Sample records for temperature gradient force

  1. Thermal Gradient Fining of Glass

    NASA Technical Reports Server (NTRS)

    Wilcox, W.

    1983-01-01

    Molten glass fined (cleared of bubbles) by heating with suitable temperature gradient, according to preliminary experiments. Temperature gradient produces force on gas bubbles trapped in molten glass pushing bubbles to higher temperature region where they are collected. Concept demonstrated in experiments on Earth and on rocket.

  2. Thermophoresis of dissolved molecules and polymers: Consideration of the temperature-induced macroscopic pressure gradient

    NASA Astrophysics Data System (ADS)

    Semenov, Semen; Schimpf, Martin

    2004-01-01

    The movement of molecules and homopolymer chains dissolved in a nonelectrolyte solvent in response to a temperature gradient is considered a consequence of temperature-induced pressure gradients in the solvent layer surrounding the solute molecules. Local pressure gradients are produced by nonuniform London van der Waals interactions, established by gradients in the concentration (density) of solvent molecules. The density gradient is produced by variations in solvent thermal expansion within the nonuniform temperature field. The resulting expression for the velocity of the solute contains the Hamaker constants for solute-solvent and solute-solute interactions, the radius of the solute molecule, and the viscosity and cubic coefficient of thermal expansion of the solvent. In this paper we consider an additional force that arises from directional asymmetry in the interaction between solvent molecules. In a closed cell, the resulting macroscopic pressure gradient gives rise to a volume force that affects the motion of dissolved solutes. An expression for this macroscopic pressure gradient is derived and the resulting force is incorporated into the expression for the solute velocity. The expression is used to calculate thermodiffusion coefficients for polystyrene in several organic solvents. When these values are compared to those measured in the laboratory, the consistency is better than that found in previous reports, which did not consider the macroscopic pressure gradient that arises in a closed thermodiffusion cell. The model also allows for the movement of solute in either direction, depending on the relative values of the solvent and solute Hamaker constants.

  3. Directional Bleb Formation in Spherical Cells under Temperature Gradient

    PubMed Central

    Oyama, Kotaro; Arai, Tomomi; Isaka, Akira; Sekiguchi, Taku; Itoh, Hideki; Seto, Yusuke; Miyazaki, Makito; Itabashi, Takeshi; Ohki, Takashi; Suzuki, Madoka; Ishiwata, Shin'ichi

    2015-01-01

    Living cells sense absolute temperature and temporal changes in temperature using biological thermosensors such as ion channels. Here, we reveal, to our knowledge, a novel mechanism of sensing spatial temperature gradients within single cells. Spherical mitotic cells form directional membrane extensions (polar blebs) under sharp temperature gradients (≥∼0.065°C μm−1; 1.3°C temperature difference within a cell), which are created by local heating with a focused 1455-nm laser beam under an optical microscope. On the other hand, multiple nondirectional blebs are formed under gradual temperature gradients or uniform heating. During heating, the distribution of actomyosin complexes becomes inhomogeneous due to a break in the symmetry of its contractile force, highlighting the role of the actomyosin complex as a sensor of local temperature gradients. PMID:26200871

  4. High-throughput growth temperature optimization of ferroelectric SrxBa1-xNb2O6 epitaxial thin films using a temperature gradient method

    NASA Astrophysics Data System (ADS)

    Ohkubo, I.; Christen, H. M.; Kalinin, Sergei V.; Jellison, G. E.; Rouleau, C. M.; Lowndes, D. H.

    2004-02-01

    We have developed a multisample film growth method on a temperature-gradient substrate holder to quickly optimize the film growth temperature in pulsed-laser deposition. A smooth temperature gradient is achieved, covering a range of temperatures from 200 to 830 °C. In a single growth run, the optimal growth temperature for SrxBa1-xNb2O6 thin films on MgO(001) substrates was determined to be 750 °C, based on results from ellipsometry and piezoresponse force microscopy. Variations in optical properties and ferroelectric domains structures were clearly observed as function of growth temperature, and these physical properties can be related to their different crystalline quality. Piezoresponse force microscopy indicated the formation of uniform ferroelectric film for deposition temperatures above 750 °C. At 660 °C, isolated micron-sized ferroelectric islands were observed, while samples deposited below 550 °C did not exhibit clear piezoelectric contrast.

  5. Empirical temperature-dependent intermolecular potentials determined by data mining from crystal data

    NASA Astrophysics Data System (ADS)

    Hofmann, D. W. M.; Kuleshova, L. N.

    2018-05-01

    Modern force fields are accurate enough to describe thermal effects in molecular crystals. Here, we have extended our earlier approach to discrete force fields for various temperatures to a force field with a continuous function. For the parametrisation of the force field, we used data mining on experimental structures with the temperature as an additional descriptor. The obtained force field can be used to minimise energy at a finite temperature and for molecular dynamics with zero-K potentials. The applicability of the method has been demonstrated for the prediction of crystal density, temperature density gradients and transition temperature.

  6. Surface effects on friction-induced fluid heating in nanochannel flows.

    PubMed

    Li, Zhigang

    2009-02-01

    We investigate the mechanism of friction-induced fluid heating under the influence of surfaces. The temperature distributions of liquid argon and helium in nanoscale Poiseuille flows are studied through molecular dynamics simulations. It is found that the fluid heating is mainly caused by the viscous friction in the fluid when the external force is small and there is no slip at the fluid-solid interface. When the external force is larger than the fluid-surface binding force, the friction at the fluid-solid interface dominates over the internal friction of the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force. The effect of temperature on the fluid heating is also discussed.

  7. Transformations of fluxes and forces describing the simultaneous transport of water and heat in unsaturated porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raats, P.A.C.

    1975-12-01

    Balances of mass for the water in N distinct phases and a balance of heat for the medium as a whole were formulated. Following Philip and de Vries, it was assumed that the flux of water in each phase is proportional to the gradient of the pressure in that phase and that the diffusive component of the flux of heat is proportional to the gradient of the temperature. Clapeyron equations were used to express the gradient of the pressure in any phase in terms of the gradient of the pressure in a reference state and of the temperature. The referencemore » state may be the water in one of the phases or the water in some measuring device such as a tensiometer or a psychrometer. Expressions for the total flux of water and for the diffusive flux of heat plus the convective flux of heat associated with the conversion from any phase to the reference state were shown to satisfy the onsager reciprocal relations. A theorem due to Meixner was used to delineate the class of fluxes and forces that preserves these relations. In particular, it was shown that if the gradients of water content and temperature are used as the driving forces, the onsager relations are no longer satisfied.« less

  8. Fast Transport of Water Droplets over a Thermo-Switchable Surface Using Rewritable Wettability Gradient.

    PubMed

    Banuprasad, Theneyur Narayanaswamy; Vinay, Thamarasseril Vijayan; Subash, Cherumannil Karumuthil; Varghese, Soney; George, Sajan D; Varanakkottu, Subramanyan Namboodiri

    2017-08-23

    In spite of the reported temperature dependent tunability in wettability of poly(N-isopropylacrylamide) (PNIPAAm) surfaces for below and above lower critical solution temperature (32 °C), the transport of water droplets is inhibited by the large contact angle hysteresis. Herein, for the first time, we report on-demand, fast, and reconfigurable droplet manipulation over a PNIPAAm grafted structured polymer surface using temperature-induced wettability gradient. Our study reveals that the PNIPAAm grafted on intrinsically superhydrophobic surfaces exhibit hydrophilic nature with high contact angle hysteresis below 30 °C and superhydrophobic nature with ultralow contact angle hysteresis above 36 °C. The transition region between 30 and 36 °C is characterized by a large change in water contact angle (∼100°) with a concomitant change in contact angle hysteresis. By utilizing this "transport zone" wherein driving forces overcome the frictional forces, we demonstrate macroscopic transport of water drops with a maximum transport velocity of approximately 40 cm/s. The theoretical calculations on the force measurements concur with dominating behavior of driving forces across the transport zone. The tunability in transport velocity by varying the temperature gradient along the surface or the inclination angle of the surface (maximum angle of 15° with a reduced velocity 0.4 mm/s) is also elucidated. In addition, as a practical application, coalescence of water droplets is demonstrated by using the temperature controlled wettability gradient. The presented results are expected to provide new insights on the design and fabrication of smart multifunctional surfaces for applications such as biochemical analysis, self-cleaning, and microfluidics.

  9. Relating Paleoclimate Data and Past Temperature Gradients: Some Suggestive Rules

    NASA Technical Reports Server (NTRS)

    Rind, David

    1999-01-01

    Understanding tropical sensitivity is perhaps the major concern confronting researchers, for both past and future climate change issues. Tropical data has been beset by contradictions, and many techniques applicable to the extratropics are either unavailable or fraught with uncertainty when applied at low latitudes. Paleoclimate data, if interpreted within the context of the latitudinal temperature gradient data they imply, can be used to estimate what happened to tropical temperatures in the past, and provide a first guess for what might happen in the future. The approach is made possible by the modeling result that atmospheric dynamical changes, and the climate impacts they produce, respond primarily to temperature gradient changes. Here we review some "rules" obtained from GCM (General Circulation Model) experiments with different sea surface temperature gradients and different forcing, that can be used to relate paleoclimate reconstructions to the likely temperature gradient changes they suggest.

  10. Flows, Fields, and Forces in the Mars-Solar Wind Interaction

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Brain, D. A.; Luhmann, J. G.; DiBraccio, G. A.; Ruhunusiri, S.; Harada, Y.; Fowler, C. M.; Mitchell, D. L.; Connerney, J. E. P.; Espley, J. R.; Mazelle, C.; Jakosky, B. M.

    2017-11-01

    We utilize suprathermal ion and magnetic field measurements from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, organized by the upstream magnetic field, to investigate the morphology and variability of flows, fields, and forces in the Mars-solar wind interaction. We employ a combination of case studies and statistical investigations to characterize the interaction in both quasi-parallel and quasi-perpendicular regions and under high and low solar wind Mach number conditions. For the first time, we include a detailed investigation of suprathermal ion temperature and anisotropy. We find that the observed magnetic fields and suprathermal ion moments in the magnetosheath, bow shock, and upstream regions have observable asymmetries controlled by the interplanetary magnetic field, with particularly large asymmetries found in the ion parallel temperature and anisotropy. The greatest temperature anisotropies occur in quasi-perpendicular regions of the magnetosheath and under low Mach number conditions. These results have implications for the growth and evolution of wave-particle instabilities and their role in energy transport and dissipation. We utilize the measured parameters to estimate the average ion pressure gradient, J × B, and v × B macroscopic force terms. The pressure gradient force maintains nearly cylindrical symmetry, while the J × B force has larger asymmetries and varies in magnitude in comparison to the pressure gradient force. The v × B force felt by newly produced planetary ions exceeds the other forces in magnitude in the magnetosheath and upstream regions for all solar wind conditions.

  11. Mechanisms of the intensification of the upwelling-favorable winds during El Niño 1997-1998 in the Peruvian upwelling system

    NASA Astrophysics Data System (ADS)

    Chamorro, Adolfo; Echevin, Vincent; Colas, François; Oerder, Vera; Tam, Jorge; Quispe-Ccalluari, Carlos

    2018-01-01

    The physical processes driving the wind intensification in a coastal band of 100 km off Peru during the intense 1997-1998 El Niño (EN) event were studied using a regional atmospheric model. A simulation performed for the period 1994-2000 reproduced the coastal wind response to local sea surface temperature (SST) forcing and large scale atmospheric conditions. The model, evaluated with satellite data, represented well the intensity, seasonal and interannual variability of alongshore (i.e. NW-SE) winds. An alongshore momentum budget showed that the pressure gradient was the dominant force driving the surface wind acceleration. The pressure gradient tended to accelerate the coastal wind, while turbulent vertical mixing decelerated it. A quasi-linear relation between surface wind and pressure gradient anomalies was found. Alongshore pressure gradient anomalies were caused by a greater increase in near-surface air temperature off the northern coast than off the southern coast, associated with the inhomogeneous SST warming. Vertical profiles of wind, mixing coefficient, and momentum trends showed that the surface wind intensification was not caused by the increase of turbulence in the planetary boundary layer. Moreover, the temperature inversion in the vertical mitigated the development of pressure gradient due to air convection during part of the event. Sensitivity experiments allowed to isolate the respective impacts of the local SST forcing and large scale condition on the coastal wind intensification. It was primarily driven by the local SST forcing whereas large scale variability associated with the South Pacific Anticyclone modulated its effects. Examination of other EN events using reanalysis data confirmed that intensifications of alongshore wind off Peru were associated with SST alongshore gradient anomalies, as during the 1997-1998 event.

  12. Large-scale effects on the regulation of tropical sea surface temperature

    NASA Technical Reports Server (NTRS)

    Hartmann, Dennis L.; Michelsen, Marc L.

    1993-01-01

    The dominant terms in the surface energy budget of the tropical oceans are absorption of solar radiation and evaporative cooling. If it is assumed that relative humidity in the boundary layer remains constant, evaporative cooling will increase rapidly with sea surface temperature (SST) because of the strong temperature dependence of saturation water vapor pressure. The resulting stabilization of SST provided by evaporative cooling is sufficient to overcome positive feedback contributed by the decrease of surface net longwave cooling with increasing SST. Evaporative cooling is sensitive to small changes in boundary-layer relative humidity. Large and negative shortwave cloud forcing in the regions of highest SST are supported by the moisture convergence associated with largescale circulations. In the descending portions of these circulations the shortwave cloud forcing is suppressed. When the effect of these circulations is taken into account by spatial averaging, the area-averaged cloud forcing shows no sensitivity to area-averaged SST changes associated with the 1987 warming event in the tropical Pacific. While the shortwave cloud forcing is large and important in the convective regions, the importance of its role in regulating the average temperature of the tropics and in modulating temperature gradients within the tropics is less clear. A heuristic model of SST is used to illustrate the possible role of large-scale atmospheric circulations on SST in the tropics and the coupling between SST gradients and mean tropical SST. The intensity of large-scale circulations responds sensitivity to SST gradients and affects the mean tropical SST by supplying dry air to the planetary boundary layer. Large SST gradients generate vigorous circulations that increase evaporation and reduce the mean SST.

  13. Self-similar solutions for multi-species plasma mixing by gradient driven transport

    NASA Astrophysics Data System (ADS)

    Vold, E.; Kagan, G.; Simakov, A. N.; Molvig, K.; Yin, L.

    2018-05-01

    Multi-species transport of plasma ions across an initial interface between DT and CH is shown to exhibit self-similar species density profiles under 1D isobaric conditions. Results using transport theory from recent studies and using a Maxwell–Stephan multi-species approximation are found to be in good agreement for the self-similar mix profiles of the four ions under isothermal and isobaric conditions. The individual ion species mass flux and molar flux profile results through the mixing layer are examined using transport theory. The sum over species mass flux is confirmed to be zero as required, and the sum over species molar flux is related to a local velocity divergence needed to maintain pressure equilibrium during the transport process. The light ion species mass fluxes are dominated by the diagonal coefficients of the diffusion transport matrix, while for the heaviest ion species (C in this case), the ion flux with only the diagonal term is reduced by about a factor two from that using the full diffusion matrix, implying the heavy species moves more by frictional collisions with the lighter species than by its own gradient force. Temperature gradient forces were examined by comparing profile results with and without imposing constant temperature gradients chosen to be of realistic magnitude for ICF experimental conditions at a fuel-capsule interface (10 μm scale length or greater). The temperature gradients clearly modify the relative concentrations of the ions, for example near the fuel center, however the mixing across the fuel-capsule interface appears to be minimally influenced by the temperature gradient forces within the expected compression and burn time. Discussion considers the application of the self-similar profiles to specific conditions in ICF.

  14. Testing thermal gradient driving force for grain boundary migration using molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xian-Ming; Zhang, Yongfeng; Tonks, Michael R.

    2015-02-01

    Strong thermal gradients in low-thermal-conductivity ceramics may drive extended defects, such as grain boundaries and voids, to migrate in preferential directions. In this work, molecular dynamics simulations are conducted to study thermal gradient driven grain boundary migration and to verify a previously proposed thermal gradient driving force equation, using uranium dioxide as a model system. It is found that a thermal gradient drives grain boundaries to migrate up the gradient and the migration velocity increases under a constant gradient owing to the increase in mobility with temperature. Different grain boundaries migrate at very different rates due to their different intrinsicmore » mobilities. The extracted mobilities from the thermal gradient driven simulations are compared with those calculated from two other well-established methods and good agreement between the three different methods is found, demonstrating that the theoretical equation of the thermal gradient driving force is valid, although a correction of one input parameter should be made. The discrepancy in the grain boundary mobilities between modeling and experiments is also discussed.« less

  15. Is the 2nd Law of Thermodynamics Conditioned? Separating Heat and Cold by a Magnetic Body Force and the Principle for a Non-Carnot Engine

    NASA Astrophysics Data System (ADS)

    Luo, Weili

    2017-11-01

    A new type of heat engine has been proposed in 2005 that defies fundamental thermodynamic law: A specifically designed magnetic body force can reverse heat flow from high temperature to low temperature. This mechanism can drive heat to higher temperature, rendering the possibility to re-use the ``waste heat''. As the result, the efficiency is much higher than that of the Carnot Engine. In a recent paper a realization of this proposed mechanism is reported: by using a specific configuration of temperature and magnetic field gradients, we observed that magnetic body force suppresses the gravito-thermal convective heat when the gradients of temperature and field are anti-parallel to each other. This driving force stops the heat flow of approaching to thermal equilibrium in the system, causing the temperature difference across the sample to increase with applied fields. In this work, I will discuss the driving mechanism for this phenomenon and its application in the proposed engine. This remarkable result suggests that the 2nd law of thermodynamics maybe conditioned and needs to be re-examined.

  16. Thermosolutal convection in high-aspect-ratio enclosures

    NASA Technical Reports Server (NTRS)

    Wang, L. W.; Chen, C. T.

    1988-01-01

    Convection in high-aspect-ratio rectangular enclosures with combined horizontal temperature and concentration gradients is studied experimentally. An electrochemical system is employed to impose the concentration gradients. The solutal buoyancy force either opposes or augments the thermal buoyancy force. Due to a large difference between the thermal and solutal diffusion rates the flow possesses double-diffusive characteristics. Various complex flow patterns are observed with different experimental conditions.

  17. Temperature sensing by primary roots of maize

    NASA Technical Reports Server (NTRS)

    Poff, K. L.

    1990-01-01

    Zea mays L. seedlings, grown on agar plates at 26 degrees C, reoriented the original vertical direction of their primary root when exposed to a thermal gradient applied perpendicular to the gravity vector. The magnitude and direction of curvature can not be explained simply by either a temperature or a humidity effect on root elongation. It is concluded that primary roots of maize sense temperature gradients in addition to sensing the gravitational force.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buddemeier, R.W.; Oberdorfer, J.A.

    A wide variety of forces can produce head gradients that drive the flow and advective mixing of internal coral reef pore waters. Oscillatory gradients that produce mixing result from wave and tide action. Sustained gradients result from wave and tide-induced setup and ponding, from currents impinging on the reef structure, from groundwater heads, and from density differenced (temperature or salinity gradients). These gradients and the permeabilities and porosities of reef sediments are such that most macropore environments are dominated by advection rather than diffusion. The various driving forces must be analyzed to determine the individual and combined magnitudes of theirmore » effects on a specific reef pore-water system. Pore-water movement controls sediment diagenesis, the exchange of nutrients between sediments and benthos, and coastal/island groundwater resources. Because of the complexity of forcing functions, their interactions with specific local reef environments, experimental studies require careful incorporation of these considerations into their design and interpretation. 8 refs., 3 figs., 1 tab.« less

  19. Suppression/Reversal of Natural Convection by Exploiting the Temperature/Composition Dependence of Magnetic Susceptibility

    NASA Technical Reports Server (NTRS)

    Seybert, C. D.; Evans, J. W.; Leslie, F.; Jones, W. K., Jr.

    2000-01-01

    Natural convection, driven by temperature-or concentration gradients or both, is an inherent phenomenon during solidification of materials on Earth. This convection has practical consequences (e.g effecting macrosegregation) but also renders difficult the scientific examination of diffusive/conductive phenomena during solidification. It is possible to halt, or even reverse, natural convection by exploiting the variation (with temperature, for example) of the susceptibility of a material. If the material is placed in a vertical magnetic field gradient, a buoyancy force of magnetic origin arises and, at a critical field gradient, can balance the normal buoyancy forces to halt convection. At higher field gradients the convection can be reversed. The effect has been demonstrated in experiments at Marshall Space Flight Center where flow was measured by PIV in MnCl2 solution in a superconducting magnet. In auxiliary experiments the field in the magnet and the properties of the solution were measured. Computations of the natural convection, its halting and reversal, using the commercial software FLUENT were in good agreement with the measurements.

  20. Colloidal attraction induced by a temperature gradient.

    PubMed

    Di Leonardo, R; Ianni, F; Ruocco, G

    2009-04-21

    Colloidal crystals are of extreme importance for applied research and for fundamental studies in statistical mechanics. Long-range attractive interactions, such as capillary forces, can drive the spontaneous assembly of such mesoscopic ordered structures. However, long-range attractive forces are very rare in the colloidal realm. Here we report a novel strong, long-ranged attraction induced by a thermal gradient in the presence of a wall. By switching the thermal gradient on and off, we can rapidly and reversibly form stable hexagonal 2D crystals. We show that the observed attraction is hydrodynamic in nature and arises from thermally induced slip flow on particle surfaces. We used optical tweezers to measure the force law directly and compare it to an analytical prediction based on Stokes flow driven by Marangoni-like forces.

  1. The numerical modeling the sensitivity of coastal wind and ozone concentration to different SST forcing

    NASA Astrophysics Data System (ADS)

    Choi, Hyun-Jung; Lee, Hwa Woon; Jeon, Won-Bae; Lee, Soon-Hwan

    2012-01-01

    This study evaluated an atmospheric and air quality model of the spatial variability in low-level coastal winds and ozone concentration, which are affected by sea surface temperature (SST) forcing with different thermal gradients. Several numerical experiments examined the effect of sea surface SST forcing on the coastal atmosphere and air quality. In this study, the RAMS-CAMx model was used to estimate the sensitivity to two different resolutions of SST forcing during the episode day as well as to simulate the low-level coastal winds and ozone concentration over a complex coastal area. The regional model reproduced the qualitative effect of SST forcing and thermal gradients on the coastal flow. The high-resolution SST derived from NGSST-O (New Generation Sea Surface Temperature Open Ocean) forcing to resolve the warm SST appeared to enhance the mean response of low-level winds to coastal regions. These wind variations have important implications for coastal air quality. A higher ozone concentration was forecasted when SST data with a high resolution was used with the appropriate limitation of temperature, regional wind circulation, vertical mixing height and nocturnal boundary layer (NBL) near coastal areas.

  2. Impacts of the IOD-associated temperature and salinity anomalies on the intermittent equatorial undercurrent anomalies

    NASA Astrophysics Data System (ADS)

    Li, Junde; Liang, Chujin; Tang, Youmin; Liu, Xiaohui; Lian, Tao; Shen, Zheqi; Li, Xiaojing

    2017-11-01

    The study of Equatorial Undercurrent (EUC) has attracted a broad attention in recent years due to its strong response and feedback to the Indian Ocean Dipole. In this paper, we first produce a high-quality simulation of three-dimensional temperature, salinity and zonal current simulation from 1982 to 2014, using a high-resolution ocean general circulation model. On this basis, with two sensitivity experiments, we investigate the role of temperature and salinity anomalies in driving and enhancing the EUC during the positive IOD events by examining the variation of the EUC seasonal cycle and diagnosing the zonal momentum budget along the equatorial Indian Ocean. Our results show that during January-March, the EUC can appear along the entire equatorial Indian Ocean in all years, but during August-November, the EUC can appear and reach the eastern Indian Ocean only during the positive IOD events. The zonal momentum budget analysis indicates that the pressure gradient force contributes most to the variation of the eastward acceleration of zonal currents in the subsurface. During the positive IOD events, strong negative subsurface temperature anomalies exist in the eastern Indian Ocean, with negative surface salinity anomalies in the central and eastern Indian Ocean, resulting in a large pressure gradient force to drive EUC during the August-November. Further, the results of two sensitivity experiments indicate that the temperature anomalies significantly impact the pressure gradient force, playing a leading role in driving the EUC, while the surface salinity anomalies can secondarily help to intensify the eastward EUC through increasing the zonal density gradient in the eastern Indian Ocean and impacting the vertical momentum advection in the subsurface.

  3. Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring.

    PubMed

    Reilly, John; Glisic, Branko

    2018-03-01

    Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM) analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc.) and generalized displacement (deflection, rotation, etc.) to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature-deformation-displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i) the range of raw temperatures on the structure, and (ii) the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University.

  4. Phoretic and Radiometric Force Measurements on Microparticles in Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Davis, E. James

    1996-01-01

    Thermophoretic, diffusiophoretic and radiometric forces on microparticles are being measured over a wide range of gas phase and particle conditions using electrodynamic levitation of single particles to simulate microgravity conditions. The thermophoretic force, which arises when a particle exists in a gas having a temperature gradient, is measured by levitating an electrically charged particle between heated and cooled plates mounted in a vacuum chamber. The diffusiophoretic force arising from a concentration gradient in the gas phase is measured in a similar manner except that the heat exchangers are coated with liquids to establish a vapor concentration gradient. These phoretic forces and the radiation pressure force acting on a particle are measured directly in terms of the change in the dc field required to levitate the particle with and without the force applied. The apparatus developed for the research and the experimental techniques are discussed, and results obtained by thermophoresis experiments are presented. The determination of the momentum and energy accommodation coefficients associated with molecular collisions between gases molecules and particles and the measurement of the interaction between electromagnetic radiation and small particles are of particular interest.

  5. Dynamic properties of polydisperse colloidal particles in the presence of thermal gradient studied by a modified Brownian dynamic model

    NASA Astrophysics Data System (ADS)

    Song, Dongxing; Jin, Hui; Jing, Dengwei; Wang, Xin

    2018-03-01

    Aggregation and migration of colloidal particles under the thermal gradient widely exists in nature and many industrial processes. In this study, dynamic properties of polydisperse colloidal particles in the presence of thermal gradient were studied by a modified Brownian dynamic model. Other than the traditional forces on colloidal particles, including Brownian force, hydrodynamic force, and electrostatic force from other particles, the electrostatic force from the asymmetric ionic diffusion layer under a thermal gradient has been considered and introduced into the Brownian dynamic model. The aggregation ratio of particles (R A), the balance time (t B) indicating the time threshold when {{R}A} becomes constant, the porosity ({{P}BA} ), fractal dimension (D f) and distributions of concentration (DISC) and aggregation (DISA) for the aggregated particles were discussed based on this model. The aggregated structures formed by polydisperse particles are less dense and the particles therein are loosely bonded. Also it showed a quite large compressibility as the increases of concentration and interparticle potential can significantly increase the fractal dimension. The thermal gradient can induce two competitive factors leading to a two-stage migration of particles. When t<{{t}B} , the unsynchronized aggregation is dominant and the particles slightly migrate along the thermal gradient. When t>{{t}B} , the thermophoresis becomes dominant thus the migrations of particles are against the thermal gradient. The effect of thermophoresis on the aggregate structures was found to be similar to the effect of increasing particle concentration. This study demonstrates how the thermal gradient affects the aggregation of monodisperse and polydisperse particles and can be a guide for the biomimetics and precise control of colloid system under the thermal gradient. Moreover, our model can be easily extended to other more complex colloidal systems considering shear, temperature fluctuation, surfactant, etc.

  6. Thermophoresis of a spherical particle: Modeling through moment-based, macroscopic transport equations

    NASA Astrophysics Data System (ADS)

    Padrino, Juan C.; Sprittles, James; Lockerby, Duncan

    2017-11-01

    Thermophoresis refers to the forces on and motions of objects caused by temperature gradients when these objects are exposed to rarefied gases. This phenomenon can occur when the ratio of the gas mean free path to the characteristic physical length scale (Knudsen number) is not negligible. In this work, we obtain the thermophoretic force on a rigid, heat-conducting spherical particle immersed in a rarefied gas resulting from a uniform temperature gradient imposed far from the sphere. To this end, we model the gas dynamics using the steady, linearized version of the so-called regularized 13-moment equations (R13). This set of equations, derived from the Boltzmann equation using the moment method, provides closures to the mass, momentum, and energy conservation laws in the form of constitutive, transport equations for the stress and heat flux that extends the Navier-Stokes-Fourier model to include rarefaction effects. Integration of the pressure and stress on the surface of the sphere leads to the net force as a function of the Knudsen number, dimensionless temperature gradient, and particle-to-gas thermal conductivity ratio. Results from this expression are compared with predictions from other moment-based models as well as from kinetic models. Supported in the UK by the Engineering and Physical Sciences Research Council (EP/N016602/1).

  7. Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring

    PubMed Central

    Reilly, John; Glisic, Branko

    2018-01-01

    Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM) analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc.) and generalized displacement (deflection, rotation, etc.) to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature–deformation–displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i) the range of raw temperatures on the structure, and (ii) the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University. PMID:29494496

  8. Experimental and Computational Studies of the Control of Convection of Non-Conducting Liquids During solidification by Means of a Magnetic Field Gradient

    NASA Technical Reports Server (NTRS)

    Seybert, C. D.; Evans, J. W.; Leslie, F.; Jones, W. K., Jr.

    2001-01-01

    The elimination of convection is essential in experimental investigations of diffusive transport (of heat and matter) during solidification. One classical approach to damping convection in a conducting liquid is the application of a magnetic field. The damping phenomenon is the induction, by the motion of a conductor in a magnetic field, of currents which interact with the field to produce Lorentz forces that oppose the flow. However, there are many liquids which are not sufficiently conducting to exploit this phenomenon; examples include the transparent liquids (such as succinonitrile-acetone) that are used as "model alloys" in fundamental solidification studies. There have been several investigations of the solidification of these liquids that have been carried out in orbiting laboratories to eliminate natural convection. The paper describes an investigation of an alternative approach whereby a magnetic field gradient is applied to the liquid. A magnetic body force then arises which is dependent on the susceptibility of the liquid and thereby on the temperature and or concentration. With the field gradient aligned vertically and of correct magnitude, the variation of gravitational body force due to temperature/concentration dependent density can be counterbalanced by a variation in magnetic body force. Experiments have been carried out in a super-conducting magnet at Marshall Space Flight Center to measure velocities in an aqueous manganese chloride solution. The solution was contained in a chamber with temperature controlled end walls and glass side walls. Velocities were measured by particle image velocimetry. Starting from zero current in the magnet (zero field gradient) flow driven by the temperature difference between the end walls was measured. At a critical current the flow was halted. At higher currents the normal convection was reversed. The experiments included ones where the solution was solidified and were accompanied by solution of the flow/transport equations using the software package FLUENT.

  9. Thin film instabilities: Rayleigh-Taylor with thermocapillarity and Kolmogorov flow in a soap film

    NASA Astrophysics Data System (ADS)

    Burgess, John Matthew

    The Rayleigh-Taylor instability occurs when a more dense fluid layer is suspended above a less dense fluid layer in a gravitational field. The horizontal interface between the two fluids is unstable to infinitesimal deformations and the dense fluid falls. To counteract the destabilizing effects of gravity on the interface between two thin fluid layers, we apply a vertical temperature gradient, heating from below. The dependence of surface tension on temperature (``thermocapillarity'') can cause spatially-varying interfacial forces between two immiscible fluid layers if a variation in temperature along the interface is introduced. With an applied vertical temperature gradient, the deforming interface spontaneously develops temperature variations which locally adjust the surface tension to restore a flat interface. We find that these surface tension gradients can stabilize a more dense thin fluid layer (silicone oil, 0.015 cm thick) above a less dense thin fluid layer (air, 0.025 cm thick) in a gravitational field, in qualitative agreement with linear stability analysis. This is the first experimental observation of the stabilization of Rayleigh-Taylor instability by thermocapillary forces. We also examine the instability of a soap film flow driven by a time-independent force that is spatially periodic in the direction perpendicular to the forcing (Kolmogorov flow). The film is in the x- y plane, where the forcing approximates a shape sin (y)x̂. Linear stability analysis of an idealized model of this flow predicts a critical Reynolds number Rc~2 . In our soap film experiment, we find a critical value Rc~70 . This discrepancy can be ascribed to frictional effects from viscous coupling of gas to the film, which is neglected in the idealized model. The kinematic viscosity of the surrounding gas and the thickness of gas layers on each side of the soap film are varied in the experiments to better understand these frictional effects. We conclude that flows in soap films cannot be decoupled from flows in the surrounding gas.

  10. Microstructure actuation and gas sensing by the Knudsen thermal force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strongrich, Andrew; Alexeenko, Alina, E-mail: alexeenk@purdue.edu

    2015-11-09

    The generation of forces and moments on structures immersed in rarefied non-isothermal gas flows has received limited practical implementation since first being discovered over a century ago. The formation of significant thermal stresses requires both large thermal gradients and characteristic dimensions which are comparable to the gas molecular mean free path. For macroscopic geometries, this necessitates impractically high temperatures and very low pressures. At the microscale, however, these conditions are easily achieved, allowing the effects to be exploited, namely, for gas-property sensing and microstructure actuation. In this letter, we introduce and experimentally evaluate performance of a microelectromechanical in-plane Knudsen radiometricmore » actuator, a self-contained device having Knudsen thermal force generation, sensing, and tuning mechanisms integrated onto the same platform. Sensitivity to ambient pressure, temperature gradient, as well as gas composition is demonstrated. Results are presented in terms of a non-dimensional force coefficient, allowing measurements to be directly compared to the previous experimental and computational data on out-of-plane cantilevered configurations.« less

  11. Climate Effect of Greenhouse Gas: Warming or Cooling is Determined by Temperature Gradient

    NASA Astrophysics Data System (ADS)

    Shia, R.

    2011-12-01

    The instantaneous radiative forcing (IRF) at the top of the atmosphere (ToA) is the initial change of the total energy in the climate system when the concentration of greenhouse gas (GHG) increases. In my previous presentation at the 2010 Fall AGU meeting (A11J-02, "Mechanism of Radiative Forcing of Greenhouse Gas its Implication to the Global Warming"), it was demonstrated that IRF at TOA is generated by moving up of the emission weighting function. Thus, the temperature gradient plays a critical role in determining the climate effect of GHG. In this presentation the change of the outgoing infrared radiation flux at ToA is studied from a perturbation point of view. After the cancellation between the changes in the outgoing radiation flux from the surface emission and from the reemission of the atmosphere, the derivative of the outgoing flux to the concentration of GHG is found to be proportional to the temperature gradients below the level where the concentration of GHG changes. Therefore, the greenhouse gas contribute only to the magnitude of the radiative forcing, the temperature gradients decide the direction of the radiative forcing, i.e. warming or cooling, in addition to contributing to its magnitude. In response to the question "Does the negative IRF at ToA lead to the surface cooling or it only cools the upper part of the atmosphere?" the Eddington grey radiative equilibrium model is modified to simulate different scenarios. The original model has been used to illustrate the warming effect of GHG in textbooks of the atmospheric physics. It is modified by adding source terms from the absorption of the solar flux and the internal energy exchange in the atmosphere. In two cases the modified model generates atmospheres with a large and warm stratosphere and negative IRF at ToA when GHG increases by 25%. This negative radiative forcing can lead to the cooling of the atmosphere all the way down to the surface. The implications of the cooling effect of GHG to the climate change, including paleoclimatology and the prerequests for climate models to include cooling effect of GHG properly are discussed.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbone, L.; Ciani, G.; Dolesi, R.

    The low frequency sensitivity of space-borne gravitational wave observatories will depend critically on the geodesic purity of the trajectories of orbiting test masses. Fluctuations in the temperature difference across the enclosure surrounding the free-falling test mass can produce noisy forces through several processes, including the radiometric effect, radiation pressure, and outgassing. We present here a detailed experimental investigation of thermal gradient-induced forces for the Laser Interferometer Space Antenna (LISA) gravitational wave mission and the LISA Pathfinder, employing high resolution torsion pendulum measurements of the torque on a LISA-like test mass suspended inside a prototype of the LISA gravitational reference sensormore » that will surround the test mass in orbit. The measurement campaign, accompanied by numerical simulations of the radiometric and radiation pressure effects, allows a more accurate and representative characterization of thermal-gradient forces in the specific geometry and environment relevant to LISA free-fall. The pressure dependence of the measured torques allows clear identification of the radiometric effect, in quantitative agreement with the model developed. In the limit of zero gas pressure, the measurements are most likely dominated by outgassing, but at a low level that does not threaten the current LISA noise estimate, which assumes a maximum net force per degree of temperature difference of 100(pN/K) for the overall thermal gradient-induced effects.« less

  13. Robotic Tactile Sensors Fabricated from a Monolithic Silicon Integrated Circuit and a Piezoelectric Polyvinylidene Fluoride Thin Film

    DTIC Science & Technology

    1991-12-01

    gradient will be presented. -Finally, a brief discussion of various piezoelectric materials will be presented, including Rochelle salt, quartz, barium...consideringr a microscopic-level dipole arrangement. The strain induced by ain external force or a tempem at ure gradient changes hie orientation of the...pyroelectric materials, an externally applied temperature gradient can be related to the resulting polarization by a l)yroelectric * constant.1 p (130

  14. Thermophoretic aggregation of particles in a protoplanetary disc

    NASA Astrophysics Data System (ADS)

    Smith, Francis J.

    2018-04-01

    Thermophoresis causes particles to move down a temperature gradient to a cooler region of a neutral gas. An example is the temperature gradient in the gas around a large cold object, such as an aggregate of particles, cooled by radiation in a protoplanetary disc. Particles near this aggregate move down the temperature gradient to the aggregate, equivalent to the particles being attracted to it by an inter-particle thermophoretic force. This force is proportional to the temperature difference between gas and aggregate, to the gas density and to the cross-section of the aggregate. The force can be large. For example, calculations based on the equations of motion of the interacting particles show that it can be large enough in an optically thin environment to increase the rate of aggregation by up to six orders of magnitude when an aggregate radius lies between 0.1 μm and 1 mm. From 1 mm to about 10 cm aggregates drift inwards through the gas too quickly for the thermophoretic attraction to increase aggregation significantly; so they grow slowly, causing an observed accumulation of particles at these sizes. Particles above 10 cm move more quickly, causing aggregation due to collisions, but also causing fragmentation. However, calculations show that fragmenting particles and bouncing particles in inelastic collisions often have low enough relative velocities that thermophoresis brings them together again. This allows particles to grow above 1 m, which is otherwise difficult to explain.

  15. Free swimming organisms: Microgravity as an investigative tool

    NASA Technical Reports Server (NTRS)

    Kessler, John O.

    1989-01-01

    On earth, micro-organisms are in the grip of gravitational and viscous forces. These forces, in combination with sensory stimuli, determine the average orientation of the organisms' swimming trajectories relative to the fluid environment. Microgravity provides the opportunity to study the rules which govern the summation or orienting influences and to develop quantitative physical measurements of sensory responses, e.g. the measurement of phototactic orientation tendency in torque units. Also, by reducing or eliminating density anisotropy-driven buoyant convection, it will be possible to study illumination, temperature gradient and concentration gradient-mediated collective dynamics.

  16. Effects of a Circulating-water Garment and Forced-air Warming on Body Heat Content and Core Temperature

    PubMed Central

    Taguchi, Akiko; Ratnaraj, Jebadurai; Kabon, Barbara; Sharma, Neeru; Lenhardt, Rainer; Sessler, Daniel I.

    2005-01-01

    Background: Forced-air warming is sometimes unable to maintain perioperative normothermia. We therefore compared heat transfer, regional heat distribution, and core rewarming of forced-air warming with a novel circulating-water garment. Methods: Nine volunteers were each evaluated on two randomly ordered study days. They were anesthetized and cooled to a core temperature near 34°C. The volunteers were subsequently warmed for 2.5 hours with either a circulating-water garment or forced-air cover. Overall, heat balance was determined from the difference between cutaneous heat loss (thermal flux transducers) and metabolic heat production (oxygen consumption). Average arm and leg (peripheral) tissue temperatures were determined from 18 intramuscular needle thermocouples, 15 skin thermal flux transducers, and “deep” arm and foot thermometers. Results: Heat production (≈ 60 kcal/h) and loss (≈45 kcal/h) were similar with each treatment before warming. The increase in heat transfer across anterior portions of the skin surface was similar with each warming system (≈65 kcal/h). Forced-air warming had no effect on posterior heat transfer whereas circulating-water transferred 21 ± 9 kcal/h through the posterior skin surface after a half hour of warming. Over 2.5 h, circulating-water thus increased body heat content 56% more than forced air. Core temperatures thus increased faster than with circulating water than forced air, especially during the first hour, with the result that core temperature was 1.1 ± 0.7°C greater after 2.5 h (P < 0.001). Peripheral tissue heat content increased twice as much as core heat content with each device, but the core-to-peripheral tissue temperature gradient remained positive throughout the study. Conclusions: The circulating-water system transferred more heat than forced air, with the difference resulting largely from posterior heating. Circulating water rewarmed patients 0.4°C/h faster than forced air. A substantial peripheral-to-core tissue-temperature gradient with each device indicated that peripheral tissues insulated the core, thus slowing heat transfer. PMID:15114200

  17. Mixed convection of magnetohydrodynamic nanofluids inside microtubes at constant wall temperature

    NASA Astrophysics Data System (ADS)

    Moshizi, S. A.; Zamani, M.; Hosseini, S. J.; Malvandi, A.

    2017-05-01

    Laminar fully developed mixed convection of magnetohydrodynamic nanofluids inside microtubes at a constant wall temperature (CWT) under the effects of a variable directional magnetic field is investigated numerically. Nanoparticles are assumed to have slip velocities relative to the base fluid owing to thermophoretic diffusion (temperature gradient driven force) and Brownian diffusion (concentration gradient driven force). The no-slip boundary condition is avoided at the fluid-solid mixture to assess the non-equilibrium region at the fluid-solid interface. A scale analysis is performed to estimate the relative significance of the pertaining parameters that should be included in the governing equations. After the effects of pertinent parameters on the pressure loss and heat transfer enhancement were considered, the figure of merit (FoM) is employed to evaluate and optimize the thermal performance of heat exchange equipment. The results indicate the optimum thermal performance is obtained when the thermophoresis overwhelms the Brownian diffusion, which is for larger nanoparticles. This enhancement boosts when the buoyancy force increases. In addition, increasing the magnetic field strength and slippage at the fluid-solid interface enhances the thermal performance.

  18. Natural convection in binary gases driven by combined horizontal thermal and vertical solutal gradients

    NASA Technical Reports Server (NTRS)

    Weaver, J. A.; Viskanta, Raymond

    1992-01-01

    An investigation of natural convection is presented to examine the influence of a horizontal temperature gradient and a concentration gradient occurring from the bottom to the cold wall in a cavity. As the solutal buoyancy force changes from augmenting to opposing the thermal buoyancy force, the fluid motion switches from unicellular to multicellular flow (fluid motion is up the cold wall and down the hot wall for the bottom counterrotating flow cell). Qualitatively, the agreement between predicted streamlines and smoke flow patterns is generally good. In contrast, agreement between measured and predicted temperature and concentration distributions ranges from fair to poor. Part of the discrepancy can be attributed to experimental error. However, there remains considerable discrepancy between data and predictions due to the idealizations of the mathematical model, which examines only first-order physical effects. An unsteady flow, variable thermophysical properties, conjugate effects, species interdiffusion, and radiation were not accounted for in the model.

  19. Compact variable-temperature scanning force microscope.

    PubMed

    Chuang, Tien-Ming; de Lozanne, Alex

    2007-05-01

    A compact design for a cryogenic variable-temperature scanning force microscope using a fiber-optic interferometer to measure cantilever deflection is presented. The tip-sample coarse approach and the lateral tip positioning are performed by piezoelectric positioners in situ. The microscope has been operated at temperatures between 6 and 300 K. It is designed to fit into an 8 T superconducting magnet with the field applied in the out-of-plane direction. The results of scanning in various modes are demonstrated, showing contrast based on magnetic field gradients or surface potentials.

  20. Fluid flow in solidifying monotectic alloys

    NASA Technical Reports Server (NTRS)

    Ecker, A.; Frazier, D. O.; Alexander, J. Iwan D.

    1989-01-01

    Use of a two-wavelength holographic technique results in a simultaneous determination of temperature and composition profiles during directional solidification in a system with a miscibility gap. The relationships among fluid flow, phase separation, and mass transport during the solidification of the monotectic alloy are discussed. The primary sources of fluid motion in this system are buoyancy and thermocapillary forces. These forces act together when phase separation results in the formation of droplets (this occurs at the solid-liquid interface and in the bulk melt). In the absence of phase separation, buoyancy results from density gradients related to temperature and compositional gradients in the single-phase bulk melt. The effects of buoyancy are especially evident in association with water- or ethanol-rich volumes created at the solid-liquid growth interface.

  1. On the physics of the pressure and temperature gradients in the edge of tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Stacey, Weston M.

    2018-04-01

    An extended plasma fluid theory including atomic physics, radiation, electromagnetic and themodynamic forces, external sources of particles, momentum and energy, and kinetic ion orbit loss is employed to derive theoretical expressions that display the role of the various factors involved in the determination of the pressure and temperature gradients in the edge of tokamak plasmas. Calculations for current experiments are presented to illustrate the magnitudes of various effects including strong radiative and atomic physics edge cooling effects and strong reduction in ion particle and energy fluxes due to ion orbit loss in the plasma edge. An important new insight is the strong relation between rotation and the edge pressure gradient.

  2. Limitations of quasilinear transport theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balescu, R.

    1992-01-01

    The anomalous fluxes are evaluated in the simplest possible geometric situation: drift waves in a shearless slab geometry, in the presence of density and temperature gradients. It is shown that, within the strict quasilinear framework, the linear transport equations relating the fluxes to the thermodynamic forces have serious limitations. Such a linear relation does not even exist for the ion energy flux. For all the fluxes, the first correction'' has a singularity whose location depends on the relative value of the density gradient and of the ion temperature gradient: its existence seriously restricts the domain of validity of the quasilinearmore » transport theory. The semiempirical quasilinear'' formulas used in the comparisons with experiments are also discussed.« less

  3. Sulfate Aerosol Control of Tropical Atlantic Climate over the Twentieth Century

    NASA Technical Reports Server (NTRS)

    Chang, C.-Y.; Chiang, J. C. H.; Wehner, M. F.; Friedman, A. R.; Ruedy, R.

    2011-01-01

    The tropical Atlantic interhemispheric gradient in sea surface temperature significantly influences the rainfall climate of the tropical Atlantic sector, including droughts over West Africa and Northeast Brazil. This gradient exhibits a secular trend from the beginning of the twentieth century until the 1980s, with stronger warming in the south relative to the north. This trend behavior is on top of a multi-decadal variation associated with the Atlantic multi-decadal oscillation. A similar long-term forced trend is found in a multimodel ensemble of forced twentieth-century climate simulations. Through examining the distribution of the trend slopes in the multimodel twentieth-century and preindustrial models, the authors conclude that the observed trend in the gradient is unlikely to arise purely from natural variations; this study suggests that at least half the observed trend is a forced response to twentieth-century climate forcings. Further analysis using twentieth-century single-forcing runs indicates that sulfate aerosol forcing is the predominant cause of the multimodel trend. The authors conclude that anthropogenic sulfate aerosol emissions, originating predominantly from the Northern Hemisphere, may have significantly altered the tropical Atlantic rainfall climate over the twentieth century

  4. The role of large-scale eddies in the climate equilibrium. Part 2: Variable static stability

    NASA Technical Reports Server (NTRS)

    Zhou, Shuntai; Stone, Peter H.

    1993-01-01

    Lorenz's two-level model on a sphere is used to investigate how the results of Part 1 are modified when the interaction of the vertical eddy heat flux and static stability is included. In general, the climate state does not depend very much on whether or not this interaction is included, because the poleward eddy heat transport dominates the eddy forcing of mean temperature and wind fields. However, the climatic sensitivity is significantly affected. Compared to two-level model results with fixed static stability, the poleward eddy heat flux is less sensitive to the meridional temperature gradient and the gradient is more sensitive to the forcing. For example, the logarithmic derivative of the eddy flux with respect to the gradient has a slope that is reduced from approximately 15 on a beta-plane with fixed static stability and approximately 6 on a sphere with fixed static stability, to approximately 3 to 4 in the present model. This last result is more in line with analyses from observations. The present model also has a stronger baroclinic adjustment than that in Part 1, more like that in two-level beta-plane models with fixed static stability, that is, the midlatitude isentropic slope is very insensitive to the forcing, the diabatic heating, and the friction, unless the forcing is very weak.

  5. Free convection in the Matian atmosphere

    NASA Technical Reports Server (NTRS)

    Clow, G. D.; Haberle, R. M.

    1990-01-01

    The 'free convective' regime for the Martian atmospheric boundary layer (ABL) was investigated. This state occurs when the mean windspeed at the top of the ABL drops below some critical value U(sub c) and positive buoyant forces are present. Such forces can arise either from vertical temperature or water vapor gradients across the atmospheric surface layer. During free convection, buoyant forces drive narrow plumes that ascend to the inversion height with a return circulation consisting of broad slower-moving downdraughts. Horizontal pressure, temperature, windspeed, and water vapor fluctuations resulting form this circulation pattern can be quite large adjacent to the ground (within the surface layer). The local turbulent fluctuations cause non-zero mean surface stresses, sensible heat fluxes, and latent heat fluxes, even when the mean regional windspeed is zero. Although motions above the surface layer are insensitive to the nature of the surface, the sensible and latent heat fluxes are primarily controlled by processes within the interfacial sublayer immediately adjacent to the ground during free convection. Thus the distinction between aerodynamically smooth and rough airflow within the interfacial sublayer is more important than for the more typical situation where the mean regional windspeed is greater than U(sub c). Buoyant forces associated with water vapor gradients are particularly large on Mars at low pressures and high temperatures when the surface relative humidity is 100 percent, enhancing the likelihood of free convection under these conditions. On this basis, Ingersol postulated the evaporative heat losses from an icy surface on Mars at 237 K and current pressures would exceed the available net radiative flux at the surface, thus prohibiting ice from melting at low atmospheric pressures. Schumann has developed equations describing the horizontal fluctuations and mean vertical gradients occurring during free convection. Schumann's model was generalized to include convection driven by water vapor gradients and to include the effects of circulation above both aerodynamically smooth and rough surfaces.

  6. Design of shared instruments to utilize simulated gravities generated by a large-gradient, high-field superconducting magnet.

    PubMed

    Wang, Y; Yin, D C; Liu, Y M; Shi, J Z; Lu, H M; Shi, Z H; Qian, A R; Shang, P

    2011-03-01

    A high-field superconducting magnet can provide both high-magnetic fields and large-field gradients, which can be used as a special environment for research or practical applications in materials processing, life science studies, physical and chemical reactions, etc. To make full use of a superconducting magnet, shared instruments (the operating platform, sample holders, temperature controller, and observation system) must be prepared as prerequisites. This paper introduces the design of a set of sample holders and a temperature controller in detail with an emphasis on validating the performance of the force and temperature sensors in the high-magnetic field.

  7. Design of shared instruments to utilize simulated gravities generated by a large-gradient, high-field superconducting magnet

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Yin, D. C.; Liu, Y. M.; Shi, J. Z.; Lu, H. M.; Shi, Z. H.; Qian, A. R.; Shang, P.

    2011-03-01

    A high-field superconducting magnet can provide both high-magnetic fields and large-field gradients, which can be used as a special environment for research or practical applications in materials processing, life science studies, physical and chemical reactions, etc. To make full use of a superconducting magnet, shared instruments (the operating platform, sample holders, temperature controller, and observation system) must be prepared as prerequisites. This paper introduces the design of a set of sample holders and a temperature controller in detail with an emphasis on validating the performance of the force and temperature sensors in the high-magnetic field.

  8. Evaporation enhancement in soils: a critical review

    NASA Astrophysics Data System (ADS)

    Rutten, Martine; van de Giesen, Nick

    2015-04-01

    Temperature gradients in the top layer of the soil are, especially during the daytime, steeper than would be expected if thermal conduction was the primary heat transfer mechanism. Evaporation seems to have significant influence on the soil heat budget. Only part of the surface soil heat flux is conducted downwards, increasing the soil temperatures, and part is used for evaporation, acting as a sink to the soil heat budget. For moist soils, the evaporation is limited by the transport of water molecules to the surface. The classical view is that water vapor is transported from the evaporation front to the surface by diffusion. Diffusion is mixing due to the random movement of molecules resulting in flattening concentration gradients. In soil, the diffusive vapor flux and the resulting latent heat flux are generally small. We found that transport enhancement is necessary in order to sustain vapor fluxes that are large enough to sustain latent heat fluxes, as well as being large enough to explain the observed temperature gradients. Enhancement of vapor diffusion is a known phenomenon, subject to debate on the explanations of underlying mechanism. In an extensive literature review on vapor enhancement in soils, the plausibility of various mechanisms was assessed. We reviewed mechanisms based on (combinations of) diffusive, viscous, buoyant, capillary and external pressure forces including: thermodiffusion, dispersion, Stefan's flow, Knudsen diffusion, liquid island effect, hydraulic lift, free convection, double diffusive convection and forced convection. The analysis of the order of magnitude of the mechanisms based on first principles clearly distinguished between plausible and implausible mechanisms. Thermodiffusion, Stefan's flow, Knudsen effects, liquid islands do not significantly contribute to enhanced evaporation. Double diffusive convection seemed unlikely due to lack of experimental evidence, but could not be completely excluded from the list of potential mechanisms. Hydraulic lift, the mechanism that small capillaries lift liquid water to the surface where it evaporates, does significantly contribute to enhanced evaporation from soils, also from dryer soils. The experimental evidence for and the theoretical underpinnings of this mechanism are convincing. However, we sought mechanisms that both explain enhanced evaporation and steep temperature gradients in the soil during the daytime. These often observed gradients consist of a sharp decrease of temperature with a depth up to the depth of the evaporation front. Hydraulic lift cannot explain this because the evaporation front is located at the surface. One remaining mechanism is forced convection due to atmospheric pressure fluctuations, also referred to as wind pumping. Wind pumping causes displacement and flow velocities too small for significant convective and too small for significant dispersive transport, when steady state dispersion formulations are used. However, experiments do indicate significant dispersive transport that can be explained by dispersion under unsteady flow conditions. Forced convection due to pressure fluctuations seems to be the only mechanism that can explain both enhanced evaporation and the steep temperature gradients.

