, volleyball, and softball, but also for reminding me periodically that 1/f noise can exist outside a computer. More...similar signals as Fourier-based representations are for stationary and periodic signals. Furthermore, because wave- let transformations can be...and periodic signals. Furthermore, just as the discovery of fast Fourier transform (FFT) algorithms dramatically increased the viability the Fourier

  3. Wavelets

    NASA Astrophysics Data System (ADS)

    Strang, Gilbert

    1994-06-01

    Several methods are compared that are used to analyze and synthesize a signal. Three ways are mentioned to transform a symphony: into cosine waves (Fourier transform), into pieces of cosines (short-time Fourier transform), and into wavelets (little waves that start and stop). Choosing the best basis, higher dimensions, fast wavelet transform, and Daubechies wavelets are discussed. High-definition television is described. The use of wavelets in identifying fingerprints in the future is related.

  4. Cryogenic Absorption Cells Operating Inside a Bruker IFS-125HR: First Results for 13CH4 at 7 Micrometers

    NASA Technical Reports Server (NTRS)

    Sung, K.; Mantz, A. W.; Smith, M. A. H.; Brown, L. R.; Crawford, T. J.; Devi, V. M.; Benner, D. C.

    2010-01-01

    New absorption cells designed specifically to achieve stable temperatures down to 66 K inside the sample compartment of an evacuated Bruker IFS-125HR Fourier transform spectrometer (FTS) were developed at Connecticut College and tested at the Jet Propulsion Laboratory (JPL). The temperature stabilized cryogenic cells with path lengths of 24.29 and 20.38 cm were constructed of oxygen free high conductivity (OFHC) copper and fitted with wedged ZnSe windows using vacuum tight indium seals. In operation, the temperature-controlled cooling by a closed-cycle helium refrigerator achieved stability of 0.01 K. The unwanted absorption features arising from cryodeposits on the cell windows at low temperatures were eliminated by building an internal vacuum shroud box around the cell which significantly minimized the growth of cryodeposits. The effects of vibrations from the closed-cycle helium refrigerator on the FTS spectra were characterized. Using this set up, several high-resolution spectra of methane isotopologues broadened with nitrogen were recorded in the 1200-1800 per centimeter spectral region at various sample temperatures between 79.5 and 296 K. Such data are needed to characterize the temperature dependence of spectral line shapes at low temperatures for remote sensing of outer planets and their moons. Initial analysis of a limited number of spectra in the region of the R(2) manifold of the v4 fundamental band of 13CH4 indicated that an empirical power law used for the temperature dependence of the N2-broadened line widths would fail to fit the observed data in the entire temperature range from 80 to 296 K; instead, it follows a temperature-dependence similar to that reported by Mondelain et al. [17,18]. The initial test was very successful proving that a high precision Fourier transform spectrometer with a completely evacuated optical path can be configured for spectroscopic studies at low temperatures relevant to the planetary atmospheres.

  5. Nonuniform fast Fourier transform method for numerical diffraction simulation on tilted planes.

    PubMed

    Xiao, Yu; Tang, Xiahui; Qin, Yingxiong; Peng, Hao; Wang, Wei; Zhong, Lijing

    2016-10-01

    The method, based on the rotation of the angular spectrum in the frequency domain, is generally used for the diffraction simulation between the tilted planes. Due to the rotation of the angular spectrum, the interval between the sampling points in the Fourier domain is not even. For the conventional fast Fourier transform (FFT)-based methods, a spectrum interpolation is needed to get the approximate sampling value on the equidistant sampling points. However, due to the numerical error caused by the spectrum interpolation, the calculation accuracy degrades very quickly as the rotation angle increases. Here, the diffraction propagation between the tilted planes is transformed into a problem about the discrete Fourier transform on the uneven sampling points, which can be evaluated effectively and precisely through the nonuniform fast Fourier transform method (NUFFT). The most important advantage of this method is that the conventional spectrum interpolation is avoided and the high calculation accuracy can be guaranteed for different rotation angles, even when the rotation angle is close to π/2. Also, its calculation efficiency is comparable with that of the conventional FFT-based methods. Numerical examples as well as a discussion about the calculation accuracy and the sampling method are presented.

  6. Applying wavelet transforms to analyse aircraft-measured turbulence and turbulent fluxes in the atmospheric boundary layer over eastern Siberia

    NASA Astrophysics Data System (ADS)

    Strunin, M. A.; Hiyama, T.

    2004-11-01

    The wavelet spectral method was applied to aircraft-based measurements of atmospheric turbulence obtained during joint Russian-Japanese research on the atmospheric boundary layer near Yakutsk (eastern Siberia) in April-June 2000. Practical ways to apply Fourier and wavelet methods for aircraft-based turbulence data are described. Comparisons between Fourier and wavelet transform results are shown and they demonstrate, in conjunction with theoretical and experimental restrictions, that the Fourier transform method is not useful for studying non-homogeneous turbulence. The wavelet method is free from many disadvantages of Fourier analysis and can yield more informative results. Comparison of Fourier and Morlet wavelet spectra showed good agreement at high frequencies (small scales). The quality of the wavelet transform and corresponding software was estimated by comparing the original data with restored data constructed with an inverse wavelet transform. A Haar wavelet basis was inappropriate for the turbulence data; the mother wavelet function recommended in this study is the Morlet wavelet. Good agreement was also shown between variances and covariances estimated with different mathematical techniques, i.e. through non-orthogonal wavelet spectra and through eddy correlation methods.

  7. A Comparison of FTNMR and FTIR Techniques.

    ERIC Educational Resources Information Center

    Ahn, Myong-Ku

    1989-01-01

    Nuclear magnetic resonance and infrared are two spectroscopic methods that commonly use the Fourier transform technique. Discussed are the similarities and differences in the use of the Fourier transform in these two spectroscopic techniques. (CW)

  8. A Graphical Presentation to Teach the Concept of the Fourier Transform

    ERIC Educational Resources Information Center

    Besalu, E.

    2006-01-01

    A study was conducted to visualize the reason why the Fourier transform technique is useful to detect the originating frequencies of a complicated superposition of waves. The findings reveal that students respond well when instructors adapt pictorial presentation to show how the time-domain function is transformed into the frequency domain.

  9. Novel hybrid optical correlator: theory and optical simulation.

    PubMed

    Casasent, D; Herold, R L

    1975-02-01

    The inverse transform of the product of two Fourier transform holograms is analyzed and shown to contain the correlation of the two images from which the holograms were formed. The theory, analysis, and initial experimental demonstration of the feasibility of a novel correlation scheme using this multiplied Fourier transform hologram system are presented.

  10. Fast algorithm for chirp transforms with zooming-in ability and its applications.

    PubMed

    Deng, X; Bihari, B; Gan, J; Zhao, F; Chen, R T

    2000-04-01

    A general fast numerical algorithm for chirp transforms is developed by using two fast Fourier transforms and employing an analytical kernel. This new algorithm unifies the calculations of arbitrary real-order fractional Fourier transforms and Fresnel diffraction. Its computational complexity is better than a fast convolution method using Fourier transforms. Furthermore, one can freely choose the sampling resolutions in both x and u space and zoom in on any portion of the data of interest. Computational results are compared with analytical ones. The errors are essentially limited by the accuracy of the fast Fourier transforms and are higher than the order 10(-12) for most cases. As an example of its application to scalar diffraction, this algorithm can be used to calculate near-field patterns directly behind the aperture, 0 < or = z < d2/lambda. It compensates another algorithm for Fresnel diffraction that is limited to z > d2/lambdaN [J. Opt. Soc. Am. A 15, 2111 (1998)]. Experimental results from waveguide-output microcoupler diffraction are in good agreement with the calculations.

  11. Non-stationary component extraction in noisy multicomponent signal using polynomial chirping Fourier transform.

    PubMed

    Lu, Wenlong; Xie, Junwei; Wang, Heming; Sheng, Chuan

    2016-01-01

    Inspired by track-before-detection technology in radar, a novel time-frequency transform, namely polynomial chirping Fourier transform (PCFT), is exploited to extract components from noisy multicomponent signal. The PCFT combines advantages of Fourier transform and polynomial chirplet transform to accumulate component energy along a polynomial chirping curve in the time-frequency plane. The particle swarm optimization algorithm is employed to search optimal polynomial parameters with which the PCFT will achieve a most concentrated energy ridge in the time-frequency plane for the target component. The component can be well separated in the polynomial chirping Fourier domain with a narrow-band filter and then reconstructed by inverse PCFT. Furthermore, an iterative procedure, involving parameter estimation, PCFT, filtering and recovery, is introduced to extract components from a noisy multicomponent signal successively. The Simulations and experiments show that the proposed method has better performance in component extraction from noisy multicomponent signal as well as provides more time-frequency details about the analyzed signal than conventional methods.

  12. Fractional Order Two-Temperature Dual-Phase-Lag Thermoelasticity with Variable Thermal Conductivity

    PubMed Central

    Mallik, Sadek Hossain; Kanoria, M.

    2014-01-01

    A new theory of two-temperature generalized thermoelasticity is constructed in the context of a new consideration of dual-phase-lag heat conduction with fractional orders. The theory is then adopted to study thermoelastic interaction in an isotropic homogenous semi-infinite generalized thermoelastic solids with variable thermal conductivity whose boundary is subjected to thermal and mechanical loading. The basic equations of the problem have been written in the form of a vector-matrix differential equation in the Laplace transform domain, which is then solved by using a state space approach. The inversion of Laplace transforms is computed numerically using the method of Fourier series expansion technique. The numerical estimates of the quantities of physical interest are obtained and depicted graphically. Some comparisons of the thermophysical quantities are shown in figures to study the effects of the variable thermal conductivity, temperature discrepancy, and the fractional order parameter. PMID:27419210

  13. Experimental image alignment system

    NASA Technical Reports Server (NTRS)

    Moyer, A. L.; Kowel, S. T.; Kornreich, P. G.

    1980-01-01

    A microcomputer-based instrument for image alignment with respect to a reference image is described which uses the DEFT sensor (Direct Electronic Fourier Transform) for image sensing and preprocessing. The instrument alignment algorithm which uses the two-dimensional Fourier transform as input is also described. It generates signals used to steer the stage carrying the test image into the correct orientation. This algorithm has computational advantages over algorithms which use image intensity data as input and is suitable for a microcomputer-based instrument since the two-dimensional Fourier transform is provided by the DEFT sensor.

  14. Fourier-transform and global contrast interferometer alignment methods

    DOEpatents

    Goldberg, Kenneth A.

    2001-01-01

    Interferometric methods are presented to facilitate alignment of image-plane components within an interferometer and for the magnified viewing of interferometer masks in situ. Fourier-transforms are performed on intensity patterns that are detected with the interferometer and are used to calculate pseudo-images of the electric field in the image plane of the test optic where the critical alignment of various components is being performed. Fine alignment is aided by the introduction and optimization of a global contrast parameter that is easily calculated from the Fourier-transform.

  15. Antenna pattern correction for the Nimbus-7 SMMR

    NASA Technical Reports Server (NTRS)

    Milman, A. S.

    1986-01-01

    This paper describes the philosophy and method used to develop the antenna pattern correction (APC) algorithm that was used on the data from the Scanning Multichannel Microwave Radiometer (SMMR) on Nimbus-7. There are limitations on what can be accomplished with such a procedure; these limitations are explored with the aid of Fourier analysis, even though the algorithm used on the SMMR data does not perform any Fourier transforms. The resulting analysis showed that, for the SMMR instrument, no useful improvement could be made in the data in terms of reduction of side lobes, but the quality of the sea surface temperature retrievals could be improved considerably by matching the antenna beamwidths at the different frequencies.

  16. Thermal properties of hydrogenated liquid natural rubber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M.

    Natural rubber (NR) was modified to form liquid natural rubber (LNR) via photooxidative degradation. Hydrogenated liquid natural rubber (HLNR) was synthesized by using diimide as source of hydrogen which the diimide is produced by thermolysis of p-toluenesulfonyl hydrazide (TSH). The structure of HLNR was characterized by determining the changes of main peaks in Fourier Transform infrared and nuclear magnetic resonance spectra after hydrogenation. Thermogravimetric analysis showed that the HLNR had higher decomposition temperature compared to LNR and the decomposition temperature is directly proportional to the percentage of conversion.

  17. Thermal properties of hydrogenated liquid natural rubber

    NASA Astrophysics Data System (ADS)

    Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M.

    2015-09-01

    Natural rubber (NR) was modified to form liquid natural rubber (LNR) via photooxidative degradation. Hydrogenated liquid natural rubber (HLNR) was synthesized by using diimide as source of hydrogen which the diimide is produced by thermolysis of p-toluenesulfonyl hydrazide (TSH). The structure of HLNR was characterized by determining the changes of main peaks in Fourier Transform infrared and nuclear magnetic resonance spectra after hydrogenation. Thermogravimetric analysis showed that the HLNR had higher decomposition temperature compared to LNR and the decomposition temperature is directly proportional to the percentage of conversion.

  18. Optical characterization of semiconductor materials by using FTIR-PAS

    NASA Astrophysics Data System (ADS)

    Arévalo, Fabiola; Saavedra, Renato; Paulraj, M.

    2008-11-01

    In this paper we discuss the procedures for photoacoustic measurements for semiconducting materials, including bulk samples like Gallium Antimonide (GaSb). The optical absorption at photon energies near the band gap was measured at room temperature using Fourier Transform Infrared Photoacoustic spectroscopy (FTIR-PAS). Measurements were performed using a NEXUS 670 FTIR-spectrometer (from Thermo Nicolet) with a MTEC model 300 PA cell (MTEC Photoacoustics, Inc.). Optical properties of the studied samples were determined from their room temperature PA spectra and band gaps were calculated directly from absorption spectra

  19. Effect of trichloroethylene enhancement on deposition rate of low-temperature silicon oxide films by silicone oil and ozone

    NASA Astrophysics Data System (ADS)

    Horita, Susumu; Jain, Puneet

    2017-08-01

    A low-temperature silcon oxide film was deposited at 160 to 220 °C using an atmospheric pressure CVD system with silicone oil vapor and ozone gases. It was found that the deposition rate is markedly increased by adding trichloroethylene (TCE) vapor, which is generated by bubbling TCE solution with N2 gas flow. The increase is more than 3 times that observed without TCE, and any contamination due to TCE is hardly observed in the deposited Si oxide films from Fourier transform infrared spectra.

  20. A fast D.F.T. algorithm using complex integer transforms

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1978-01-01

    Winograd (1976) has developed a new class of algorithms which depend heavily on the computation of a cyclic convolution for computing the conventional DFT (discrete Fourier transform); this new algorithm, for a few hundred transform points, requires substantially fewer multiplications than the conventional FFT algorithm. Reed and Truong have defined a special class of finite Fourier-like transforms over GF(q squared), where q = 2 to the p power minus 1 is a Mersenne prime for p = 2, 3, 5, 7, 13, 17, 19, 31, 61. In the present paper it is shown that Winograd's algorithm can be combined with the aforementioned Fourier-like transform to yield a new algorithm for computing the DFT. A fast method for accurately computing the DFT of a sequence of complex numbers of very long transform-lengths is thus obtained.

  1. A High Resolution Fourier-Transform Spectrometer for the Measurement of Atmospheric Column Abundances

    NASA Technical Reports Server (NTRS)

    Cageao, R.; Sander, S.; Blavier, J.; Jiang, Y.; Nemtchinov, V.

    2000-01-01

    A compact, high resolution Fourier-transform spectrometer for atmospheric near ultraviolet spectroscopy has been installed at the Jet Propulsion Laboratory's Table Mountain Facility (34.4N, 117.7 W, elevation 2290m).

  2. Technique for the metrology calibration of a Fourier transform spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Locke D.; Naylor, David A

    2008-11-10

    A method is presented for using a Fourier transform spectrometer (FTS) to calibrate the metrology of a second FTS. This technique is particularly useful when the second FTS is inside a cryostat or otherwise inaccessible.

  3. Method for determining and displaying the spacial distribution of a spectral pattern of received light

    DOEpatents

    Bennett, Charles L.

    1996-01-01

    An imaging Fourier transform spectrometer (10, 210) having a Fourier transform infrared spectrometer (12) providing a series of images (40) to a focal plane array camera (38). The focal plane array camera (38) is clocked to a multiple of zero crossing occurrences as caused by a moving mirror (18) of the Fourier transform infrared spectrometer (12) and as detected by a laser detector (50) such that the frame capture rate of the focal plane array camera (38) corresponds to a multiple of the zero crossing rate of the Fourier transform infrared spectrometer (12). The images (40) are transmitted to a computer (45) for processing such that representations of the images (40) as viewed in the light of an arbitrary spectral "fingerprint" pattern can be displayed on a monitor (60) or otherwise stored and manipulated by the computer (45).

  4. Atomic Gaussian type orbitals and their Fourier transforms via the Rayleigh expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yükçü, Niyazi

    Gaussian type orbitals (GTOs), which are one of the types of exponential type orbitals (ETOs), are used usually as basis functions in the multi-center atomic and molecular integrals to better understand physical and chemical properties of matter. In the Fourier transform method (FTM), basis functions have not simplicity to make mathematical operations, but their Fourier transforms are easier to use. In this work, with the help of FTM, Rayleigh expansion and some properties of unnormalized GTOs, we present new mathematical results for the Fourier transform of GTOs in terms of Laguerre polynomials, hypergeometric and Whittaker functions. Physical and analytical propertiesmore » of GTOs are discussed and some numerical results have been given in a table. Finally, we compare our mathematical results with the other known literature results by using a computer program and details of evaluation are presented.« less

  5. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    van Agthoven, Maria A; Barrow, Mark P; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O'Connor, Peter B

    2015-12-01

    Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules. Graphical Abstract ᅟ.

  6. Component analyses of urinary nanocrystallites of uric acid stone formers by combination of high-resolution transmission electron microscopy, fast Fourier transformation, energy dispersive X-ray spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy.

    PubMed

    Sun, Xin-Yuan; Xue, Jun-Fa; Xia, Zhi-Yue; Ouyang, Jian-Ming

    2015-06-01

    This study aimed to analyse the components of nanocrystallites in urines of patients with uric acid (UA) stones. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy (HRTEM), fast Fourier transformation (FFT) of HRTEM, and energy dispersive X-ray spectroscopy (EDS) were performed to analyse the components of these nanocrystallites. XRD and FFT showed that the main component of urinary nanocrystallites was UA, which contains a small amount of calcium oxalate monohydrate and phosphates. EDS showed the characteristic absorption peaks of C, O, Ca and P. The formation of UA stones was closely related to a large number of UA nanocrystallites in urine. A combination of HRTEM, FFT, EDS and XRD analyses could be performed accurately to analyse the components of urinary nanocrystallites.

  7. Single Channel Quantum Color Image Encryption Algorithm Based on HSI Model and Quantum Fourier Transform

    NASA Astrophysics Data System (ADS)

    Gong, Li-Hua; He, Xiang-Tao; Tan, Ru-Chao; Zhou, Zhi-Hong

    2018-01-01

    In order to obtain high-quality color images, it is important to keep the hue component unchanged while emphasize the intensity or saturation component. As a public color model, Hue-Saturation Intensity (HSI) model is commonly used in image processing. A new single channel quantum color image encryption algorithm based on HSI model and quantum Fourier transform (QFT) is investigated, where the color components of the original color image are converted to HSI and the logistic map is employed to diffuse the relationship of pixels in color components. Subsequently, quantum Fourier transform is exploited to fulfill the encryption. The cipher-text is a combination of a gray image and a phase matrix. Simulations and theoretical analyses demonstrate that the proposed single channel quantum color image encryption scheme based on the HSI model and quantum Fourier transform is secure and effective.

  8. [Calculating the stark broadening of welding arc spectra by Fourier transform method].

    PubMed

    Pan, Cheng-Gang; Hua, Xue-Ming; Zhang, Wang; Li, Fang; Xiao, Xiao

    2012-07-01

    It's the most effective and accurate method to calculate the electronic density of plasma by using the Stark width of the plasma spectrum. However, it's difficult to separate Stark width from the composite spectrum linear produced by several mechanisms. In the present paper, Fourier transform was used to separate the Lorentz linear from the spectrum observed, thus to get the accurate Stark width. And we calculated the distribution of the TIG welding arc plasma. This method does not need to measure arc temperature accurately, to measure the width of the plasma spectrum broadened by instrument, and has the function to reject the noise data. The results show that, on the axis, the electron density of TIG welding arc decreases with the distance from tungsten increasing, and changes from 1.21 X 10(17) cm(-3) to 1.58 x 10(17) cm(-3); in the radial, the electron density decreases with the distance from axis increasing, and near the tungsten zone the biggest electronic density is off axis.

  9. Synthesis, spectral, thermal, optical and theoretical studies of (2E,6E)-2-benzylidene-6-(4-methoxybenzylidene)cyclohexanone.

    PubMed

    Meenatchi, V; Muthu, K; Rajasekar, M; Meenakshisundaram, Sp

    2014-01-01

    Single crystals of (2E,6E)-2-benzylidine-6-(4-methoxybenzylidine)cyclohexanone are grown by slow evaporation of ethanolic solution at room temperature. The characteristic functional groups present in the molecule are confirmed by Fourier transform infrared and Fourier transform Raman analyses. The scanning electron microscopy study reveals the surface morphology of the material. Thermogravimetric/differential thermal analysis study reveals the purity of the material and the crystal is transparent in the visible region having a lower optical cut-off at ∼487nm. The second harmonic generation efficiency of as-grown material is estimated by Kurtz and Perry technique. Optimized geometry has been derived using Hartree-Fock calculations performed at the level 6-31G (d,p) and the first-order molecular hyperpolarizability (β) is estimated. The specimen is further characterized by nuclear magnetic resonance spectroscopy. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  10. Gas Chromatography/Atmospheric Pressure Chemical Ionization-Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of Pyrolysis Oil from German Brown Coal

    PubMed Central

    Zuber, Jan; Kroll, Marius M.; Rathsack, Philipp; Otto, Matthias

    2016-01-01

    Pyrolysis oil from the slow pyrolysis of German brown coal from Schöningen, obtained at a temperature of 500°C, was separated and analyzed using hyphenation of gas chromatography with an atmospheric pressure chemical ionization source operated in negative ion mode and Fourier transform ion cyclotron resonance mass spectrometry (GC-APCI-FT-ICR-MS). Development of this ultrahigh-resolving analysis method is described, that is, optimization of specific GC and APCI parameters and performed data processing. The advantages of GC-APCI-FT-ICR-MS hyphenation, for example, soft ionization, ultrahigh-resolving detection, and most important isomer separation, were demonstrated for the sample liquid. For instance, it was possible to separate and identify nine different propylphenol, ethylmethylphenol, and trimethylphenol isomers. Furthermore, homologous series of different acids, for example, alkyl and alkylene carboxylic acids, were verified, as well as homologous series of alkyl phenols, alkyl dihydroxy benzenes, and alkoxy alkyl phenols. PMID:27066076

  11. Evaluation of algorithms for geological thermal-inertia mapping

    NASA Technical Reports Server (NTRS)

    Miller, S. H.; Watson, K.

    1977-01-01

    The errors incurred in producing a thermal inertia map are of three general types: measurement, analysis, and model simplification. To emphasize the geophysical relevance of these errors, they were expressed in terms of uncertainty in thermal inertia and compared with the thermal inertia values of geologic materials. Thus the applications and practical limitations of the technique were illustrated. All errors were calculated using the parameter values appropriate to a site at the Raft River, Id. Although these error values serve to illustrate the magnitudes that can be expected from the three general types of errors, extrapolation to other sites should be done using parameter values particular to the area. Three surface temperature algorithms were evaluated: linear Fourier series, finite difference, and Laplace transform. In terms of resulting errors in thermal inertia, the Laplace transform method is the most accurate (260 TIU), the forward finite difference method is intermediate (300 TIU), and the linear Fourier series method the least accurate (460 TIU).

  12. Application of the fractional Fourier transform to the design of LCOS based optical interconnects and fiber switches.

    PubMed

    Robertson, Brian; Zhang, Zichen; Yang, Haining; Redmond, Maura M; Collings, Neil; Liu, Jinsong; Lin, Ruisheng; Jeziorska-Chapman, Anna M; Moore, John R; Crossland, William A; Chu, D P

    2012-04-20

    It is shown that reflective liquid crystal on silicon (LCOS) spatial light modulator (SLM) based interconnects or fiber switches that use defocus to reduce crosstalk can be evaluated and optimized using a fractional Fourier transform if certain optical symmetry conditions are met. Theoretically the maximum allowable linear hologram phase error compared to a Fourier switch is increased by a factor of six before the target crosstalk for telecom applications of -40 dB is exceeded. A Gerchberg-Saxton algorithm incorporating a fractional Fourier transform modified for use with a reflective LCOS SLM is used to optimize multi-casting holograms in a prototype telecom switch. Experiments are in close agreement to predicted performance.

  13. Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units.

    PubMed

    Watanabe, Yuuki; Maeno, Seiya; Aoshima, Kenji; Hasegawa, Haruyuki; Koseki, Hitoshi

    2010-09-01

    The real-time display of full-range, 2048?axial pixelx1024?lateral pixel, Fourier-domain optical-coherence tomography (FD-OCT) images is demonstrated. The required speed was achieved by using dual graphic processing units (GPUs) with many stream processors to realize highly parallel processing. We used a zero-filling technique, including a forward Fourier transform, a zero padding to increase the axial data-array size to 8192, an inverse-Fourier transform back to the spectral domain, a linear interpolation from wavelength to wavenumber, a lateral Hilbert transform to obtain the complex spectrum, a Fourier transform to obtain the axial profiles, and a log scaling. The data-transfer time of the frame grabber was 15.73?ms, and the processing time, which includes the data transfer between the GPU memory and the host computer, was 14.75?ms, for a total time shorter than the 36.70?ms frame-interval time using a line-scan CCD camera operated at 27.9?kHz. That is, our OCT system achieved a processed-image display rate of 27.23 frames/s.

  14. A new Fourier transform based CBIR scheme for mammographic mass classification: a preliminary invariance assessment

    NASA Astrophysics Data System (ADS)

    Gundreddy, Rohith Reddy; Tan, Maxine; Qui, Yuchen; Zheng, Bin

    2015-03-01

    The purpose of this study is to develop and test a new content-based image retrieval (CBIR) scheme that enables to achieve higher reproducibility when it is implemented in an interactive computer-aided diagnosis (CAD) system without significantly reducing lesion classification performance. This is a new Fourier transform based CBIR algorithm that determines image similarity of two regions of interest (ROI) based on the difference of average regional image pixel value distribution in two Fourier transform mapped images under comparison. A reference image database involving 227 ROIs depicting the verified soft-tissue breast lesions was used. For each testing ROI, the queried lesion center was systematically shifted from 10 to 50 pixels to simulate inter-user variation of querying suspicious lesion center when using an interactive CAD system. The lesion classification performance and reproducibility as the queried lesion center shift were assessed and compared among the three CBIR schemes based on Fourier transform, mutual information and Pearson correlation. Each CBIR scheme retrieved 10 most similar reference ROIs and computed a likelihood score of the queried ROI depicting a malignant lesion. The experimental results shown that three CBIR schemes yielded very comparable lesion classification performance as measured by the areas under ROC curves with the p-value greater than 0.498. However, the CBIR scheme using Fourier transform yielded the highest invariance to both queried lesion center shift and lesion size change. This study demonstrated the feasibility of improving robustness of the interactive CAD systems by adding a new Fourier transform based image feature to CBIR schemes.

  15. Application of the windowed-Fourier-transform-based fringe analysis technique for investigating temperature and concentration fields in fluids.

    PubMed

    Mohanan, Sharika; Srivastava, Atul

    2014-04-10

    The present work is concerned with the development and application of a novel fringe analysis technique based on the principles of the windowed-Fourier-transform (WFT) for the determination of temperature and concentration fields from interferometric images for a range of heat and mass transfer applications. Based on the extent of the noise level associated with the experimental data, the technique has been coupled with two different phase unwrapping methods: the Itoh algorithm and the quality guided phase unwrapping technique for phase extraction. In order to generate the experimental data, a range of experiments have been carried out which include cooling of a vertical flat plate in free convection conditions, combustion of mono-propellant flames, and growth of organic as well as inorganic crystals from their aqueous solutions. The flat plate and combustion experiments are modeled as heat transfer applications wherein the interest is to determine the whole-field temperature distribution. Aqueous-solution-based crystal growth experiments are performed to simulate the mass transfer phenomena and the interest is to determine the two-dimensional solute concentration field around the growing crystal. A Mach-Zehnder interferometer has been employed to record the path-integrated quantity of interest (temperature and/or concentration) in the form of interferometric images in the experiments. The potential of the WFT method has also been demonstrated on numerically simulated phase data for varying noise levels, and the accuracy in phase extraction have been quantified in terms of the root mean square errors. Three levels of noise, i.e., 0%, 10%, and 20% have been considered. Results of the present study show that the WFT technique allows an accurate extraction of phase values that can subsequently be converted into two-dimensional temperature and/or concentration distribution fields. Moreover, since WFT is a local processing technique, speckle patterns and the inherent noise in the interferometric data do not affect the resultant phase values. Brief comparisons of the accuracy of the WFT with other standard techniques such as conventional Fourier-filtering methods are also presented.

  16. Discrete Fourier Transform Analysis in a Complex Vector Space

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2009-01-01

    Alternative computational strategies for the Discrete Fourier Transform (DFT) have been developed using analysis of geometric manifolds. This approach provides a general framework for performing DFT calculations, and suggests a more efficient implementation of the DFT for applications using iterative transform methods, particularly phase retrieval. The DFT can thus be implemented using fewer operations when compared to the usual DFT counterpart. The software decreases the run time of the DFT in certain applications such as phase retrieval that iteratively call the DFT function. The algorithm exploits a special computational approach based on analysis of the DFT as a transformation in a complex vector space. As such, this approach has the potential to realize a DFT computation that approaches N operations versus Nlog(N) operations for the equivalent Fast Fourier Transform (FFT) calculation.

  17. Instrument Line Shape Modeling and Correction for Off-Axis Detectors in Fourier Transform Spectrometry

    NASA Technical Reports Server (NTRS)

    Bowman, K.; Worden, H.; Beer, R.

    1999-01-01

    Spectra measured by off-axis detectors in a high-resolution Fourier transform spectrometer (FTS) are characterized by frequency scaling, asymmetry and broadening of their line shape, and self-apodization in the corresponding interferogram.

  18. Fourier Transform Mass Spectrometry.

    ERIC Educational Resources Information Center

    Gross, Michael L.; Rempel, Don L.

    1984-01-01

    Discusses the nature of Fourier transform mass spectrometry and its unique combination of high mass resolution, high upper mass limit, and multichannel advantage. Examines its operation, capabilities and limitations, applications (ion storage, ion manipulation, ion chemistry), and future applications and developments. (JN)

  19. Fourier Transform Infrared Spectroscopy: Part II. Advantages of FT-IR.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1987-01-01

    This is Part II in a series on Fourier transform infrared spectroscopy (FT-IR). Described are various advantages of FT-IR spectroscopy including energy advantages, wavenumber accuracy, constant resolution, polarization effects, and stepping at grating changes. (RH)

  20. HA/Bioglass composite films deposited by pulsed laser with different substrate temperature

    NASA Astrophysics Data System (ADS)

    Wang, D. G.; Chen, C. Z.; Jin, Q. P.; Li, H. C.; Pan, Y. K.

    2014-03-01

    In this experiment, the HA/Bioglass composite films on Ti-6Al-4V were deposited by a pulsed laser at Ar atmosphere, and the influence of substrate temperature on the morphology, phase constitutions, bonding configurations and adhesive strength of the films was studied. The obtained films were characterized by an electron probe microanalyzer (EPMA), scanning electron microscope (SEM), X-ray diffractometer (XRD), Fourier transform infrared spectrometer (FTIR), scratch apparatus, and so on. The results show that the amount of the droplets, the crystallinity, and the critical load of the deposited films all increase with the increase of the substrate temperature; however, the substrate temperature has little influence on the functional groups of the films.