  9. Sun-stirred Kraken Mare: Circulation in Titan's seas induced by solar heating and methane precipitation

    NASA Astrophysics Data System (ADS)

    Tokano, Tetsuya; Lorenz, Ralph D.

    2016-05-01

    Density-driven circulation in Titan's seas forced by solar heating and methane evaporation/precipitation is simulated by an ocean circulation model. If the sea is transparent to sunlight, solar heating can induce anti-clockwise gyres near the sea surface and clockwise gyres near the sea bottom. The gyres are in geostrophic balance between the radially symmetric pressure gradient force and Coriolis force. If instead the sea is turbid and most sunlight is absorbed near the sea surface, the sea gets stratified in warm seasons and the circulation remains weak. Precipitation causes compositional stratification of the sea to an extent that the sea surface temperature can be lower than the sea interior temperature without causing a convective overturning. Non-uniform precipitation can also generate a latitudinal gradient in the methane mole fraction and density, which drives a meridional overturning with equatorward currents near the sea surface and poleward currents near the sea bottom. However, gyres are more ubiquitous than meridional overturning.

  10. Molecular Dynamics Study of Thermally Augmented Nanodroplet Motion on Chemical Energy Induced Wettability Gradient Surfaces.

    PubMed

    Chakraborty, Monojit; Chowdhury, Anamika; Bhusan, Richa; DasGupta, Sunando

    2015-10-20

    Droplet motion on a surface with chemical energy induced wettability gradient has been simulated using molecular dynamics (MD) simulation to highlight the underlying physics of molecular movement near the solid-liquid interface including the contact line friction. The simulations mimic experiments in a comprehensive manner wherein microsized droplets are propelled by the surface wettability gradient against forces opposed to motion. The liquid-wall Lennard-Jones interaction parameter and the substrate temperature are varied to explore their effects on the three-phase contact line friction coefficient. The contact line friction is observed to be a strong function of temperature at atomistic scales, confirming their experimentally observed inverse functionality. Additionally, the MD simulation results are successfully compared with those from an analytical model for self-propelled droplet motion on gradient surfaces.

  11. Seasonal body size reductions with warming covary with major body size gradients in arthropod species.

    PubMed

    Horne, Curtis R; Hirst, Andrew G; Atkinson, David

    2017-03-29

    Major biological and biogeographical rules link body size variation with latitude or environmental temperature, and these rules are often studied in isolation. Within multivoltine species, seasonal temperature variation can cause substantial changes in adult body size, as subsequent generations experience different developmental conditions. Yet, unlike other size patterns, these common seasonal temperature-size gradients have never been collectively analysed. We undertake the largest analysis to date of seasonal temperature-size gradients in multivoltine arthropods, including 102 aquatic and terrestrial species from 71 global locations. Adult size declines in warmer seasons in 86% of the species examined. Aquatic species show approximately 2.5-fold greater reduction in size per °C of warming than terrestrial species, supporting the hypothesis that greater oxygen limitation in water than in air forces aquatic species to exhibit greater plasticity in body size with temperature. Total percentage change in size over the annual cycle appears relatively constant with annual temperature range but varies between environments, such that the overall size reduction in aquatic-developing species (approx. 31%) is almost threefold greater than in terrestrial species (approx. 11%). For the first time, we show that strong correlations exist between seasonal temperature-size gradients, laboratory responses and latitudinal-size clines, suggesting that these patterns share common drivers. © 2017 The Author(s).

  12. Joule heating effects on particle immobilization in insulator-based dielectrophoretic devices

    PubMed Central

    Gallo-Villanueva, Roberto C.; Sano, Michael B.; Lapizco-Encinas, Blanca H.; Davalos, Rafael V.

    2014-01-01

    In this work, the temperature effects due to Joule heating obtained by application of a DC electric potential were investigated for a microchannel with cylindrical insulating posts employed for insulator based dielectrophoresis (iDEP). The conductivity of the suspending medium, the local electric field, and the gradient of the squared electric field, which directly affect the magnitude of the dielectrophoretic force exerted on particles, were computationally simulated employing COMSOL Multiphysics. It was observed that a temperature gradient is formed along the microchannel which redistributes the conductivity of the suspending medium leading to an increase of the dielectrophoretic force towards the inlet of the channel while decreasing towards the outlet. Experimental results are in good agreement with simulations on the particle trapping zones anticipated. This study demonstrates the importance of considering Joule heating effects when designing iDEP systems. PMID:24002905

  13. On Fully Developed Channel Flows: Some Solutions and Limitations, and Effects of Compressibility, Variable Properties, and Body Forces

    NASA Technical Reports Server (NTRS)

    Maslen, Stephen H.

    1959-01-01

    An examination of the effects of compressibility, variable properties, and body forces on fully developed laminar flow has indicated several limitations on such streams. In the absence of a pressure gradient, but presence of a body force (e.g., gravity), an exact fully developed gas flow results. For a liquid this follows also for the case of a constant streamwise pressure gradient. These motions are exact in the sense of a Couette flow. In the liquid case two solutions (not a new result) can occur for the same boundary conditions. An approximate analytic solution was found which agrees closely with machine calculations.In the case of approximately exact flows, it turns out that for large temperature variations across the channel the effects of convection (due to, say, a wall temperature gradient) and frictional heating must be negligible. In such a case the energy and momentum equations are separated, and the solutions are readily obtained. If the temperature variations are small, then both convection effects and frictional heating can consistently be considered. This case becomes the constant-property incompressible case (or quasi-incompressible case for free-convection flows) considered by many authors. Finally there is a brief discussion of cases wherein streamwise variations of all quantities are allowed but only a such form that independent variables are separable. For the case where the streamwise velocity varies inversely as the square root distance along the channel a solution is given.

  14. Parametric modulation of thermomagnetic convection in magnetic fluids.

    PubMed

    Engler, H; Odenbach, S

    2008-05-21

    Previous theoretical investigations on thermal flow in a horizontal fluid layer have shown that the critical temperature difference, where heat transfer changes from diffusion to convective flow, depends on the frequency of a time-modulated driving force. The driving force of thermal convection is the buoyancy force resulting from the interaction of gravity and the density gradient provided by a temperature difference in the vertical direction of a horizontal fluid layer. An experimental investigation of such phenomena fails because of technical problems arising if buoyancy is to be changed by altering the temperature difference or gravitational acceleration. The possibility of influencing convective flow in a horizontal magnetic fluid layer by magnetic forces might provide us with a means to solve the problem of a time-modulated magnetic driving force. An experimental setup to investigate the dependence of the critical temperature difference on the frequency of the driving force has been designed and implemented. First results show that the time modulation of the driving force has significant influence on the strength of the convective flow. In particular a pronounced minimum in the strength of convection has been found for a particular frequency.

  15. Beyond-proximity-force-approximation Casimir force between two spheres at finite temperature

    NASA Astrophysics Data System (ADS)

    Bimonte, Giuseppe

    2018-04-01

    A recent experiment [J. L. Garrett, D. A. T. Somers, and J. N. Munday, Phys. Rev. Lett. 120, 040401 (2018), 10.1103/PhysRevLett.120.040401] measured for the first time the gradient of the Casimir force between two gold spheres at room temperature. The theoretical analysis of the data was carried out using the standard proximity force approximation (PFA). A fit of the data, using a parametrization of the force valid for the sphere-plate geometry, was used by the authors to place a bound on deviations from PFA. Motivated by this work, we compute the Casimir force between two gold spheres at finite temperature. The semianalytic formula for the Casimir force that we construct is valid for all separations, and can be easily used to interpret future experiments in both the sphere-plate and sphere-sphere configurations. We describe the correct parametrization of the corrections to PFA for two spheres that should be used in data analysis.

  16. Study of wavefront error and polarization of a side mounted infrared window

    NASA Astrophysics Data System (ADS)

    Liu, Jiaguo; Li, Lin; Hu, Xinqi; Yu, Xin

    2008-03-01

    The wavefront error and polarization of a side mounted infrared window made of ZnS are studied. The Infrared windows suffer from temperature gradient and stress during their launch process. Generally, the gradient in temperature changes the refractive index of the material whereas stress produces deformation and birefringence. In this paper, a thermal finite element analysis (FEA) of an IR window is presented. For this purpose, we employed an FEA program Ansys to obtain the time-varying temperature field. The deformation and stress of the window are derived from a structural FEA with the aerodynamic force and the temperature field previously obtained as being the loads. The deformation, temperature field, stress field, ray tracing and Jones Calculus are used to calculate the wavefront error and the change of polarization state.

  17. Nanostructures study of CNT nanofluids transport with temperature-dependent variable viscosity in a muscular tube

    NASA Astrophysics Data System (ADS)

    Akbar, Noreen Sher; Abid, Syed Ali; Tripathi, Dharmendra; Mir, Nazir Ahmed

    2017-03-01

    The transport of single-wall carbon nanotube (CNT) nanofluids with temperature-dependent variable viscosity is analyzed by peristaltically driven flow. The main flow problem has been modeled using cylindrical coordinates and flow equations are simplified to ordinary differential equations using long wavelength and low Reynolds' number approximation. Analytical solutions have been obtained for axial velocity, pressure gradient and temperature. Results acquired are discussed graphically for better understanding. It is observed that with an increment in the Grashof number the velocity of the governing fluids starts to decrease significantly and the pressure gradient is higher for pure water as compared to single-walled carbon nanotubes due to low density. As the specific heat is very high for pure water as compared to the multi-wall carbon nanotubes, it raises temperature of the muscles, in the case of pure water, as compared to the multi-walled carbon nanotubes. Furthermore, it is noticed that the trapped bolus starts decreasing in size as the buoyancy forces are dominant as compared to viscous forces. This model may be applicable in biomedical engineering and nanotechnology to design the biomedical devices.

  18. Probing of molecular replication and accumulation in shallow heat gradients through numerical simulations.

    PubMed

    Keil, Lorenz; Hartmann, Michael; Lanzmich, Simon; Braun, Dieter

    2016-07-27

    How can living matter arise from dead matter? All known living systems are built around information stored in RNA and DNA. To protect this information against molecular degradation and diffusion, the second law of thermodynamics imposes the need for a non-equilibrium driving force. Following a series of successful experiments using thermal gradients, we have shown that heat gradients across sub-millimetre pores can drive accumulation, replication, and selection of ever longer molecules, implementing all the necessary parts for Darwinian evolution. For these lab experiments to proceed with ample speed, however, the temperature gradients have to be quite steep, reaching up to 30 K per 100 μm. Here we use computer simulations based on experimental data to show that 2000-fold shallower temperature gradients - down to 100 K over one metre - can still drive the accumulation of protobiomolecules. This finding opens the door for various environments to potentially host the origins of life: volcanic, water-vapour, or hydrothermal settings. Following the trajectories of single molecules in simulation, we also find that they are subjected to frequent temperature oscillations inside these pores, facilitating e.g. template-directed replication mechanisms. The tilting of the pore configuration is the central strategy to achieve replication in a shallow temperature gradient. Our results suggest that shallow thermal gradients across porous rocks could have facilitated the formation of evolutionary machines, significantly increasing the number of potential sites for the origin of life on young rocky planets.

  19. Driving bubbles out of glass

    NASA Technical Reports Server (NTRS)

    Mattox, D. M.

    1981-01-01

    Surface tension gradient in melt forces gas bubbles to surface, increasing glass strength and transparency. Conventional chemical and buoyant fining are extremely slow in viscous glasses, but tension gradient method moves 250 um bubbles as rapidly as 30 um/s. Heat required for high temperature part of melt is furnished by stationary electrical or natural-gas heater; induction and laser heating are also possible. Method has many applications in industry processes.

  20. Reassessing Pliocene temperature gradients

    NASA Astrophysics Data System (ADS)

    Tierney, J. E.

    2017-12-01

    With CO2 levels similar to present, the Pliocene Warm Period (PWP) is one of our best analogs for climate change in the near future. Temperature proxy data from the PWP describe dramatically reduced zonal and meridional temperature gradients that have proved difficult to reproduce with climate model simulations. Recently, debate has emerged regarding the interpretation of the proxies used to infer Pliocene temperature gradients; these interpretations affect the magnitude of inferred change and the degree of inconsistency with existing climate model simulations of the PWP. Here, I revisit the issue using Bayesian proxy forward modeling and prediction that propagates known uncertainties in the Mg/Ca, UK'37, and TEX86 proxy systems. These new spatiotemporal predictions are quantitatively compared to PWP simulations to assess probabilistic agreement. Results show generally good agreement between existing Pliocene simulations from the PlioMIP ensemble and SST proxy data, suggesting that exotic changes in the ocean-atmosphere are not needed to explain the Pliocene climate state. Rather, the spatial changes in SST during the Pliocene are largely consistent with elevated CO2 forcing.

  1. A homogeneous cooling scheme investigation for high power slab laser

    NASA Astrophysics Data System (ADS)

    He, Jianguo; Lin, Weiran; Fan, Zhongwei; Chen, Yanzhong; Ge, Wenqi; Yu, Jin; Liu, Hao; Mo, Zeqiang; Fan, Lianwen; Jia, Dan

    2017-10-01

    The forced convective heat transfer with the advantages of reliability and durability is widely used in cooling the laser gain medium. However, a flow direction induced temperature gradient always appears. In this paper, a novel cooling configuration based on longitudinal forced convective heat transfer is presented. In comparison with two different types of configurations, it shows a more efficient heat transfer and more homogeneous temperature distribution. The investigation of the flow rate reveals that the higher flow rate the better cooling performance. Furthermore, the simulation results with 20 L/min flow rate shows an adequate temperature level and temperature homogeneity which keeps a lower hydrostatic pressure in the flow path.

  2. Joule heating effects on particle immobilization in insulator-based dielectrophoretic devices.

    PubMed

    Gallo-Villanueva, Roberto C; Sano, Michael B; Lapizco-Encinas, Blanca H; Davalos, Rafael V

    2014-02-01

    In this work, the temperature effects due to Joule heating obtained by application of a direct current electric potential were investigated for a microchannel with cylindrical insulating posts employed for insulator-based dielectrophoresis. The conductivity of the suspending medium, the local electric field, and the gradient of the squared electric field, which directly affect the magnitude of the dielectrophoretic force exerted on particles, were computationally simulated employing COMSOL Multiphysics. It was observed that a temperature gradient is formed along the microchannel, which redistributes the conductivity of the suspending medium leading to an increase of the dielectrophoretic force toward the inlet of the channel while decreasing toward the outlet. Experimental results are in good agreement with simulations on the particle-trapping zones anticipated. This study demonstrates the importance of considering Joule heating effects when designing insulator-based dielectrophoresis systems. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Evolution of Edge Pedestal Profiles Over the L-H Transition

    NASA Astrophysics Data System (ADS)

    Sayer, M. S.; Stacey, W. M.; Floyd, J. P.; Groebner, R. J.

    2012-10-01

    The detailed time evolution of thermal diffusivities, electromagnetic forces, pressure gradients, particle pinch and momentum transport frequencies (which determine the diffusion coefficient) have been analyzed during the L-H transition in a DIII-D discharge. Density, temperature, rotation velocity and electric field profiles at times just before and after the L-H transition are analyzed in terms of these quantities. The analysis is based on the fluid particle balance, energy balance, force balance and heat conduction equations, as in Ref. [1], but with much greater time resolution and with account for thermal ion orbit loss. The variation of diffusive and non-diffusive transport over the L-H transition is determined from the variation in the radial force balance (radial electric field, VxB force, and pressure gradient) and the variation in the interpreted diffusive transport coefficients. 6pt [1] W.M. Stacey and R.J. Groebner, Phys. Plasmas 17, 112512 (2010).

  4. Hovering in the heat: effects of environmental temperature on heat regulation in foraging hummingbirds

    PubMed Central

    Langland, Kathleen M.; Wethington, Susan M.; Powers, Sean D.; Graham, Catherine H.

    2017-01-01

    At high temperature (greater than 40°C) endotherms experience reduced passive heat dissipation (radiation, conduction and convection) and increased reliance on evaporative heat loss. High temperatures challenge flying birds due to heat produced by wing muscles. Hummingbirds depend on flight for foraging, yet inhabit hot regions. We used infrared thermography to explore how lower passive heat dissipation during flight impacts body-heat management in broad-billed (Cynanthus latirostris, 3.0 g), black-chinned (Archilochus alexandri, 3.0 g), Rivoli's (Eugenes fulgens, 7.5 g) and blue-throated (Lampornis clemenciae, 8.0 g) hummingbirds in southeastern Arizona and calliope hummingbirds (Selasphorus calliope, 2.6 g) in Montana. Thermal gradients driving passive heat dissipation through eye, shoulder and feet dissipation areas are eliminated between 36 and 40°C. Thermal gradients persisted at higher temperatures in smaller species, possibly allowing them to inhabit warmer sites. All species experienced extended daytime periods lacking thermal gradients. Broad-billed hummingbirds lacking thermal gradients regulated the mean total-body surface temperature at approximately 38°C, suggesting behavioural thermoregulation. Blue-throated hummingbirds were inactive when lacking passive heat dissipation and hence might have the lowest temperature tolerance of the four species. Use of thermal refugia permitted hummingbirds to tolerate higher temperatures, but climate change could eliminate refugia, forcing distributional shifts in hummingbird populations. PMID:29308244

  5. Comparison of forced-air warming systems with upper body blankets using a copper manikin of the human body.

    PubMed

    Bräuer, A; English, M J M; Steinmetz, N; Lorenz, N; Perl, T; Braun, U; Weyland, W

    2002-09-01

    Forced-air warming with upper body blankets has gained high acceptance as a measure for the prevention of intraoperative hypothermia. However, data on heat transfer with upper body blankets are not yet available. This study was conducted to determine the heat transfer efficacy of eight complete upper body warming systems and to gain more insight into the principles of forced-air warming. Heat transfer of forced-air warmers can be described as follows: Qdot;=h. DeltaT. A, where Qdot;= heat flux [W], h=heat exchange coefficient [W m-2 degrees C-1], DeltaT=temperature gradient between the blanket and surface [ degrees C], and A=covered area [m2]. We tested eight different forced-air warming systems: (1) Bair Hugger and upper body blanket (Augustine Medical Inc. Eden Prairie, MN); (2) Thermacare and upper body blanket (Gaymar Industries, Orchard Park, NY); (3) Thermacare (Gaymar Industries) with reusable Optisan upper body blanket (Willy Rüsch AG, Kernen, Germany); (4) WarmAir and upper body blanket (Cincinnati Sub-Zero Products, Cincinnati, OH); (5) Warm-Gard and single use upper body blanket (Luis Gibeck AB, Upplands Väsby, Sweden); (6) Warm-Gard and reusable upper body blanket (Luis Gibeck AB); (7) WarmTouch and CareDrape upper body blanket (Mallinckrodt Medical Inc., St. Luis, MO); and (8) WarmTouch and reusable MultiCover trade mark upper body blanket (Mallinckrodt Medical Inc.) on a previously validated copper manikin of the human body. Heat flux and surface temperature were measured with 11 calibrated heat flux transducers. Blanket temperature was measured using 11 thermocouples. The temperature gradient between the blanket and surface (DeltaT) was varied between -8 and +8 degrees C, and h was determined by linear regression analysis as the slope of DeltaT vs. heat flux. Mean DeltaT was determined for surface temperatures between 36 and 38 degrees C, as similar mean skin surface temperatures have been found in volunteers. The covered area was estimated to be 0.35 m2. Total heat flow from the blanket to the manikin was different for surface temperatures between 36 and 38 degrees C. At a surface temperature of 36 degrees C the heat flows were higher (4-26.6 W) than at surface temperatures of 38 degrees C (2.6-18.1 W). The highest total heat flow was delivered by the WarmTouch trade mark system with the CareDrape trade mark upper body blanket (18.1-26.6 W). The lowest total heat flow was delivered by the Warm-Gard system with the single use upper body blanket (2.6-4 W). The heat exchange coefficient varied between 15.1 and 36.2 W m-2 degrees C-1, and mean DeltaT varied between 0.5 and 3.3 degrees C. We found total heat flows of 2.6-26.6 W by forced-air warming systems with upper body blankets. However, the changes in heat balance by forced-air warming systems with upper body blankets are larger, as these systems are not only transferring heat to the body but are also reducing heat losses from the covered area to zero. Converting heat losses of approximately 37.8 W to heat gain, results in a 40.4-64.4 W change in heat balance. The differences between the systems result from different heat exchange coefficients and different mean temperature gradients. However, the combination of a high heat exchange coefficient with a high mean temperature gradient is rare. This fact offers some possibility to improve these systems.

  6. Biomimetic Gradient Polymers with Enhanced Damping Capacities.

    PubMed

    Wang, Dong; Zhang, Huan; Guo, Jing; Cheng, Beichen; Cao, Yuan; Lu, Shengjun; Zhao, Ning; Xu, Jian

    2016-04-01

    Designing gradient structures, mimicking biological materials, such as pummelo peels and tendon, is a promising strategy for developing advanced materials with superior energy damping capacities. Here a facile and effective approach for fabricating polymers with composition gradients at millimeter length scale is presented. The gradient thiol-ene polymers (TEPs) are created by the use of density difference of ternary thiol-ene-ene precursors and the subsequent photo-crosslinking via thiol-ene reaction. The compositional gradients are analyzed via differential scanning calorimeter (DSC), compressive modulus testing, atomic force microscopy (AFM) indentation, and swelling measurements. In contrast to homogeneous TEPs networks, the resultant gradient polymer shows a broader effective damping temperature range combining with good mechanical properties. The present result provides an effective route toward high damping materials by the fabrication of gradient structures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Application of radiometric force to microactuation and energy transformation

    NASA Astrophysics Data System (ADS)

    Selden, Nathaniel; Gimelshein, Natalia; Gimelshein, Sergey; Ketsdever, Andrew

    2012-11-01

    The force that acts on a thin vane immersed in rarefied gas when a temperature gradient is imposed along or across the vane has historically been known as the Radiometric force. First observed by Fresnel in 1825, the radiometric force has regained its former popularity in recent decades due to the advent of micro-machines, where a transitional flow regime can occur at atmospheric pressures. Whether used for its force potential or simply viewed as a nuisance, this force cannot be ignored in micro-devices where thermal gradients exist. Potential applications of radiometric force now span from atomic force microscopy to astrophysics to high altitude flight. This paper describes an application of these forces to a conceptual micro-scale energy harvester, where two possible geometries of operation are described. It is shown that one configuration is significantly simpler to fabricate while the other geometry is more efficient at producing larger forces. The effect of pressure, feature separation, and feature-to-ring gap are analyzed. For consistency and the accurate treatment of the relevant flow conditions, an implementation of the SMOKE code that solves the ES BGK equation was used in all computations.

  8. Novel concepts in near-field optics: from magnetic near-field to optical forces

    NASA Astrophysics Data System (ADS)

    Yang, Honghua

    Driven by the progress in nanotechnology, imaging and spectroscopy tools with nanometer spatial resolution are needed for in situ material characterizations. Near-field optics provides a unique way to selectively excite and detect elementary electronic and vibrational interactions at the nanometer scale, through interactions of light with matter in the near-field region. This dissertation discusses the development and applications of near-field optical imaging techniques, including plasmonic material characterization, optical spectral nano-imaging and magnetic field detection using scattering-type scanning near-field optical microscopy (s-SNOM), and exploring new modalities of optical spectroscopy based on optical gradient force detection. Firstly, the optical dielectric functions of one of the most common plasmonic materials---silver is measured with ellipsometry, and analyzed with the Drude model over a broad spectral range from visible to mid-infrared. This work was motivated by the conflicting results of previous measurements, and the need for accurate values for a wide range of applications of silver in plasmonics, optical antennas, and metamaterials. This measurement provides a reference for dielectric functions of silver used in metamaterials, plasmonics, and nanophotonics. Secondly, I implemented an infrared s-SNOM instrument for spectroscopic nano-imaging at both room temperature and low temperature. As one of the first cryogenic s-SNOM instruments, the novel design concept and key specifications are discussed. Initial low-temperature and high-temperature performances of the instrument are examined by imaging of optical conductivity of vanadium oxides (VO2 and V2O 3) across their phase transitions. The spectroscopic imaging capability is demonstrated on chemical vibrational resonances of Poly(methyl methacrylate) (PMMA) and other samples. The third part of this dissertation explores imaging of optical magnetic fields. As a proof-of-principle, the magnetic near-field response of a linear rod antenna is studied with Babinet's principle. Babinet's principle connects the magnetic field of a structure to the electric field of its complement structure. Using combined far- and near-field spectroscopy, imaging, and theory, I identify magnetic dipole and higher order bright and dark magnetic resonances at mid-infrared frequencies. From resonant length scaling and spatial field distributions, I confirm that the theoretical requirement of Babinet's principle for a structure to be infinitely thin and perfectly conducting is still fulfilled to a good approximation in the mid-infrared. Thus Babinet's principle provides access to spatial and spectral magnetic field properties, leading to targeted design and control of magnetic optical antennas. Lastly, a novel form of nanoscale optical spectroscopy based on mechanical detection of optical gradient force is explored. It is to measure the optical gradient force between induced dipole moments of a sample and an atomic force microscope (AFM) tip. My study provides the theoretical basis in terms of spectral behavior, resonant enhancement, and distance dependence of the optical gradient force from numerical simulations for a coupled nanoparticle model geometry. I show that the optical gradient force is dispersive for local electronic and vibrational resonances, yet can be absorptive for collective polaronic excitations. This spectral behavior together with the distance dependence scaling provides the key characteristics for its measurement and distinction from competing processes such as thermal expansion. Furthermore, I provide a perspective for resonant enhancement and control of optical forces in general.

  9. Flux lattice imaging of a patterned niobium thin film

    NASA Astrophysics Data System (ADS)

    Roseman, M.; Grütter, P.; Badía, A.; Metlushko, V.

    2001-06-01

    Using our cryogenic magnetic force microscope, we have investigated a superconducting Nb thin film, 100 nm in thickness with Tc˜6.5 K. The film is patterned with a square array (1 μm×1 μm) of antidots, which serve as artificial pinning centers for magnetic flux. We have observed flux lattice matching as a function of applied magnetic field and temperature, for field strengths up to the third matching field, with evidence of flux dragging by the tip around the antidots. Force gradient distance curves acquired at temperatures about Tc clearly demonstrate an observable Meissner force between tip and sample, and allow for an estimation of the magnetic screening penetration depth.

  10. AO/NAO Response to Climate Change. 2; Relative Importance of Low- and High-Latitude Temperature Changes

    NASA Technical Reports Server (NTRS)

    Rind, D.; Perlwitz, J.; Lonergan, P.; Lerner, J.

    2005-01-01

    Using a variety of GCM experiments with various versions of the GISS model, we investigate how different aspects of tropospheric climate changes affect the extratropical Arctic Oscillation (AO)/North Atlantic Oscillation (NAO) circulation indices. The results show that low altitude changes in the extratropical latitudinal temperature gradient can have a strong impact on eddy forcing of the extratropical zonal wind, in the sense that when this latitudinal temperature gradient increases, it helps force a more negative AO/NAO phase. In addition, local conditions at high latitudes can stabilize/destabilize the atmosphere, inducing negative/positive phase changes. To the extent that there is not a large temperature change in the tropical upper troposphere (either through reduced tropical sensitivity at the surface, or limited transport of this change to high levels), the changes in the low level temperature gradient can provide the dominate influence on the extratropical circulation, so that planetary wave meridional refraction and eddy angular momentum transport changes become uncorrelated with potential vorticity transports. In particular, the climate change that produces the most positive NAO phase change would have substantial warming in the tropical upper troposphere over the Pacific Ocean, with high latitude warming in the North Atlantic. An increase in positive phase of these circulation indices is still more likely than not, but it will depend on the degree of tropical and high latitude temperature response and the transport of low level warming into the upper troposphere. These are aspects that currently differ among the models used for predicting the effects of global warning, contributing to the lack of consensus of future changes in the AO/NAO.

  11. The covariance of temperature and ozone due to planetary-wave forcing

    NASA Technical Reports Server (NTRS)

    Fraser, G. J.

    1976-01-01

    The cross-spectra of temperature and ozone mass mixing ratio at 42 km and 28 km has been determined for spring (1971) and summer (1971-2) over Christchurch, New Zealand (44 S, 172 E). The sources of data are the SCR and BUV experiments on Nimbus 4. The observed covariances are compared with a model in which the temperature and ozone perturbations are forced by an upward propagating planetary wave. The agreement between the observations and the model is reasonable. It is suggested that this cross-spectral method permits an estimate of the meridional gradient of ozone mass mixing ratio from measurements of the vertical profile of ozone mass mixing ratio at one location, supported by temperature profiles from at least two locations.

  12. Exploiting the Temperature Dependence of Magnetic Susceptibility to Control Convection in Fundamental Studies of Solidification Phenomena

    NASA Technical Reports Server (NTRS)

    Seybert, C. D.; Evans, J. W.; Leslie, Fred; Jones, W. K., Jr.

    2000-01-01

    It is well known that convection is a dominant mass transport mechanism when materials are solidified on Earth's surface. This convection is caused by gradients in density (and therefore gravitational force) that are brought about by gradients in temperature, composition or both. Diffusion of solute is therefore dwarfed by convection and the study of fundamental parameters, such as dendrite tip shape and growth velocity in the absence of convection is nearly impossible. Significant experimental work has therefore been carried out in orbiting laboratories with the intent of minimizing convection by minimizing gravity. One of the best known experiments of this kind is the Isothermal Dendritic Growth Experiment (IDGE), supported by NASA. Naturally such experiments are costly and one objective of the present investigation is to develop an experimental method whereby convection can be- halted, in solidification and other experiments, on the surface. A second objective is to use the method to minimize convection resulting from the residual accelerations suffered by experiments in microgravity. The method to be used to minimize convection relies on the dependence of the magnetic susceptibility of a fluid on temperature or composition (whichever is driving convection). All materials experience a force when placed in a magnetic field gradient. The direction and magnitude of that force depend on the magnetic susceptibility of the material. Consequently the force will vary if the susceptibility varies with temperature or composition. With a magnetic field gradient in the right direction (typically upward) and of the right magnitude, this variation in the magnetic force can be made to exactly cancel the variation in the gravitational force. Expressed another way, normal buoyancy is exactly countered by a "magnetic buoyancy". To demonstrate the principle, a solution of MnC12 in water has been used. First the variation of the susceptibility of this paramagnetic solution with temperature and concentration was measured. Then a "cell", containing this solution and 50mm long by 15mm high by 155mm wide, was placed in a superconducting magnet at Marshall Space Flight Center. The magnetic field was measured at various positions within the bore of the magnet using a Hall effect probe. In this way, a position was found where the magnetic field gradient was predominantly upward; the magnitude of the gradient could then be adjusted by adjusting the current of the magnet. The ends of the cell consisted of machined copper blocks maintained at controlled temperatures by circulating water from constant temperature baths. The walls of the cell were of rectangular section glass tubing so that the cell contents could be seen. Velocities arising from thermal gradients within the cell were measured by particle image velocimetry (PIV). Particles used for this purpose were silver-coated hollow glass spheres of micrometers diameter and nearly the same density as the solution. A central vertical plane of the cell was illuminated by a laser beam passing through a cylindrical lens. Digital images of the particles were captured on a CCD camera and fed to a computer so that frame-to-frame movements of particles traveling with the fluid were captured. These images were employed to compute velocity maps using commercial PIV software. In a typical experiment the cold end of the cell was maintained at 10C and the warm end at 30 C. With no current in the magnet, i.e.- with natural -convection allowed to occur, the fluid was observed to circulate with an average speed of approximately 0.3 millimeters per second. It was visually apparent that this circulation was diminished as the current was increased. At currents of approximately 20A the flow was halted, to within the precision of the PIV measurements. At yet higher currents the convection was reversed with the hotter solution sinking and the cooler solution rising. At 40A this reversed convection had speeds averaging 0.43 millimeters per second. The measurements of susceptibility and density allow an estimate of the field gradient necessary to halt convection in the experiment. That estimate was 7.8T (squared) per meter and the convection was observed to halt in the magnet at a current giving 7.21T (squared) per meter from the magnetic field measurements. Calculations of the flow have been carried out using the computational fluid dynamics software FLUENT and show good agreement with the measurements.

  13. Was That Assumption Necessary? Reconsidering Boundary Conditions for Analytical Solutions to Estimate Streambed Fluxes

    NASA Astrophysics Data System (ADS)

    Luce, Charles H.; Tonina, Daniele; Applebee, Ralph; DeWeese, Timothy

    2017-11-01

    Two common refrains about using the one-dimensional advection diffusion equation to estimate fluid fluxes and thermal conductivity from temperature time series in streambeds are that the solution assumes that (1) the surface boundary condition is a sine wave or nearly so, and (2) there is no gradient in mean temperature with depth. Although the mathematical posing of the problem in the original solution to the problem might lead one to believe these constraints exist, the perception that they are a source of error is a fallacy. Here we develop a mathematical proof demonstrating the equivalence of the solution as developed based on an arbitrary (Fourier integral) surface temperature forcing when evaluated at a single given frequency versus that derived considering a single frequency from the beginning. The implication is that any single frequency can be used in the frequency-domain solutions to estimate thermal diffusivity and 1-D fluid flux in streambeds, even if the forcing has multiple frequencies. This means that diurnal variations with asymmetric shapes or gradients in the mean temperature with depth are not actually assumptions, and deviations from them should not cause errors in estimates. Given this clarification, we further explore the potential for using information at multiple frequencies to augment the information derived from time series of temperature.

  14. Influence of permittivity on gradient force exerted on Mie spheres.

    PubMed

    Chen, Jun; Li, Kaikai; Li, Xiao

    2018-04-01

    In optical trapping, whether a particle could be stably trapped into the focus region greatly depends on the strength of the gradient force. Individual theoretical study on gradient force exerted on a Mie particle is rare because the mathematical separation of the gradient force and the scattering force in the Mie regime is difficult. Based on the recent forces separation work by Du et al. [Sci. Rep.7, 18042 (2017)SRCEC32045-232210.1038/s41598-017-17874-1], we investigate the influence of permittivity (an important macroscopic physical quantity) on the gradient force exerted on a Mie particle by cooperating numerical calculation using fast Fourier transform and analytical analysis using multipole expansion. It is revealed that gradient forces exerted on small spheres are mainly determined by the electric dipole moment except for certain permittivity with which the real part of polarizability of the electric dipole approaches zero, and gradient forces exerted on larger spheres are complex because of the superposition of the multipole moments. The classification of permittivity corresponding to different varying tendencies of gradient forces exerted on small spheres or larger Mie particles are illustrated. Absorption of particles favors the trapping of small spheres by gradient force, while it is bad for the trapping of larger particles. Moreover, the absolute values of the maximal gradient forces exerted on larger Mie particles decline greatly versus the varied imaginary part of permittivity. This work provides elaborate investigation on the different varying tendencies of gradient forces versus permittivity, which favors more accurate and free optical trapping.

  15. Variability of the western Galician upwelling system (NW Spain) during an intensively sampled annual cycle. An EOF analysis approach

    NASA Astrophysics Data System (ADS)

    Herrera, J. L.; Rosón, G.; Varela, R. A.; Piedracoba, S.

    2008-07-01

    The key features of the western Galician shelf hydrography and dynamics are analyzed on a solid statistical and experimental basis. The results allowed us to gather together information dispersed in previous oceanographic works of the region. Empirical orthogonal functions analysis and a canonical correlation analysis were applied to a high-resolution dataset collected from 47 surveys done on a weekly frequency from May 2001 to May 2002. The main results of these analyses are summarized bellow. Salinity, temperature and the meridional component of the residual current are correlated with the relevant local forcings (the meridional coastal wind component and the continental run-off) and with a remote forcing (the meridional temperature gradient at latitude 37°N). About 80% of the salinity and temperature total variability over the shelf, and 37% of the residual meridional current total variability are explained by two EOFs for each variable. Up to 22% of the temperature total variability and 14% of the residual meridional current total variability is devoted to the set up of cross-shore gradients of the thermohaline properties caused by the wind-induced Ekman transport. Up to 11% and 10%, respectively, is related to the variability of the meridional temperature gradient at the Western Iberian Winter Front. About 30% of the temperature total variability can be explained by the development and erosion of the seasonal thermocline and by the seasonal variability of the thermohaline properties of the central waters. This thermocline presented unexpected low salinity values due to the trapping during spring and summer of the high continental inputs from the River Miño recorded in 2001. The low salinity plumes can be traced on the Galician shelf during almost all the annual cycle; they tend to be extended throughout the entire water column under downwelling conditions and concentrate in the surface layer when upwelling favourable winds blow. Our evidences point to the meridional temperature gradient acting as an important controlling factor of the central waters thermohaline properties and in the development and decay of the Iberian Poleward Current.

  16. High-temperature calibration of a multi-anvil high pressure apparatus

    NASA Astrophysics Data System (ADS)

    Sokol, Alexander G.; Borzdov, Yury M.; Palyanov, Yury N.; Khokhryakov, Alexander F.

    2015-04-01

    Fusion and solidification of Al and Ag samples, as well as Fe93-Al3-C4, Fe56-Co37-Al3-C4, and Fe57.5-Co38-Al1-Pb0.5-C3 alloys (in wt%), have been investigated at 6.3 GPa. Heater power jumps due to heat consumption and release on metal fusion and solidification, respectively, were used to calibrate the thermal electromotive force of the thermocouple against the melting points (mp) for Ag and Al. Thus, obtained corrections are +100°C (for sample periphery) and +65°C (center) within the 1070-1320°C range. For small samples positioned randomly in the low-gradient zone of a high pressure cell, the corrections should be +80°C and +84°C at the temperatures 1070°C and 1320°C, respectively. The temperature contrast recorded in the low-gradient cell zone gives an error about ±17°C. The method has been applied to identify the mp of the systems, which is especially important for temperature-gradient growth of large type IIa synthetic diamonds.

  17. Coral record of southeast Indian Ocean marine heatwaves with intensified Western Pacific temperature gradient

    PubMed Central

    Zinke, J.; Hoell, A.; Lough, J. M.; Feng, M.; Kuret, A. J.; Clarke, H.; Ricca, V.; Rankenburg, K.; McCulloch, M. T.

    2015-01-01

    Increasing intensity of marine heatwaves has caused widespread mass coral bleaching events, threatening the integrity and functional diversity of coral reefs. Here we demonstrate the role of inter-ocean coupling in amplifying thermal stress on reefs in the poorly studied southeast Indian Ocean (SEIO), through a robust 215-year (1795–2010) geochemical coral proxy sea surface temperature (SST) record. We show that marine heatwaves affecting the SEIO are linked to the behaviour of the Western Pacific Warm Pool on decadal to centennial timescales, and are most pronounced when an anomalously strong zonal SST gradient between the western and central Pacific co-occurs with strong La Niña's. This SST gradient forces large-scale changes in heat flux that exacerbate SEIO heatwaves. Better understanding of the zonal SST gradient in the Western Pacific is expected to improve projections of the frequency of extreme SEIO heatwaves and their ecological impacts on the important coral reef ecosystems off Western Australia. PMID:26493738

  18. Coral record of southeast Indian Ocean marine heatwaves with intensified Western Pacific temperature gradient.

    PubMed

    Zinke, J; Hoell, A; Lough, J M; Feng, M; Kuret, A J; Clarke, H; Ricca, V; Rankenburg, K; McCulloch, M T

    2015-10-23

    Increasing intensity of marine heatwaves has caused widespread mass coral bleaching events, threatening the integrity and functional diversity of coral reefs. Here we demonstrate the role of inter-ocean coupling in amplifying thermal stress on reefs in the poorly studied southeast Indian Ocean (SEIO), through a robust 215-year (1795-2010) geochemical coral proxy sea surface temperature (SST) record. We show that marine heatwaves affecting the SEIO are linked to the behaviour of the Western Pacific Warm Pool on decadal to centennial timescales, and are most pronounced when an anomalously strong zonal SST gradient between the western and central Pacific co-occurs with strong La Niña's. This SST gradient forces large-scale changes in heat flux that exacerbate SEIO heatwaves. Better understanding of the zonal SST gradient in the Western Pacific is expected to improve projections of the frequency of extreme SEIO heatwaves and their ecological impacts on the important coral reef ecosystems off Western Australia.

  19. Entropy generation in a mixed convection Poiseulle flow of molybdenum disulphide Jeffrey nanofluid

    NASA Astrophysics Data System (ADS)

    Gul, Aaiza; Khan, Ilyas; Makhanov, Stanislav S.

    2018-06-01

    Entropy analysis in a mixed convection Poiseulle flow of a Molybdenum Disulphide Jeffrey Nanofluid (MDJN) is presented. Mixed convection is caused due to buoyancy force and external pressure gradient. The problem is formulated in terms of a boundary value problem for a system of partial differential equations. An analytical solution for the velocity and the temperature is obtained using the perturbation technique. Entropy generation has been derived as a function of the velocity and temperature gradients. The solutions are displayed graphically and the relevant importance of the input parameters is discussed. A Jeffrey nanofluid (JN) has been compared with a second grade nanofluid (SGN) and Newtonian nanofluid (NN). It is found that the entropy generation decreases when the temperature increases whereas increasing the Brickman number increases entropy generation.

  20. Buoyancy-Marangoni convection in confined volatile binary fluids subject to a horizontal temperature gradient

    NASA Astrophysics Data System (ADS)

    Qin, Tongran; Grigoriev, Roman

    2017-11-01

    We consider convection in a layer of binary fluid with free surface subject to a horizontal temperature gradient in the presence of noncondensable gases, which is driven by a combination of three different forces: buoyancy, thermocapillarity, and solutocapillarity. Unlike buoyancy, both thermo- and solutocapillary stresses depend sensitively on the local phase equilibrium at the liquid-gas interface. In particular, thermocapillarity associated with the interfacial temperature gradient is controlled by the vapors' concentration along the interface, and solutocapillarity associated with the interfacial concentration gradient is controlled by differential phase change of two components of the liquid, which is strongly influenced by the presence of noncondensables. Therefore, flows in both phases, phase change, and effect of noncondensables all have to be considered. Numerical simulations based on a comprehensive model taking these effects into account show qualitative agreement with recent experiments which identified a number of flow regimes at various compositions of both phases. In particular,we find that the composition of both the gas and liquid phase have a significant effect on the observed convection patterns; this dependence can be understood using a simple analytical model. This material is based upon work supported by the National Science Foundation under Grant No. 1511470.

  1. Using the Weak-Temperature Gradient Approximation to Evaluate Parameterizations: An Example of the Transition From Suppressed to Active Convection

    NASA Astrophysics Data System (ADS)

    Daleu, C. L.; Plant, R. S.; Woolnough, S. J.

    2017-10-01

    Two single-column models are fully coupled via the weak-temperature gradient approach. The coupled-SCM is used to simulate the transition from suppressed to active convection under the influence of an interactive large-scale circulation. The sensitivity of this transition to the value of mixing entrainment within the convective parameterization is explored. The results from these simulations are compared with those from equivalent simulations using coupled cloud-resolving models. Coupled-column simulations over nonuniform surface forcing are used to initialize the simulations of the transition, in which the column with suppressed convection is forced to undergo a transition to active convection by changing the local and/or remote surface forcings. The direct contributions from the changes in surface forcing are to induce a weakening of the large-scale circulation which systematically modulates the transition. In the SCM, the contributions from the large-scale circulation are dominated by the heating effects, while in the CRM the heating and moistening effects are about equally divided. A transition time is defined as the time when the rain rate in the dry column is halfway to the value at equilibrium after the transition. For the control value of entrainment, the order of the transition times is identical to that obtained in the CRM, but the transition times are markedly faster. The locally forced transition is strongly delayed by a higher entrainment. A consequence is that for a 50% higher entrainment the transition times are reordered. The remotely forced transition remains fast while the locally forced transition becomes slow, compared to the CRM.

  2. Understanding the drivers of Amazonian evapotranspiration (ET) change in response to increased CO2.

    NASA Astrophysics Data System (ADS)

    Halladay, Kate; Good, Peter

    2016-04-01

    Earth system models allow us to examine the complex interactions and feedbacks between land surface, vegetation and atmosphere. A more thorough understanding of these interactions is essential in reducing uncertainty surrounding the potential impacts of climate and environmental change on the hydrological cycle and the future state and extent of the Amazon rainforest. With HadGEM2-ES simulations from CMIP5 in which CO2 is increased at 1% per year starting from pre-industrial concentrations and reaching 4 times that after 140 years, we separate the various drivers and processes controlling ET in western Amazonia. The design of these simulations allows for radiative and physiological forcings to be examined separately and in combination, and the degree to which the combination of forcings is additive or non-linear. We consider ET as a product of the moisture gradient between the surface and the boundary layer and a conductance term, which includes terms limiting the evaporation from stomata and from the canopy. We find that aside from the direct effects of radiative and physiological forcing, there are a number of other processes occurring: 1) reductions in ET alter the surface energy budget leading to increases in moisture gradient which drive increases in ET, 2) additional reductions in stomatal conductance when surface temperatures exceed optimum temperature for photosynthesis, leading to greater decreases in ET between 2 and 4 times pre-industrial CO2, 3) negative correlation between moisture gradient and conductance terms leads to additional decreases in ET, 4) decreases in canopy water content increases the importance of stomatal conductance which also drives decreases in ET. A combination of these processes leads to non-linear decreases in ET between 2 and 4 times pre-industrial CO2 when both radiative and physiological forcings are operating. These results indicate a major role physiological forcing in the hydrological cycle of Amazonia, highlight the potential for differences in offline and models in terms of the hydrological cycle and land surface feedbacks, and the need to reduce uncertainty in the modelling the response of stomatal conductance to high temperatures.

  3. Similar solutions of double-diffusive dissipative layers along free surfaces

    NASA Astrophysics Data System (ADS)

    Napolitano, L. G.; Viviani, A.; Savino, R.

    1990-10-01

    Free convection due to buoyant forces (natural convection) and surface tension gradients (Marangoni convection) generated by temperature and concentration gradients is discussed together with the formation of double-diffusive boundary layers along liquid-gas interfaces. Similarity solutions for each class of free convection are derived and the resulting nonlinear two-point problems are solved numerically using the quasi-linearization method. Velocity, temperature, concentration profiles, interfacial velocity, heat and mass transfer bulk coefficients for various Prandtl and Schmidt numbers, and different values of the similarity parameters are determined. The convective flows are of particular interest because they are considered to influence the processes of crystal growth, both on earth and in a microgravity environment.

  4. Modeling the influence of a reduced equator-to-pole sea surface temperature gradient on the distribution of water isotopes in the Early/Middle Eocene

    NASA Astrophysics Data System (ADS)

    Speelman, Eveline N.; Sewall, Jacob O.; Noone, David; Huber, Matthew; von der Heydt, Anna; Damsté, Jaap Sinninghe; Reichart, Gert-Jan

    2010-09-01

    Proxy-based climate reconstructions suggest the existence of a strongly reduced equator-to-pole temperature gradient during the Azolla interval in the Early/Middle Eocene, compared to modern. Changes in the hydrological cycle, as a consequence of a reduced temperature gradient, are expected to be reflected in the isotopic composition of precipitation (δD, δ 18O). The interpretation of water isotopic records to quantitatively reconstruct past precipitation patterns is, however, hampered by a lack of detailed information on changes in their spatial and temporal distribution. Using the isotope-enabled version of the National Center for Atmospheric Research (NCAR) atmospheric general circulation model, Community Atmosphere Model v.3 (isoCAM3), relationships between water isotopes and past climates can be simulated. Here we examine the influence of an imposed reduced meridional sea surface temperature gradient on the spatial distribution of precipitation and its isotopic composition in an Early/Middle Eocene setting. As a result of the applied forcings, the Eocene simulation predicts the occurrence of less depleted high latitude precipitation, with δD values ranging only between 0 and -140‰ (compared to Present-day 0 to -300‰). Comparison with Early/Middle Eocene-age isotopic proxy data shows that the simulation accurately captures the main features of the spatial distribution of the isotopic composition of Early/Middle Eocene precipitation over land in conjunction with the aspects of the modeled Early/Middle Eocene climate. Hence, the included stable isotope module quantitatively supports the existence of a reduced meridional temperature gradient during this interval.

  5. Thermophoretic transport of water nanodroplets confined in carbon nanotubes: The role of friction

    NASA Astrophysics Data System (ADS)

    Oyarzua, Elton; Walther, Jens H.; Zambrano, Harvey A.

    2017-11-01

    The development of efficient nanofluidic devices requires driving mechanisms that provide controlled transport of fluids through nanoconduits. Temperature gradients have been proposed as a mechanism to drive particles, fullerenes and nanodroplets inside carbon nanotubes (CNTs). In this work, molecular dynamics (MD) simulations are conducted to study thermophoresis of water nanodroplets inside CNTs. To gain insight into the interplay between the thermophoretic force acting on the droplet and the retarding liquid-solid friction, sets of constrained and unconstrained MD simulations are conducted. The results indicate that the thermophoretic motion of a nanodroplet displays two kinetic regimes: an initial regime characterized by a decreasing acceleration and afterwards a terminal regime with constant velocity. During the initial regime, the magnitude of the friction force increases linearly with the droplet velocity whereas the thermophoretic force has a constant magnitude defined by the magnitude of the thermal gradient and the droplet size. Subsequently, in the terminal regime, the droplet moves at constant velocity due to a dynamic balance between the thermophoretic force and the retarding friction force. We acknowledge partial support from CONICYT (Chile) under scholarship No. 21140427.

  6. Thermal Management Techniques for Oil-Free Turbomachinery Systems

    NASA Technical Reports Server (NTRS)

    Radil, Kevin; DellaCorte, Chris; Zeszotek, Michelle

    2006-01-01

    Tests were performed to evaluate three different methods of utilizing air to provide thermal management control for compliant journal foil air bearings. The effectiveness of the methods was based on bearing bulk temperature and axial thermal gradient reductions during air delivery. The first method utilized direct impingement of air on the inner surface of a hollow test journal during operation. The second, less indirect method achieved heat removal by blowing air inside the test journal to simulate air flowing axially through a hollow, rotating shaft. The third method emulated the most common approach to removing heat by forcing air axially through the bearing s support structure. Internal bearing temperatures were measured with three, type K thermocouples embedded in the bearing that measured general internal temperatures and axial thermal gradients. Testing was performed in a 1 atm, 260 C ambient environment with the bearing operating at 60 krpm and supporting a load of 222 N. Air volumetric flows of 0.06, 0.11, and 0.17 cubic meters per minute at approximately 150 to 200 C were used. The tests indicate that all three methods provide thermal management but at different levels of effectiveness. Axial cooling of the bearing support structure had a greater effect on bulk temperature for each air flow and demonstrated that the thermal gradients could be influenced by the directionality of the air flow. Direct air impingement on the journal's inside surface provided uniform reductions in both bulk temperature and thermal gradients. Similar to the direct method, indirect journal cooling had a uniform cooling effect on both bulk temperatures and thermal gradients but was the least effective of the three methods.

  7. Physical and biogeochemical controls on polymictic behavior in Sierra Nevada stream pools

    NASA Astrophysics Data System (ADS)

    Lucas, R. G.; Conklin, M. H.; Tyler, S. W.; Suarez, F. I.; Moran, J. E.; Esser, B. K.

    2011-12-01

    We observed polymictic behavior in stream pools in a low gradient montane meadow in the southern Sierra Nevada mountains, California. Thermal stratification in stream pools has been observed in various environments; stratification generally persists where the buoyancy forces created by a variation in water density, as a function of water temperature, are able to overcome turbulent forces resulting from stream flow. Because the density gradient creates a relatively weak buoyancy force, low flow conditions are generally required in order to overcome the turbulent forces. In some studies, a cold water source in to the pool bottoms can help to increase the density gradient and perpetuate thermal stratification. Our study took place in Long Meadow, Sequoia National Park, California. Long Meadow lies in the Wolverton Creek watershed and is part of the Southern Sierra Critical Zone Observatory. The 1-4 m diameter and 1-2 m deep pools in our study stratified thermally during the day and mixed completely at night. The low gradient of the meadow provided low stream flows. Piezometers in the meadow indicated groundwater discharge into the meadow in the months during which stratification was observed. Radon 222 activity measured in the pools also indicated groundwater influx to the pool bottoms. We used Fluent, a computational fluid dynamics equation solver, to construct a model of one of the observed pools. Initially we attempted to model the physical mechanisms controlling thermal stratification in the pool including stream flow, groundwater discharge, solar radiation, wind speed, and air, stream and ground water temperatures. Ultimately we found the model best agreed with our observed pool temperatures when we considered the light attenuation coefficients as a function of the dissolve organic carbon (DOC) concentration. Elevated DOC concentrations are expected in low stream flow regimes associated with highly organic soils such as a montane meadow. DOC concentrations measured in samples collected from the meadow stream, pools, and ground water wells ranged from 3.09 to 5.25 mg/L. We used a power equation taken from the literature to vary the visible light attenuation with DOC values measured in the meadow system. Light attenuation coefficients determined from measured DOC concentrations ranged from 0.507 m-1 to 0.899 m-1. The results from our modeling efforts indicate that in low flow streams and rivers elevated concentrations of DOC can increase the potential for thermal stratification in stream pools.