  1. A fast Karhunen-Loeve transform for a class of random processes

    NASA Technical Reports Server (NTRS)

    Jain, A. K.

    1976-01-01

    It is shown that for a class of finite first-order Markov signals, the Karhunen-Loeve (KL) transform for data compression is a set of periodic sine functions if the boundary values of the signal are fixed or known. These sine functions are shown to be related to the Fourier transform so that a fast Fourier transform algorithm can be used to implement the KL transform. Extension to two dimensions with reference to images with separable contravariance function is shown.

  2. Processing study of a high temperature adhesive

    NASA Technical Reports Server (NTRS)

    Progar, D. J.

    1984-01-01

    An adhesive-bonding process cycle study was performed for a polyimidesulphone. The high molecular weight, linear aromatic system possesses properties which make it attractive as a processable, low-cost material for elevated temperature applications. The results of a study to better understand the parameters that affect the adhesive properties of the polymer for titanium alloy adherends are presented. These include the tape preparation, the use of a primer and press and simulated autoclave processing conditions. The polymer was characterized using Fourier transform infrared spectroscopy, glass transition temperature determination, flow measurements, and weight loss measurements. The lap shear strength of the adhesive was used to evaluate the effects of the bonding process variations.

  3. Optical properties of hydrothermally synthesized TGA-capped CdS nanoparticles: controlling crystalline size and phase

    NASA Astrophysics Data System (ADS)

    Tavakoli Banizi, Zoha; Seifi, Majid

    2017-10-01

    TGA-capped CdS nanoparticles were obtained in the presence of thioglycolic acid (TGA) as capping agent via a facile hydrothermal method at relatively low temperature and over a short duration. As-synthesized TGA-capped CdS nanoparticles were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, photoluminescence spectroscopy, Ultraviolet-visible spectroscopy and energy-dispersive x-ray spectroscopy. The products had spherical shapes, although their crystalline size and phase was dependent on temperature and time of the reaction. Photoluminescence spectra showed that the fluorescence intensity decreased when increasing the reaction time and temperature.

  4. Stratospheric sulfuric acid aerosols: composition and temperature discrimination with the ATMOS data set

    NASA Technical Reports Server (NTRS)

    Eldering, A.; Irion, F. W.; Mills, F. P.; Steele, H. M.; Kahn, B. H.; Gunson, M. R.

    2000-01-01

    The ATMOS Fourier transform spectrometer was flown for a fourth time on the Space Shuttle as part of the ATLAS-3 instrument payload in November 1994. More than 190 sunrise and sunset occultation events provided measurements of more than 30 atmospheric trace gases at latitudes 3-49(deg)N and 65-72(deg)S, including observations both inside and outside the Antarctic polar vortex.

  5. Formation of Biphasic Hydroxylapatite-Beta Magnesium Tricalcium Phosphate in Heat Treated Salmonid Vertebrae.

    PubMed

    Butler, Don H; Shahack-Gross, Ruth

    2017-06-15

    Ichthyoarchaeological evidence is uncommon at ancient hunter-gatherer sites from various regions and timeframes. This research contributes to the development of microarchaeological techniques useful for identifying fishing economies in situations where classifiable bones are unavailable. Specifically, traces of heat altered bone mineral in domestic hearths are expected to provide markers for discarded fish remains. We used a series of laboratory incineration experiments to characterize the mineralogy of burned salmonid vertebrae. Fourier transform infrared spectroscopy and x-ray diffraction distinguished the formation of beta magnesium tricalcium phosphate (βMgTCP) at temperatures as low as 600 °C. Bones from a sample of game mammals and birds did not form this phase at temperatures below 1,000 °C. We propose that this neoformed mineral can serve as a proxy for hunter-gatherer salmonid fishing when typical ichthyoarchaeological evidence is absent. Using Fourier transform infrared spectroscopy, it will be possible to rapidly and inexpensively determine the presence of βMgTCP in fragmentary burned bone remains associated with combustion features. The occurrence of βMgTCP in archaeological hearth features will offer a new means of further evaluating the temporal, geographic, and cultural scope of salmonid harvesting. We also acknowledge the value of biphasic hydroxylapatite-βMgTCP recovered from Atlantic salmon vertebrae as a bioceramic.

  6. Hydrogen bonded nonlinear optical γ-glycine: Crystal growth and characterization

    NASA Astrophysics Data System (ADS)

    Narayana Moolya, B.; Jayarama, A.; Sureshkumar, M. R.; Dharmaprakash, S. M.

    2005-07-01

    Single crystals of γ-glycine(GG) were grown by solvent evaporation technique from a mixture of aqueous solutions of glycine and ammonium nitrate at ambient temperature. X-ray diffraction, thermogravimetric/differential thermal analysis, Fourier transform infrared spectral techniques were employed to characterize the crystal. The lattice parameters were calculated and they agree well with the reported values. GG exists as dipolar ions in which the carboxyl group is present as a carboxylate ion and the amino group as an ammonium ion. Due to this dipolar nature, glycine has a high decomposition temperature. The UV cutoff of GG is below 300 nm and has a wide transparency window, which is suitable for second harmonic generation of laser in the blue region. Nonlinear optical characteristics of GG were studied using Q switched Nd:YAG laser ( λ=1064 nm). The second harmonic generation conversion efficiency of GG is 1.5 times that of potassium dihydrogen phosphate . The X-ray diffraction and Fourier transform infrared spectral studies show the presence of strong hydrogen bonds which create and stabilize the crystal structure in GG. The main contributions to the nonlinear optical properties in GG results from the presence of the hydrogen bond and from the vibrational part due to very intense infrared bands of the hydrogen bond vibrations. GG is thermally stable up to 441 K.

  7. KAM Tori Construction Algorithms

    NASA Astrophysics Data System (ADS)

    Wiesel, W.

    In this paper we evaluate and compare two algorithms for the calculation of KAM tori in Hamiltonian systems. The direct fitting of a torus Fourier series to a numerically integrated trajectory is the first method, while an accelerated finite Fourier transform is the second method. The finite Fourier transform, with Hanning window functions, is by far superior in both computational loading and numerical accuracy. Some thoughts on applications of KAM tori are offered.

  8. Generalized fiber Fourier optics.

    PubMed

    Cincotti, Gabriella

    2011-06-15

    A twofold generalization of the optical schemes that perform the discrete Fourier transform (DFT) is given: new passive planar architectures are presented where the 2 × 2 3 dB couplers are replaced by M × M hybrids, reducing the number of required connections and phase shifters. Furthermore, the planar implementation of the discrete fractional Fourier transform (DFrFT) is also described, with a waveguide grating router (WGR) configuration and a properly modified slab coupler.

  9. QUANTITATIVE FOURIER TRANSFORM INFRARED SPECTROSCOPIC INVESTIGATION OF HUMIC SUBSTANCE FUNCTIONAL GROUP COMPOSITION

    EPA Science Inventory

    Infrared (IR) spectroscopy has been widely used for the structural investigation of humic substances. Although Fourier Transform Infrared (FTIR) instrumentation has been available for sometime, relatively little work with these instruments has been reported for humic substances,...

  10. Fast Fourier Transform Spectral Analysis Program

    NASA Technical Reports Server (NTRS)

    Daniel, J. A., Jr.; Graves, M. L.; Hovey, N. M.

    1969-01-01

    Fast Fourier Transform Spectral Analysis Program is used in frequency spectrum analysis of postflight, space vehicle telemetered trajectory data. This computer program with a digital algorithm can calculate power spectrum rms amplitudes and cross spectrum of sampled parameters at even time increments.

  11. [Research on spatially modulated Fourier transform imaging spectrometer data processing method].

    PubMed

    Huang, Min; Xiangli, Bin; Lü, Qun-Bo; Zhou, Jin-Song; Jing, Juan-Juan; Cui, Yan

    2010-03-01

    Fourier transform imaging spectrometer is a new technic, and has been developed very rapidly in nearly ten years. The data catched by Fourier transform imaging spectrometer is indirect data, can not be used by user, and need to be processed by various approaches, including data pretreatment, apodization, phase correction, FFT, and spectral radicalization calibration. No paper so far has been found roundly to introduce this method. In the present paper, the author will give an effective method to process the interfering data to spectral data, and with this method we can obtain good result.

  12. Deficiencies of the cryptography based on multiple-parameter fractional Fourier transform.

    PubMed

    Ran, Qiwen; Zhang, Haiying; Zhang, Jin; Tan, Liying; Ma, Jing

    2009-06-01

    Methods of image encryption based on fractional Fourier transform have an incipient flaw in security. We show that the schemes have the deficiency that one group of encryption keys has many groups of keys to decrypt the encrypted image correctly for several reasons. In some schemes, many factors result in the deficiencies, such as the encryption scheme based on multiple-parameter fractional Fourier transform [Opt. Lett.33, 581 (2008)]. A modified method is proposed to avoid all the deficiencies. Security and reliability are greatly improved without increasing the complexity of the encryption process. (c) 2009 Optical Society of America.

  13. Simultaneous measurement of temperature and pressure with cascaded extrinsic Fabry-Perot interferometer and intrinsic Fabry-Perot interferometer sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Yinan; Huang, Jie; Lan, Xinwei; Yuan, Lei; Xiao, Hai

    2014-06-01

    This paper presents an approach for simultaneous measurement of temperature and pressure using miniaturized fiber inline sensors. The approach utilizes the cascaded optical fiber inline intrinsic Fabry-Perot interferometer and extrinsic Fabry-Perot interferometer as temperature and pressure sensing elements, respectively. A CO2 laser was used to create a loss between them to balance their reflection power levels. The multiplexed signals were demodulated using a Fast Fourier transform-based wavelength tracking method. Experimental results showed that the sensing system could measure temperature and pressure unambiguously in a pressure range of 0 to 6.895×105 Pa and a temperature range from 20°C to 700°C.

  14. Microwave processed NiMg ferrite: Studies on structural and magnetic properties

    NASA Astrophysics Data System (ADS)

    Chandra Babu Naidu, K.; Madhuri, W.

    2016-12-01

    Ferrites are magnetic semiconductors realizing an important role in electrical and electronic circuits where electrical and magnetic property coupling is required. Though ferrite materials are known for a long time, there is a large scope in the improvement of their properties (vice sintering and frequency dependence of electrical and magnetic properties) with the current technological trends. Forth coming technology is aimed at miniaturization and smart gadgets, electrical components like inductors and transformers cannot be included in integrated circuits. These components are incorporated into the circuit as surface mount devices whose fabrication involves low temperature co-firing of ceramics and microwave monolithic integrated circuits technologies. These technologies demand low temperature sinter-ability of ferrites. This article presents low temperature microwave sintered Ni-Mg ferrites of general chemical formula Ni1-xMgxFe2O4 (x=0, 0.2, 0.4, 0.5, 0.6, 0.8, 1) for potential applications as transformer core materials. The series of ferrites are characterized using X-ray diffractometer, scanning electron microscopy, Fourier transform infrared and vibrating sample magnetometer for investigating structural, morphological and magnetic properties respectively. The initial permeability is studied with magnesium content, temperature and frequency in the temperature range of 308 K-873 K and 42 Hz-5 MHz.

  15. A 2D Fourier tool for the analysis of photo-elastic effect in large granular assemblies

    NASA Astrophysics Data System (ADS)

    Leśniewska, Danuta

    2017-06-01

    Fourier transforms are the basic tool in constructing different types of image filters, mainly those reducing optical noise. Some DIC or PIV software also uses frequency space to obtain displacement fields from a series of digital images of a deforming body. The paper presents series of 2D Fourier transforms of photo-elastic transmission images, representing large pseudo 2D granular assembly, deforming under varying boundary conditions. The images related to different scales were acquired using the same image resolution, but taken at different distance from the sample. Fourier transforms of images, representing different stages of deformation, reveal characteristic features at the three (`macro-`, `meso-` and `micro-`) scales, which can serve as a data to study internal order-disorder transition within granular materials.

  16. Bessel function expansion to reduce the calculation time and memory usage for cylindrical computer-generated holograms.

    PubMed

    Sando, Yusuke; Barada, Daisuke; Jackin, Boaz Jessie; Yatagai, Toyohiko

    2017-07-10

    This study proposes a method to reduce the calculation time and memory usage required for calculating cylindrical computer-generated holograms. The wavefront on the cylindrical observation surface is represented as a convolution integral in the 3D Fourier domain. The Fourier transformation of the kernel function involving this convolution integral is analytically performed using a Bessel function expansion. The analytical solution can drastically reduce the calculation time and the memory usage without any cost, compared with the numerical method using fast Fourier transform to Fourier transform the kernel function. In this study, we present the analytical derivation, the efficient calculation of Bessel function series, and a numerical simulation. Furthermore, we demonstrate the effectiveness of the analytical solution through comparisons of calculation time and memory usage.

  17. Enhancement of Signal-to-noise Ratio in Natural-source Transient Magnetotelluric Data with Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Paulson, K. V.

    For audio-frequency magnetotelluric surveys where the signals are lightning-stroke transients, the conventional Fourier transform method often fails to produce a high quality impedance tensor. An alternative approach is to use the wavelet transform method which is capable of localizing target information simultaneously in both the temporal and frequency domains. Unlike Fourier analysis that yields an average amplitude and phase, the wavelet transform produces an instantaneous estimate of the amplitude and phase of a signal. In this paper a complex well-localized wavelet, the Morlet wavelet, has been used to transform and analyze audio-frequency magnetotelluric data. With the Morlet wavelet, the magnetotelluric impedance tensor can be computed directly in the wavelet transform domain. The lightning-stroke transients are easily identified on the dilation-translation plane. Choosing those wavelet transform values where the signals are located, a higher signal-to-noise ratio estimation of the impedance tensor can be obtained. In a test using real data, the wavelet transform showed a significant improvement in the signal-to-noise ratio over the conventional Fourier transform.

  18. Fourier transform spectroscopy of cotton and cotton trash

    USDA-ARS?s Scientific Manuscript database

    Fourier Transform techniques have been shown to have higher signal-to-noise capabilities, higher throughput, negligible stray light, continuous spectra, and higher resolution. In addition, FT spectroscopy affords for frequencies in spectra to be measured all at once and more precise wavelength calib...

  19. The Fourier Transform in Chemistry. Part 1. Nuclear Magnetic Resonance: Introduction.

    ERIC Educational Resources Information Center

    King, Roy W.; Williams, Kathryn R.

    1989-01-01

    Using fourier transformation methods in nuclear magnetic resonance has made possible increased sensitivity in chemical analysis. This article describes these methods as they relate to magnetization, the RF magnetic field, nuclear relaxation, the RF pulse, and free induction decay. (CW)

  20. ENVIRONMENTAL ANALYSIS BY AB INITIO QUANTUM MECHANICAL COMPUTATION AND GAS CHROMATOGRAPHY/FOURIER TRANSFORM INFRARED SPECTROMETRY.

    EPA Science Inventory

    Computational chemistry, in conjunction with gas chromatography/mass spectrometry/Fourier transform infrared spectrometry (GC/MS/FT-IR), was used to tentatively identify seven tetrachlorobutadiene (TCBD) isomers detected in an environmental sample. Computation of the TCBD infrare...

  1. A method to perform a fast fourier transform with primitive image transformations.

    PubMed

    Sheridan, Phil

    2007-05-01

    The Fourier transform is one of the most important transformations in image processing. A major component of this influence comes from the ability to implement it efficiently on a digital computer. This paper describes a new methodology to perform a fast Fourier transform (FFT). This methodology emerges from considerations of the natural physical constraints imposed by image capture devices (camera/eye). The novel aspects of the specific FFT method described include: 1) a bit-wise reversal re-grouping operation of the conventional FFT is replaced by the use of lossless image rotation and scaling and 2) the usual arithmetic operations of complex multiplication are replaced with integer addition. The significance of the FFT presented in this paper is introduced by extending a discrete and finite image algebra, named Spiral Honeycomb Image Algebra (SHIA), to a continuous version, named SHIAC.

  2. Structure in the 3D Galaxy Distribution. III. Fourier Transforming the Universe: Phase and Power Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scargle, Jeffrey D.; Way, M. J.; Gazis, P. R., E-mail: Jeffrey.D.Scargle@nasa.gov, E-mail: Michael.J.Way@nasa.gov, E-mail: PGazis@sbcglobal.net

    We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform of finely binned galaxy positions. In both cases, deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fouriermore » transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multipoint hierarchy. We identify some threads of modern large-scale inference methodology that will presumably yield detections in new wider and deeper surveys.« less

  3. Algebraic signal processing theory: 2-D spatial hexagonal lattice.

    PubMed

    Pünschel, Markus; Rötteler, Martin

    2007-06-01

    We develop the framework for signal processing on a spatial, or undirected, 2-D hexagonal lattice for both an infinite and a finite array of signal samples. This framework includes the proper notions of z-transform, boundary conditions, filtering or convolution, spectrum, frequency response, and Fourier transform. In the finite case, the Fourier transform is called discrete triangle transform. Like the hexagonal lattice, this transform is nonseparable. The derivation of the framework makes it a natural extension of the algebraic signal processing theory that we recently introduced. Namely, we construct the proper signal models, given by polynomial algebras, bottom-up from a suitable definition of hexagonal space shifts using a procedure provided by the algebraic theory. These signal models, in turn, then provide all the basic signal processing concepts. The framework developed in this paper is related to Mersereau's early work on hexagonal lattices in the same way as the discrete cosine and sine transforms are related to the discrete Fourier transform-a fact that will be made rigorous in this paper.

  4. Structure and physicochemical properties of starches in lotus (Nelumbo nucifera Gaertn.) rhizome

    PubMed Central

    Yu, Huaguang; Cheng, Libao; Yin, Jingjing; Yan, Shunjun; Liu, Kejun; Zhang, Fengmin; Xu, Bin; Li, Liangjun

    2013-01-01

    The type and content of starch are believed to be the most critical factors in determining the storage and processing quality of lotus rhizome species, and the intention of this study is to survey the structure and properties of starches isolated from rhizomes of two lotus cultivars using X-ray powder diffraction, solid-state nuclear magnetic resonance spectroscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, scanning electron microscope, differential scanning calorimetry, and rapid viscosity analyzer (RVA). Starch in rhizome of cultivar Meirenhong exhibited C-type X-ray diffraction pattern, while starch in rhizome of cultivar Wawalian showed A-type pattern. 13C cross-polarization magic-angle spinning nuclear magnetic resonance (13C CP-MAS NMR) also confirmed the polymorphs. The relative crystallinity of two starches was quantitatively estimated from two methods and compared. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) results indicated that the external regions of the starch granules had a great level of ordered structure. Starch granules in Meirenhong showed oval-shaped granules, while starch granules in Wawalian were elongated and oval in shape with relatively large size. Gelatinization temperatures of starch in Meirenhong and Wawalian were 330.5 and 342.4 K, respectively, and the gelatinization temperature range of Meirenhong was significantly wider than that of Wawalian. Starch in rhizome of cultivar Meirenhong showed lower pasting temperature, lower hot and cool viscosities, lower setback, and higher peak viscosity and breakdown than those of Wawalian in RVA pasting profiles at 6% starch concentration. PMID:24804031

  5. Convective flows of generalized time-nonlocal nanofluids through a vertical rectangular channel

    NASA Astrophysics Data System (ADS)

    Ahmed, Najma; Vieru, Dumitru; Fetecau, Constantin; Shah, Nehad Ali

    2018-05-01

    Time-nonlocal generalized model of the natural convection heat transfer and nanofluid flows through a rectangular vertical channel with wall conditions of the Robin type are studied. The generalized mathematical model with time-nonlocality is developed by considering the fractional constitutive equations for the shear stress and thermal flux defined with the time-fractional Caputo derivative. The Caputo power-law non-local kernel provides the damping to the velocity and temperature gradient; therefore, transport processes are influenced by the histories at all past and present times. Analytical solutions for dimensionless velocity and temperature fields are obtained by using the Laplace transform coupled with the finite sine-cosine Fourier transform which is suitable to problems with boundary conditions of the Robin type. Particularizing the fractional thermal and velocity parameters, solutions for three simplified models are obtained (classical linear momentum equation with damped thermal flux; fractional shear stress constitutive equation with classical Fourier's law for thermal flux; classical shear stress and thermal flux constitutive equations). It is found that the thermal histories strongly influence the thermal transport for small values of time t. Also, the thermal transport can be enhanced if the thermal fractional parameter decreases or by increasing the nanoparticles' volume fraction. The velocity field is influenced on the one hand by the temperature of the fluid and on the other by the damping of the velocity gradient introduced by the fractional derivative. Also, the transport motions of the channel walls influence the motion of the fluid layers located near them.

  6. Performance of the Fourier transform spectrometer (FTS) for FIS onboard ASTRO-F

    NASA Astrophysics Data System (ADS)

    Murakami, Noriko; Kawada, Mitsunobu; Takahashi, Hidenori; Ozawa, Keita; Imamura, Tetsuo; Shibai, Hiroshi; Nakagawa, Takao

    2004-10-01

    We have developed the imaging Fourier Transform Spectrometer (FTS) for the FIS (Far-Infrared Surveyor) onboard the ASTRO-F satellite. A Martin-Puplett interferometer is adopted to achieve high optical efficiency in a wide wavelength range. The total optical efficiency of this spectrometer is achieved 40-80% of the ideal value which is 25% of the incident flux. The wavelength range of 50-200μm is covered with two kinds of detector; the monolithic Ge:Ga photoconductor array for short wavelength (50-110μm) and the stressed Ge:Ga photoconductor array for long wavelength (110-200μm). The spectral resolution expected from the maximum optical path difference is 0.18cm-1. In order to evaluate the spectral resolution of the FTS, we measured absorption lines of H2O in atmosphere using the optics of the FTS with a bolometer at the room temperature. The measured line widths are consistent with the expected instrumental resolution of 0.18 cm-1. Some spectral measurements at the cryogenic temperature were carried out by using cold blackbody sources whose temperatures are controlled in a range from 20 to 50 K. The derived spectra considering with the spectral response of the system are consistent with expected ones. Spectroscopic observations with the FTS will provide a lot of astronomical information; SED of galaxies detected in the all sky survey and the physical diagnostics of the interstellar matter by using the excited atomic or molecular lines.

  7. Development of a High-Throughput Microwave Imaging System for Concealed Weapons Detection

    DTIC Science & Technology

    2016-07-15

    hardware. Index Terms—Microwave imaging, multistatic radar, Fast Fourier Transform (FFT). I. INTRODUCTION Near-field microwave imaging is a non-ionizing...configuration, but its computational demands are extreme. Fast Fourier Transform (FFT) imaging has long been used to efficiently construct images sampled with...Simulated image of 25 point scatterers imaged at range 1.5m, with array layout depicted in Fig. 3. Left: image formed with Equation (5) ( Fourier

  8. Annual and Semi-Annual Temperature Oscillations in the Upper Mesosphere

    NASA Technical Reports Server (NTRS)

    Niciejewski, R. J.; Killeen, T. L.

    1995-01-01

    Fourier transform spectrometer observations of the mesosphere have been performed at the University of Michigan (latitude: 42.5 N) on a long term basis. A database of near infrared Meinel hydroxyl spectra has been accumulated from which rotational temperatures have been determined. Harmonic analysis of one-day averaged temperatures for the period 1992.0 to 1994.5 has shown a distinct annual and semi-annual variation. Subsequent fitting of a five term periodic function characterizing the annual and semi-annual temperature oscillations to the daily averaged temperatures was performed. The resultant mean temperature and the amplitudes and phases of the annual and semi-annual variations are shown to coincide with an emission height slightly above 85 km which is consistent with the mean rocket derived altitude for peak nocturnal hydroxyl emission.

  9. Formulation of the rotational transformation of wave fields and their application to digital holography.

    PubMed

    Matsushima, Kyoji

    2008-07-01

    Rotational transformation based on coordinate rotation in Fourier space is a useful technique for simulating wave field propagation between nonparallel planes. This technique is characterized by fast computation because the transformation only requires executing a fast Fourier transform twice and a single interpolation. It is proved that the formula of the rotational transformation mathematically satisfies the Helmholtz equation. Moreover, to verify the formulation and its usefulness in wave optics, it is also demonstrated that the transformation makes it possible to reconstruct an image on arbitrarily tilted planes from a wave field captured experimentally by using digital holography.

  10. A Method to Compute the Force Signature of a Body Impacting on a Linear Elastic Structure Using Fourier Analysis

    DTIC Science & Technology

    1982-09-17

    FK * 1PK (2) The convolution of two transforms in time domain is the inverse transform of the product in frequency domain. Thus Rp(s) - Fgc() Ipg(*) (3...its inverse transform by: R,(r)- R,(a.)e’’ do. (5)2w In order to nuke use f a very accurate numerical method to ompute Fourier "ke and coil...taorm. When the inverse transform it tken by using Eq. (15), the cosine transform, because it converges faster than the sine transform refu-ft the

  11. Structure comparison of PMN-PT and PMN-PZT nanocrystals prepared by gel-combustion method at optimized temperatures

    NASA Astrophysics Data System (ADS)

    Ghasemifard, M.; Hosseini, S. M.; Bagheri-Mohagheghi, M. M.; Shahtahmasbi, N.

    2009-09-01

    We have synthesized and were performed a comparison of structures and optical properties between relaxor ferroelectric PMN-PT and PMN-PZT nanopowders. A gel-combustion method has been used to synthesize PMN-PT and PMN-PZT nanocrystalline with the perovskite structure. The precursors employed in the gel-combustion process were lead nitrate, magnesium acetate, niobium ammonium oxalate and zirconium nitrate. The nanopowders were characterized using the X-ray diffraction (XRD) and transmission electron microscopy (TEM) observation. Fourier transform infrared (FTIR) spectroscopy was employed to monitor the transformation of precursor solutions during the thermal reactions leading to the formation of perovskite phase.

  12. EVALUATION OF A PORTABLE FOURIER TRANSFORM INFRARED GAS ANALYZER FOR MEASUREMENTS OF AIR TOXICS IN POLLUTION PREVENTION RESEARCH

    EPA Science Inventory

    A portable Fourier transform infrared gas analyzer with a photoacoustic detector performed reliably during pollution prevention research at two industrial facilities. It exhibited good agreement (within approximately 6%) with other analytical instruments (dispersive infrared and ...

  13. PARTICULATE MATTER MEASUREMENTS USING OPEN-PATH FOURIER TRANSFORM INFRARED SPECTROSCOPY

    EPA Science Inventory

    Open-path Fourier transform infrared (OP-FT1R) spectroscopy is an accepted technology for measuring gaseous air contaminants. OP-FT1R absorbance spectra acquired during changing aerosols conditions reveal related changes in very broad baseline features. Usually, this shearing of ...

  14. Gravity data inversion to determine 3D topographycal density contrast of Banten area, Indonesia based on fast Fourier transform

    NASA Astrophysics Data System (ADS)

    Windhari, Ayuty; Handayani, Gunawan

    2015-04-01

    The 3D inversion gravity anomaly to estimate topographical density using a matlab source code from gridded data provided by Parker Oldenburg algorithm based on fast Fourier transform was computed. We extend and improved the source code of 3DINVERT.M invented by Gomez Ortiz and Agarwal (2005) using the relationship between Fourier transform of the gravity anomaly and the sum of the Fourier transform from the topography density. We gave density contrast between the two media to apply the inversion. FFT routine was implemented to construct amplitude spectrum to the given mean depth. The results were presented as new graphics of inverted topography density, the gravity anomaly due to the inverted topography and the difference between the input gravity data and the computed ones. It terminates when the RMS error is lower than pre-assigned value used as convergence criterion or until maximum of iterations is reached. As an example, we used the matlab program on gravity data of Banten region, Indonesia.

  15. Construction of high frame rate images with Fourier transform

    NASA Astrophysics Data System (ADS)

    Peng, Hu; Lu, Jian-Yu

    2002-05-01

    Traditionally, images are constructed with a delay-and-sum method that adjusts the phases of received signals (echoes) scattered from the same point in space so that they are summed in phase. Recently, the relationship between the delay-and-sum method and the Fourier transform is investigated [Jian-yu Lu, Anjun Liu, and Hu Peng, ``High frame rate and delay-and-sum imaging methods,'' IEEE Trans. Ultrason. Ferroelectr. Freq. Control (submitted)]. In this study, a generic Fourier transform method is developed. Two-dimensional (2-D) or three-dimensional (3-D) high frame rate images can be constructed using the Fourier transform with a single transmission of an ultrasound pulse from an array as long as the transmission field of the array is known. To verify our theory, computer simulations have been performed with a linear array, a 2-D array, a convex curved array, and a spherical 2-D array. The simulation results are consistent with our theory. [Work supported in part by Grant 5RO1 HL60301 from NIH.

  16. Wavelength-encoded tomography based on optical temporal Fourier transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chi; Wong, Kenneth K. Y., E-mail: kywong@eee.hku.hk

    We propose and demonstrate a technique called wavelength-encoded tomography (WET) for non-invasive optical cross-sectional imaging, particularly beneficial in biological system. The WET utilizes time-lens to perform the optical Fourier transform, and the time-to-wavelength conversion generates a wavelength-encoded image of optical scattering from internal microstructures, analogous to the interferometery-based imaging such as optical coherence tomography. Optical Fourier transform, in principle, comes with twice as good axial resolution over the electrical Fourier transform, and will greatly simplify the digital signal processing after the data acquisition. As a proof-of-principle demonstration, a 150 -μm (ideally 36 μm) resolution is achieved based on a 7.5-nm bandwidth swept-pump,more » using a conventional optical spectrum analyzer. This approach can potentially achieve up to 100-MHz or even higher frame rate with some proven ultrafast spectrum analyzer. We believe that this technique is innovative towards the next-generation ultrafast optical tomographic imaging application.« less

  17. The limit distribution in the q-CLT for q\\,\\geqslant \\,1 is unique and can not have a compact support

    NASA Astrophysics Data System (ADS)

    Umarov, Sabir; Tsallis, Constantino

    2016-10-01

    In a paper by Umarov et al (2008 Milan J. Math. 76 307-28), a generalization of the Fourier transform, called the q-Fourier transform, was introduced and applied for the proof of a q-generalized central limit theorem (q-CLT). Subsequently, Hilhorst illustrated (2009 Braz. J. Phys. 39 371-9 2010 J. Stat. Mech. P10023) that the q-Fourier transform for q\\gt 1, is not invertible in the space of density functions. Indeed, using an invariance principle, he constructed a family of densities with the same q-Fourier transform and noted that ‘as a consequence, the q-CLT falls short of achieving its stated goal’. The distributions constructed there have compact support. We prove now that the limit distribution in the q-CLT is unique and can not have a compact support. This result excludes all the possible counterexamples which can be constructed using the invariance principle and fills the gap mentioned by Hilhorst.

  18. Debranching and temperature-cycled crystallization of waxy rice starch and their digestibility.

    PubMed

    Zeng, Feng; Ma, Fei; Gao, Qunyu; Yu, Shujuan; Kong, Fansheng; Zhu, Siming

    2014-11-26

    Slowly digestible starch (SDS) was obtained through debranched waxy rice starch and subsequent crystallization under isothermal and temperature-cycled conditions. Temperature-cycled crystallization of dual 4/-20 °C produced a higher yield of SDS product than isotherm crystallization. Crystal structure of SDS products changed from A-type to a mixture of B and V-type X-ray diffraction patterns. The relative crystallinity was higher in the temperature-cycled samples than that of isotherm. Attenuated total reflectance Fourier transform infrared spectroscopy suggested that the peripheral regions of isothermal storage starch were better organized than temperature-cycles. Temperature cycling induced higher onset temperature for melting of crystals than isothermal storage under a differential scanning calorimeter. The cycled temperature storage induced a greater amount of SDS than the isothermal storage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Application of the fractional Fourier transform to image reconstruction in MRI.