  8. Repeatability of gradient ultrahigh pressure liquid chromatography-tandem mass spectrometry methods in instrument-controlled thermal environments.

    PubMed

    Grinias, James P; Wong, Jenny-Marie T; Kennedy, Robert T

    2016-08-26

    The impact of viscous friction on eluent temperature and column efficiency in liquid chromatography is of renewed interest as the need for pressures exceeding 1000bar to use with columns packed with sub-2μm particles has grown. One way the development of axial and radial temperature gradients that arise due to viscous friction can be affected is by the thermal environment the column is placed in. In this study, a new column oven integrated into an ultrahigh pressure liquid chromatograph that enables both still-air and forced-air operating modes is investigated to find the magnitude of the effect of the axial thermal gradient that forms in 2.1×100mm columns packed with sub-2μm particles in these modes. Temperature increases of nearly 30K were observed when the generated power of the column exceeded 25W/m. The impact of the heating due to viscous friction on the repeatability of peak capacity, elution time, and peak area ratio to an internal standard for a gradient UHPLC-MS/MS method to analyze neurotransmitters was found to be limited. This result indicates that high speed UHPLC-MS/MS gradient methods under conditions of high viscous friction may be possible without the negative effects typically observed with isocratic separations under similar conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Magnetothermal Convection of Water with the Presence or Absence of a Magnetic Force Acting on the Susceptibility Gradient.

    PubMed

    Maki, Syou

    2016-01-01

    Heat transfer of magnetothermal convection with the presence or absence of the magnetic force acting on the susceptibility gradient (fsc) was examined by three-dimensional numerical computations. Thermal convection of water enclosed in a shallow cylindrical vessel (diameter over vessel height = 6.0) with the Rayleigh-Benard model was adopted as the model, under the conditions of Prandtl number 6.0 and Ra number 7000, respectively. The momentum equations of convection were nondimensionalized, which involved the term of fsc and the term of magnetic force acting on the magnetic field gradient (fb). All the computations resulted in axisymmetric steady rolls. The values of the averaged Nu, the averaged velocity components U, V, and W, and the isothermal distributions and flow patterns were almost completely the same, regardless of the presence or absence of the term of fsc. As a result, we found that the effect of fsc was extremely small, although much previous research emphasized the effect with paramagnetic solutions under an unsteady state. The magnitude of fsc depends not only on magnetic conditions (magnitudes of magnetic susceptibility and magnetic flux density), but also on the thermal properties of the solution (thermal conductivity, thermal diffusivity, and viscosity). Therefore the effect of fb becomes dominant on the magnetothermal convection. Active control over the density gradient with temperature will be required to advance heat transfer with the effect of fsc.

  10. Different elution modes and field programming in gravitational field-flow fractionation. III. Field programming by flow-rate gradient generated by a programmable pump.

    PubMed

    Plocková, J; Chmelík, J

    2001-05-25

    Gravitational field-flow fractionation (GFFF) utilizes the Earth's gravitational field as an external force that causes the settlement of particles towards the channel accumulation wall. Hydrodynamic lift forces oppose this action by elevating particles away from the channel accumulation wall. These two counteracting forces enable modulation of the resulting force field acting on particles in GFFF. In this work, force-field programming based on modulating the magnitude of hydrodynamic lift forces was implemented via changes of flow-rate, which was accomplished by a programmable pump. Several flow-rate gradients (step gradients, linear gradients, parabolic, and combined gradients) were tested and evaluated as tools for optimization of the separation of a silica gel particle mixture. The influence of increasing amount of sample injected on the peak resolution under flow-rate gradient conditions was also investigated. This is the first time that flow-rate gradients have been implemented for programming of the resulting force field acting on particles in GFFF.

  11. The Climate Response to Stratospheric Aerosol Geoengineering Can Be Tailored Using Multiple Injection Locations

    NASA Astrophysics Data System (ADS)

    MacMartin, Douglas G.; Kravitz, Ben; Tilmes, Simone; Richter, Jadwiga H.; Mills, Michael J.; Lamarque, Jean-Francois; Tribbia, Joseph J.; Vitt, Francis

    2017-12-01

    By injecting different amounts of SO2 at multiple different latitudes, the spatial pattern of aerosol optical depth (AOD) can be partially controlled. This leads to the ability to influence the climate response to geoengineering with stratospheric aerosols, providing the potential for design. We use simulations from the fully coupled whole-atmosphere chemistry climate model CESM1(WACCM) to demonstrate that by appropriately combining injection at just four different locations, 30°S, 15°S, 15°N, and 30°N, then three spatial degrees of freedom of AOD can be achieved: an approximately spatially uniform AOD distribution, the relative difference in AOD between Northern and Southern Hemispheres, and the relative AOD in high versus low latitudes. For forcing levels that yield 1-2°C cooling, the AOD and surface temperature response are sufficiently linear in this model so that the response to different combinations of injection at different latitudes can be estimated from single-latitude injection simulations; nonlinearities associated with both aerosol growth and changes to stratospheric circulation will be increasingly important at higher forcing levels. Optimized injection at multiple locations is predicted to improve compensation of CO2-forced climate change relative to a case using only equatorial aerosol injection (which overcools the tropics relative to high latitudes). The additional degrees of freedom can be used, for example, to balance the interhemispheric temperature gradient and the equator to pole temperature gradient in addition to the global mean temperature. Further research is needed to better quantify the impacts of these strategies on changes to long-term temperature, precipitation, and other climate parameters.

  12. On Thermodiffusion and Gauge Transformations for Thermodynamic Fluxes and Driving Forces

    NASA Astrophysics Data System (ADS)

    Goldobin, D. S.

    2017-12-01

    We discuss the molecular diffusion transport in infinitely dilute liquid solutions under nonisothermal conditions. This discussion is motivated by an occurring misinterpretation of thermodynamic transport equations written in terms of chemical potential in the presence of temperature gradient. The transport equations contain the contributions owned by a gauge transformation related to the fact that chemical potential is determined up to the summand of form ( AT + B) with arbitrary constants A and B, where constant A is owned by the entropy invariance with respect to shifts by a constant value and B is owned by the potential energy invariance with respect to shifts by a constant value. The coefficients of the cross-effect terms in thermodynamic fluxes are contributed by this gauge transformation and, generally, are not the actual cross-effect physical transport coefficients. Our treatment is based on consideration of the entropy balance and suggests a promising hint for attempts of evaluation of the thermal diffusion constant from the first principles. We also discuss the impossibility of the "barodiffusion" for dilute solutions, understood in a sense of diffusion flux driven by the pressure gradient itself. When one speaks of "barodiffusion" terms in literature, these terms typically represent the drift in external potential force field (e.g., electric or gravitational fields), where in the final equations the specific force on molecules is substituted with an expression with the hydrostatic pressure gradient this external force field produces. Obviously, the interpretation of the latter as barodiffusion is fragile and may hinder the accounting for the diffusion fluxes produced by the pressure gradient itself.

  13. The role of clouds in early Pliocene warmth

    NASA Astrophysics Data System (ADS)

    Burls, N.; Fedorov, A. V.

    2013-12-01

    The climate of the early Pliocene (4-5 million years ago) presents a challenging puzzle to climate scientists - although the Earth experienced atmospheric CO2 concentrations similar to the elevated levels seen today, many climate characteristics in both low to high latitudes were very different. In particular, a salient feature of the modern climate, the pronounced cold tongues on the eastern sides of the Pacific and Atlantic equatorial basins, were much weaker. At the same time the ocean meridional (equator-to-pole) temperature gradient was also reduced. However, state-of-the-art coupled general circulation models forced with elevated CO2 concentrations and reconstructed Pliocene boundary conditions fail to capture the full extent of warming in the equatorial cold tongues and high-latitude regions relative to present-day conditions, and hence the corresponding reduction in meridional and zonal sea surface temperature gradients suggested by paleoclimatic evidence (as reviewed by Fedorov et al., 2013, Nature 496). A number of physical processes unresolved or underestimated by these models have been proposed as a contributing factor or a potential driving force resulting in these differences. Amongst the proposed hypotheses is the idea that different cloud properties might be the key to the Pliocene puzzle. In this study we demonstrate how a modified spatial distribution in cloud albedo could have been responsible for sustaining Pliocene climate. In particular, we show that a reduction in the meridional gradient in cloud albedo can sustain reduced meridional and zonal gradients in sea surface temperature, an expanded warm pool in the ocean, weaker Hadley and Walker circulations in the atmosphere, and amplified high-latitude warming. Having conducted a range of modified cloud albedo experiments, we arrive at our Pliocene simulation, which shows an excellent agreement with proxy sea surface temperature data from the major equatorial and coastal upwelling regions, the tropical warm pool, and the mid- and high- latitudes. A good agreement is also achieved with available subsurface temperature data. Within this simulated early Pliocene state, we explore the major climatic features such as ENSO and the Atlantic meridional overturning circulation (AMOC).

  14. Combined use of heat and saline tracer to estimate aquifer properties in a forced gradient test

    NASA Astrophysics Data System (ADS)

    Colombani, N.; Giambastiani, B. M. S.; Mastrocicco, M.

    2015-06-01

    Usually electrolytic tracers are employed for subsurface characterization, but the interpretation of tracer test data collected by low cost techniques, such as electrical conductivity logging, can be biased by cation exchange reactions. To characterize the aquifer transport properties a saline and heat forced gradient test was employed. The field site, located near Ferrara (Northern Italy), is a well characterized site, which covers an area of 200 m2 and is equipped with a grid of 13 monitoring wells. A two-well (injection and pumping) system was employed to perform the forced gradient test and a straddle packer was installed in the injection well to avoid in-well artificial mixing. The contemporary continuous monitor of hydraulic head, electrical conductivity and temperature within the wells permitted to obtain a robust dataset, which was then used to accurately simulate injection conditions, to calibrate a 3D transient flow and transport model and to obtain aquifer properties at small scale. The transient groundwater flow and solute-heat transport model was built using SEAWAT. The result significance was further investigated by comparing the results with already published column experiments and a natural gradient tracer test performed in the same field. The test procedure shown here can provide a fast and low cost technique to characterize coarse grain aquifer properties, although some limitations can be highlighted, such as the small value of the dispersion coefficient compared to values obtained by natural gradient tracer test, or the fast depletion of heat signal due to high thermal diffusivity.

  15. Thermally tailored gradient topography surface on elastomeric thin films.

    PubMed

    Roy, Sudeshna; Bhandaru, Nandini; Das, Ritopa; Harikrishnan, G; Mukherjee, Rabibrata

    2014-05-14

    We report a simple method for creating a nanopatterned surface with continuous variation in feature height on an elastomeric thin film. The technique is based on imprinting the surface of a film of thermo-curable elastomer (Sylgard 184), which has continuous variation in cross-linking density introduced by means of differential heating. This results in variation of viscoelasticity across the length of the surface and the film exhibits differential partial relaxation after imprinting with a flexible stamp and subjecting it to an externally applied stress for a transient duration. An intrinsic perfect negative replica of the stamp pattern is initially created over the entire film surface as long as the external force remains active. After the external force is withdrawn, there is partial relaxation of the applied stresses, which is manifested as reduction in amplitude of the imprinted features. Due to the spatial viscoelasticity gradient, the extent of stress relaxation induced feature height reduction varies across the length of the film (L), resulting in a surface with a gradient topography with progressively varying feature heights (hF). The steepness of the gradient can be controlled by varying the temperature gradient as well as the duration of precuring of the film prior to imprinting. The method has also been utilized for fabricating wettability gradient surfaces using a high aspect ratio biomimetic stamp. The use of a flexible stamp allows the technique to be extended for creating a gradient topography on nonplanar surfaces as well. We also show that the gradient surfaces with regular structures can be used in combinatorial studies related to pattern directed dewetting.

  16. Enhancement of non-CO2 radiative forcing via intensified carbon cycle feedbacks

    NASA Astrophysics Data System (ADS)

    MacDougall, Andrew H.; Knutti, Reto

    2016-06-01

    The global carbon cycle is sensitive to changes in global temperature and atmospheric CO2 concentration, with increased temperature tending to reduce the efficiency of carbon sinks and increased CO2 enhancing the efficiency of carbon sinks. The emission of non-CO2 greenhouse gases warms the Earth but does not induce the CO2 fertilization effect or increase the partial-pressure gradient between the atmosphere and the surface ocean. Here we present idealized climate model experiments that explore the indirect interaction between non-CO2 forcing and the carbon cycle. The experiments suggest that this interaction enhances the warming effect of the non-CO2 forcing by up to 25% after 150 years and that much of the warming caused by these agents lingers for over 100 years after the dissipation of the non-CO2 forcing. Overall, our results suggest that the longer emissions of non-CO2 forcing agents persists the greater effect these agents will have on global climate.

  17. Geothermal studies at Kirtland Air Force Base, Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riddle, L.; Grant, B.

    Due to an effort by government installations to discontinue use of natural gas, alternative energy sources are being investigated at Kirtland Air Force Base, Albuquerque, New Mexico. New Mexico has geologic characteristics favorable for geothermal energy utilization. Local heat flow and geochemical studies indicate a normal subsurface temperature regime. The alluvial deposits, however, extend to great depths where hot fluids, heated by the normal geothermal gradient, could be encountered. Two potential models for tapping geothermal energy are presented: the basin model and the fault model.

  18. An analysis of the effects of temperatures and circulations on the strength of the low-level jet in the Turkana Channel in East Africa

    NASA Astrophysics Data System (ADS)

    Hartman, Adam T.

    2018-05-01

    The Turkana Low-Level Jet (LLJ) was discovered in the early 1980s, yet there are still questions about the primary forcing mechanisms that drive and sustain the jet throughout the year. A few studies have addressed these questions, but most focus on numerical simulations of mechanical forcing mechanisms, such as orography, channeling flow, and monsoon background flow. No studies have shown the effects of thermal forcing from differential heating in the regions in and around the Turkana Channel. This paper uses National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) data and the National Aeronautics and Space Administration (NASA) Modern-Era Retrospective Analysis for Research and Applications (MERRA) data in order to analyze and find relationships between temperature gradients and the strength of the Turkana LLJ. In addition to temperature, potential temperature, divergence, wind magnitude, wind fields, and vertical motion are also examined. This analysis attempts to show that thermal forcing is one of the most important factors, if not the primary factor, in the initiation and maintenance of the jet and propose that more research and model simulations should be implemented to determine the contributions from thermal forcing.

  19. Synthesis of chalcogenide and pnictide crystals in salt melts using a steady-state temperature gradient

    NASA Astrophysics Data System (ADS)

    Chareev, D. A.; Volkova, O. S.; Geringer, N. V.; Koshelev, A. V.; Nekrasov, A. N.; Osadchii, V. O.; Osadchii, E. G.; Filimonova, O. N.

    2016-07-01

    Some examples of growing crystals of metals, alloys, chalcogenides, and pnictides in melts of halides of alkali metals and aluminum at a steady-state temperature gradient are described. Transport media are chosen to be salt melts of eutectic composition with the participation of LiCl, NaCl, KCl, RbCl, CsCl, AlCl3, AlBr3, KBr, and KI in a temperature range of 850-150°C. Some crystals have been synthesized only using a conducting contour. This technique of crystal growth is similar to the electrochemical method. In some cases, to exclude mutual influence, some elements have been isolated and forced to migrate to the crystal growth region through independent channels. As a result, crystals of desired quality have been obtained using no special equipment and with sizes sufficient for study under laboratory conditions.

  20. Investigation of thermocapillary convection in a three-liquid-layer system

    NASA Astrophysics Data System (ADS)

    Géoris, Ph.; Hennenberg, M.; Lebon, G.; Legros, J. C.

    1999-06-01

    This paper presents the first experimental results on Marangoni Bénard instability in a symmetrical three-layer system. A pure thermocapillary phenomenon has been observed by performing the experiment in a microgravity environment where buoyancy forces can be neglected. This configuration enables the hydrodynamic stability of two identical liquid liquid interfaces subjected to a normal gradient of temperature to be studied. The flow is driven by one interface only and obeys the criterion based on the heat diffusivity ratio proposed by Scriven & Sternling (1959) and Smith (1966). The measured critical temperature difference for the onset of convection is compared to the value obtained from two-dimensional numerical simulations. The results of the simulations are in reasonable agreement with the velocimetry and the thermal experimental data for moderate supercriticality. Numerically and experimentally, the convective pattern exhibits a transition between different convective regimes for similar temperature gradients. Their common detailed features are discussed.

  1. Simulation of the temperature distribution in crystals grown by Czochralski method

    NASA Technical Reports Server (NTRS)

    Dudokovic, M. P.; Ramachandran, P. A.

    1985-01-01

    Production of perfect crystals, free of residual strain and dislocations and with prescribed dopant concentration, by the Czochralski method is possible only if the complex, interacting phenomena that affect crystal growth in a Cz-puller are fully understood and quantified. Natural and forced convection in the melt, thermocapillary effect and heat transfer in and around the crystal affect its growth rate, the shape of the crystal-melt interface and the temperature gradients in the crystal. The heat transfer problem in the crystal and between the crystal and all other surfaces present in the crystal pulling apparatus are discussed at length. A simulation and computer algorithm are used, based on the following assumptions: (1) only conduction occurs in the crystal (experimentally determined conductivity as a function of temperature is used), (2) melt temperature and the melt-crystal heat transfer coefficient are available (either as constant values or functions of radial position), (3) pseudo-steady state is achieved with respect to temperature gradients, (4) crystal radius is fixed, and (5) both direct and reflected radiation exchange occurs among all surfaces at various temperatures in the crystal puller enclosure.

  2. Lagrangian statistics of mesoscale turbulence in a natural environment: The Agulhas return current.

    PubMed

    Carbone, Francesco; Gencarelli, Christian N; Hedgecock, Ian M

    2016-12-01

    The properties of mesoscale geophysical turbulence in an oceanic environment have been investigated through the Lagrangian statistics of sea surface temperature measured by a drifting buoy within the Agulhas return current, where strong temperature mixing produces locally sharp temperature gradients. By disentangling the large-scale forcing which affects the small-scale statistics, we found that the statistical properties of intermittency are identical to those obtained from the multifractal prediction in the Lagrangian frame for the velocity trajectory. The results suggest a possible universality of turbulence scaling.

  3. Multiple Equilibria Associated with Response of the ITCZ to Seasonal SST Forcing

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.

    1998-01-01

    Supported by numerical experiment results, the abrupt change of the location of the intertropical convergence zone (ITCZ), from the equatorial trough flow regime to the monsoon trough flow regime is interpreted as a subcritical instability. The existence of these multiple quasi-equilibria is due to the balance of two "forces" on the ITCZ: one toward the equator, due to the earth's rotation, has a nonlinear latitudinal dependence; and the other toward the latitude of the sea surface (or ground) temperature peak has a relatively linear latitudinal dependence. This work pivots on the finding that the ITCZ and Hadley circulation can still exist without the pole-to-equator gradient of radiative-convective equilibrium temperature.

  4. Lateral baroclinic forcing enhances sediment transport from shallows to channel in an estuary

    USGS Publications Warehouse

    Lacy, Jessica R.; Gladding, Steve; Brand, Andreas; Collignon, Audric; Stacey, Mark

    2014-01-01

    We investigate the dynamics governing exchange of sediment between estuarine shallows and the channel based on field measurements at eight stations spanning the interface between the channel and the extensive eastern shoals of South San Francisco Bay. The study site is characterized by longitudinally homogeneous bathymetry and a straight channel, with friction more important than the Coriolis forcing. Data were collected for 3 weeks in the winter and 4 weeks in the late summer of 2009, to capture a range of hydrologic and meteorologic conditions. The greatest sediment transport from shallows to channel occurred during a pair of strong, late-summer wind events, with westerly winds exceeding 10 m/s for more than 24 h. A combination of wind-driven barotropic return flow and lateral baroclinic circulation caused the transport. The lateral density gradient was produced by differences in temperature and suspended sediment concentration (SSC). During the wind events, SSC-induced vertical density stratification limited turbulent mixing at slack tides in the shallows, increasing the potential for two-layer exchange. The temperature- and SSC-induced lateral density gradient was comparable in strength to salinity-induced gradients in South Bay produced by seasonal freshwater inflows, but shorter in duration. In the absence of a lateral density gradient, suspended sediment flux at the channel slope was directed towards the shallows, both in winter and during summer sea breeze conditions, indicating the importance of baroclinically driven exchange to supply of sediment from the shallows to the channel in South San Francisco Bay and systems with similar bathymetry.

  5. Divergent global precipitation changes induced by natural versus anthropogenic forcing.

    PubMed

    Liu, Jian; Wang, Bin; Cane, Mark A; Yim, So-Young; Lee, June-Yi

    2013-01-31

    As a result of global warming, precipitation is likely to increase in high latitudes and the tropics and to decrease in already dry subtropical regions. The absolute magnitude and regional details of such changes, however, remain intensely debated. As is well known from El Niño studies, sea-surface-temperature gradients across the tropical Pacific Ocean can strongly influence global rainfall. Palaeoproxy evidence indicates that the difference between the warm west Pacific and the colder east Pacific increased in past periods when the Earth warmed as a result of increased solar radiation. In contrast, in most model projections of future greenhouse warming this gradient weakens. It has not been clear how to reconcile these two findings. Here we show in climate model simulations that the tropical Pacific sea-surface-temperature gradient increases when the warming is due to increased solar radiation and decreases when it is due to increased greenhouse-gas forcing. For the same global surface temperature increase the latter pattern produces less rainfall, notably over tropical land, which explains why in the model the late twentieth century is warmer than in the Medieval Warm Period (around AD 1000-1250) but precipitation is less. This difference is consistent with the global tropospheric energy budget, which requires a balance between the latent heat released in precipitation and radiative cooling. The tropospheric cooling is less for increased greenhouse gases, which add radiative absorbers to the troposphere, than for increased solar heating, which is concentrated at the Earth's surface. Thus warming due to increased greenhouse gases produces a climate signature different from that of warming due to solar radiation changes.

  6. Comparative study of energy-transducing properties of cytoplasmic membranes from mesophilic and thermophilic Bacillus species.

    PubMed Central

    De Vrij, W; Bulthuis, R A; Konings, W N

    1988-01-01

    The properties of enzymes involved in energy transduction from a mesophilic (Bacillus subtilis) and a thermophilic (B. stearothermophilus) bacterium were compared. Membrane preparations of the two organisms contained dehydrogenases for NADH, succinate, L-alpha-glycerophosphate, and L-lactate. Maximum NADH and cytochrome c oxidation rates were obtained at the respective growth temperatures of the two bacteria. The enzymes involved in the oxidation reactions in membranes of the thermophilic species were more thermostable than those of the mesophilic species. The apparent microviscosities of the two membrane preparations were studied at different temperatures. At the respective optimal growth temperatures, the apparent microviscosities of the membranes of the two organisms were remarkably similar. The transition from the gel to the liquid-crystalline state occurred at different temperatures in the two species. In the two species, the oxidation of physiological (NADH) and nonphysiological (N,N,N',N'-tetramethyl-p-phenylenediamine or phenazine methosulfate) electron donors led to generation of a proton motive force which varied strongly with temperature. At increasing temperatures, the efficiency of energy transduction declined because of increasing H+ permeability. At the growth temperature, the efficiency of energy transduction was lower in B. stearothermophilus than in the mesophilic species. Extremely high respiratory activities enabled B. stearothermophilus to maintain a high proton motive force at elevated temperatures. The pH dependence of proton motive force generation appeared to be similar in the two membrane preparations. The highest proton motive forces were generated at low external pH, mainly because of a high pH gradient. At increasing external pH, the proton motive force declined. PMID:2834342

  7. Direct determination of the driving forces for taurocholate uptake into rat liver plasma membrane vesicles.

    PubMed

    Duffy, M C; Blitzer, B L; Boyer, J L

    1983-10-01

    To determine directly the driving forces for bile acid entry into the hepatocyte, the uptake of [3H]taurocholic acid into rat liver plasma membrane vesicles was studied. The membrane preparation contained predominantly right-side-out vesicles, and was highly enriched in plasma membrane marker enzymes. The uptake of taurocholate at equilibrium was inversely related to medium osmolarity, indicating transport into an osmotically sensitive space. In the presence of an inwardly directed sodium gradient (NaCl or sodium gluconate), the initial rate of uptake was rapid and taurocholate was transiently accumulated at a concentration twice that at equilibrium (overshoot). Other inwardly directed cation gradients (K+, Li+, choline+) or the presence of sodium in the absence of a gradient (Na+ equilibrated) resulted in a slower initial uptake rate and did not sustain an overshoot. Bile acids inhibited sodium-dependent taurocholate uptake, whereas bromsulphthalein inhibited both sodium-dependent and sodium-independent uptake and D-glucose had no effect on uptake. Uptake was temperature dependent, with maximal overshoots occurring at 25 degrees C. Imposition of a proton gradient across the vesicle (pHo less than pHi) in the absence of a sodium gradient failed to enhance taurocholate uptake, indicating that double ion exchange (Na+-H+, OH- -anion) is unlikely. Creation of a negative intravesicular potential by altering accompanying anions or by valinomycin-induced K+-diffusion potentials did not enhance taurocholate uptake, suggesting an electroneutral transport mechanism. The kinetics of taurocholate uptake demonstrated saturability with a Michaelis constant at 52 microM and maximum velocity of 4.5 nmol X mg-1 X protein X min-1. These studies provide definitive evidence for a sodium gradient-dependent, carrier-mediated, electrically neutral transport mechanism for hepatic taurocholate uptake. These findings are consistent with a model for bile secretion in which the basolateral enzyme Na+,K+-ATPase provides the driving force for "uphill" bile acid transport by establishing a trans-membrane sodium gradient.

  8. Electro-hydrodynamic spray synthesis and low temperature spectroscopic characterization of Perovskite thin films

    NASA Astrophysics Data System (ADS)

    Sarang, Som; Ishihara, Hidetaka; Tung, Vincent; Ghosh, Sayantani

    Utilizing a Marangoni flow inspired electrospraying technique, we synthesize hybrid perovskite (PVSK) thin films with broad absorption spectrum and high crystallinity. The precursor solvents are electrosprayed onto an indium tin oxide (ITO) substrate, resulting in a gradient force developing between the droplet surface and the bulk due to the varying vapor pressure in the bi-solvent system. This gradient force helps the droplets propagate and merge with surrounding ones, forming a uniform thin film with excellent morphological and topological characteristics, as evident from the average power conversion efficiency (PCE) of 16%. In parallel, we use low temperature static and dynamic photoluminescence spectroscopy to probe the grain boundaries and defects in the synthesized PVSK thin films. At 120 K, the emergence of the low temperature orthorhombic phase is accompanied by reduction in lifetimes by an order of magnitude, a result attributed to charge transfer between the orthorhombic and tetragonal domains, as well as due to a crossover from free charge carrier to excitonic recombination. Our fabrication technique and optical studies help in advancement of PVSK based technology by providing unique insights into the fundamental physics of these novel materials. This research was supported by National Aeronautics and Space administration (NASA) Grant No: NNX15AQ01A.

  9. Levitation forces of a bulk YBCO superconductor in gradient varying magnetic fields

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Gong, Y. M.; Wang, G.; Zhou, D. J.; Zhao, L. F.; Zhang, Y.; Zhao, Y.

    2015-09-01

    The levitation forces of a bulk YBCO superconductor in gradient varying high and low magnetic fields generated from a superconducting magnet were investigated. The magnetic field intensity of the superconducting magnet was measured when the exciting current was 90 A. The magnetic field gradient and magnetic force field were both calculated. The YBCO bulk was cooled by liquid nitrogen in field-cooling (FC) and zero-field-cooling (ZFC) condition. The results showed that the levitation forces increased with increasing the magnetic field intensity. Moreover, the levitation forces were more dependent on magnetic field gradient and magnetic force field than magnetic field intensity.

  10. Magnetothermal Convection of Water with the Presence or Absence of a Magnetic Force Acting on the Susceptibility Gradient

    PubMed Central

    Maki, Syou

    2016-01-01

    Heat transfer of magnetothermal convection with the presence or absence of the magnetic force acting on the susceptibility gradient (fsc) was examined by three-dimensional numerical computations. Thermal convection of water enclosed in a shallow cylindrical vessel (diameter over vessel height = 6.0) with the Rayleigh-Benard model was adopted as the model, under the conditions of Prandtl number 6.0 and Ra number 7000, respectively. The momentum equations of convection were nondimensionalized, which involved the term of fsc and the term of magnetic force acting on the magnetic field gradient (fb). All the computations resulted in axisymmetric steady rolls. The values of the averaged Nu, the averaged velocity components U, V, and W, and the isothermal distributions and flow patterns were almost completely the same, regardless of the presence or absence of the term of fsc. As a result, we found that the effect of fsc was extremely small, although much previous research emphasized the effect with paramagnetic solutions under an unsteady state. The magnitude of fsc depends not only on magnetic conditions (magnitudes of magnetic susceptibility and magnetic flux density), but also on the thermal properties of the solution (thermal conductivity, thermal diffusivity, and viscosity). Therefore the effect of fb becomes dominant on the magnetothermal convection. Active control over the density gradient with temperature will be required to advance heat transfer with the effect of fsc. PMID:27606823

  11. Disentangling sea-surface temperature and anthropogenic aerosol influences on recent trends in South Asian monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Patil, Nitin; Venkataraman, Chandra; Muduchuru, Kaushik; Ghosh, Subimal; Mondal, Arpita

    2018-05-01

    Recent studies point to combined effects of changes in regional land-use, anthropogenic aerosol forcing and sea surface temperature (SST) gradient on declining trends in the South Asian monsoon (SAM). This study attempted disentangling the effects produced by changes in SST gradient from those by aerosol levels in an atmospheric general circulation model. Two pairs of transient ensemble simulations were made, for a 40-year period from 1971 to 2010, with evolving versus climatological SSTs and with anthropogenic aerosol emissions fixed at 1971 versus 2010, in each case with evolution of the other forcing element, as well as GHGs. Evolving SST was linked to a widespread feedback on increased surface temperature, reduced land-sea thermal contrast and a weakened Hadley circulation, with weakening of cross-equatorial transport of moisture transport towards South Asia. Increases in anthropogenic aerosol levels (1971 versus 2010), led to an intensification of drying in the peninsular Indian region, through several regional pathways. Aerosol forcing induced north-south asymmetries in temperature and sea-level pressure response, and a cyclonic circulation in the Bay of Bengal, leading to an easterly flow, which opposes the monsoon flow, suppressing moisture transport over peninsular India. Further, aerosol induced decreases in convection, vertically integrated moisture flux convergence, evaporation flux and cloud fraction, in the peninsular region, were spatially congruent with reduced convective and stratiform rainfall. Overall, evolution of SST acted through a weakening of cross-equatorial moisture flow, while increases in aerosol levels acted through suppression of Arabian Sea moisture transport, as well as, of convection and vertical moisture transport, to influence the suppression of SAM rainfall.

  12. From Anti-greenhouse Effect of Solar Absorbers to Cooling Effect of Greenhouse Gases: A 1-D Radiative Convective Model Study

    NASA Astrophysics Data System (ADS)

    Shia, R.

    2012-12-01

    The haze layer in Titan's upper atmosphere absorbs 90% of the solar radiation, but is inefficient for trapping infrared radiation generated by the surface. Its existence partially compensates for the greenhouse warming and keeps the surface approximately 9°C cooler than would otherwise be expected from the greenhouse effect alone. This is the so called anti-greenhouse effect (McKay et al., 1991). This effect can be used to alleviate the warming caused by the increasing level of greenhouse gases in the Earth's atmosphere. A one-dimensional radiative convective model (Kasting et al., 2009 and references listed there) is used to investigate the anti-greenhouse effect in the Earth atmosphere. Increasing of solar absorbers, e.g. aerosols and ozone, in the stratosphere reduces the surface solar flux and cool the surface. However, the absorption of the solar flux also increases the temperature in the upper atmosphere, while reduces the temperature at the surface. Thus, the temperature profile of the atmosphere changes and the regions with positive vertical temperature gradient are expanded. According to Shia (2010) the radiative forcing of greenhouse gases is directly related to the vertical temperature gradient. Under the new temperature profile increases of greenhouse gases should have less warming effect. When the solar absorbers keep increasing, eventually most of the atmosphere has positive temperature gradient and increasing greenhouse gases would cool the surface (Shia, 2011). The doubling CO2 scenario in the Earth atmosphere is simulated for different levels of solar absorbers using the 1-D RC model. The model results show that if the solar absorber increases to a certain level that less than 50% solar flux reaching the surface, doubling CO2 cools the surface by about 2 C. This means if the snowball Earth is generated by solar absorbers in the stratosphere, increasing greenhouse gases would make it freeze even more (Shia, 2011). References: Kasting, J. et al. 2009, http://vpl.astro.washington.edu/sci/AntiModels/models09.html McKay, C.P. et al. 1991, Titan: Greenhouse and Anti-greenhouse Effects on Titan. Science 253 (5024), 1118-21 Shia, R. 2011, Climate Effect of Greenhouse Gas: Warming or Cooling is Determined by Temperature Gradient, American Geophysical Union, Fall Meeting 2012, abstract #A51A-0274 Shia, R. 2010, Mechanism of Radiative Forcing of Greenhouse Gas and its Implication to the Global Warming, American Geophysical Union, Fall Meeting 2010, abstract #A11J-02

  13. Mimicking Nonequilibrium Steady States with Time-Periodic Driving

    DTIC Science & Technology

    2016-08-29

    nonequilibrium steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics . Nonequilibrium steady states...equilibrium [2], spontaneous relaxation towards equilibrium [3], nonequilibrium steady states generated by fixed thermodynamic forces [4], and stochastic pumps...paradigm, a system driven by fixed thermodynamic forces—such as temperature gradients or chemical potential differences— reaches a steady state in

  14. CVB: the Constrained Vapor Bubble Capillary Experiment on the International Space Station MARANGONI FLOW REGION

    NASA Technical Reports Server (NTRS)

    Wayner, Peter C., Jr.; Kundan, Akshay; Plawsky, Joel

    2014-01-01

    The Constrained Vapor Bubble (CVB) is a wickless, grooved heat pipe and we report on a full- scale fluids experiment flown on the International Space Station (ISS). The CVB system consists of a relatively simple setup a quartz cuvette with sharp corners partially filled with either pentane or an ideal mixture of pentane and isohexane as the working fluids. Along with temperature and pressure measurements, the two-dimensional thickness profile of the menisci formed at the corners of the quartz cuvette was determined using the Light Microscopy Module (LMM). Even with the large, millimeter dimensions of the CVB, interfacial forces dominate in these exceedingly small Bond Number systems. The experiments were carried out at various power inputs. Although conceptually simple, the transport processes were found to be very complex with many different regions. At the heated end of the CVB, due to a high temperature gradient, we observed Marangoni flow at some power inputs. This region from the heated end to the central drop region is defined as a Marangoni dominated region. We present a simple analysis based on interfacial phenomena using only measurements from the ISS experiments that lead to a predictive equation for the thickness of the film near the heated end of the CVB. The average pressure gradient for flow in the film is assumed due to the measured capillary pressure at the two ends of the liquid film and that the pressure stress gradient due to cohesion self adjusts to a constant value over a distance L. The boundary conditions are the no slip condition at the wall interface and an interfacial shear stress at the liquid- vapor interface due to the Marangoni stress, which is due to the high temperature gradient. Although the heated end is extremely complex, since it includes three- dimensional variations in radiation, conduction, evaporation, condensation, fluid flow and interfacial forces, we find that using the above simplifying assumptions, a simple successful model can be developed.

  15. El Nino-southern oscillation: A coupled response to the greenhouse effect?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, De-Zheng

    The purpose of this article to elucidate the link between the El Nino-Southern Oscillation (ENSO) and radiative forcing (of which the greenhouse effect is a major part). A unified theory for the tropical Pacific climate is developed by considering the response of the coupled ocean-atmosphere to a changing radiative forcing. The hypothesis is that both the zonal surface sea temperature (SST) gradients and ENSO are a coupled response to the strong radiative heating or the tropical warmth. Owing to ocean-atmosphere interaction, the stronger the radiative heating, the larger the zonal SST gradients. When the SST gradients exceed a critical value,more » however, the ocean-atmosphere interaction in the cold-tongue region is too strong for the coupled system to hold steady. Consequently, the coupled system enters an oscillatory state. These coupled dynamics are examined in a simple mathematical model whose behavior is consistent with the hypothesis. With a linear temperature profile throughout the depth of subsurface ocean, the model predicts that both the magnitude and period of the oscillation increase with increases in radiative forcing or the greenhouse effect. The increase in the magnitude of the oscillation largely comes from an enhancement of the magnitude of the cold anomalies, while the increase in the period mostly comes from a prolonged duration of the warm events. With a profile in which the lapse rate decreases with depth, the sensitivity is more moderate. The simplicity of the model prevents a quantitative simulation of the sensitivity of ENSO to increases in the greenhouse effect, but qualitatively the model results support the empirical interpretation of the prolonged duration of the 1990-1995 ENSO event. 5 refs., 7 figs.« less

  16. Modeling the influence of a reduced equator-to-pole sea surface temperature gradient on the distribution of water isotopes in the Eocene

    NASA Astrophysics Data System (ADS)

    Speelman, E. N.; Sewall, J. O.; Noone, D. C.; Huber, M.; Sinninghe Damsté, J. S.; Reichart, G.

    2009-12-01

    Proxy-based climate reconstructions suggest the existence of a strongly reduced equator-to-pole temperature gradient during most of the Early Eocene. With the realization that the Eocene Arctic Ocean was covered with enormous quantities of the free floating freshwater fern Azolla, new questions related to Eocene (global) hydrological cycling facilitating these blooms arose. Changes in hydrological cycling, as a consequence of a reduced temperature gradient, are expected to be most clearly reflected in the isotopic composition (D, 18O) of precipitation. The interpretation of water isotopic records to quantitatively estimate past precipitation patterns is, however, hampered by the lack of detailed information on changes in their spatial and temporal distribution. Using the isotope-enabled global circulation model, Community Atmosphere Model v.3 (isoCAM3), relationships between water isotopes and past climates can be simulated. Here we examine the influence of a reduced meridional sea surface temperature gradient on the spatial distribution of precipitation and its isotopic composition in an Eocene setting. Overall, our combination of Eocene climate forcings, with superimposed TEX86-derived SST estimates and elevated pCO2 concentrations, produces a climate that agrees well with proxy data in locations around the globe. It shows the presence of an intensified hydrological cycle with precipitation exceeding evaporation in the Arctic region. The Eocene model runs with a significantly reduced equator-to-pole temperature gradient in a warmer more humid world predict occurrence of less depleted precipitation, with δD values ranging only between 0 and -140‰ (as opposed to the present-day range of 0 to -300‰). Combining new results obtained from compound specific isotope analyses on terrestrially derived n-alkanes extracted from Eocene sediments, and model calculations, shows that the model not only captures the main features, but reproduces isotopic values quantitatively as well. This combination of modeling outcomes and independent stable isotope records thus confirms independently the validity of the earlier, proxy-based, inferred reduced meridional temperature gradient.

  17. The Onset of the Madden-Julian Oscillation Within an Aquaplanet Model

    NASA Technical Reports Server (NTRS)

    Colon, Edward; Lindesay, James; Suarez, Max

    1997-01-01

    A series of numerical experiments using a two-level atmospheric general circulation model (AGCM) were performed for the purpose of investigating the coupling between sea surface temperature (SST) profile and the onset of the Madden-Julian Oscillation (MJO). The AGCM was modified to run as an aquaplane with all seasonal forcing removed. SST distributions based on the New Global Sea-Ice and Sea Surface Temperature (GISST) Data Set for 1903-1994 were generated then modified to vary the north-south gradient and tropical temperatures. It was found that the MJO signal did not depend on the SST temperature gradients but rather on the absolute temperature of the equatorial region, EOF analysis revealed that the SST distribution which generated the strongest MJO signal produced a periodic fluctuation in velocity potential at the 250 millibar level with a phase speed of 15 m/s, and a periodicity of 30 days which falls within the shortest limit of observed oscillations. This distribution also possessed the coolest equatorial SSTs which suggests that increased stability in the atmosphere favors the occurrence of organized MJO propagation.

  18. Use of Advanced Meteorological Model Output for Coastal Ocean Modeling in Puget Sound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Khangaonkar, Tarang; Wang, Taiping

    2011-06-01

    It is a great challenge to specify meteorological forcing in estuarine and coastal circulation modeling using observed data because of the lack of complete datasets. As a result of this limitation, water temperature is often not simulated in estuarine and coastal modeling, with the assumption that density-induced currents are generally dominated by salinity gradients. However, in many situations, temperature gradients could be sufficiently large to influence the baroclinic motion. In this paper, we present an approach to simulate water temperature using outputs from advanced meteorological models. This modeling approach was applied to simulate annual variations of water temperatures of Pugetmore » Sound, a fjordal estuary in the Pacific Northwest of USA. Meteorological parameters from North American Region Re-analysis (NARR) model outputs were evaluated with comparisons to observed data at real-time meteorological stations. Model results demonstrated that NARR outputs can be used to drive coastal ocean models for realistic simulations of long-term water-temperature distributions in Puget Sound. Model results indicated that the net flux from NARR can be further improved with the additional information from real-time observations.« less

  19. Reversible Quantum Brownian Heat Engines for Electrons

    NASA Astrophysics Data System (ADS)

    Humphrey, T. E.; Newbury, R.; Taylor, R. P.; Linke, H.

    2002-08-01

    Brownian heat engines use local temperature gradients in asymmetric potentials to move particles against an external force. The energy efficiency of such machines is generally limited by irreversible heat flow carried by particles that make contact with different heat baths. Here we show that, by using a suitably chosen energy filter, electrons can be transferred reversibly between reservoirs that have different temperatures and electrochemical potentials. We apply this result to propose heat engines based on mesoscopic semiconductor ratchets, which can quasistatically operate arbitrarily close to Carnot efficiency.

  20. Reversible quantum heat engines for electrons

    NASA Astrophysics Data System (ADS)

    Linke, Heiner; Humphrey, Tammy E.; Newbury, Richard; Taylor, Richard P.

    2002-03-01

    Brownian heat engines use local temperature gradients in asymmetric potentials to move particles against an external force. The energy efficiency of such machines is generally limited by irreversible heat flow carried by particles that make contact with different heat baths. Here we show that, by using a suitably chosen energy filter, electrons can be transferred reversibly between reservoirs that have different temperatures and electrochemical potentials. We apply this result to propose heat engines based on quantum ratchets, which can quasistatically operate at Carnot efficiency.

  1. Isoscapes of δ18O and δ2H reveal climatic forcings on Alaska and Yukon precipitation

    NASA Astrophysics Data System (ADS)

    Lachniet, Matthew S.; Lawson, Daniel E.; Stephen, Haroon; Sloat, Alison R.; Patterson, William P.

    2016-08-01

    Spatially extensive Arctic stable isotope data are sparse, inhibiting the climatic understanding required to interpret paleoclimate proxy records. To fill this need, we constrained the climatic and physiographic controls on δ18O and δD values of stream waters across Alaska and the Yukon to derive interpolated isoscape maps. δ18O is strongly correlated to winter temperature parameters and similarity of the surface water line (δ2H = 8.0 × δ18O + 6.4) to the Global Meteoric Water Line suggests stream waters are a proxy for meteoric precipitation. We observe extreme orographic δ18O decreases and a trans-Alaskan continental gradient of -8.3‰ 1000 km-1. Continental gradients are high in coastal zones and low in the interior. Localized δ18O increases indicate inland air mass penetration via topographic lows. Using observed δ18O/temperature gradients, we show that δ18O decreases in a ˜24 ka permafrost ice wedge relative to the late Holocene indicate mean annual and coldest quarter temperature reductions of 8.9 ± 1.7°C and 17.2 ± 3.2°C, respectively.

  2. Solitary plasma rings and magnetic field generation involving gravity and differential rotation

    NASA Astrophysics Data System (ADS)

    Coppi, B.

    2012-12-01

    A new theoretical framework for describing how magnetic fields are generated and amplified is provided by finding magneto-gravitational modes that involve gravity, density gradients, and differential rotation in an essential way. Other factors, such as the presence of a high temperature particle population or of a temperature gradient, can contribute to their excitation. These modes identified by a linearized analysis are shown to be important for the evolution of plasma disks surrounding black holes toward different configurations. Since the nonlinear development of these modes can lead to radially localized regions with a relatively small differential rotation, new stationary structures have been identified, in the (fully) nonlinear limit, which are localized radially over regions with negligible gradients of the rotation frequency. These structures, characterized by solitary plasma rings, do not involve a pre-existing "seed" magnetic field, unlike other configurations found previously. The relevant magnetic energy density is comparable to the gravitationally confined plasma pressure. The "source" of these configurations is the combination of the gravitational force and of the plasma density gradient orthogonal to it that is an important factor in the theory of magneto-gravitational modes, another important factor being an anisotropy of the plasma pressure.

  3. Horizontal density-gradient effects on simulation of flow and transport in the Potomac Estuary

    USGS Publications Warehouse

    Schaffranek, Raymond W.; Baltzer, Robert A.; ,

    1990-01-01

    A two-dimensional, depth-integrated, hydrodynamic/transport model of the Potomac Estuary between Indian Head and Morgantown, Md., has been extended to include treatment of baroclinic forcing due to horizontal density gradients. The finite-difference model numerically integrates equations of mass and momentum conservation in conjunction with a transport equation for heat, salt, and constituent fluxes. Lateral and longitudinal density gradients are determined from salinity distributions computed from the convection-diffusion equation and an equation of state that expresses density as a function of temperature and salinity; thus, the hydrodynamic and transport computations are directly coupled. Horizontal density variations are shown to contribute significantly to momentum fluxes determined in the hydrodynamic computation. These fluxes lead to enchanced tidal pumping, and consequently greater dispersion, as is evidenced by numerical simulations. Density gradient effects on tidal propagation and transport behavior are discussed and demonstrated.

  4. On radiation forces acting on a transparent nanoparticle in the field of a focused laser beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afanas'ev, A A; Rubinov, A N; Gaida, L S

    2015-10-31

    Radiation forces acting on a transparent spherical nanoparticle in the field of a focused Gaussian laser beam are studied theoretically in the Rayleigh scattering regime. Expressions are derived for the scattering force and Cartesian components of the gradient force. The resultant force acting on a nanoparticle located in the centre of a laser beam is found. The parameters of the focused beam and optical properties of the nanoparticle for which the longitudinal component of the gradient force exceeds the scattering force are determined. Characteristics of the transverse gradient force are discussed. (nanophotonics)

  5. Thermocapillary phenomena and performance limitations of a wickless heat pipe in microgravity.

    PubMed

    Kundan, Akshay; Plawsky, Joel L; Wayner, Peter C; Chao, David F; Sicker, Ronald J; Motil, Brian J; Lorik, Tibor; Chestney, Louis; Eustace, John; Zoldak, John

    2015-04-10

    A counterintuitive, thermocapillary-induced limit to heat- pipe performance was observed that is not predicted by current thermal-fluid models. Heat pipes operate under a number of physical constraints including the capillary, boiling, sonic, and entrainment limits that fundamentally affect their performance. Temperature gradients near the heated end may be high enough to generate significant Marangoni forces that oppose the return flow of liquid from the cold end. These forces are believed to exacerbate dry out conditions and force the capillary limit to be reached prematurely. Using a combination of image and thermal data from experiments conducted on the International Space Station with a transparent heat pipe, we show that in the presence of significant Marangoni forces, dry out is not the initial mechanism limiting performance, but that the physical cause is exactly the opposite behavior: flooding of the hot end with liquid. The observed effect is a consequence of the competition between capillary and Marangoni-induced forces. The temperature signature of flooding is virtually identical to dry out, making diagnosis difficult without direct visual observation of the vapor-liquid interface.

  6. Failure Mechanisms and Life Prediction of Thermal and Environmental Barrier Coatings under Thermal Gradients

    NASA Technical Reports Server (NTRS)

    Zju, Dongming; Ghosn, Louis J.; Miller, Robert A.

    2008-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) will play an increasingly important role in gas turbine engines because of their ability to further raise engine temperatures. However, the issue of coating durability is of major concern under high-heat-flux conditions. In particular, the accelerated coating delamination crack growth under the engine high heat-flux conditions is not well understood. In this paper, a laser heat flux technique is used to investigate the coating delamination crack propagation under realistic temperature-stress gradients and thermal cyclic conditions. The coating delamination mechanisms are investigated under various thermal loading conditions, and are correlated with coating dynamic fatigue, sintering and interfacial adhesion test results. A coating life prediction framework may be realized by examining the crack initiation and propagation driving forces for coating failure under high-heat-flux test conditions.

  7. Quantitative separation of the anisotropic magnetothermopower and planar Nernst effect by the rotation of an in-plane thermal gradient

    NASA Astrophysics Data System (ADS)

    Reimer, Oliver; Meier, Daniel; Bovender, Michel; Helmich, Lars; Dreessen, Jan-Oliver; Krieft, Jan; Shestakov, Anatoly S.; Back, Christian H.; Schmalhorst, Jan-Michael; Hütten, Andreas; Reiss, Günter; Kuschel, Timo

    2017-01-01

    A thermal gradient as the driving force for spin currents plays a key role in spin caloritronics. In this field the spin Seebeck effect (SSE) is of major interest and was investigated in terms of in-plane thermal gradients inducing perpendicular spin currents (transverse SSE) and out-of-plane thermal gradients generating parallel spin currents (longitudinal SSE). Up to now all spincaloric experiments employ a spatially fixed thermal gradient. Thus, anisotropic measurements with respect to well defined crystallographic directions were not possible. Here we introduce a new experiment that allows not only the in-plane rotation of the external magnetic field, but also the rotation of an in-plane thermal gradient controlled by optical temperature detection. As a consequence, the anisotropic magnetothermopower and the planar Nernst effect in a permalloy thin film can be measured simultaneously. Thus, the angular dependence of the magnetothermopower with respect to the magnetization direction reveals a phase shift, that allows the quantitative separation of the thermopower, the anisotropic magnetothermopower and the planar Nernst effect.

  8. Responses of East Asian Summer Monsoon to Natural and Anthropogenic Forcings in the 17 Latest CMIP5 Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Fengfei; Zhou, Tianjun; Qian, Yun

    2014-01-31

    In this study, we examined the responses of East Asian Summer Monsoon (EASM) to natural (solar variability and volcanic aerosols) and anthropogenic (greenhouse gasses and aerosols) forcings simulated in the 17 latest Coupled Model Intercomparison Program phase 5 (CMIP5) models with 105 realizations. The observed weakening trend of low-level EASM circulation during 1958-2001 is partly reproduced under all-forcing runs. A comparison of separate forcing experiments reveals that the aerosol-forcing plays a primary role in driving the weakened low-level monsoon circulation. The preferential cooling over continental East Asia caused by aerosol affects the monsoon circulation through reducing the land-sea thermal contrastmore » and results in higher sea level pressure over northern China. In the upper-level, both natural-forcing and aerosol-forcing contribute to the observed southward shift of East Asian subtropical jet through changing the meridional temperature gradient.« less

  9. Experimental Methodology for Estimation of Local Heat Fluxes and Burning Rates in Steady Laminar Boundary Layer Diffusion Flames.

    PubMed

    Singh, Ajay V; Gollner, Michael J

    2016-06-01

    Modeling the realistic burning behavior of condensed-phase fuels has remained out of reach, in part because of an inability to resolve the complex interactions occurring at the interface between gas-phase flames and condensed-phase fuels. The current research provides a technique to explore the dynamic relationship between a combustible condensed fuel surface and gas-phase flames in laminar boundary layers. Experiments have previously been conducted in both forced and free convective environments over both solid and liquid fuels. A unique methodology, based on the Reynolds Analogy, was used to estimate local mass burning rates and flame heat fluxes for these laminar boundary layer diffusion flames utilizing local temperature gradients at the fuel surface. Local mass burning rates and convective and radiative heat feedback from the flames were measured in both the pyrolysis and plume regions by using temperature gradients mapped near the wall by a two-axis traverse system. These experiments are time-consuming and can be challenging to design as the condensed fuel surface burns steadily for only a limited period of time following ignition. The temperature profiles near the fuel surface need to be mapped during steady burning of a condensed fuel surface at a very high spatial resolution in order to capture reasonable estimates of local temperature gradients. Careful corrections for radiative heat losses from the thermocouples are also essential for accurate measurements. For these reasons, the whole experimental setup needs to be automated with a computer-controlled traverse mechanism, eliminating most errors due to positioning of a micro-thermocouple. An outline of steps to reproducibly capture near-wall temperature gradients and use them to assess local burning rates and heat fluxes is provided.

  10. Experimental Methodology for Estimation of Local Heat Fluxes and Burning Rates in Steady Laminar Boundary Layer Diffusion Flames

    PubMed Central

    Singh, Ajay V.; Gollner, Michael J.

    2016-01-01

    Modeling the realistic burning behavior of condensed-phase fuels has remained out of reach, in part because of an inability to resolve the complex interactions occurring at the interface between gas-phase flames and condensed-phase fuels. The current research provides a technique to explore the dynamic relationship between a combustible condensed fuel surface and gas-phase flames in laminar boundary layers. Experiments have previously been conducted in both forced and free convective environments over both solid and liquid fuels. A unique methodology, based on the Reynolds Analogy, was used to estimate local mass burning rates and flame heat fluxes for these laminar boundary layer diffusion flames utilizing local temperature gradients at the fuel surface. Local mass burning rates and convective and radiative heat feedback from the flames were measured in both the pyrolysis and plume regions by using temperature gradients mapped near the wall by a two-axis traverse system. These experiments are time-consuming and can be challenging to design as the condensed fuel surface burns steadily for only a limited period of time following ignition. The temperature profiles near the fuel surface need to be mapped during steady burning of a condensed fuel surface at a very high spatial resolution in order to capture reasonable estimates of local temperature gradients. Careful corrections for radiative heat losses from the thermocouples are also essential for accurate measurements. For these reasons, the whole experimental setup needs to be automated with a computer-controlled traverse mechanism, eliminating most errors due to positioning of a micro-thermocouple. An outline of steps to reproducibly capture near-wall temperature gradients and use them to assess local burning rates and heat fluxes is provided. PMID:27285827

  11. A Geophysical Flow Experiment in a Compressible Critical Fluid

    NASA Technical Reports Server (NTRS)

    Hegseth, John; Garcia, Laudelino

    1996-01-01

    The first objective of this experiment is to build an experimental system in which, in analogy to a geophysical system, a compressible fluid in a spherical annulus becomes radially stratified in density through an A.C. electric field. When this density gradient is demonstrated, the system will be augmented so that the fluid can be driven by heating and rotation and tested in preparation for a microgravity experiment. This apparatus consists of a spherical capacitor filled with critical fluid in a temperature controlled environment. To make the fluid critical, the apparatus will be operated near the critical pressure, critical density, and critical temperature of the fluid. This will result in a highly compressible fluid because of the properties of the fluid near its critical point. A high voltage A.C. source applied across the capacitor will create a spherically symmetric central force because of the dielectric properties of the fluid in an electric field gradient. This central force will induce a spherically symmetric density gradient that is analogous to a geophysical fluid system. To generate such a density gradient the system must be small (approx. 1 inch diameter). This small cell will also be capable of driving the critical fluid by heating and rotation. Since a spherically symmetric density gradient can only be made in microgravity, another small cell, of the same geometry, will be built that uses incompressible fluid. The driving of the fluid by rotation and heating in these small cells will be developed. The resulting instabilities from the driving in these two systems will then be studied. The second objective is to study the pattern forming instabilities (bifurcations) resulting from the well controlled experimental conditions in the critical fluid cell. This experiment will come close to producing conditions that are geophysically similar and will be studied as the driving parameters are changed.

  12. Mimicking Nonequilibrium Steady States with Time-Periodic Driving (Open Source)

    DTIC Science & Technology

    2016-05-18

    nonequilibrium steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics . Nonequilibrium steady states...equilibrium [2], spontaneous relaxation towards equilibrium [3], nonequilibrium steady states generated by fixed thermodynamic forces [4], and stochastic pumps...paradigm, a system driven by fixed thermodynamic forces—such as temperature gradients or chemical potential differences— reaches a steady state in

  13. Direct measurement of optical trapping force gradient on polystyrene microspheres using a carbon nanotube mechanical resonator.

    PubMed

    Yasuda, Masaaki; Takei, Kuniharu; Arie, Takayuki; Akita, Seiji

    2017-06-06

    Optical tweezers based on optical radiation pressure are widely used to manipulate nanoscale to microscale particles. This study demonstrates direct measurement of the optical force gradient distribution acting on a polystyrene (PS) microsphere using a carbon nanotube (CNT) mechanical resonator, where a PS microsphere with 3 μm diameter is welded at the CNT tip using laser heating. With the CNT mechanical resonator with PS microsphere, we measured the distribution of optical force gradient with resolution near the thermal noise limit of 0.02 pN/μm in vacuum, in which condition enables us to high accuracy measurement using the CNT mechanical resonator because of reduced mechanical damping from surrounding fluid. The obtained force gradient and the force gradient distribution agree well with theoretical values calculated using Lorenz-Mie theory.

  14. Ereptiospiration.

    PubMed

    Woolley, Christine; Garcia, Antonio A; Santello, Marco

    2017-04-12

    Pure coconut oil, lanolin, and acetaminophen were vaporized at rates of 1-50 mg/min, using a porous network exhibiting a temperature gradient from 5000 to 5500 K/mm, without incurring noticeable chemical changes due to combustion, oxidation, or other thermally-induced chemical structural changes. The newly coined term "ereptiospiration" is used here to describe this combination of thermal transpiration at high temperature gradients since the process can force the creation of thermal aerosols by rapid heating in a localized zone. Experimental data were generated for these materials using two different supports for metering the materials to the battery powered coil: namely, a stainless steel fiber bundle and a 3-D printed steel cartridge. Heating coconut oil, lanolin, or acetaminophen in a beaker to lower temperatures than those achieved at the surface of the coil showed noticeable and rapid degradation in the samples, while visual and olfactory observations for ereptiospiration showed no noticeable degradation in lanolin and coconut oil while HPLC chromatograms along with visual observation confirm that within the limit of detection, acetaminophen remains chemically unaltered by ereptiospiration.

  15. The unidirectional motion of two heat-conducting liquids in a flat channel

    NASA Astrophysics Data System (ADS)

    Andreev, V. K.; Cheremnykh, E. N.

    2017-10-01

    The unidirectional motion of two viscous incompressible liquids in a flat channel is studied. Liquids contact on a flat interface. External boundaries are fixed solid walls, on which the non-stationary temperature gradients are given. The motion is induced by a joint action of thermogravitational and thermocapillary forces and given total non - stationary fluid flow rate in layers. The corresponding initial boundary value problem is conjugate and inverse because the pressure gradients along axes channel have to be determined together with the velocity and temperature field. For this problem the exact stationary solution is found and a priori estimates of non - stationary solutions are obtained. In Laplace images the solution of the non - stationary problem is found in quadratures. It is proved, that the solution converges to a steady regime with time, if the temperature on the walls and the fluid flow rate are stabilized. The numerical calculations for specific liquid media good agree with the theoretical results.

  16. Lateral shearing optical gradient force in coupled nanobeam photonic crystal cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Han; Zhang, Xingwang; Chau, Fook Siong

    2016-04-25

    We report the experimental observation of lateral shearing optical gradient forces in nanoelectromechanical systems (NEMS) controlled dual-coupled photonic crystal (PhC) nanobeam cavities. With an on-chip integrated NEMS actuator, the coupled cavities can be mechanically reconfigured in the lateral direction while maintaining a constant coupling gap. Shearing optical gradient forces are generated when the two cavity centers are laterally displaced. In our experiments, positive and negative lateral shearing optical forces of 0.42 nN and 0.29 nN are observed with different pumping modes. This study may broaden the potential applications of the optical gradient force in nanophotonic devices and benefit the futuremore » nanooptoelectromechanical systems.« less

  17. The role of the meridional sea surface temperature gradient in controlling the Caribbean low-level jet

    NASA Astrophysics Data System (ADS)

    Maldonado, Tito; Rutgersson, Anna; Caballero, Rodrigo; Pausata, Francesco S. R.; Alfaro, Eric; Amador, Jorge

    2017-06-01

    The Caribbean low-level jet (CLLJ) is an important modulator of regional climate, especially precipitation, in the Caribbean and Central America. Previous work has inferred, due to their semiannual cycle, an association between CLLJ strength and meridional sea surface temperature (SST) gradients in the Caribbean Sea, suggesting that the SST gradients may control the intensity and vertical shear of the CLLJ. In addition, both the horizontal and vertical structure of the jet have been related to topographic effects via interaction with the mountains in Northern South America (NSA), including funneling effects and changes in the meridional geopotential gradient. Here we test these hypotheses, using an atmospheric general circulation model to perform a set of sensitivity experiments to examine the impact of both SST gradients and topography on the CLLJ. In one sensitivity experiment, we remove the meridional SST gradient over the Caribbean Sea and in the other, we flatten the mountains over NSA. Our results show that the SST gradient and topography have little or no impact on the jet intensity, vertical, and horizontal wind shears, contrary to previous works. However, our findings do not discount a possible one-way coupling between the SST and the wind over the Caribbean Sea through friction force. We also examined an alternative approach based on barotropic instability to understand the CLLJ intensity, vertical, and horizontal wind shears. Our results show that the current hypothesis about the CLLJ must be reviewed in order to fully understand the atmospheric dynamics governing the Caribbean region.

  18. Ballistic thermophoresis of adsorbates on free-standing graphene.

    PubMed

    Panizon, Emanuele; Guerra, Roberto; Tosatti, Erio

    2017-08-22

    The textbook thermophoretic force which acts on a body in a fluid is proportional to the local temperature gradient. The same is expected to hold for the macroscopic drift behavior of a diffusive cluster or molecule physisorbed on a solid surface. The question we explore here is whether that is still valid on a 2D membrane such as graphene at short sheet length. By means of a nonequilibrium molecular dynamics study of a test system-a gold nanocluster adsorbed on free-standing graphene clamped between two temperatures [Formula: see text] apart-we find a phoretic force which for submicron sheet lengths is parallel to, but basically independent of, the local gradient magnitude. This identifies a thermophoretic regime that is ballistic rather than diffusive, persisting up to and beyond a 100-nanometer sheet length. Analysis shows that the phoretic force is due to the flexural phonons, whose flow is known to be ballistic and distance-independent up to relatively long mean-free paths. However, ordinary harmonic phonons should only carry crystal momentum and, while impinging on the cluster, should not be able to impress real momentum. We show that graphene and other membrane-like monolayers support a specific anharmonic connection between the flexural corrugation and longitudinal phonons whose fast escape leaves behind a 2D-projected mass density increase endowing the flexural phonons, as they move with their group velocity, with real momentum, part of which is transmitted to the adsorbate through scattering. The resulting distance-independent ballistic thermophoretic force is not unlikely to possess practical applications.

  19. Ballistic thermophoresis of adsorbates on free-standing graphene

    PubMed Central

    Panizon, Emanuele; Guerra, Roberto; Tosatti, Erio

    2017-01-01

    The textbook thermophoretic force which acts on a body in a fluid is proportional to the local temperature gradient. The same is expected to hold for the macroscopic drift behavior of a diffusive cluster or molecule physisorbed on a solid surface. The question we explore here is whether that is still valid on a 2D membrane such as graphene at short sheet length. By means of a nonequilibrium molecular dynamics study of a test system—a gold nanocluster adsorbed on free-standing graphene clamped between two temperatures ΔT apart—we find a phoretic force which for submicron sheet lengths is parallel to, but basically independent of, the local gradient magnitude. This identifies a thermophoretic regime that is ballistic rather than diffusive, persisting up to and beyond a 100-nanometer sheet length. Analysis shows that the phoretic force is due to the flexural phonons, whose flow is known to be ballistic and distance-independent up to relatively long mean-free paths. However, ordinary harmonic phonons should only carry crystal momentum and, while impinging on the cluster, should not be able to impress real momentum. We show that graphene and other membrane-like monolayers support a specific anharmonic connection between the flexural corrugation and longitudinal phonons whose fast escape leaves behind a 2D-projected mass density increase endowing the flexural phonons, as they move with their group velocity, with real momentum, part of which is transmitted to the adsorbate through scattering. The resulting distance-independent ballistic thermophoretic force is not unlikely to possess practical applications. PMID:28774954

  20. Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures

    PubMed Central

    Schmidt, Matthew W.; Chang, Ping; Hertzberg, Jennifer E.; Them, Theodore R.; Ji, Link; Otto-Bliesner, Bette L.

    2012-01-01

    Both instrumental data analyses and coupled ocean-atmosphere models indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly linked to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes. Although a slowdown of AMOC results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming because of rapid reorganizations of ocean circulation patterns at intermediate water depths. Here, we reconstruct high-resolution temperature records using oxygen isotope values and Mg/Ca ratios in both surface- and subthermocline-dwelling planktonic foraminifera from a sediment core located in the TNA over the last 22 ky. Our results show significant changes in the vertical thermal gradient of the upper water column, with the warmest subsurface temperatures of the last deglacial transition corresponding to the onset of the Younger Dryas. Furthermore, we present new analyses of a climate model simulation forced with freshwater discharge into the North Atlantic under Last Glacial Maximum forcings and boundary conditions that reveal a maximum subsurface warming in the vicinity of the core site and a vertical thermal gradient change at the onset of AMOC weakening, consistent with the reconstructed record. Together, our proxy reconstructions and modeling results provide convincing evidence for a subsurface oceanic teleconnection linking high-latitude North Atlantic climate to the tropical Atlantic during periods of reduced AMOC across the last deglacial transition. PMID:22908256

  1. Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures.

    PubMed

    Schmidt, Matthew W; Chang, Ping; Hertzberg, Jennifer E; Them, Theodore R; Ji, Link; J, Link; Otto-Bliesner, Bette L

    2012-09-04

    Both instrumental data analyses and coupled ocean-atmosphere models indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly linked to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes. Although a slowdown of AMOC results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming because of rapid reorganizations of ocean circulation patterns at intermediate water depths. Here, we reconstruct high-resolution temperature records using oxygen isotope values and Mg/Ca ratios in both surface- and subthermocline-dwelling planktonic foraminifera from a sediment core located in the TNA over the last 22 ky. Our results show significant changes in the vertical thermal gradient of the upper water column, with the warmest subsurface temperatures of the last deglacial transition corresponding to the onset of the Younger Dryas. Furthermore, we present new analyses of a climate model simulation forced with freshwater discharge into the North Atlantic under Last Glacial Maximum forcings and boundary conditions that reveal a maximum subsurface warming in the vicinity of the core site and a vertical thermal gradient change at the onset of AMOC weakening, consistent with the reconstructed record. Together, our proxy reconstructions and modeling results provide convincing evidence for a subsurface oceanic teleconnection linking high-latitude North Atlantic climate to the tropical Atlantic during periods of reduced AMOC across the last deglacial transition.

  2. Effect of Knudsen thermal force on the performance of low-pressure micro gas sensor

    NASA Astrophysics Data System (ADS)

    Barzegar Gerdroodbary, M.; Ganji, D. D.; Taeibi-Rahni, M.; Vakilipour, Shidvash

    2017-07-01

    In this paper, Direct Simulation Monte Carlo (DSMC) simulations were applied to investigate the mechanism of the force generation inside a low-pressure gas sensor. The flow feature and force generation mechanism inside a rectangular enclosure with heat and cold arms as the non-isothermal walls are comprehensively explained. In addition, extensive parametric studies are done to study the effects of physical parameters on the performance and characteristics of this device in different operating conditions. In this research, the Knudsen number is varied from 0.1 to 4.5 (0.5 to 11torr) to reveal all the characteristics of the thermally driven force inside the MEMS sensor. In order to simulate a rarefied gas inside the micro gas detector, Boltzmann equations are applied to obtain high-precision results. The effects of ambient pressure and temperature difference of arms are comprehensively investigated. Our findings show that maximum force increases more than 7 times when the temperature difference of the cold and hot arms is increased from 10 to 100K. In addition, the results demonstrate that the thermal gradient at rarefied pressure induces complex structure, and the mechanism of force generation highly varies at different pressure conditions.

  3. Nonlinear Meridional Moisture Advection and the ENSO-Southern China Rainfall Teleconnection

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Cai, Wenju; Zeng, Lili; Wang, Dongxiao

    2018-05-01

    In the boreal cooler months of 2015, southern China (SC) experienced the largest rainfall since 1950, exceeding 4 times the standard deviation of SC rainfall. Although an El Niño typically induces a positive SC rainfall anomaly during these months, the unprecedented rainfall increase cannot be explained by the strong El Niño of 2015/2016, and the dynamics is unclear. Here we show that a nonlinear meridional moisture advection contributes substantially to the unprecedented rainfall increase. During cooler months of 2015, the meridional flow anomaly over the South China Sea region, which acts on an El Niño-induced anomalous meridional moisture gradient, is particularly large and is supported by an anomalous zonal sea surface temperature gradient over the northwestern Pacific, which recorded its largest value in 2015 since 1950. Our study highlights, for the first time, the importance of the nonlinear process associated with the combined impact of a regional sea surface temperature gradient and large-scale El Niño anomalies in forcing El Niño rainfall teleconnection.

  4. Design and Performance of Property Gradient Ternary Nitride Coating Based on Process Control.

    PubMed

    Yan, Pei; Chen, Kaijie; Wang, Yubin; Zhou, Han; Peng, Zeyu; Jiao, Li; Wang, Xibin

    2018-05-09

    Surface coating is an effective approach to improve cutting tool performance, and multiple or gradient coating structures have become a common development strategy. However, composition mutations at the interfaces decrease the performance of multi-layered coatings. The key mitigation technique has been to reduce the interface effect at the boundaries. This study proposes a structure design method for property-component gradient coatings based on process control. The method produces coatings with high internal cohesion and high external hardness, which could reduce the composition and performance mutations at the interface. A ZrTiN property gradient ternary nitride coating was deposited on cemented carbide by multi-arc ion plating with separated Ti and Zr targets. The mechanical properties, friction behaviors, and cutting performances were systematically investigated, compared with a single-layer coating. The results indicated that the gradient coating had better friction and wear performance with lower wear rate and higher resistance to peeling off during sliding friction. The gradient coating had better wear and damage resistance in cutting processes, with lower machined surface roughness Ra. Gradient-structured coatings could effectively inhibit micro crack initiation and growth under alternating force and temperature load. This method could be extended to similar ternary nitride coatings.

  5. Entropy generation minimization (EGM) of nanofluid flow by a thin moving needle with nonlinear thermal radiation

    NASA Astrophysics Data System (ADS)

    Waleed Ahmed Khan, M.; Ijaz Khan, M.; Hayat, T.; Alsaedi, A.

    2018-04-01

    Entropy generation minimization (EGM) and heat transport in nonlinear radiative flow of nanomaterials over a thin moving needle has been discussed. Nonlinear thermal radiation and viscous dissipation terms are merged in the energy expression. Water is treated as ordinary fluid while nanomaterials comprise titanium dioxide, copper and aluminum oxide. The nonlinear governing expressions of flow problems are transferred to ordinary ones and then tackled for numerical results by Built-in-shooting technique. In first section of this investigation, the entropy expression is derived as a function of temperature and velocity gradients. Geometrical and physical flow field variables are utilized to make it nondimensionalized. An entropy generation analysis is utilized through second law of thermodynamics. The results of temperature, velocity, concentration, surface drag force and heat transfer rate are explored. Our outcomes reveal that surface drag force and Nusselt number (heat transfer) enhanced linearly for higher nanoparticle volume fraction. Furthermore drag force decays for aluminum oxide and it enhances for copper nanoparticles. In addition, the lowest heat transfer rate is achieved for higher radiative parameter. Temperature field is enhanced with increase in temperature ratio parameter.

  6. Exploiting the Temperature/Concentration Dependence of Magnetic Susceptibility to Control Convection in Fundamental Studies of Solidification Phenomena

    NASA Technical Reports Server (NTRS)

    Evans, J. W.; Xu, Dong; Jones, W. Kinzy, Jr.; Szofran, Frank R.

    1999-01-01

    The objective of this new research project is to demonstrate by experiment, supplemented by mathematical modeling and physical property measurement, that the effects of buoyancy driven convection can be largely eliminated in ground-based experiments, and further reduced in flight, by applying a new technique. That technique exploits the dependence of magnetic susceptibility on composition or temperature. It is emphasized at the outset that the phenomenon to be exploited is fundamentally and practically different from the magnetic damping of convection in conducting liquids that has been the subject of much prior research. The concept suggesting this research is that all materials, even non-conductors, when placed in a magnetic field gradient, experience a force. Of particular interest here are paramagnetic and diamagnetic materials, classes which embrace the "model alloys", such as succinonitrile-acetone, that have been used by others investigating the fundamentals of solidification. Such alloys will exhibit a dependence of susceptibility on composition. The consequence is that, with a properly oriented field (gradient) a force will arise that can be made to be equal to, but opposite, the buoyancy force arising from concentration (or temperature) gradients. In this way convection can be stilled. The role of convection in determining the microstructure, and thereby properties, of materials is well known. Elimination of that convection has both scientific and technological consequences. Our knowledge of diffusive phenomena in solidification, phenomena normally hidden by the dominance of convection, is enhanced if we can study solidification of quiescent liquids. Furthermore, the microstructure, microchemistry and properties of materials (thereby practical value) are affected by the convection occurring during their solidification. Hitherto the method of choice for elimination of convection has been experimentation in microgravity. However, even in low Earth orbit, residual convection has effects. That residual convection arises from acceleration (drag on the spacecraft), displacement from the center of mass or transients in the gravitational field (g-jitter). There is therefore a need for both further reducing buoyancy driven flow in flight and allowing the simulation of microgravity during ground based experiments. Previous investigations, the research project description, theory behind the study and experimental methods as well as plots of magnetic fields and forces are presented.

  7. TIGER: Development of Thermal Gradient Compensation Algorithms and Techniques

    NASA Technical Reports Server (NTRS)

    Hereford, James; Parker, Peter A.; Rhew, Ray D.

    2004-01-01

    In a wind tunnel facility, the direct measurement of forces and moments induced on the model are performed by a force measurement balance. The measurement balance is a precision-machined device that has strain gages at strategic locations to measure the strain (i.e., deformations) due to applied forces and moments. The strain gages convert the strain (and hence the applied force) to an electrical voltage that is measured by external instruments. To address the problem of thermal gradients on the force measurement balance NASA-LaRC has initiated a research program called TIGER - Thermally-Induced Gradients Effects Research. The ultimate goals of the TIGER program are to: (a) understand the physics of the thermally-induced strain and its subsequent impact on load measurements and (b) develop a robust thermal gradient compensation technique. This paper will discuss the impact of thermal gradients on force measurement balances, specific aspects of the TIGER program (the design of a special-purpose balance, data acquisition and data analysis challenges), and give an overall summary.

  8. Spin caloric effects in antiferromagnets assisted by an external spin current

    NASA Astrophysics Data System (ADS)

    Gomonay, O.; Yamamoto, Kei; Sinova, Jairo

    2018-07-01

    Searching for novel spin caloric effects in antiferromagnets, we study the properties of thermally activated magnons in the presence of an external spin current and temperature gradient. We predict the spin Peltier effect—generation of a heat flux by spin accumulation—in an antiferromagnetic insulator with cubic or uniaxial magnetic symmetry. This effect is related to the spin-current induced splitting of the relaxation times of the magnons with the opposite spin direction. We show that the Peltier effect can trigger antiferromagnetic domain wall motion with a force whose value grows with the temperature of a sample. At a temperature larger than the energy of the low-frequency magnons, this force is much larger than the force caused by direct spin transfer between the spin current and the domain wall. We also demonstrate that the external spin current can induce the magnon spin Seebeck effect. The corresponding Seebeck coefficient is controlled by the current density. These spin-current assisted caloric effects open new ways for the manipulation of the magnetic states in antiferromagnets.

  9. A comparison of methods for computing the sigma-coordinate pressure gradient force for flow over sloped terrain in a hybrid theta-sigma model

    NASA Technical Reports Server (NTRS)

    Johnson, D. R.; Uccellini, L. W.

    1983-01-01

    In connection with the employment of the sigma coordinates introduced by Phillips (1957), problems can arise regarding an accurate finite-difference computation of the pressure gradient force. Over steeply sloped terrain, the calculation of the sigma-coordinate pressure gradient force involves computing the difference between two large terms of opposite sign which results in large truncation error. To reduce the truncation error, several finite-difference methods have been designed and implemented. The present investigation has the objective to provide another method of computing the sigma-coordinate pressure gradient force. Phillips' method is applied for the elimination of a hydrostatic component to a flux formulation. The new technique is compared with four other methods for computing the pressure gradient force. The work is motivated by the desire to use an isentropic and sigma-coordinate hybrid model for experiments designed to study flow near mountainous terrain.

  10. Stable thermophoretic trapping of generic particles at low pressures

    NASA Astrophysics Data System (ADS)

    Fung, Frankie; Usatyuk, Mykhaylo; DeSalvo, B. J.; Chin, Cheng

    2017-01-01

    We demonstrate levitation and three-dimensionally stable trapping of a wide variety of particles in a vacuum through thermophoretic force in the presence of a strong temperature gradient. Typical sizes of the trapped particles are between 10 μm and 1 mm at a pressure between 1 and 10 Torr. The trapping stability is provided radially by the increasing temperature field and vertically by the transition from the free molecule to hydrodynamic behavior of thermophoresis as the particles ascend. To determine the levitation force and test various theoretical models, we examine the levitation heights of spherical polyethylene spheres under various conditions. A good agreement with two theoretical models is concluded. Our system offers a platform to discover various thermophoretic phenomena and to simulate dynamics of interacting many-body systems in a microgravity environment.

  11. Simulations of surface winds at the Viking Lander sites using a one-level model

    NASA Technical Reports Server (NTRS)

    Bridger, Alison F. C.; Haberle, Robert M.

    1992-01-01

    The one-level model developed by Mass and Dempsey for use in predicting surface flows in regions of complex terrain was adapted to simulate surface flows at the Viking lander sites on Mars. In the one-level model, prediction equations for surface winds and temperatures are formulated and solved. Surface temperatures change with time in response to diabatic heating, horizontal advection, adiabatic heating and cooling effects, and horizontal diffusion. Surface winds can change in response to horizontal advection, pressure gradient forces, Coriolis forces, surface drag, and horizontal diffusion. Surface pressures are determined by integration of the hydrostatic equation from the surface to some reference level. The model has successfully simulated surface flows under a variety of conditions in complex-terrain regions on Earth.

  12. Leishmania amazonensis chemotaxis under glucose gradient studied by the strength and directionality of forces measured with optical tweezers

    NASA Astrophysics Data System (ADS)

    de Ysasa Pozzo, Liliana; Fontes, Adriana; de Thomaz, André A.; Barbosa, Luiz Carlos; Ayres, Diana Copi; Giorgio, Selma; Cesar, Carlos Lenz

    2007-02-01

    Chemotaxis is the mechanism microorganisms use to sense the environment surrounding them and to direct their movement towards attractive, or away from the repellent, chemicals. The biochemical sensing is almost the only way for communication between unicellular organisms. Prokaryote and Eukaryote chemotaxis has been mechanically studied mainly by observing the directionality and timing of the microorganisms movements subjected to a chemical gradient, but not through the directionality and strength of the forces it generates. To observe the vector force of microorganisms under a chemical gradient we developed a system composed of two large chambers connected by a tiny duct capable to keep the chemical gradient constant for more than ten hours. We also used the displacements of a microsphere trapped in an Optical Tweezers as the force transducer to measure the direction and the strength of the propulsion forces of flagellum of the microorganism under several gradient conditions. A 9μm diameter microsphere particle was trapped with a Nd:YAG laser and its movement was measured through the light scattered focused on a quadrant detector. We observed the behavior of the protozoa Leishmania amazonensis (eukaryote) under several glucose gradients. This protozoa senses the gradient around it by swimming in circles for three to five times following by tumbling, and not by the typical straight swimming/tumbling of bacteria. Our results also suggest that force direction and strength are also used to control its movement, not only the timing of swimming/tumbling, because we observed a higher force strength clearly directed towards the glucose gradient.

  13. Complete temperature profiles in ultra-high-pressure liquid chromatography columns.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2008-07-01

    The temperature profiles were calculated along and across seven packed columns (lengths 30, 50, 100, and 150 mm, i.d., 1 and 2.1 mm, all packed with Acquity UPLC, BEH-C 18 particles, average d(p) approximately 1.7 microm) and their stainless steel tubes (o.d. 4.53 and 6.35 mm). These columns were kept horizontal and sheltered from forced air convection (i.e., under still air conditions), at room temperature. They were all percolated with pure acetonitrile, either under the maximum pressure drop (1034 bar) or at the maximum flow rate (2 mL/min) permitted by the chromatograph. The heat balance equation of chromatographic columns was discretized and solved numerically with minimum approximation. Both the compressibility and the thermal expansion of the eluent were taken into account. The boundary conditions were determined from the experimental measurements of the column inlet pressure and of the temperature profile along the column wall, which were made with a precision better than +/-0.1 K. These calculation results provide the 3-D temperature profiles along and across the columns. The axial and radial temperature gradients are discussed in relationship with the experimental conditions used. The temperature map obtained permits a prediction of the chromatographic data obtained under a very high pressure gradient.

  14. Multiple zonal jets and convective heat transport barriers in a quasi-geostrophic model of planetary cores

    NASA Astrophysics Data System (ADS)

    Guervilly, C.; Cardin, P.

    2017-10-01

    We study rapidly rotating Boussinesq convection driven by internal heating in a full sphere. We use a numerical model based on the quasi-geostrophic approximation for the velocity field, whereas the temperature field is 3-D. This approximation allows us to perform simulations for Ekman numbers down to 10-8, Prandtl numbers relevant for liquid metals (˜10-1) and Reynolds numbers up to 3 × 104. Persistent zonal flows composed of multiple jets form as a result of the mixing of potential vorticity. For the largest Rayleigh numbers computed, the zonal velocity is larger than the convective velocity despite the presence of boundary friction. The convective structures and the zonal jets widen when the thermal forcing increases. Prograde and retrograde zonal jets are dynamically different: in the prograde jets (which correspond to weak potential vorticity gradients) the convection transports heat efficiently and the mean temperature tends to be homogenized; by contrast, in the cores of the retrograde jets (which correspond to steep gradients of potential vorticity) the dynamics is dominated by the propagation of Rossby waves, resulting in the formation of steep mean temperature gradients and the dominance of conduction in the heat transfer process. Consequently, in quasi-geostrophic systems, the width of the retrograde zonal jets controls the efficiency of the heat transfer.

  15. Using torsional forces to explain the gradient temperature Raman spectra of endosulfan isomers and its irreversible isomerization

    USDA-ARS?s Scientific Manuscript database

    Since the 1950's, the broad-spectrum, organochlorine insecticide endosulfan (6,7,8, 9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepine-3-oxide) has been used on numerous crops. Due to its persistence, bioaccumulation, long-range transport, and adverse effects to human he...

  16. Marangoni Convection and Deviations from Maxwells' Evaporation Model

    NASA Technical Reports Server (NTRS)

    Segre, P. N.; Snell, E. H.; Adamek, D. H.

    2003-01-01

    We investigate the convective dynamics of evaporating pools of volatile liquids using an ultra-sensitive thermal imaging camera. During evaporation, there are significant convective flows inside the liquid due to Marangoni forces. We find that Marangoni convection during evaporation can dramatically affect the evaporation rates of volatile liquids. A simple heat balance model connects the convective velocities and temperature gradients to the evaporation rates.

  17. Double-diffusive boundary layers along vertical free surfaces

    NASA Astrophysics Data System (ADS)

    Napolitano, L. G.; Viviani, A.; Savino, R.

    1992-05-01

    This paper deals with double-diffusive (or thermosolutal) combined free convection, i.e., free convection due to buoyant forces (natural convection) and surface tension gradients (Marangoni convection), which are generated by volume differences and surface gradients of temperature and solute concentration. Attention is focused on boundary layers that form along a vertical liquid-gas interface, when the appropriately defined nondimensional characteristic transport numbers are large enough, in problems of thermosolutal natural and Marangoni convection, such as buoyancy and surface tension driven flows in differentially heated open cavities and liquid bridges. Classes of similar solutions are derived for each class of convection on the basis of a rigorous order of magnitude analysis. Velocity, temperature and concentration profiles are reported in the similarity plane; flow and transport properties at the liquid-gas interface (interfacial velocity, heat and mass transfer bulk coefficients) are obtained for a wide range of Prandtl and Schmidt numbers and different values of the similarity parameter.

  18. Eocene Hyperthermal Climate Sensitivity to Greenhouse Gas and Aerosol Forcing

    NASA Astrophysics Data System (ADS)

    Winguth, A. M. E.; Hughlett, T. M.; Brown, M.; Rothstein, M.; Shields, C. A.; Winguth, C.

    2017-12-01

    A series of DeepMIP climate sensitivity experiments have been carried out with the Community Earth System Model CESM1.2 to evaluate how changes in the radiative forcing could have contributed to explain Eocene hyperthermal events. A rise in Eocene greenhouse gas forcing could have been linked to an increase in volcanism and associated destabilization of marine carbon reservoirs by dissociation of clathrathes, reorganization of the marine microbial loop, or terrestrial sources from e.g. wetlands. Such environmental changes could potentially have led to additional biophysical feedbacks altering the cloud aerosol optical depth for example by alteration of marine plankton productivity and DMS emissions to the atmosphere. The analysis of our simulations suggests a substantial warming from 3x to 12x CO2 PAL, reaching moderate temperatures of up to 20 °C over Antarctica and in the Article realm in the most extreme scenario, consistent to proxy estimates in a high CO2 world. The lower equator-to-pole temperature gradient compared to present-day is due to the lack of an ice sheet, an increase in greenhouse gases, and a lower cloud optical depth. The climate simulations suggest an intensified hydrological cycle with higher precipitation in the tropics, particularly over the Indian Eocene continent, and in mid-latitudes, whereas mega-droughts are prominent in the subtropics, particularly in Africa and South America. The Eocene geography (the closure of the Drake Passage and the more southern location of Australia) and a lower-than-present meridional temperature gradient contribute to a much weaker surface ocean circulation near the Antarctic continent as compared to the current pronounced Antarctic Circumpolar Current.

  19. Nanocharacterization of the adhesion effect and bending stiffness in optical MEMS

    NASA Astrophysics Data System (ADS)

    Pustan, Marius; Birleanu, Corina; Dudescu, Cristian

    2017-11-01

    The scope of this paper is the reliability design and testing of flexible MEMS components as clamp-clamp beams for the out-of-plane displacement. The field of implementation of such structures is in optical relevant applications such as the optical microsensors or optical microswitches. Moreover these structures can be successfully implemented in RF switches or in the other MEMS applications. The research studies presented in this paper consider the analytical and numerical analysis follow by the experimental validation. The mechanical and tribological characteristics such as the sample static response under an applied force and the adhesion effect between the flexible structure and substrate are investigated. The samples under test are fabricated from a reflective material - gold. Experimental investigations are performed by atomic force microscopy in order to determine the response of the gold microbridges under an applied force. Moreover, to identify the proper geometry that is less sensitive to a thermal gradient, different geometrical configurations of microbridges are tested under different temperatures. An etalon structure is considered as a reference beam and it is compared with the other samples fabricated in the same geometrical dimensions but with some additional rectangular holes performed on the flexible plate. The scope of holes is to reduce the temperature influence on the mechanical behaviour of clamp-clamp beam from application where a thermal gradient occurs. During numerical analysis and experimental investigations, the temperature of samples is increased from 20 °C to 100 °C and the sample response is monitored. A comparison between numerical and experimental results is provided at the end of paper. The research results are useful for designers to predict the behaviour of material and structure from optical or thermal applications in order to improve the reliability and the MEMS lifetime.

  20. Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Man, B. Y.; Yang, C.; Jiang, S. Z.; Liu, M.; Chen, C. S.; Xu, S. C.; Sun, Z. C.; Gao, X. G.; Chen, X. J.

    2013-10-01

    Direct deposition of graphene on a dielectric substrate is demonstrated using a chemical vapor deposition system with a two-temperature reactor. The two-temperature reactor is utilized to offer sufficient, well-proportioned floating Cu atoms and to provide a temperature gradient for facile synthesis of graphene on dielectric surfaces. The evaporated Cu atoms catalyze the reaction in the presented method. C atoms and Cu atoms respectively act as the nuclei for forming graphene film in the low-temperature zone and the zones close to the high-temperature zones. A uniform and high-quality graphene film is formed in an atmosphere of sufficient and well-proportioned floating Cu atoms. Raman spectroscopy, scanning electron microscopy and atomic force microscopy confirm the presence of uniform and high-quality graphene.

  1. Vibration of initially stressed carbon nanotubes under magneto-thermal environment for nanoparticle delivery via higher-order nonlocal strain gradient theory

    NASA Astrophysics Data System (ADS)

    Farajpour, M. R.; Shahidi, A. R.; Tabataba'i-Nasab, F.; Farajpour, A.

    2018-06-01

    In this paper, the forced vibration of a single-walled carbon nanotube (SWCNT) under a moving nanoparticle is investigated based on the higher-order nonlocal strain gradient theory. The SWCNT is subjected to thermo-mechanical stresses and an external longitudinal magnetic field. The influences of higher-order stress gradients in conjunction with the strain gradient nonlocality are taken into account. Using Hamilton's principle and Maxwell's equations, the higher-order differential equations of motion are derived. An analytical solution is obtained for the dynamic deflection of SWCNTs using the Galerkin method. Furthermore, the governing differential equation is solved numerically using the precise integration method. The results of the two solution procedures are compared and an excellent agreement is found between them. Finally, the influences of various scale parameters, the velocity of the moving nanoparticle, the initial axial stress, the temperature change and longitudinal magnetic field on the dynamic response of SWCNTs are investigated.

  2. Pleistocene tropical Pacific temperature sensitivity to radiative greenhouse gas forcing

    NASA Astrophysics Data System (ADS)

    Dyck, K. A.; Ravelo, A. C.

    2011-12-01

    How high will Earth's global average surface temperature ultimately rise as greenhouse gas concentrations increase in the future? One way to tackle this question is to compare contemporaneous temperature and greenhouse gas concentration data from paleoclimate records, while considering that other radiative forcing mechanisms (e.g. changes in the amount and distribution of incoming solar radiation associated with changes in the Earth's orbital configuration) also contribute to surface temperature change. Since the sensitivity of surface temperature varies with location and latitude, here we choose a central location representative of the west Pacific warm pool, far from upwelling regions or surface temperature gradients in order to minimize climate feedbacks associated with high-latitude regions or oceanic dynamics. The 'steady-state' or long-term temperature change associated with greenhouse gas radiative forcing is often labeled as equilibrium (or 'Earth system') climate sensitivity to the doubling of atmospheric greenhouse gas concentration. Climate models suggest that Earth system sensitivity does not change dramatically over times when CO2 was lower or higher than the modern atmospheric value. Thus, in our investigation of the changes in tropical SST, from the glacial to interglacial states when greenhouse gas forcing nearly doubled, we use Late Pleistocene paleoclimate records to constrain earth system sensitivity for the tropics. Here we use Mg/Ca-paleothermometry using the foraminifera G. ruber from ODP Site 871 from the past 500 kyr in the western Pacific warm pool to estimate tropical Pacific equilibrium climate sensitivity to a doubling of greenhouse gas concentrations to be ~4°C. This tropical SST sensitivity to greenhouse gas forcing is ~1-2°C higher than that predicted by climate models of past glacial periods or future warming for the tropical Pacific. Equatorial Pacific SST sensitivity may be higher than predicted by models for a number of reasons. First, models may not be adequately representing long-term deep ocean feedbacks. Second, models may incorrectly parameterize tropical cloud (or other short-term) feedback processes. Lastly, either paleo-temperature or radiative forcing may have been incorrectly estimated (e.g. through calibration of paleoclimate evidence for temperature change). Since theory suggests that surface temperature in the high latitudes is more sensitive to radiative forcing changes than surface temperature in the tropics, the results of this study also imply that globally averaged Earth system sensitivity to greenhouse gas concentrations may be higher than most climate models predict.

  3. The force balance of sea ice in a numerical model of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Steele, Michael; Zhang, Jinlun; Rothrock, Drew; Stern, Harry

    1997-09-01

    The balance of forces in the sea ice model of Hibler [1979] is examined. The model predicts that internal stress gradients are an important force in much of the Arctic Ocean except in summer, when they are significant only off the northern coasts of Greenland and the Canadian Archipelago. A partition of the internal stress gradient between the pressure gradient and the viscous terms reveals that both are significant, although they operate on very different timescales. The acceleration term is generally negligible, while the sum of Coriolis plus sea surface tilt is small. Thus the seasonal average force balance in fall, winter, and spring is mostly between three terms of roughly equal magnitudes: air drag, water drag, and internal stress gradients. This is also true for the monthly average force balance. However, we find that there is a transition around the weekly timescale and that on a daily basis the force balance at a particular location and time is often between only two terms: either between air drag and water drag or between air drag and internal stress gradients. The model is in agreement with the observations of Thorndike and Colony [1982] in that the correlation between geostrophic wind forcing and the model's ice velocity field is high. This result is discussed in the context of the force balance; we show that the presence of significant internal stress gradients does not preclude high wind-ice correlation. A breakdown of the internal stress gradient into component parts reveals that the shear viscous force is far from negligible, which casts strong doubt on the theoretical validity of the cavitating fluid approximation (in which this component is neglected). Finally, the role of ice pressure is examined by varying the parameter P*. We find a strong sensitivity in terms of the force balance, as well as ice thickness and velocity.

  4. A new paradigm for predicting zonal-mean climate and climate change

    NASA Astrophysics Data System (ADS)

    Armour, K.; Roe, G.; Donohoe, A.; Siler, N.; Markle, B. R.; Liu, X.; Feldl, N.; Battisti, D. S.; Frierson, D. M.

    2016-12-01

    How will the pole-to-equator temperature gradient, or large-scale patterns of precipitation, change under global warming? Answering such questions typically involves numerical simulations with comprehensive general circulation models (GCMs) that represent the complexities of climate forcing, radiative feedbacks, and atmosphere and ocean dynamics. Yet, our understanding of these predictions hinges on our ability to explain them through the lens of simple models and physical theories. Here we present evidence that zonal-mean climate, and its changes, can be understood in terms of a moist energy balance model that represents atmospheric heat transport as a simple diffusion of latent and sensible heat (as a down-gradient transport of moist static energy, with a diffusivity coefficient that is nearly constant with latitude). We show that the theoretical underpinnings of this model derive from the principle of maximum entropy production; that its predictions are empirically supported by atmospheric reanalyses; and that it successfully predicts the behavior of a hierarchy of climate models - from a gray radiation aquaplanet moist GCM, to comprehensive GCMs participating in CMIP5. As an example of the power of this paradigm, we show that, given only patterns of local radiative feedbacks and climate forcing, the moist energy balance model accurately predicts the evolution of zonal-mean temperature and atmospheric heat transport as simulated by the CMIP5 ensemble. These results suggest that, despite all of its dynamical complexity, the atmosphere essentially responds to energy imbalances by simply diffusing latent and sensible heat down-gradient; this principle appears to explain zonal-mean climate and its changes under global warming.

  5. Recent intensification of the Walker Circulation and the role of natural sea surface temperature variability

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Allen, R.

    2017-12-01

    In a warming world, the tropical atmospheric overturning circulation-including the Walker Circulation-is expected to weaken due to thermodynamic constraints. Tropical precipitation increases at a slower rate than water vapor-which increases according to Clausius Clapeyron scaling, assuming constant relative humidity-so the tropical overturning circulation slows down. This is supported by both observations and model simulations, which show a slowdown of the Walker Circulation over the 20th century. Model projections suggest a further weakening of the Walker Circulation in the 21st century. However, over the last several decades (1979-2014), multiple observations reveal a robust strengthening of the Walker Circulation. Although coupled CMIP5 simulations are unable to reproduce this strengthening, AMIP simulations-which feature the observed evolution of SSTs-are generally able to reproduce it. Assuming the ensemble mean sea surface temperatures (SSTs) from historical CMIP5 simulations accurately represent the externally forced SST response, the observed SSTs can be decomposed into a forced and an unforced component. CAM5 AMIP-type simulations driven by the unforced component of observed SSTs reproduce the observed strengthening of the Walker Circulation. Corresponding simulations driven by the forced component of observed SSTs yield a weaker Walker Circulation. These results are consistent with the zonal tropical SST gradient and the Bjerknes feedback. The unforced component of SSTs yield an increased SST gradient over tropical Pacific (a La Nina like pattern) and strengthening of the tropical trade winds, which constitute the lower branch of the Walker Circulation. The forced component of SSTs yields a zonally uniform tropical Pacific SST warming and a marginal weakening of the Walker Circulation. Our results suggest significant modulation of the tropical Walker Circulation by natural SST variability over the last several decades.

  6. Range-Wide Latitudinal and Elevational Temperature Gradients for the World's Terrestrial Birds: Implications under Global Climate Change

    PubMed Central

    La Sorte, Frank A.; Butchart, Stuart H. M.; Jetz, Walter; Böhning-Gaese, Katrin

    2014-01-01

    Species' geographical distributions are tracking latitudinal and elevational surface temperature gradients under global climate change. To evaluate the opportunities to track these gradients across space, we provide a first baseline assessment of the steepness of these gradients for the world's terrestrial birds. Within the breeding ranges of 9,014 bird species, we characterized the spatial gradients in temperature along latitude and elevation for all and a subset of bird species, respectively. We summarized these temperature gradients globally for threatened and non-threatened species and determined how their steepness varied based on species' geography (range size, shape, and orientation) and projected changes in temperature under climate change. Elevational temperature gradients were steepest for species in Africa, western North and South America, and central Asia and shallowest in Australasia, insular IndoMalaya, and the Neotropical lowlands. Latitudinal temperature gradients were steepest for extratropical species, especially in the Northern Hemisphere. Threatened species had shallower elevational gradients whereas latitudinal gradients differed little between threatened and non-threatened species. The strength of elevational gradients was positively correlated with projected changes in temperature. For latitudinal gradients, this relationship only held for extratropical species. The strength of latitudinal gradients was better predicted by species' geography, but primarily for extratropical species. Our findings suggest threatened species are associated with shallower elevational temperature gradients, whereas steep latitudinal gradients are most prevalent outside the tropics where fewer bird species occur year-round. Future modeling and mitigation efforts would benefit from the development of finer grain distributional data to ascertain how these gradients are structured within species' ranges, how and why these gradients vary among species, and the capacity of species to utilize these gradients under climate change. PMID:24852009

  7. Assessing Hydrogen Assisted Cracking Modes in High Strength Steel Welds

    DTIC Science & Technology

    1988-12-01

    posed theoretical hydrogen assisted cracking mechanisms. It was found that the microplasticity theory of Beachem can best describe how the stress...precludes an internal pressure gradient as the driv- ing force for crack growth. The adsorption theory of Petch and Stables3 and further modifications4...the adsorption theory. In addition, fracture surfaces indicate rapid void formation and coales- cence at low temperatures where the rate of surface

  8. Thermal bending of liquid sheets and jets

    NASA Astrophysics Data System (ADS)

    Brenner, Michael P.; Paruchuri, Srinivas

    2003-11-01

    We present an analytical model for the bending of liquid jets and sheets from temperature gradients, as recently observed by Chwalek et al. [Phys. Fluids 14, L37 (2002)]. The bending arises from a local couple caused by Marangoni forces. The dependence of the bending angle on experimental parameters is presented, in qualitative agreement with reported experiments. The methodology gives a simple framework for understanding the mechanisms for jet and sheet bending.

  9. A boundary-layer model for Mars - Comparison with Viking lander and entry data

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M.; Houben, Howard C.; Hertenstein, Rolf; Herdtle, Tomas

    1993-01-01

    A 1D boundary-layer model of Mars based on a momentum equation that describes friction, pressure gradient, and Coriolis forces is presented. Frictional forces and convective heating are computed using the level-2 turbulence closure theory of Mellor and Yamada (1974). The model takes into account the radiative effects of CO2 gas and suspended dust particles. Both radiation and convection depend on surface temperatures which are computed from a surface heat budget. Model predictions are compared with available observations from Viking landers. It is concluded that, in general, the model reproduces the basic features of the temperature data. The agreement is particularly good at entry time for the V L-2 site, where the model and observations are within several degrees at all levels for which data are available.

  10. Idealized modeling of convective organization with changing sea surface temperatures using multiple equilibria in weak temperature gradient simulations

    NASA Astrophysics Data System (ADS)

    Sentić, Stipo; Sessions, Sharon L.

    2017-06-01

    The weak temperature gradient (WTG) approximation is a method of parameterizing the influences of the large scale on local convection in limited domain simulations. WTG simulations exhibit multiple equilibria in precipitation; depending on the initial moisture content, simulations can precipitate or remain dry for otherwise identical boundary conditions. We use a hypothesized analogy between multiple equilibria in precipitation in WTG simulations, and dry and moist regions of organized convection to study tropical convective organization. We find that the range of wind speeds that support multiple equilibria depends on sea surface temperature (SST). Compared to the present SST, low SSTs support a narrower range of multiple equilibria at higher wind speeds. In contrast, high SSTs exhibit a narrower range of multiple equilibria at low wind speeds. This suggests that at high SSTs, organized convection might occur with lower surface forcing. To characterize convection at different SSTs, we analyze the change in relationships between precipitation rate, atmospheric stability, moisture content, and the large-scale transport of moist entropy and moisture with increasing SSTs. We find an increase in large-scale export of moisture and moist entropy from dry simulations with increasing SST, which is consistent with a strengthening of the up-gradient transport of moisture from dry regions to moist regions in organized convection. Furthermore, the changes in diagnostic relationships with SST are consistent with more intense convection in precipitating regions of organized convection for higher SSTs.

  11. Thermal and Pressure Characterization of a Wind Tunnel Force Balance Using the Single Vector System. Experimental Design and Analysis Approach to Model Pressure and Temperature Effects in Hypersonic Wind Tunnel Research

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C.; Commo, Sean A.; Johnson, Thomas H.; Parker, Peter A,

    2011-01-01

    Wind tunnel research at NASA Langley Research Center s 31-inch Mach 10 hypersonic facility utilized a 5-component force balance, which provided a pressurized flow-thru capability to the test article. The goal of the research was to determine the interaction effects between the free-stream flow and the exit flow from the reaction control system on the Mars Science Laboratory aeroshell during planetary entry. In the wind tunnel, the balance was exposed to aerodynamic forces and moments, steady-state and transient thermal gradients, and various internal balance cavity pressures. Historically, these effects on force measurement accuracy have not been fully characterized due to limitations in the calibration apparatus. A statistically designed experiment was developed to adequately characterize the behavior of the balance over the expected wind tunnel operating ranges (forces/moments, temperatures, and pressures). The experimental design was based on a Taylor-series expansion in the seven factors for the mathematical models. Model inversion was required to calculate the aerodynamic forces and moments as a function of the strain-gage readings. Details regarding transducer on-board compensation techniques, experimental design development, mathematical modeling, and wind tunnel data reduction are included in this paper.

  12. Magnetothermal Convection in Nonconducting Diamagnetic and Paramagnetic Fluids

    NASA Technical Reports Server (NTRS)

    Edwards, Boyd F.; Gray, Donald D.; Huang, Jie

    1996-01-01

    Nonuniform magnetic fields exert a magnetic body force on electrically nonconducting classical fluids. These include paramagnetic fluids such as gaseous and liquid oxygen and diamagnetic fluids such as helium. Recent experiments show that this force can overwhelm the force of gravity even at the surface of the earth; it can levitate liquids and gases, quench candle flames, block gas flows, and suppress heat transport. Thermal gradients render the magnetic force nonuniform through the temperature-dependent magnetic susceptibility. These thermal gradients can therefore drive magnetic convection analogous to buoyancy-driven convection. This magnetothermal convection can overwhelm convection driven by gravitational buoyancy in terrestrial experiments. The objectives of the proposed ground-based theoretical study are (a) to supply the magnetothermohydrodynamic theory necessary to understand these recent experiments and (b) to explore the consequences of nonuniform magnetic fields in microgravity. Even the linear theory for the onset of magnetothermal convection is lacking in the literature. We intend to supply the linear and nonlinear theory based on the thermohydrodynamic equations supplemented by the magnetic body force. We intend to investigate the effect of magnetic fields on gas blockage and heat transport in microgravity. Since magnetic fields provide a means of creating arbitrary, controllable body force distributions, we intend to investigate the possibility of using magnetic fields to position and control fluids in microgravity. We also intend to investigate the possibility of creating stationary terrestrial microgravity environments by using the magnetic force to effectively cancel gravity. These investigations may aid in the design of space-based heat-transfer, combustion, and human-life-support equipment.

  13. Comparison of infrared thermometer with thermocouple for monitoring skin temperature.

    PubMed

    Matsukawa, T; Ozaki, M; Nishiyama, T; Imamura, M; Kumazawa, T

    2000-02-01

    To test the hypothesis that the infrared thermometer (Genius) is comparably useful with thermocouples that are routinely used for skin temperature monitoring. Prospective, controlled, not blinded study. Operating room of a university hospital. Ten healthy male volunteers. Volunteers were minimally clothed and were initially warmed by a forced air warmer until they became vasodilated at the finger and the foot for approximately 30 mins. Subsequently, they were kept in the room with no blanket. Skin temperatures were measured continuously with the Mon-a-Therm thermocouple and were also measured with the Genius thermometer just before and after the warming and subsequently every 10 mins for 70 mins. Forearm and finger-tip skin temperatures and skin-surface temperature gradients (from arm to finger and from calf to toe) measured by the Genius thermometer were compared with those measured by the Mon-a-Therm thermocouple using linear regression and Bland and Altman statistics. Forearm temperature and finger-tip temperature ranged from approximately 31 degrees to approximately 36.5 degrees C (87.8-97.7 degrees F) and approximately 22.5 degrees to approximately 36 degrees C (72.5-96.8 degrees F), respectively. Gradients (from arm to finger and from calf to toe) ranged from approximately -3 degrees to approximately 10 degrees C (26.6-50.0 degrees F) and approximately -3 degrees to approximately 11 degrees C (26.6-51.8 degrees F), respectively. Correlations between the temperatures measured by the Genius thermometer and those by the Mon-a-Therm thermocouple were similar and reliable. The correlation coefficients were as follows: 0.78 at forearm, 0.97 at finger-tip, and 0.97 at skin-surface temperature gradients. The infrared thermometer with a special probe is useful to measure the change of skin-surface temperatures and to evaluate the severity of shock in patients.

  14. Analysis of microfluidic flow driven by electrokinetic and pressure forces

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Hsin

    2011-12-01

    This work presents an analysis of microfluidic flow introduced by mixed electrokinetic force and pressure gradient. Analytical solutions are presented for the case of constant surface heat flux, taking the Joule heating effect into account. The present problem is governed by two scale ratios and the dimensionless source term. The two important ratios are the length scale ratio e (the ratio of Debye length to the tube radius R) and the velocity scale ratio Γ (the ratio of the pressuredriven velocity scale for Poiseuille flow to Helmholtz-Smoluchowski velocity for electroosmotic flow). For mixed electroosmotic and pressure-driven flow, the resulting velocity profile is the superimposed effect of both electroosmotic and Poiseuille flow phenomena. It is found that the velocity profile decreases as e increases and the normalized temperature profiles across the tube increases monotonously form the core to the wall. The maximum dimensionless temperature is observed at the wall and the wall temperature increases with increasing Joule heating. Also, the temperature is increased with increasing the value of ɛ . The fully developed Nusselt number takes the maximum value at the limiting case of ɛ --> 0 , and then decreases with increasing ɛ . Moreover, the Nusselt number decreases with Γ and then goes asymptotically to the limit of Poiseuille flow as Γ --> ∞ , where the flow is dominated by the pressure force.