    PubMed

    Parot, Vicente; Sing-Long, Carlos; Lizama, Carlos; Tejos, Cristian; Uribe, Sergio; Irarrazaval, Pablo

    2012-07-01

    The classic paradigm for MRI requires a homogeneous B(0) field in combination with linear encoding gradients. Distortions are produced when the B(0) is not homogeneous, and several postprocessing techniques have been developed to correct them. Field homogeneity is difficult to achieve, particularly for short-bore magnets and higher B(0) fields. Nonlinear magnetic components can also arise from concomitant fields, particularly in low-field imaging, or intentionally used for nonlinear encoding. In any of these situations, the second-order component is key, because it constitutes the first step to approximate higher-order fields. We propose to use the fractional Fourier transform for analyzing and reconstructing the object's magnetization under the presence of quadratic fields. The fractional fourier transform provides a precise theoretical framework for this. We show how it can be used for reconstruction and for gaining a better understanding of the quadratic field-induced distortions, including examples of reconstruction for simulated and in vivo data. The obtained images have improved quality compared with standard Fourier reconstructions. The fractional fourier transform opens a new paradigm for understanding the MR signal generated by an object under a quadratic main field or nonlinear encoding. Copyright © 2011 Wiley Periodicals, Inc.

  20. Study on different characteristics of doped tri calcium phosphate at different sintering temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samanta, Sujan Krishna, E-mail: itssujan@rediffmail.com; Chanda, Abhijit, E-mail: abhijitchanda.biomed@gmail.com

    2016-04-13

    Pure β-tricalcium phosphate (β-TCP), Zn-doped (3wt %) β-TCP and Mg- doped (3wt %) β-TCP samples were prepared by using a wet chemical precipitation synthesis technique, followed by calcination at 800 °C in air. The developed materials were subjected to sintering at different temperatures. Density and porosity were compared. The X-ray diffractometry (XRD) and Fourier-transformed infrared (FTIR) spectrometer were used to examine the changes in crystalline phases and presence of functional groups of TCP ceramics. The scanning electron microscopy (SEM) was used to study the pore formation, pore size, grain size.

  1. Simple Parametric Model for Intensity Calibration of Cassini Composite Infrared Spectrometer Data

    NASA Technical Reports Server (NTRS)

    Brasunas, J.; Mamoutkine, A.; Gorius, N.

    2016-01-01

    Accurate intensity calibration of a linear Fourier-transform spectrometer typically requires the unknown science target and the two calibration targets to be acquired under identical conditions. We present a simple model suitable for vector calibration that enables accurate calibration via adjustments of measured spectral amplitudes and phases when these three targets are recorded at different detector or optics temperatures. Our model makes calibration more accurate both by minimizing biases due to changing instrument temperatures that are always present at some level and by decreasing estimate variance through incorporating larger averages of science and calibration interferogram scans.

  2. Synthesis of n-type semiconductor diamond single crystal under high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Li, Yong; Li, Shangsheng; Song, Mousheng; She, Yanchao; Wang, Qiang; Guan, Xuemao

    2017-12-01

    In this paper, diamond single crystal co-doped with sulfur and boron was successfully synthesized at the fixed pressure of 6.0 GPa and temperature range of 1535 K. Sulfur was detected in the co-doped diamond by Fourier Transform Infrared Spectroscopy (FTIR) and the corresponding characteristic peak located at 848 cm-1. Interestingly, Hall effect measurements indicated that the diamond co-doped with sulfur and boron exhibited n-type semiconductor behaviour. Furthermore, the Hall mobility and carrier concentration of the co-doped diamond higher than those of the boron-doping diamond.

  3. Gas Sensitivity Study of Polypyrrole Decorated Graphene Oxide Thick Film

    NASA Astrophysics Data System (ADS)

    Patil, Pritam; Gaikwad, Ganesh; Patil, Devidas Ramrao; Naik, Jitendra

    2016-04-01

    Polypyrrole (PPy) and graphene oxide (GO) nanocomposites were prepared by in situ polymerization method. The synthesized nanocomposites were characterized for current-voltage characteristic, Fourier transform infrared spectroscopy, X-ray diffraction and field emission scanning electron microscopy, which gave the evidence of the strong interaction between PPy nanofibers and GO nanosheets. The PPy/GO nanocomposites were used for the sensing of H2S, LPG, CO2 and NH3 gases respectively at room temperature. It was observed that PPy/GO nanocomposites with different GO weight ratios (5, 10 and 20 %) had better selectivity and sensitivity towards NH3 at room temperature.

  4. Application of fast Fourier transforms to the direct solution of a class of two-dimensional separable elliptic equations on the sphere

    NASA Technical Reports Server (NTRS)

    Moorthi, Shrinivas; Higgins, R. W.

    1993-01-01

    An efficient, direct, second-order solver for the discrete solution of a class of two-dimensional separable elliptic equations on the sphere (which generally arise in implicit and semi-implicit atmospheric models) is presented. The method involves a Fourier transformation in longitude and a direct solution of the resulting coupled second-order finite-difference equations in latitude. The solver is made efficient by vectorizing over longitudinal wave-number and by using a vectorized fast Fourier transform routine. It is evaluated using a prescribed solution method and compared with a multigrid solver and the standard direct solver from FISHPAK.

  5. Eliminating the zero spectrum in Fourier transform profilometry using empirical mode decomposition.

    PubMed

    Li, Sikun; Su, Xianyu; Chen, Wenjing; Xiang, Liqun

    2009-05-01

    Empirical mode decomposition is introduced into Fourier transform profilometry to extract the zero spectrum included in the deformed fringe pattern without the need for capturing two fringe patterns with pi phase difference. The fringe pattern is subsequently demodulated using a standard Fourier transform profilometry algorithm. With this method, the deformed fringe pattern is adaptively decomposed into a finite number of intrinsic mode functions that vary from high frequency to low frequency by means of an algorithm referred to as a sifting process. Then the zero spectrum is separated from the high-frequency components effectively. Experiments validate the feasibility of this method.

  6. Angular acceptance analysis of an infrared focal plane array with a built-in stationary Fourier transform spectrometer.

    PubMed

    Gillard, Frédéric; Ferrec, Yann; Guérineau, Nicolas; Rommeluère, Sylvain; Taboury, Jean; Chavel, Pierre

    2012-06-01

    Stationary Fourier transform spectrometry is an interesting concept for building reliable field or embedded spectroradiometers, especially for the mid- and far- IR. Here, a very compact configuration of a cryogenic stationary Fourier transform IR (FTIR) spectrometer is investigated, where the interferometer is directly integrated in the focal plane array (FPA). We present a theoretical analysis to explain and describe the fringe formation inside the FTIR-FPA structure when illuminated by an extended source positioned at a finite distance from the detection plane. The results are then exploited to propose a simple front lens design compatible with a handheld package.

  7. Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (4).

    PubMed

    Murase, Kenya

    2016-01-01

    Partial differential equations are often used in the field of medical physics. In this (final) issue, the methods for solving the partial differential equations were introduced, which include separation of variables, integral transform (Fourier and Fourier-sine transforms), Green's function, and series expansion methods. Some examples were also introduced, in which the integral transform and Green's function methods were applied to solving Pennes' bioheat transfer equation and the Fourier series expansion method was applied to Navier-Stokes equation for analyzing the wall shear stress in blood vessels.Finally, the author hopes that this series will be helpful for people who engage in medical physics.

  8. Direct generation of abruptly focusing vortex beams using a 3/2 radial phase-only pattern.

    PubMed

    Davis, Jeffrey A; Cottrell, Don M; Zinn, Jonathan M

    2013-03-20

    Abruptly focusing Airy beams have previously been generated using a radial cubic phase pattern that represents the Fourier transform of the Airy beam. The Fourier transform of this pattern is formed using a system length of 2f, where f is the focal length of the Fourier transform lens. In this work, we directly generate these abruptly focusing Airy beams using a 3/2 radial phase pattern encoded onto a liquid crystal display. The resulting optical system is much shorter. In addition, we can easily produce vortex patterns at the focal point of these beams. Experimental results match theoretical predictions.

  9. Method and apparatus for analyzing particle-containing gaseous suspensions

    DOEpatents

    Solomon, Peter R.; Carangelo, Robert M.; Best, Philip E.

    1987-01-01

    The method and apparatus permit analyses, by optical means, of properties of gaseous suspensions of particles, by measuring radiation that is emitted, transmitted or scattered by the particles. Determinations of composition, size, temperature and spectral emittance can be performed either in-situ or by sampling, and Fourier-transform infrared spectrometric techniques are most effectively used. Apparatus specifically adapted for performing radiation scattering analyses, and for collecting radiation from different sources, are provided.

  10. Method and apparatus for analyzing particle-containing gaseous suspensions

    DOEpatents

    Solomon, P.R.; Carangelo, R.M.; Best, P.E.

    1987-03-24

    The method and apparatus permit analyses, by optical means, of properties of gaseous suspensions of particles, by measuring radiation that is emitted, transmitted or scattered by the particles. Determinations of composition, size, temperature and spectral emittance can be performed either in-situ or by sampling, and Fourier-transform infrared spectrometric techniques are most effectively used. Apparatus specifically adapted for performing radiation scattering analyses, and for collecting radiation from different sources, are provided. 51 figs.

  11. Determination of Structural Parameters from EXAFS (Extended X-Ray Absorption Fine Structure): Application to Solutions and Catalysts.

    DTIC Science & Technology

    1984-05-23

    the disorder was accurately known. Inverse Transform To isolate the EAFS contribution due to a single feature in the Fourier transform, the inverse ...is associated with setting the "fold" components to 27 zero in r-space. An inverse transform (real part) of the major feature of the Fig. 4 Fourier...phase of the resulting inverse transform represents only any differences between the material being studied and the reference. This residual is

  12. Fourier-transform imaging of cotton and botanical and field trash mixtures

    USDA-ARS?s Scientific Manuscript database

    Botanical and field cotton trash comingled with cotton lint can greatly reduce the marketability and quality of cotton. Trash can be found comingled with cotton lint during harvesting, ginning, and processing, thus this study is of interest. Attenuated Total Reflectance-Fourier Transform Infrared (A...

  13. Detection and classification of salmonella serotypes using spectral signatures collected by fourier transform infrared (FT-IR) spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Spectral signatures of Salmonella serotypes namely Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky were collected using Fourier transform infrared spectroscopy (FT-IR). About 5-10 µL of Salmonella suspensions with concentrations of 1...

  14. Identification and characterization of salmonella serotypes using DNA spectral characteristics by fourier transform infrared (FT-IR) spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Analysis of DNA samples of Salmonella serotypes (Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky) were performed using Fourier transform infrared spectroscopy (FT-IR) spectrometer by placing directly in contact with a diamond attenua...

  15. Is Fourier analysis performed by the visual system or by the visual investigator.

    PubMed

    Ochs, A L

    1979-01-01

    A numerical Fourier transform was made of the pincushion grid illusion and the spectral components orthogonal to the illusory lines were isolated. Their inverse transform creates a picture of the illusion. The spatial-frequency response of cortical, simple receptive field neurons similarly filters the grid. A complete set of these neurons thus approximates a two-dimensional Fourier analyzer. One cannot conclude, however, that the brain actually uses frequency-domain information to interpret visual images.

  16. Scaled nonuniform Fourier transform for image reconstruction in swept source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Mezgebo, Biniyam; Nagib, Karim; Fernando, Namal; Kordi, Behzad; Sherif, Sherif

    2018-02-01

    Swept Source optical coherence tomography (SS-OCT) is an important imaging modality for both medical and industrial diagnostic applications. A cross-sectional SS-OCT image is obtained by applying an inverse discrete Fourier transform (DFT) to axial interferograms measured in the frequency domain (k-space). This inverse DFT is typically implemented as a fast Fourier transform (FFT) that requires the data samples to be equidistant in k-space. As the frequency of light produced by a typical wavelength-swept laser is nonlinear in time, the recorded interferogram samples will not be uniformly spaced in k-space. Many image reconstruction methods have been proposed to overcome this problem. Most such methods rely on oversampling the measured interferogram then use either hardware, e.g., Mach-Zhender interferometer as a frequency clock module, or software, e.g., interpolation in k-space, to obtain equally spaced samples that are suitable for the FFT. To overcome the problem of nonuniform sampling in k-space without any need for interferogram oversampling, an earlier method demonstrated the use of the nonuniform discrete Fourier transform (NDFT) for image reconstruction in SS-OCT. In this paper, we present a more accurate method for SS-OCT image reconstruction from nonuniform samples in k-space using a scaled nonuniform Fourier transform. The result is demonstrated using SS-OCT images of Axolotl salamander eggs.

  17. Spatially-Heterodyned Holography

    DOEpatents

    Thomas, Clarence E [Knoxville, TN; Hanson, Gregory R [Clinton, TN

    2006-02-21

    A method of recording a spatially low-frequency heterodyne hologram, including spatially heterodyne fringes for Fourier analysis, includes: splitting a laser beam into a reference beam and an object beam; interacting the object beam with an object; focusing the reference beam and the object beam at a focal plane of a digital recorder to form a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digital recording the spatially low-frequency heterodyne hologram; Fourier transforming axes of the recorded spatially low-frequency heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined by an angle between the reference beam and the object beam; cutting off signals around an origin; and performing an inverse Fourier transform.

  18. Feature Extraction for Bearing Prognostics and Health Management (PHM) - A Survey (Preprint)

    DTIC Science & Technology

    2008-05-01

    Envelope analysis • Cepstrum analysis • Higher order spectrum • Short-time Fourier Transform (STFT) • Wigner - Ville distribution ( WVD ) • Empirical mode...techniques are the short-time Fourier transform (STFT), the Wigner - Ville distribution , and the wavelet transform. In this paper we categorize wavelets...diagnosis have shown in many publications, for example, [22]. b) Wigner – Ville distribution : The afore-mentioned STFT is conceptually simple. However

  19. Limitations and potential of spectral subtractions in fourier-transform infrared (FTIR) spectroscopy of soil samples

    USDA-ARS?s Scientific Manuscript database

    Soil science research is increasingly applying Fourier transform infrared (FTIR) spectroscopy for analysis of soil organic matter (SOM). However, the compositional complexity of soils and the dominance of the mineral component can limit spectroscopic resolution of SOM and other minor components. The...

  20. Detection of starch adulteration in onion powder by FT-NIR and FT-IR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Adulteration of onion powder with cornstarch was identified by Fourier transform near-infrared (FT-NIR) and Fourier transform infrared (FT-IR) spectroscopy. The reflectance spectra of 180 pure and adulterated samples (1–35 wt% starch) were collected and preprocessed to generate calibration and predi...

  1. Coordinate axes, location of origin, and redundancy for the one and two-dimensional discrete Fourier transform

    NASA Technical Reports Server (NTRS)

    Ioup, G. E.; Ioup, J. W.

    1985-01-01

    Appendix 4 of the Study of One- and Two-Dimensional Filtering and Deconvolution Algorithms for a Streaming Array Computer discusses coordinate axes, location of origin, and redundancy for the one- and two-dimensional Fourier transform for complex and real data.

  2. 3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography

    Treesearch

    Michael C. Martin; Charlotte Dabat-Blondeau; Miriam Unger; Julia Sedlmair; Dilworth Y. Parkinson; Hans A. Bechtel; Barbara Illman; Jonathan M. Castro; Marco Keiluweit; David Buschke; Brenda Ogle; Michael J. Nasse; Carol J. Hirschmugl

    2013-01-01

    We report Fourier transform infrared spectro-microtomography, a nondestructive three-dimensional imaging approach that reveals the distribution of distinctive chemical compositions throughout an intact biological or materials sample. The method combines mid-infrared absorption contrast with computed tomographic data acquisition and reconstruction to enhance chemical...

  3. Chemometric Analysis of Multicomponent Biodegradable Plastics by Fourier Transform Infrared Spectrometry: The R-Matrix Method

    USDA-ARS?s Scientific Manuscript database

    A new chemometric method based on absorbance ratios from Fourier transform infrared spectra was devised to analyze multicomponent biodegradable plastics. The method uses the BeerLambert law to directly compute individual component concentrations and weight losses before and after biodegradation of c...

  4. Applications of Fourier transform infrared spectroscopy to quality control of the epoxy matrix

    NASA Technical Reports Server (NTRS)

    Antoon, M. K.; Starkey, K. M.; Koenig, J. L.

    1979-01-01

    The object of the paper is to demonstrate the utility of Fourier transform infrared (FT-IR) difference spectra for investigating the composition of a neat epoxy resin, hardener, and catalysts. The composition and degree of cross-linking of the cured matrix is also considered.

  5. The Kinetics of Mo(Co)6 Substitution Monitored by Fourier Transform Infrared Spectrophotometry.

    ERIC Educational Resources Information Center

    Suslick, Kenneth S.; And Others

    1987-01-01

    Describes a physical chemistry experiment that uses Fourier transform (FTIR) spectrometers and microcomputers as a way of introducing students to the spectral storage and manipulation techniques associated with digitized data. It can be used to illustrate FTIR spectroscopy, simple kinetics, inorganic mechanisms, and Beer's Law. (TW)

  6. A statistical evaluation of spectral fingerprinting methods using analysis of variance and principal component analysis

    USDA-ARS?s Scientific Manuscript database

    Six methods were compared with respect to spectral fingerprinting of a well-characterized series of broccoli samples. Spectral fingerprints were acquired for finely-powdered solid samples using Fourier transform-infrared (IR) and Fourier transform-near infrared (NIR) spectrometry and for aqueous met...

  7. Machine Learning-Aided, Robust Wideband Spectrum Sensing for Cognitive Radios

    DTIC Science & Technology

    2015-06-12

    to even Approved for public release; distribution is unlimited. 2 on the order of a giga -Hertz (GHz). Due to wide bandwidth and noncontiguous...Frequency Band CS Compressive Sampling DFT Discrete Fourier Transform EMI Electro Magnetic Interference FFT Fast Fourier Transform GHz Giga Hertz Hz Hertz

  8. Variable Temperature Infrared Spectroscopy Investigations of Benzoic Acid Desorption from Sodium and Calcium Montmorillonite Clays.

    PubMed

    Nickels, Tara M; Ingram, Audrey L; Maraoulaite, Dalia K; White, Robert L

    2015-12-01

    Processes involved in thermal desorption of benzoic acid from sodium and calcium montmorillonite clays are investigated by using variable temperature diffuse reflection Fourier transform infrared spectroscopy (DRIFTS). By monitoring the temperature dependence of infrared absorbance bands while heating samples, subtle changes in molecular vibrations are detected and employed to characterize specific benzoic acid adsorption sites. Abrupt changes in benzoic acid adsorption site properties occur for both clay samples at about 125 °C. Difference spectra absorbance band frequency variations indicate that adsorbed benzoic acid interacts with interlayer cations through water bridges and that these interactions can be disrupted by the presence of organic anions, in particular, benzoate.

  9. Pressure-temperature gelatinization phase diagram of starch: An in situ Fourier transform infrared study.

    PubMed

    Rubens, P; Heremans, K

    2000-12-01

    The gelatinization of rice starch is reported as a function of temperature and pressure from the changes in the ir spectrum. The diagram that is observed is reminiscent of those obtained for the denaturation of proteins and the phase separation observed from the cloud point for several water soluble synthetic polymers. It is proposed that the reentrant shape of the diagram for starch is not only due to hydrogen bonding but also to the imperfect packing of amylose and amylopectin chains in the starch granule. The influence of pressure and temperature on thermodynamic parameters leading to this diagram is discussed. Copyright 2000 John Wiley & Sons, Inc.

  10. Experimental heat treatment of silcrete implies analogical reasoning in the Middle Stone Age.

    PubMed

    Wadley, Lyn; Prinsloo, Linda C

    2014-05-01

    Siliceous rocks that were not heated to high temperatures during their geological formation display improved knapping qualities when they are subjected to controlled heating. Experimental heat treatment of South African silcrete, using open fires of the kind used during the Middle Stone Age, shows that the process needed careful management, notwithstanding recent arguments to the contrary. Silcrete blocks fractured when heated on the surface of open fires or on coal beds, but were heated without mishap when buried in sand below a fire. Three silcrete samples, a control, a block heated underground with maximum temperature between 400 and 500 °C and a block heated in an open fire with maximum temperature between 700 and 800 °C, were analysed with X-ray powder diffraction (XRD), X-ray fluorescence (XRF), optical microscopy, and both Fourier transform infrared (FTIR) and Raman spectroscopy. The results show that the volume expansion during the thermally induced α- to β-quartz phase transformation and the volume contraction during cooling play a major role in the heat treatment of silcrete. Rapid heating or cooling through the phase transformation at 573 °C will cause fracture of the silcrete. Successful heat treatment requires controlling surface fire temperatures in order to obtain the appropriate underground temperatures to stay below the quartz inversion temperature. Heat treatment of rocks is a transformative technology that requires skilled use of fire. This process involves analogical reasoning, which is an attribute of complex cognition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Infrared spectroscopic studies of the effect of elevated temperature on the association of pyroglutamic acid with clay and other minerals

    NASA Astrophysics Data System (ADS)

    Macklin, John W.; White, David H.

    Fourier transform i.r. measurements of L-pyroglutamic acid dispersed in a matrix of a clay, silica or alumina have been obtained at various temperatures between 25 and 220°C. The i.r. spectrum of L-pyroglutamic acid varies in a manner slightly dependent upon the matrix material and shows considerable change as the temperature of the mixtures is increased. The differences in the spectrum at elevated temperatures are explained in terms of a chemical reaction between hydroxyl groups in the matrix and the carboxylic acid. The i.r. spectra of trimethylsilyl derivatives of L-pyroglutamic acid and aluminum pyroglutamate were also measured to assist the understanding of spectra and interpretation of the spectral changes dependent upon increasing temperature.

  12. Infrared spectroscopic studies of the effect of elevated temperature on the association of pyroglutamic acid with clay and other minerals

    NASA Technical Reports Server (NTRS)

    Macklin, J. W.; White, D. H.

    1985-01-01

    Fourier transform i.r. measurements of L-pyroglutamic acid dispersed in a matrix of a clay, silica or alumina have been obtained at various temperatures between 25 and 220 degrees C. The i.r. spectrum of L-pyroglutamic acid varies in a manner dependent upon the matrix material and shows considerable change as the temperature of the mixtures is increased. The differences in the spectrum at elevated temperatures are explained in terms of a chemical reaction between hydroxyl groups in the matrix and the carboxylic acid. The i.r. spectra of trimethylsilyl derivatives of L-pyroglutamic acid and aluminum pyroglutamate were also measured to assist the understanding of spectra and interpretation of the spectral changes dependent upon increasing temperature.

  13. Impact of generalized Fourier's and Fick's laws on MHD 3D second grade nanofluid flow with variable thermal conductivity and convective heat and mass conditions

    NASA Astrophysics Data System (ADS)

    Ramzan, M.; Bilal, M.; Chung, Jae Dong; Lu, Dian Chen; Farooq, Umer

    2017-09-01

    A mathematical model has been established to study the magnetohydrodynamic second grade nanofluid flow past a bidirectional stretched surface. The flow is induced by Cattaneo-Christov thermal and concentration diffusion fluxes. Novel characteristics of Brownian motion and thermophoresis are accompanied by temperature dependent thermal conductivity and convective heat and mass boundary conditions. Apposite transformations are betrothed to transform a system of nonlinear partial differential equations to nonlinear ordinary differential equations. Analytic solutions of the obtained nonlinear system are obtained via a convergent method. Graphs are plotted to examine how velocity, temperature, and concentration distributions are affected by varied physical involved parameters. Effects of skin friction coefficients along the x- and y-direction versus various parameters are also shown through graphs and are well debated. Our findings show that velocities along both the x and y axes exhibit a decreasing trend for the Hartmann number. Moreover, temperature and concentration distributions are decreasing functions of thermal and concentration relaxation parameters.

  14. The Effect of Substrate Emissivity on the Spectral Emission of a Hot-Gas Overlayer

    DTIC Science & Technology

    2015-12-30

    unlimited. Unclassified Unlimited Unclassified Unlimited Unclassified Unlimited Unclassified Unlimited 19 Harold D. Ladouceur (202) 767-3558 Fourier ...13 REFERENCES………………………………………………………………………………….………..14 E-1 EXECUTIVE SUMMARY Fourier transform infrared...Raman spectroscopy, ambient x-ray photoelectron spectroscopy, near- infrared thermal imaging, and Fourier transform infrared emission spectroscopy

  15. Fourier Deconvolution Methods for Resolution Enhancement in Continuous-Wave EPR Spectroscopy.

    PubMed

    Reed, George H; Poyner, Russell R

    2015-01-01

    An overview of resolution enhancement of conventional, field-swept, continuous-wave electron paramagnetic resonance spectra using Fourier transform-based deconvolution methods is presented. Basic steps that are involved in resolution enhancement of calculated spectra using an implementation based on complex discrete Fourier transform algorithms are illustrated. Advantages and limitations of the method are discussed. An application to an experimentally obtained spectrum is provided to illustrate the power of the method for resolving overlapped transitions. © 2015 Elsevier Inc. All rights reserved.

  16. Products of multiple Fourier series with application to the multiblade transformation

    NASA Technical Reports Server (NTRS)

    Kunz, D. L.

    1981-01-01

    A relatively simple and systematic method for forming the products of multiple Fourier series using tensor like operations is demonstrated. This symbolic multiplication can be performed for any arbitrary number of series, and the coefficients of a set of linear differential equations with periodic coefficients from a rotating coordinate system to a nonrotating system is also demonstrated. It is shown that using Fourier operations to perform this transformation make it easily understood, simple to apply, and generally applicable.

  17. Diffraction Theory and Almost Periodic Distributions

    NASA Astrophysics Data System (ADS)

    Strungaru, Nicolae; Terauds, Venta

    2016-09-01

    We introduce and study the notions of translation bounded tempered distributions, and autocorrelation for a tempered distribution. We further introduce the spaces of weakly, strongly and null weakly almost periodic tempered distributions and show that for weakly almost periodic tempered distributions the Eberlein decomposition holds. For translation bounded measures all these notions coincide with the classical ones. We show that tempered distributions with measure Fourier transform are weakly almost periodic and that for this class, the Eberlein decomposition is exactly the Fourier dual of the Lebesgue decomposition, with the Fourier-Bohr coefficients specifying the pure point part of the Fourier transform. We complete the project by looking at few interesting examples.

  18. MRS3D: 3D Spherical Wavelet Transform on the Sphere

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2011-12-01

    Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. We present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We tested the 3D wavelet transform and as a toy-application, applied a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and found we can successfully remove noise without much loss to the large scale structure. The new spherical 3D isotropic wavelet transform, called MRS3D, is ideally suited to analysing and denoising future 3D spherical cosmological surveys; it uses a novel discrete spherical Fourier-Bessel Transform. MRS3D is based on two packages, IDL and Healpix and can be used only if these two packages have been installed.

  19. Wavelet based detection of manatee vocalizations

    NASA Astrophysics Data System (ADS)

    Gur, Berke M.; Niezrecki, Christopher

    2005-04-01

    The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of watercraft collisions in Florida's coastal waterways. Several boater warning systems, based upon manatee vocalizations, have been proposed to reduce the number of collisions. Three detection methods based on the Fourier transform (threshold, harmonic content and autocorrelation methods) were previously suggested and tested. In the last decade, the wavelet transform has emerged as an alternative to the Fourier transform and has been successfully applied in various fields of science and engineering including the acoustic detection of dolphin vocalizations. As of yet, no prior research has been conducted in analyzing manatee vocalizations using the wavelet transform. Within this study, the wavelet transform is used as an alternative to the Fourier transform in detecting manatee vocalizations. The wavelet coefficients are analyzed and tested against a specified criterion to determine the existence of a manatee call. The performance of the method presented is tested on the same data previously used in the prior studies, and the results are compared. Preliminary results indicate that using the wavelet transform as a signal processing technique to detect manatee vocalizations shows great promise.

  20. Metallic phases of cobalt-based catalysts in ethanol steam reforming: The effect of cerium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Sean S.-Y.; Kim, Do Heui; Ha, Su Y.

    2009-02-28

    The catalytic activity of cobalt in the production of hydrogen via ethanol steam reforming has been investigated in its relation to the crystalline structure of metallic cobalt. At a reaction temperature of 350 8C, the specific hydrogen production rates show that hexagonal close-packed (hcp) cobalt possesses higher activity than face-centered cubic (fcc) cobalt. However, at typical reaction temperatures (400– 500 8C) for ethanol steam reforming, hcp cobalt is transformed to less active fcc cobalt, as confirmed by in situ X-ray diffractometry (XRD). The addition of CeO2 promoter (10 wt.%) stabilizes the hcp cobalt structure at reforming temperatures up to 600more » 8C. Moreover, during the pre-reduction process, CeO2 promoter prevents sintering during the transformation of Co3O4 to hcp cobalt. Both reforming experiments and in situ diffuse-reflectance infrared Fourier transform spectroscopy (DRIFTS) showed that the surface reactions were modified by CeO2 promoter on 10% Ce–Co (hcp) to give a lower CO selectivity and a higher H2 yield as compared with the unpromoted hcp Co.« less

  1. On the synthesis of AlPO4-21 molecular sieve by vapor phase transport method and its phase transformation to AlPO4-15 molecular sieve

    NASA Astrophysics Data System (ADS)

    Shao, Hui; Chen, Jingjing; Chen, Xia; Leng, Yixin; Zhong, Jing

    2015-04-01

    An experimental design was applied to the synthesis of AlPO4-21 molecular sieve (AWO structure) by vapor phase transport (VPT) method, using tetramethylguanidine (TMG) as the template. In this study, the effects of crystallization time, crystallization temperature, phosphor content, template content and water content in the synthesis gel were investigated. The materials obtained were characterized by X-ray diffraction, scanning electron microscopy and fourier transform infrared spectroscopy (FT-IR). Microstructural analysis of the crystal growth in vapor synthetic conditions revealed a revised crystal growth route from zeolite AlPO4-21 to AlPO4-15 in the presence of the TMG. Homogenous hexagonal prism AlPO4-21 crystals with size of 7 × 3 μm were synthesized at a lower temperature (120 °C), which were completely different from the typical tabular parallelogram crystallization microstructure of AlPO4-21 phase. The crystals were transformed into AlPO4-21 phase with higher crystallization temperature, longer crystallization time, higher P2O5/Al2O3 ratio and higher TMG/Al2O3 ratio.

  2. Separation and determination of estrogen in the water environment by high performance liquid chromatography-fourier transform infrared spectroscopy

    PubMed Central

    Zheng, Bei; Li, Wentao; Li, Hongyan; Liu, Lin; Lei, Pei; Ge, Xiaopeng; Yu, Zhiyong; Zhou, Yiqi

    2016-01-01

    The components for connecting high-performance liquid chromatography (HPLC) with Fourier-transform infrared spectroscopy (FTIR) were investigated to determine estrogen in the water environment, including heating for atomization, solvent removal, sample deposition, drive control, spectrum collection, chip swap, cleaning and drying. Results showed that when the atomization temperature was increased to 388 K, the interference of mobile phase components (methanol, H2O, acetonitrile, and NaH2PO4) were completely removed in the IR measurement of estrogen, with 0.999 of similarity between IR spectra obtained after separation and corresponding to the standard IR spectra. In experiments with varying HPLC injection volumes, high similarity for IR spectra was obtained at 20 ul injection volume at 0.01 mg/L BPA while a useful IR spectrum for 10 ng/L BPA was obtained at 80 ul injection volume. In addition, estrogen concentrations in the natural water samples were calculated semi-quantitatively from the peak intensities of IR spectrum in the mid-infrared region. PMID:27577974

  3. Synthesis, growth, structural characterization, Hirshfeld analysis and nonlinear optical studies of a methyl substituted chalcone

    NASA Astrophysics Data System (ADS)

    Prabhu, Shobha R.; Jayarama, A.; Chandrasekharan, K.; Upadhyaya, V.; Ng, Seik Weng

    2017-05-01

    A new chalcone compound (2E)-3-(3-methylphenyl)-1-(4-nitrophenyl)prop-2-en-1-one (3MPNP) with molecular formula C16H13NO3 has been synthesized and crystallized by slow solvent evaporation technique. The Fourier transform infrared, Fourier transform Raman and nuclear magnetic resonance techniques were used for structural characterization. UV-visible absorption studies were carried out to study the transparency of the crystal in the visible region. Differential scanning calorimetry study shows thermal stability of crystals up to temperature 122 °C. Single crystal X-ray diffraction and powder X-ray diffraction techniques were used to study crystal structure and cell parameters. The Hirshfeld surface and 2-D fingerprint analysis were performed to study the nature of interactions and their quantitative contributions towards the crystal packing. The third order non-linear optical properties have been studied using single beam Z-scan technique and the results show that the material is a potential candidate for optical device applications such as optical limiters and optical switches.