  15. The forcing of monthly precipitation variability over Southwest Asia during the Boreal cold season

    USGS Publications Warehouse

    Hoell, Andrew; Shukla, Shraddhanand; Barlow, Mathew; Cannon, Forest; Kelley, Colin; Funk, Christopher C.

    2015-01-01

    Southwest Asia, deemed as the region containing the countries of Afghanistan, Iran, Iraq and Pakistan, is water scarce and receives nearly 75% of its annual rainfall during8 the boreal cold season of November-April. The forcing of Southwest Asia precipitation has been previously examined for the entire boreal cold season from the perspective of climate variability originating over the Atlantic and tropical Indo-Pacific Oceans. Here, we examine the inter-monthly differences in precipitation variability over Southwest Asia and the atmospheric conditions directly responsible in forcing monthly November-April precipitation. Seasonally averaged November-April precipitation over Southwest Asia is significantly correlated with sea surface temperature (SST) patterns consistent with Pacific Decadal Variability (PDV), the El Nino-Southern Oscillation (ENSO) and the warming trend of SST (Trend). On the contrary, the precipitation variability during individual months of November-April are unrelated and are correlated with SST signatures that include PDV, ENSO and Trend in different combinations. Despite strong inter-monthly differences in precipitation variability during November- April over Southwest Asia, similar atmospheric circulations, highlighted by a stationary equivalent barotropic Rossby wave centered over Iraq, force the monthly spatial distributions of precipitation. Tropospheric waves on the eastern side of the equivalent barotropic Rossby wave modifies the flux of moisture and advects the mean temperature gradient, resulting in temperature advection that is balanced by vertical motions over Southwest Asia. The forcing of monthly Southwest Asia precipitation by equivalent barotropic Rossby waves is different than the forcing by baroclinic Rossby waves associated with tropically-forced-only modes of climate variability.

  16. Mid-Pliocene equatorial Pacific sea surface temperature reconstruction: a multi-proxy perspective

    USGS Publications Warehouse

    Dowsett, Harry J.; Robinson, Marci M.

    2009-01-01

    The Mid-Pliocene is the most recent interval of sustained global warmth, which can be used to examine conditions predicted for the near future. An accurate spatial representation of the low-latitude Mid-Pliocene Pacific surface ocean is necessary to understand past climate change in the light of forecasts of future change. Mid-Pliocene sea surface temperature (SST) anomalies show a strong contrast between the western equatorial Pacific (WEP) and eastern equatorial Pacific (EEP) regardless of proxy (faunal, alkenone and Mg/Ca). All WEP sites show small differences from modern mean annual temperature, but all EEP sites show significant positive deviation from present-day temperatures by as much as 4.4°C. Our reconstruction reflects SSTs similar to modern in the WEP, warmer than modern in the EEP and eastward extension of the WEP warm pool. The east-west equatorial Pacific SST gradient is decreased, but the pole to equator gradient does not change appreciably. We find it improbable that increased greenhouse gases (GHG) alone would cause such a heterogeneous warming and more likely that the cause of Mid-Pliocene warmth is a combination of several forcings including both increased meridional heat transport and increased GHG.

  17. Mid-Pliocene equatorial Pacific sea surface temperature reconstruction: A multi-proxy perspective

    USGS Publications Warehouse

    Dowsett, H.J.; Robinson, M.M.

    2009-01-01

    The Mid-Pliocene is the most recent interval of sustained global warmth, which can be used to examine conditions predicted for the near future. An accurate spatial representation of the low-latitude Mid-Pliocene Pacific surface ocean is necessary to understand past climate change in the light of forecasts of future change. Mid-Pliocene sea surface temperature (SST) anomalies show a strong contrast between the western equatorial Pacific (WEP) and eastern equatorial Pacific (EEP) regardless of proxy (faunal, alkenone and Mg/Ca). All WEP sites show small differences from modern mean annual temperature, but all EEP sites show significant positive deviation from present-day temperatures by as much as 4.4??C. Our reconstruction reflects SSTs similar to modern in the WEP, warmer than modern in the EEP and eastward extension of the WEP warm pool. The east-west equatorial Pacific SST gradient is decreased, but the pole to equator gradient does not change appreciably. We find it improbable that increased greenhouse gases (GHG) alone would cause such a heterogeneous warming and more likely that the cause of Mid-Pliocene warmth is a combination of several forcings including both increased meridional heat transport and increased GHG. ?? 2008 The Royal Society.

  18. Mid-Pliocene equatorial Pacific sea surface temperature reconstruction: a multi-proxy perspective.

    PubMed

    Dowsett, Harry J; Robinson, Marci M

    2009-01-13

    The Mid-Pliocene is the most recent interval of sustained global warmth, which can be used to examine conditions predicted for the near future. An accurate spatial representation of the low-latitude Mid-Pliocene Pacific surface ocean is necessary to understand past climate change in the light of forecasts of future change. Mid-Pliocene sea surface temperature (SST) anomalies show a strong contrast between the western equatorial Pacific (WEP) and eastern equatorial Pacific (EEP) regardless of proxy (faunal, alkenone and Mg/Ca). All WEP sites show small differences from modern mean annual temperature, but all EEP sites show significant positive deviation from present-day temperatures by as much as 4.4 degrees C. Our reconstruction reflects SSTs similar to modern in the WEP, warmer than modern in the EEP and eastward extension of the WEP warm pool. The east-west equatorial Pacific SST gradient is decreased, but the pole to equator gradient does not change appreciably. We find it improbable that increased greenhouse gases (GHG) alone would cause such a heterogeneous warming and more likely that the cause of Mid-Pliocene warmth is a combination of several forcings including both increased meridional heat transport and increased GHG.

  19. Analytical investigation for Lorentz forces effect on nanofluid Marangoni boundary layer hydrothermal behavior using HAM

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, M.; Ganji, D. D.

    2017-12-01

    In this paper, semi analytical approach is applied to investigate nanofluid Marangoni convection in presence of magnetic field. Koo-Kleinstreuer-Li model is taken into account to simulate nanofluid properties. Homotopy analysis method is utilized to solve the final ordinary equations which are obtained from similarity transformation. Roles of Hartmann number and nanofluid volume fraction are presented graphically. Results show that temperature augments with rise of nanofluid volume fraction. Impact of nanofluid volume fraction on normal velocity is more than tangential velocity. Temperature gradient enhances with rise of magnetic number.

  20. Exact solution for the layered convection of a viscous incompressible fluid at specified temperature gradients and tangential forces on the free boundary

    NASA Astrophysics Data System (ADS)

    Burmasheva, N. V.; Prosviryakov, E. Yu.

    2017-12-01

    A new exact analytical solution of a system of thermal convection equations in the Boussinesq approximation describing layered flows in an incompressible viscous fluid is obtained. A fluid flow in an infinite layer is considered. Convection in the fluid is induced by tangential stresses specified on the upper non-deformable boundary. At the fixed lower boundary, the no-slip condition is satisfied. Temperature corrections are given on the both boundaries of the fluid layer. The possibility of physical field stratification is investigated.

  1. Theory of activated glassy relaxation, mobility gradients, surface diffusion, and vitrification in free standing thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirigian, Stephen, E-mail: kschweiz@illinois.edu, E-mail: smirigian@gmail.com; Schweizer, Kenneth S., E-mail: kschweiz@illinois.edu, E-mail: smirigian@gmail.com

    2015-12-28

    We have constructed a quantitative, force level, statistical mechanical theory for how confinement in free standing thin films introduces a spatial mobility gradient of the alpha relaxation time as a function of temperature, film thickness, and location in the film. The crucial idea is that relaxation speeds up due to the reduction of both near-surface barriers associated with the loss of neighbors in the local cage and the spatial cutoff and dynamical softening near the vapor interface of the spatially longer range collective elasticity cost for large amplitude hopping. These two effects are fundamentally coupled. Quantitative predictions are made formore » how an apparent glass temperature depends on the film thickness and experimental probe technique, the emergence of a two-step decay and mobile layers in time domain measurements, signatures of confinement in frequency-domain dielectric loss experiments, the dependence of film-averaged relaxation times and dynamic fragility on temperature and film thickness, surface diffusion, and the relationship between kinetic experiments and pseudo-thermodynamic measurements such as ellipsometry.« less

  2. Theory of activated glassy relaxation, mobility gradients, surface diffusion, and vitrification in free standing thin films.

    PubMed

    Mirigian, Stephen; Schweizer, Kenneth S

    2015-12-28

    We have constructed a quantitative, force level, statistical mechanical theory for how confinement in free standing thin films introduces a spatial mobility gradient of the alpha relaxation time as a function of temperature, film thickness, and location in the film. The crucial idea is that relaxation speeds up due to the reduction of both near-surface barriers associated with the loss of neighbors in the local cage and the spatial cutoff and dynamical softening near the vapor interface of the spatially longer range collective elasticity cost for large amplitude hopping. These two effects are fundamentally coupled. Quantitative predictions are made for how an apparent glass temperature depends on the film thickness and experimental probe technique, the emergence of a two-step decay and mobile layers in time domain measurements, signatures of confinement in frequency-domain dielectric loss experiments, the dependence of film-averaged relaxation times and dynamic fragility on temperature and film thickness, surface diffusion, and the relationship between kinetic experiments and pseudo-thermodynamic measurements such as ellipsometry.

  3. Radial electric field in JET advanced tokamak scenarios with toroidal field ripple

    NASA Astrophysics Data System (ADS)

    Crombé, K; Andrew, Y; Biewer, T M; Blanco, E; de Vries, P C; Giroud, C; Hawkes, N C; Meigs, A; Tala, T; von Hellermann, M; Zastrow, K-D; JET EFDA Contributors

    2009-05-01

    A dedicated campaign has been run on JET to study the effect of toroidal field (TF) ripple on plasma performance. Radial electric field measurements from experiments on a series of plasmas with internal transport barriers (ITBs) and different levels of ripple amplitude are presented. They have been calculated from charge exchange measurements of impurity ion temperature, density and rotation velocity profiles, using the force balance equation. The ion temperature and the toroidal and poloidal rotation velocities are compared in plasmas with both reversed and optimized magnetic shear profiles. Poloidal rotation velocity (vθ) in the ITB region is measured to be of the order of a few tens of km s-1, significantly larger than the neoclassical predictions. Increasing levels of the TF ripple are found to decrease the ion temperature gradient in the ITB region, a measure for the quality of the ITB, and the maximum value of vθ is reduced. The poloidal rotation term dominates in the calculations of the total radial electric field (Er), with the largest gradient in Er measured in the radial region coinciding with the ITB.

  4. The dynamics of droplets in moist Rayleigh-Benard turbulence

    NASA Astrophysics Data System (ADS)

    Chandrakar, Kamal Kant; van der Voort, Dennis; Kinney, Greg; Cantrell, Will; Shaw, Raymond

    2017-11-01

    Clouds are an intricate part of the climate, and strongly influence atmospheric dynamics and radiative balances. While properties such as cloud albedo and precipitation rate are large scale effects, these properties are determined by dynamics on the microscale, such droplet sizes, liquid water content, etc. The growth of droplets from condensation is dependent on a multitude of parameters, such as aerosol concentration (nucleation sites) and turbulence (scalar fluctuations and coalescence). However, the precise mechanism behind droplet growth and clustering in a cloud environment is still unclear. In this investigation we use a facility called the Pi Chamber to generate a (miniature) cloud in a laboratory setting with known boundary conditions, such as aerosol concentration, temperature, and humidity. Through the use of particle imaging velocimetry (PIV) on the droplets generated in the cloud, we can investigate the dynamics of these cloud droplets in the convective (Rayleigh-Benard) turbulence generated through an induced temperature gradient. We show the influence of the temperature gradient and Froude number (gravity forces) on the changing turbulence anisotropy, large scale circulation, and small-scale dissipation rates. This work was supported by National Science Foundation Grant AGS-1623429.

  5. Radial electric field in JET advanced tokamak scenarios with toroidal field ripple

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crombe, K.; Andrew, Y.; Biewer, Theodore M

    A dedicated campaign has been run on JET to study the effect of toroidal field (TF) ripple on plasma performance. Radial electric field measurements from experiments on a series of plasmas with internal transport barriers (ITBs) and different levels of ripple amplitude are presented. They have been calculated from charge exchange measurements of impurity ion temperature, density and rotation velocity profiles, using the force balance equation. The ion temperature and the toroidal and poloidal rotation velocities are compared in plasmas with both reversed and optimized magnetic shear profiles. Poloidal rotation velocity (v ) in the ITB region is measured tomore » be of the order of a few tens of km s 1, significantly larger than the neoclassical predictions. Increasing levels of the TF ripple are found to decrease the ion temperature gradient in the ITB region, a measure for the quality of the ITB, and the maximum value of v is reduced. The poloidal rotation term dominates in the calculations of the total radial electric field (Er), with the largest gradient in Er measured in the radial region coinciding with the ITB.« less

  6. Residual Circulation and Temperature Changes during the Evolution of Stratospheric Sudden Warmings Revealed in MERRA

    NASA Astrophysics Data System (ADS)

    Song, Byeong-Gwon; Chun, Hye-Yeong; Kim, Young-Ha

    2015-04-01

    A composite analysis for 21 stratospheric sudden warming (SSW) cases in 1979-2012 northern winter is performed using the MERRA reanalysis in order to investigate the changes in residual circulation and temperature during the SSW evolution. The SSW cases are classified as Type-1 and Type-2, based on the relative amplitude of planetary waves with zonal wavenumbers 1 and 2. The residual circulation induced by each forcing term in the transformed Eulerian mean (TEM) equation and the temperature advection associated with the circulation are calculated for both types of SSW. It is found that strong poleward and downward motion exists in the polar stratosphere just before the central date of SSW, which is induced primarily by the Eliassen-Palm flux divergence forcing (EPD). Gravity-wave drag (GWD) induces strong poleward and downward motion in the lower mesosphere. The temperature advection is significantly increased in the stratosphere before the central date of the SSW, as a result of the strong downward motion due to the EPD. However, the temperature change in the lower mesosphere is small despite the strong downward motion, because the vertical gradient of the potential temperature is relatively small at these altitudes. The temperature change in the stratosphere before the SSW is more rapid for Type-2 than Type-1. After the central date of SSW, the polar stratospheric temperature is recovered primarily by diabatic heating rather than by the residual circulation associated with wave forcing. Difference in the speed of temperature recovery between the two types of SSW is not significant.

  7. Effect of temperature gradient on liquid-liquid phase separation in a polyolefin blend.

    PubMed

    Jiang, Hua; Dou, Nannan; Fan, Guoqiang; Yang, Zhaohui; Zhang, Xiaohua

    2013-09-28

    We have investigated experimentally the structure formation processes during phase separation via spinodal decomposition above and below the spinodal line in a binary polymer blend system exposed to in-plane stationary thermal gradients using phase contrast optical microscopy and temperature gradient hot stage. Below the spinodal line there is a coupling of concentration fluctuations and thermal gradient imposed by the temperature gradient hot stage. Also under the thermal gradient annealing phase-separated domains grow faster compared with the system under homogeneous temperature annealing on a zero-gradient or a conventional hot stage. We suggest that the in-plane thermal gradient accelerates phase separation through the enhancement in concentration fluctuations in the early and intermediate stages of spinodal decomposition. In a thermal gradient field, the strength of concentration fluctuation close to the critical point (above the spinodal line) is strong enough to induce phase separation even in one-phase regime of the phase diagram. In the presence of a temperature gradient the equilibrium phase diagrams are no longer valid, and the systems with an upper critical solution temperature can be quenched into phase separation by applying the stationary temperature gradient. The in-plane temperature gradient drives enhanced concentration fluctuations in a binary polymer blend system above and below the spinodal line.

  8. MHD pulsatile flow of engine oil based carbon nanotubes between two concentric cylinders

    NASA Astrophysics Data System (ADS)

    Haq, Rizwan Ul; Shahzad, Faisal; Al-Mdallal, Qasem M.

    In this article, thermal performance of engine oil in the presence of both single and multiple wall carbon nanotubes (SWCNTs and MWCNTs) between two concentric cylinders is presented. Flow is driven with oscillatory pressure gradient and magneto-hydrodynamics (MHDs) effects are also introduced to control the random motion of the nanoparticles. Arrived broad, it is perceived that the inclusion of nanoparticles increases the thermal conductivity of working fluid significantly for both turbulent and laminar regimes. Fundamental momentum and energy equations are based upon partial differential equations (PDEs) that contain thermos-physical properties of both SWCNTs and MWCNTs. The solution has been evaluated for each mixture, namely: SWCNT-engine oil and MWCNT-engine oil. Results are determined for each velocity, temperature, pressure and stress gradient. Graphical results for the numerical values of the emerging parameters, namely: Hartmann number (M), the solid volume fraction of the nanoparticles (ϕ), Reynolds number (Reω), and the pulsation parameter based on the periodic pressure gradient are analyzed for pressure difference, frictional forces, velocity profile, temperature profile, crux, streamlines and vorticity phenomena. In addition, the assets of various parameters on the flow quantities of observation are investigated.

  9. Solar irradiance reduction to counteract radiative forcing from a quadrupling of CO2: climate responses simulated by four earth system models

    NASA Astrophysics Data System (ADS)

    Schmidt, H.; Alterskjær, K.; Karam, D. Bou; Boucher, O.; Jones, A.; Kristjánsson, J. E.; Niemeier, U.; Schulz, M.; Aaheim, A.; Benduhn, F.; Lawrence, M.; Timmreck, C.

    2012-06-01

    In this study we compare the response of four state-of-the-art Earth system models to climate engineering under scenario G1 of two model intercomparison projects: GeoMIP (Geoengineering Model Intercomparison Project) and IMPLICC (EU project "Implications and risks of engineering solar radiation to limit climate change"). In G1, the radiative forcing from an instantaneous quadrupling of the CO2 concentration, starting from the preindustrial level, is balanced by a reduction of the solar constant. Model responses to the two counteracting forcings in G1 are compared to the preindustrial climate in terms of global means and regional patterns and their robustness. While the global mean surface air temperature in G1 remains almost unchanged compared to the control simulation, the meridional temperature gradient is reduced in all models. Another robust response is the global reduction of precipitation with strong effects in particular over North and South America and northern Eurasia. In comparison to the climate response to a quadrupling of CO2 alone, the temperature responses are small in experiment G1. Precipitation responses are, however, in many regions of comparable magnitude but globally of opposite sign.

  10. Gradient forces on double-negative particles in optical tweezers using Bessel beams in the ray optics regime.

    PubMed

    Ambrosio, Leonardo A; Hernández-Figueroa, Hugo E

    2010-11-08

    Gradient forces on double negative (DNG) spherical dielectric particles are theoretically evaluated for v-th Bessel beams supposing geometrical optics approximations based on momentum transfer. For the first time in the literature, comparisons between these forces for double positive (DPS) and DNG particles are reported. We conclude that, contrary to the conventional case of positive refractive index, the gradient forces acting on a DNG particle may not reverse sign when the relative refractive index n goes from |n|>1 to |n|<1, thus revealing new and interesting trapping properties.

  11. Alongshore Momentum Balance Over Shoreface-Connected Ridges, Fire Island, NY

    NASA Astrophysics Data System (ADS)

    Ofsthun, C.; Wu, X.; Voulgaris, G.; Warner, J. C.

    2016-12-01

    he momentum balance of alongshore flows over straight, uniform shelfs has been analyzed extensively over the last few decades. More recently, the effect of coastline curvature and how this might alter the relative significance of the momentum terms has received additional attention. In this contribution, the alongshore momentum over shelves with straight coastline, but non-uniform bathymetry is examined. Hydrodynamic and hydrographic data collected by the US Geological Survey (Fire Island Coastal Change project) on the inner shelf of Fire Island, NY over a region of shore-face connected ridges (SFCRs) are used to describe wind-induced circulation and the terms of the alongshore momentum balance equation. Analysis of the data revealed a predominantly alongshore circulation, under westward wind forcing, with localized offshore (onshore) current veering over the ridge crests (troughs). Momentum balance analysis hinted that local acceleration, advective acceleration, and bottom stress are balanced by wind stress and regional (>100 km) pressure gradient force. In addition, a numerical model using an idealized SFCR bathymetry, forced by our observed winds, was employed to compare the momentum balance relationships identified by the data and those under steady-state conditions published earlier (Warner et al., 2014). A synthesis of the numerical and experimental data revealed that the true pressure gradient force results from the sum of local pressure gradient force, which maintains a Bernoulli-like relationship with alongshore advective acceleration, and regional pressure gradient force, which maintains a strong, negative relationship with wind stress. The differences between steady-state and realistic conditions is mainly on the contributions of regional scale pressure gradients that develop under realistic conditions, and the reduced contribution of local scale pressure gradients which develop best under steady-state conditions. Our analysis indicates that current veering over ridge crests, a consistent occurrence, is a combination of a cross-shore gradient in the inconsistent relationship between local advective acceleration and pressure gradient and frictional-torque with the latter being the dominant mechanism under realistic forcing.

  12. A Multiscale Gradient Theory for Single Crystalline Elastoviscoplasticity

    DTIC Science & Technology

    2006-02-01

    ferentiation with respect to the Levi - Civita connection on Bcur whose Christoffel symbols stem from the components of the metric gab of Eq. (6)3 and thus...denoting covariant differentiation with respect to the symmetric Levi – Civita connection on bref . Notice that Eq. (29) are applicable locally, for points...brevity, thermal effects (i.e., temperature rates and heat fluxes) and dynamic effects (i.e., acceleration and body forces) are often neglected. We employ

  13. Simulation of sloshing dynamics induced forces and torques actuated on dewar container driven by gravity gradient and jitter accelerations in microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1993-01-01

    Some experimental spacecraft use superconducting sensors for gyro read-out and so must be maintained at a very low temperature. The boil-off from the cryogenic liquid used to cool the sensors can also be used, as the Gravity Probe B (GP-B) spacecraft does, as propellant to maintain attitude control and drag-free operation of the spacecraft. The cryogenic liquid for such spacecraft is, however, susceptible to both slosh-like motion and non-axisymmetric configurations under the influence of various kinds of gravity jitter and gravity gradient accelerations. Hence, it is important to quantify the magnitude of the liquid-induced perturbations on the spacecraft. We use the example of the GP-B to investigate such perturbations by numerical simulations. For this spacecraft disturbances can be imposed on the liquid by atmospheric drag, spacecraft attitude control maneuvers, and the earth's gravity gradient. More generally, onboard machinery vibrations and crew motion can also create disturbances. Recent studies suggest that high frequency disturbances are relatively unimportant in causing liquid motions in comparison to low frequency ones. The results presented here confirm this conclusion. After an initial calibration period, the GP-B spacecraft rotates in orbit at 0.1 rpm about the tank symmetry axis. For this rotation rate, the equilibrium liquid free surface shape is a 'doughnut' configuration for all residual gravity levels of 10(exp -6) g(sub 0) or less, as shown by experiments and by numerical simulations; furthermore, the superfluid behavior of the 1.8 K liquid helium used in GP-B eliminates temperature gradients and therefore such effects as Marangoni convection do not have to be considered. Classical fluid dynamics theory is used as the basis of the numerical simulations here, since Mason's experiments show that the theory is applicable for cryogenic liquid helium in large containers. To study liquid responses to various disturbances, we investigate and simulate three levels of gravity jitter (10(exp -6), 10(exp -7), and 10(exp -8) g(sub 0)) each at three predominant frequencies (0.1, 1.0, and 10 Hz), combined with a gravity gradient appropriate for the GP-B orbit. Dynamical evolution of sloshing dynamics excited fluid forces and torque fluctuations exerted on the dewar container driven by the combined gravity gradient and jitter accelerations are also investigated and simulated.

  14. Modeling SST gradient changes, the hydrological cycle response, and deep water formation in the North Pacific

    NASA Astrophysics Data System (ADS)

    Burls, N.; Ford, H. L.; Fedorov, A. V.; Jahn, A.; Jacobs, P.

    2017-12-01

    The absence of deep-water formation and a deep meridional overturning cell in the modern North Pacific has been attributed to the relatively fresh surface conditions in the subarctic. These conditions are, in turn, best explained by the local excess of precipitation over evaporation in the northern Pacific due to net moisture transport from the Atlantic to the Pacific and/or moisture transport associated with the Asian monsoon. Some studies link the lack of deep-water formation in the Pacific directly to its occurrence in the Atlantic via the Atlantic-Pacific seesaw effect and idealized experiments indicate that the smaller width of the Atlantic predisposes it to higher salinity and deep-water formation. We have conducted a series of coupled model experiments across which global mean temperatures and large-scale meridional SST gradients are varied. We perturb either atmospheric CO2 concentrations or the meridional gradient in cloud radiative forcing and run each experiment out to 3000 years so that the deep ocean has equilibrated. As the strength of the meridional temperature gradient decreases across our experiments, a Pacific Meridional Overturning Circulation develops. The strength of this Pacific Meridional Overturning Circulation generally increases as the gradient weakens. In one of these experiments where the meridional SST gradient most closely resembles Pliocene reconstructions, a PMOC exists of comparable in strength to the modern AMOC. We will describe how the hydrological cycle response to reduced meridional SST gradients acts to increase the strength of the PMOC across our sensitivity experiments. Additionally, we will discuss our effort to include carbon isotopes in our Pliocene-like simulation for data-model comparisons. Calcium carbonate accumulation data from Subarctic North Pacific Site 882 and new and previously published carbon isotope records from the Pacific appear to support our modelling results suggesting that weaker meridonal SST gradients during the Pliocene could have supported deep water formation in the subarctic Pacific and a strong PMOC.

  15. Preliminary map of temperature gradients in the conterminous United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guffanti, M.; Nathenson, M.

    1980-09-01

    Temperature gradients have been determined from temperature/depth measurements made in drill holes deeper than 600 m and used in the construction of a temperature-gradient map of the conterminous United States. The map displays temperature gradients (in /sup 0/C/km) that can be expected to exist regionally in a conductive thermal regime to a depth of 2 km. The major difference between this map and the AAPG-USGS temperature-gradient map is in the midcontinental region where the AAPG-USGS map does not demarcate a division between colder eastern and warmer western thermal regimes. A comparison with the heat-flow map of Sass et al. (1980)more » indicates that temperature gradients commonly reflect regional heat flow, and the gross east-west division of the United States on the basis of heat flow is also expressed by temperature gradient.« less

  16. Combined solvent- and non-uniform temperature-programmed gradient liquid chromatography. I - A theoretical investigation.

    PubMed

    Gritti, Fabrice

    2016-11-18

    An new class of gradient liquid chromatography (GLC) is proposed and its performance is analyzed from a theoretical viewpoint. During the course of such gradients, both the solvent strength and the column temperature are simultaneously changed in time and space. The solvent and temperature gradients propagate along the chromatographic column at their own and independent linear velocity. This class of gradient is called combined solvent- and temperature-programmed gradient liquid chromatography (CST-GLC). The general expressions of the retention time, retention factor, and of the temporal peak width of the analytes at elution in CST-GLC are derived for linear solvent strength (LSS) retention models, modified van't Hoff retention behavior, linear and non-distorted solvent gradients, and for linear temperature gradients. In these conditions, the theory predicts that CST-GLC is equivalent to a unique and apparent dynamic solvent gradient. The apparent solvent gradient steepness is the sum of the solvent and temperature steepness. The apparent solvent linear velocity is the reciprocal of the steepness-averaged sum of the reciprocal of the actual solvent and temperature linear velocities. The advantage of CST-GLC over conventional GLC is demonstrated for the resolution of protein digests (peptide mapping) when applying smooth, retained, and linear acetonitrile gradients in combination with a linear temperature gradient (from 20°C to 90°C) using 300μm×150mm capillary columns packed with sub-2 μm particles. The benefit of CST-GLC is demonstrated when the temperature gradient propagates at the same velocity as the chromatographic speed. The experimental proof-of-concept for the realization of temperature ramps propagating at a finite and constant linear velocity is also briefly described. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Influences of meteorological parameters on indoor radon concentrations (222Rn) excluding the effects of forced ventilation and radon exhalation from soil and building materials.

    PubMed

    Schubert, Michael; Musolff, Andreas; Weiss, Holger

    2018-06-13

    Elevated indoor radon concentrations ( 222 Rn) in dwellings pose generally a potential health risk to the inhabitants. During the last decades a considerable number of studies discussed both the different sources of indoor radon and the drivers for diurnal and multi day variations of its concentration. While the potential sources are undisputed, controversial opinions exist regarding their individual relevance and regarding the driving influences that control varying radon indoor concentrations. These drivers include (i) cyclic forced ventilation of dwellings, (ii) the temporal variance of the radon exhalation from soil and building materials due to e.g. a varying moisture content and (iii) diurnal and multi day temperature and pressure patterns. The presented study discusses the influences of last-mentioned temporal meteorological parameters by effectively excluding the influences of forced ventilation and undefined radon exhalation. The results reveal the continuous variation of the indoor/outdoor pressure gradient as key driver for a constant "breathing" of any interior space, which affects the indoor radon concentration with both diurnal and multi day patterns. The diurnally recurring variation of the pressure gradient is predominantly triggered by the day/night cycle of the indoor temperature that is associated with an expansion/contraction of the indoor air volume. Multi day patterns, on the other hand, are mainly due to periods of negative air pressure indoors that is triggered by periods of elevated wind speeds as a result of Bernoulli's principle. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Compressibility Effects on Particle-Fluid Interaction Force for Eulerian-Eulerian Simulations

    NASA Astrophysics Data System (ADS)

    Akiki, Georges; Francois, Marianne; Zhang, Duan

    2017-11-01

    Particle-fluid interaction forces are essential in modeling multiphase flows. Several models can be found in the literature based on empirical, numerical, and experimental results from various simplified flow conditions. Some of these models also account for finite Mach number effects. Using these models is relatively straightforward with Eulerian-Lagrangian calculations if the model for the total force on particles is used. In Eulerian-Eulerian simulations, however, there is the pressure gradient terms in the momentum equation for particles. For low Mach number flows, the pressure gradient force is negligible if the particle density is much greater than that of the fluid. For supersonic flows where a standing shock is present, even for a steady and uniform flow, it is unclear whether the significant pressure-gradient force should to be separated out from the particle force model. To answer this conceptual question, we perform single-sphere fully-resolved DNS simulations for a wide range of Mach numbers. We then examine whether the total force obtained from the DNS can be categorized into well-established models, such as the quasi-steady, added-mass, pressure-gradient, and history forces. Work sponsored by Advanced Simulation and Computing (ASC) program of NNSA and LDRD-CNLS of LANL.

  19. Heat and mass transfer of Williamson nanofluid flow yield by an inclined Lorentz force over a nonlinear stretching sheet

    NASA Astrophysics Data System (ADS)

    Khan, Mair; Malik, M. Y.; Salahuddin, T.; Hussian, Arif.

    2018-03-01

    The present analysis is devoted to explore the computational solution of the problem addressing the variable viscosity and inclined Lorentz force effects on Williamson nanofluid over a stretching sheet. Variable viscosity is assumed to vary as a linear function of temperature. The basic mathematical modelled problem i.e. system of PDE's is converted nonlinear into ODE's via applying suitable transformations. Computational solutions of the problem is also achieved via efficient numerical technique shooting. Characteristics of controlling parameters i.e. stretching index, inclined angle, Hartmann number, Weissenberg number, variable viscosity parameter, mixed convention parameter, Brownian motion parameter, Prandtl number, Lewis number, thermophoresis parameter and chemical reactive species on concentration, temperature and velocity gradient. Additionally, friction factor coefficient, Nusselt number and Sherwood number are describe with the help of graphics as well as tables verses flow controlling parameters.

  20. Proposition of stair climb of a drop using chemical wettability gradient

    NASA Astrophysics Data System (ADS)

    Seerha, Prabh P. S.; Kumar, Parmod; Das, Arup K.; Mitra, Sushanta K.

    2017-07-01

    We propose a passive technique for a drop to climb along the staircase textured surface using chemical wettability gradients. The stair structure, droplet configuration, and contact angle gradient are modeled using Lagrangian smoothed particle hydrodynamics. The stair climb efficiency of the droplet is found to be a function of wettability gradient strength. Using analytical balance of actuation and resistive forces across droplets, physical reasons behind stair climbing are established and influencing parameters are identified. Evolution of the droplet shape along with the advancing and the receding contact angles is presented from where instantaneous actuation and hysteresis forces are calculated. Using history of Lagrangian particles, circulation at the foot of stairs and progressing development of the advancing drop front are monitored. Higher efficiency in stair climbing in the case of a bigger sized drop than smaller one is obtained from simulation results and realized from force balance. Difficulty in climbing steeper stairs is also demonstrated to delineate the effect of gravitational pull against the actuation force due to the wettability gradient.

  1. Baroclinic instability with variable gravity: A perturbation analysis

    NASA Technical Reports Server (NTRS)

    Giere, A. C.; Fowliss, W. W.; Arias, S.

    1980-01-01

    Solutions for a quasigeostrophic baroclinic stability problem in which gravity is a function of height were obtained. Curvature and horizontal shear of the basic state flow were omitted and the vertical and horizontal temperature gradients of the basic state were taken as constant. The effect of a variable dielectric body force, analogous to gravity, on baroclinic instability for the design of a spherical, baroclinic model for Spacelab was determined. Such modeling could not be performed in a laboratory on the Earth's surface because the body force could not be made strong enough to dominate terrestrial gravity. A consequence of the body force variation and the preceding assumptions was that the potential vorticity gradient of the basic state vanished. The problem was solved using a perturbation method. The solution gives results which are qualitatively similar to Eady's results for constant gravity; a short wavelength cutoff and a wavelength of maximum growth rate were observed. The averaged values of the basic state indicate that both the wavelength range of the instability and the growth rate at maximum instability are increased. Results indicate that the presence of the variable body force will not significantly alter the dynamics of the Spacelab experiment. The solutions are also relevant to other geophysical fluid flows where gravity is constant but the static stability or Brunt-Vaisala frequency is a function of height.

  2. Hybrid simulations of radial transport driven by the Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Delamere, P. A.; Stauffer, B. H.; Ma, X.

    2017-12-01

    Plasma transport in the rapidly rotating giant magnetospheres is thought to involve a centrifugally-driven flux tube interchange instability, similar to the Rayleigh-Taylor (RT) instability. In three dimensions, the convective flow patterns associated with the RT instability can produce strong guide field reconnection, allowing plasma mass to move radially outward while conserving magnetic flux (Ma et al., 2016). We present a set of hybrid (kinetic ion / fluid electron) plasma simulations of the RT instability using high plasma beta conditions appropriate for Jupiter's inner and middle magnetosphere. A density gradient, combined with a centrifugal force, provide appropriate RT onset conditions. Pressure balance is achieved by initializing two ion populations: one with fixed temperature, but varying density, and the other with fixed density, but a temperature gradient that offsets the density gradient from the first population and the centrifugal force (effective gravity). We first analyze two-dimensional results for the plane perpendicular to the magnetic field by comparing growth rates as a function of wave vector following Huba et al. (1998). Prescribed perpendicular wave modes are seeded with an initial velocity perturbation. We then extend the model to three dimensions, introducing a stabilizing parallel wave vector. Boundary conditions in the parallel direction prohibit motion of the magnetic field line footprints to model the eigenmodes of the magnetodisc's resonant cavity. We again compare growth rates based on perpendicular wave number, but also on the parallel extent of the resonant cavity, which fixes the size of the largest parallel wavelength. Finally, we search for evidence of strong guide field magnetic reconnection within the domain by identifying areas with large parallel electric fields or changes in magnetic field topology.

  3. Development of a thermal gradient cloud condensation nucleus spectrometer

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun; Friedl, R.

    2004-01-01

    Droplet clouds are one of the most important factors controlling the albedo and hence the temperature of out planet. Anthropogenic aerosols, such as black carbon (BC) organic carbon (OC) and sulfate, have a strong influence on cloud albedo. IPCC (2001) has estimated the global mean forcing from aerosols to be potentially as large as that of green house gases but opposite in sign. However, the uncertainties associated with the indirect aerosol forcing preclude a quantitative estimate. An additional impact on the indirect aerosol forcing, not quantified by IPCC, arises from recently identified chemical factors, for examples, interactions of atmospheric soluble gases, slightly soluble solutes, and organic substance with aerosols, which may influence the formation of cloud droplets. Recent studies suggest that inclusion of chemical effects on aerosol droplets. We plan to conduct several critical laboratory experiments that will reduce the uncertainty associated with indirect radiative forcing due to chemical modification of sulfate and BC aerosols by ambient gases.

  4. A mixed pseudospectral/finite difference method for a thermally driven fluid in a nonuniform gravitational field

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.

    1985-01-01

    A numerical study of the steady, axisymmetric flow in a heated, rotating spherical shell is conducted to model the Atmospheric General Circulation Experiment (AGCE) proposed to run aboard a later Shuttle mission. The AGCE will consist of concentric rotating spheres confining a dielectric fluid. By imposing a dielectric field across the fluid a radial body force will be created. The numerical solution technique is based on the incompressible Navier-Stokes equations. In the method a pseudospectral technique is used in the latitudinal direction, and a second-order accurate finite difference scheme discretizes time and radial derivatives. This paper discusses the development and performance of this numerical scheme for the AGCE which has been modeled in the past only by pure FD formulations. In addition, previous models have not investigated the effect of using a dielectric force to simulate terrestrial gravity. The effect of this dielectric force on the flow field is investigated as well as a parameter study of varying rotation rates and boundary temperatures. Among the effects noted are the production of larger velocities and enhanced reversals of radial temperature gradients for a body force generated by the electric field.

  5. Intensification of Chile-Peru upwelling under climate change: diagnosing the impact of natural and anthropogenic forcing from the IPSL-CM5 model.

    NASA Astrophysics Data System (ADS)

    Jebri, B.; Khodri, M.; Gastineau, G.; Echevin, V.; Thiria, S.

    2017-12-01

    Upwelling is critical to the biological production, acidification, and deoxygenation of the ocean's major eastern boundary current ecosystems. A conceptual hypothesis suggests that the winds that favour coastal upwelling intensify with anthropogenic global warming due to increased land-sea temperature contrast. We examine this hypothesis for the dynamics of the Peru-Chile upwelling using a set of four large ensembles of coupled, ocean-atmosphere model simulations with the IPSL model covering the 1940-2014 period. In one large ensemble we prescribe the standard CMIP5 greenhouse gas (GHG) concentrations, anthropogenic aerosol, ozone and volcanic forcings, following the historical experiments through 2005 and RCP8.5 from 2006-2014, while the other ensembles consider separately the GHG, ozone and volcanic forcings. We find evidence for intensification of upwelling-favourable winds with however little evidence of atmospheric pressure gradients in response to increasing land-sea temperature differences. Our analyses reveal poleward migration and intensification of the South Pacific Anticyclone near poleward boundaries of climatological Peruvian and Chilean upwelling zones. This contribution further investigates the physical mechanisms for the Peru-Chile upwelling intensification and the relative role of natural and anthropogenic forcings.

  6. Determination of high temperature strains using a PC based vision system

    NASA Astrophysics Data System (ADS)

    McNeill, Stephen R.; Sutton, Michael A.; Russell, Samuel S.

    1992-09-01

    With the widespread availability of video digitizers and cheap personal computers, the use of computer vision as an experimental tool is becoming common place. These systems are being used to make a wide variety of measurements that range from simple surface characterization to velocity profiles. The Sub-Pixel Digital Image Correlation technique has been developed to measure full field displacement and gradients of the surface of an object subjected to a driving force. The technique has shown its utility by measuring the deformation and movement of objects that range from simple translation to fluid velocity profiles to crack tip deformation of solid rocket fuel. This technique has recently been improved and used to measure the surface displacement field of an object at high temperature. The development of a PC based Sub-Pixel Digital Image Correlation system has yielded an accurate and easy to use system for measuring surface displacements and gradients. Experiments have been performed to show the system is viable for measuring thermal strain.

  7. Positive tropical marine low-cloud cover feedback inferred from cloud-controlling factors

    DOE PAGES

    Qu, Xin; Hall, Alex; Klein, Stephen A.; ...

    2015-09-28

    Differences in simulations of tropical marine low-cloud cover (LCC) feedback are sources of significant spread in temperature responses of climate models to anthropogenic forcing. Here we show that in models the feedback is mainly driven by three large-scale changes—a strengthening tropical inversion, increasing surface latent heat flux, and an increasing vertical moisture gradient. Variations in the LCC response to these changes alone account for most of the spread in model-projected 21st century LCC changes. A methodology is devised to constrain the LCC response observationally using sea surface temperature (SST) as a surrogate for the latent heat flux and moisture gradient.more » In models where the current climate's LCC sensitivities to inversion strength and SST variations are consistent with observed, LCC decreases systematically, which would increase absorption of solar radiation. These results support a positive LCC feedback. Finally, correcting biases in the sensitivities will be an important step toward more credible simulation of cloud feedbacks.« less

  8. Two dimensional, transient catalytic combustion of CO-air on platinum

    NASA Technical Reports Server (NTRS)

    Sinha, N.; Bruno, C.; Bracco, F. V.

    1985-01-01

    The light off transient of catalytic combustion of lean CO-air mixtures in a platinum coated channel of a honeycomb monolith is studied with a model that resolves transient radial and axial gradients in both the gas and the solid. For the conditions studied it is concluded that: the initial heat release occurs near the entrance at the gas-solid interface and is controlled by heterogeneous reactions; large spatial and temporal temperature gradients occur in the solid near the entrance controlled mostly by the availability of fuel; the temperature of the solid near the entrance achieves almost its steady state value before significant heating of the back; heterogeneous reactions and the gas heated up front and flowing downstream heat the back of the solid; the overall transient time is controlled by the thermal inertia of the solid and by forced convection; radiation significantly influences both transient and steady state particularly near the entrance; the oxidation of CO occurs mostly on the catalyst and becomes diffusion controlled soon into the transient.

  9. Exploiting the Temperature Dependence of Magnetic Susceptibility to Control Convective in Fundamental Studies of Solidification Phenomena

    NASA Technical Reports Server (NTRS)

    Seybert, C.; Evans, J. W.; Leslie, F.; Jones, W. K., Jr.

    2001-01-01

    It is well known that convection is a dominant mass transport mechanism when materials are solidified on Earth's surface. This convection is caused by gradients in density (and therefore gravitational force) that are brought about by gradients in temperature, composition or both. Diffusion of solute is therefore dwarfed by convection and the study of fundamental parameters, such as dendrite tip shape and growth velocity in the absence of convection is nearly impossible. Significant experimental work has therefore been carried out in orbiting laboratories with the intent of minimizing convection by minimizing gravity. One of the best known experiments of this kind is the Isothermal Dendritic Growth Experiment (IDGE), supported by NASA. Naturally such experiments are costly and one objective of the present investigation is to develop an experimental method whereby convection can be halted, in solidification and other experiments, on the Earth's surface. A second objective is to use the method to minimize convection resulting from the residual accelerations suffered by experiments in microgravity.

  10. Pore Formation and Mobility Investigation (PFMI): Concept, Hardware Development, and Initial Analysis of Experiments Conducted Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.

    2003-01-01

    Porosity in the form of "bubbles and pipes" can occur during controlled directional solidification processing of metal alloys. This is a consequence that 1) precludes obtaining any meaningful scientific results and 2) is detrimental to desired material properties. Unfortunately, several Microgravity experiments have been compromised by porosity. The intent of the PFMl investigation is to conduct a systematic effort directed towards understanding porosity formation and mobility during controlled directional solidification (DS) in a microgravity environment. PFMl uses a pure transparent material, succinonitrile (SCN), as well as SCN "alloyed" with water, in conjunction with a translating temperature gradient stage so that direct observation and recording of pore generation and mobility can be made. PFMl is investigating the role of thermocapillary forces and temperature gradients in affecting bubble dynamics as well as other solidification processes in a microgravity environment. This presentation will cover the concept, hardware development, operations, and the initial results from experiments conducted aboard the International Space Station.

  11. Pore Formation and Mobility Investigation (PFMI): Concept, Hardware Development and Initial Analysis of Experiments

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.

    2004-01-01

    Porosity in the form of "bubbles and pipes" can occur during controlled directional solidification processing of metal alloys. This is a consequence that 1) precludes obtaining any meaningful scientific results and 2) is detrimental to desired material properties. Unfortunately, several Microgravity experiments have been compromised by porosity. The intent of the PFMI investigation is to conduct a systematic effort directed towards understanding porosity formation and mobility during controlled directional solidification (DS) in a microgravity environment. PFMI uses a pure transparent material, succinonitrile (SCN), as well as SCN "alloyed" with water, in conjunction with a translating temperature gradient stage so that direct observation and recording of pore generation and mobility can be made. PFMI is investigating the role of thermocapillary forces and temperature gradients in affecting bubble dynamics as well as other solidification processes in a microgravity Environment. This presentation will cover the concept, hardware development, operations, and the initial results from experiments conducted aboard the International Space Station. .

  12. Longwave emission trends over Africa and implications for Atlantic hurricanes

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Rechtman, Thomas; Karnauskas, Kristopher B.; Li, Laifang; Donnelly, Jeffrey P.; Kossin, James P.

    2017-09-01

    The latitudinal gradient of outgoing longwave radiation (OLR) over Africa is a skillful and physically based predictor of seasonal Atlantic hurricane activity. The African OLR gradient is observed to have strengthened during the satellite era, as predicted by state-of-the-art global climate models (GCMs) in response to greenhouse gas forcing. Prior to the satellite era and the U.S. and European clean air acts, the African OLR gradient weakened due to aerosol forcing of the opposite sign. GCMs predict a continuation of the increasing OLR gradient in response to greenhouse gas forcing. Assuming a steady linear relationship between African easterly waves and tropical cyclogenesis, this result suggests a future increase in Atlantic tropical cyclone frequency by 10% (20%) at the end of the 21st century under the RCP 4.5 (8.5) forcing scenario.

  13. 43 CFR 3252.14 - How must I complete a temperature gradient well?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How must I complete a temperature gradient... LEASING Conducting Exploration Operations § 3252.14 How must I complete a temperature gradient well? Complete temperature gradient wells to allow for proper abandonment, and to prevent interzonal migration of...

  14. 43 CFR 3252.14 - How must I complete a temperature gradient well?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How must I complete a temperature gradient... LEASING Conducting Exploration Operations § 3252.14 How must I complete a temperature gradient well? Complete temperature gradient wells to allow for proper abandonment, and to prevent interzonal migration of...

  15. 43 CFR 3252.14 - How must I complete a temperature gradient well?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How must I complete a temperature gradient... LEASING Conducting Exploration Operations § 3252.14 How must I complete a temperature gradient well? Complete temperature gradient wells to allow for proper abandonment, and to prevent interzonal migration of...

  16. 43 CFR 3252.14 - How must I complete a temperature gradient well?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false How must I complete a temperature gradient... LEASING Conducting Exploration Operations § 3252.14 How must I complete a temperature gradient well? Complete temperature gradient wells to allow for proper abandonment, and to prevent interzonal migration of...

  17. Finite Element Simulations of Micro Turning of Ti-6Al-4V using PCD and Coated Carbide tools

    NASA Astrophysics Data System (ADS)

    Jagadesh, Thangavel; Samuel, G. L.

    2017-02-01

    The demand for manufacturing axi-symmetric Ti-6Al-4V implants is increasing in biomedical applications and it involves micro turning process. To understand the micro turning process, in this work, a 3D finite element model has been developed for predicting the tool chip interface temperature, cutting, thrust and axial forces. Strain gradient effect has been included in the Johnson-Cook material model to represent the flow stress of the work material. To verify the simulation results, experiments have been conducted at four different feed rates and at three different cutting speeds. Since titanium alloy has low Young's modulus, spring back effect is predominant for higher edge radius coated carbide tool which leads to the increase in the forces. Whereas, polycrystalline diamond (PCD) tool has smaller edge radius that leads to lesser forces and decrease in tool chip interface temperature due to high thermal conductivity. Tool chip interface temperature increases by increasing the cutting speed, however the increase is less for PCD tool as compared to the coated carbide tool. When uncut chip thickness decreases, there is an increase in specific cutting energy due to material strengthening effects. Surface roughness is higher for coated carbide tool due to ploughing effect when compared with PCD tool. The average prediction error of finite element model for cutting and thrust forces are 11.45 and 14.87 % respectively.

  18. Designing gradient coils with reduced hot spot temperatures.

    PubMed

    While, Peter T; Forbes, Larry K; Crozier, Stuart

    2010-03-01

    Gradient coil temperature is an important concern in the design and construction of MRI scanners. Closely spaced gradient coil windings cause temperature hot spots within the system as a result of Ohmic heating associated with large current being driven through resistive material, and can strongly affect the performance of the coils. In this paper, a model is presented for predicting the spatial temperature distribution of a gradient coil, including the location and extent of temperature hot spots. Subsequently, a method is described for designing gradient coils with improved temperature distributions and reduced hot spot temperatures. Maximum temperature represents a non-linear constraint and a relaxed fixed point iteration routine is proposed to adjust coil windings iteratively to minimise this coil feature. Several examples are considered that assume different thermal material properties and cooling mechanisms for the gradient system. Coil winding solutions are obtained for all cases considered that display a considerable drop in hot spot temperature (>20%) when compared to standard minimum power gradient coils with equivalent gradient homogeneity, efficiency and inductance. The method is semi-analytical in nature and can be adapted easily to consider other non-linear constraints in the design of gradient coils or similar systems. Crown Copyright (c) 2009. Published by Elsevier Inc. All rights reserved.

  19. Thermodiffusion as a means to manipulate liquid film dynamics on chemically patterned surfaces

    PubMed Central

    Kalpathy, Sreeram K.; Shreyes, Amrita Ravi

    2017-01-01

    The model problem examined here is the stability of a thin liquid film consisting of two miscible components, resting on a chemically patterned solid substrate and heated from below. In addition to surface tension gradients, the temperature variations also induce gradients in the concentration of the film by virtue of thermodiffusion/Soret effects. We study the stability and dewetting behaviour due to the coupled interplay between thermal gradients, Soret effects, long-range van der Waals forces, and wettability gradient-driven flows. Linear stability analysis is first employed to predict growth rates and the critical Marangoni number for chemically homogeneous surfaces. Then, nonlinear simulations are performed to unravel the interfacial dynamics and possible locations of the film rupture on chemically patterned substrates. Results suggest that appropriate tuning of the Soret parameter and its direction, in conjunction with either heating or cooling, can help manipulate the location and time scales of the film rupture. The Soret effect can either potentially aid or oppose film instability depending on whether the thermal and solutal contributions to flow are cooperative or opposed to each other. PMID:28595391

  20. Characterization of thermotropism in primary roots of maize: dependence on temperature and temperature gradient, and interaction with gravitropism

    NASA Technical Reports Server (NTRS)

    Poff, K. L.

    1991-01-01

    Thermotropism in primary roots of Zea mays L. was studied with respect to gradient strength (degrees C cm-1), temperature of exposure within a gradient, pre-treatment temperature, and gravitropic stimulation. The magnitude of the response decreased with gradient strength. Maximum thermotropism was independent of gradient strength and pre-treatment temperature. The range of temperature for positive and negative thermotropism did not change with pre-treatment temperature. However, the exact range of temperatures for positive and negative thermotropism varied with gradient strengths. In general, temperatures of exposure lower than 25 degrees C resulted in positive tropic responses while temperatures of exposure of 39 degrees C or more resulted in negative tropic responses. Thermotropism was shown to modify and reverse the normal gravitropic curvature of a horizontal root when thermal gradients were applied opposite the 1 g vector. It is concluded that root thermotropism is a consequence of thermal sensing and that the curvature of the primary root results from the interaction of the thermal and gravitational sensing systems.

  1. A general strategy for performing temperature-programming in high performance liquid chromatography--prediction of segmented temperature gradients.

    PubMed

    Wiese, Steffen; Teutenberg, Thorsten; Schmidt, Torsten C

    2011-09-28

    In the present work it is shown that the linear elution strength (LES) model which was adapted from temperature-programming gas chromatography (GC) can also be employed to predict retention times for segmented-temperature gradients based on temperature-gradient input data in liquid chromatography (LC) with high accuracy. The LES model assumes that retention times for isothermal separations can be predicted based on two temperature gradients and is employed to calculate the retention factor of an analyte when changing the start temperature of the temperature gradient. In this study it was investigated whether this approach can also be employed in LC. It was shown that this approximation cannot be transferred to temperature-programmed LC where a temperature range from 60°C up to 180°C is investigated. Major relative errors up to 169.6% were observed for isothermal retention factor predictions. In order to predict retention times for temperature gradients with different start temperatures in LC, another relationship is required to describe the influence of temperature on retention. Therefore, retention times for isothermal separations based on isothermal input runs were predicted using a plot of the natural logarithm of the retention factor vs. the inverse temperature and a plot of the natural logarithm of the retention factor vs. temperature. It could be shown that a plot of lnk vs. T yields more reliable isothermal/isocratic retention time predictions than a plot of lnk vs. 1/T which is usually employed. Hence, in order to predict retention times for temperature-gradients with different start temperatures in LC, two temperature gradient and two isothermal measurements have been employed. In this case, retention times can be predicted with a maximal relative error of 5.5% (average relative error: 2.9%). In comparison, if the start temperature of the simulated temperature gradient is equal to the start temperature of the input data, only two temperature-gradient measurements are required. Under these conditions, retention times can be predicted with a maximal relative error of 4.3% (average relative error: 2.2%). As an example, the systematic method development for an isothermal as well as a temperature gradient separation of selected sulfonamides by means of the adapted LES model is demonstrated using a pure water mobile phase. Both methods are compared and it is shown that the temperature-gradient separation provides some advantages over the isothermal separation in terms of limits of detection and analysis time. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Magnetic Control of Concentration Gradient in Microgravity

    NASA Technical Reports Server (NTRS)

    Leslie, Fred; Ramachandran, Narayanan

    2005-01-01

    A report describes a technique for rapidly establishing a fluid-concentration gradient that can serve as an initial condition for an experiment on solutal instabilities associated with crystal growth in microgravity. The technique involves exploitation of the slight attractive or repulsive forces exerted on most fluids by a magnetic-field gradient. Although small, these forces can dominate in microgravity and therefore can be used to hold fluids in position in preparation for an experiment. The magnetic field is applied to a test cell, while a fluid mixture containing a concentration gradient is prepared by introducing an undiluted solution into a diluting solution in a mixing chamber. The test cell is then filled with the fluid mixture. Given the magnetic susceptibilities of the undiluted and diluting solutions, the magnetic-field gradient must be large enough that the magnetic force exceeds both (1) forces associated with the flow of the fluid mixture during filling of the test cell and (2) forces imposed by any residual gravitation and fluctuations thereof. Once the test cell has been filled with the fluid mixture, the magnetic field is switched off so that the experiment can proceed, starting from the proper initial conditions.

  3. Propelling Extended Objects

    NASA Astrophysics Data System (ADS)

    Humbert, Richard

    2010-03-01

    A force acting on just part of an extended object (either a solid or a volume of a liquid) can cause all of it to move. That motion is due to the transmission of the force through the object by its material. This paper discusses how the force is distributed to all of the object by a gradient of stress or pressure in it, which creates the local force that directly propels each part of the object. Those gradients resemble the ones created in objects by their weights. An example of the latter is the compressive stress in a column of a building increasing steadily toward its lower end. That gradient occurs because each horizontal section through the column supports all of the weight above it, including the load force pushing down on the column's upper end. The gradient resembles the pressure in a container of liquid increasing with depth in it. Likewise, the weight of a vertically hanging cable causes its tension and tensile stress to increase toward its upper end.

  4. A magnetic gradient induced force in NMR restricted diffusion experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghadirian, Bahman; Stait-Gardner, Tim; Castillo, Reynaldo

    2014-03-28

    We predict that the phase cancellation of a precessing magnetisation field carried by a diffusing species in a bounded geometry under certain nuclear magnetic resonance pulsed magnetic field gradient sequences results in a small force over typically micrometre length scales. Our calculations reveal that the total magnetisation energy in a pore under the influence of a pulsed gradient will be distance-dependent thus resulting in a force acting on the boundary. It is shown that this effect of the magnetisation of diffusing particles will appear as either an attractive or repulsive force depending on the geometry of the pore and magneticmore » properties of the material. A detailed analysis is performed for the case of a pulsed gradient spin-echo experiment on parallel planes. It is shown that the force decays exponentially in terms of the spin-spin relaxation. The proof is based on classical electrodynamics. An application of this effect to soft matter is suggested.« less

  5. Oscillatory/Chaotic Thermocapillary Flow Induced by Radiant Heating

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth J.

    1998-01-01

    There is a continuing need to understand the fluid physics occurring under low gravity conditions in processes such as crystal growth, materials processing, and the movement of bubbles or droplets. The fluid flow in such situations is often caused by a gradient in interfacial tension. If a temperature gradient is created due to a heat source, the resulting flow is called thermocapillary flow, a special case of Marangoni Convection. In this study, an experimental investigation was conducted using silicone oil in cylindrical containers with a laser heat source at the free surface. It was desired to determine the conditions under which steady, axisymmetrical thermocapillary flow becomes unstable and oscillatory three-dimensional flow states develop. The critical Marangoni number for each observed oscillatory state was measured as a function of the container aspect ratio and the dynamic Bond number, a measure of buoyant force versus ii thermocapillary force. Various oscillatory modes were observed during three- dimensional convection, and chaotic flow was reached in one test condition. The critical Marangoni numbers are compared with those measured in previous studies, and the power spectra and phase trajectories of the instantaneous surface temperature distributions are used to characterize the routes of transitions to the chaotic flow state. Results show that only superharmonic modes appear in the routes to chaos while infinite number of subharmonic modes occur in flow transitions for pure Rayleigh convection.

  6. Experimental investigation on thermo-magnetic convection inside cavities.

    PubMed

    Gontijo, R G; Cunha, F R

    2012-12-01

    This paper presents experimental results on thermo-magnetic convection inside cavities. We examine the flow induced by convective currents inside a cavity with aspect ratio near the unity and the heat transfer rates measurements inside a thin cavity with aspect ratio equal to twelve. The convective unstable currents are formed when a magnetic suspension is subjected to a temperature gradient combined with a gradient of an externally imposed magnetic field. Under these conditions, stratifications in the suspension density and susceptibility are both important effects to the convective motion. We show a comparison between flow patterns of magnetic and gravitational convections. The impact of the presence of a magnetic field on the amount of heat extracted from the system when magnetic and gravitational effects are combined inside the test cell is evaluated. The convection state is largely affected by new instability modes produced by stratification in susceptibility. The experiments reveal that magnetic field enhances the instability in the convective flow leading to a more effective mixing and consequently to a more statistically homogenous temperature distribution inside the test cell. The experimental results allow the validation of the scaling law proposed in a previous theoretical work that has predicted that the Nusselt number scales with the magnetic Rayleigh number to the power of 1/3, in the limit in which magnetic force balances viscous force in the convective flow.

  7. Quantification of the effect of temperature gradients in soils on subsurface radon signal

    NASA Astrophysics Data System (ADS)

    Haquin, Gustavo; Ilzycer, Danielle; Kamai, Tamir; Zafrir, Hovav; Weisbrod, Noam

    2017-04-01

    Temperature gradients that develop in soils due to atmospheric temperature cycles are factors of primary importance in determining the rates and directions of subsurface gas flow. Models including mechanisms of thermal convection and thermal diffusion partially explain the impact of temperature gradients on subsurface radon transport. However, the overall impact of temperature gradients on subsurface radon transport is still not well understood. A laboratory setup was designed and built to experimentally investigate the influence of temperature gradients on radon transport under well controlled conditions. A 60 cm diameter and 120 cm tall column was thermally insulated except from the atmosphere-soil interface, such that it was constructed to simulate field conditions where temperature gradients in soils are developed following atmospheric temperature cycles. The column was filled with fine grinded phosphate rock which provided the porous media with radon source. Radon in soil-air was continuously monitored using NaI gamma detectors positioned at different heights along the column. Soil temperature, differential pressure, and relative humidity were monitored along the column. Experiments based on steep and gradual stepwise changes in ambient temperature were conducted. Absolute changes on radon levels in the order of 10-30% were measured at temperature gradients of up to ±20oC/m. Results showed a non-linear correlation between the temperature gradient and the subsurface radon concentration. An asymmetric relationship between the radon concentration and the temperature gradients for ΔT>0 and ΔT<0 was also observed. Laboratory simulations of the time- and depth-dependent temperature wave functions with frequencies ranged from a daily cycle to few days were performed. In response to the harmonic temperature behaviour radon oscillations at similar frequencies were detected correspondingly. In this work a quantitative relationship between radon and temperature gradients will be presented for cases beyond the classical conditions for thermal convection and thermal diffusion.

  8. Feasibility study of polyurethane shape-memory polymer actuators for pressure bandage application.

    PubMed

    Ahmad, Manzoor; Luo, Jikui; Miraftab, Mohsen

    2012-02-01

    The feasibility of laboratory-synthesized polyurethane-based shape-memory polymer (SMPU) actuators has been investigated for possible application in medical pressure bandages where gradient pressure is required between the ankle and the knee for treatment of leg ulcers. In this study, using heat as the stimulant, SMPU strip actuators have been subjected to gradual and cyclic stresses; their recovery force, reproducibility and reusability have been monitored with respect to changes in temperature and circumference of a model leg, and the stress relaxation at various temperatures has been investigated. The findings suggest that SMPU actuators can be used for the development of the next generation of pressure bandages.

  9. Extraction of espresso coffee by using gradient of temperature. Effect on physicochemical and sensorial characteristics of espresso.

    PubMed

    Salamanca, C Alejandra; Fiol, Núria; González, Carlos; Saez, Marc; Villaescusa, Isabel

    2017-01-01

    Espresso extraction is generally carried out at a fixed temperature within the range 85-95°C. In this work the extraction of the espressos was made in a new generation coffee machine that enables temperature profiling of the brewing water. The effect of using gradient of temperature to brew espressos on physicochemical and sensorial characteristics of the beverage has been investigated. Three different extraction temperature profiles were tested: updrawn gradient (88-93°C), downdrawn gradient (93-88°C) and fixed temperature (90°C). The coffee species investigated were Robusta, Arabica natural and Washed Arabica. Results proved that the use of gradient temperature for brewing espressos allows increasing or decreasing the extraction of some chemical compounds from coffee grounds. Moreover an appropriate gradient of temperature can highlight or hide some sensorial attributes. In conclusion, the possibility of programming gradient of temperature in the coffee machines recently introduced in the market opens new expectations in the field of espresso brewing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Local wind forcing of the Monterey Bay area inner shelf

    USGS Publications Warehouse

    Drake, P.T.; McManus, M.A.; Storlazzi, C.D.

    2005-01-01

    Wind forcing and the seasonal cycles of temperature and currents were investigated on the inner shelf of the Monterey Bay area of the California coast for 460 days, from June 2001 to September 2002. Temperature measurements spanned an approximate 100 km stretch of coastline from a bluff just north of Monterey Bay south to Point Sur. Inner shelf currents were measured at two sites near the bay's northern shore. Seasonal temperature variations were consistent with previous observations from the central California shelf. During the spring, summer and fall, a seasonal mean alongshore current was observed flowing northwestward in the northern bay, in direct opposition to a southeastward wind stress. A barotropic alongshore pressure gradient, potentially driving the northwestward flow, was needed to balance the alongshore momentum equation. With the exception of the winter season, vertical profiles of mean cross-shore currents were consistent with two-dimensional upwelling and existing observations from upwelling regions with poleward subsurface flow. At periods of 15-60 days, temperature fluctuations were coherent both throughout the domain and with the regional wind field. Remote wind forcing was minimal. During the spring upwelling season, alongshore currents and temperatures in the northern bay were most coherent with winds measured at a nearby land meteorological station. This wind site showed relatively low correlations to offshore buoy wind stations, indicating localized wind effects are important to the circulation along this stretch of Monterey Bay's inner shelf. ?? 2004 Elsevier Ltd. All rights reserved.

  11. West Florida shelf circulation and temperature budget for the 1998 fall transition

    NASA Astrophysics Data System (ADS)

    He, Ruoying; Weisberg, Robert H.

    2003-05-01

    Mid-latitude continental shelves undergo a fall transition as the net heat flux changes from warming to cooling. Using in situ data and a numerical model we investigate the circulation on the west Florida shelf (WFS) for the fall transition of 1998. The model is a regional adaptation of the primitive equation, Princeton Ocean Model forced by NCEP reanalysis wind, air pressure, and heat flux fields, plus river inflows. After comparison with observations the model is used to draw inferences on the seasonal and synoptic scale features of the shelf circulation. By running twin experiments, one without and the other with an idealized Loop Current (LC), we explore the relative importance of local versus deep-ocean forcing. We find that local forcing largely controls the inner-shelf circulation, including changes from the Florida Panhandle in the north to regions farther south. The effects of the LC in fall 1998 are to reinforce the mid-shelf currents and to increase the across-shelf transports in the bottom Ekman layer, thereby accentuating the shoreward transport of cold, nutrient rich water of deep-ocean origin. A three-dimensional analysis of the temperature budget reveals that surface heat flux largely controls both the seasonal and synoptic scale temperature variations. Surface cooling leads to convective mixing that rapidly alters temperature gradients. One interesting consequence is that upwelling can result in near-shore warming as warmer offshore waters are advected landward. The temperature balances on the shelf are complex and fully three-dimensional.

  12. 43 CFR 3252.13 - How long may I collect information from my temperature gradient well?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How long may I collect information from my temperature gradient well? 3252.13 Section 3252.13 Public Lands: Interior Regulations Relating to Public Lands... temperature gradient well? You may collect information from your temperature gradient well for as long as your...

  13. 43 CFR 3252.13 - How long may I collect information from my temperature gradient well?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How long may I collect information from my temperature gradient well? 3252.13 Section 3252.13 Public Lands: Interior Regulations Relating to Public Lands... temperature gradient well? You may collect information from your temperature gradient well for as long as your...

  14. 43 CFR 3252.13 - How long may I collect information from my temperature gradient well?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false How long may I collect information from my temperature gradient well? 3252.13 Section 3252.13 Public Lands: Interior Regulations Relating to Public Lands... temperature gradient well? You may collect information from your temperature gradient well for as long as your...

  15. 43 CFR 3252.13 - How long may I collect information from my temperature gradient well?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How long may I collect information from my temperature gradient well? 3252.13 Section 3252.13 Public Lands: Interior Regulations Relating to Public Lands... temperature gradient well? You may collect information from your temperature gradient well for as long as your...

  16. Very high resolution surface mass balance over Greenland modeled by the regional climate model MAR with a downscaling technique

    NASA Astrophysics Data System (ADS)

    Kittel, Christoph; Lang, Charlotte; Agosta, Cécile; Prignon, Maxime; Fettweis, Xavier; Erpicum, Michel

    2016-04-01

    This study presents surface mass balance (SMB) results at 5 km resolution with the regional climate MAR model over the Greenland ice sheet. Here, we use the last MAR version (v3.6) where the land-ice module (SISVAT) using a high resolution grid (5km) for surface variables is fully coupled while the MAR atmospheric module running at a lower resolution of 10km. This online downscaling technique enables to correct near-surface temperature and humidity from MAR by a gradient based on elevation before forcing SISVAT. The 10 km precipitation is not corrected. Corrections are stronger over the ablation zone where topography presents more variations. The model has been force by ERA-Interim between 1979 and 2014. We will show the advantages of using an online SMB downscaling technique in respect to an offline downscaling extrapolation based on local SMB vertical gradients. Results at 5 km show a better agreement with the PROMICE surface mass balance data base than the extrapolated 10 km MAR SMB results.

  17. 3D finite element simulation of TIG weld pool

    NASA Astrophysics Data System (ADS)

    Kong, X.; Asserin, O.; Gounand, S.; Gilles, P.; Bergheau, J. M.; Medale, M.

    2012-07-01

    The aim of this paper is to propose a three-dimensional weld pool model for the moving gas tungsten arc welding (GTAW) process, in order to understand the main factors that limit the weld quality and improve the productivity, especially with respect to the welding speed. Simulation is a very powerful tool to help in understanding the physical phenomena in the weld process. A 3D finite element model of heat and fluid flow in weld pool considering free surface of the pool and traveling speed has been developed for the GTAW process. Cast3M software is used to compute all the governing equations. The free surface of the weld pool is calculated by minimizing the total surface energy. The combined effects of surface tension gradient, buoyancy force, arc pressure, arc drag force to drive the fluid flow is included in our model. The deformation of the weld pool surface and the welding speed affect fluid flow, heat flow and thus temperature gradients and molten pool dimensions. Welding trials study is presented to compare our numerical results with macrograph of the molten pool.

  18. TEMPERATURE-GRADIENT INCUBATOR FOR DETERMINING THE TEMPERATURE RANGE OF GROWTH OF MICROORGANISMS

    PubMed Central

    Elliott, R. Paul

    1963-01-01

    Elliott, R. Paul (U.S. Department of Agriculture, Albany, Calif.). Temperature-gradient incubator for determining the temperature range of growth of microorganisms. J. Bacteriol. 85:889–894. 1963.—The temperature-gradient incubator consists of an aluminum bar with troughs for media, with controlled temperatures at each end, and with insulation to prevent heat transfer. The resulting linear temperature gradient provides a means for determining minimal or maximal growth temperatures of microorganisms in any desired range and at any desired gradient. The operation of the incubator is unaffected by line-voltage variations or by ambient temperature. Media do not dehydrate seriously even during prolonged periods of operation. The incubator can be used to determine water activity of media by an adjustment to permit partial freezing. Either thermocouples or thermistors may be used to measure temperatures. Images PMID:14044959

  19. Surface-Plasmon-Mediated Gradient Force Enhancement and Mechanical State Transitions of Graphene Sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Peng; Shen, Nian-Hai; Koschny, Thomas

    Graphene, a two-dimensional material possessing extraordinary properties in electronics as well as mechanics, provides a great platform for various optoelectronic and opto-mechanical devices. Here in this article, we theoretically study the optical gradient force arising from the coupling of surface plasmon modes on parallel graphene sheets, which can be several orders stronger than that between regular dielectric waveguides. Furthermore, with an energy functional optimization model, possible force-induced deformation of graphene sheets is calculated. We show that the significantly enhanced optical gradient force may lead to mechanical state transitions of graphene sheets, which are accompanied by abrupt changes in reflection andmore » transmission spectra of the system. Our demonstrations illustrate the potential for a broader graphene-related applications such as force sensors and actuators.« less

  20. Surface-Plasmon-Mediated Gradient Force Enhancement and Mechanical State Transitions of Graphene Sheets

    DOE PAGES

    Zhang, Peng; Shen, Nian-Hai; Koschny, Thomas; ...

    2016-12-16

    Graphene, a two-dimensional material possessing extraordinary properties in electronics as well as mechanics, provides a great platform for various optoelectronic and opto-mechanical devices. Here in this article, we theoretically study the optical gradient force arising from the coupling of surface plasmon modes on parallel graphene sheets, which can be several orders stronger than that between regular dielectric waveguides. Furthermore, with an energy functional optimization model, possible force-induced deformation of graphene sheets is calculated. We show that the significantly enhanced optical gradient force may lead to mechanical state transitions of graphene sheets, which are accompanied by abrupt changes in reflection andmore » transmission spectra of the system. Our demonstrations illustrate the potential for a broader graphene-related applications such as force sensors and actuators.« less

  1. Minimizing hot spot temperature in asymmetric gradient coil design.

    PubMed

    While, Peter T; Forbes, Larry K; Crozier, Stuart

    2011-08-01

    Heating caused by gradient coils is a considerable concern in the operation of magnetic resonance imaging (MRI) scanners. Hot spots can occur in regions where the gradient coil windings are closely spaced. These problem areas are particularly common in the design of gradient coils with asymmetrically located target regions. In this paper, an extension of an existing coil design method is described, to enable the design of asymmetric gradient coils with reduced hot spot temperatures. An improved model is presented for predicting steady-state spatial temperature distributions for gradient coils. A great amount of flexibility is afforded by this model to consider a wide range of geometries and system material properties. A feature of the temperature distribution related to the temperature gradient is used in a relaxed fixed point iteration routine for successively altering coil windings to have a lower hot spot temperature. Results show that significant reductions in peak temperature are possible at little or no cost to coil performance when compared to minimum power coils of equivalent field error.

  2. Magnetoelectrets prepared by using temperature gradient method

    NASA Astrophysics Data System (ADS)

    Ojha, Pragya; Qureshi, M. S.; Malik, M. M.

    2015-05-01

    A novel Temperature Gradient method for preparation of magnetoelectret is proposed. Non uniform magnetic field and temperature gradient are expected to be the main cause for the formation of magnetoelectrets (MEs). Being bad conductors of heat, during their formation, there is a possibility for the existence of a temperature gradient along the dielectric electrode interface. In this condition, the motion of, molecules and charge carriers are dependent on Temperature Gradient in a preferred direction. To increase this temperature gradient on both sides of the sample novel method for the preparation of MEs is developed for the first time. For this method the special sample holders are designed in our laboratory. MEs are prepared in such a way that one surface is cooled and the other is heated, during the process. With the help of XRD analysis using Type-E orientation pattern and surface charge studies on magnetoelectrets, the two main causes Non uniform magnetic field and temperature gradient for the formation of magnetoelectrets (MEs), are authenticated experimentally.

  3. Heat waves connect abrupt polar climate changes during the past 67ka: evidence from sediment core GeoB3912-1

    NASA Astrophysics Data System (ADS)

    Yang, X.; Rial, J. A.

    2014-12-01

    According to the hypothesis of polar synchronization, climate variations of Earth's poles are connected with a persistent phase lock of π/2 throughout the last glacial period. However, it is not clear yet how the Earth's two poles communicate with each other, the Thermohaline circulation (THC) being a possible candidate for signal carrier. Here we present a possible way of climate variation propagation through the Atlantic Ocean - likely in the form of heat or thermal wave (Cattaneo's solution) - based on lagged correlation between an organic carbon climate proxy record from the tropical Atlantic and the south-north polar temperature gradient. We further demonstrate that the speed of such propagation is frequency dependent, of which the wave of the longest period travels the fastest at the speed of ~32 km/year consistent with the estimated speed of the THC. The observed speed - frequency relationship can be successfully modeled as resulting from a propagating dispersive thermal wave initiated by the polar temperature gradient maximum. We show that such heat wave propagation is a potential mechanism to couple and synchronize the polar climates during the last glacial period and to force the occurrence of Heinrich events. To summarize, the polar temperature gradient anomalies are consequence of the π/2 phase lock between the polar climates, which is caused by polar synchronization maintained by the coupling, which is, as the data suggest, in the form of thermal waves. The spikes in organic carbon and the Fe/Ca ratio records in the core GeoB3912-1 can be thought of as snapshots of the passage of strong meteorological wavefronts through the equatorial region. The results strongly suggest that each peak in the organic carbon recorded a half-hemisphere-delayed passage of a wave-like disturbance through the equator carrying the south-north temperature gradient maxima. And each of these occurs within timing error of the Heinrich events H0-H6.

  4. Influence of smooth temperature variation on hotspot ignition

    NASA Astrophysics Data System (ADS)

    Reinbacher, Fynn; Regele, Jonathan David

    2018-01-01

    Autoignition in thermally stratified reactive mixtures originates in localised hotspots. The ignition behaviour is often characterised using linear temperature gradients and more recently constant temperature plateaus combined with temperature gradients. Acoustic timescale characterisation of plateau regions has been successfully used to characterise the type of mechanical disturbance that will be created from a plateau core ignition. This work combines linear temperature gradients with superelliptic cores in order to more accurately account for a local temperature maximum of finite size and the smooth temperature variation contained inside realistic hotspot centres. A one-step Arrhenius reaction is used to model a H2-air reactive mixture. Using the superelliptic approach a range of behaviours for temperature distributions are investigated by varying the temperature profile between the gradient only and plateau and gradient bounding cases. Each superelliptic case is compared to a respective plateau and gradient case where simple acoustic timescale characterisation may be performed. It is shown that hot spots equivalent with excitation-to-acoustic timescale ratios sufficiently greater than unity exhibit behaviour very similar to a simple plateau-gradient model. However, for larger hot spots with timescale ratios sufficiently less than unity the reaction behaviour is highly dependent on the smooth temperature profile contained within the core region.

  5. Influence of regional nighttime atmospheric regimes on canopy turbulence and gradients at a closed and open forest in mountain-valley terrain

    DOE PAGES

    Wharton, S.; Ma, S.; Baldocchi, D. D.; ...

    2017-02-07

    Stable stratification of the nocturnal lower boundary layer inhibits convective turbulence, such that turbulent vertical transfer of ecosystem carbon dioxide (CO 2), water vapor (H 2O) and energy is driven by mechanically forced turbulence, either from frictional forces near the ground or top of a plant canopy, or from shear generated aloft. The significance of this last source of turbulence on canopy flow characteristics in a closed and open forest canopy is addressed in this paper. We present micrometeorological observations of the lower boundary layer and canopy air space collected on nearly 200 nights using a combination of atmospheric lasermore » detection and ranging (lidar), eddy covariance (EC), and tower profiling instrumentation. Two AmeriFlux/Fluxnet sites in mountain-valley terrain in the Western U.S. are investigated: Wind River, a tall, dense conifer canopy, and Tonzi Ranch, a short, open oak canopy. On roughly 40% of nights lidar detected down-valley or downslope flows above the canopy at both sites. Nights with intermittent strong bursts of “top-down” forced turbulence were also observed above both canopies. The strongest of these bursts increased sub-canopy turbulence and reduced canopy virtual potential temperature (θv) gradient at Tonzi, but did not appear to change the flow characteristics within the dense Wind River canopy. At Tonzi we observed other times when high turbulence (via friction velocity, u*) was found just above the trees, yet CO2 and θv gradients remained large and suggested flow decoupling. These events were triggered by regional downslope flow. Lastly, a set of turbulence parameters is evaluated for estimating canopy turbulence mixing strength. The relationship between turbulence parameters and canopy θv gradients was found to be complex, although better agreement between the canopy θv gradient and turbulence was found for parameters based on the standard deviation of vertical velocity, or ratios of 3-D turbulence to mean flow, than for u*. These findings add evidence that the relationship between canopy turbulence, static stability, and canopy mixing is far from straightforward even within an open canopy.« less

  6. Influence of regional nighttime atmospheric regimes on canopy turbulence and gradients at a closed and open forest in mountain-valley terrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wharton, S.; Ma, S.; Baldocchi, D. D.

    Stable stratification of the nocturnal lower boundary layer inhibits convective turbulence, such that turbulent vertical transfer of ecosystem carbon dioxide (CO 2), water vapor (H 2O) and energy is driven by mechanically forced turbulence, either from frictional forces near the ground or top of a plant canopy, or from shear generated aloft. The significance of this last source of turbulence on canopy flow characteristics in a closed and open forest canopy is addressed in this paper. We present micrometeorological observations of the lower boundary layer and canopy air space collected on nearly 200 nights using a combination of atmospheric lasermore » detection and ranging (lidar), eddy covariance (EC), and tower profiling instrumentation. Two AmeriFlux/Fluxnet sites in mountain-valley terrain in the Western U.S. are investigated: Wind River, a tall, dense conifer canopy, and Tonzi Ranch, a short, open oak canopy. On roughly 40% of nights lidar detected down-valley or downslope flows above the canopy at both sites. Nights with intermittent strong bursts of “top-down” forced turbulence were also observed above both canopies. The strongest of these bursts increased sub-canopy turbulence and reduced canopy virtual potential temperature (θv) gradient at Tonzi, but did not appear to change the flow characteristics within the dense Wind River canopy. At Tonzi we observed other times when high turbulence (via friction velocity, u*) was found just above the trees, yet CO2 and θv gradients remained large and suggested flow decoupling. These events were triggered by regional downslope flow. Lastly, a set of turbulence parameters is evaluated for estimating canopy turbulence mixing strength. The relationship between turbulence parameters and canopy θv gradients was found to be complex, although better agreement between the canopy θv gradient and turbulence was found for parameters based on the standard deviation of vertical velocity, or ratios of 3-D turbulence to mean flow, than for u*. These findings add evidence that the relationship between canopy turbulence, static stability, and canopy mixing is far from straightforward even within an open canopy.« less

  7. Evidence for thermal convection in the deep carbonate aquifer of the eastern sector of the Po Plain, Italy

    NASA Astrophysics Data System (ADS)

    Pasquale, V.; Chiozzi, P.; Verdoya, M.

    2013-05-01

    Temperatures recorded in wells as deep as 6 km drilled for hydrocarbon prospecting were used together with geological information to depict the thermal regime of the sedimentary sequence of the eastern sector of the Po Plain. After correction for drilling disturbance, temperature data were analyzed through an inversion technique based on a laterally constant thermal gradient model. The obtained thermal gradient is quite low within the deep carbonate unit (14 mK m- 1), while it is larger (53 mK m- 1) in the overlying impermeable formations. In the uppermost sedimentary layers, the thermal gradient is close to the regional average (21 mK m- 1). We argue that such a vertical change cannot be ascribed to thermal conductivity variation within the sedimentary sequence, but to deep groundwater flow. Since the hydrogeological characteristics (including litho-stratigraphic sequence and structural setting) hardly permit forced convection, we suggest that thermal convection might occur within the deep carbonate aquifer. The potential of this mechanism was evaluated by means of the Rayleigh number analysis. It turned out that permeability required for convection to occur must be larger than 3 10- 15 m2. The average over-heat ratio is 0.45. The lateral variation of hydrothermal regime was tested by using temperature data representing the aquifer thermal conditions. We found that thermal convection might be more developed and variable at the Ferrara High and its surroundings, where widespread fracturing may have increased permeability.

  8. Thermocapillary reorientation of Janus drops

    NASA Astrophysics Data System (ADS)

    Rosales, Rodolfo; Saenz, Pedro

    2017-11-01

    Janus drops, named after the Ancient Roman two-faced god, are liquid drops formed from two immiscible fluids. Experimental observations indicate that a Janus drop may re-orientate in response to an applied external thermal gradient due to the Marangoni effect. Depending on the angle between the interior interface and the direction of the temperature gradient, disparities in the physical properties of the constituent liquids may lead to asymmetries in the thermocapillary flow. As a result, the drop will move along a curved path until a torque-free configuration is achieved, point after which it will continue on a straight trajectory. Here, we present the results of a theoretical investigation of this realignment phenomenon in the Stokes regime and in the limit of non-deformable interfaces. A 3D semi-analytical method in terms of polar spherical harmonics is developed to characterize and rationalize the hydrodynamic response (forces and torques), flow (velocity and temperature distribution) and trajectory of a Janus drop moving during the temperature-driven reorientation process. Furthermore, we discuss how this phenomenon may be exploited to develop dynamically reconfigurable micro-lenses. This work was partially supported by the US National Science Foundation through Grants DMS-1614043 and DMS-1719637.

  9. Thermoelectrically cooled temperature-gradient apparatus for comparative cell and virus temperature studies.

    PubMed

    Clark, H F; Kaminski, F; Karzon, D T

    1970-05-01

    Establishment of a near-linear temperature gradient in an incubator has been accomplished by the application of heat to one terminus of a conducting body, normally a metal bar, and the removal of heat from the other terminus of the conducting body. Such incubators have been complex and unwieldy because of the need for mechanical refrigeration. We have described a simplified temperature gradient incubator which uses thermoelectric module cooling coupled with electric heating. Along the gradient, 20 stations in two parallel rows of 10, each accommodating a 30-ml plastic cell culture flask, were continually monitored by an electronic thermometer, and the temperatures were recorded. By manipulation of two simple potentiometer controls, any temperature gradient between 0 and 50 C could be obtained. Minor deviations which occurred between theoretically perfect and obtained temperature gradients were reproducible and readily measured. The gradient incubator was particularly applicable to (i) simultaneously studying a given biological activity over the entire temperature range supporting the growth of a given cell, virus, or microorganism, or (ii) precisely defining the upper or lower temperature limits of a biological system by 10-point determinations. Preliminary experiments have demonstrated the usefulness of the apparatus in characterizing the temperature limits for growth in vitro of cells of reptilian cell lines. The gradient incubator was also successfully utilized for the characterization of the effect of temperature on the efficiency of plating of amphibian viruses and possible temperature variants of those viruses.

  10. Electron temperature critical gradient and transport stiffness in DIII-D

    DOE PAGES

    Smith, Sterling P.; Petty, Clinton C.; White, Anne E.; ...

    2015-07-06

    The electron energy flux has been probed as a function of electron temperature gradient on the DIII-D tokamak, in a continuing effort to validate turbulent transport models. In the scan of gradient, a critical electron temperature gradient has been found in the electron heat fluxes and stiffness at various radii in L-mode plasmas. The TGLF reduced turbulent transport model [G.M. Staebler et al, Phys. Plasmas 14, 055909 (2007)] and full gyrokinetic GYRO model [J. Candy and R.E. Waltz, J. Comput. Phys. 186, 545 (2003)] recover the general trend of increasing electron energy flux with increasing electron temperature gradient scale length,more » but they do not predict the absolute level of transport at all radii and gradients. Comparing the experimental observations of incremental (heat pulse) diffusivity and stiffness to the models’ reveals that TGLF reproduces the trends in increasing diffusivity and stiffness with increasing electron temperature gradient scale length with a critical gradient behavior. Furthermore, the critical gradient of TGLF is found to have a dependence on q 95, contrary to the independence of the experimental critical gradient from q 95.« less

  11. Interhemispheric SST gradient trends in the Indian Ocean prior to and during the recent global warming hiatus

    NASA Astrophysics Data System (ADS)

    Dong, L.; McPhaden, M. J.

    2016-12-01

    Sea surface temperatures (SSTs) have been rising for decades in the Indian Ocean in response to greenhouse gas forcing. However, in this study we show that during the recent hiatus in global warming, a striking interhemispheric gradient in Indian Ocean SST trends developed around 2000, with relatively weak or little warming to the north of 10°S and accelerated warming to the south of 10oS. We present evidence from a wide variety of data sources that this interhemispheric gradient in SST trends is forced primarily by an increase of Indonesian Throughflow (ITF) transport from the Pacific into the Indian Ocean induced by stronger Pacific trade winds. This increased transport led to a depression of the thermocline that facilitated SST warming presumably through a reduction in the vertical turbulent transport of heat in the southern Indian Ocean. Surface wind changes in the Indian Ocean linked to the enhanced Walker circulation also may have contributed to thermocline depth variations and associated SST changes, with downwelling favorable wind stress curls between 10oS and 20oS and upwelling favorable wind stress curls between the equator and 10oS. In addition, the anomalous southwesterly wind stresses off the coast of Somalia favored intensified coastal upwelling and off-shore advection of upwelled water, which would have led to reduced warming of the northern Indian Ocean. Though highly uncertain, lateral heat advection associated with the ITF and surface heat fluxes may also have played a role in forming the interhemispheric SST gradient change.

  12. Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS)

    NASA Technical Reports Server (NTRS)

    Pojman, John A.; Bessonov, Nicholas; Volpert, Vitaly; Wilke, Hermann

    2003-01-01

    Almost one hundred years ago Korteweg published a theory of how stresses could be induced in miscible fluids by concentration gradients, causing phenomena that would appear to be the same as with immiscible fluids. Miscible fluids could manifest a transient or effective interfacial tension (EIT). To this day, there has been no definitive experiment to confirm Korteweg's model but numerous fascinating and suggestive experiments have been reported. The goal of TIPMPS is to answer the question: Can concentration and temperature gradients in miscible materials induce stresses that cause convection? Many polymer processes involving miscible monomer and polymer systems could be affected by fluid flow and so this work could help understand miscible polymer processing, not only in microgravity, but also on earth. Demonstrating the existence of this phenomenon in miscible fluids will open up a new area of study for materials science. The science objectives of TIPMPS are: (1) Determine if convection can be induced by variation of the width of a miscible interface; (2) Determine if convection can be induced by variation of temperature along a miscible interface; (3) Determine if convection can be induced by variation of conversion along a miscible interface An interface between two miscible fluids can best be created via a spatially-selective photopolymerization of dodecyl acrylate with a photoinitiator, which allows the creation of precise and accurate concentration gradients between polymer and monomer. Optical techniques will be used to measure the refractive index variation caused by the resultant temperature and concentration fields. The viscosity of the polymer will be measured from the increase in the fluorescence of pyrene. Because the large concentration and temperature gradients cause buoyancy-driven convection that prevents the observation of the predicted flows, the experiment must be done in microgravity. In this report, we will consider our efforts to estimate the square gradient parameter, k, and our use of the estimates in modeling of the planned TIPMPS experiments. We developed a model consisting of the heat and diffusion equations with convective terms and of the Navier-Stokes equations with an additional volume force written in the form of the Korteweg stresses arising from nonlocal interaction in the fluid. The fluid's viscosity dependence on polymer conversion and temperature was taken from measurements of poly(dodecyl acrylate). Numerical modeling demonstrated that significant flows would arise for conditions corresponding to the planned experiments.

  13. Tropical Convection and Climate Processes in a Cumulus Ensemble Model

    NASA Technical Reports Server (NTRS)

    Sui, Chung-Hsiung

    1999-01-01

    Local convective-radiative equilibrium states of the tropical atmosphere are determined by the following external forcing: 1) Insolation, 2) Surface heat and moisture exchanges (primarily radiation and evaporation), 3) Heating and moistening induced by large-scale circulation. Understanding the equilibrium states of the tropical atmosphere in different external forcing conditions is of vital importance for studying cumulus parameterization, climate feedbacks, and climate changes. We extend our previous study using the Goddard Cumulus Ensemble (GCE) Model which resolves convective-radiative processes more explicitly than global climate models do. Several experiments are carried out under fixed insolation and sea surface temperature. The prescribed SST consists of a uniform warm pool (29C) surrounded by uniform cold SST (26C). The model produces "Walker"-type circulation with the ascending branch of the model atmosphere more humid than the descending part, but the vertically integrated temperature does not show a horizontal gradient. The results are compared with satellite measured moisture by SSM/I (Special Sensor Microwave/Imager) and temperature by MSU in the ascending and descending tropical atmosphere. The vertically integrated temperature and humidity in the two model regimes are comparable to the observed values in the tropics.

  14. Heat transfer in thermal barrier coated rods with circumferential and radial temperature gradients

    NASA Astrophysics Data System (ADS)

    Chung, B. T. F.; Kermani, M. M.; Braun, M. J.; Padovan, J.; Hendricks, R.

    1984-06-01

    To study the heat transfer in ceramic coatings applied to the heated side of internally cooled hot section components of the gas turbine engine, a mathematical model is developed for the thermal response of plasma-sprayed ZrO2-Y2O3 ceramic materials with a Ni-Cr-AL-Y bond coat on a Rene 41 rod substrate subject to thermal cycling. This multilayered cylinder with temperature dependent thermal properties is heated in a cross-flow by a high velocity flame and then cooled by ambient air. Due to high temperature and high velocity of the flame, both gas radiation and forced convection are taken into consideration. Furthermore, the local turbulent heat transfer coefficient is employed which varies with angular position as well as the surface temperature. The transient two-dimensional (heat transfer along axial direction is neglected) temperature distribution of the composite cylinder is determined numerically.

  15. Heat transfer in thermal barrier coated rods with circumferential and radial temperature gradients

    NASA Technical Reports Server (NTRS)

    Chung, B. T. F.; Kermani, M. M.; Braun, M. J.; Padovan, J.; Hendricks, R.

    1984-01-01

    To study the heat transfer in ceramic coatings applied to the heated side of internally cooled hot section components of the gas turbine engine, a mathematical model is developed for the thermal response of plasma-sprayed ZrO2-Y2O3 ceramic materials with a Ni-Cr-AL-Y bond coat on a Rene 41 rod substrate subject to thermal cycling. This multilayered cylinder with temperature dependent thermal properties is heated in a cross-flow by a high velocity flame and then cooled by ambient air. Due to high temperature and high velocity of the flame, both gas radiation and forced convection are taken into consideration. Furthermore, the local turbulent heat transfer coefficient is employed which varies with angular position as well as the surface temperature. The transient two-dimensional (heat transfer along axial direction is neglected) temperature distribution of the composite cylinder is determined numerically.

  16. Issues in Turbulence Simulation for Experimental Comparison

    NASA Astrophysics Data System (ADS)

    Ross, D. W.; Bravenec, R. V.; Dorland, W.; Beer, M. A.; Hammett, G. W.

    1999-11-01

    Studies of the sensitivity of fluctuation spectra and transport fluxes to local plasma parameters and gradients(D. W. Ross et al.), Bull. Am. Phys. Soc. 43, 1760 (1998); D. W. Ross et al., Transport Task Force Workshop, Portland, Oregon, (1999). are continued using nonlinear gyrofluid simulation(M. A. Beer et al.), Phys. Plasmas 2, 2687 (1995). on the T3E at NERSC. Parameters that are characteristic of discharges in DIII-D and Alcator C-Mod are employed. In the previous work, the gradients of Z_eff, n_e, and Te were varied within the experimental uncertainty. Amplitudes and fluxes are quite sensitive to dZ_eff/dr. Here, these studies are continued and extended to variation of other parameters, including T_e/T_i, and dT_i/dr, which are important for ion temperature gradient modes. The role of electric field shear is discussed. Implications for comparison with experiment, including transient perturbations, are discussed, with the goal of quantifying the accuracy of profile data needed to verify the turbulence theory.

  17. Optimization of nanoparticle focusing by coupling thermophoresis and engineered vortex in a microfluidic channel

    NASA Astrophysics Data System (ADS)

    Zhao, Chao; Cao, Zhibo; Fraser, John; Oztekin, Alparslan; Cheng, Xuanhong

    2017-01-01

    Enriching nanoparticles in an aqueous solution is commonly practiced for various applications. Despite recent advances in microfluidic technologies, a general method to concentrate nanoparticles in a microfluidic channel in a label free and continuous flow fashion is not yet available, due to strong Brownian motion on the nanoscale. Recent research of thermophoresis indicates that thermophoretic force can overcome the Brownian force to direct nanoparticle movement. Coupling thermophoresis with natural convection on the microscale has been shown to induce significant enrichment of biomolecules in a thermal diffusion column. However, the column operates in a batch process, and the concentrated samples are inconvenient to retrieve. We have recently designed a microfluidic device that combines a helical fluid motion and simple one-dimensional temperature gradient to achieve effective nanoparticle focusing in a continuous flow. The helical convection is introduced by microgrooves patterned on the channel floor, which directly controls the focusing speed and power. Here, COMSOL simulations are conducted to study how the device geometry and flow rate influence transport and subsequent nanoparticle focusing, with a constant temperature gradient. The results demonstrate a complex dependence of nanoparticle accumulation on the microgroove tilting angle, depth, and spacing, as well as channel width and flow rate. Further dimensional analyses reveal that the ratio between particle velocities induced by thermophoretic and fluid inertial forces governs the particle concentration factor, with a maximum concentration at a ratio of approximately one. This simple relationship provides fundamental insights about nanoparticle transport in coupled flow and thermal fields. The study also offers a useful guideline to the design and operation of nanoparticle concentrators based on combining engineered helical fluid motion subject to phoretic fields.

  18. Wind shear and wet and dry thermodynamic indices as predictors of thunderstorm motion and severity and application to the AVE 4 experimental data

    NASA Technical Reports Server (NTRS)

    Connell, J. R.; Ey, L.

    1977-01-01

    Two types of parameters are computed and mapped for use in assessing their individual merits as predictors of occurrence and severity of thunderstorms. The first group is comprised of equivalent potential temperature, potential temperature, water vapor mixing ratio, and wind speed. Equivalent potential temperature maxima and strong gradients of equivalent potential temperature at the surface correlate well with regions of thunderstorm activity. The second type, comprised of the energy index, shear index, and energy shear index, incorporates some model dynamics of thunderstorms, including nonthermodynamic forcing. The energy shear index is found to improve prediction of tornadic and high-wind situations slightly better than other indices. It is concluded that further development and refinement of nonthermodynamic aspects of predictive indices are definitely warranted.

  19. Sea surface velocities from visible and infrared multispectral atmospheric mapping sensor imagery

    NASA Technical Reports Server (NTRS)

    Pope, P. A.; Emery, W. J.; Radebaugh, M.

    1992-01-01

    High resolution (100 m), sequential Multispectral Atmospheric Mapping Sensor (MAMS) images were used in a study to calculate advective surface velocities using the Maximum Cross Correlation (MCC) technique. Radiance and brightness temperature gradient magnitude images were formed from visible (0.48 microns) and infrared (11.12 microns) image pairs, respectively, of Chandeleur Sound, which is a shallow body of water northeast of the Mississippi delta, at 145546 GMT and 170701 GMT on 30 Mar. 1989. The gradient magnitude images enhanced the surface water feature boundaries, and a lower cutoff on the gradient magnitudes calculated allowed the undesirable sunglare and backscatter gradients in the visible images, and the water vapor absorption gradients in the infrared images, to be reduced in strength. Requiring high (greater than 0.4) maximum cross correlation coefficients and spatial coherence of the vector field aided in the selection of an optimal template size of 10 x 10 pixels (first image) and search limit of 20 pixels (second image) to use in the MCC technique. Use of these optimum input parameters to the MCC algorithm, and high correlation and spatial coherence filtering of the resulting velocity field from the MCC calculation yielded a clustered velocity distribution over the visible and infrared gradient images. The velocity field calculated from the visible gradient image pair agreed well with a subjective analysis of the motion, but the velocity field from the infrared gradient image pair did not. This was attributed to the changing shapes of the gradient features, their nonuniqueness, and large displacements relative to the mean distance between them. These problems implied a lower repeat time for the imagery was needed in order to improve the velocity field derived from gradient imagery. Suggestions are given for optimizing the repeat time of sequential imagery when using the MCC method for motion studies. Applying the MCC method to the infrared brightness temperature imagery yielded a velocity field which did agree with the subjective analysis of the motion and that derived from the visible gradient imagery. Differences between the visible and infrared derived velocities were 14.9 cm/s in speed and 56.7 degrees in direction. Both of these velocity fields also agreed well with the motion expected from considerations of the ocean bottom topography and wind and tidal forcing in the study area during the 2.175 hour time interval.

  20. Mathematical Development of the Spill Assessment Model (SAM) for Hydrazine and Similar Acting Materials in Water Bodies.

    DTIC Science & Technology

    1980-02-01

    migration of the chemical mass in the fluid volume according to two entirely different means, yet governed by the same form of the equation: molecular ...pressure or temperature gradients, gravitational or other body forces, or bulk fluid motion, is observed as molecular diffusion. In general, the...need be made at this stage as to whether the diffusion of a released mass in the fluid is molecular or turbulent in nature. The general form of the one

  1. Skyrmionic spin Seebeck effect via dissipative thermomagnonic torques

    NASA Astrophysics Data System (ADS)

    Kovalev, Alexey A.

    2014-06-01

    We derive thermomagnonic torque and its "β-type" dissipative correction from the stochastic Landau-Lifshitz-Gilbert equation. The β-type dissipative correction describes viscous coupling between magnetic dynamics and magnonic current and it stems from spin mistracking of the magnetic order. We show that thermomagnonic torque is important for describing temperature gradient induced motion of skyrmions in helical magnets while dissipative correction plays an essential role in generating transverse Magnus force. We propose to detect such skyrmionic motion by employing the transverse spin Seebeck effect geometry.

  2. Gradient structure-induced temperature responsiveness in styrene/methyl methacrylate gradient copolymers micelles.

    PubMed

    Zheng, Chao; Huang, Haiying; He, Tianbai

    2014-02-01

    In this work, micelles are formed by gradient copolymer of styrene and methyl methacrylate in acetone-water mixture and their temperature responsiveness is investigated in a narrow range near room temperature. Three different kinds of structural transitions could be induced by temperature: unimers to micelle transition, shrinkage/stretching of micelles, and morphological transition from spherical micelles to vesicles. In addition, a model analysis on the interface of gradient copolymer micelle is made to better understand these phenomena. It is found that both position and composition of the interface could alter in response to the change in temperature. According to the experiments and model analysis, it is proposed that temperature responsiveness might be an intrinsic and universal property of gradient copolymer micelles, which only originates from the gradient structure. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Thermal gradients for the stabilization of a single domain wall in magnetic nanowires.

    PubMed

    Mejía-López, J; Velásquez, E A; Mazo-Zuluaga, J; Altbir, D

    2018-08-24

    By means of Monte Carlo simulations we studied field driven nucleation and propagation of transverse domain walls (DWs) in magnetic nanowires subjected to temperature gradients. Simulations identified the existence of critical thermal gradients that allow the existence of reversal processes driven by a single DW. Critical thermal gradients depend on external parameters such as temperature, magnetic field and wire length, and can be experimentally obtained through the measurement of the mean velocity of the magnetization reversal as a function of the temperature gradient. Our results show that temperature gradients provide a high degree of control over DW propagation, which is of great importance for technological applications.

  4. Evidence of counter-gradient growth in western pond turtles (Actinemys marmorata) across thermal gradients

    Treesearch

    Melissa L. Snover; Michael J. Adams; Donald T. Ashton; Jamie B. Bettaso; Hartwell H. Welsh

    2015-01-01

    Summary1. Counter-gradient growth, where growth per unit temperature increases as temperature decreases, can reduce the variation in ectothermic growth rates across environmental gradients. Understanding how ectothermic species respond to changing temperatures is essential to their conservation and management due to human-altered habitats and changing...

  5. Crack Driving Forces in a Multilayered Coating System for Ceramic Matrix Composite Substrates

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Zhu, Dongming; Miller, Robert A.

    2005-01-01

    The effects of the top coating thickness, modulus and shrinkage strains on the crack driving forces for a baseline multilayer Yttria-Stabilized-Zirconia/Mullite/Si thermal and environment barrier coating (TEBC) system for SiC/SiC ceramic matrix composite substrates are determined for gas turbine applications. The crack driving forces increase with increasing modulus, and a low modulus thermal barrier coating material (below 10 GPa) will have no cracking issues under the thermal gradient condition analyzed. Since top coating sintering increases the crack driving forces with time, highly sintering resistant coatings are desirable to maintain a low tensile modulus and maintain a low crack driving force with time. Finite element results demonstrated that an advanced TEBC system, such as ZrO2/HfO2, which possesses improved sintering resistance and high temperature stability, exhibited excellent durability. A multi-vertical cracked structure with fine columnar spacing is an ideal strain tolerant coating capable of reducing the crack driving forces to an acceptable level even with a high modulus of 50 GPa.

  6. Assessing the Implications of Changing Extreme Value Distributions of Weather on Carbon and Water Cycling in Grasslands

    NASA Astrophysics Data System (ADS)

    Brunsell, N. A.; Nippert, J. B.

    2011-12-01

    As the climate warms, it is generally acknowledged that the number and magnitude of extreme weather events will increase. We examined an ecophysiological model's responses to precipitation and temperature anomalies in relation to the mean and variance of annual precipitation along a pronounced precipitation gradient from eastern to western Kansas. This natural gradient creates a template of potential responses for both the mean and variance of annual precipitation to compare the timescales of carbon and water fluxes. Using data from several Ameriflux sites (KZU and KFS) and a third eddy covariance tower (K4B) along the gradient, BIOME-BGC was used to characterize water and carbon cycle responses to extreme weather events. Changes in the extreme value distributions were based on SRES A1B and A2 scenarios using an ensemble mean of 21 GCMs for the region, downscaled using a stochastic weather generator. We focused on changing the timing and magnitude of precipitation and altering the diurnal and seasonal temperature ranges. Biome-BGC was then forced with daily output from the stochastic weather generator, and we examined how potential changes in these extreme value distributions impact carbon and water cycling at the sites across the Kansas precipitation gradient at time scales ranging from daily to interannual. To decompose the time scales of response, we applied a wavelet based information theory analysis approach. Results indicate impacts in soil moisture memory and carbon allocation processes, which vary in response to both the mean and variance of precipitation along the precipitation gradient. These results suggest a more pronounced focus ecosystem responses to extreme events across a range of temporal scales in order to fully characterize the water and carbon cycle responses to global climate change.

  7. Influence of smooth temperature variation on hotspot ignition

    DOE PAGES

    Reinbacher, Fynn; Regele, Jonathan David

    2017-10-06

    Autoignition in thermally stratified reactive mixtures originates in localised hotspots. The ignition behaviour is often characterised using linear temperature gradients and more recently constant temperature plateaus combined with temperature gradients. Acoustic timescale characterisation of plateau regions has been successfully used to characterise the type of mechanical disturbance that will be created from a plateau core ignition. This work combines linear temperature gradients with superelliptic cores in order to more accurately account for a local temperature maximum of finite size and the smooth temperature variation contained inside realistic hotspot centres. A one-step Arrhenius reaction is used to model a H 2–airmore » reactive mixture. Using the superelliptic approach a range of behaviours for temperature distributions are investigated by varying the temperature profile between the gradient only and plateau and gradient bounding cases. Each superelliptic case is compared to a respective plateau and gradient case where simple acoustic timescale characterisation may be performed. It is shown that hot spots equivalent with excitation-to-acoustic timescale ratios sufficiently greater than unity exhibit behaviour very similar to a simple plateau-gradient model. Furthermore, for larger hot spots with timescale ratios sufficiently less than unity the reaction behaviour is highly dependent on the smooth temperature profile contained within the core region.« less

  8. Influence of smooth temperature variation on hotspot ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinbacher, Fynn; Regele, Jonathan David

    Autoignition in thermally stratified reactive mixtures originates in localised hotspots. The ignition behaviour is often characterised using linear temperature gradients and more recently constant temperature plateaus combined with temperature gradients. Acoustic timescale characterisation of plateau regions has been successfully used to characterise the type of mechanical disturbance that will be created from a plateau core ignition. This work combines linear temperature gradients with superelliptic cores in order to more accurately account for a local temperature maximum of finite size and the smooth temperature variation contained inside realistic hotspot centres. A one-step Arrhenius reaction is used to model a H 2–airmore » reactive mixture. Using the superelliptic approach a range of behaviours for temperature distributions are investigated by varying the temperature profile between the gradient only and plateau and gradient bounding cases. Each superelliptic case is compared to a respective plateau and gradient case where simple acoustic timescale characterisation may be performed. It is shown that hot spots equivalent with excitation-to-acoustic timescale ratios sufficiently greater than unity exhibit behaviour very similar to a simple plateau-gradient model. Furthermore, for larger hot spots with timescale ratios sufficiently less than unity the reaction behaviour is highly dependent on the smooth temperature profile contained within the core region.« less

  9. Decreased precision contributes to the hypoxic thermoregulatory response in lizards.

    PubMed

    Cadena, Viviana; Tattersall, Glenn J

    2009-01-01

    The decrease in body temperature (T(b)) observed in most vertebrate classes in response to hypoxia has been attributed to a regulated decrease in set-point, protecting organs against tissue death due to oxygen depletion. Hypoxia, however, imparts particular challenges to metabolic function which may, in turn, affect thermoregulation. In ectotherms, where thermoregulation is mainly behavioural, stressors that influence the propensity to move and respond to temperature gradients are expected to have an impact on thermoregulatory control. Using low oxygen as a potent stressor, we evaluated the variability and level of thermoregulation of inland bearded dragons. To examine the source of thermoregulatory variability, we studied their behaviour in an electronically controlled temperature-choice shuttle box, a constant temperature dual-choice shuttle box, and a linear thermal gradient. A significant increase in the size of the T(b) range was observed at the lowest oxygen concentration (4% O(2)), reflecting a decrease in thermoregulatory precision in the temperature-choice shuttle box. This was also accompanied by a drop of approximately 2-4 degrees C in T(b), the drop being greatest in situations where T(b) must be actively defended. Situations that force the lizards to continually choose temperatures, rather than passively remain at a given temperature, lead to an increase in the variability in the manifested T(b), which is further exaggerated in hypoxia. This study reveals that a decrease in thermoregulatory precision caused by a diminished propensity to move or effect appropriate thermoregulatory responses may be a contributing component in the lowering of selected body temperatures observed in many hypoxic ectotherms.