  4. Fourier transform spectrometer observations of solar carbon monoxide. III - Time-resolved spectroscopy of the Delta V = 1 bands

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.; Brault, James W.

    1990-11-01

    Time series of the 2100/cm Delta v = 1 absorption bands of CO at the center of the solar disk and at the extreme limb have been recorded by Fourier transform spectrometer. The photospheric 5-min oscillation appears prominently at sun center. The peak-to-peak brightness temperature amplitude is roughly 300 K, and the peak-to-peak Doppler shift is roughly 1100 m/s. The 70 deg phase lag of maximum core intensity with respect to maximum redshift for the strongest Delta v = 1 absorptions is less than the 90 deg expected in the adiabatic limit. No dominant four-minute signal in the line intensity like that reported by Deming et al. (1984, 1986, and 1987) is found, nor is evidence for extreme fluctuations on short time scales like those proposed by Kalkofen et al. (1984). The strong Delta v = 1 lines exhibit systematic Doppler shifts of less than about 1 km/s, contrary to the predictions of transonic redshifts if the CO 'clouds' are associated with a dynamic cooling phase of the Ca II 'cell flashes.'

  5. Synthesis and luminescent properties of the novel poly(ethylene-co-acrylic acid) films based on surface modification with lanthanide (Eu3+, Tb3+) complexes

    NASA Astrophysics Data System (ADS)

    Wu, Yuewen; Chu, Yang; Yu, Zhenjiang; Hao, Haixia; Wu, Qingyao; Xie, Hongde

    2017-10-01

    Two kinds of novel fluorescent films have been successfully synthesized by surface modification on the poly(ethylene-co-acrylic acid) films using the lanthanide (Eu3+, Tb3+) complexes. The process consists of three steps: conversion of carboxylic acid groups on the surface of the poly(ethylene-co-acrylic acid) films to acid chloride groups, synthesis of the lanthanide complexes bearing amino groups, and amidation to form the modified films. To characterize the modified films, Fourier transform infrared, thermogravimetric analysis, static water contact angle measurements and photoluminescence tests have been employed. Fourier transform infrared verifies the successful preparation of the lanthanide complexes and the modified poly(ethylene-co-acrylic acid) films. These films can emit strong characteristic red and green light under UV light excitation. In addition, the films both have short lifetime (1.14 ms and 1.21 ms), high thermal stability (Td = 408 °C and 411 °C) and, compared with unmodified ones, increased hydrophilicity. All these results suggest that the modified films have potential application as luminescent materials under high temperature.

  6. Separation and determination of estrogen in the water environment by high performance liquid chromatography-fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Zheng, Bei; Li, Wentao; Li, Hongyan; Liu, Lin; Lei, Pei; Ge, Xiaopeng; Yu, Zhiyong; Zhou, Yiqi

    2016-08-01

    The components for connecting high-performance liquid chromatography (HPLC) with Fourier-transform infrared spectroscopy (FTIR) were investigated to determine estrogen in the water environment, including heating for atomization, solvent removal, sample deposition, drive control, spectrum collection, chip swap, cleaning and drying. Results showed that when the atomization temperature was increased to 388 K, the interference of mobile phase components (methanol, H2O, acetonitrile, and NaH2PO4) were completely removed in the IR measurement of estrogen, with 0.999 of similarity between IR spectra obtained after separation and corresponding to the standard IR spectra. In experiments with varying HPLC injection volumes, high similarity for IR spectra was obtained at 20 ul injection volume at 0.01 mg/L BPA while a useful IR spectrum for 10 ng/L BPA was obtained at 80 ul injection volume. In addition, estrogen concentrations in the natural water samples were calculated semi-quantitatively from the peak intensities of IR spectrum in the mid-infrared region.

  7. The (CH2)2O-H2O hydrogen bonded complex. Ab Initio calculations and Fourier transform infrared spectroscopy from neon matrix and a new supersonic jet experiment coupled to the infrared AILES beamline of synchrotron SOLEIL.

    PubMed

    Cirtog, M; Asselin, P; Soulard, P; Tremblay, B; Madebène, B; Alikhani, M E; Georges, R; Moudens, A; Goubet, M; Huet, T R; Pirali, O; Roy, P

    2011-03-31

    A series of hydrogen bonded complexes involving oxirane and water molecules have been studied. In this paper we report on the vibrational study of the oxirane-water complex (CH(2))(2)O-H(2)O. Neon matrix experiments and ab initio anharmonic vibrational calculations have been performed, providing a consistent set of vibrational frequencies and anharmonic coupling constants. The implementation of a new large flow supersonic jet coupled to the Bruker IFS 125 HR spectrometer at the infrared AILES beamline of the French synchrotron SOLEIL (Jet-AILES) enabled us to record first jet-cooled Fourier transform infrared spectra of oxirane-water complexes at different resolutions down to 0.2 cm(-1). Rovibrational parameters and a lower bound of the predissociation lifetime of 25 ps for the v(OH)(b) = 1 state have been derived from the rovibrational analysis of the ν(OH)(b) band contour recorded at respective rotational temperatures of 12 K (Jet-AILES) and 35 K (LADIR jet).

  8. Synthesis and characterization of pure and Li⁺ activated Alq₃ complexes for green and blue organic light emitting diodes and display devices.

    PubMed

    Bhagat, S A; Borghate, S V; Kalyani, N Thejo; Dhoble, S J

    2014-08-01

    Pure and Li(+)-doped Alq3 complexes were synthesized by simple precipitation method at room temperature, maintaining the stoichiometric ratio. These complexes were characterized by X-ray diffraction, ultraviolet-visible absorption and Fourier transform infrared and photoluminescence (PL) spectra. X-ray diffraction analysis reveals the crystalline nature of the synthesized complexes, while Fourier transform infrared spectroscopy confirm the molecular structure, the completion of quinoline ring formation and presence of quinoline structure in the metal complex. Ultraviolet-visible and PL spectra revealed that Li(+) activated Alq3 complexes exhibit the highest intensity in comparison to pure Alq3 phosphor. Thus, Li(+) enhances PL emission intensity when doped into Alq3 phosphor. The excitation spectra lie in the range of 383-456 nm. All the synthesized complexes other than Liq give green emission, while Liq gives blue emission with enhanced intensity. Thus, he synthesized phosphors are the best suitable candidates for green- and blue-emitting organic light emitting diode, PL liquid-crystal display and solid-state lighting applications. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Effects of Torrefaction Temperature on Pyrolysis Vapor Products of Woody and Herbaceous Feedstocks

    DOE PAGES

    Starace, Anne K.; Evans, Robert J.; Lee, David D.; ...

    2016-06-17

    A variety of hardwood, softwood, and herbaceous feedstocks (oak, southern yellow pine mix, loblolly pine, pinyon-juniper mix, and switchgrass) were each torrefied at 200, 250, and 300 °C. Each of the feedstocks was pyrolyzed and the resulting vapors were analyzed with a molecular beam mass spectrometer (py-MBMS). Compositional analysis was used to measure the total lignin content of three of the feedstocks (southern yellow pine, softwood; oak, hardwood; and switchgrass, herbaceous) before and after torrefaction at 300 °C, and large differences in the fraction of lignin lost during torrefaction were found between feedstocks, with oak having the largest decrease inmore » lignin during torrefaction and switchgrass having the least. Finally, it is hypothesized that these differences in the thermal degradation are due to, in part, the different ratios of S, G, and H lignins in the feedstocks. Additionally, the torrefaction of kraft lignin was studied using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TGA-FTIR) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR).« less

  10. Hyperfine structure measurements of neutral iodine atom (127I) using Fourier Transform Spectrometry

    NASA Astrophysics Data System (ADS)

    Ashok, Chilukoti; Vishwakarma, S. R.; Bhatt, Himal; Ankush, B. K.; Deo, M. N.

    2018-01-01

    We report the hyperfine Structure (hfs) splitting observations of neutral iodine atom (II) in the 6000 - 10,000 cm-1 near infrared spectral region. The measurements were carried out using a high-resolution Fourier Transform Spectrometer (FTS), where an electrodeless discharge lamp (EDL), excited using microwaves, was employed as the light source and InGaAs as the light detector. A specially designed setup was used to lower the plasma temperature of the medium so as to reduce the Doppler width and consequently to increase the spectral resolution of hfs components. A total of 183 lines with hfs splitting have been observed, out of which hfs in 53 spectral lines are reported for the first time. On the basis of hfs analysis, we derived the magnetic dipole and electric quadrupole coupling constants, A and B respectively for 30 even and 30 odd energy levels and are compared with the values available in the literature. New hfs values for 5 even and 4 odd levels are also reported here for the first time.

  11. The Use of Continuous Wavelet Transform Based on the Fast Fourier Transform in the Analysis of Multi-channel Electrogastrography Recordings.

    PubMed

    Komorowski, Dariusz; Pietraszek, Stanislaw

    2016-01-01

    This paper presents the analysis of multi-channel electrogastrographic (EGG) signals using the continuous wavelet transform based on the fast Fourier transform (CWTFT). The EGG analysis was based on the determination of the several signal parameters such as dominant frequency (DF), dominant power (DP) and index of normogastria (NI). The use of continuous wavelet transform (CWT) allows for better visible localization of the frequency components in the analyzed signals, than commonly used short-time Fourier transform (STFT). Such an analysis is possible by means of a variable width window, which corresponds to the scale time of observation (analysis). Wavelet analysis allows using long time windows when we need more precise low-frequency information, and shorter when we need high frequency information. Since the classic CWT transform requires considerable computing power and time, especially while applying it to the analysis of long signals, the authors used the CWT analysis based on the fast Fourier transform (FFT). The CWT was obtained using properties of the circular convolution to improve the speed of calculation. This method allows to obtain results for relatively long records of EGG in a fairly short time, much faster than using the classical methods based on running spectrum analysis (RSA). In this study authors indicate the possibility of a parametric analysis of EGG signals using continuous wavelet transform which is the completely new solution. The results obtained with the described method are shown in the example of an analysis of four-channel EGG recordings, performed for a non-caloric meal.

  12. Structural evolution of nanoporous silica thin films studied by positron annihilation spectroscopy and Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Patel, N.; Mariazzi, S.; Toniutti, L.; Checchetto, R.; Miotello, A.; Dirè, S.; Brusa, R. S.

    2007-09-01

    Three series of silica thin films with thicknesses in the 300 nm range were deposited by spin coating on Si substrates using different compositions of the sol precursors. Film samples were thermally treated in static air at temperatures ranging from 300 to 900 °C. The effect of sol precursors and thermal treatment temperature on the film porosity was analysed by Fourier transform infrared (FTIR) spectroscopy, depth profiling with positron annihilation spectroscopy (DP-PAS) and the analysis of the capacitance-voltage (C-V) characteristic. The maximum of the total porosity was found to occur at a temperature of 600 °C when removal of porogen and OH groups was completed. Film densification due to the collapsing of the pores was observed after drying at 900 °C. DP-PAS provides evidence that the increase in the total porosity is related to a progressive increase in the pore size. The increase in the pore size never gives rise to the onset of connected porosity. In the silica film samples prepared using a low acidity sol precursor, the pore size is always lower than 1 nm. By increasing the acid catalyst ratio in the sol, larger pores are formed. Pores with size larger than 2.3 nm can be obtained by adding porogen to the sol. In each series of silica film samples the shift of the antisymmetric Si-O-Si transversal optical (TO3) mode upon thermal treatment correlates with a change of the pore size as evidenced by DP-PAS analysis. The pore microstructure of the three series of silica films is different at all the examined treatment temperatures and depends on the composition of the precursor sol.

  13. Global latitudinal trends in peat recalcitrance quantified with calibrated FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hodgkins, S. B.; Richardson, C. J.; Dommain, R.; Wang, H.; Glaser, P. H.; Verbeke, B. A.; Rogers, K.; Winkler, B. R.; Missilmani, M.; Flanagan, N. E.; Ho, M.; Hoyt, A.; Harvey, C. F.; Cobb, A.; Rich, V. I.; Vining, S. R.; Hough, M.; Saleska, S. R.; Podgorski, D. C.; Tfaily, M. M.; Wilson, R.; Holmes, B.; de La Cruz, F.; Toufaily, J.; Hamdan, R.; Cooper, W. T.; Chanton, J.

    2017-12-01

    Peatlands are a major global carbon reservoir (528-600 Pg). Most peat is found at high latitudes, where organic matter decomposition is slowed by cold temperatures and water-saturated conditions. Nonetheless, a significant portion of global peatland carbon (10-30%) is in tropical peatlands. The factors that allow peat accumulation in warm climates remain uncertain, raising the question of whether these factors may preserve peat in boreal regions as they warm. In this study, we examined peat and plant chemistry across a latitudinal transect from the Arctic to the tropics. Carbohydrate and aromatic contents were estimated based on a newly-developed analysis method for Fourier transform infrared (FTIR) spectra. In this method, peaks are baseline-corrected and normalized to the integrated spectral area using an automated R script, then calibrated to known concentrations using standards. This technique showed trends that were in agreement with those seen with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and 13C-NMR spectroscopy. Along the latitudinal transect, we found that near-surface (sub)tropical peat has lower carbohydrate and greater aromatic content than near-surface high-latitude peat, leading to recalcitrance that allows (sub)tropical peat to persist despite warm temperatures. The chemistry of (sub)tropical peat reflects a combination of recalcitrant plant inputs, and more extensive humification driven by higher temperatures. Because we observed similar declines in carbohydrate content with depth in high-latitude peat deposits, our data explain recent field-scale deep peat warming experiments in which catotelm (deeper) peat remained stable in the face of temperature increases up to 9 °C. We suggest that high-latitude deep peat reservoirs may be stabilized in the face of climate change by their ultimately lower carbohydrate and higher aromatic composition, similar to tropical peats.

  14. Analytical properties of time-of-flight PET data.

    PubMed

    Cho, Sanghee; Ahn, Sangtae; Li, Quanzheng; Leahy, Richard M

    2008-06-07

    We investigate the analytical properties of time-of-flight (TOF) positron emission tomography (PET) sinograms, where the data are modeled as line integrals weighted by a spatially invariant TOF kernel. First, we investigate the Fourier transform properties of 2D TOF data and extend the 'bow-tie' property of the 2D Radon transform to the time-of-flight case. Second, we describe a new exact Fourier rebinning method, TOF-FOREX, based on the Fourier transform in the time-of-flight variable. We then combine TOF-FOREX rebinning with a direct extension of the projection slice theorem to TOF data, to perform fast 3D TOF PET image reconstruction. Finally, we illustrate these properties using simulated data.

  15. Analytical properties of time-of-flight PET data

    NASA Astrophysics Data System (ADS)

    Cho, Sanghee; Ahn, Sangtae; Li, Quanzheng; Leahy, Richard M.

    2008-06-01

    We investigate the analytical properties of time-of-flight (TOF) positron emission tomography (PET) sinograms, where the data are modeled as line integrals weighted by a spatially invariant TOF kernel. First, we investigate the Fourier transform properties of 2D TOF data and extend the 'bow-tie' property of the 2D Radon transform to the time-of-flight case. Second, we describe a new exact Fourier rebinning method, TOF-FOREX, based on the Fourier transform in the time-of-flight variable. We then combine TOF-FOREX rebinning with a direct extension of the projection slice theorem to TOF data, to perform fast 3D TOF PET image reconstruction. Finally, we illustrate these properties using simulated data.

  16. Improving Spectral Results Using Row-by-Row Fourier Transform of Spatial Heterodyne Raman Spectrometer Interferogram.

    PubMed

    Barnett, Patrick D; Strange, K Alicia; Angel, S Michael

    2017-06-01

    This work describes a method of applying the Fourier transform to the two-dimensional Fizeau fringe patterns generated by the spatial heterodyne Raman spectrometer (SHRS), a dispersive interferometer, to correct the effects of certain types of optical alignment errors. In the SHRS, certain types of optical misalignments result in wavelength-dependent and wavelength-independent rotations of the fringe pattern on the detector. We describe here a simple correction technique that can be used in post-processing, by applying the Fourier transform in a row-by-row manner. This allows the user to be more forgiving of fringe alignment and allows for a reduction in the mechanical complexity of the SHRS.

  17. The application of digital signal processing techniques to a teleoperator radar system

    NASA Technical Reports Server (NTRS)

    Pujol, A.

    1982-01-01

    A digital signal processing system was studied for the determination of the spectral frequency distribution of echo signals from a teleoperator radar system. The system consisted of a sample and hold circuit, an analog to digital converter, a digital filter, and a Fast Fourier Transform. The system is interfaced to a 16 bit microprocessor. The microprocessor is programmed to control the complete digital signal processing. The digital filtering and Fast Fourier Transform functions are implemented by a S2815 digital filter/utility peripheral chip and a S2814A Fast Fourier Transform chip. The S2815 initially simulates a low-pass Butterworth filter with later expansion to complete filter circuit (bandpass and highpass) synthesizing.

  18. Color image cryptosystem using Fresnel diffraction and phase modulation in an expanded fractional Fourier transform domain

    NASA Astrophysics Data System (ADS)

    Chen, Hang; Liu, Zhengjun; Chen, Qi; Blondel, Walter; Varis, Pierre

    2018-05-01

    In this letter, what we believe is a new technique for optical color image encryption by using Fresnel diffraction and a phase modulation in an extended fractional Fourier transform domain is proposed. Different from the RGB component separation based method, the color image is converted into one component by improved Chirikov mapping. The encryption system is addressed with Fresnel diffraction and phase modulation. A pair of lenses is placed into the fractional Fourier transform system for the modulation of beam propagation. The structure parameters of the optical system and parameters in Chirikov mapping serve as extra keys. Some numerical simulations are given to test the validity of the proposed cryptosystem.

  19. Metasurface Enabled Wide-Angle Fourier Lens.

    PubMed

    Liu, Wenwei; Li, Zhancheng; Cheng, Hua; Tang, Chengchun; Li, Junjie; Zhang, Shuang; Chen, Shuqi; Tian, Jianguo

    2018-06-01

    Fourier optics, the principle of using Fourier transformation to understand the functionalities of optical elements, lies at the heart of modern optics, and it has been widely applied to optical information processing, imaging, holography, etc. While a simple thin lens is capable of resolving Fourier components of an arbitrary optical wavefront, its operation is limited to near normal light incidence, i.e., the paraxial approximation, which puts a severe constraint on the resolvable Fourier domain. As a result, high-order Fourier components are lost, resulting in extinction of high-resolution information of an image. Other high numerical aperture Fourier lenses usually suffer from the bulky size and costly designs. Here, a dielectric metasurface consisting of high-aspect-ratio silicon waveguide array is demonstrated experimentally, which is capable of performing 1D Fourier transform for a large incident angle range and a broad operating bandwidth. Thus, the device significantly expands the operational Fourier space, benefitting from the large numerical aperture and negligible angular dispersion at large incident angles. The Fourier metasurface will not only facilitate efficient manipulation of spatial spectrum of free-space optical wavefront, but also be readily integrated into micro-optical platforms due to its compact size. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Ultra-Wideband Radar Transient Detection using Time-Frequency and Wavelet Transforms.

    DTIC Science & Technology

    1992-12-01

    if p==2, mesh(flipud(abs(spdatamatrix).A2)) end 2. Wigner - Ville Distribution function P = wvd (data,winlenstep,begintheendp) % Filename: wvd.m % Title...short time Fourier transform (STFT), the Instantaneous Power Spectrum and the Wigner - Ville distribution , and time-scale methods, such as the a trous...such as the short time Fourier transform (STFT), the Instantaneous Power Spectrum and the Wigner - Ville distribution [1], and time-scale methods, such

  1. SAR image formation with azimuth interpolation after azimuth transform

    DOEpatents

    Doerry,; Armin W. , Martin; Grant D. , Holzrichter; Michael, W [Albuquerque, NM

    2008-07-08

    Two-dimensional SAR data can be processed into a rectangular grid format by subjecting the SAR data to a Fourier transform operation, and thereafter to a corresponding interpolation operation. Because the interpolation operation follows the Fourier transform operation, the interpolation operation can be simplified, and the effect of interpolation errors can be diminished. This provides for the possibility of both reducing the re-grid processing time, and improving the image quality.

  2. Delineation of First-Order Elastic Property Closures for Hexagonal Metals Using Fast Fourier Transforms

    PubMed Central

    Landry, Nicholas W.; Knezevic, Marko

    2015-01-01

    Property closures are envelopes representing the complete set of theoretically feasible macroscopic property combinations for a given material system. In this paper, we present a computational procedure based on fast Fourier transforms (FFTs) for delineation of elastic property closures for hexagonal close packed (HCP) metals. The procedure consists of building a database of non-zero Fourier transforms for each component of the elastic stiffness tensor, calculating the Fourier transforms of orientation distribution functions (ODFs), and calculating the ODF-to-elastic property bounds in the Fourier space. In earlier studies, HCP closures were computed using the generalized spherical harmonics (GSH) representation and an assumption of orthotropic sample symmetry; here, the FFT approach allowed us to successfully calculate the closures for a range of HCP metals without invoking any sample symmetry assumption. The methodology presented here facilitates for the first time computation of property closures involving normal-shear coupling stiffness coefficients. We found that the representation of these property linkages using FFTs need more terms compared to GSH representations. However, the use of FFT representations reduces the computational time involved in producing the property closures due to the use of fast FFT algorithms. Moreover, FFT algorithms are readily available as opposed to GSH codes. PMID:28793566

  3. Accurate determination of the diffusion coefficient of proteins by Fourier analysis with whole column imaging detection.

    PubMed

    Zarabadi, Atefeh S; Pawliszyn, Janusz

    2015-02-17

    Analysis in the frequency domain is considered a powerful tool to elicit precise information from spectroscopic signals. In this study, the Fourier transformation technique is employed to determine the diffusion coefficient (D) of a number of proteins in the frequency domain. Analytical approaches are investigated for determination of D from both experimental and data treatment viewpoints. The diffusion process is modeled to calculate diffusion coefficients based on the Fourier transformation solution to Fick's law equation, and its results are compared to time domain results. The simulations characterize optimum spatial and temporal conditions and demonstrate the noise tolerance of the method. The proposed model is validated by its application for the electropherograms from the diffusion path of a set of proteins. Real-time dynamic scanning is conducted to monitor dispersion by employing whole column imaging detection technology in combination with capillary isoelectric focusing (CIEF) and the imaging plug flow (iPF) experiment. These experimental techniques provide different peak shapes, which are utilized to demonstrate the Fourier transformation ability in extracting diffusion coefficients out of irregular shape signals. Experimental results confirmed that the Fourier transformation procedure substantially enhanced the accuracy of the determined values compared to those obtained in the time domain.

  4. Understanding the Influence of Turbulence in Imaging Fourier-Transform Spectrometry of Smokestack Plumes

    DTIC Science & Technology

    2011-03-01

    capability of FTS to estimate plume effluent concentrations by comparing intrusive measurements of aircraft engine exhaust with those from an FTS. A... turbojet engine. Temporal averaging was used to reduce SCAs in the spectra, and spatial maps of temperature and concentration were generated. The time...density function ( PDF ) is the de- fined as the derivative of the CDF, and describes the probability of obtaining a given value of X. For a normally

  5. Vibrational spectroscopic and DFT calculation studies of 2-amino-7-bromo-5-oxo-[1]benzopyrano [2,3-b]pyridine-3 carbonitrile

    NASA Astrophysics Data System (ADS)

    Premkumar, S.; Jawahar, A.; Mathavan, T.; Kumara Dhas, M.; Milton Franklin Benial, A.

    2015-03-01

    The vibrational spectra of 2-amino-7-bromo-5-oxo-[1]benzopyrano [2,3-b]pyridine-3 carbonitrile were recorded using fourier transform-infrared and fourier transform-Raman spectrometer. The optimized structural parameters, vibrational frequencies, Mulliken atomic charge distribution, frontier molecular orbitals, thermodynamic properties, temperature dependence of thermodynamic parameters, first order hyperpolarizability and natural bond orbital calculations of the molecule were performed using the Gaussian 09 program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program. The calculated first order hyperpolarizability of ABOBPC molecule was obtained as 6.908 × 10-30 issue, which was 10.5 times greater than urea. The nonlinear optical activity of the molecule was also confirmed by the frontier molecular orbitals and natural bond orbital analysis. The frontier molecular orbitals analysis shows that the lower energy gap of the molecule, which leads to the higher value of first order hyperpolarizability. The natural bond orbital analysis indicates that the nonlinear optical activity of the molecule arises due to the π → π∗ transitions. The Mulliken atomic charge distribution confirms the presence of intramolecular charge transfer within the molecule. The reactive site of the molecule was predicted from the molecular electrostatic potential contour map. The values of thermo dynamic parameters were increasing with increasing temperature.

  6. Double Arm Linkage precision Linear motion (DALL) Carriage, a simplified, rugged, high performance linear motion stage for the moving mirror of an Fourier Transform Spectrometer or other system requiring precision linear motion

    NASA Astrophysics Data System (ADS)

    Johnson, Kendall B.; Hopkins, Greg

    2017-08-01

    The Double Arm Linkage precision Linear motion (DALL) carriage has been developed as a simplified, rugged, high performance linear motion stage. Initially conceived as a moving mirror stage for the moving mirror of a Fourier Transform Spectrometer (FTS), it is applicable to any system requiring high performance linear motion. It is based on rigid double arm linkages connecting a base to a moving carriage through flexures. It is a monolithic design. The system is fabricated from one piece of material including the flexural elements, using high precision machining. The monolithic design has many advantages. There are no joints to slip or creep and there are no CTE (coefficient of thermal expansion) issues. This provides a stable, robust design, both mechanically and thermally and is expected to provide a wide operating temperature range, including cryogenic temperatures, and high tolerance to vibration and shock. Furthermore, it provides simplicity and ease of implementation, as there is no assembly or alignment of the mechanism. It comes out of the machining operation aligned and there are no adjustments. A prototype has been fabricated and tested, showing superb shear performance and very promising tilt performance. This makes it applicable to both corner cube and flat mirror FTS systems respectively.

  7. Fiber-optic miniature sensor for in situ temperature monitoring of curing composite material

    NASA Astrophysics Data System (ADS)

    Sampath, Umesh; Kim, Dae-gil; Kim, Hyunjin; Song, Minho

    2018-04-01

    This study proposes a fiber-optic temperature sensor with a single-mode fiber tip covered with a thermo-sensitive polymer resin. The temperature is sensed by measuring the Fresnel reflection from the optical fiber/polymer interface. Because the thermo-optic coefficients differ between the optical fiber and the polymer, the in situ temperature can be measured even in curing composite materials. In initial experiments, the proposed sensor successfully measured and recovered the temperature information. The measured sensor data were linearly correlated, with an R2 exceeding 0.99. The standard deviation in the long-term measurements of constant temperature was 2.6%. The durability and stability of the sensor head material in long-term operation was validated by Fourier transform infrared spectroscopy and X-ray diffraction analysis. In further experiments, the suggested miniature temperature sensor obtained the internal temperatures of curing composite material over a wide range (30-110 °C).

  8. Optical joint transform correlation on the DMD. [deformable mirror device

    NASA Technical Reports Server (NTRS)

    Knopp, Jerome; Juday, Richard D.

    1989-01-01

    Initial experimental investigation of the deformable mirror device (DMD) in a joint optical transform correlation is reported. The inverted cloverleaf version of the DMD, in which form the DMD is phase-mostly but of limited phase range, is used. Binarized joint Fourier transforms were calculated for similar and dissimilar objects and written onto the DMD. Inverse Fourier transform was done in a diffraction order for which the DMD shows phase-mostly modulation. Matched test objects produced sharp correlation, distinct objects did not. Further studies are warranted and they are outlined.

  9. Innovative design method of automobile profile based on Fourier descriptor

    NASA Astrophysics Data System (ADS)

    Gao, Shuyong; Fu, Chaoxing; Xia, Fan; Shen, Wei

    2017-10-01

    Aiming at the innovation of the contours of automobile side, this paper presents an innovative design method of vehicle side profile based on Fourier descriptor. The design flow of this design method is: pre-processing, coordinate extraction, standardization, discrete Fourier transform, simplified Fourier descriptor, exchange descriptor innovation, inverse Fourier transform to get the outline of innovative design. Innovative concepts of the innovative methods of gene exchange among species and the innovative methods of gene exchange among different species are presented, and the contours of the innovative design are obtained separately. A three-dimensional model of a car is obtained by referring to the profile curve which is obtained by exchanging xenogeneic genes. The feasibility of the method proposed in this paper is verified by various aspects.

  10. Fourier transform wavefront control with adaptive prediction of the atmosphere.

    PubMed

    Poyneer, Lisa A; Macintosh, Bruce A; Véran, Jean-Pierre

    2007-09-01

    Predictive Fourier control is a temporal power spectral density-based adaptive method for adaptive optics that predicts the atmosphere under the assumption of frozen flow. The predictive controller is based on Kalman filtering and a Fourier decomposition of atmospheric turbulence using the Fourier transform reconstructor. It provides a stable way to compensate for arbitrary numbers of atmospheric layers. For each Fourier mode, efficient and accurate algorithms estimate the necessary atmospheric parameters from closed-loop telemetry and determine the predictive filter, adjusting as conditions change. This prediction improves atmospheric rejection, leading to significant improvements in system performance. For a 48x48 actuator system operating at 2 kHz, five-layer prediction for all modes is achievable in under 2x10(9) floating-point operations/s.

  11. PLANE-INTEGRATED OPEN-PATH FOURIER TRANSFORM INFRARED SPECTROMETRY METHODOLOGY FOR ANAEROBIC SWINE LAGOON EMISSION MEASUREMENTS

    EPA Science Inventory

    Emissions of ammonia and methane from an anaerobic lagoon at a swine animal feeding operation were evaluated five times over a period of two years. The plane-integrated (PI) open-path Fourier transform infrared spectrometry (OP-FTIR) methodology was used to transect the plume at ...

  12. Turbulence excited frequency domain damping measurement and truncation effects

    NASA Technical Reports Server (NTRS)

    Soovere, J.

    1976-01-01

    Existing frequency domain modal frequency and damping analysis methods are discussed. The effects of truncation in the Laplace and Fourier transform data analysis methods are described. Methods for eliminating truncation errors from measured damping are presented. Implications of truncation effects in fast Fourier transform analysis are discussed. Limited comparison with test data is presented.

  13. Comparison and validation of Fourier transform infrared spectroscopic methods for monitoring secondary cell wall cellulose from cotton fibers

    USDA-ARS?s Scientific Manuscript database

    The amount of secondary cell wall (SCW) cellulose in the fiber affects the quality and commercial value of cotton. Accurate assessments of SCW cellulose are essential for improving cotton fibers. Fourier Transform Infrared (FT-IR) spectroscopy enables distinguishing SCW from other cell wall componen...

  14. CHARACTERIZATION OF AMBIENT PM2.5 AEROSOL AT A SOUTHEASTERN US SITE: FOURIER TRANSFORM INFRARED ANALYSIS OR PARTICLE PHASE

    EPA Science Inventory

    During a field study in the summer of 2000 in the Research Triangle Park (RTP), aerosol samples were collected using a five stage cascade impactor and subsequently analyzed using Fourier Transform Infrared Spectroscopy (FTIR). The impaction surfaces were stainless steel disks....