  10. The role of precipitation in aerosol-induced changes in northern hemisphere wintertime stationary waves

    NASA Astrophysics Data System (ADS)

    Lewinschal, A.; Ekman, A. M. L.; Körnich, H.

    2012-04-01

    Aerosol particles have a considerable impact on the energy budget of the atmosphere due to their ability to scatter and absorb incoming solar radiation. Persistent particle emissions in certain regions of the world have lead to quasi-permanent aerosol forcing patterns. This spatially varying forcing pattern has the potential to modify temperature gradients that in turn alter pressure gradients and the atmospheric circulation. This study focuses on the effect of aerosol direct radiative forcing on northern hemisphere wintertime stationary waves. A global general circulation model based on the ECMWF operational forecast model is applied (EC-Earth). Aerosols are prescribed as monthly mean mixing ratios of sulphate, black carbon, organic carbon, dust and sea salt. Only the direct aerosol effect is considered. The climatic change is defined as the difference between model simulations using present-day and pre-industrial concentrations of aerosol particles. Data from 40-year long simulations using a coupled ocean-atmosphere model system are used. In EC-Earth, the high aerosol loading over South Asia leads to a surface cooling, which appears to enhance the South Asian winter monsoon and weaken the Indian Ocean Walker circulation. The anomalous Walker circulation leads to changes in tropical convective precipitation and consequent changes in latent heat release which effectively acts to generate planetary scale waves propagating into the extra-tropics. Using a steady-state linear model we verify that the aerosol-induced anomalous convective precipitation is a crucial link between the wave changes and the direct aerosol radiative forcing.

  11. Orientation of Magnetized MnBi in a Strong Static Magnetic Field

    NASA Astrophysics Data System (ADS)

    Zheng, Tianxiang; Zhong, Yunbo; Dong, Licheng; Zhou, Bangfei; Ren, Zhongming; Debray, Francois; Beaugnon, Eric

    2018-06-01

    Solidification of Bi-4.5 wt pct Mn alloy was investigated in the presence and absence of a strong static magnetic field (SSMF). A cooling rate ( R) of 60 K/min caused MnBi to orient with the SSMF, owing to the force moment and attractive force. The attractive force and magnetic gradient force induced formation of multilayered MnBi when R was 5 K/min. The magnetic gradient force was damped when R was 60 K/min. Low cooling rates favored the aggregation process.

  12. Electrostatic forces in planetary rings

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.; Shan, Linhua; Havnes, O.

    1988-01-01

    The average charge on a particle in a particle-plasma cloud, the plasma potential inside the cloud, and the Coulomb force acting on the particle are calculated. The net repulsive electrostatic force on a particle depends on the plasma density, temperature, density of particles, particle size, and the gradient of the particle density. In a uniformly dense ring the electrostatic repulsion is zero. It is also shown that the electrostatic force acts like a pressure force, that even a collisionless ring can be stable against gravitational collapse, and that a finite ring thickness does not necessarily imply a finite velocity dispersion. A simple criterion for the importance of electrostatic forces in planetary rings is derived which involves the calculation of the vertical ring thickness which would result if only electrostatic repulsion were responsible for the finite ring thickness. Electrostatic forces are entirely negligible in the main rings of Saturn and the E and G rings. They may also be negligible in the F ring. However, the Uranian rings and Jupiter's ring seem to be very much influenced by electrostatic repulsion. In fact, electrostatic forces could support a Jovian ring which is an order of magnitude more dense than observed.

  13. The Response of the South Asian Summer Monsoon Circulation to Intensified Irrigation in Global Climate Model Simulations

    NASA Technical Reports Server (NTRS)

    Shukla, Sonali P.; Puma, Michael J.; Cook, Benjamin I.

    2013-01-01

    Agricultural intensification in South Asia has resulted in the expansion and intensification of surface irrigation over the twentieth century. The resulting changes to the surface energy balance could affect the temperature contrasts between the South Asian land surface and the equatorial Indian Ocean, potentially altering the South Asian Summer Monsoon (SASM) circulation. Prior studies have noted apparent declines in the monsoon intensity over the twentieth century and have focused on how altered surface energy balances impact the SASM rainfall distribution. Here, we use the coupled Goddard Institute for Space Studies ModelE-R general circulation model to investigate the impact of intensifying irrigation on the large-scale SASM circulation over the twentieth century, including how the effect of irrigation compares to the impact of increasing greenhouse gas (GHG) forcing. We force our simulations with time-varying, historical estimates of irrigation, both alone and with twentieth century GHGs and other forcings. In the irrigation only experiment, irrigation rates correlate strongly with lower and upper level temperature contrasts between the Indian sub-continent and the Indian Ocean (Pearson's r = -0.66 and r = -0.46, respectively), important quantities that control the strength of the SASM circulation. When GHG forcing is included, these correlations strengthen: r = -0.72 and r = -0.47 for lower and upper level temperature contrasts, respectively. Under irrigated conditions, the mean SASM intensity in the model decreases only slightly and insignificantly. However, in the simulation with irrigation and GHG forcing, inter-annual variability of the SASM circulation decreases by *40 %, consistent with trends in the reanalysis products. This suggests that the inclusion of irrigation may be necessary to accurately simulate the historical trends and variability of the SASM system over the last 50 years. These findings suggest that intensifying irrigation, in concert with increased GHG forcing, is capable of reducing the variability of the simulated SASM circulation and altering the regional moisture transport by limiting the surface warming and reducing land-sea temperature gradients.

  14. Temperature influence on Hadley cell dynamics

    NASA Astrophysics Data System (ADS)

    Molnos, S.

    2016-12-01

    Over the last decades, satellite observations indicate that the Hadley cells have widened and possibly also intensified [1,2]. This might lead to a shift of fertile habitats with implications for biodiversity and agriculture [3]. Causes for these observed changes are uncertain and the possible role of global warming is debated. To better understand the key dynamical forcings involved, we investigate Hadley cell dynamics with an idealized atmosphere model [4,5] and compare its results with reanalysis data. This statistical-dynamical atmosphere model (SDAM) is based on time-averaged equations, and therefore much faster than the more widely used Atmospheric general circulations models (AGCMs).With SDAMS it is possible to perform climate simulations up to multi-millennia timescales. Here, we employ it to study the dominant processes related to the observed strengthening and widening of the Hadley cell using a very large ensemble sensitivity experiment testing the following possible underlying drivers: meridional temperature gradient, temperature anomaly and global mean temperature GMT. Interestingly, whereas the width of the Hadley cell depends nonlinearly on the temperature gradient, while its Intensification is nearly independent on temperature gradient. In contrast, a larger GMT always leads to an intensified Hadley cell. References: [1] Mitas, C. M.: Has the Hadley cell been strengthening in recent decades?, Geophys. Res. Lett., 32(3), 2005. [2] Seidel, D., Fu, Q., Randel, W. and Reichler, T.: Widening of the tropical belt in a changing climate, Nat. Geosci., 1(1), 21-248, 2008. [3] Heffernan, O.: The Mystery of Expanding Tropics, Nature, 530, 20-22, 2016. [4] Coumou, D., Petoukhov, V. and Eliseev, A. V.: Three-dimensional parameterizations of the synoptic scale kinetic energy and momentum flux in the Earth's atmosphere, Nonlinear Process. Geophys., 18(6), 807-827, 2011. [5] Eliseev, A. V., Coumou, D., Chernokulsky, A. V., Petoukhov, V. and Petri, S.: Scheme for calculation of multi-layer cloudiness and precipitation for climate models of intermediate complexity, Geosci. Model Dev., 6(5), 1745-1765, 2013.

  15. Experimental study of thermocapillary flows in a thin liquid layer with heat fluxes imposed on the free surface

    NASA Technical Reports Server (NTRS)

    Lai, Chun-Liang; Greenberg, Paul S.; Chai, An-Ti

    1988-01-01

    To study thermocapillary flows in a two-dimensional thin liquid layer with heat fluxes imposed on the free surface experimentally, a long tray configuration was employed to simulate the infinite layer. The surface temperature distribution due to thermocapillary convective for different flow regimes was measured and compared with theoretical predictions. A short tray configuration was also employed to study the end wall effects (insulating or conducting). The results show that for a strong convection flow with an insulating wall as the boundary the surface temperature distribution became quite uniform. Consequently, the thermocapillary driving force was greatly reduced. On the other hand, a strong fluid motion always existed adjacent to the conducting wall because of the large surface temperature gradient near the wall.

  16. A modified low-temperature wafer bonding method using spot pressing bonding technique and water glass adhesive layer

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Wang, Shengkai; Wang, Yinghui; Chen, Dapeng

    2018-02-01

    A modified low-temperature wafer bonding method using a spot pressing bonding technique and a water glass adhesive layer is proposed. The electrical properties of the water glass layer has been studied by capacitance-voltage (C-V) and electric current-voltage (I-V) measurements. It is found that the adhesive layer can be regarded as a good insulator in terms of leakage current density. The bonding mechanism and the motion of bubbles during the thermal treatment are investigated. The dominant factor for the bubble motion in the modified bonding process is the gradient of pressure introduced by the spot pressing force. It is proved that the modified method achieves low-temperature adhesive bonding, minimizes the effect of water desorption, and provides good bonding performance.

  17. Interactions between solidification and compositional convection in mushy layers

    NASA Technical Reports Server (NTRS)

    Worster, M. Grae

    1994-01-01

    Mushy layers are ubiquitous during the solidification of alloys. They are regions of mixed phase wherein solid crystals are bathed in the melt from which they grew. The matrix of crystals forms a porous medium through which the melt can flow, driven either by external forces or by its own buoyancy in a gravitational field. Buoyancy-driven convection of the melt depends both on temperature gradients, which are necessary for solidification, and on compositional gradients, which are generated as certain components of the alloy are preferentially incorporated in the solid phase and the remaining components are expelled into the melt. In fully liquid regions, the combined action of temperature and concentration on the density of the liquid can cause various forms of double-diffusive convection. However, in the interior of mushy regions the temperature and concentration are thermodynamically coupled so only single-diffusive convection can occur. Typically, the effect of composition on the buoyancy of the melt is much greater than the effect of temperature, and thus convection in mushy layers in driven primarily by the computational gradients within them. The rising interstitial liquid is relatively dilute, having come from colder regions of the mushy layer, where the liquidus concentration is lower, and can dissolve the crystal matrix through which it flows. This is the fundamental process by which chimneys are formed. It is a nonlinear process that requires the convective velocities to be sufficiently large, so fully fledged chimneys (narrow channels) might be avoided by means that weaken the flow. Better still would be to prevent convection altogether, since even weak convection will cause lateral, compositional inhomogeneities in castings. This report outlines three studies that examine the onset of convection within mushy layers.

  18. A mixed pseudospectral/finite difference method for a thermally driven fluid in a nonuniform gravitational field

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.

    1985-01-01

    A numerical study of the steady, axisymmetric flow in a heated, rotating spherical shell is conducted to model the Atmospheric General Circulation Experiment (AGCE) proposed to run aboard a later shuttle mission. The AGCE will consist of concentric rotating spheres confining a dielectric fluid. By imposing a dielectric field across the fluid a radial body force will be created. The numerical solution technique is based on the incompressible Navier-Stokes equations. In the method a pseudospectral technique is based on the incompressible Navier-Stokes equations. In the method a pseudospectral technique is used in the latitudinal direction, and a second-order accurate finite difference scheme discretizes time and radial derivatives. This paper discusses the development and performance of this numerical scheme for the AGCE which has been modelled in the past only by pure FD formulations. In addition, previous models have not investigated the effect of using a dielectric force to simulate terrestrial gravity. The effect of this dielectric force on the flow field is investigated as well as a parameter study of varying rotation rates and boundary temperatures. Among the effects noted are the production of larger velocities and enhanced reversals of radial temperature gradients for a body force generated by the electric field.

  19. Large-scale forcing of the European Slope Current and associated inflows to the North Sea

    NASA Astrophysics Data System (ADS)

    Marsh, Robert; Haigh, Ivan; Cunningham, Stuart; Inall, Mark; Porter, Marie; Moat, Ben

    2017-04-01

    Drifters drogued at 50 m in the European Slope Current at the Hebridean shelf break follow a wide range of pathways, indicating highly variable Atlantic inflow to the North Sea. Slope Current pathways, timescales and transports over 1988-2007 are further quantified in an eddy-resolving ocean model hindcast. Particle trajectories calculated with model currents indicate that Slope Current water is largely "recruited" from the eastern subpolar North Atlantic. Observations of absolute dynamic topography and climatological density support theoretical expectations that Slope Current transport is to first order associated with meridional density gradients in the eastern subpolar gyre, which support a geostrophic inflow towards the slope. In the model hindcast, Slope Current transport variability is dominated by abrupt 25-50% reductions of these density gradients over 1996-1998. Concurrent changes in wind forcing, expressed in terms of density gradients, act in the same sense to reduce Slope Current transport. This indicates that coordinated regional changes of buoyancy and wind forcing acted together to reduce Slope Current transport during the 1990s. Particle trajectories further show that 10-40% of Slope Current water is destined for the northern North Sea within 6 months of passing to the west of Scotland, with a clear decline in this Atlantic inflow over 1988-2007. The influence of variable Slope Current transport on the northern North Sea is also expressed in salinity variations. A proxy for Atlantic inflow may be found in sea level records. Variability of Slope Current transport is implicit in mean sea level differences between Lerwick (Shetland) and Torshavn (Faeroes), in both tide gauge records and a longer model hindcast spanning 1958-2013. Potential impacts of this variability on North Sea biogeochemistry and ecosystems, via associated changes in temperature and seasonal stratification, are discussed.

  20. Techniques For Focusing In Zone Electrophoresis

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Twitty, Garland E.; Sammons, David W.

    1994-01-01

    In two techniques for focusing in zone electrophoresis, force of applied electrical field in each charged particle balanced by restoring force of electro-osmosis. Two techniques: velocity-gradient focusing (VGF), suitable for rectangular electrophoresis chambers; and field-gradient focusing (FGF), suitable for step-shaped electrophoresis chambers.

  1. Response of Soft Continuous Structures and Topological Defects to a Temperature Gradient.

    PubMed

    Kurita, Rei; Mitsui, Shun; Tanaka, Hajime

    2017-09-08

    Thermophoresis, which is mass transport induced by a temperature gradient, has recently attracted considerable attention as a new way to transport materials. So far the study has been focused on the transport of discrete structures such as colloidal particles, proteins, and polymers in solutions. However, the response of soft continuous structures such as membranes and gels to a temperature gradient has been largely unexplored. Here we study the behavior of a lamellar phase made of stacked surfactant bilayer membranes under a temperature gradient. We find the migration of membranes towards a low-temperature region, causing the increase in the degree of membrane undulation fluctuations towards that direction. This is contrary to our intuition that the fluctuations are weaker at a lower temperature. We show that this can be explained by temperature-gradient-induced migration of membranes under the topological constraint coming from the connectivity of each membrane. We also reveal that the pattern of an edge dislocation array formed in a wedge-shaped cell can be controlled by a temperature gradient. These findings suggest that application of a temperature gradient provides a novel way to control the organization of soft continuous structures such as membranes, gels, and foams, in a manner essentially different from the other types of fields, and to manipulate topological defects.

  2. Geologic and geophysical data for wells drilled at Raft River Valley, Cassia County, Idaho, in 1977-1978 and data for wells drilled previously

    USGS Publications Warehouse

    Nathenson, Manuel; Urban, Thomas C.; Covington, Harry R.

    2014-01-01

    For purposes of defining the thermal anomaly for the geothermal system, temperature gradients are calculated over long depth intervals on the basis of the appearance of reasonable linear segments on a temperature versus plot depth.  Temperature versus depth data for some drill holes can be represented by a single gradient, whereas others require multiple gradients to match the data.  Data for some drill holes clearly reflect vertical flows of water in the formation surrounding the drill holes, and water velocities are calculated for these drill holes.  Within The Narrows area, temperature versus depth data show reversals at different depth in different drill holes.  In the main thermal area, temperatures in intermediate-depth drill holes vary approximately linearly but with very high values of temperature gradient.  Temperature gradients on a map of the area can be reasonable divided into a large area of regional gradients and smaller areas defining the thermal anomalies.

  3. Feasibility study of polyurethane shape-memory polymer actuators for pressure bandage application

    PubMed Central

    Ahmad, Manzoor; Luo, Jikui; Miraftab, Mohsen

    2012-01-01

    The feasibility of laboratory-synthesized polyurethane-based shape-memory polymer (SMPU) actuators has been investigated for possible application in medical pressure bandages where gradient pressure is required between the ankle and the knee for treatment of leg ulcers. In this study, using heat as the stimulant, SMPU strip actuators have been subjected to gradual and cyclic stresses; their recovery force, reproducibility and reusability have been monitored with respect to changes in temperature and circumference of a model leg, and the stress relaxation at various temperatures has been investigated. The findings suggest that SMPU actuators can be used for the development of the next generation of pressure bandages. PMID:27877473

  4. Airflow-aligned helical nanofilament (B4) phase in topographic confinement

    PubMed Central

    Gim, Min-Jun; Kim, Hanim; Chen, Dong; Shen, Yongqiang; Yi, Youngwoo; Korblova, Eva; Walba, David M.; Clark, Noel A.; Yoon, Dong Ki

    2016-01-01

    We investigated a controlled helical nanofilament (HNF: B4) phase under topographic confinement with airflow that can induce a shear force and temperature gradient on the sample. The resulting orientation and ordering of the B4 phase in this combinational effort was directly investigated using microscopy. The structural freedom of the complex B7 phase, which is a higher temperature phase than the B4 phase, can result in relatively complex microscopic arrangements of HNFs compared with the B4 phase generated from the simple layer structure of the B2 phase. This interesting chiral/polar nanofilament behaviour offers new opportunities for further exploration of the exotic physical properties of the B4 phase. PMID:27384747

  5. The Effect of Temperature on Moisture Transport in Concrete.

    PubMed

    Wang, Yao; Xi, Yunping

    2017-08-09

    Most concrete structures and buildings are under temperature and moisture variations simultaneously. Thus, the moisture transport in concrete is driven by the moisture gradient as well as the temperature gradient. This paper presents an experimental approach for determining the effect of different temperature gradients on moisture distribution profiles in concrete. The effect of elevated temperatures under isothermal conditions on the moisture transport was also evaluated, and found not to be significant. The non-isothermal tests show that the temperature gradient accelerates the moisture transport in concrete. The part of increased moisture transfer due to the temperature gradient can be quantified by a coupling parameter D HT , which can be determined by the present test data. The test results indicated that D HT is not a constant but increases linearly with the temperature variation. A material model was developed for D HT based on the experimental results obtained in this study.

  6. The Effect of Temperature on Moisture Transport in Concrete

    PubMed Central

    Wang, Yao; Xi, Yunping

    2017-01-01

    Most concrete structures and buildings are under temperature and moisture variations simultaneously. Thus, the moisture transport in concrete is driven by the moisture gradient as well as the temperature gradient. This paper presents an experimental approach for determining the effect of different temperature gradients on moisture distribution profiles in concrete. The effect of elevated temperatures under isothermal conditions on the moisture transport was also evaluated, and found not to be significant. The non-isothermal tests show that the temperature gradient accelerates the moisture transport in concrete. The part of increased moisture transfer due to the temperature gradient can be quantified by a coupling parameter DHT, which can be determined by the present test data. The test results indicated that DHT is not a constant but increases linearly with the temperature variation. A material model was developed for DHT based on the experimental results obtained in this study. PMID:28792460

  7. Temperature Gradients on the Cell Wall in the Critical Viscosity Experiment

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.; Moldover, Michael R.

    1993-01-01

    Because of the diverging susceptibility delta rho/delta Tau near the liquid-vapor critical point, temperature gradients must be kept small to maintain adequate sample homogeneity. In our Science Requirements Document we paid particular attention to radial density gradients caused by equilibration of the xenon sample. Axial density gradients were addressed through the requirement that the cell's copper wall have a gradient less than 22 microK/m. This report re-examines the cell wall's temperature distribution in more detail by estimating all known significant contributions to temperature differences on the cell's wall.

  8. Effects of the Previous Typhoon on the Track of the Following Typhoon: Bolaven (1215) and Tembin (1214)

    NASA Astrophysics Data System (ADS)

    Moon, M.; Choi, Y.; Ha, K. J.

    2017-12-01

    The effects of sea surface temperature (SST) gradient induced by the previous typhoon and intensity of the previous typhoon on the following typhoon motion over East Asia have been investigated using Weather Research and Forecasting (WRF) model for the previous Typhoon Bolaven (1215) and following Typhoon Tembin (1214). Using the WRF experiments for the imposed cold wake over Yellow Sea (YS) and over East China Sea (ECS), this study demonstrates that the effects of eastward SST gradient including cold wake over YS is much significant rather than that over ECS in relation to unexpected Tembin's deflection and the effect of the strong previous typhoon is faster than weaker previous typhoon in relation to Tembin. This difference between two experiments is attributed to the fact that cold wake over YS increases the magnitude of SST gradient under the eastward SST gradient around East Asia and the resultant asymmetric flow deflects Typhoon Tembin eastward, which is mainly due to the different atmospheric response to the SST forcing between ECS and YS. the effect of the previous typhoon intensity developed mid-latitude trough and makes the following typhoon favorable to move fast.

  9. Tripolar vortex formation in dense quantum plasma with ion-temperature-gradients

    NASA Astrophysics Data System (ADS)

    Qamar, Anisa; Ata-ur-Rahman, Mirza, Arshad M.

    2012-05-01

    We have derived system of nonlinear equations governing the dynamics of low-frequency electrostatic toroidal ion-temperature-gradient mode for dense quantum magnetoplasma. For some specific profiles of the equilibrium density, temperature, and ion velocity gradients, the nonlinear equations admit a stationary solution in the form of a tripolar vortex. These results are relevant to understand nonlinear structure formation in dense quantum plasmas in the presence of equilibrium ion-temperature and density gradients.

  10. Characterizing the Severe Turbulence Environments Associated with Commercial Aviation Accidents. Part 2; Hydrostatic Mesobeta Scale Numerical Simulations of Supergradient Wind Flow and Streamwise Ageostrophic Frontogenesis

    NASA Technical Reports Server (NTRS)

    Kaplan, Michael L.; Huffman, Allan W.; Lux, Kevin M.; Cetola, Jeffrey D.; Charney, Joseph J.; Riordan, Allen J.; Lin, Yuh-Lang; Waight, Kenneth T., III; Proctor, Fred (Technical Monitor)

    2003-01-01

    Simulation experiments reveal key processes that organize a hydrostatic environment conducive to severe turbulence. The paradigm requires juxtaposition of the entrance region of a curved jet stream, which is highly subgeostrophic, with the entrance region of a straight jet stream, which is highly supergeostrophic. The wind and mass fields become misphased as the entrance regions converge resulting in the significant spatial variation of inertial forcing, centripetal forcing, and along- and cross-stream pressure gradient forcing over a mesobeta scale region. This results in frontogenesis and the along-stream divergence of cyclonic and convergence of cyclonic ageostrophic vertical vorticity. The centripetally forced mesoscale front becomes the locus of large gradients of ageostrophic vertical vorticity along an overturning isentrope. This region becomes favorable for streamwise vorticity gradient formation enhancing the environment for organization of horizontal vortex tubes in the presence of buoyant forcing.

  11. Phoretic forces on convex particles from kinetic theory and nonequilibrium thermodynamics

    NASA Astrophysics Data System (ADS)

    Hütter, Markus; Kröger, Martin

    2006-01-01

    In this article we derive the phoretic forces acting on a tracer particle, which is assumed to be small compared to the mean free path of the surrounding nonequilibrium gas, but large compared to the size of the surrounding gas molecules. First, we review and extend the calculations of Waldmann [Z. Naturforsch. A 14A, 589 (1959)] using half-sphere integrations and an accommodation coefficient characterizing the collision process. The presented methodology is applied to a gas subject to temperature, pressure, and velocity gradients. Corresponding thermophoretic, barophoretic, and rheophoretic forces are derived, and explicit expressions for spherical particles are compared to known results. Second, nonequilibrium thermodynamics is used to join the diffusion equation for the tracer particle with the continuum equations of nonisothermal hydrodynamics of the solvent. So doing, the distinct origin of the thermophoretic and barophoretic forces is demonstrated. While the latter enters similarly to an interaction potential, the former is given by flux-flux correlations in terms of a Green-Kubo relation, as shown in detail.

  12. End-faced waveguide mediated optical propulsion of microspheres and single cells in a microfluidic device.

    PubMed

    Lilge, Lothar; Shah, Duoaud; Charron, Luc

    2013-07-07

    Single cell transport in microfluidic devices is a topic of interest as their utility is becoming appreciated by cell and molecular biologist. Cell transport should minimize mechanical stress due to friction or pressure gradients. Optical forces have the advantage of applying their forces across the cell volume and not only at the cell membrane and are thus preferable. Optical pushing by scattering force is a suitable candidate so highly dependent on the photon irradiance field inside the propagation capillary which in turn is determined by the waveguide properties delivering the radiation pressure. Here we present a numerical approach to predict the optical scattering force, speed and trajectory of cells as a function of waveguide and propagation capillary geometry. Experimental verification of the simulation approach is demonstrated using polystyrene microspheres and leukemia cells. Effects of optical fibre to waveguide alignment, capillary wall angle and temperature on the dynamic viscosity on speed and position of the microspheres and cells inside the propagation capillary are demonstrated.

  13. Towards an Integrated QR Code Biosensor: Light-Driven Sample Acquisition and Bacterial Cellulose Paper Substrate.

    PubMed

    Yuan, Mingquan; Jiang, Qisheng; Liu, Keng-Ku; Singamaneni, Srikanth; Chakrabartty, Shantanu

    2018-06-01

    This paper addresses two key challenges toward an integrated forward error-correcting biosensor based on our previously reported self-assembled quick-response (QR) code. The first challenge involves the choice of the paper substrate for printing and self-assembling the QR code. We have compared four different substrates that includes regular printing paper, Whatman filter paper, nitrocellulose membrane and lab synthesized bacterial cellulose. We report that out of the four substrates bacterial cellulose outperforms the others in terms of probe (gold nanorods) and ink retention capability. The second challenge involves remote activation of the analyte sampling and the QR code self-assembly process. In this paper, we use light as a trigger signal and a graphite layer as a light-absorbing material. The resulting change in temperature due to infrared absorption leads to a temperature gradient that then exerts a diffusive force driving the analyte toward the regions of self-assembly. The working principle has been verified in this paper using assembled biosensor prototypes where we demonstrate higher sample flow rate due to light induced thermal gradients.

  14. Testing experience with unheated stain-gage balances in the NTF. [National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Jacobs, Peter F.; Ferris, Alice T.

    1986-01-01

    A series of cryogenic (cryo) cycles was conducted in the cryo chamber at the National Transonic Facility (NTF) in order to identify the cause of apparent strain shifts in axial force with temperature for the Pathfinder I model and to minimize their effects. The results of the investigation indicated that the major cause of axial force end point shifts and thermal hysteresis loops was the thickness of the Teflon insulation on the instrumentation wires crossing the balance. By reducing the thickness of the insulation and the total number and size of the wires, apparent strain values were achieved for the model with instrumentation wires which were nearly identical to those for the model without wires. Because of the special design features used, the balance output was very accurate and repeatable over the entire NTF temperature range, even with balance thermal gradients as large as 64 F and transient conditions as large as 3 F/minute.

  15. Highly variable Pliocene sea surface conditions in the Norwegian Sea

    NASA Astrophysics Data System (ADS)

    Bachem, Paul E.; Risebrobakken, Bjørg; De Schepper, Stijn; McClymont, Erin L.

    2017-09-01

    The Pliocene was a time of global warmth with small sporadic glaciations, which transitioned towards the larger-scale Pleistocene glacial-interglacial variability. Here, we present high-resolution records of sea surface temperature (SST) and ice-rafted debris (IRD) in the Norwegian Sea from 5.32 to 3.14 Ma, providing evidence that the Pliocene surface conditions of the Norwegian Sea underwent a series of transitions in response to orbital forcing and gateway changes. Average SSTs are 2 °C above the regional Holocene mean, with notable variability on millennial to orbital timescales. Both gradual changes and threshold effects are proposed for the progression of regional climate towards the Late Pliocene intensification of Northern Hemisphere glaciation. Cooling from 4.5 to 4.3 Ma may be linked to the onset of poleward flow through the Bering Strait. This cooling was further intensified by a period of cool summers due to weak obliquity forcing. A 7 °C warming of the Norwegian Sea at 4.0 Ma suggests a major increase in northward heat transport from the North Atlantic, leading to an enhanced zonal SST gradient in the Nordic Seas, which may be linked to the expansion of sea ice in the Arctic and Nordic Seas. A warm Norwegian Sea and enhanced zonal temperature gradient between 4.0 and 3.6 Ma may have been a priming factor for increased glaciation around the Nordic Seas due to enhanced evaporation and precipitation at high northern latitudes.

  16. Forces in inhomogeneous open active-particle systems.

    PubMed

    Razin, Nitzan; Voituriez, Raphael; Elgeti, Jens; Gov, Nir S

    2017-11-01

    We study the force that noninteracting pointlike active particles apply to a symmetric inert object in the presence of a gradient of activity and particle sources and sinks. We consider two simple patterns of sources and sinks that are common in biological systems. We analytically solve a one-dimensional model designed to emulate higher-dimensional systems, and study a two-dimensional model by numerical simulations. We specify when the particle flux due to the creation and annihilation of particles can act to smooth the density profile that is induced by a gradient in the velocity of the active particles, and find the net resultant force due to both the gradient in activity and the particle flux. These results are compared qualitatively to observations of nuclear motion inside the oocyte, that is driven by a gradient in activity of actin-coated vesicles.

  17. Jupiter's Atmospheric Temperatures: From Voyager IRIS to Cassini CIRS

    NASA Technical Reports Server (NTRS)

    Simon-Miller, Amy A.; Conrath, Barney J.; Gierasch, Peter J.; Orton, Glenn S.; Achterberg, Richard K.; Flasar, F. Michael; Fisher, Brendan

    2004-01-01

    Retrievals run on Cassini Composite Infrared Spectrometer data obtained during the distant Jupiter flyby have been used to generate global temperature maps of the planet in the troposphere and stratosphere. Similar retrievals were performed on Voyager 1 IRIS data and have provided the first detailed IRIS map of the stratosphere. In both data sets, high latitude troposphere temperatures are presented for the first time, and the meridional gradients indicate the presence of circumpolar jets. Thermal winds were calculated for each data set and show strong vertical shears in the zonal winds at low latitudes. The temperatures retrieved from the two spacecraft were also compared with yearly ground-based data obtained over the intervening two decades. Tropospheric temperatures reveal gradual changes at low latitudes, with little obvious seasonal or short-term variation (Orton et al. 1994). Stratospheric temperatures show much more complicated behavior over short timescales, consistent with quasi-quadrennial oscillations at low latitudes, as suggested in prior analyses of shorter intervals of ground- based data (Orton et al. 1991, Friedson 1999). A scaling analysis indicates that meridional motions, mechanically forced by wave or eddy convergence, play an important role in modulating the temperatures and winds in the upper troposphere and stratosphere on seasonal and shorter time scales. At latitudes away from the equator, the mechanical forcing can be derived simply from a temporal record of temperature and its vertical derivative. Ground-based observations with improved vertical resolution and/or long-term monitoring from spacecraft are required for this purpose.

  18. A general strategy for performing temperature-programming in high performance liquid chromatography--further improvements in the accuracy of retention time predictions of segmented temperature gradients.

    PubMed

    Wiese, Steffen; Teutenberg, Thorsten; Schmidt, Torsten C

    2012-01-27

    In the present work it is shown that the linear elution strength (LES) model which was adapted from temperature-programming gas chromatography (GC) can also be employed for systematic method development in high-temperature liquid chromatography (HT-HPLC). The ability to predict isothermal retention times based on temperature-gradient as well as isothermal input data was investigated. For a small temperature interval of ΔT=40°C, both approaches result in very similar predictions. Average relative errors of predicted retention times of 2.7% and 1.9% were observed for simulations based on isothermal and temperature-gradient measurements, respectively. Concurrently, it was investigated whether the accuracy of retention time predictions of segmented temperature gradients can be further improved by temperature dependent calculation of the parameter S(T) of the LES relationship. It was found that the accuracy of retention time predictions of multi-step temperature gradients can be improved to around 1.5%, if S(T) was also calculated temperature dependent. The adjusted experimental design making use of four temperature-gradient measurements was applied for systematic method development of selected food additives by high-temperature liquid chromatography. Method development was performed within a temperature interval from 40°C to 180°C using water as mobile phase. Two separation methods were established where selected food additives were baseline separated. In addition, a good agreement between simulation and experiment was observed, because an average relative error of predicted retention times of complex segmented temperature gradients less than 5% was observed. Finally, a schedule of recommendations to assist the practitioner during systematic method development in high-temperature liquid chromatography was established. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Subsurface temperatures and geothermal gradients on the North Slope, Alaska

    USGS Publications Warehouse

    Collett, Timothy S.; Bird, Kenneth J.; Magoon, Leslie B.

    1989-01-01

    Geothermal gradients as interpreted from a series of high-resolution stabilized well-bore-temperature surveys from 46 North Slope, Alaska, wells vary laterally and vertically throughout the near-surface sediment (0-2,000 m). The data from these surveys have been used in conjunction with depths of ice-bearing permafrost, as interpreted from 102 well logs, to project geothermal gradients within and below the ice-bearing permafrost sequence. The geothermal gradients calculated from the projected temperature profiles are similar to the geothermal gradients measured in the temperature surveys. Measured and projected geothermal gradients in the ice-bearing permafrost sequence range from 1.5??C/100m in the Prudhoe Bay area to 5.1??C/100m in the National Petroleum Reserve in Alaska (NPRA).

  20. Can temperature explain the latitudinal gradient of ulcerative colitis? Cohort of Norway

    PubMed Central

    2013-01-01

    Background Incidence and prevalence of ulcerative colitis follow a north–south (latitudinal) gradient and increases northwards at the northern hemisphere or southwards at the southern hemisphere. The disease has increased during the last decades. The temporal trend has been explained by the hygiene hypothesis, but few parallel explanations exist for the spatial variability. Many factors are linked to latitude such as climate. Our purpose was to investigate the association between variables governing the climate and prospectively identified patients. Methods In this study, we used a subset of the population-based Cohort of Norway (n = 80412) where 370 prevalent cases of ulcerative colitis were identified through self-reported medication. The meteorological and climatic variables temperature, precipitation, and altitude were recorded from weather stations of the Norwegian Meteorological Institute. Summer temperature was used to capture environmental temperature. Results Summer temperature was significantly related to the prevalence of ulcerative colitis. For each one-degree increase in temperature the odds for ulcerative colitis decreased with about 9% (95% CI: 3%-15%). None of the other climatic factors were significantly associated to the risk of ulcerative colitis. Contextual variables did not change the association to the prevalence of ulcerative colitis. Conclusions The present results show that the prevalence of ulcerative colitis is associated to summer temperature. Our speculation is that summer temperature works as an instrumental variable for the effect of microbial species richness on the development of ulcerative colitis. Environmental temperature is one of the main forces governing microbial species richness and the microbial composition of the commensal gut flora is known to be an important part in the process leading to ulcerative colitis. PMID:23724802

  1. Thermal Management in Friction-Stir Welding of Precipitation-Hardening Aluminum Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Piyush; Reynolds, Anthony

    2015-05-25

    Process design and implementation in FSW is mostly dependent on empirical information gathered through experience. Basic science of friction stir welding and processing can only be complete when fundamental interrelationships between process control parameters and response variables and resulting weld microstructure and properties are established to a reasonable extent. It is known that primary process control parameters like tool rotation and translation rate and forge axis force have complicated and interactive relationships to the process response variables such as peak temperature, time at temperature etc. Of primary influence to the other process response parameters are temperature and its gradient atmore » the deformation and heat affected zones. Through review of pertinent works in the literature and some experimental results from boundary condition work performed in precipitation hardening aluminum alloys this paper will partially elucidate the nature and effects of temperature transients caused by variation of thermal boundaries in Friction Stir Welding.« less

  2. UNRAVELLING THE COMPONENTS OF A MULTI-THERMAL CORONAL LOOP USING MAGNETOHYDRODYNAMIC SEISMOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, S. Krishna; Jess, D. B.; Klimchuk, J. A.

    Coronal loops, constituting the basic building blocks of the active Sun, serve as primary targets to help understand the mechanisms responsible for maintaining multi-million Kelvin temperatures in the solar and stellar coronae. Despite significant advances in observations and theory, our knowledge on the fundamental properties of these structures is limited. Here, we present unprecedented observations of accelerating slow magnetoacoustic waves along a coronal loop that show differential propagation speeds in two distinct temperature channels, revealing the multi-stranded and multithermal nature of the loop. Utilizing the observed speeds and employing nonlinear force-free magnetic field extrapolations, we derive the actual temperature variationmore » along the loop in both channels, and thus are able to resolve two individual components of the multithermal loop for the first time. The obtained positive temperature gradients indicate uniform heating along the loop, rather than isolated footpoint heating.« less

  3. Thermal Management in Friction-Stir Welding of Precipitation-Hardened Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Upadhyay, Piyush; Reynolds, Anthony P.

    2015-05-01

    Process design and implementation in friction-stir welding (FSW) is mostly dependent on empirical information. Basic science of FSW and processing can only be complete when fundamental interrelationships between the process control parameters and response variables and the resulting weld microstructure and properties are established to a reasonable extent. It is known that primary process control parameters such as tool rotation, translation rates, and forge axis force have complicated and interactive relationships to process-response variables such as peak temperature and time at temperature. Of primary influence on the other process-response parameters are temperature and its gradient in the deformation and heat-affected zones. Through a review of pertinent works in the literature and results from boundary condition experiments performed in precipitation-hardening aluminum alloys, this article partially elucidates the nature and effects of temperature transients caused by variation of thermal boundaries in FSW.

  4. Biocompatible patterning of proteins on wettability gradient surface by thermo-transfer printing.

    PubMed

    Kim, Sungho; Ryu, Yong-Sang; Suh, Jeng-Hun; Keum, Chang-Min; Sohn, Youngjoo; Lee, Sin-Doo

    2014-08-01

    We develop a simple and biocompatible method of patterning proteins on a wettability gradient surface by thermo-transfer printing. The wettability gradient is produced on a poly(dimethylsiloxane) (PDMS)-modified glass substrate through the temperature gradient during thermo-transfer printing. The water contact angle on the PDMS-modified surface is found to gradually increase along the direction of the temperature gradient from a low to a high temperature region. Based on the wettability gradient, the gradual change in the adsorption and immobilization of proteins (cholera toxin B subunit) is achieved in a microfluidic cell with the PDMS-modified surface.

  5. A Note on Diffusive Mass Transport.

    ERIC Educational Resources Information Center

    Haynes, Henry W., Jr.

    1986-01-01

    Current chemical engineering textbooks teach that the driving force for diffusive mass transport in ideal solutions is the gradient in mole fraction. This is only true for ideal solution liquids. Therefore, it is shown that the appropriate driving force for use with ideal gases is the gradient in partial pressure. (JN)

  6. Nonlinear saturation of the slab ITG instability and zonal flow generation with fully kinetic ions

    NASA Astrophysics Data System (ADS)

    Miecnikowski, Matthew T.; Sturdevant, Benjamin J.; Chen, Yang; Parker, Scott E.

    2018-05-01

    Fully kinetic turbulence models are of interest for their potential to validate or replace gyrokinetic models in plasma regimes where the gyrokinetic expansion parameters are marginal. Here, we demonstrate fully kinetic ion capability by simulating the growth and nonlinear saturation of the ion-temperature-gradient instability in shearless slab geometry assuming adiabatic electrons and including zonal flow dynamics. The ion trajectories are integrated using the Lorentz force, and the cyclotron motion is fully resolved. Linear growth and nonlinear saturation characteristics show excellent agreement with analogous gyrokinetic simulations across a wide range of parameters. The fully kinetic simulation accurately reproduces the nonlinearly generated zonal flow. This work demonstrates nonlinear capability, resolution of weak gradient drive, and zonal flow physics, which are critical aspects of modeling plasma turbulence with full ion dynamics.

  7. The measurement of solute diffusion coefficients in dilute liquid alloys: the influence of unit gravity and g-jitter on buoyancy convection.

    PubMed

    Smith, R W; Yang, B J; Huang, W D

    2004-11-01

    Liquid diffusion experiments conducted on the MIR space station using the Canadian Space Agency QUELD II processing facility and the microgravity isolation mount (MIM) showed that g-jitter significantly increased the measured solute diffusion coefficients. In some experiments, milli-g forced vibration was superimposed on the sample when isolated from the ambient g-jitter; this resulted in markedly increased solute transport. To further explore the effects arising in these long capillary diffusion couples from the absence of unit-gravity and the presence of the forced g-jitter, the effects of a 1 milli-g forcing vibration on the mass transport in a 1.5 mm diameter long capillary diffusion couple have been simulated. In addition, to increase understanding of the role of unit gravity in determining the extent to which gravity can influence measured diffusion coefficient values, comparative experiments involving gold, silver, and antimony diffusing in liquid lead have been carried out using a similar QUELD II facility to that employed in the QUELD II/MIM/MIR campaign but under terrestrial conditions. It was found that buoyancy-driven convection may still persist in the liquid even when conditions are arranged for a continuously decreasing density gradient up the axis of a vertical long capillary diffusion couple due to the presence of small radial temperature gradients.

  8. 43 CFR 3252.12 - How deep may I drill a temperature gradient well?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How deep may I drill a temperature... RESOURCE LEASING Conducting Exploration Operations § 3252.12 How deep may I drill a temperature gradient well? (a) You may drill a temperature gradient well to any depth that we approve in your exploration...

  9. 43 CFR 3252.12 - How deep may I drill a temperature gradient well?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How deep may I drill a temperature... RESOURCE LEASING Conducting Exploration Operations § 3252.12 How deep may I drill a temperature gradient well? (a) You may drill a temperature gradient well to any depth that we approve in your exploration...

  10. 43 CFR 3252.12 - How deep may I drill a temperature gradient well?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false How deep may I drill a temperature... RESOURCE LEASING Conducting Exploration Operations § 3252.12 How deep may I drill a temperature gradient well? (a) You may drill a temperature gradient well to any depth that we approve in your exploration...

  11. 43 CFR 3252.12 - How deep may I drill a temperature gradient well?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How deep may I drill a temperature... RESOURCE LEASING Conducting Exploration Operations § 3252.12 How deep may I drill a temperature gradient well? (a) You may drill a temperature gradient well to any depth that we approve in your exploration...

  12. An ocean dynamical thermostat—dominant in observations, absent in climate models

    NASA Astrophysics Data System (ADS)

    Coats, S.; Karnauskas, K. B.

    2016-12-01

    The pattern of sea surface temperature (SST) in the tropical Pacific Ocean is coupled to the Walker circulation, necessitating an understanding of how this pattern will change in response to anthropogenic radiative forcing. State-of-the-art climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5) overwhelmingly project a decrease in the tropical Pacific zonal SST gradient over the coming century. This decrease in the zonal SST gradient is a response of the ocean to a weakening Walker circulation in the CMIP5 models, a consequence of the mass and energy balances of the hydrologic cycle identified by Held and Soden (2006). CMIP5 models, however, are not able to reproduce the observed increase in the zonal SST gradient between 1900-2013 C.E., which we argue to be robust using advanced statistical techniques and new observational datasets. While the observed increase in the zonal SST gradient is suggestive of the ocean dynamical thermostat mechanism of Clement et al. (1996), a strengthening Equatorial Undercurrent (EUC) also contributes to eastern equatorial Pacific cooling. Importantly, the strengthening EUC is a response of the ocean to a seasonal weakening of the Walker circulation and thus can reconcile disparate observations of changes to the atmosphere and ocean in the equatorial Pacific. CMIP5 models do not capture the magnitude of this response of the EUC to anthropogenic radiative forcing potentially because of biases in the sensitivity of the EUC to changes in zonal wind stress, like the weakening Walker circulation. Consequently, they project a continuation of the opposite to what has been observed in the real world, with potentially serious consequences for projected climate impacts that are influenced by the tropical Pacific.

  13. Investigation of Artificial Forced Cooling in the Bridgman Crystal Growth of Cadmium Zinc Telluride

    NASA Astrophysics Data System (ADS)

    Liu, Juncheng; Li, Jiao; Zhang, Guodong; Li, Changxing; Lennon, Craig; Sivananthan, Siva

    2007-08-01

    The effects of artificial forced cooling on the solid liquid interface and on solute segregation were investigated by modeling the vertical Bridgman method for the single-crystal growth of CdZnTe, taking into consideration effects such as increasing the axial outward heat flux from the crucible bottom, the radial outward heat flux from the crucible wall, and the carbon film thickness on the crucible inner wall. Axial artificially forced cooling noticeably increases convection and the temperature gradient in the melt next to the solid liquid interface, and substantially reduces interface concavity at the initial solidification stage. Interface concavity increases a little when the solidification proceeds further, however. Axial artificially forced cooling reduces radial solute segregation of the initial segment of the grown crystal and slightly increases the solute iso-concentration segment. Radial artificially forced cooling enhances melt convection substantially, affects solid liquid interface concavity only slightly, and hardly affects solute segregation in the grown crystal. Doubling the carbon film thickness weakens convection of the melt in front of the interface, substantially increases interface concavity, and hardly affects solute segregation in the grown crystal.

  14. Fully kinetic Biermann battery and associated generation of pressure anisotropy

    NASA Astrophysics Data System (ADS)

    Schoeffler, K. M.; Loureiro, N. F.; Silva, L. O.

    2018-03-01

    The dynamical evolution of a fully kinetic, collisionless system with imposed background density and temperature gradients is investigated analytically. The temperature gradient leads to the generation of temperature anisotropy, with the temperature along the gradient becoming larger than that in the direction perpendicular to it. This causes the system to become unstable to pressure anisotropy driven instabilities, dominantly to the electron Weibel instability. When both density and temperature gradients are present and nonparallel to each other, we obtain a Biermann-like linear-in-time magnetic field growth. Accompanying particle-in-cell numerical simulations are shown to confirm our analytical results.

  15. Thermal Gradient During Vacuum-Deposition Dramatically Enhances Charge Transport in Organic Semiconductors: Toward High-Performance N-Type Organic Field-Effect Transistors.

    PubMed

    Kim, Joo-Hyun; Han, Singu; Jeong, Heejeong; Jang, Hayeong; Baek, Seolhee; Hu, Junbeom; Lee, Myungkyun; Choi, Byungwoo; Lee, Hwa Sung

    2017-03-22

    A thermal gradient distribution was applied to a substrate during the growth of a vacuum-deposited n-type organic semiconductor (OSC) film prepared from N,N'-bis(2-ethylhexyl)-1,7-dicyanoperylene-3,4:9,10-bis(dicarboxyimide) (PDI-CN2), and the electrical performances of the films deployed in organic field-effect transistors (OFETs) were characterized. The temperature gradient at the surface was controlled by tilting the substrate, which varied the temperature one-dimensionally between the heated bottom substrate and the cooled upper substrate. The vacuum-deposited OSC molecules diffused and rearranged on the surface according to the substrate temperature gradient, producing directional crystalline and grain structures in the PDI-CN2 film. The morphological and crystalline structures of the PDI-CN2 thin films grown under a vertical temperature gradient were dramatically enhanced, comparing with the structures obtained from either uniformly heated films or films prepared under a horizontally applied temperature gradient. The field effect mobilities of the PDI-CN2-FETs prepared using the vertically applied temperature gradient were as high as 0.59 cm 2 V -1 s -1 , more than a factor of 2 higher than the mobility of 0.25 cm 2 V -1 s -1 submitted to conventional thermal annealing and the mobility of 0.29 cm 2 V -1 s -1 from the horizontally applied temperature gradient.

  16. Continuous gradient temperature Raman spectroscopy of oleic and linoleic acids from -100 to 50°C

    USDA-ARS?s Scientific Manuscript database

    Gradient Temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS and DS...

  17. Lateral Temperature-Gradient Method for High-Throughput Characterization of Material Processing by Millisecond Laser Annealing.

    PubMed

    Bell, Robert T; Jacobs, Alan G; Sorg, Victoria C; Jung, Byungki; Hill, Megan O; Treml, Benjamin E; Thompson, Michael O

    2016-09-12

    A high-throughput method for characterizing the temperature dependence of material properties following microsecond to millisecond thermal annealing, exploiting the temperature gradients created by a lateral gradient laser spike anneal (lgLSA), is presented. Laser scans generate spatial thermal gradients of up to 5 °C/μm with peak temperatures ranging from ambient to in excess of 1400 °C, limited only by laser power and materials thermal limits. Discrete spatial property measurements across the temperature gradient are then equivalent to independent measurements after varying temperature anneals. Accurate temperature calibrations, essential to quantitative analysis, are critical and methods for both peak temperature and spatial/temporal temperature profile characterization are presented. These include absolute temperature calibrations based on melting and thermal decomposition, and time-resolved profiles measured using platinum thermistors. A variety of spatially resolved measurement probes, ranging from point-like continuous profiling to large area sampling, are discussed. Examples from annealing of III-V semiconductors, CdSe quantum dots, low-κ dielectrics, and block copolymers are included to demonstrate the flexibility, high throughput, and precision of this technique.

  18. Spin-wave-induced lateral temperature gradient in a YIG thin film/GGG system excited in an ESR cavity

    NASA Astrophysics Data System (ADS)

    Shigematsu, Ei; Ando, Yuichiro; Dushenko, Sergey; Shinjo, Teruya; Shiraishi, Masashi

    2018-05-01

    The lateral thermal gradient of an yttrium iron garnet (YIG) film under microwave application in the cavity of the electron spin resonance system (ESR) was measured at room temperature by fabricating a Cu/Sb thermocouple onto it. To date, thermal transport in YIG films caused by the Damon-Eshbach mode (DEM)—the unidirectional spin-wave heat conveyer effect—was demonstrated only by the excitation using coplanar waveguides. Here, we show that the effect exists even under YIG excitation using the ESR cavity—a tool often employed to realize spin pumping. The temperature difference observed around the ferromagnetic resonance field under 4 mW microwave power peaked at 13 mK. The observed thermoelectric signal indicates the imbalance of the population between the DEMs that propagate near the top and bottom surfaces of the YIG film. We attribute the DEM population imbalance to different magnetic dampings near the top and bottom YIG surfaces. Additionally, the spin wave dynamics of the system were investigated using the micromagnetic simulations. The micromagnetic simulations confirmed the existence of the DEM imbalance in the system with increased Gilbert damping at one of the YIG interfaces. The reported results are indispensable to the quantitative estimation of the electromotive force in the spin-charge conversion experiments using ESR cavities.

  19. Ocean currents modify the coupling between climate change and biogeographical shifts.

    PubMed

    García Molinos, J; Burrows, M T; Poloczanska, E S

    2017-05-02

    Biogeographical shifts are a ubiquitous global response to climate change. However, observed shifts across taxa and geographical locations are highly variable and only partially attributable to climatic conditions. Such variable outcomes result from the interaction between local climatic changes and other abiotic and biotic factors operating across species ranges. Among them, external directional forces such as ocean and air currents influence the dispersal of nearly all marine and many terrestrial organisms. Here, using a global meta-dataset of observed range shifts of marine species, we show that incorporating directional agreement between flow and climate significantly increases the proportion of explained variance. We propose a simple metric that measures the degrees of directional agreement of ocean (or air) currents with thermal gradients and considers the effects of directional forces in predictions of climate-driven range shifts. Ocean flows are found to both facilitate and hinder shifts depending on their directional agreement with spatial gradients of temperature. Further, effects are shaped by the locations of shifts in the range (trailing, leading or centroid) and taxonomic identity of species. These results support the global effects of climatic changes on distribution shifts and stress the importance of framing climate expectations in reference to other non-climatic interacting factors.