  15. Abel inversion using fast Fourier transforms.

    PubMed

    Kalal, M; Nugent, K A

    1988-05-15

    A fast Fourier transform based Abel inversion technique is proposed. The method is faster than previously used techniques, potentially very accurate (even for a relatively small number of points), and capable of handling large data sets. The technique is discussed in the context of its use with 2-D digital interferogram analysis algorithms. Several examples are given.

  16. Topics in Chemical Instrumentation: Fourier Transform-Infrared Spectroscopy: Part I. Instrumentation.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1986-01-01

    Discusses: (1) the design of the Fourier Transform-Infrared Spectroscopy (FT-IR) spectrometer; (2) the computation of the spectrum from the interferogram; and (3) the use of apodization. (Part II will discuss advantages of FT-IR over dispersive techniques and show applications of FT-IR to difficult spectroscopic measurements.) (JN)

  17. Diffuse-reflectance fourier-transform mid-infrared spectroscopy as a method of characterizing changes in soil organic matter

    USDA-ARS?s Scientific Manuscript database

    Diffuse-Reflectance Fourier-Transform Mid-Infrared Spectroscopy (MidIR) can identify the presence of important organic functional groups in soil organic matter (SOM). Soils contain myriad organic and inorganic components that absorb in the MidIR so spectral interpretation needs to be validated in or...

  18. Secondary cell wall development in cotton fibers as examined with attenuated total reflection Fourier transform infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy. The selected harvesting points coincide with secondary cell wall (SCW) development in the fibers. Progressive but moderat...

  19. Development of secondary cell wall in cotton fibers as examined with Fourier transform-infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Our presentation will focus on continuing efforts to examine secondary cell wall development in cotton fibers using infrared Spectroscopy. Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-...

  20. INFFTM: Fast evaluation of 3d Fourier series in MATLAB with an application to quantum vortex reconnections

    NASA Astrophysics Data System (ADS)

    Caliari, Marco; Zuccher, Simone

    2017-04-01

    Although Fourier series approximation is ubiquitous in computational physics owing to the Fast Fourier Transform (FFT) algorithm, efficient techniques for the fast evaluation of a three-dimensional truncated Fourier series at a set of arbitrary points are quite rare, especially in MATLAB language. Here we employ the Nonequispaced Fast Fourier Transform (NFFT, by J. Keiner, S. Kunis, and D. Potts), a C library designed for this purpose, and provide a Matlab® and GNU Octave interface that makes NFFT easily available to the Numerical Analysis community. We test the effectiveness of our package in the framework of quantum vortex reconnections, where pseudospectral Fourier methods are commonly used and local high resolution is required in the post-processing stage. We show that the efficient evaluation of a truncated Fourier series at arbitrary points provides excellent results at a computational cost much smaller than carrying out a numerical simulation of the problem on a sufficiently fine regular grid that can reproduce comparable details of the reconnecting vortices.

  1. Model and prediction of stress relaxation of polyurethane fiber

    NASA Astrophysics Data System (ADS)

    You, Gexin; Wang, Chunyan; Mei, Shuqin; Yang, Bo; Zhou, Xiuwen

    2018-03-01

    In this study, the effect of small strain (less than 10%) on hydrogen bond (H-bond) and crystallinity of dry-spun polyurethane fiber was investigated with fourier transform infrared spectroscopy and x-ray diffractometer, respectively. The results showed that the H-bond of hard segments hardly broke and its degree of crystallinity scarcely varied below strain of 10%. The fiber stress relaxation behavior at 25 °C under small strain was researched using dynamic mechanical analyzer. The stress relaxation modulus constitutive equation was obtained by transforming the non-linear relationship between stress and time into the linear relationship between stress and strain. The stress relaxation modulus master curve at 25 °C was established in terms of short-term stress relaxation tests at elevated temperatures (35 °C, 45 °C, 65 °C and 75 °C) according to time-temperature superposition principle (TTS) to predict long-term behavior within 353 year.

  2. Biodiesel production from palm oil using calcined waste animal bone as catalyst.

    PubMed

    Obadiah, Asir; Swaroopa, Gnanadurai Ajji; Kumar, Samuel Vasanth; Jeganathan, Kenthorai Raman; Ramasubbu, Alagunambi

    2012-07-01

    Waste animal bones was employed as a cost effective catalyst for the transesterification of palm oil. The catalyst was calcined at different temperatures to transform the calcium phosphate in the bones to hydroxyapatite and 800 °C was found to give the best yield of biodiesel. The catalyst was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectrometry (EDS) and Fourier transform infrared spectrometry (FT-IR). Under the optimal reaction conditions of 20 wt.% of catalyst, 1:18 oil to methanol molar ratio, 200 rpm of stirring of reactants and at a temperature of 65 °C, the methyl ester conversion was 96.78% and it was achieved in 4h. The catalyst performed equally well as the laboratory-grade CaO. Animal bone is therefore a useful raw material for the production of a cheap catalyst for transesterification. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Impact of grain size and structural changes on magnetic, dielectric, electrical, impedance and modulus spectroscopic characteristics of CoFe2O4 nanoparticles synthesized by honey mediated sol-gel combustion method

    NASA Astrophysics Data System (ADS)

    Singh Yadav, Raghvendra; Kuřitka, Ivo; Vilcakova, Jarmila; Havlica, Jaromir; Masilko, Jiri; Kalina, Lukas; Tkacz, Jakub; Švec, Jiří; Enev, Vojtěch; Hajdúchová, Miroslava

    2017-12-01

    In this work CoFe2O4 spinel ferrite nanoparticles were synthesized by honey mediated sol-gel combustion method and further annealed at higher temperature 500 °C, 700 °C, 900 °C and 1100 °C. The synthesized spinel ferrite nanoparticles is investigated by x-ray diffraction, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis/differential scanning calorimetry (TGA/DSC), field emission scanning electron microscopy, x-ray photoelectron spectroscopy and vibrating sample magnetometer. The x-ray diffraction study reveals face-centered cubic spinel cobalt ferrite crystal phase formation. The crystallite size and lattice parameter are increased with annealing temperature. Raman and Fourier transform infrared spectra also confirm spinel ferrite crystal structure of synthesized nanoparticles. The existence of cation at octahedral and tetrahedral site in cobalt ferrite nanoparticles is confirmed by x-ray photoelectron spectroscopy. Magnetic measurement shows increased saturation magnetization 74.4 emu g-1 at higher annealing temperature 1100 °C, high coercivity 1347.3 Oe at lower annealing temperature 500 °C, and high remanent magnetization 32.3 emu g-1 at 900 °C annealing temperature. The magnetic properties of synthesized ferrite nanoparticles can be tuned by adjusting sizes through annealing temperature. Furthermore, the dielectric constant and ac conductivity shows variation with frequency (1-107 Hz), grain size and cation redistribution. The modulus spectroscopy study reveals the role of bulk grain and grain boundary towards the resistance and capacitance. The cole-cole plots in modulus formalism also well support the electrical response of nanoparticles originated from both grain and grain boundaries. The dielectric, electrical, magnetic, impedance and modulus spectroscopic characteristics of synthesized CoFe2O4 spinel ferrite nanoparticles demonstrate the applicability of these nanoparticles for magnetic recording, memory devices and for microwave applications.

  4. An alternative path to the boundary: The CFT as the Fourier space of AdS

    NASA Astrophysics Data System (ADS)

    Tolfree, Ian M.

    2009-12-01

    In this thesis we shed new light on the conjectured duality between an n + 1 dimensional theory of gravity in anti de Sitter space (AdS) and an n dimensional conformal field theory (CFT) by showing that the CFT can be interpreted as the Fourier space of AdS. We then make use of this to gain insight into the nature of black hole entropy. In the first part of this thesis, we give an introduction to the ideas of and review the basics of the AdS/CFT. In the next section we make use of well known integral geometry techniques to derive the Fourier transformation of a function on AdS and see it is a function with compact support on the boundary. Comparing this to the literature, we find that the Green's functions from the literature are actually the Fourier weights of the transformation and that the boundary values of fields appearing in the correspondence are the Fourier coefficients of the transformation. One is thus left to interpret the CFT as the quantized version of a classical theory in AdS and the dual operator as the Fourier coefficients. Group theoretic considerations are discussed in relation to the transformation and its potential use in constructing QCD like theories. In the last section, we then build upon this to study the BTZ black hole. Named after its authors, Banados, Teitelboim and Zanelli, the BTZ black hole is a three dimensional (two space plus one time dimension) black hole in anti de Sitter space. Following standard procedures for modifying Fourier Transformations to accommodate quotient spaces we arrive at a mapping in a black hole background consistent with known results that yields the exact micro-states of a scalar field in a black hole background. We find that the micro-states are the Fourier coefficients on the boundary, which transform under the principal series representation of SL(2, R). Using the knowledge of how to represent a bulk scalar field in the CFT, and knowing how a black hole interacts with a scalar field, we deduce the possible representations of a black hole in the CFT. We find that the black hole micro-states live on the boundary, not on the horizon, and correspond to the possible emission modes of the black hole.

  5. A technique for phase correction in Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Artsang, P.; Pongchalee, P.; Palawong, K.; Buisset, C.; Meemon, P.

    2018-03-01

    Fourier transform spectroscopy (FTS) is a type of spectroscopy that can be used to analyze components in the sample. The basic setup that is commonly used in this technique is "Michelson interferometer". The interference signal obtained from interferometer can be Fourier transformed into the spectral pattern of the illuminating light source. To experimentally study the concept of the Fourier transform spectroscopy, the project started by setup the Michelson interferometer in the laboratory. The implemented system used a broadband light source in near infrared region (0.81-0.89 μm) and controlled the movable mirror by using computer controlled motorized translation stage. In the early study, there is no sample the interference path. Therefore, the theoretical spectral results after the Fourier transformation of the captured interferogram must be the spectral shape of the light source. One main challenge of the FTS is to retrieve the correct phase information of the inferferogram that relates with the correct spectral shape of the light source. One main source of the phase distortion in FTS that we observed from our system is the non-linear movement of the movable reference mirror of the Michelson interferometer. Therefore, to improve the result, we coupled a monochromatic light source to the implemented interferometer. We simultaneously measured the interferograms of the monochromatic and broadband light sources. The interferogram of the monochromatic light source was used to correct the phase of the interferogram of the broadband light source. The result shows significant improvement in the computed spectral shape.

  6. Three-dimensional Fourier transform evaluation of sequences of spatially and temporally modulated speckle interferograms.

    PubMed

    Trillo, C; Doval, A F; López-Vázquez, J C

    2010-07-05

    Phase evaluation methods based on the 2D spatial Fourier transform of a speckle interferogram with spatial carrier usually assume that the Fourier spectrum of the interferogram has a trimodal distribution, i. e. that the side lobes corresponding to the interferential terms do not overlap the other two spectral terms, which are related to the intensity of the object and reference beams, respectively. Otherwise, part of the spectrum of the object beam is inside the inverse-transform window of the selected interference lobe and induces an error in the resultant phase map. We present a technique for the acquisition and processing of speckle interferogram sequences that separates the interference lobes from the other spectral terms when the aforementioned assumption does not apply and regardless of the temporal bandwidth of the phase signal. It requires the recording of a sequence of interferograms with spatial and temporal carriers, and their processing with a 3D Fourier transform. In the resultant 3D spectrum, the spatial and temporal carriers separate the conjugate interferential terms from each other and from the term related to the object beam. Experimental corroboration is provided through the measurement of the amplitude of surface acoustic waves in plates with a double-pulsed TV holography setup. The results obtained with the proposed method are compared to those obtained with the processing of individual interferograms with the regular spatial-carrier 2D Fourier transform method.

  7. PFS: the Planetary Fourier Spectrometer for Mars Express

    NASA Astrophysics Data System (ADS)

    Formisano, V.; Grassi, D.; Orfei, R.; Biondi, D.; Mencarelli, E.; Mattana, A.; Nespoli, F.; Maturilli, A.; Giuranna, M.; Rossi, M.; Maggi, M.; Baldetti, P.; Chionchio, G.; Saggin, B.; Angrilli, F.; Bianchini, G.; Piccioni, G.; di Lellis, A.; Cerroni, P.; Capaccioni, F.; Capria, M. T.; Coradini, A.; Fonti, S.; Orofino, V.; Blanco, A.; Colangeli, L.; Palomba, E.; Esposito, F.; Patsaev, D.; Moroz, V.; Zasova, L.; Ignatiev, N.; Khatuntsev, I.; Moshkin, B.; Ekonomov, A.; Grigoriev, A.; Nechaev, V.; Kiselev, A.; Nikolsky, Y.; Gnedykh, V.; Titov, D.; Orleanski, P.; Rataj, M.; Malgoska, M.; Jurewicz, A.; Blecka, M. I.; Hirsh, H.; Arnold, G.; Lellouch, E.; Marten, A.; Encrenaz, T.; Lopez Moreno, J.; Atreya, S., Gobbi, P.

    2004-08-01

    The Planetary Fourier Spectrometer (PFS) for the Mars Express mission is optimised for atmospheric studies, covering the IR range of 1.2-45 μm in two channels. The apodised spectral resolution is 2 cm-1, while the sampling is 1 cm-1. The FOV is about 2° for the short wavelength (SW) channel and 4° for the long wavelength (LW) channel, corresponding to spatial resolutions of 10 km and 20 km, respectively, from an altitude of 300 km. PFS will also provide unique data on the surface-atmosphere interaction and the mineralogical composition of the surface. It will be the first Fourier spectrometer covering 1-5 μm to orbit the Earth or Mars. The experiment has real-time onboard Fast Fourier Transform (FFT) in order to select the spectral range of interest for data transmission to ground. Measurement of the 15-μm CO2 band is very important. Its profile gives, via a complex temperature-profile retrieval technique, the vertical pressure temperature relation, which is the basis of the global atmospheric study. The SW channel uses a PbSe detector cooled to 200-220K, while the LW channel is based on a pyroelectric (LiTaO3) device working at room temperature. The interferogram is measured at every 150 nm displacement step of the corner cube retroreflectors (corresponding to 600 nm optical path difference) via a laser diode monochromatic interferogram (a sine wave), with the zero crossings controlling the double pendulum motion. PFS will operate for about 1.5 h around the pericentre of the orbit. With a measurement every 10 s, 600 measurements per orbit will be acquired, corresponding to 224 Mbit. Onboard compression will reduce it to 125 Mbit or less, depending on the allocated data volume per day. An important requirement is to observe at all local times in order to include night-side vertical temperature profiles. Total instrument mass is 31.2 kg.

  8. Investigations of the functional states of dendritic cells under different conditioned microenvironments by Fourier transformed infrared spectroscopy.

    PubMed

    Dong, Rong; Long, Jinhua; Xu, Xiaoli; Zhang, Chunlin; Wen, Zongyao; Li, Long; Yao, Weijuan; Zeng, Zhu

    2014-01-10

    Dendritic cells are potent and specialized antigen presenting cells, which play a crucial role in initiating and amplifying both the innate and adaptive immune responses. The dendritic cell-based vaccination against cancer has been clinically achieved promising successes. But there are still many challenges in its clinical application, especially for how to identify the functional states. The CD14+ monocytes were isolated from human peripheral blood after plastic adherence and purified to approximately 98% with cocktail immunomagnetic beads. The immature dendritic cells and mature dendritic cells were induced by traditional protocols. The resulting dendritic cells were cocultured with normal cells and cancer cells. The functional state of dendritic cells including immature dendritic cells (imDCs) and mature dendritic cells (mDCs) under different conditioned microenvironments were investigated by Fourier transformed infrared spectroscopy (FTIR) and molecular biological methods. The results of Fourier transformed infrared spectroscopy showed that the gene transcription activity and energy states of dendritic cells were specifically suppressed by tumor cells (P < 0.05 or 0.01). The expression levels of NF-kappa B (NF-κB) in dendritic cells were also specifically inhibited by tumor-derived factors (P < 0.05 or 0.01). Moreover, the ratios of absorption intensities of Fourier transformed infrared spectroscopy at given wave numbers were closely correlated with the expression levels of NF-κB (R2:0.69 and R2:0.81, respectively). Our results confirmed that the ratios of absorption intensities of Fourier transformed infrared spectroscopy at given wave numbers were positively correlated with the expression levels of NF-κB, suggesting that Fourier transformed infrared spectroscopy technology could be clinically applied to identify the functional states of dendritic cell when performing dendritic cell-based vaccination. It's significant for the simplification and standardization of dendritic cell-based vaccination clinical preparation protocols.

  9. Low-Temperature (75 To 400°C) Oxidation Study Of Coal By Diffuse Reflectance Infrared Fourier Transform (DRIFT) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Smyrl, Norman R.; Fuller, E. L.

    1989-12-01

    In situ low-temperature air oxidation studies of subbituminous coal have been performed at 77, 125, 200, 300, and 400°C by diffuse reflectance Fourier transform (DRIFT) spectroscopy. The oxidation reaction proceeds via oxygen insertion at aliphatic sites in the coal structure, which progressively produces aldo/keto groups, acid groups, and acid anhydride entities with the simultaneous consumption of hydrogen at these sites. The production of anhydrides occurs even at the lowest temperature (77?°C), but only above 200°C is there sufficient mobility of the acid functionalities for major quantities of the anhydride species to be formed. Above 400C, the anhydro groups predominate in the steady-state production of carbon dioxide and water vapor. In addition to the detailed information concerning the carbonyl species, the spectra of the oxidized coal reveal some new information regarding the aromatic C-H stretching bands, which can be studied in some detail unencumbered by interference from the aliphatic bands that have been removed in the oxidation process. Further details related to the aromatic bands are revealed by deuterium exchange of the remaining 0-H groups (primarily phenolic type 0-H) in the oxidized coal structure. This exchange removes these bands from overlap with the broad 0-H stretching band resulting from hydrogen bonding of the 0-H groups. The present study reveals further merits of in situ DRIFT analysis in extending the knowledge of coal structure and reactions. The study also indicates much potential for further work.

  10. Theory of Wavelet-Based Coarse-Graining Hierarchies for Molecular Dynamics

    DTIC Science & Technology

    2017-04-01

    resolution. ............................................... 15 Fig. 6 Fourier transform of the y-component of 1,000 atoms in crystalline PE (100,800 atoms...of magnitude of optimal representation. . 16 Fig. 7 Top row: Fourier transform of the y-component of a 100,800 atom crystalline PE sampled at 1 fs. 3... transform of the z-component of alanine dipeptide in vacuum excluding zero frequency to allow detail at other frequencies. MD at 500 K and 1 atm. Left

  11. Line positions and intensities of the phosphine (PH 3) Pentad near 4.5μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malathy Devi, V.; Kleiner, Isabelle; Sams, Robert L.

    2014-04-01

    In order to improve the spectroscopic database for remote sensing of the giant planets, line positions and intensities are determined for the five bands (2ν 2, ν 2 + ν 4, 2ν 4, ν 1 and ν 3) that comprise the Pentad of PH 3 between 1950 and 2450 cm -1. Knowledge of PH 3 spectral line parameters in this region is important for the exploration of dynamics and chemistry on Saturn, (using existing Cassini/VIMS observations) and future near-IR data of Jupiter from Juno and ESA’s Jupiter Icy Moons Explorer (JUICE). For this study, spectra of pure PH 3 frommore » two Fourier transform spectrometers were obtained: (a) five high-resolution (0.00223 cm -1), high signal-to-noise (~1800) spectra recorded at room temperature (298.2 K) with the Bruker IFS 125HR Fourier transform spectrometer (FTS) at the Pacific Northwest National Laboratory (PNNL), Richland, Washington and (b) four high-resolution (at 0.0115 cm -1 resolution), high signal-to-noise (~700) spectra recorded at room temperature in the region 1800–5200 cm -1 using the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory (NSO) on Kitt Peak. Individual line parameters above 2150 cm -1 were retrieved by simultaneous multispectrum fittings of all five Bruker spectra, while retrievals with the four Kitt Peak spectra were done in the 1938–2168 cm -1 range spectrum by spectrum and averaged. In all, positions and intensities were obtained for more than 4400 lines. These included 53 A+A- split pairs of transitions (arising due to vibration–rotation interactions (Coriolis-type interaction) between the ν 3 and ν 1 fundamental bands) for K" = 3, 6, and 9. Over 3400 positions and 1750 intensities of these lines were ultimately identified as relatively unblended and modeled up to J = 14 and K = 12 with rms values of 0.00133 cm -1 and 7.7%, respectively. The PH 3 line parameters (observed positions and measured intensities with known quantum assignments) and Hamiltonian constants are reported. Finally, comparisons with other recent studies are discussed.« less

  12. Discrete Fourier Transform in a Complex Vector Space

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H. (Inventor)

    2015-01-01

    An image-based phase retrieval technique has been developed that can be used on board a space based iterative transformation system. Image-based wavefront sensing is computationally demanding due to the floating-point nature of the process. The discrete Fourier transform (DFT) calculation is presented in "diagonal" form. By diagonal we mean that a transformation of basis is introduced by an application of the similarity transform of linear algebra. The current method exploits the diagonal structure of the DFT in a special way, particularly when parts of the calculation do not have to be repeated at each iteration to converge to an acceptable solution in order to focus an image.

  13. Room temperature chemical synthesis of lead selenide thin films with preferred orientation

    NASA Astrophysics Data System (ADS)

    Kale, R. B.; Sartale, S. D.; Ganesan, V.; Lokhande, C. D.; Lin, Yi-Feng; Lu, Shih-Yuan

    2006-11-01

    Room temperature chemical synthesis of PbSe thin films was carried out from aqueous ammoniacal solution using Pb(CH3COO)2 as Pb2+ and Na2SeSO3 as Se2- ion sources. The films were characterized by a various techniques including, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fast Fourier transform (FFT) and UV-vis-NIR techniques. The study revealed that the PbSe thin film consists of preferentially oriented nanocubes with energy band gap of 0.5 eV.

  14. Absolute band intensities in the nu19/nu23 (530 cm(-1)) and nu7 (777 cm(-1)) bands of acetone ((CH3)2CO) from 232 to 295 K

    NASA Technical Reports Server (NTRS)

    Wang, W. F.; Stevenson, A.; Reuter, D. C.; Sirota, J. M.

    2000-01-01

    Absolute band intensities of acetone ((CH3)2CO) in the nu19/nu23 and nu7 band systems near 530 and 777 cm(-1), respectively, were measured at temperatures of 232, 262 and 295 K, using a Fourier transform infrared (FTIR) spectrometer. No evident temperature dependence for the band intensities was observed. The dipole moments and the fundamental band intensities were derived in the harmonic oscillator approximation. The results are useful for the spectroscopic retrieval of acetone concentrations in the upper atmosphere.

  15. Frabicating hydroxyapatite nanorods using a biomacromolecule template

    NASA Astrophysics Data System (ADS)

    Zhu, Aiping; Lu, Yan; Si, Yunfeng; Dai, Sheng

    2011-02-01

    Rod-like hydroxyapatite (HAp) nanoparticles with various aspect ratios are synthesized by means of low-temperature hydrothermal method in the presence of a N-[(2-hydroxy-3-trimethylammonium) propyl]chitosan chloride (HTCC) template. The synthesized HAps were examined by X-ray diffraction (XRD), Fourier transform infrared spectrophotometer (FTIR) and transmission electron microscopy (TEM) techniques. The results reveal that HAps are rod-like monocrystals, where the size and morphology can be tailored by varying synthesis conditions, such as pH, hydrothermal synthesis temperature and the ratio of PO43- to the quaternary ammonium in HTCC. The mechanism of HTCC template on HAp nanorod preparation is analyzed.

  16. FFT-based computation of the bioheat transfer equation for the HCC ultrasound surgery therapy modeling.

    PubMed

    Dillenseger, Jean-Louis; Esneault, Simon; Garnier, Carole

    2008-01-01

    This paper describes a modeling method of the tissue temperature evolution over time in hyperthermia. More precisely, this approach is used to simulate the hepatocellular carcinoma curative treatment by a percutaneous high intensity ultrasound surgery. The tissue temperature evolution over time is classically described by Pennes' bioheat transfer equation which is generally solved by a finite difference method. In this paper we will present a method where the bioheat transfer equation can be algebraically solved after a Fourier transformation over the space coordinates. The implementation and boundary conditions of this method will be shown and compared with the finite difference method.

  17. Asp-Gly based peptides confined at the surface of cationic gemini surfactant aggregates.

    PubMed

    Brizard, Aurélie; Dolain, Christel; Huc, Ivan; Oda, Reiko

    2006-04-11

    Cationic gemini surfactants complexed with anionic oligoglycine-aspartate (called gemini peptides hereafter) were synthesized, and their aggregation behaviors were studied. The effects of the hydrophobic chain length (C10-C22) and the length of the oligoglycine (0-4) were investigated, and it was clearly shown by critical micellar concentration, Krafft temperature, and isothermal surface pressure measurements that the hydrophobic effect and interpeptidic interaction influence the aggregation behavior in a cooperative manner. Below their Krafft temperatures, some of them formed both hydro- and organogels with three-dimensional networks and the Fourier transform infrared measurements show the presence of interpeptidic hydrogen bonds.

  18. Spatial Frequency Multiplexing of Fiber-Optic Interferometric Refractive Index Sensors Based on Graded-Index Multimode Fibers

    PubMed Central

    Liu, Li; Gong, Yuan; Wu, Yu; Zhao, Tian; Wu, Hui-Juan; Rao, Yun-Jiang

    2012-01-01

    Fiber-optic interferometric sensors based on graded-index multimode fibers have very high refractive-index sensitivity, as we previously demonstrated. In this paper, spatial-frequency multiplexing of this type of fiber-optic refractive index sensors is investigated. It is estimated that multiplexing of more than 10 such sensors is possible. In the multiplexing scheme, one of the sensors is used to investigate the refractive index and temperature responses. The fast Fourier transform (FFT) of the combined reflective spectra is analyzed. The intensity of the FFT spectra is linearly related with the refractive index and is not sensitive to the temperature.

  19. Electro-optic imaging Fourier transform spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Znod, Hanying (Inventor)

    2009-01-01

    An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) for Hyperspectral Imaging is described. The EOIFTS includes an input polarizer, an output polarizer, and a plurality of birefringent phase elements. The relative orientations of the polarizers and birefringent phase elements can be changed mechanically or via a controller, using ferroelectric liquid crystals, to substantially measure the spectral Fourier components of light propagating through the EIOFTS. When achromatic switches are used as an integral part of the birefringent phase elements, the EIOFTS becomes suitable for broadband applications, with over 1 micron infrared bandwidth.

  20. Geometry and dynamics in the fractional discrete Fourier transform.

    PubMed

    Wolf, Kurt Bernardo; Krötzsch, Guillermo

    2007-03-01

    The N x N Fourier matrix is one distinguished element within the group U(N) of all N x N unitary matrices. It has the geometric property of being a fourth root of unity and is close to the dynamics of harmonic oscillators. The dynamical correspondence is exact only in the N-->infinity contraction limit for the integral Fourier transform and its fractional powers. In the finite-N case, several options have been considered in the literature. We compare their fidelity in reproducing the classical harmonic motion of discrete coherent states.

  1. Non-equilibrium phase transitions in a liquid crystal

    NASA Astrophysics Data System (ADS)

    Dan, K.; Roy, M.; Datta, A.

    2015-09-01

    The present manuscript describes kinetic behaviour of the glass transition and non-equilibrium features of the "Nematic-Isotropic" (N-I) phase transition of a well known liquid crystalline material N-(4-methoxybenzylidene)-4-butylaniline from the effects of heating rate and initial temperature on the transitions, through differential scanning calorimetry (DSC), Fourier transform infrared and fluorescence spectroscopy. Around the vicinity of the glass transition temperature (Tg), while only a change in the baseline of the ΔCp vs T curve is observed for heating rate (β) > 5 K min-1, consistent with a glass transition, a clear peak for β ≤ 5 K min-1 and the rapid reduction in the ΔCp value from the former to the latter rate correspond to an order-disorder transition and a transition from ergodic to non-ergodic behaviour. The ln β vs 1000/T curve for the glass transition shows convex Arrhenius behaviour that can be explained very well by a purely entropic activation barrier [Dan et al., Eur. Phys. Lett. 108, 36007 (2014)]. Fourier transform infrared spectroscopy indicates sudden freezing of the out-of-plane distortion vibrations of the benzene rings around the glass transition temperature and a considerable red shift indicating enhanced coplanarity of the benzene rings and, consequently, enhancement in the molecular ordering compared to room temperature. We further provide a direct experimental evidence of the non-equilibrium nature of the N-I transition through the dependence of this transition temperature (TNI) and associated enthalpy change (ΔH) on the initial temperature (at fixed β-values) for the DSC scans. A plausible qualitative explanation based on Mesquita's extension of Landau-deGennes theory [O. N. de Mesquita, Braz. J. Phys. 28, 257 (1998)] has been put forward. The change in the molecular ordering from nematic to isotropic phase has been investigated through fluorescence anisotropy measurements where the order parameter, quantified by the anisotropy, goes to zero from nematic to isotropic phase. To a point below the transition temperature, the order parameter is constant but decreases linearly with increase in temperature below that indicating the dependence of nematic ordering on the initial temperature during heating consistent with the non-equilibrium nature of nematic-isotropic phase transition.

  2. A novel recursive Fourier transform for nonuniform sampled signals: application to heart rate variability spectrum estimation.

    PubMed

    Holland, Alexander; Aboy, Mateo

    2009-07-01

    We present a novel method to iteratively calculate discrete Fourier transforms for discrete time signals with sample time intervals that may be widely nonuniform. The proposed recursive Fourier transform (RFT) does not require interpolation of the samples to uniform time intervals, and each iterative transform update of N frequencies has computational order N. Because of the inherent non-uniformity in the time between successive heart beats, an application particularly well suited for this transform is power spectral density (PSD) estimation for heart rate variability. We compare RFT based spectrum estimation with Lomb-Scargle Transform (LST) based estimation. PSD estimation based on the LST also does not require uniform time samples, but the LST has a computational order greater than Nlog(N). We conducted an assessment study involving the analysis of quasi-stationary signals with various levels of randomly missing heart beats. Our results indicate that the RFT leads to comparable estimation performance to the LST with significantly less computational overhead and complexity for applications requiring iterative spectrum estimations.

  3. Alteration behavior of mineral structure and hazardous elements during combustion of coal from a power plant at Huainan, Anhui, China.

    PubMed

    Tang, Quan; Sheng, Wanqi; Li, Liyuan; Zheng, Liugen; Miao, Chunhui; Sun, Ruoyu

    2018-08-01

    The alteration behavior of minerals and hazardous elements during simulated combustion (100-1200 °C) of a raw coal collected from a power plant were studied. Thermogravimetric analysis indicated that there were mainly four alteration stages during coal combustion. The transformation behavior of mineral phases of raw coal, which were detected by X-ray polycrystalline diffraction (XRD) technique, mainly relied on the combustion temperature. A series of changes were derived from the intensities of mineral (e.g. clays) diffraction peaks when temperature surpassed 600 °C. Mineral phases tended to be simple and collapsed to amorphous glass when temperature reached up to 1200 °C. The characteristics of functional groups for raw coal and high-temperature (1200 °C) ash studied by Fourier transform infrared spectroscopy (FTIR) were in accordance with the result obtained from XRD analysis. The volatilization ratios of Co, Cr, Ni and V increased consistently with the increase of combustion temperature, suggesting these elements were gradually released from the organic matter and inorganic minerals of coal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Computing the Power-Density Spectrum for an Engineering Model

    NASA Technical Reports Server (NTRS)

    Dunn, H. J.

    1982-01-01

    Computer program for calculating of power-density spectrum (PDS) from data base generated by Advanced Continuous Simulation Language (ACSL) uses algorithm that employs fast Fourier transform (FFT) to calculate PDS of variable. Accomplished by first estimating autocovariance function of variable and then taking FFT of smoothed autocovariance function to obtain PDS. Fast-Fourier-transform technique conserves computer resources.

  5. Using Mathematical Software to Introduce Fourier Transforms in Physical Chemistry to Develop Improved Understanding of Their Applications in Analytical Chemistry

    ERIC Educational Resources Information Center

    Miller, Tierney C.; Richardson, John N.; Kegerreis, Jeb S.

    2016-01-01

    This manuscript presents an exercise that utilizes mathematical software to explore Fourier transforms in the context of model quantum mechanical systems, thus providing a deeper mathematical understanding of relevant information often introduced and treated as a "black-box" in analytical chemistry courses. The exercise is given to…

  6. Teaching Stable Two-Mirror Resonators through the Fractional Fourier Transform

    ERIC Educational Resources Information Center

    Moreno, Ignacio; Garcia-Martinez, Pascuala; Ferreira, Carlos

    2010-01-01

    We analyse two-mirror resonators in terms of their fractional Fourier transform (FRFT) properties. We use the basic ABCD ray transfer matrix method to show how the resonator can be regarded as the cascade of two propagation-lens-propagation FRFT systems. Then, we present a connection between the geometric properties of the resonator (the g…

  7. Rapid identification and classification of Listeria spp. and serotype assignment of Listeria monocytogenes using fourier transform-infrared spectroscopy and artificial neural network analysis

    USDA-ARS?s Scientific Manuscript database

    The use of Fourier Transform-Infrared Spectroscopy (FT-IR) in conjunction with Artificial Neural Network software, NeuroDeveloper™ was examined for the rapid identification and classification of Listeria species and serotyping of Listeria monocytogenes. A spectral library was created for 245 strains...

  8. COMPARISON OF AN INNOVATIVE NONLINEAR ALGORITHM TO CLASSICAL LEAST SQUARES FOR ANALYZING OPEN-PATH FOURIER TRANSFORM INFRARED SPECTRA COLLECTED AT A CONCENTRATED SWINE PRODUCTION FACILITY

    EPA Science Inventory

    Open-path Fourier transform infrared (OP/FTIR) spectrometry was used to measure the concentrations of ammonia, methane, and other atmospheric gases at an integrated swine production facility. The concentration-pathlength products of the target gases at this site often exceeded th...

  9. APPLICATION OF STANDARDIZED QUALITY CONTROL PROCEDURES TO OPEN-PATH FOURIER TRANSFORM INFRARED DATA COLLECTED AT A CONCENTRATED SWINE PRODUCTION FACILITY

    EPA Science Inventory

    Open-path Fourier transform infrared (OP/FT-IR) spectrometry was used to measure the concentrations of ammonia, methane, and other atmospheric eases at a concentrated swine production facility. A total of 2200 OP/FT-IR spectra were acquired along nine different monitoring paths d...

  10. “Self-absorption” phenomenon in near-infrared Fourier transform Raman spectroscopy of cellulosic and lignocellulosic materials

    Treesearch

    Umesh P. Agarwal; Nancy Kawai

    2005-01-01

    While cellulosic and lignocellulosic materials have been studied using conventional Raman spectroscopy, availability of near-infrared (NIR) Fourier transform (FT) Raman instrumentation has made studying these materials much more convenient. This is especially true because the problem of laser-induced fluorescence can be avoided or minimized in FT- Raman (NIR Raman)...

  11. Propagation Characteristics Of Weakly Guiding Optical Fibers

    NASA Technical Reports Server (NTRS)

    Manshadi, Farzin

    1992-01-01

    Report discusses electromagnetic propagation characteristics of weakly guiding optical-fiber structures having complicated shapes with cross-sectional dimensions of order of wavelength. Coupling, power-dividing, and transition dielectric-waveguide structures analyzed. Basic data computed by scalar-wave, fast-Fourier-transform (SW-FFT) technique, based on numerical solution of scalar version of wave equation by forward-marching fast-Fourier-transform method.

  12. Analytical Properties of Time-of-Flight PET Data

    PubMed Central

    Cho, Sanghee; Ahn, Sangtae; Li, Quanzheng; Leahy, Richard M.

    2015-01-01

    We investigate the analytical properties of time-of-flight (TOF) positron emission tomography (PET) sinograms, where the data are modeled as line integrals weighted by a spatially invariant TOF kernel. First, we investigate the Fourier transform properties of 2D TOF data and extend the “bow-tie” property of the 2D Radon transform to the time of flight case. Second, we describe a new exact Fourier rebinning method, TOF-FOREX, based on the Fourier transform in the time-of-flight variable. We then combine TOF-FOREX rebinning with a direct extension of the projection slice theorem to TOF data, to perform fast 3D TOF PET image reconstruction. Finally, we illustrate these properties using simulated data. PMID:18460746

  13. Electro-optic Imaging Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    2005-01-01

    JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-O IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 micron (1000-4000/cm) to allow high-resolution, high-speed hyperspectral imaging applications. One application will be the remote sensing of the measurement of a large number of different atmospheric gases simultaneously in the same airmass. Due to the use of a combination of birefringent phase retarders and multiple achromatic phase switches to achieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventional Fourier transform spectrometer but without any moving parts. In this paper, the principle of operations, system architecture and recent experimental progress will be presented.

  14. Electro-optic Imaging Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    2005-01-01

    JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-0IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 pm (1000 -4000 cm-') to allow high-resolution, high-speed hyperspectral imaging applications [l-51. One application will be theremote sensing of the measurement of a large number of different atmospheric gases simultaneously in the sameairmass. Due to the use of a combination of birefiingent phase retarders and multiple achromatic phase switches toachieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventionalFourier transform spectrometer but without any moving parts. In this paper, the principle of operations, systemarchitecture and recent experimental progress will be presen.

  15. Fourier transform infrared microspectroscopy for the analysis of the biochemical composition of C. elegans worms.

    PubMed

    Sheng, Ming; Gorzsás, András; Tuck, Simon

    2016-01-01

    Changes in intermediary metabolism have profound effects on many aspects of C. elegans biology including growth, development and behavior. However, many traditional biochemical techniques for analyzing chemical composition require relatively large amounts of starting material precluding the analysis of mutants that cannot be grown in large amounts as homozygotes. Here we describe a technique for detecting changes in the chemical compositions of C. elegans worms by Fourier transform infrared microspectroscopy. We demonstrate that the technique can be used to detect changes in the relative levels of carbohydrates, proteins and lipids in one and the same worm. We suggest that Fourier transform infrared microspectroscopy represents a useful addition to the arsenal of techniques for metabolic studies of C. elegans worms.

  16. The short time Fourier transform and local signals

    NASA Astrophysics Data System (ADS)

    Okumura, Shuhei

    In this thesis, I examine the theoretical properties of the short time discrete Fourier transform (STFT). The STFT is obtained by applying the Fourier transform by a fixed-sized, moving window to input series. We move the window by one time point at a time, so we have overlapping windows. I present several theoretical properties of the STFT, applied to various types of complex-valued, univariate time series inputs, and their outputs in closed forms. In particular, just like the discrete Fourier transform, the STFT's modulus time series takes large positive values when the input is a periodic signal. One main point is that a white noise time series input results in the STFT output being a complex-valued stationary time series and we can derive the time and time-frequency dependency structure such as the cross-covariance functions. Our primary focus is the detection of local periodic signals. I present a method to detect local signals by computing the probability that the squared modulus STFT time series has consecutive large values exceeding some threshold after one exceeding observation following one observation less than the threshold. We discuss a method to reduce the computation of such probabilities by the Box-Cox transformation and the delta method, and show that it works well in comparison to the Monte Carlo simulation method.

  17. The extended Fourier transform for 2D spectral estimation.

    PubMed

    Armstrong, G S; Mandelshtam, V A

    2001-11-01

    We present a linear algebraic method, named the eXtended Fourier Transform (XFT), for spectral estimation from truncated time signals. The method is a hybrid of the discrete Fourier transform (DFT) and the regularized resolvent transform (RRT) (J. Chen et al., J. Magn. Reson. 147, 129-137 (2000)). Namely, it estimates the remainder of a finite DFT by RRT. The RRT estimation corresponds to solution of an ill-conditioned problem, which requires regularization. The regularization depends on a parameter, q, that essentially controls the resolution. By varying q from 0 to infinity one can "tune" the spectrum between a high-resolution spectral estimate and the finite DFT. The optimal value of q is chosen according to how well the data fits the form of a sum of complex sinusoids and, in particular, the signal-to-noise ratio. Both 1D and 2D XFT are presented with applications to experimental NMR signals. Copyright 2001 Academic Press.

  18. Replica Fourier Tansforms on Ultrametric Trees, and Block-Diagonalizing Multi-Replica Matrices

    NASA Astrophysics Data System (ADS)

    de Dominicis, C.; Carlucci, D. M.; Temesvári, T.

    1997-01-01

    The analysis of objects living on ultrametric trees, in particular the block-diagonalization of 4-replica matrices M^{α β;γ^δ}, is shown to be dramatically simplified through the introduction of properly chosen operations on those objects. These are the Replica Fourier Transforms on ultrametric trees. Those transformations are defined and used in the present work. On montre que l'analyse d'objets vivant sur un arbre ultramétrique, en particulier, la diagonalisation par blocs d'une matrice M^{α β;γ^δ} dépendant de 4-répliques, se simplifie de façon dramatique si l'on introduit les opérations appropriées sur ces objets. Ce sont les Transformées de Fourier de Répliques sur un arbre ultramétrique. Ces transformations sont définies et utilisées dans le présent travail.

  19. Intelligent Automatic Classification of True and Counterfeit Notes Based on Spectrum Analysis

    NASA Astrophysics Data System (ADS)

    Matsunaga, Shohei; Omatu, Sigeru; Kosaka, Toshohisa

    The purpose of this paper is to classify bank notes into “true” or “counterfeit” ones faster and more precisely compared with a conventional method. We note that thin lines are represented by direct lines in the images of true notes while they are represented in the counterfeit notes by dotted lines. This is due to properties of dot printers or scanner levels. To use the properties, we propose two method to classify a note into true or counterfeited one by checking whether there exist thin lines or dotted lines of the note. First, we use Fourier transform of the note to find quantity of features for classification and we classify a note into true or counterfeit one by using the features by Fourier transform. Then we propose a classification method by using wavelet transform in place of Fourier transform. Finally, some classification results are illustrated to show the effectiveness of the proposed methods.

  20. Role of Hydrogen Bonding on Nonlinear Mechano-Optical Behavior of L-Phenylalanine-based Poly(ester urea)s.

    NASA Astrophysics Data System (ADS)

    Chen, Keke; Yu, Jiayi; Guzman, Gustavo; Es-Haghi, S. Shams; Becker, Matthew L.; Cakmak, Miko

    The uniaxial mechano-optical behavior of a series of amorphous L-phenylalanine-based poly(ester urea) (PEU) films was studied in the rubbery state using a custom real-time measurement system. When the materials were subjected to deformation at temperatures near the glass transition temperature (Tg) , the photoelastic behavior was manifested by a small increase in birefringence with a significant increase in true stress. At temperatures above Tg, PEUs with a shorter diol chain length exhibited a liquid-liquid (Tll) transition at about 1.06 Tg (K), above which the material transforms from a heterogeneous ``liquid of fixed-structure'' to a ``true liquid'' state. The initial photoelastic behavior disappears with increasing temperature, as the initial slope of the stress optical curves becomes temperature independent. Fourier transform infrared spectra of PEUs revealed that the average strength of hydrogen bonding diminishes with increasing temperature. For PEUs with the longest diol chain length, the area associated with N-H stretching region exhibits a linear temperature dependence. The presence of hydrogen bonding enhances the ``stiff'' segmental correlations between adjacent chains in the PEU structure. As a result, the photoelastic constant decreases with increasing hydrogen bonding strength. This work was supported by the Ohio Department of Development's Innovation Platform Program and The National Science Foundation.

  1. Cryo-Infrared Optical Characterization at NASA GSFC

    NASA Technical Reports Server (NTRS)

    Boucarut, Ray; Quijada, Manuel A.; Henry, Ross M.

    2004-01-01

    The development of large space infrared optical systems, such as the Next Generation Space Telescope (NGST), has increased requirements for measurement accuracy in the optical properties of materials. Many materials used as optical components in infrared optical systems, have strong temperature dependence in their optical properties. Unfortunately, data on the temperature dependence of most of these materials is sparse. In this paper, we provide a description of the capabilities existing in the Optics Branch at the Goddard Space Flight Center that enable the characterization of the refractive index and absorption coefficient changes and other optical properties in infrared materials at cryogenic temperatures. Details of the experimental apparatus, which include continuous flow liquid helium optical cryostat, and a Fourier Transform Infrared (FTIR) spectrometer are discussed.

  2. Reliability and efficacy of organic passivation for polycrystalline silicon solar cells at room temperature

    NASA Astrophysics Data System (ADS)

    Shinde, Onkar S.; Funde, Adinath M.; Jadkar, Sandesh R.; Dusane, Rajiv O.; Dhere, Neelkanth G.; Ghaisas, Subhash V.

    2016-09-01

    Oleylamine is used as a passivating layer instead of commercial high temperature SiNx. Oleylamine coating applied on the n-type emitter side with p-type base polycrystalline silicon solar cells at room temperature using a simple spin coating method. It has been observed that there is 16% increase in efficiency after Oleylamine coating. Further, the solar cell was subjected to standard characterization namely current-voltage measurement for electrical parameters and Fourier transform infrared spectroscopy to understand the interaction of emitter surface and passivating Oleylamine. However, the passivation layer is not stable due to the reaction between Oleylamine and ambient air content such as humidity and carbon dioxide. This degradation can be prevented with suitable overcoating.

  3. Infrared spectra and physochemical properties of oils

    NASA Astrophysics Data System (ADS)

    Strelets, L. A.; Svarovskaya, L. I.; Manakov, A. Yu.

    2017-12-01

    The paper reports on a multiparametric study of West Siberian crude oils using Fourier transform infrared (FTIR) spectroscopy to establish a relationship between the physicochemical properties of the oils, their spectral coefficients, and biodegradation levels. It is found that the test oils are slightly biodegraded, feature a roughly linear dependence between the freezing temperature and the content of resin and asphaltene, and display a relation of their emulsifying ability and spectral coefficient C2, being the ratio of alkanes and substituted alkylbenzene compounds.

  4. Electrical conductivity and morphology of electrochemical synthesized polyaniline/CuO nano composites

    NASA Astrophysics Data System (ADS)

    Ashokkumar, S. P.; Yesappa, L.; Vijeth, H.; Niranjana, M.; Devendrappa, H.

    2018-05-01

    Polyaniline (PANI) and Polyaniline/CuO nanocomposite have been synthesized by using electrochemical deposition method. The composite was characterized using Fourier transform infra-red spectroscopy (FT-IR) to confirm the chemical interaction changes, micro structural morphology was done by Field Emission Scanning Electronic Microscopy (FESEM) and High Resolution Transmission Electron Microscopy (HRTEM). The dielectric constant and AC conductivity are found to increases with increase in temperature range (303 to 393K), these results shows enhancement in electrical conductivity due to effect of nanocomposite.

  5. On the action of Heisenberg's uncertainty principle in discrete linear methods for calculating the components of the deflection of the vertical

    NASA Astrophysics Data System (ADS)

    Mazurova, Elena; Lapshin, Aleksey

    2013-04-01

    The method of discrete linear transformations that can be implemented through the algorithms of the Standard Fourier Transform (SFT), Short-Time Fourier Transform (STFT) or Wavelet transform (WT) is effective for calculating the components of the deflection of the vertical from discrete values of gravity anomaly. The SFT due to the action of Heisenberg's uncertainty principle indicates weak spatial localization that manifests in the following: firstly, it is necessary to know the initial digital signal on the complete number line (in case of one-dimensional transform) or in the whole two-dimensional space (if a two-dimensional transform is performed) in order to find the SFT. Secondly, the localization and values of the "peaks" of the initial function cannot be derived from its Fourier transform as the coefficients of the Fourier transform are formed by taking into account all the values of the initial function. Thus, the SFT gives the global information on all frequencies available in the digital signal throughout the whole time period. To overcome this peculiarity it is necessary to localize the signal in time and apply the Fourier transform only to a small portion of the signal; the STFT that differs from the SFT only by the presence of an additional factor (window) is used for this purpose. A narrow enough window is chosen to localize the signal in time and, according to Heisenberg's uncertainty principle, it results in have significant enough uncertainty in frequency. If one chooses a wide enough window it, according to the same principle, will increase time uncertainty. Thus, if the signal is narrowly localized in time its spectrum, on the contrary, is spread on the complete axis of frequencies, and vice versa. The STFT makes it possible to improve spatial localization, that is, it allows one to define the presence of any frequency in the signal and the interval of its presence. However, owing to Heisenberg's uncertainty principle, it is impossible to tell precisely, what frequency is present in the signal at the current moment of time: it is possible to speak only about the range of frequencies. Besides, it is impossible to specify precisely the time moment of the presence of this or that frequency: it is possible to speak only about the time frame. It is this feature that imposes major constrains on the applicability of the STFT. In spite of the fact that the problems of resolution in time and frequency result from a physical phenomenon (Heisenberg's uncertainty principle) and exist independent of the transform applied, there is a possibility to analyze any signal, using the alternative approach - the multiresolutional analysis (MRA). The wavelet-transform is one of the methods for making a MRA-type analysis. Thanks to it, low frequencies can be shown in a more detailed form with respect to time, and high ones - with respect to frequency. The paper presents the results of calculating of the components of the deflection of the vertical, done by the SFT, STFT and WT. The results are presented in the form of 3-d models that visually show the action of Heisenberg's uncertainty principle in the specified algorithms. The research conducted allows us to recommend the application of wavelet-transform to calculate of the components of the deflection of the vertical in the near-field zone. Keywords: Standard Fourier Transform, Short-Time Fourier Transform, Wavelet Transform, Heisenberg's uncertainty principle.

  6. Mathematical Methods for Optical Physics and Engineering

    NASA Astrophysics Data System (ADS)

    Gbur, Gregory J.

    2011-01-01

    1. Vector algebra; 2. Vector calculus; 3. Vector calculus in curvilinear coordinate systems; 4. Matrices and linear algebra; 5. Advanced matrix techniques and tensors; 6. Distributions; 7. Infinite series; 8. Fourier series; 9. Complex analysis; 10. Advanced complex analysis; 11. Fourier transforms; 12. Other integral transforms; 13. Discrete transforms; 14. Ordinary differential equations; 15. Partial differential equations; 16. Bessel functions; 17. Legendre functions and spherical harmonics; 18. Orthogonal functions; 19. Green's functions; 20. The calculus of variations; 21. Asymptotic techniques; Appendices; References; Index.

  7. Transfer Functions Via Laplace- And Fourier-Borel Transforms

    NASA Technical Reports Server (NTRS)

    Can, Sumer; Unal, Aynur

    1991-01-01

    Approach to solution of nonlinear ordinary differential equations involves transfer functions based on recently-introduced Laplace-Borel and Fourier-Borel transforms. Main theorem gives transform of response of nonlinear system as Cauchy product of transfer function and transform of input function of system, together with memory effects. Used to determine responses of electrical circuits containing variable inductances or resistances. Also possibility of doing all noncommutative algebra on computers in such symbolic programming languages as Macsyma, Reduce, PL1, or Lisp. Process of solution organized and possibly simplified by algebraic manipulations reducing integrals in solutions to known or tabulated forms.

  8. Structural evolution of maize stalk/char particles during pyrolysis.

    PubMed

    Fu, Peng; Hu, Song; Sun, Lushi; Xiang, Jun; Yang, Tao; Zhang, Anchao; Zhang, Junying

    2009-10-01

    The structural evolution characteristics of maize stalk/char particles during pyrolysis were investigated. The char was prepared by pyrolyzing at temperatures ranging from 200 to 900 degrees C. Maize stalk and chars were characterized by thermogravimetric analysis, ultimate analysis (TGA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), helium density measurement and N(2) adsorption/desorption method. The char yield decreased rapidly with increasing temperature until 400 degrees C. As temperature increased, the char became progressively more aromatic and carbonaceous. The hydroxyl, aliphatic C-H, carbonyl and olefinic C=C groups were lost at high temperatures. Below 500 degrees C, the removal of volatile matter made pore opening. High temperatures led to the occurrence of softening, melting, fusing and carbon structural ordering. The aromatization process started at approximately 350 degrees C and continued to higher temperatures. The shrinkage of carbon structure occurred above 500 degrees C, which was concurrent with the aromatization process.

  9. Coherent time-stretch transformation for real-time capture of wideband signals.

    PubMed

    Buckley, Brandon W; Madni, Asad M; Jalali, Bahram

    2013-09-09

    Time stretch transformation of wideband waveforms boosts the performance of analog-to-digital converters and digital signal processors by slowing down analog electrical signals before digitization. The transform is based on dispersive Fourier transformation implemented in the optical domain. A coherent receiver would be ideal for capturing the time-stretched optical signal. Coherent receivers offer improved sensitivity, allow for digital cancellation of dispersion-induced impairments and optical nonlinearities, and enable decoding of phase-modulated optical data formats. Because time-stretch uses a chirped broadband (>1 THz) optical carrier, a new coherent detection technique is required. In this paper, we introduce and demonstrate coherent time stretch transformation; a technique that combines dispersive Fourier transform with optically broadband coherent detection.

  10. Adaptive Filtering to Enhance Noise Immunity of Impedance and Admittance Spectroscopy: Comparison with Fourier Transformation

    NASA Astrophysics Data System (ADS)

    Stupin, Daniil D.; Koniakhin, Sergei V.; Verlov, Nikolay A.; Dubina, Michael V.

    2017-05-01

    The time-domain technique for impedance spectroscopy consists of computing the excitation voltage and current response Fourier images by fast or discrete Fourier transformation and calculating their relation. Here we propose an alternative method for excitation voltage and current response processing for deriving a system impedance spectrum based on a fast and flexible adaptive filtering method. We show the equivalence between the problem of adaptive filter learning and deriving the system impedance spectrum. To be specific, we express the impedance via the adaptive filter weight coefficients. The noise-canceling property of adaptive filtering is also justified. Using the RLC circuit as a model system, we experimentally show that adaptive filtering yields correct admittance spectra and elements ratings in the high-noise conditions when the Fourier-transform technique fails. Providing the additional sensitivity of impedance spectroscopy, adaptive filtering can be applied to otherwise impossible-to-interpret time-domain impedance data. The advantages of adaptive filtering are justified with practical living-cell impedance measurements.

  11. Accurate measurements and temperature dependence of the water vapor self-continuum absorption in the 2.1 μm atmospheric window

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ventrillard, I.; Romanini, D.; Mondelain, D.

    In spite of its importance for the evaluation of the Earth radiative budget, thus for climate change, very few measurements of the water vapor continuum are available in the near infrared atmospheric windows especially at temperature conditions relevant for our atmosphere. In addition, as a result of the difficulty to measure weak broadband absorption signals, the few available measurements show large disagreements. We report here accurate measurements of the water vapor self-continuum absorption in the 2.1 μm window by Optical Feedback Cavity Enhanced Absorption Spectroscopy (OF-CEAS) for two spectral points located at the low energy edge and at the centermore » of the 2.1 μm transparency window, at 4302 and 4723 cm{sup −1}, respectively. Self-continuum cross sections, C{sub S}, were retrieved with a few % relative uncertainty, from the quadratic dependence of the spectrum base line level measured as a function of water vapor pressure, between 0 and 16 Torr. At 296 K, the C{sub S} value at 4302 cm{sup −1} is found 40% higher than predicted by the MT-CKD V2.5 model, while at 4723 cm{sup −1}, our value is 5 times larger than the MT-CKD value. On the other hand, these OF-CEAS C{sub S} values are significantly smaller than recent measurements by Fourier transform spectroscopy at room temperature. The temperature dependence of the self-continuum cross sections was also investigated for temperatures between 296 K and 323 K (23-50 °C). The derived temperature variation is found to be similar to that derived from previous Fourier transform spectrometer (FTS) measurements performed at higher temperatures, between 350 K and 472 K. The whole set of measurements spanning the 296-472 K temperature range follows a simple exponential law in 1/T with a slope close to the dissociation energy of the water dimer, D{sub 0} ≈ 1100 cm{sup −1}.« less

  12. Kinetics and Product Branching Fractions of Reactions between a Cation and a Radical: Ar+ + CH3 and O2+ + CH3 (Postprint)

    DTIC Science & Technology

    2015-01-13

    Gross group using a Chen nozzle coupled to a Fourier transform ion cyclotron reso- nance (FT-ICR) mass spectrometer for reactions of the benzyl radical...reactions: A Fourier transform ion cyclotron resonance study of allyl radical reacting with aromatic radical cations. Int. J. Mass Spectrom. 2009, 287, 8

  13. Introduction to Flight Test Engineering (Introduction aux techniques des essais en vol)

    DTIC Science & Technology

    2005-07-01

    or aircraft parameters • Calculations in the frequency domain ( Fast Fourier Transform) • Data analysis with dedicated software for: • Signal...density Fast Fourier Transform Transfer function analysis Frequency response analysis Etc. PRESENTATION Color/black & white Display screen...envelope by operating the airplane at increasing ranges - representing increasing risk - of engine operation, airspeeds both fast and slow, altitude

  14. Color and surface chemistry changes of extracted wood flour after heating at 120 °C

    Treesearch

    Yao Chen; Mandla A. Tshabalala; Jianmin Gao; Nicole M. Stark

    2013-01-01

    To investigate the effect of heat on color and surface chemistry of wood flour (WF), unextracted, extracted and delignified samples of commercial WF were heated at 120 °C for 24 h and analyzed by colorimetry, diffuse reflectance visible (DRV), attenuated total reflectance Fourier transform infrared (ATR-FTIR) and Fourier transform Raman (FT-Raman) spectroscopies....

  15. Characterization of southern yellow pine bark layers by Attenuated Total Reflectance (ATR) and Fourier Transform Infrared (FT-IR) Spectroscopy

    Treesearch

    Thomas L. Eberhardt

    2009-01-01

    The outer bark (rhytidome) of the southern yellow pines is a complex structure comprised of alternating layers of obliterated phloem and periderm tissues, with the latter comprised of three layers, those being phellem, phellogen, and phelloderm. An attenuated total reflectance (ATR) sampling accessory, coupled with a Fourier transform infrared (FTIR) spectrometer,...

  16. Determination of diosmin in pharmaceutical formulations using Fourier transform infrared spectrophotometry

    PubMed Central

    Bunaciu, Andrei A.; Udristioiu, Gabriela Elena; Ruţă, Lavinia L.; Fleschin, Şerban; Aboul-Enein, Hassan Y.

    2009-01-01

    A Fourier transform infrared (FT-IR) spectrometric method was developed for the rapid, direct measurement of diosmin in different pharmaceutical drugs. Conventional KBr-spectra were compared for best determination of active substance in commercial preparations. The Beer–Lambert law and two chemometric approaches, partial least squares (PLS) and principal component regression (PCR+) methods, were tried in data processing. PMID:23960715

  17. Molecular Isotopic Distribution Analysis (MIDAs) with Adjustable Mass Accuracy

    NASA Astrophysics Data System (ADS)

    Alves, Gelio; Ogurtsov, Aleksey Y.; Yu, Yi-Kuo

    2014-01-01

    In this paper, we present Molecular Isotopic Distribution Analysis (MIDAs), a new software tool designed to compute molecular isotopic distributions with adjustable accuracies. MIDAs offers two algorithms, one polynomial-based and one Fourier-transform-based, both of which compute molecular isotopic distributions accurately and efficiently. The polynomial-based algorithm contains few novel aspects, whereas the Fourier-transform-based algorithm consists mainly of improvements to other existing Fourier-transform-based algorithms. We have benchmarked the performance of the two algorithms implemented in MIDAs with that of eight software packages (BRAIN, Emass, Mercury, Mercury5, NeutronCluster, Qmass, JFC, IC) using a consensus set of benchmark molecules. Under the proposed evaluation criteria, MIDAs's algorithms, JFC, and Emass compute with comparable accuracy the coarse-grained (low-resolution) isotopic distributions and are more accurate than the other software packages. For fine-grained isotopic distributions, we compared IC, MIDAs's polynomial algorithm, and MIDAs's Fourier transform algorithm. Among the three, IC and MIDAs's polynomial algorithm compute isotopic distributions that better resemble their corresponding exact fine-grained (high-resolution) isotopic distributions. MIDAs can be accessed freely through a user-friendly web-interface at http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/midas/index.html.

  18. GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography.

    PubMed

    Xu, Daguang; Huang, Yong; Kang, Jin U

    2014-06-16

    We implemented the graphics processing unit (GPU) accelerated compressive sensing (CS) non-uniform in k-space spectral domain optical coherence tomography (SD OCT). Kaiser-Bessel (KB) function and Gaussian function are used independently as the convolution kernel in the gridding-based non-uniform fast Fourier transform (NUFFT) algorithm with different oversampling ratios and kernel widths. Our implementation is compared with the GPU-accelerated modified non-uniform discrete Fourier transform (MNUDFT) matrix-based CS SD OCT and the GPU-accelerated fast Fourier transform (FFT)-based CS SD OCT. It was found that our implementation has comparable performance to the GPU-accelerated MNUDFT-based CS SD OCT in terms of image quality while providing more than 5 times speed enhancement. When compared to the GPU-accelerated FFT based-CS SD OCT, it shows smaller background noise and less side lobes while eliminating the need for the cumbersome k-space grid filling and the k-linear calibration procedure. Finally, we demonstrated that by using a conventional desktop computer architecture having three GPUs, real-time B-mode imaging can be obtained in excess of 30 fps for the GPU-accelerated NUFFT based CS SD OCT with frame size 2048(axial) × 1,000(lateral).

  19. Determination of Spectroscopic Properties of Atmospheric Molecules from High Resolution Vacuum Ultraviolet Cross Section and Wavelength Measurements

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Yoshino, K.

    1997-01-01

    An account is given of progress during the period 8/l/96-7/31/97 on work on (a) cross section measurements of O2 S-R using a Fourier transform spectrometer (FTS) at the Photon Factory in Japan; (b) the determination of the predissociation linewidths of the Schumann-Runge bands (S-R) of 02; (c) cross section measurements of 02 Herzberg bands using a Fourier transform spectrometer (FTS) at Imperial College; and (d) cross section measurements of H2O in the wavelength region 120-188 nm. The experimental investigations are effected at high resolution with a 6.65 m scanning spectrometer and with the Fourier transform spectrometer. Below 175 nm, synchrotron radiation is most suitable for cross section measurements in combination with spectrometers at the Photon Factory Japan. Cross section measurements of the Doppler limited bands depend on using the very high resolution, available with the Fourier transform spectrometer, (0.025/cm resolution). All of these spectroscopic measurements are needed for accurate calculations of the production of atomic oxygen, the penetration of solar radiation into the Earth's atmosphere, and photochemistry of minor molecules.

  20. Molecular Isotopic Distribution Analysis (MIDAs) with adjustable mass accuracy.

    PubMed

    Alves, Gelio; Ogurtsov, Aleksey Y; Yu, Yi-Kuo

    2014-01-01

    In this paper, we present Molecular Isotopic Distribution Analysis (MIDAs), a new software tool designed to compute molecular isotopic distributions with adjustable accuracies. MIDAs offers two algorithms, one polynomial-based and one Fourier-transform-based, both of which compute molecular isotopic distributions accurately and efficiently. The polynomial-based algorithm contains few novel aspects, whereas the Fourier-transform-based algorithm consists mainly of improvements to other existing Fourier-transform-based algorithms. We have benchmarked the performance of the two algorithms implemented in MIDAs with that of eight software packages (BRAIN, Emass, Mercury, Mercury5, NeutronCluster, Qmass, JFC, IC) using a consensus set of benchmark molecules. Under the proposed evaluation criteria, MIDAs's algorithms, JFC, and Emass compute with comparable accuracy the coarse-grained (low-resolution) isotopic distributions and are more accurate than the other software packages. For fine-grained isotopic distributions, we compared IC, MIDAs's polynomial algorithm, and MIDAs's Fourier transform algorithm. Among the three, IC and MIDAs's polynomial algorithm compute isotopic distributions that better resemble their corresponding exact fine-grained (high-resolution) isotopic distributions. MIDAs can be accessed freely through a user-friendly web-interface at http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/midas/index.html.

  1. A Discussion of the Discrete Fourier Transform Execution on a Typical Desktop PC

    NASA Technical Reports Server (NTRS)

    White, Michael J.

    2006-01-01

    This paper will discuss and compare the execution times of three examples of the Discrete Fourier Transform (DFT). The first two examples will demonstrate the direct implementation of the algorithm. In the first example, the Fourier coefficients are generated at the execution of the DFT. In the second example, the coefficients are generated prior to execution and the DFT coefficients are indexed at execution. The last example will demonstrate the Cooley- Tukey algorithm, better known as the Fast Fourier Transform. All examples were written in C executed on a PC using a Pentium 4 running at 1.7 Ghz. As a function of N, the total complex data size, the direct implementation DFT executes, as expected at order of N2 and the FFT executes at order of N log2 N. At N=16K, there is an increase in processing time beyond what is expected. This is not caused by implementation but is a consequence of the effect that machine architecture and memory hierarchy has on implementation. This paper will include a brief overview of digital signal processing, along with a discussion of contemporary work with discrete Fourier processing.

  2. Stress wave calculations in composite plates using the fast Fourier transform.

    NASA Technical Reports Server (NTRS)

    Moon, F. C.

    1973-01-01

    The protection of composite turbine fan blades against impact forces has prompted the study of dynamic stresses in composites due to transient loads. The mathematical model treats the laminated plate as an equivalent anisotropic material. The use of Mindlin's approximate theory of crystal plates results in five two-dimensional stress waves. Three of the waves are flexural and two involve in-plane extensional strains. The initial value problem due to a transient distributed transverse force on the plate is solved using Laplace and Fourier transforms. A fast computer program for inverting the two-dimensional Fourier transform is used. Stress contours for various stresses and times after application of load are obtained for a graphite fiber-epoxy matrix composite plate. Results indicate that the points of maximum stress travel along the fiber directions.

  3. High-speed spectral domain optical coherence tomography using non-uniform fast Fourier transform

    PubMed Central

    Chan, Kenny K. H.; Tang, Shuo

    2010-01-01

    The useful imaging range in spectral domain optical coherence tomography (SD-OCT) is often limited by the depth dependent sensitivity fall-off. Processing SD-OCT data with the non-uniform fast Fourier transform (NFFT) can improve the sensitivity fall-off at maximum depth by greater than 5dB concurrently with a 30 fold decrease in processing time compared to the fast Fourier transform with cubic spline interpolation method. NFFT can also improve local signal to noise ratio (SNR) and reduce image artifacts introduced in post-processing. Combined with parallel processing, NFFT is shown to have the ability to process up to 90k A-lines per second. High-speed SD-OCT imaging is demonstrated at camera-limited 100 frames per second on an ex-vivo squid eye. PMID:21258551

  4. Multichannel Dynamic Fourier-Transform IR Spectrometer

    NASA Astrophysics Data System (ADS)

    Balashov, A. A.; Vaguine, V. A.; Golyak, Il. S.; Morozov, A. N.; Khorokhorin, A. I.

    2017-09-01

    A design of a multichannel continuous scan Fourier-transform IR spectrometer for simultaneous recording and analysis of the spectral characteristics of several objects is proposed. For implementing the design, a multi-probe fiber is used, constructed from several optical fibers connected into a single optical connector and attached at the output of the interferometer. The Fourier-transform spectrometer is used as a signal modulator. Each fiber is individually mated with an investigated sample and a dedicated radiation detector. For the developed system, the radiation intensity of the spectrometer is calculated from the condition of the minimum spectral resolution and parameters of the optical fibers. Using the proposed design, emission spectra of a gas-discharge neon lamp have been recorded using a single fiber 1 mm in diameter with a numerical aperture NA = 0.22.

  5. The angular difference function and its application to image registration.

    PubMed

    Keller, Yosi; Shkolnisky, Yoel; Averbuch, Amir

    2005-06-01

    The estimation of large motions without prior knowledge is an important problem in image registration. In this paper, we present the angular difference function (ADF) and demonstrate its applicability to rotation estimation. The ADF of two functions is defined as the integral of their spectral difference along the radial direction. It is efficiently computed using the pseudopolar Fourier transform, which computes the discrete Fourier transform of an image on a near spherical grid. Unlike other Fourier-based registration schemes, the suggested approach does not require any interpolation. Thus, it is more accurate and significantly faster.

  6. Application of Fourier analysis to multispectral/spatial recognition

    NASA Technical Reports Server (NTRS)

    Hornung, R. J.; Smith, J. A.

    1973-01-01

    One approach for investigating spectral response from materials is to consider spatial features of the response. This might be accomplished by considering the Fourier spectrum of the spatial response. The Fourier Transform may be used in a one-dimensional to multidimensional analysis of more than one channel of data. The two-dimensional transform represents the Fraunhofer diffraction pattern of the image in optics and has certain invariant features. Physically the diffraction pattern contains spatial features which are possibly unique to a given configuration or classification type. Different sampling strategies may be used to either enhance geometrical differences or extract additional features.

  7. Reflection and refraction of a transient temperature field at a plane interface using Cagniard-de Hoop approach.

    PubMed

    Shendeleva, M L

    2001-09-01

    An instantaneous line heat source located in the medium consisting of two half-spaces with different thermal properties is considered. Green's functions for the temperature field are derived using the Laplace and Fourier transforms in time and space and their inverting by the Cagniard-de Hoop technique known in elastodynamics. The characteristic feature of the proposed approach consists in the application of the Cagniard-de Hoop method to the transient heat conduction problem. The idea is suggested by the fact that the Laplace transform in time reduces the heat conduction equation to a Helmholtz equation, as for the wave propagation. Derived solutions exhibit some wave properties. First, the temperature field is decomposed into the source field and the reflected field in one half-space and the transmitted field in the other. Second, the laws of reflection and refraction can be deduced for the rays of the temperature field. In this connection the ray concept is briefly discussed. It is shown that the rays, introduced in such a way that they are consistent with Snell's law do not represent the directions of heat flux in the medium. Numerical computations of the temperature field as well as diagrams of rays and streamlines of the temperature field are presented.

  8. The New Physical Optics Notebook: Tutorials in Fourier Optics.

    ERIC Educational Resources Information Center

    Reynolds, George O.; And Others

    This is a textbook of Fourier optics for the classroom or self-study. Major topics included in the 38 chapters are: Huygens' principle and Fourier transforms; image formation; optical coherence theory; coherent imaging; image analysis; coherent noise; interferometry; holography; communication theory techniques; analog optical computing; phase…

  9. Fourier Spectroscopy: A Simple Analysis Technique

    ERIC Educational Resources Information Center

    Oelfke, William C.

    1975-01-01

    Presents a simple method of analysis in which the student can integrate, point by point, any interferogram to obtain its Fourier transform. The manual technique requires no special equipment and is based on relationships that most undergraduate physics students can derive from the Fourier integral equations. (Author/MLH)

  10. Comparative evaluation of bioactivity of crystalline trypsin for drying by Fourier-transformed infrared spectroscopy.

    PubMed

    Otsuka, Makoto; Fukui, Yuya; Ozaki, Yukihiro

    2009-03-01

    The purpose of this study was to evaluate the enzymatic stability of colloidal trypsin powder during heating in a solid-state by using Fourier transform infrared (FT-IR) spectra with chemoinformatics and generalized two-dimensional (2D) correlation spectroscopy. Colloidal crystalline trypsin powders were heated using differential scanning calorimetry. The enzymatic activity of trypsin was assayed by the kinetic degradation method. Spectra of 10 calibration sample sets were recorded three times with a FT-IR spectrometer. The maximum intensity at 1634cm(-1) of FT-IR spectra and enzymatic activity of trypsin decreased as the temperature increased. The FT-IR spectra of trypsin samples were analyzed by a principal component regression analysis (PCR). A plot of the calibration data obtained was made between the actual and predicted trypsin activity based on a two-component model with gamma(2)=0.962. On the other hand, a 2D method was applied to FT-IR spectra of heat-treated trypsin. The result was consistent with that of the chemoinformetrical method. The results for deactivation of colloidal trypsin powder by heat-treatment indicated that nano-structure of crystalline trypsin changed by heating reflecting that the beta-sheet was mainly transformed, since the peak at 1634cm(-1) decreased with dehydration. The FT-IR chemoinformetrical method allows for a solid-state quantitative analysis of the bioactivity of the bulk powder of trypsin during drying.

  11. Exploring the Cattaneo-Christov heat flux phenomenon on a Maxwell-type nanofluid coexisting with homogeneous/heterogeneous reactions

    NASA Astrophysics Data System (ADS)

    Sarkar, Amit; Kundu, Prabir Kumar

    2017-12-01

    This specific article unfolds the efficacy of Cattaneo-Christov heat flux on the heat and mass transport of Maxwell nanofluid flow over a stretched sheet with changeable thickness. Homogeneous/heterogeneous reactions in the fluid are additionally considered. The Cattaneo-Christov heat flux model is initiated in the energy equation. Appropriate similarity transformations are taken up to form a system of nonlinear ODEs. The impact of related parameters on the nanoparticle concentration and temperature is inspected through tables and diagrams. It is renowned that temperature distribution increases for lower values of the thermal relaxation parameter. The rate of mass transfer is enhanced for increasing in the heterogeneous reaction parameter but the reverse tendency is ensued for the homogeneous reaction parameter. On the other side, the rate of heat transfer is getting enhanced for the Cattaneo-Christov model compared to the classical Fourier's model for some flow factors. Thus the implication of the current study is to delve its unique effort towards the generalized version of traditional Fourier's law at nano level.

  12. Facile Synthesis of Calcium Borate Nanoparticles and the Annealing Effect on Their Structure and Size

    PubMed Central

    Erfani, Maryam; Saion, Elias; Soltani, Nayereh; Hashim, Mansor; Wan Abdullah, Wan Saffiey B.; Navasery, Manizheh

    2012-01-01

    Calcium borate nanoparticles have been synthesized by a thermal treatment method via facile co-precipitation. Differences of annealing temperature and annealing time and their effects on crystal structure, particle size, size distribution and thermal stability of nanoparticles were investigated. The formation of calcium borate compound was characterized by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and Thermogravimetry (TGA). The XRD patterns revealed that the co-precipitated samples annealed at 700 °C for 3 h annealing time formed an amorphous structure and the transformation into a crystalline structure only occurred after 5 h annealing time. It was found that the samples annealed at 900 °C are mostly metaborate (CaB2O4) nanoparticles and tetraborate (CaB4O7) nanoparticles only observed at 970 °C, which was confirmed by FTIR. The TEM images indicated that with increasing the annealing time and temperature, the average particle size increases. TGA analysis confirmed the thermal stability of the annealed samples at higher temperatures. PMID:23203073

  13. Structural features and functional properties of water in model DMPC membranes: thermally stimulated depolarization currents (TSDCs) and Fourier transform infrared (FTIR) studies

    NASA Astrophysics Data System (ADS)

    Bridelli, M. G.; Capelletti, R.; Mora, C.

    2013-12-01

    Thermally stimulated depolarization currents (TSDCs) and Fourier transform infrared (FTIR) spectroscopies were employed to investigate the state of water incorporated in a model DMPC (dimyristoyl-phosphatidylcholine) membrane. The lipid multilayers, highly inhomogeneous from the dielectric point of view, originate complex TSDC spectra critically dependent on the sample water content and thermal history. Different temperature ranges were chosen to polarize the sample, i.e. 100-300 K (type I) and 100-285 K (type II). The purpose of the latter choice was to avoid any sample heating above the DMPC phase transition temperature (295 K) along the sample polarization. According to the results, water in a fully hydrated system (aw = 0.92) (1) is ordered around the hydrophilic head molecular groups, (2) is layered in the interbilayer space and (3) penetrates among the hydrocarbon chains. It can assume different local structural configurations depending on the lipid packing. Irreversible conformational transitions in the lipid array system were monitored as a consequence of different dehydration treatments. FTIR absorption measurements were performed to study the water sorption kinetics into a DMPC thin film. The water related OH band was decomposed into three components, describing three water states, with different propensity to the H-bond formation. The changes of the lipid characteristic groups (CH2/CH3, PO_{2}^{-} and C=O) absorption bands as a function of increasing hydration level were monitored and discussed.

  14. Membrane hydraulic permeability changes during cooling of mammalian cells.

    PubMed

    Akhoondi, Maryam; Oldenhof, Harriëtte; Stoll, Christoph; Sieme, Harald; Wolkers, Willem F

    2011-03-01

    In order to predict optimal cooling rates for cryopreservation of cells, the cell-specific membrane hydraulic permeability and corresponding activation energy for water transport need to be experimentally determined. These parameters should preferably be determined at subzero temperatures in the presence of ice. There is, however, a lack of methods to study membrane properties of cells in the presence of ice. We have used Fourier transform infrared spectroscopy to study freezing-induced membrane dehydration of mouse embryonic fibroblast (3T3) cells and derived the subzero membrane hydraulic permeability and the activation energy for water transport from these data. Coulter counter measurements were used to determine the suprazero membrane hydraulic permeability parameters from cellular volume changes of cells exposed to osmotic stress. The activation energy for water transport in the ice phase is about three fold greater compared to that at suprazero temperatures. The membrane hydraulic permeability at 0 °C that was extrapolated from suprazero measurements is about five fold greater compared to that extrapolated from subzero measurements. This difference is likely due to a freezing-induced dehydration of the bound water around the phospholipid head groups. Using Fourier transform infrared spectroscopy, two distinct water transport processes, that of free and membrane bound water, can be identified during freezing with distinct activation energies. Dimethylsulfoxide, a widely used cryoprotective agent, did not prevent freezing-induced membrane dehydration but decreased the activation energy for water transport. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. II. Performance and applications for reaction dynamics.

    PubMed

    Abeysekera, Chamara; Zack, Lindsay N; Park, G Barratt; Joalland, Baptiste; Oldham, James M; Prozument, Kirill; Ariyasingha, Nuwandi M; Sims, Ian R; Field, Robert W; Suits, Arthur G

    2014-12-07

    This second paper in a series of two reports on the performance of a new instrument for studying chemical reaction dynamics and kinetics at low temperatures. Our approach employs chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy to probe photolysis and bimolecular reaction products that are thermalized in pulsed uniform flows. Here we detail the development and testing of a new K(a)-band CP-FTMW spectrometer in combination with the pulsed flow system described in Paper I [J. M. Oldham, C. Abeysekera, B. Joalland, L. N. Zack, K. Prozument, I. R. Sims, G. B. Park, R. W. Field, and A. G. Suits, J. Chem. Phys. 141, 154202 (2014)]. This combination delivers broadband spectra with MHz resolution and allows monitoring, on the μs timescale, of the appearance of transient reaction products. Two benchmark reactive systems are used to illustrate and characterize the performance of this new apparatus: the photodissociation of SO2 at 193 nm, for which the vibrational populations of the SO product are monitored, and the reaction between CN and C2H2, for which the HCCCN product is detected in its vibrational ground state. The results show that the combination of these two well-matched techniques, which we refer to as chirped-pulse in uniform flow, also provides insight into the vibrational and rotational relaxation kinetics of the nascent reaction products. Future directions are discussed, with an emphasis on exploring the low temperature chemistry of complex polyatomic systems.

  16. Vibrational spectroscopic and DFT calculation studies of 2-amino-7-bromo-5-oxo-[1]benzopyrano [2,3-b]pyridine-3 carbonitrile.

    PubMed

    Premkumar, S; Jawahar, A; Mathavan, T; Kumara Dhas, M; Milton Franklin Benial, A

    2015-03-05

    The vibrational spectra of 2-amino-7-bromo-5-oxo-[1]benzopyrano [2,3-b]pyridine-3 carbonitrile were recorded using fourier transform-infrared and fourier transform-Raman spectrometer. The optimized structural parameters, vibrational frequencies, Mulliken atomic charge distribution, frontier molecular orbitals, thermodynamic properties, temperature dependence of thermodynamic parameters, first order hyperpolarizability and natural bond orbital calculations of the molecule were performed using the Gaussian 09 program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program. The calculated first order hyperpolarizability of ABOBPC molecule was obtained as 6.908×10(-30) issue, which was 10.5 times greater than urea. The nonlinear optical activity of the molecule was also confirmed by the frontier molecular orbitals and natural bond orbital analysis. The frontier molecular orbitals analysis shows that the lower energy gap of the molecule, which leads to the higher value of first order hyperpolarizability. The natural bond orbital analysis indicates that the nonlinear optical activity of the molecule arises due to the π→π(∗) transitions. The Mulliken atomic charge distribution confirms the presence of intramolecular charge transfer within the molecule. The reactive site of the molecule was predicted from the molecular electrostatic potential contour map. The values of thermo dynamic parameters were increasing with increasing temperature. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Fourier transform spectroscopy of the Swan (d(sup 3)pi(sub g) - a(sup 3)pi(sub u)) system of the jet-cooled C2 molecule

    NASA Technical Reports Server (NTRS)

    Prasad, C. V. V.; Bernath, P. F.

    1994-01-01

    The Swan (d(sup 3)pi(sub g) - a(sup 3)pi(sub u)) system of the C2 molecule was produced in a jet-cooled corona excited supersonic expansion of helium using diazoacetonitrile as a percursor molecule. This spectrum was recorded using the McMath Fourier transform spectrometer of the National Solar Observatory at Kitt Peak. A total of nine bands with v prime = 0 to 3 and v prime prime = 0 to 4 in the range 16,570-22,760/cm were observed and rotationally analyzed. The C2 molecules in this source had a rotational temperature of only 90 K so that only the low-J lines were present in the spectrum. In some sense the low temperatures in the jet source simulate conditions in the interstellar medium. The Swan system of C2 was also produced in a composite wall hollow cathode made Al4C3/Cu, and the rotational structure of the 1-0, 2-1, 3-2, 0-0, and 1-1 bands were analyzed. The data obtained from both these spectra were fitted together along with some recently published line positions. The rotational constants, lambda doubling parameters and the vibrational constants were estimated from this global fit. Our work on jet-cooled C2 follows similar work on the violet and red systems of CN. A summary of this CN work is also presented. also presented.

  18. Novel high-temperature and pressure-compatible ultrasonic levitator apparatus coupled to Raman and Fourier transform infrared spectrometers

    NASA Astrophysics Data System (ADS)

    Brotton, Stephen J.; Kaiser, Ralf I.

    2013-05-01

    We describe an original apparatus comprising of an acoustic levitator enclosed within a pressure-compatible process chamber. To characterize any chemical and physical modifications of the levitated particle, the chamber is interfaced to complimentary, high-sensitivity Raman (4390-170 cm-1), and Fourier transform infrared (FTIR) (10 000-500 cm-1) spectroscopic probes. The temperature of the levitated particle can be accurately controlled by heating using a carbon dioxide laser emitting at 10.6 μm. The advantages of levitating a small particle combined with the two spectroscopic probes, process chamber, and infrared laser heating makes novel experiments possible relevant to the fields of, for example, planetary science, astrobiology, and combustion chemistry. We demonstrate that this apparatus is well suited to study the dehydration of a variety of particles including minerals and biological samples; and offers the possibility of investigating combustion processes involving micrometer-sized particles such as graphite. Furthermore, we show that the FTIR spectrometer enables the study of chemical reactions on the surfaces of porous samples and scientifically and technologically relevant, micrometer-thick levitated sheets. The FTIR spectrometer can also be used to investigate non-resonant and resonant scattering from small, irregularly-shaped particles across the mid-infrared range from 2.5 μm to 25 μm, which is relevant to scattering from interplanetary dust and biological, micrometer-sized samples but cannot be accurately modelled using Mie theory.

  19. Air-Broadening of H2O as a Function of Temperature: 696 - 2163 cm(exp -1)

    NASA Technical Reports Server (NTRS)

    Toth, R. A.; Brown, L. R.; Smith, M. A. H.; Devi, V. Malathy; Benner, D. Chris; Dulick, M.

    2006-01-01

    The temperature dependence of air-broadened halfwidths are reported for some 500 transitions in the (000)-(000) and (010)-(000) bands of H2(16)O using gas sample temperatures ranging from 241 to 388 K. These observations were obtained from infrared laboratory spectra recorded at 0.006 to 0.011 cm(exp-1) resolution with the McMath-Pierce Fourier transform spectrometer located at Kitt Peak. The experimental values of the temperature dependence exponents, eta, were grouped into eight subsets and fitted to empirical functions in a semi-global procedure. Overall, the values of eta were found to decrease with increasing rotational quantum number J. The number of measurements (over 2200) and transitions (586) involved exceeds by a large margin that of any other comparable reported study.

  20. Sapphire Fabry-Perot high-temperature sensor study

    NASA Astrophysics Data System (ADS)

    Yao, Yi-qiang; Liang, Wei-long; Gui, Xinwang; Fan, Dian

    2017-04-01

    A new structure sapphire fiber Fabry-Perot (F-P) high-temperature sensor based on sapphire wafer was proposed and fabricated. The sensor uses the sapphire fiber as a transmission waveguide, the sapphire wafer as an Fabry-Perot (F-P) interferometer and the new structure of "Zirconia ferrule-Zirconia tube" as the sensor fixing structure of the sensor. The reflection spectrum of the interferometer was demodulated by a serial of data processing including FIR bandpass filter, FFT (Fast Fourier Transformation) estimation and LSE (least squares estimation) compensation to obtain more precise OPD. Temperature measurement range is from 20 to 1000°C in experiment. The experimental results show that the sensor has the advantages of small size, low cost, simple fabrication and high repeatability. It can be applied for longterm, stable and high-precision high temperature measurement in harsh environments.

  1. Al3+ environments in nanostructured ZnAl2O4 and their effects on the luminescence properties.

    PubMed

    da Silva, Alison A; Gonçalves, Agnaldo S; Davolos, Marian R; Santagneli, Silvia H

    2008-11-01

    Single-phase zinc aluminate (ZnAl2O4) with the spinel structure was successfully obtained by the Pechini method at different calcining temperatures for 4 hours. The nanoparticles are highly crystalline with no impurities related to ZnO or Al2O3 residues. The microstructural environment of aluminium ions changes with heat treatment temperature, as observed by Fourier transform infrared spectroscopy. The spinel structure might present two different AlO6 sites as evidenced by 27Al solid-state magic-angle-spinning nuclear magnetic resonance spectra. Some AlO4 sites were also detected for samples calcined at a temperature lower than 900 degrees C. The photoluminescence spectra show that the emission can be tuned depending on the calcining temperature. This effect was discussed on the basis of symmetry and oxygen vacancies.

  2. Effect of Cattaneo-Christov heat flux on Jeffrey fluid flow with variable thermal conductivity

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Javed, Mehwish; Imtiaz, Maria; Alsaedi, Ahmed

    2018-03-01

    This paper presents the study of Jeffrey fluid flow by a rotating disk with variable thickness. Energy equation is constructed by using Cattaneo-Christov heat flux model with variable thermal conductivity. A system of equations governing the model is obtained by applying boundary layer approximation. Resulting nonlinear partial differential system is transformed to ordinary differential system. Homotopy concept leads to the convergent solutions development. Graphical analysis for velocities and temperature is made to examine the influence of different involved parameters. Thermal relaxation time parameter signifies that temperature for Fourier's heat law is more than Cattaneo-Christov heat flux. A constitutional analysis is made for skin friction coefficient and heat transfer rate. Effects of Prandtl number on temperature distribution and heat transfer rate are scrutinized. It is observed that larger Reynolds number gives illustrious temperature distribution.

  3. A Comparative Study for Flow of Viscoelastic Fluids with Cattaneo-Christov Heat Flux.

    PubMed

    Hayat, Tasawar; Muhammad, Taseer; Alsaedi, Ahmed; Mustafa, Meraj

    2016-01-01

    This article examines the impact of Cattaneo-Christov heat flux in flows of viscoelastic fluids. Flow is generated by a linear stretching sheet. Influence of thermal relaxation time in the considered heat flux is seen. Mathematical formulation is presented for the boundary layer approach. Suitable transformations lead to a nonlinear differential system. Convergent series solutions of velocity and temperature are achieved. Impacts of various influential parameters on the velocity and temperature are sketched and discussed. Numerical computations are also performed for the skin friction coefficient and heat transfer rate. Our findings reveal that the temperature profile has an inverse relationship with the thermal relaxation parameter and the Prandtl number. Further the temperature profile and thermal boundary layer thickness are lower for Cattaneo-Christov heat flux model in comparison to the classical Fourier's law of heat conduction.

  4. Review of finite fields: Applications to discrete Fourier, transforms and Reed-Solomon coding

    NASA Technical Reports Server (NTRS)

    Wong, J. S. L.; Truong, T. K.; Benjauthrit, B.; Mulhall, B. D. L.; Reed, I. S.

    1977-01-01

    An attempt is made to provide a step-by-step approach to the subject of finite fields. Rigorous proofs and highly theoretical materials are avoided. The simple concepts of groups, rings, and fields are discussed and developed more or less heuristically. Examples are used liberally to illustrate the meaning of definitions and theories. Applications include discrete Fourier transforms and Reed-Solomon coding.

  5. Determination of Carbon Dioxide, Carbon Monoxide, and Methane Concentrations in Cigarette Smoke by Fourier Transform Infrared Spectroscopy

    ERIC Educational Resources Information Center

    Tan, T. L.; Lebron, G. B.

    2012-01-01

    The integrated absorbance areas of vibrational bands of CO[subscript 2], CO, and CH[subscript 4] gases in cigarette smoke were measured from Fourier transform infrared (FTIR) spectra to derive the partial pressures of these gases at different smoke times. The quantity of the three gas-phase components of cigarette smoke at different smoke times…

  6. To See the World in a Grain of Sand: Recognizing the Origin of Sand Specimens by Diffuse Reflectance Infrared Fourier Transform Spectroscopy and Multivariate Exploratory Data Analysis

    ERIC Educational Resources Information Center

    Pezzolo, Alessandra De Lorenzi

    2011-01-01

    The diffuse reflectance infrared Fourier transform (DRIFT) spectra of sand samples exhibit features reflecting their composition. Basic multivariate analysis (MVA) can be used to effectively sort subsets of homogeneous specimens collected from nearby locations, as well as pointing out similarities in composition among sands of different origins.…

  7. Double Fourier Series Solution of Poisson’s Equation on a Sphere.

    DTIC Science & Technology

    1980-10-29

    algebraic systems, the solution of these systems, and the inverse transform of the solution in Fourier space back to physi- cal space. 6. Yee, S. Y. K...Multiply each count in steps (2) through (5) by K] 7. Inverse transform um(0j j = 1, J - 1, to obtain u k; set u(P) = u 0 (P). [K(J - 1) log 2 K

  8. Using multiple calibration sets to improve the quantitative accuracy of partial least squares (PLS) regression on open-path fourier transform infrared (OP/FT-IR) spectra of ammonia over wide concentration ranges

    USDA-ARS?s Scientific Manuscript database

    A technique of using multiple calibration sets in partial least squares regression (PLS) was proposed to improve the quantitative determination of ammonia from open-path Fourier transform infrared spectra. The spectra were measured near animal farms, and the path-integrated concentration of ammonia...

  9. Discrete Fourier transforms of nonuniformly spaced data

    NASA Technical Reports Server (NTRS)

    Swan, P. R.

    1982-01-01

    Time series or spatial series of measurements taken with nonuniform spacings have failed to yield fully to analysis using the Discrete Fourier Transform (DFT). This is due to the fact that the formal DFT is the convolution of the transform of the signal with the transform of the nonuniform spacings. Two original methods are presented for deconvolving such transforms for signals containing significant noise. The first method solves a set of linear equations relating the observed data to values defined at uniform grid points, and then obtains the desired transform as the DFT of the uniform interpolates. The second method solves a set of linear equations relating the real and imaginary components of the formal DFT directly to those of the desired transform. The results of numerical experiments with noisy data are presented in order to demonstrate the capabilities and limitations of the methods.

  10. A two-dimensional time domain near zone to far zone transformation

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Ryan, Deirdre; Beggs, John H.; Kunz, Karl S.

    1991-01-01

    A time domain transformation useful for extrapolating three dimensional near zone finite difference time domain (FDTD) results to the far zone was presented. Here, the corresponding two dimensional transform is outlined. While the three dimensional transformation produced a physically observable far zone time domain field, this is not convenient to do directly in two dimensions, since a convolution would be required. However, a representative two dimensional far zone time domain result can be obtained directly. This result can then be transformed to the frequency domain using a Fast Fourier Transform, corrected with a simple multiplicative factor, and used, for example, to calculate the complex wideband scattering width of a target. If an actual time domain far zone result is required, it can be obtained by inverse Fourier transform of the final frequency domain result.

  11. A two-dimensional time domain near zone to far zone transformation

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Ryan, Deirdre; Beggs, John H.; Kunz, Karl S.

    1991-01-01

    In a previous paper, a time domain transformation useful for extrapolating 3-D near zone finite difference time domain (FDTD) results to the far zone was presented. In this paper, the corresponding 2-D transform is outlined. While the 3-D transformation produced a physically observable far zone time domain field, this is not convenient to do directly in 2-D, since a convolution would be required. However, a representative 2-D far zone time domain result can be obtained directly. This result can then be transformed to the frequency domain using a Fast Fourier Transform, corrected with a simple multiplicative factor, and used, for example, to calculate the complex wideband scattering width of a target. If an actual time domain far zone result is required it can be obtained by inverse Fourier transform of the final frequency domain result.

  12. A gain and bandwidth enhanced transimpedance preamplifier for Fourier-transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Yung; Green, Roger J.; O'Connor, Peter B.

    2011-12-01

    The nature of the ion signal from a 12-T Fourier-transform ion cyclotron resonance mass spectrometer and the electronic noise were studied to further understand the electronic detection limit. At minimal cost, a new transimpedance preamplifier was designed, computer simulated, built, and tested. The preamplifier design pushes the electronic signal-to-noise performance at room temperature to the limit, because of its enhanced tolerance of the capacitance of the detection device, lower intrinsic noise, and larger flat mid-band gain (input current noise spectral density of around 1 pA/sqrt{Hz} when the transimpedance is about 85 dBΩ). The designed preamplifier has a bandwidth of ˜3 kHz to 10 MHz, which corresponds to the mass-to-charge ratio, m/z, of approximately 18 to 61 k at 12 T. The transimpedance and the bandwidth can be easily adjusted by changing the value of passive components. The feedback limitation of the circuit is discussed. With the maximum possible transimpedance of 5.3 MΩ when using an 0402 surface mount resistor, the preamplifier was estimated to be able to detect ˜110 charges in a single scan.

  13. Classification of select category A and B bacteria by Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Samuels, Alan C.; Snyder, A. Peter; St. Amant, Diane; Emge, Darren K.; Minter, Jennifer; Campbell, Mark; Tripathi, Ashish

    2008-04-01

    Relatively few reports have investigated the determination and classification of pathogens such as the National Institute of Allergy and Infectious Diseases (NIAID) Category A Bacillus anthracis spores and cells (BA), Yersinia species, Francisella tularensis (FT), and Category B Brucella species from FTIR spectra. We investigated the classification ability of the Fourier transform infrared (FTIR) spectra of viable pathogenic and non-pathogenic NIAID Category A and B bacteria. The impact of different growth media, growth time and temperature, rolling circle filter of the data, and wavelength range were investigated for their microorganism differentiation. Various 2-D PC plots provided differential degrees of separation with respect to the four viable, bacterial genera including the BA sub-categories of pathogenic spores, vegetative cells, and nonpathogenic vegetative cells. FT spectra were separated from that of the three other genera. The BA pathogenic spore strains 1029, LA1, and Ames were clearly differentiated from the rest of the dataset. Yersinia species were distinctly separated from the remaining dataset and could also be classified by growth media. This work provided evidence that FTIR spectroscopy can separate the four major pathogenic bacterial genera of NIAID Category A and B biological threat agents.

  14. Cloud point extraction and diffuse reflectance-Fourier transform infrared spectroscopic determination of chromium(VI): A probe to adulteration in food stuffs.

    PubMed

    Tiwari, Swapnil; Deb, Manas Kanti; Sen, Bhupendra K

    2017-04-15

    A new cloud point extraction (CPE) method for the determination of hexavalent chromium i.e. Cr(VI) in food samples is established with subsequent diffuse reflectance-Fourier transform infrared (DRS-FTIR) analysis. The method demonstrates enrichment of Cr(VI) after its complexation with 1,5-diphenylcarbazide. The reddish-violet complex formed showed λ max at 540nm. Micellar phase separation at cloud point temperature of non-ionic surfactant, Triton X-100 occurred and complex was entrapped in surfactant and analyzed using DRS-FTIR. Under optimized conditions, the limit of detection (LOD) and quantification (LOQ) were 1.22 and 4.02μgmL -1 , respectively. Excellent linearity with correlation coefficient value of 0.94 was found for the concentration range of 1-100μgmL -1 . At 10μgmL -1 the standard deviation for 7 replicate measurements was found to be 0.11μgmL -1 . The method was successfully applied to commercially marketed food stuffs, and good recoveries (81-112%) were obtained by spiking the real samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A gain and bandwidth enhanced transimpedance preamplifier for Fourier-transform ion cyclotron resonance mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Tzu-Yung; Green, Roger J.; O'Connor, Peter B.

    2011-12-15

    The nature of the ion signal from a 12-T Fourier-transform ion cyclotron resonance mass spectrometer and the electronic noise were studied to further understand the electronic detection limit. At minimal cost, a new transimpedance preamplifier was designed, computer simulated, built, and tested. The preamplifier design pushes the electronic signal-to-noise performance at room temperature to the limit, because of its enhanced tolerance of the capacitance of the detection device, lower intrinsic noise, and larger flat mid-band gain (input current noise spectral density of around 1 pA/{radical}(Hz) when the transimpedance is about 85 dB{Omega}). The designed preamplifier has a bandwidth of {approx}3more » kHz to 10 MHz, which corresponds to the mass-to-charge ratio, m/z, of approximately 18 to 61 k at 12 T. The transimpedance and the bandwidth can be easily adjusted by changing the value of passive components. The feedback limitation of the circuit is discussed. With the maximum possible transimpedance of 5.3 M{Omega} when using an 0402 surface mount resistor, the preamplifier was estimated to be able to detect {approx}110 charges in a single scan.« less

  16. Supply of avocado starch (Persea americana mill) as bioplastic material

    NASA Astrophysics Data System (ADS)

    Ginting, M. H. S.; Hasibuan, R.; Lubis, M.; Alanjani, F.; Winoto, F. A.; Siregar, R. C.

    2018-02-01

    The purpose of this study was to determine the effect of time precipitation of avocado slurry seed to yield of starch. Starch analysis included starch content, moisture content, amylose content, amylopectin content, ash content, protein content, fat content, Fourier transform infra red analysis and rapid visco analyzer. Supply of starch from avocado seeds was used by extraction method. Every one hundred grams of avocado slurry was precipitated by gravity with variations for 4 hours, 8 hours, 12 hours, 16 hours, 20 hours and 24 hours. The Starch yield was washed, and dried using oven at 70°C for 30 minutes. Starch yield was the highest as 24.20 gram at 24 hours. The result of starch characterization was 73.62%, water content 16.6%, amylose 0.07%, amylopectin 73.55%, ash content 0.23%, protein content 2.16%, fat content 1.09%. Rapid visco analyzer obtained at 91.33°C of gelatinization temperature. Scanning electron microscopy analyzes obtained 20 μm oval-shaped starch granules. Fourier Transform Infra Red analysis of starch obtained the peak spectrum of O-H group of alcohols, C-H alkanes and C-O ether.

  17. Functionalized MIL-101 with imidazolium-based ionic liquids for the cycloaddition of CO2 and epoxides under mild condition

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Li, Gang; Liu, Haiou

    2018-01-01

    A kind of multi-functional sites metal-organic framework (MOF) composite (MIL-101-IMBr) was successfully prepared by post-synthesis modification of MIL-101 with imidazolium-based ionic liquids. The ionic liquids not only functionalize as basic sites but also provide halide anions, which serve as a nucleophile in cycloaddition reaction. The prepared functional MOF materials were characterized by X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, N2 adsorption-desorption and CO2 temperature programmed desorption. The results of fourier transform infrared spectroscopy and energy dispersive spectroscopy show that the MIL-101-IMBr composite was successfully synthesized. The N2 adsorption-desorption results clearly demonstrated that the modified composites still preserve high BET surface area and total pore volume. The composite exhibits high catalytic activity for the cycloaddition of CO2 with epoxides under mild and co-catalyst free conditions. The conversion of propylene oxide was 95.8% and the selectivity of cyclic carbonate was 97.6% under 0.8 MPa at 80 °C for 4 h. Moreover, the catalyst can be used for at least five times.

  18. Nondestructive Handheld Fourier Transform Infrared (FT-IR) Analysis of Spectroscopic Changes and Multivariate Modeling of Thermally Degraded Plain Portland Cement Concrete and its Slag and Fly Ash-Based Analogs.

    PubMed

    Leung Tang, Pik; Alqassim, Mohammad; Nic Daéid, Niamh; Berlouis, Leonard; Seelenbinder, John

    2016-05-01

    Concrete is by far the world's most common construction material. Modern concrete is a mixture of industrial pozzolanic cement formulations and aggregate fillers. The former acts as the glue or binder in the final inorganic composite; however, when exposed to a fire the degree of concrete damage is often difficult to evaluate nondestructively. Fourier transform infrared (FT-IR) spectroscopy through techniques such as transmission, attenuated total reflectance, and diffuse reflectance have been rarely used to evaluate thermally damaged concrete. In this paper, we report on a study assessing the thermal damage of concrete via the use of a nondestructive handheld FT-IR with a diffuse reflectance sample interface. In situ measurements can be made on actual damaged areas, without the need for sample preparation. Separate multivariate models were developed to determine the equivalent maximal temperature endured for three common industrial concrete formulations. The concrete mixtures were successfully modeled displaying high predictive power as well as good specificity. This has potential uses in forensic investigation and remediation services particularly for fires in buildings. © The Author(s) 2016.

  19. Molecular profiling of sepsis in mice using Fourier Transform Infrared Microspectroscopy.

    PubMed

    Gautam, Rekha; Deobagkar-Lele, Mukta; Majumdar, Shamik; Chandrasekar, Bhagawat; Victor, Emmanuel; Ahmed, Syed Moiz; Wadhwa, Nitin; Verma, Taru; Kumar, Srividya; Sundaresan, Nagalingam Ravi; Umapathy, Siva; Nandi, Dipankar

    2016-01-01

    Sepsis is a life threatening condition resulting from a high burden of infection. It is a major health care problem and associated with inflammation, organ dysfunction and significant mortality. However, proper understanding and delineating the changes that occur during this complex condition remains a challenge. A comparative study involving intra-peritoneal injection of BALB/c mice with Salmonella Typhimurium (infection), lipopolysaccharide (endotoxic shock) or thioglycollate (sterile peritonitis) was performed. The changes in organs and sera were profiled using immunological assays and Fourier Transform Infrared (FTIR) micro-spectroscopy. There is a rapid rise in inflammatory cytokines accompanied with lowering of temperature, respiratory rate and glucose amounts in mice injected with S. Typhimurium or lipopolysaccharide. FTIR identifies distinct changes in liver and sera: decrease in glycogen and protein/lipid ratio and increase in DNA and cholesteryl esters. These changes were distinct from the pattern observed in mice treated with thioglycollate and the differences in the data obtained between the three models are discussed. The combination of FTIR spectroscopy and other biomarkers will be valuable in monitoring molecular changes during sepsis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Investigations on the carbon contaminations on the alkali cells of DPAL with hydrocarbon buffer gas

    NASA Astrophysics Data System (ADS)

    Li, Zhiyong; Tan, Rongqing; Wang, Yujie; Ye, Qing; Bian, Jintian; Huang, Wei; Li, Hui; Han, Gaoce

    2017-10-01

    Diode pumped alkali laser (DPAL) with hydrocarbon buffer gases has the features of low threshold and high efficiency. The chemical reaction between alkali and hydrocarbon gases affects the life time of DPAL. In this paper, a method based on Fourier transform infrared spectroscopy and Lambert-Beer law is adopted to find a safe temperature at which DPAL runs for a long term. A theoretical model is established to figure out ways to reduce the peak temperature in the cell window. The results indicates that 170 °C is a safe temperature. Although the absorbance of the cell window to the pump light and alkali laser is lower, there is temperature increase. Small light-transmitting area and air blowing on the windows can reduce the peak temperature effectively. Cooling the cell window is essential and critical in a long-term running DPAL.

  1. A Review of Maximum Entropy Spectral Analysis and Applications to Fourier Spectroscopy.

    DTIC Science & Technology

    1985-04-03

    1 From Pythagoras to Fourier 3 2. 2 The Periodogram as Introduced by Sir Arthur Schuster 6 2. 3 The Slutzky Effect and the Work of Yule 7 2.4 The...Transform 27 4. 2 The Z-Transform Convolution Theorem 29 4. 3 The Wiener -Khintchmne , Theorem 31 4.4 The Z-Transform of el. 3 5. A COMPARISON BETWEEN...the Convolution I’heoreni, the Wiene i-Khintrbitte Theorem , aind the conventional ;pp roach of Il1ac km in and Tuke-,. Finally, it should he

  2. On Weak and Strong 2k- bent Boolean Functions

    DTIC Science & Technology

    2016-01-01

    U.S.A. Email: pstanica@nps.edu Abstract—In this paper we introduce a sequence of discrete Fourier transforms and define new versions of bent...denotes the complex conjugate of z. An important tool in our analysis is the discrete Fourier transform , known in Boolean functions literature, as Walsh...Hadamard, or Walsh–Hadamard transform , which is the func- tion Wf : Fn2 → C, defined by Wf (u) = 2− n 2 ∑ x∈Vn (−1)f(x)⊕u·x. Any f ∈ Bn can be

  3. Fractional Fourier transform of truncated elliptical Gaussian beams.

    PubMed

    Du, Xinyue; Zhao, Daomu

    2006-12-20

    Based on the fact that a hard-edged elliptical aperture can be expanded approximately as a finite sum of complex Gaussian functions in tensor form, an analytical expression for an elliptical Gaussian beam (EGB) truncated by an elliptical aperture and passing through a fractional Fourier transform system is derived by use of vector integration. The approximate analytical results provide more convenience for studying the propagation and transformation of truncated EGBs than the usual way by using the integral formula directly, and the efficiency of numerical calculation is significantly improved.

  4. A pipeline design of a fast prime factor DFT on a finite field

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Hsu, In-Shek; Shao, H. M.; Reed, Irving S.; Shyu, Hsuen-Chyun

    1988-01-01

    A conventional prime factor discrete Fourier transform (DFT) algorithm is used to realize a discrete Fourier-like transform on the finite field, GF(q sub n). This algorithm is developed to compute cyclic convolutions of complex numbers and to decode Reed-Solomon codes. Such a pipeline fast prime factor DFT algorithm over GF(q sub n) is regular, simple, expandable, and naturally suitable for VLSI implementation. An example illustrating the pipeline aspect of a 30-point transform over GF(q sub n) is presented.

  5. Stress and reliability analyses of multilayered composite cylinder under thermal and mechanical loads

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohua

    The coupling resulting from the mutual influence of material thermal and mechanical parameters is examined in the thermal stress analysis of a multilayered isotropic composite cylinder subjected to sudden axisymmetric external and internal temperature. The method of complex frequency response functions together with the Fourier transform technique is utilized. Because the coupling parameters for some composite materials, such as carbon-carbon, are very small, the effect of coupling is neglected in the orthotropic thermal stress analysis. The stress distributions in multilayered orthotropic cylinders subjected to sudden axisymmetric temperature loading combined with dynamic pressure as well as asymmetric temperature loading are also obtained. The method of Fourier series together with the Laplace transform is utilized in solving the heat conduction equation and thermal stress analysis. For brittle materials, like carbon-carbon composites, the strength variability is represented by two or three parameter Weibull distributions. The 'weakest link' principle which takes into account both the carbon-carbon composite cylinders. The complex frequency response analysis is performed on a multilayered orthotropic cylinder under asymmetrical thermal load. Both deterministic and random thermal stress and reliability analyses can be based on the results of this frequency response analysis. The stress and displacement distributions and reliability of rocket motors under static or dynamic line loads are analyzed by an elasticity approach. Rocket motors are modeled as long hollow multilayered cylinders with an air core, a thick isotropic propellant inner layer and a thin orthotropic kevlar-epoxy case. The case is treated as a single orthotropic layer or a ten layered orthotropic structure. Five material properties and the load are treated as random variable with normal distributions when the reliability of the rocket motor is analyzed by the first-order, second-moment method (FOSM).

  6. Seasonal variations in the profile of main phospholipids in Mytilus galloprovincialis mussels: A study by hydrophilic interaction liquid chromatography-electrospray ionization Fourier transform mass spectrometry.

    PubMed

    Facchini, Laura; Losito, Ilario; Cataldi, Tommaso R I; Palmisano, Francesco

    2018-01-01

    A systematic characterization of phosphatidylcholines and phosphatidylethanolamines in mussels of sp Mytilus galloprovincialis was performed by high-efficiency hydrophilic interaction liquid chromatography combined with electrospray ionization and Fourier transform mass spectrometry (FTMS), based on a quadrupole-Orbitrap hybrid spectrometer. The FTMS/MS experiments under high collisional energy dissociation conditions, complemented by low-energy collisionally induced dissociation MS n (n = 2,3) experiments, performed in a linear ion trap mass spectrometer, were exploited for structural elucidation purposes. The described approach led to an unprecedented characterization of the mussel phospholipidome, with 185 phosphatidylcholines and 131 phosphatidylethanolamines species recognized, distributed among diacylic, plasmanylic, and plasmenylic forms. This was the starting point for the evaluation of the effects of season (in particular, of sea temperature) on the profile of those phospholipids. To this aim, a set of mussel samples retrieved from commercial sources in different periods of the year was considered. Principal component analysis revealed a clear separation between samples collected in periods characterized by cold, intermediate, or warm sea temperatures, respectively. In particular, an enrichment in phospholipids containing unsaturated side chains was observed in mussels collected from cold seawaters (winter-early spring), thus confirming the general model previously elaborated to explain the adaptation of marine invertebrates, including some bivalve molluscs, to low temperatures. On the other hand, relevant levels of plasma(e)nylic and acylic phospholipids bearing either saturated or non-methylene-interrupted side chains were found in mussels collected in warm seawaters (typical of summer and early autumn, at Italian latitudes). This finding opened interesting perspectives towards the development of strategies able to prevent global warming-related mussel losses in aquacultural plants. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Characterization of biomass burning: Fourier transform infrared analysis of wood and vegetation combustion products

    NASA Astrophysics Data System (ADS)

    Padilla, Diomaris

    The Fourier transform infrared examination of the combustion products of a selection of forest materials has been undertaken in order to guide future detection of biomass burning using satellite remote sensing. Combustion of conifer Pinus strobus (white pine) and deciduous Prunus serotina (cherry), Acer rubrum (red maple), Friglans nigra (walnut), Fraxinus americana (ash), Betula papyrifera (birch), Querus alba (white oak) and Querus rubra (red oak) lumber, in a Meeker burner flame at temperatures of 400 to 900 degrees Fahrenheit produces a broad and relatively flat signal with a few distinct peaks throughout the wavelength spectra (400 to 4000 cm-1). The distinct bands located near wavelengths of 400-700, 1500-1700, 2200-2400 and 3300-3600 cm-1 vary in intensity with an average difference between the highest and lowest absorbing species of 47 percent. Spectral band differences of 10 percent are within the range of modern satellite spectrometers, and support the argument that band differences can be used to discriminate between various types of vegetation. A similar examination of soot and smoke derived from the leaves and branches of the conifer Pinus strobus and deciduous Querus alba (white oak), Querus rubra (red oak), Liquidambar styraciflua (sweetgum), Acer rubrum (maple) and Tilea americana (American basswood) at combustion temperatures of 400 to 900 degrees Fahrenheit produce a similar broad spectrum with a shift in peak location occurring in peaks below the 1700 cm-1 wavelength. The new peaks occur near wavelengths of 1438-1444, 875 and 713 cm-1. This noted shift in wavelength location may be indicative of a fingerprint region for green woods distinguishable from lumber through characteristic biomass suites. Temperature variations during burning show that the spectra of low temperature smoldered aerosols, occurring near 400 to 450 degrees Fahrenheit, may be distinguished from higher temperature soot aerosols that occur above 600 degrees Fahrenheit. A heightened peak intensity of 50 percent is observed throughout the spectra of the lower temperature generated soot and smoke, with respect to the higher temperature generated soot and smoke. These observations suggest the possibility of establishing biomass reduction markers using a ratio method.

  8. Qualitative and semiquantitative Fourier transformation using a noncoherent system.

    PubMed

    Rogers, G L

    1979-09-15

    A number of authors have pointed out that a system of zone plates combined with a diffuse source, transparent input, lens, and focusing screen will display on the output screen the Fourier transform of the input. Strictly speaking, the transform normally displayed is the cosine transform, and the bipolar output is superimposed on a dc gray level to give a positive-only intensity variation. By phase-shifting one zone plate the sine transform is obtained. Temporal modulation is possible. It is also possible to redesign the system to accept a diffusely reflecting input at the cost of introducing a phase gradient in the output. Results are given of the sine and cosine transforms of a small circular aperture. As expected, the sine transform is a uniform gray. Both transforms show unwanted artifacts beyond 0.1 rad off-axis. An analysis shows this is due to unwanted circularly symmetrical moire patterns between the zone plates.

  9. New Substrate-Guided Method of Predicting Slow Conducting Isthmuses of Ventricular Tachycardia: Preliminary Analysis to the Combined Use of Voltage Limit Adjustment and Fast-Fourier Transform Analysis.

    PubMed

    Kuroki, Kenji; Nogami, Akihiko; Igarashi, Miyako; Masuda, Keita; Kowase, Shinya; Kurosaki, Kenji; Komatsu, Yuki; Naruse, Yoshihisa; Machino, Takeshi; Yamasaki, Hiro; Xu, Dongzhu; Murakoshi, Nobuyuki; Sekiguchi, Yukio; Aonuma, Kazutaka

    2018-04-01

    Several conducting channels of ventricular tachycardia (VT) can be identified using voltage limit adjustment (VLA) of substrate mapping. However, the sensitivity or specificity to predict a VT isthmus is not high by using VLA alone. This study aimed to evaluate the efficacy of the combined use of VLA and fast-Fourier transform analysis to predict VT isthmuses. VLA and fast-Fourier transform analyses of local ventricular bipolar electrograms during sinus rhythm were performed in 9 postinfarction patients who underwent catheter ablation for a total of 13 monomorphic VTs. Relatively higher voltage areas on an electroanatomical map were defined as high voltage channels (HVCs), and relatively higher fast-Fourier transform areas were defined as high-frequency channels (HFCs). HVCs were classified into full or partial HVCs (the entire or >30% of HVC can be detectable, respectively). Twelve full HVCs were identified in 7 of 9 patients. HFCs were located on 7 of 12 full HVCs. Five VT isthmuses (71%) were included in the 7 full HVC+/HFC+ sites, whereas no VT isthmus was found in the 5 full HVC+/HFC- sites. HFCs were identical to 9 of 16 partial HVCs. Eight VT isthmuses (89%) were included in the 9 partial HVC+/HFC+ sites, whereas no VT isthmus was found in the 7 partial HVC+/HFC- sites. All HVC+/HFC+ sites predicted VT isthmus with a sensitivity of 100% and a specificity of 80%. Combined use of VLA and fast-Fourier transform analysis may be a useful method to detect VT isthmuses. © 2018 American Heart Association, Inc.

  10. Criteria for confirming sequence periodicity identified by Fourier transform analysis: application to GCR2, a candidate plant GPCR?

    PubMed

    Illingworth, Christopher J R; Parkes, Kevin E; Snell, Christopher R; Mullineaux, Philip M; Reynolds, Christopher A

    2008-03-01

    Methods to determine periodicity in protein sequences are useful for inferring function. Fourier transformation is one approach but care is required to ensure the periodicity is genuine. Here we have shown that empirically-derived statistical tables can be used as a measure of significance. Genuine protein sequences data rather than randomly generated sequences were used as the statistical backdrop. The method has been applied to G-protein coupled receptor (GPCR) sequences, by Fourier transformation of hydrophobicity values, codon frequencies and the extent of over-representation of codon pairs; the latter being related to translational step times. Genuine periodicity was observed in the hydrophobicity whereas the apparent periodicity (as inferred from previously reported measures) in the translation step times was not validated statistically. GCR2 has recently been proposed as the plant GPCR receptor for the hormone abscisic acid. It has homology to the Lanthionine synthetase C-like family of proteins, an observation confirmed by fold recognition. Application of the Fourier transform algorithm to the GCR2 family revealed strongly predicted seven fold periodicity in hydrophobicity, suggesting why GCR2 has been reported to be a GPCR, despite negative indications in most transmembrane prediction algorithms. The underlying multiple sequence alignment, also required for the Fourier transform analysis of periodicity, indicated that the hydrophobic regions around the 7 GXXG motifs commence near the C-terminal end of each of the 7 inner helices of the alpha-toroid and continue to the N-terminal region of the helix. The results clearly explain why GCR2 has been understandably but erroneously predicted to be a GPCR.

  11. Variable Temperature Infrared Spectroscopy Investigation of Benzoic Acid Interactions with Montmorillonite Clay Interlayer Water.

    PubMed

    Nickels, Tara M; Ingram, Audrey L; Maraoulaite, Dalia K; White, Robert L

    2015-07-01

    Molecular interactions between benzoic acid and cations and water contained in montmorillonite clay interlayer spaces are characterized by using variable temperature diffuse reflection infrared Fourier transform spectroscopy (VT-DRIFTS). Using sample perturbation and difference spectroscopy, infrared spectral changes resulting from removal of interlayer water and associated changes in local benzoic acid environments are identified. Difference spectra features can be correlated with changes in specific molecular vibrations that are characteristic of benzoic acid molecular orientation. Results suggest that the carboxylic acid functionality of benzoic acid interacts with interlayer cations through a bridging water molecule and that this interaction is affected by the nature of the cation present in the clay interlayer space.

  12. The Effect of Acidity Coefficient on Crystallization Behavior of Blast Furnace Slag Fibers

    NASA Astrophysics Data System (ADS)

    Tian, Tie-Lei; Zhang, Yu-Zhu; Xing, Hong-wei; Li, Jie; Zhang, Zun-Qian

    2018-01-01

    The chemical structure of mineral wool fiber was investigated by using Fourier Transform Infrared Spectroscopy (FTIR). Next, the glass transition temperature and the crystallization temperature of the fibers were studied. Finally, the crystallization kinetics of fiber was studied. The results show that the chemical bond structure of fibers gets more random with the increase of acidity coefficient. The crystallization phases of the fibers are mainly melilites, and also a few anorthites and diopsides. The growth mechanism of the crystals is three dimensional. The fibers with acidity coefficient of 1.2 exhibit the best thermal stability and is hard to crystallize as it has the maximum aviation energy of crystallization kinetics.

  13. Room temperature ppb level Cl2 sensing using sulphonated copper phthalocyanine films.

    PubMed

    Kumar, Arvind; Singh, A; Debnath, A K; Samanta, S; Aswal, D K; Gupta, S K; Yakhmi, J V

    2010-09-15

    We present room temperature chemiresistive gas sensing characteristics of drop casted sulphonated copper phthalocyanine (CuTsPc) films. It has been demonstrated that these films are highly selective to Cl(2) and the sensitivity in the 5-2000 ppb range varies linearly between 65 and 625%. However, for concentrations >or=2000 ppb, the response becomes irreversible, which is found to be due to the chemical bond formation between Cl(2) and SO(3)Na group of CuTsPc films. The X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) data confirms the oxidation of SO(3)Na group by Cl(2) gas. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  14. Facile and green synthesis of highly stable L-cysteine functionalized copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, Nikhil; Upadhyay, Lata Sheo Bachan

    2016-11-01

    A simple eco-friendly method for L-cysteine capped copper nanoparticles (CCNPs) synthesis in aqueous solution has been developed. Glucose and L-cysteine were used as reducing agent and capping/functionalizing agent, respectively. Different parameters such as capping agent concentration, pH, reaction temperature, and reducing agent concentration were optimized during the synthesis. The L-cysteine capped copper nanoparticle were characterized by ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, Particle size and zeta potential analyser, and high resolution transmission electron microscopy. Spherical shaped cysteine functionalized/capped copper nanoparticles with an average size of 40 nm were found to be highly stable at room temperature (RT) for a period of 1 month

  15. Alternating current conduction studies on polypyrrole-iron nanocomposite at room temperature

    NASA Astrophysics Data System (ADS)

    Kumar, T. G. Naveen; Megha, R.; Revanasiddappa, M.; Ravikiran, Y. T.; Kumari, S. C. Vijaya

    2018-05-01

    In the present work, Polypyrrole (PPy) and Polypyrrole-Iron (PPy-Fe) nanocomposite were synthesized separately by chemical polymerisation method and then they were structurally characterised by Fourier transform infrared spectroscopy (FTIR) and Transmission electron microscopy (TEM) techniques. The alternate current (AC) response characteristics at room temperature of PPy and the composite were comparatively studied in the frequency range 100Hz-1MHz. The real part of conductivities of both PPy and the composite were interpreted as power law of frequency and the frequency exponent s was found to lie in the range 0< s<1 in both the cases. The nanocomposite has shown significant improvement in conductivity as compared to PPy.

  16. Thermal Annealing Effect on Optical Properties of Binary TiO₂-SiO₂ Sol-Gel Coatings.

    PubMed

    Wang, Xiaodong; Wu, Guangming; Zhou, Bin; Shen, Jun

    2012-12-24

    TiO₂-SiO₂ binary coatings were deposited by a sol-gel dip-coating method using tetrabutyl titanate and tetraethyl orthosilicate as precursors. The structure and chemical composition of the coatings annealed at different temperatures were analyzed by Raman spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy. The refractive indices of the coatings were calculated from the measured transmittance and reflectance spectra. An increase in refractive index with the high temperature thermal annealing process was observed. The Raman and FTIR results indicate that the refractive index variation is due to changes in the removal of the organic component, phase separation and the crystal structure of the binary coatings.

  17. [Spatial domain display for interference image dataset].

    PubMed

    Wang, Cai-Ling; Li, Yu-Shan; Liu, Xue-Bin; Hu, Bing-Liang; Jing, Juan-Juan; Wen, Jia

    2011-11-01

    The requirements of imaging interferometer visualization is imminent for the user of image interpretation and information extraction. However, the conventional researches on visualization only focus on the spectral image dataset in spectral domain. Hence, the quick show of interference spectral image dataset display is one of the nodes in interference image processing. The conventional visualization of interference dataset chooses classical spectral image dataset display method after Fourier transformation. In the present paper, the problem of quick view of interferometer imager in image domain is addressed and the algorithm is proposed which simplifies the matter. The Fourier transformation is an obstacle since its computation time is very large and the complexion would be even deteriorated with the size of dataset increasing. The algorithm proposed, named interference weighted envelopes, makes the dataset divorced from transformation. The authors choose three interference weighted envelopes respectively based on the Fourier transformation, features of interference data and human visual system. After comparing the proposed with the conventional methods, the results show the huge difference in display time.

  18. The use of spectral methods in bidomain studies.

    PubMed

    Trayanova, N; Pilkington, T

    1992-01-01

    A Fourier transform method is developed for solving the bidomain coupled differential equations governing the intracellular and extracellular potentials on a finite sheet of cardiac cells undergoing stimulation. The spectral formulation converts the system of differential equations into a "diagonal" system of algebraic equations. Solving the algebraic equations directly and taking the inverse transform of the potentials proved numerically less expensive than solving the coupled differential equations by means of traditional numerical techniques, such as finite differences; the comparison between the computer execution times showed that the Fourier transform method was about 40 times faster than the finite difference method. By application of the Fourier transform method, transmembrane potential distributions in the two-dimensional myocardial slice were calculated. For a tissue characterized by a ratio of the intra- to extracellular conductivities that is different in all principal directions, the transmembrane potential distribution exhibits a rather complicated geometrical pattern. The influence of the different anisotropy ratios, the finite tissue size, and the stimuli configuration on the pattern of membrane polarization is investigated.

  19. NONUNIFORM FOURIER TRANSFORMS FOR RIGID-BODY AND MULTI-DIMENSIONAL ROTATIONAL CORRELATIONS

    PubMed Central

    BAJAJ, CHANDRAJIT; BAUER, BENEDIKT; BETTADAPURA, RADHAKRISHNA; VOLLRATH, ANTJE

    2013-01-01

    The task of evaluating correlations is central to computational structural biology. The rigid-body correlation problem seeks the rigid-body transformation (R, t), R ∈ SO(3), t ∈ ℝ3 that maximizes the correlation between a pair of input scalar-valued functions representing molecular structures. Exhaustive solutions to the rigid-body correlation problem take advantage of the fast Fourier transform to achieve a speedup either with respect to the sought translation or rotation. We present PFcorr, a new exhaustive solution, based on the non-equispaced SO(3) Fourier transform, to the rigid-body correlation problem; unlike previous solutions, ours achieves a combination of translational and rotational speedups without requiring equispaced grids. PFcorr can be straightforwardly applied to a variety of problems in protein structure prediction and refinement that involve correlations under rigid-body motions of the protein. Additionally, we show how it applies, along with an appropriate flexibility model, to analogs of the above problems in which the flexibility of the protein is relevant. PMID:24379643

  20. Low temperature synthesis of nano alpha-alumina powder by two-step hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Ting; Guo, Xiaode, E-mail: guoxiaodenj@sina.com; Zhang, Xiang

    Highlights: • The nano α-Al{sub 2}O{sub 3} with good dispersion was prepared by two-step hydrolysis. • α-Al{sub 2}O{sub 3} powders were added as seed particles in the hydrolysis. • This article indicated that the glucose could impel the γ-Al{sub 2}O{sub 3} transformed to α-Al{sub 2}O{sub 3} directly. • This article indicated that the addictive of α-Al{sub 2}O{sub 3} seed could improve the phase transformation rate of γ-Al{sub 2}O{sub 3} to α-Al{sub 2}O{sub 3}. • In this article, the pure α-Al{sub 2}O{sub 3} could be obtained by calcining at 1000 °C for 1.5 h. - Abstract: The ultral fine alpha-alumina powdermore » has been successfully synthesized via two-step hydrolysis of aluminum isopropoxide. Glucose and polyvinyl pyrrolidone were used as surfactants during the appropriate processing step. The alpha-alumina powder was used as seed particles. Several synthesis parameters, such as the amount of seeds, surfactants, and calcination temperature, were studied by X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), Thermogravimetry-differential scanning calorimetry (TG-DSC), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results showed that glucose greatly lower the phase transformation temperature of alpha-alumina by impelling the gamma-alumina transformed to alpha-alumina directly, and the seed could improve the phase transformation rate of alpha-alumina, the polyvinylpyrrolidone have an effect on preventing excessive grain growth and agglomeration of alpha-alumina powder. Comparatively well dispersed alpha-alumina powder with particle size less than 50 nm can be synthesized through this method after calcinations at 1000 °C for 2 h.« less

Top