  20. Cold hands, warm feet: sleep deprivation disrupts thermoregulation and its association with vigilance.

    PubMed

    Romeijn, Nico; Verweij, Ilse M; Koeleman, Anne; Mooij, Anne; Steimke, Rosa; Virkkala, Jussi; van der Werf, Ysbrand; Van Someren, Eus J W

    2012-12-01

    Vigilance is affected by induced and spontaneous skin temperature fluctuations. Whereas sleep deprivation strongly affects vigilance, no previous study examined in detail its effect on human skin temperature fluctuations and their association with vigilance. In a repeated-measures constant routine design, skin temperatures were assessed continuously from 14 locations while performance was assessed using a reaction time task, including eyes-open video monitoring, performed five times a day for 2 days, after a normal sleep or sleep deprivation night. Participants were seated in a dimly lit, temperature-controlled laboratory. Eight healthy young adults (five males, age 22.0 ± 1.8 yr (mean ± standard deviation)). One night of sleep deprivation. Mixed-effect regression models were used to evaluate the effect of sleep deprivation on skin temperature gradients of the upper (ear-mastoid), middle (hand-arm), and lower (foot-leg) body, and on the association between fluctuations in performance and in temperature gradients. Sleep deprivation induced a marked dissociation of thermoregulatory skin temperature gradients, indicative of attenuated heat loss from the hands co-occurring with enhanced heat loss from the feet. Sleep deprivation moreover attenuated the association between fluctuations in performance and temperature gradients; the association was best preserved for the upper body gradient. Sleep deprivation disrupts coordination of fluctuations in thermoregulatory skin temperature gradients. The dissociation of middle and lower body temperature gradients may therefore be evaluated as a marker for sleep debt, and the upper body gradient as a possible aid in vigilance assessment when sleep debt is unknown. Importantly, our findings suggest that sleep deprivation affects the coordination between skin blood flow fluctuations and the baroreceptor-mediated cardiovascular regulation that prevents venous pooling of blood in the lower limbs when there is the orthostatic challenge of an upright posture.

  1. Amazon rainforest exchange of carbon and subcanopy air flow: Manaus LBA site--a complex terrain condition.

    PubMed

    Tóta, Julio; Fitzjarrald, David Roy; da Silva Dias, Maria A F

    2012-01-01

    On the moderately complex terrain covered by dense tropical Amazon Rainforest (Reserva Biologica do Cuieiras--ZF2--02°36'17.1'' S, 60°12'24.4'' W), subcanopy horizontal and vertical gradients of the air temperature, CO(2) concentration and wind field were measured for the dry and wet periods in 2006. We tested the hypothesis that horizontal drainage flow over this study area is significant and can affect the interpretation of the high carbon uptake rates reported by previous works at this site. A similar experimental design as the one by Tóta et al. (2008) was used with a network of wind, air temperature, and CO(2) sensors above and below the forest canopy. A persistent and systematic subcanopy nighttime upslope (positive buoyancy) and daytime downslope (negative buoyancy) flow pattern on a moderately inclined slope (12%) was observed. The microcirculations observed above the canopy (38 m) over the sloping area during nighttime presents a downward motion indicating vertical convergence and correspondent horizontal divergence toward the valley area. During the daytime an inverse pattern was observed. The micro-circulations above the canopy were driven mainly by buoyancy balancing the pressure gradient forces. In the subcanopy space the microcirculations were also driven by the same physical mechanisms but probably with the stress forcing contribution. The results also indicated that the horizontal and vertical scalar gradients (e.g., CO(2)) were modulated by these micro-circulations above and below the canopy, suggesting that estimates of advection using previous experimental approaches are not appropriate due to the tridimensional nature of the vertical and horizontal transport locally. This work also indicates that carbon budget from tower-based measurement is not enough to close the system, and one needs to include horizontal and vertical advection transport of CO(2) into those estimates.

  2. Amazon Rainforest Exchange of Carbon and Subcanopy Air Flow: Manaus LBA Site—A Complex Terrain Condition

    PubMed Central

    Tóta, Julio; Roy Fitzjarrald, David; da Silva Dias, Maria A. F.

    2012-01-01

    On the moderately complex terrain covered by dense tropical Amazon Rainforest (Reserva Biologica do Cuieiras—ZF2—02°36′17.1′′ S, 60°12′24.4′′ W), subcanopy horizontal and vertical gradients of the air temperature, CO2 concentration and wind field were measured for the dry and wet periods in 2006. We tested the hypothesis that horizontal drainage flow over this study area is significant and can affect the interpretation of the high carbon uptake rates reported by previous works at this site. A similar experimental design as the one by Tóta et al. (2008) was used with a network of wind, air temperature, and CO2 sensors above and below the forest canopy. A persistent and systematic subcanopy nighttime upslope (positive buoyancy) and daytime downslope (negative buoyancy) flow pattern on a moderately inclined slope (12%) was observed. The microcirculations observed above the canopy (38 m) over the sloping area during nighttime presents a downward motion indicating vertical convergence and correspondent horizontal divergence toward the valley area. During the daytime an inverse pattern was observed. The micro-circulations above the canopy were driven mainly by buoyancy balancing the pressure gradient forces. In the subcanopy space the microcirculations were also driven by the same physical mechanisms but probably with the stress forcing contribution. The results also indicated that the horizontal and vertical scalar gradients (e.g., CO2) were modulated by these micro-circulations above and below the canopy, suggesting that estimates of advection using previous experimental approaches are not appropriate due to the tridimensional nature of the vertical and horizontal transport locally. This work also indicates that carbon budget from tower-based measurement is not enough to close the system, and one needs to include horizontal and vertical advection transport of CO2 into those estimates. PMID:22619608

  3. Direct measurements of local bed shear stress in the presence of pressure gradients

    NASA Astrophysics Data System (ADS)

    Pujara, Nimish; Liu, Philip L.-F.

    2014-07-01

    This paper describes the development of a shear plate sensor capable of directly measuring the local mean bed shear stress in small-scale and large-scale laboratory flumes. The sensor is capable of measuring bed shear stress in the range 200 Pa with an accuracy up to 1 %. Its size, 43 mm in the flow direction, is designed to be small enough to give spatially local measurements, and its bandwidth, 75 Hz, is high enough to resolve time-varying forcing. Typically, shear plate sensors are restricted to use in zero pressure gradient flows because secondary forces on the edge of the shear plate caused by pressure gradients can introduce large errors. However, by analysis of the pressure distribution at the edges of the shear plate in mild pressure gradients, we introduce a new methodology for correcting for the pressure gradient force. The developed sensor includes pressure tappings to measure the pressure gradient in the flow, and the methodology for correction is applied to obtain accurate measurements of bed shear stress under solitary waves in a small-scale wave flume. The sensor is also validated by measurements in a turbulent flat plate boundary layer in open channel flow.

  4. Transport of microspheres and indigenous bacteria through a sandy aquifer: Results of natural- and forced-gradient tracer experiments

    USGS Publications Warehouse

    Harvey, R.W.; George, L.H.; Smith, R.L.; LeBlanc, D.R.

    1989-01-01

    Transport of indigenous bacteria through sandy aquifer sediments was investigated in forced- and natural-gradient tracer teste. A diverse population of bacteria was collected and concentrated from groundwater at the site, stained with a DNA-specific fluorochrome, and injected back into the aquifer. Included with the injectate were a conservative tracer (Br- or Cl-) and bacteria-sized (0.2-1.3-??m) microspheres having carboxylated, carbonyl, or neutral surfaces. Transport of stained bacteria and all types and size classes of microspheres was evident. In the natural-gradient test, both surface characteristics and size of microspheres affected attenuation. Surface characteristics had the greatest effect upon retardation. Peak break-through of DAPI-stained bacteria (forced-gradient experiment) occurred well in advance of bromide at the more distal sampler. Transport behavior of bacteria was substantially different from that of carboxylated microspheres of comparable size. ?? 1988 American Chemical Society.

  5. Environmental temperature affects prevalence of blood parasites of birds on an elevation gradient: implications for disease in a warming climate.

    PubMed

    Zamora-Vilchis, Itzel; Williams, Stephen E; Johnson, Christopher N

    2012-01-01

    The rising global temperature is predicted to expand the distribution of vector-borne diseases both in latitude and altitude. Many host communities could be affected by increased prevalence of disease, heightening the risk of extinction for many already threatened species. To understand how host communities could be affected by changing parasite distributions, we need information on the distribution of parasites in relation to variables like temperature and rainfall that are predicted to be affected by climate change. We determined relations between prevalence of blood parasites, temperature, and seasonal rainfall in a bird community of the Australian Wet Tropics along an elevation gradient. We used PCR screening to investigate the prevalence and lineage diversity of four genera of blood parasites (Plasmodium, Haemoproteus, Leucocytozoon and Trypanosoma) in 403 birds. The overall prevalence of the four genera of blood parasites was 32.3%, with Haemoproteus the predominant genus. A total of 48 unique lineages were detected. Independent of elevation, parasite prevalence was positively and strongly associated with annual temperature. Parasite prevalence was elevated during the dry season. Low temperatures of the higher elevations can help to reduce both the development of avian haematozoa and the abundance of parasite vectors, and hence parasite prevalence. In contrast, high temperatures of the lowland areas provide an excellent environment for the development and transmission of haematozoa. We showed that rising temperatures are likely to lead to increased prevalence of parasites in birds, and may force shifts of bird distribution to higher elevations. We found that upland tropical areas are currently a low-disease habitat and their conservation should be given high priority in management plans under climate change.

  6. Environmental Temperature Affects Prevalence of Blood Parasites of Birds on an Elevation Gradient: Implications for Disease in a Warming Climate

    PubMed Central

    Zamora-Vilchis, Itzel; Williams, Stephen E.; Johnson, Christopher N.

    2012-01-01

    Background The rising global temperature is predicted to expand the distribution of vector-borne diseases both in latitude and altitude. Many host communities could be affected by increased prevalence of disease, heightening the risk of extinction for many already threatened species. To understand how host communities could be affected by changing parasite distributions, we need information on the distribution of parasites in relation to variables like temperature and rainfall that are predicted to be affected by climate change. Methodology/Principal Findings We determined relations between prevalence of blood parasites, temperature, and seasonal rainfall in a bird community of the Australian Wet Tropics along an elevation gradient. We used PCR screening to investigate the prevalence and lineage diversity of four genera of blood parasites (Plasmodium, Haemoproteus, Leucocytozoon and Trypanosoma) in 403 birds. The overall prevalence of the four genera of blood parasites was 32.3%, with Haemoproteus the predominant genus. A total of 48 unique lineages were detected. Independent of elevation, parasite prevalence was positively and strongly associated with annual temperature. Parasite prevalence was elevated during the dry season. Conclusions/Significance Low temperatures of the higher elevations can help to reduce both the development of avian haematozoa and the abundance of parasite vectors, and hence parasite prevalence. In contrast, high temperatures of the lowland areas provide an excellent environment for the development and transmission of haematozoa. We showed that rising temperatures are likely to lead to increased prevalence of parasites in birds, and may force shifts of bird distribution to higher elevations. We found that upland tropical areas are currently a low-disease habitat and their conservation should be given high priority in management plans under climate change. PMID:22723966

  7. The Influence of High Pressure Thermal Behavior on Friction-induced material transfer During Dry Machining of Titanium

    NASA Astrophysics Data System (ADS)

    Abdel-Aal, H. A.; El Mansori, M.

    2011-05-01

    In this paper we study failure of coated carbide tools due to thermal loading. The study emphasizes the role assumed by the thermo-physical properties of the tool material in enhancing or preventing mass attrition of the cutting elements within the tool. It is shown that within a comprehensive view of the nature of conduction in the tool zone, thermal conduction is not solely affected by temperature. Rather it is a function of the so called thermodynamic forces. These are the stress, the strain, strain rate, rate of temperature rise, and the temperature gradient. Although that within such consideration description of thermal conduction is non-linear, it is beneficial to employ such a form because it facilitates a full mechanistic understanding of thermal activation of tool wear.

  8. RESPONSE OF HATCHLING AND YEARLING TURTLES TO THERMAL GRADIENTS: COMPARISON OF CHELYDRA SERPENTINA AND TRACHEMYS SCRIPTA

    EPA Science Inventory


    In laboratory test, young Chelydra serpentina and Trachemys scripta altered their distribution in the presence of a temperature gradient. Selection of temperatures in the gradient for hatchlings and yearlings showed that body temperature (Tbs) of C. serpentina were lower tha...

  9. Thermotropism by primary roots of maize

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortin, M.-C.; Poff, K.L.

    1990-05-01

    Sensing in the roots of higher plants has long been recognized to be restricted mainly to gravitropism and thigmotropism. However, root responses to temperature gradients have not been extensively studied. We have designed experiments under controlled conditions to test if and how root direction of maize can be altered by thermal gradients perpendicular to the gravity vector. Primary roots of maize grown on agar plates exhibit positive thermotropism (curvature toward the warmer temperature) when exposed to gradients of 0.5 to 4.2{degree}C cm{sup {minus}1}. The extent of thermotropism depends on the temperature gradient and the temperature at which the root ismore » placed within the gradient. The curvature cannot be accounted for by differential growth as a direct effect of temperature on each side of the root.« less

  10. Skin temperature and core-peripheral temperature gradient as markers of hemodynamic status in critically ill patients: a review.

    PubMed

    Schey, Bernadette M; Williams, David Y; Bucknall, Tracey

    2010-01-01

    To examine the evidential basis underpinning the monitoring of skin temperature and core-peripheral temperature gradient as elements of hemodynamic assessment in critically ill and adult cardiac surgical patients. Twenty-six studies examining the efficacy of skin temperature or temperature gradient as markers of hemodynamic status were selected as part of an integrative review. Evidence pertaining to the efficacy of these parameters as markers of cardiac function is equivocal and has not been well appraised in the adult cardiac surgical population. Skin temperature and systemic vascular resistance are also affected by factors other than cardiac output. Skin temperature and core-peripheral temperature gradient should not be considered in isolation from other hemodynamic parameters when assessing cardiac status until they are validated by further large-scale prospective studies. 2010. Published by Mosby, Inc.

  11. Subsurface temperatures and geothermal gradients on the north slope of Alaska

    USGS Publications Warehouse

    Collett, T.S.; Bird, K.J.; Magoon, L.B.

    1993-01-01

    On the North Slope of Alaska, geothermal gradient data are available from high-resolution, equilibrated well-bore surveys and from estimates based on well-log identification of the base of ice-bearing permafrost. A total of 46 North Slope wells, considered to be in or near thermal equilibrium, have been surveyed with high-resolution temperatures devices and geothermal gradients can be interpreted directly from these recorded temperature profiles. To augment the limited North Slope temperature data base, a new method of evaluating local geothermal gradients has been developed. In this method, a series of well-log picks for the base of the ice-bearing permafrost from 102 wells have been used, along with regional temperature constants derived from the high-resolution stabilized well-bore temperature surveys, to project geothermal gradients. Geothermal gradients calculated from the high-resolution temperature surveys generally agree with those projected from known ice-bearing permafrost depths over most of the North Slope. Values in the ice-bearing permafrost range from ??? 1.5??C 100 m in the Prudhoe Bay area to ??? 4.5??C 100 m in the east-central portion of the National Petroleum Reserve in Alaska. Geothermal gradients below the ice-bearing permafrost sequence range from ??? 1.6??C 100 m to ??? 5.2??C 100 m. ?? 1993.

  12. Optothermal Manipulations of Colloidal Particles and Living Cells.

    PubMed

    Lin, Linhan; Hill, Eric H; Peng, Xiaolei; Zheng, Yuebing

    2018-05-25

    Optical manipulation techniques are important in many fields. For instance, they enable bottom-up assembly of nanomaterials and high-resolution and in situ analysis of biological cells and molecules, providing opportunities for discovery of new materials, medical diagnostics, and nanomedicines. Traditional optical tweezers have their applications limited due to the use of rigorous optics and high optical power. New strategies have been established for low-power optical manipulation techniques. Optothermal manipulation, which exploits photon-phonon conversion and matter migration under a light-controlled temperature gradient, is one such emerging technique. Elucidation of the underlying physics of optothermo-matter interaction and rational engineering of optical environments are required to realize diverse optothermal manipulation functionalities. This Account covers the working principles, design concepts, and applications of a series of newly developed optothermal manipulation techniques, including bubble-pen lithography, opto-thermophoretic tweezers, opto-thermoelectric tweezers, optothermal assembly, and opto-thermoelectric printing. In bubble-pen lithography, optical heating of a plasmonic substrate generates microbubbles at the solid-liquid interface to print diverse colloidal particles on the substrates. Programmable bubble printing of semiconductor quantum dots on different substrates and haptic control of printing have also been achieved. The key to optothermal tweezers is the ability to deliver colloidal particles from cold to hot regions of a temperature gradient or a negative Soret effect. We explore different driving forces for the two types of optothermal tweezers. Opto-thermophoretic tweezers rely on an abnormal permittivity gradient built by structured solvent molecules in the electric double layer of colloidal particles and living cells in response to heat-induced entropy, and opto-thermoelectric tweezers exploit a thermophoresis-induced thermoelectric field for the low-power manipulation of small nanoparticles with minimum diameter around 20 nm. Furthermore, by incorporating depletion attraction into the optothermal tweezers system as particle-particle or particle-substrate binding force, we have achieved bottom-up assembly and reconfigurable optical printing of artificial colloidal matter. Beyond optothermal manipulation techniques in liquid environments, we also review recent progress of gas-phase optothermal manipulation based on photophoresis. Photophoretic trapping and transport of light-absorbing materials have been achieved through optical engineering to tune particle-molecule interactions during optical heating, and a novel optical trap display has been demonstrated. An improved understanding of the colloidal response to temperature gradients will surely facilitate further innovations in optothermal manipulation. With their low-power operation, simple optics, and diverse functionalities, optothermal manipulation techniques will find a wide range of applications in life sciences, colloidal science, materials science, and nanoscience, as well as in the developments of colloidal functional devices and nanomedicine.

  13. BACTERIOPHAGE AND MICROSPHERE TRANSPORT IN SATURATED POROUS MEDIA: FORCED-GRADIENT EXPERIMENT AT BORDEN, ONTARIO

    EPA Science Inventory

    A two-well forced-gradient experiment involving virus and microsphere transport was carried out in a sandy aquifer in Borden, Ontario, Canada. Virus traveled at least a few meters in the experiment, but virus concentrations at observation points 1 and 2.54 m away from the injecti...

  14. Influence of temperature gradients on charge transport in asymmetric nanochannels.

    PubMed

    Benneker, Anne M; Wendt, Hans David; Lammertink, Rob G H; Wood, Jeffery A

    2017-10-25

    Charge selective asymmetric nanochannels are used for a variety of applications, such as nanofluidic sensing devices and energy conversion applications. In this paper, we numerically investigate the influence of an applied temperature difference over tapered nanochannels on the resulting charge transport and flow behavior. Using a temperature-dependent formulation of the coupled Poisson-Nernst-Planck and Navier-Stokes equations, various nanochannel geometries are investigated. Temperature has a large influence on the total ion transport, as the diffusivity of ions and viscosity of the solution are strongly affected by temperature. We find that the selectivity of the nanochannels is enhanced with increasing asymmetry ratios, while the total current is reduced at higher asymmetry cases. Most interestingly, we find that applying a temperature gradient along the electric field and along the asymmetry direction of the nanochannel enhances the selectivity of the tapered channels even further, while a temperature gradient countering the electric field reduces the selectivity of the nanochannel. Current rectification is enhanced in asymmetric nanochannels if a temperature gradient is applied, independent of the direction of the temperature difference. However, the degree of rectification is dependent on the direction of the temperature gradient with respect to the channel geometry and the electric field direction. The enhanced selectivity of nanochannels due to applied temperature gradients could result in more efficient operation in energy harvesting or desalination applications, motivating experimental investigations.

  15. Correlations between quasi-coherent fluctuations and the pedestal evolution during the inter-edge localized modes phase on DIII-D

    DOE PAGES

    Diallo, A.; Groebner, R. J.; Rhodes, T. L.; ...

    2015-05-15

    Direct measurements of the pedestal recovery during an edge-localized mode cycle provide evidence that quasi-coherent fluctuations (QCFs) play a role in the inter-ELM pedestal dynamics. When using fast Thomson scattering measurements, we found that the pedestal density and temperature evolutions are probed on sub-millisecond time scales to show a fast recovery of the density gradient compared to the temperature gradient. The temperature gradient appears to provide a drive for the onset of quasi-coherent fluctuations (as measured with the magnetic probe and the density diagnostics) localized in the pedestal. The amplitude evolution of these QCFs tracks the temperature gradient evolution includingmore » its saturation. Such correlation suggests that these QCFs play a key role in limiting the pedestal temperature gradient. Moreover, the saturation of the QCFs coincides with the pressure gradient reaching the kinetic-ballooning mode (KBM) critical gradient as predicted by EPED1. Furthermore, linear microinstability analysis using GS2 indicates that the steep gradient is near the KBM threshold. Finally, the modeling and the observations together suggest that QCFs are consistent with dominant KBMs, although microtearing cannot be excluded as subdominant.« less

  16. Crystal growth and annealing method and apparatus

    DOEpatents

    Gianoulakis, Steven E.; Sparrow, Robert

    2001-01-01

    A method and apparatus for producing crystals that minimizes birefringence even at large crystal sizes, and is suitable for production of CaF.sub.2 crystals. The method of the present invention comprises annealing a crystal by maintaining a minimal temperature gradient in the crystal while slowly reducing the bulk temperature of the crystal. An apparatus according to the present invention includes a thermal control system added to a crystal growth and annealing apparatus, wherein the thermal control system allows a temperature gradient during crystal growth but minimizes the temperature gradient during crystal annealing. An embodiment of the present invention comprises a secondary heater incorporated into a conventional crystal growth and annealing apparatus. The secondary heater supplies heat to minimize the temperature gradients in the crystal during the annealing process. The secondary heater can mount near the bottom of the crucible to effectively maintain appropriate temperature gradients.

  17. Interfacial free energy and stiffness of aluminum during rapid solidification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nicholas T.; Martinez, Enrique; Qu, Jianmin

    Using molecular dynamics simulations and the capillary fluctuation method, we have calculated the anisotropic crystal-melt interfacial free energy and stiffness of aluminum in a rapid solidification system where a temperature gradient is applied to enforce thermal non-equilibrium. To calculate these material properties, the standard capillary fluctuation method typically used for systems in equilibrium has been modified to incorporate a second-order Taylor expansion of the interfacial free energy term. The result is a robust method for calculating interfacial energy, stiffness and anisotropy as a function of temperature gradient using the fluctuations in the defined interface height. This work includes the calculationmore » of interface characteristics for temperature gradients ranging from 11 to 34 K/nm. The captured results are compared to a thermal equilibrium case using the same model and simulation technique with a zero gradient definition. We define the temperature gradient as the change in temperature over height perpendicular to the crystal-melt interface. The gradients are applied in MD simulations using defined thermostat regions on a stable solid-liquid interface initially in thermal equilibrium. The results of this work show that the interfacial stiffness and free energy for aluminum are dependent on the magnitude of the temperature gradient, however the anisotropic parameters remain independent of the non-equilibrium conditions applied in this analysis. As a result, the relationships of the interfacial free energy/stiffness are determined to be linearly related to the thermal gradient, and can be interpolated to find material characteristics at additional temperature gradients.« less

  18. Interfacial free energy and stiffness of aluminum during rapid solidification

    DOE PAGES

    Brown, Nicholas T.; Martinez, Enrique; Qu, Jianmin

    2017-05-01

    Using molecular dynamics simulations and the capillary fluctuation method, we have calculated the anisotropic crystal-melt interfacial free energy and stiffness of aluminum in a rapid solidification system where a temperature gradient is applied to enforce thermal non-equilibrium. To calculate these material properties, the standard capillary fluctuation method typically used for systems in equilibrium has been modified to incorporate a second-order Taylor expansion of the interfacial free energy term. The result is a robust method for calculating interfacial energy, stiffness and anisotropy as a function of temperature gradient using the fluctuations in the defined interface height. This work includes the calculationmore » of interface characteristics for temperature gradients ranging from 11 to 34 K/nm. The captured results are compared to a thermal equilibrium case using the same model and simulation technique with a zero gradient definition. We define the temperature gradient as the change in temperature over height perpendicular to the crystal-melt interface. The gradients are applied in MD simulations using defined thermostat regions on a stable solid-liquid interface initially in thermal equilibrium. The results of this work show that the interfacial stiffness and free energy for aluminum are dependent on the magnitude of the temperature gradient, however the anisotropic parameters remain independent of the non-equilibrium conditions applied in this analysis. As a result, the relationships of the interfacial free energy/stiffness are determined to be linearly related to the thermal gradient, and can be interpolated to find material characteristics at additional temperature gradients.« less

  19. Analytical characterization of selective benthic flux components in estuarine and coastal waters

    USGS Publications Warehouse

    King, Jeffrey N.

    2011-01-01

    Benthic flux is the rate of flow across the bed of a water body, per unit area of bed. It is forced by component mechanisms, which interact. For example, pressure gradients across the bed, forced by tide, surface gravity waves, density gradients, bed–current interaction, turbulence, and terrestrial hydraulic gradients, drive an advective benthic flux of water and constituents between estuarine and coastal waters, and surficial aquifers. Other mechanisms also force benthic flux, such as chemical gradients, bioturbation, and dispersion. A suite of component mechanisms force a total benthic flux at any given location, where each member of the suite contributes a component benthic flux. Currently, the types and characteristics of component interactions are not fully understood. For example, components may interact linearly or nonlinearly, and the interaction may be constructive or destructive. Benthic flux is a surface water–groundwater interaction process. Its discharge component to a marine water body is referred to, in some literature, as submarine groundwater discharge. Benthic flux is important in characterizing water and constituent budgets of estuarine and coastal systems. Analytical models to characterize selective benthic flux components are reviewed. Specifically, these mechanisms are for the component associated with the groundwater tidal prism, and forced by surface gravity wave setup, surface gravity waves on a plane bed, and the terrestrial hydraulic gradient. Analytical models are applied to the Indian River Lagoon, Florida; Great South Bay, New York; and the South Atlantic Bight in South Carolina and portions of North Carolina.

  20. Current kinematics and dynamics of Africa and the East African Rift System

    NASA Astrophysics Data System (ADS)

    Stamps, D. S.; Flesch, L. M.; Calais, E.; Ghosh, A.

    2014-06-01

    Although the East African Rift System (EARS) is an archetype continental rift, the forces driving its evolution remain debated. Some contend buoyancy forces arising from gravitational potential energy (GPE) gradients within the lithosphere drive rifting. Others argue for a major role of the diverging mantle flow associated with the African Superplume. Here we quantify the forces driving present-day continental rifting in East Africa by (1) solving the depth averaged 3-D force balance equations for 3-D deviatoric stress associated with GPE, (2) inverting for a stress field boundary condition that we interpret as originating from large-scale mantle tractions, (3) calculating dynamic velocities due to lithospheric buoyancy forces, lateral viscosity variations, and velocity boundary conditions, and (4) calculating dynamic velocities that result from the stress response of horizontal mantle tractions acting on a viscous lithosphere in Africa and surroundings. We find deviatoric stress associated with lithospheric GPE gradients are ˜8-20 MPa in EARS, and the minimum deviatoric stress resulting from basal shear is ˜1.6 MPa along the EARS. Our dynamic velocity calculations confirm that a force contribution from GPE gradients alone is sufficient to drive Nubia-Somalia divergence and that additional forcing from horizontal mantle tractions overestimates surface kinematics. Stresses from GPE gradients appear sufficient to sustain present-day rifting in East Africa; however, they are lower than the vertically integrated strength of the lithosphere along most of the EARS. This indicates additional processes are required to initiate rupture of continental lithosphere, but once it is initiated, lithospheric buoyancy forces are enough to maintain rifting.

  1. Line length dependence of threshold current density and driving force in eutectic SnPb and SnAgCu solder electromigration

    NASA Astrophysics Data System (ADS)

    Yoon, Min-Seung; Ko, Min-Ku; Kim, Bit-Na; Kim, Byung-Joon; Park, Yong-Bae; Joo, Young-Chang

    2008-04-01

    The relationship between the threshold current density and the critical line length in eutectic SnPb and SnAgCu electromigrations were examined using solder lines with the various lengths ranging from 100to1000μm. When the electron wind-force was balanced by the back-stress gradient force, the net flux of electromigration is zero, at which the current density and line length are defined as the threshold current density and the critical length, respectively. It was found that in SnAgCu electromigration, the 1/L dependence on the threshold current density showed good agreement, whereas the threshold current densities of the eutectic SnPb deviated from the 1/L dependence. The balance between the electron wind-force and the back-stress gradient force was the main factor determining the threshold product of SnAgCu electromigration. On the other hand, in the case of eutectic SnPb, the chemical driving force is contributed as a back-flux force in addition to the back-stress gradient force. The existence of the chemical driving force was caused by the nonequilibrium Pb concentration inside the Pb-rich phases between the cathode and anode during the electromigration procedure.

  2. The influence of pressure relaxation on the structure of an axial vortex

    NASA Astrophysics Data System (ADS)

    Ash, Robert L.; Zardadkhan, Irfan; Zuckerwar, Allan J.

    2011-07-01

    Governing equations including the effects of pressure relaxation have been utilized to study an incompressible, steady-state viscous axial vortex with specified far-field circulation. When sound generation is attributed to a velocity gradient tensor-pressure gradient product, the modified conservation of momentum equations that result yield an exact solution for a steady, incompressible axial vortex. The vortex velocity profile has been shown to closely approximate experimental vortex measurements in air and water over a wide range of circulation-based Reynolds numbers. The influence of temperature and humidity on the pressure relaxation coefficient in air has been examined using theoretical and empirical approaches, and published axial vortex experiments have been employed to estimate the pressure relaxation coefficient in water. Non-equilibrium pressure gradient forces have been shown to balance the viscous stresses in the vortex core region, and the predicted pressure deficits that result from this non-equilibrium balance can be substantially larger than the pressure deficits predicted using a Bernoulli equation approach. Previously reported pressure deficit distributions for dust devils and tornados have been employed to validate the non-equilibrium pressure deficit predictions.

  3. Temperature and deflection data from the asymmetric heating of cross-ply composite tubes

    NASA Technical Reports Server (NTRS)

    Hyer, Michael W.; Cooper, David E.; Tompkins, S. S.; Cohen, David

    1987-01-01

    Data generated while heating several cross-ply graphite-epoxy tubes on one side, along their lengths, and cooling them on the other side are presented. This heating arrangement produces a circumferential temperature gradient, and the data show that the gradient can be represented by a cosinusoidal temperature distribution. The thermally induced bending deflections caused by the temperature gradient are also presented.

  4. Phoretic Force Measurement for Microparticles Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Davis, E. J.; Zheng, R.

    1999-01-01

    This theoretical and experimental investigation of the collisional interactions between gas molecules and solid and liquid surfaces of microparticles involves fundamental studies of the transfer of energy, mass and momentum between gas molecules and surfaces. The numerous applications include particle deposition on semiconductor surfaces and on surfaces in combustion processes, containerless processing, the production of nanophase materials, pigments and ceramic precursors, and pollution abatement technologies such as desulfurization of gaseous effluents from combustion processes. Of particular emphasis are the forces exerted on microparticles present in a nonuniform gas, that is, in gaseous surroundings involving temperature and concentration gradients. These so-called phoretic forces become the dominant forces when the gravitational force is diminished, and they are strongly dependent on the momentum transfer between gas molecules and the surface. The momentum transfer, in turn, depends on the gas and particle properties and the mean free path and kinetic energy of the gas molecules. The experimental program involves the particle levitation system shown. A micrometer size particle is held between two heat exchangers enclosed in a vacuum chamber by means of ac and dc electric fields. The ac field keeps the particle centered on the vertical axis of the chamber, and the dc field balances the gravitational force and the thermophoretic force. Some measurements of the thermophoretic force are presented in this paper.

  5. Atomic Force Microscopy Nanomechanical Mapping Visualizes Interfacial Broadening between Networks Due to Chemical Exchange Reactions.

    PubMed

    He, Changfei; Shi, Shaowei; Wu, Xuefei; Russell, Thomas P; Wang, Dong

    2018-06-06

    The interfacial broadening between two different epoxy networks having different moduli was nanomechanically mapped. The interfacial broadening of the two networks produced an interfacial zone having a gradient in the concentration and, hence, properties of the original two networks. This interfacial broadening of the networks leads to the generation of a new network with a segmental composition corresponding to a mixture of the original two network segments. The intermixing of the two, by nature of the exchange reactions, was on the segmental level. By mapping the time dependence of the variation in the modulus at different temperatures, the kinetics of the exchange reaction was measured and, by varying the temperature, the activation energy of the exchange reaction was determined.

  6. Determination of the force constant of a single-beam gradient trap by measurement of backscattered light

    NASA Astrophysics Data System (ADS)

    Friese, M. E. J.; Rubinsztein-Dunlop, H.; Heckenberg, N. R.; Dearden, E. W.

    1996-12-01

    A single-beam gradient trap could potentially be used to hold a stylus for scanning force microscopy. With a view to development of this technique, we modeled the optical trap as a harmonic oscillator and therefore characterized it by its force constant. We measured force constants and resonant frequencies for 1 4- m-diameter polystyrene spheres in a single-beam gradient trap using measurements of backscattered light. Force constants were determined with both Gaussian and doughnut laser modes, with powers of 3 and 1 mW, respectively. Typical values for spring constants were measured to be between 10 6 and 4 10 6 N m. The resonant frequencies of trapped particles were measured to be between 1 and 10 kHz, and the rms amplitudes of oscillations were estimated to be around 40 nm. Our results confirm that the use of the doughnut mode for single-beam trapping is more efficient in the axial direction.

  7. Simulation of forced convection in non-Newtonian fluid through sandstones

    NASA Astrophysics Data System (ADS)

    Gokhale, M. Y.; Fernandes, Ignatius

    2017-11-01

    Numerical simulation is carried out to study forced convection in non-Newtonian fluids flowing through sandstones. Simulation is carried out using lattice Boltzmann method (LBM) for both shear-thinning and shear-thickening, by varying the power law index from 0.5 to 1.5 in Carreau-Yasuda model. Parameters involved in LBM and Carreau model are identified to achieve numerical convergence. Permeability and porosity are varied in the range of 10-10-10-6 and 0.1-0.7, respectively, to match actual geometrical properties of sandstone. Numerical technology is validated by establishing Darcy's law by plotting the graph between velocity and pressure gradient. Consequently, investigation is carried out to study the influence of material properties of porous media on flow properties such as velocity profiles, temperature profiles, and Nusselt number.

  8. Modulation of monocytic leukemia cell function and survival by high gradient magnetic fields and mathematical modeling studies.

    PubMed

    Zablotskii, Vitalii; Syrovets, Tatiana; Schmidt, Zoe W; Dejneka, Alexandr; Simmet, Thomas

    2014-03-01

    The influence of spatially modulated high gradient magnetic fields on cellular functions of human THP-1 leukemia cells is studied. We demonstrate that arrays of high-gradient micrometer-sized magnets induce i) cell swelling, ii) prolonged increased ROS production, and iii) inhibit cell proliferation, and iv) elicit apoptosis of THP-1 monocytic leukemia cells in the absence of chemical or biological agents. Mathematical modeling indicates that mechanical stress exerted on the cells by high magnetic gradient forces is responsible for triggering cell swelling and formation of reactive oxygen species followed by apoptosis. We discuss physical aspects of controlling cell functions by focused magnetic gradient forces, i.e. by a noninvasive and nondestructive physical approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Sound control by temperature gradients

    NASA Astrophysics Data System (ADS)

    Sánchez-Dehesa, José; Angelov, Mitko I.; Cervera, Francisco; Cai, Liang-Wu

    2009-11-01

    This work reports experiments showing that airborne sound propagation can be controlled by temperature gradients. A system of two heated tubes is here used to demonstrate the collimation and focusing of an ultrasonic beam by the refractive index profile created by the temperature gradients existing around the tubes. Numerical simulations supporting the experimental findings are also reported.

  10. 43 CFR 3252.16 - How must I abandon a temperature gradient well?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How must I abandon a temperature gradient well? 3252.16 Section 3252.16 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.16 How must I abandon a temperature gradient well? (a...

  11. 43 CFR 3252.15 - When must I abandon a temperature gradient well?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false When must I abandon a temperature gradient well? 3252.15 Section 3252.15 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.15 When must I abandon a temperature gradient well? When...

  12. 43 CFR 3252.16 - How must I abandon a temperature gradient well?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false How must I abandon a temperature gradient well? 3252.16 Section 3252.16 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.16 How must I abandon a temperature gradient well? (a...

  13. 43 CFR 3252.16 - How must I abandon a temperature gradient well?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How must I abandon a temperature gradient well? 3252.16 Section 3252.16 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.16 How must I abandon a temperature gradient well? (a...

  14. 43 CFR 3252.15 - When must I abandon a temperature gradient well?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false When must I abandon a temperature gradient well? 3252.15 Section 3252.15 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.15 When must I abandon a temperature gradient well? When...

  15. 43 CFR 3252.16 - How must I abandon a temperature gradient well?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How must I abandon a temperature gradient well? 3252.16 Section 3252.16 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.16 How must I abandon a temperature gradient well? (a...

  16. 43 CFR 3252.15 - When must I abandon a temperature gradient well?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false When must I abandon a temperature gradient well? 3252.15 Section 3252.15 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.15 When must I abandon a temperature gradient well? When...

  17. 43 CFR 3252.15 - When must I abandon a temperature gradient well?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false When must I abandon a temperature gradient well? 3252.15 Section 3252.15 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.15 When must I abandon a temperature gradient well? When...

  18. Gravitational force and torque on a solar power satellite considering the structural flexibility

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; Zhang, Jingrui; Zhang, Yao; Zhang, Jun; Hu, Quan

    2017-11-01

    The solar power satellites (SPS) are designed to collect the constant solar energy and beam it to Earth. They are traditionally large in scale and flexible in structure. In order to obtain an accurate model of such system, the analytical expressions of the gravitational force, gravity gradient torque and modal force are investigated. They are expanded to the fourth order in a Taylor series with the elastic displacements considered. It is assumed that the deformation of the structure is relatively small compared with its characteristic length, so that the assumed mode method is applicable. The high-order moments of inertia and flexibility coefficients are presented. The comprehensive dynamics of a large flexible SPS and its orbital, attitude and vibration evolutions with different order gravitational forces, gravity gradient torques and modal forces in geosynchronous Earth orbit are performed. Numerical simulations show that an accurate representation of the SPS‧ dynamic characteristics requires the retention of the higher moments of inertia and flexibility. Perturbations of orbit, attitude and vibration can be retained to the 1-2nd order gravitational forces, the 1-2nd order gravity gradient torques and the 1-2nd order modal forces for a large flexible SPS in geosynchronous Earth orbit.

  19. Temperature logging of groundwater in bedrock wells for geothermal gradient characterization in New Hampshire, 2012

    USGS Publications Warehouse

    Degnan, James; Barker, Gregory; Olson, Neil; Wilder, Leland

    2012-01-01

    Maximum groundwater temperatures at the bottom of the logs were between 11.7 and 17.3 degrees Celsius. Geothermal gradients were generally higher than typically reported for other water wells in the United States. Some of the high gradients were associated with high natural gamma emissions. Groundwater flow was discernible in 5 of the 10 wells studied but only obscured the portion of the geothermal gradient signal where groundwater actually flowed through the well. Temperature gradients varied by mapped bedrock type but can also vary by differences in mineralogy or rock type within the wells.

  20. TEMPERATURE-GRADIENT PLATES FOR GROWTH OF MICROORGANISMS

    PubMed Central

    Landman, Otto E.; Bausum, Howard T.; Matney, Thomas S.

    1962-01-01

    Landman, Otto E. (Fort Detrick, Frederick, Md.), Howard T. Bausum, and Thomas S. Matney. Temperature-gradient plates for growth of microorganisms. J. Bacteriol. 83:463–469. 1962.—Different temperature-gradient plates have been devised for the study of microbial growth on solid media through continuous temperature ranges or in liquid media at finely graded temperatures. All plates are made of heavy-gauge aluminum; heat supplied at one end is dissipated along the length of the metal so that a gradient is produced. The shape and range of the gradient depends on the amount of heat supplied, the insulation, the ambient temperature, and other factors. Differences of 0.2 C in temperature sensitivity between bacterial strains can be detected. The plates are simple to construct and operate. The dimensions of the aluminum, the mode of temperature measurement, and the method of heating may all be modified without diminishing the basic utility of the device. A sharp growth front develops at the maximal temperature of growth of bacteria. In most strains, all bacteria below the front form colonies and all bacteria above the front are killed, except for a few temperature-resistant mutants. Images PMID:14461975

  1. Holocene temperature history of northern Iceland inferred from subfossil midges

    NASA Astrophysics Data System (ADS)

    Axford, Yarrow; Miller, Gifford H.; Geirsdóttir, Áslaug; Langdon, Peter G.

    2007-12-01

    The Holocene temperature history of Iceland is not well known, despite Iceland's climatically strategic location at the intersection of major surface currents in the high-latitude North Atlantic. Existing terrestrial records reveal spatially heterogeneous changes in Iceland's glacier extent, vegetation cover, and climate over the Holocene, but these records are temporally discontinuous and mostly qualitative. This paper presents the first quantitative estimates of temperatures throughout the entire Holocene on Iceland. Mean July temperatures are inferred based upon subfossil midge (Chironomidae) assemblages from three coastal lakes in northern Iceland. Midge data from each of the three lakes indicate broadly similar temperature trends, and suggest that the North Icelandic coast experienced relatively cool early Holocene summers and gradual warming throughout the Holocene until after 3 ka. This contrasts with many sites on Iceland and around the high-latitude Northern Hemisphere that experienced an early to mid-Holocene "thermal maximum" in response to enhanced summer insolation forcing. Our results suggest a heightened temperature gradient across Iceland in the early Holocene, with suppressed terrestrial temperatures along the northern coastal fringe, possibly as a result of sea surface conditions on the North Iceland shelf.

  2. Temperature gradient effects on vapor diffusion in partially-saturated porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, S.W.

    1999-07-01

    Vapor diffusion in porous media in the presence of its own liquid may be enhanced due to pore-scale processes, such as condensation and evaporation across isolated liquid islands. Webb and Ho (1997) developed one-and two-dimensional mechanistic pore-scale models of these processes in an ideal porous medium. For isothermal and isobaric boundary conditions with a concentration gradient, the vapor diffusion rate was significantly enhanced by these liquid island processes compared to a dry porous media. The influence of a temperature gradient on the enhanced vapor diffusion rate is considered in this paper. The two-dimensional pore network model which is used inmore » the present study is shown. For partially-saturated conditions, a liquid island is introduced into the top center pore. Boundary conditions on the left and right sides of the model are specified to give the desired concentration and temperature gradients. Vapor condenses on one side of the liquid island and evaporates off the other side due to local vapor pressure lowering caused by the interface curvature, even without a temperature gradient. Rather than acting as an impediment to vapor diffusion, the liquid island actually enhances the vapor diffusion rate. The enhancement of the vapor diffusion rate can be significant depending on the liquid saturation. Vapor diffusion is enhanced by up to 40% for this single liquid island compared to a dry porous medium; enhancement factors of up to an order of magnitude have been calculated for other conditions by Webb and Ho (1997). The dominant effect on the enhancement factor is the concentration gradient; the influence of the temperature gradient is smaller. The significance of these results, which need to be confirmed by experiments, is that the dominant model of enhanced vapor diffusion (EVD) by Philip and deVries (1957) predicts that temperature gradients must exist for EVD to occur. If there is no temperature gradient, there is no enhancement. The present results indicate that EVD is predominantly driven by concentration gradients; temperature gradients are less important. Therefore, the EVD model of Philip and deVries may need to be modified to reflect these results.« less

  3. Sound beam manipulation based on temperature gradients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Feng; School of Physics & Electronic Engineering, Changshu Institute of Technology, Changshu 215500; Quan, Li

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest tomore » fields such as noise control or acoustic cloaking.« less

  4. Communication: Slow relaxation, spatial mobility gradients, and vitrification in confined films.

    PubMed

    Mirigian, Stephen; Schweizer, Kenneth S

    2014-10-28

    Two decades of experimental research indicate that spatial confinement of glass-forming molecular and polymeric liquids results in major changes of their slow dynamics beginning at large confinement distances. A fundamental understanding remains elusive given the generic complexity of activated relaxation in supercooled liquids and the major complications of geometric confinement, interfacial effects, and spatial inhomogeneity. We construct a predictive, quantitative, force-level theory of relaxation in free-standing films for the central question of the nature of the spatial mobility gradient. The key new idea is that vapor interfaces speed up barrier hopping in two distinct, but coupled, ways by reducing near surface local caging constraints and spatially long range collective elastic distortion. Effective vitrification temperatures, dynamic length scales, and mobile layer thicknesses naturally follow. Our results provide a unified basis for central observations of dynamic and pseudo-thermodynamic measurements.

  5. Successful experiments on an external MHD Accelerator: wall confinement of the plasma, annihilation of the electrothermal instability by magnetic gradient inversion, creation of a stable spiral current pattern

    NASA Astrophysics Data System (ADS)

    Petit, Jean-Pierre; Dore, Jean-Christophe

    2013-09-01

    MHD propulsion has been extensively studied since the fifties. To shift from propulsion to an MHD Aerodyne, one only needs to accelerate the air externally, along its outer skin, using Lorentz forces. We present a set of successful experiments, obtained around a model, placed in low density air. We successfully dealt with various problems: wall confinement of two-temperature plasma obtained by inversion of the magnetic pressure gradient, annihilation of the Velikhov electrothermal instability by magnetic confinement of the streamers, establishment of a stable spiral distribution of the current, obtained by an original method. Another direction of research is devoted to the study of an MHD-controlled inlet which, coupled with a turbofan engine and implying an MHD-bypass system, would extend the flight domain to hypersonic conditions. Research manager

  6. Communication: slow relaxation, spatial mobility gradients, and vitrification in confined films

    DOE PAGES

    Mirigian, Stephen; Schweizer, Kenneth S.

    2014-10-31

    Two decades of experimental research indicate that spatial confinement of glass-forming molecular and polymeric liquids results in major changes of their slow dynamics beginning at large confinement distances. A fundamental understanding remains elusive given the generic complexity of activated relaxation in supercooled liquids and the major complications of geometric confinement, interfacial effects, and spatial inhomogeneity. For this research, we construct a predictive, quantitative, force-level theory of relaxation in free-standing films for the central question of the nature of the spatial mobility gradient. The key new idea is that vapor interfaces speed up barrier hopping in two distinct, but coupled, waysmore » by reducing near surface local caging constraints and spatially long range collective elastic distortion. Effective vitrification temperatures, dynamic length scales, and mobile layer thicknesses naturally follow. In conclusion, our results provide a unified basis for central observations of dynamic and pseudo-thermodynamic measurements.« less

  7. The role of internal variability in prolonging the California drought

    NASA Astrophysics Data System (ADS)

    Buenning, N. H.; Stott, L. D.

    2015-12-01

    The current drought in California has been one of the driest on record. Using atmospheric general circulation models (AGCMs), recent studies have demonstrated that the low precipitation anomalies observed during the first three winters of the current drought are mostly attributable to changes in sea surface temperature (SST) and sea ice forcing. Here we show through AGCM simulations that the fourth and latest winter of the current drought is not attributable to SST and sea ice forcing, but instead a consequence of higher internal variability. Using the Global Spectral Model (GSM) we demonstrate how the surface forcing reproduces dry conditions over California for the first three winters of the current drought, similar to what other models produced. However, when forced with the SST and sea ice conditions for the winter of 2014-2015, GSM robustly simulates high precipitation conditions over California. This significantly differs with observed precipitation anomalies, which suggests a model deficiency or large influence of internal variability within the climate system during the winter of 2014-2015. Ensemble simulations with 234 realizations reveal that the surface forcing created a broader range of precipitation possibilities over California. Thus, the surface forcing caused a greater degree of internal variations, which was driven by a reduced latitudinal temperature gradient and amplified planetary waves over the Pacific. Similar amplified waves are also seen in 21st century climate projections of upper-level geopotential heights, suggesting that 21st century precipitation over California will become more variable and increasingly difficult to predict on seasonal timescales. When an El Nino pattern is applied to the surface forcing the precipitation further increases and the variance amongst model realizations is reduced, which indicates a strong likelihood of an anomalously wet 2015-2016 winter season.

  8. Ion-temperature-gradient sensitivity of the hydrodynamic instability caused by shear in the magnetic-field-aligned plasma flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailenko, V. V., E-mail: vladimir@pusan.ac.kr; Mikhailenko, V. S.; Faculty of Transportation Systems, Kharkiv National Automobile and Highway University, 61002 Kharkiv

    2014-07-15

    The cross-magnetic-field (i.e., perpendicular) profile of ion temperature and the perpendicular profile of the magnetic-field-aligned (parallel) plasma flow are sometimes inhomogeneous for space and laboratory plasma. Instability caused either by a gradient in the ion-temperature profile or by shear in the parallel flow has been discussed extensively in the literature. In this paper, (1) hydrodynamic plasma stability is investigated, (2) real and imaginary frequency are quantified over a range of the shear parameter, the normalized wavenumber, and the ratio of density-gradient and ion-temperature-gradient scale lengths, and (3) the role of inverse Landau damping is illustrated for the case of combinedmore » ion-temperature gradient and parallel-flow shear. We find that increasing the ion-temperature gradient reduces the instability threshold for the hydrodynamic parallel-flow shear instability, also known as the parallel Kelvin-Helmholtz instability or the D'Angelo instability. We also find that a kinetic instability arises from the coupled, reinforcing action of both free-energy sources. For the case of comparable electron and ion temperature, we illustrate analytically the transition of the D'Angelo instability to the kinetic instability as (a) the shear parameter, (b) the normalized wavenumber, and (c) the ratio of density-gradient and ion-temperature-gradient scale lengths are varied and we attribute the changes in stability to changes in the amount of inverse ion Landau damping. We show that near a normalized wavenumber k{sub ⊥}ρ{sub i} of order unity (i) the real and imaginary values of frequency become comparable and (ii) the imaginary frequency, i.e., the growth rate, peaks.« less

  9. Non-linear interactions between CO_2 radiative and physiological effects on Amazonian evapotranspiration in an Earth system model

    NASA Astrophysics Data System (ADS)

    Halladay, Kate; Good, Peter

    2017-10-01

    We present a detailed analysis of mechanisms underlying the evapotranspiration response to increased CO_2 in HadGEM2-ES, focussed on western Amazonia. We use three simulations from CMIP5 in which atmospheric CO_2 increases at 1% per year reaching approximately four times pre-industrial levels after 140 years. Using 3-hourly data, we found that evapotranspiration (ET) change was dominated by decreased stomatal conductance (g_s), and to a lesser extent by decreased canopy water and increased moisture gradient (specific humidity difference between surface and near-surface). There were large, non-linear decreases in ET in the simulation in which radiative and physiological forcings could interact. This non-linearity arises from non-linearity in the conductance term (includes aerodynamic and stomatal resistance and partitioning between the two, which is determined by canopy water availability), the moisture gradient, and negative correlation between these two terms. The conductance term is non-linear because GPP responds non-linearly to temperature and GPP is the dominant control on g_s in HadGEM2-ES. In addition, canopy water declines, mainly due to increases in potential evaporation, which further decrease the conductance term. The moisture gradient responds non-linearly owing to the non-linear response of temperature to CO_2 increases, which increases the Bowen ratio. Moisture gradient increases resulting from ET decline increase ET and thus constitute a negative feedback. This analysis highlights the importance of the g_s parametrisation in determining the ET response and the potential differences between offline and online simulations owing to feedbacks on ET via the atmosphere, some of which would not occur in an offline simulation.

  10. Reduction of particle deposition on substrates using temperature gradient control

    DOEpatents

    Rader, Daniel J.; Dykhuizen, Ronald C.; Geller, Anthony S.

    2000-01-01

    A method of reducing particle deposition during the fabrication of microelectronic circuitry is presented. Reduction of particle deposition is accomplished by controlling the relative temperatures of various parts of the deposition system so that a large temperature gradient near the surface on which fabrication is taking place exists. This temperature gradient acts to repel particles from that surface, thereby producing cleaner surfaces, and thus obtaining higher yields from a given microelectronic fabrication process.

  11. Experimental feasibility of investigating acoustic waves in Couette flow with entropy and pressure gradients

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Zorumski, William E.; Rawls, John W., Jr.

    1990-01-01

    The feasibility is discussed for an experimental program for studying the behavior of acoustic wave propagation in the presence of strong gradients of pressure, temperature, and flow. Theory suggests that gradients effects can be experimentally observed as resonant frequency shifts and mode shape changes in a waveguide. A convenient experimental geometry for such experiments is the annular region between two co-rotating cylinders. Radial temperature gradients in a spinning annulus can be generated by differentially heating the two cylinders via electromagnetic induction. Radial pressure gradients can be controlled by varying the cylinder spin rates. Present technology appears adequate to construct an apparatus to allow independent control of temperature and pressure gradients. A complicating feature of a more advanced experiment, involving flow gradients, is the requirement for independently controlled cylinder spin rates. Also, the boundary condition at annulus terminations must be such that flow gradients are minimally disturbed. The design and construction of an advanced apparatus to include flow gradients will require additional technology development.

  12. Relative influences of the metocean forcings on the drifting ice pack and estimation of internal ice stress gradients in the Labrador Sea

    NASA Astrophysics Data System (ADS)

    Turnbull, I. D.; Torbati, R. Z.; Taylor, R. S.

    2017-07-01

    Understanding the relative influences of the metocean forcings on the drift of sea ice floes is a crucial component to the overall characterization of an ice environment and to developing an understanding of the factors controlling the ice dynamics. In addition, estimating the magnitude of the internal stress gradients on drifting sea ice floes generated by surrounding ice cover is important for modeling operations, informing the design of offshore structures and vessels in ice environments, and for the proper calibration of Discrete Element Models (DEM) of fields of drifting ice floes. In the spring of 2015 and 2016, four sea ice floes offshore Makkovik, Labrador were tagged with satellite-linked ice tracking buoys along with one satellite-linked weather station on each floe to transmit wind speed and direction. Twenty satellite-linked Lagrangian surface ocean current tracking buoys were also deployed in the open water adjacent to the targeted ice floes. In this paper, the dynamics of the four ice floes are explored in terms of the relative proportions which were forced by the wind, current, sea surface topography, Coriolis, and internal stress gradients. The internal ice stress gradients are calculated as residuals between the observed accelerations of the floes as measured by the tracking buoys and the sums of the other metocean forcings. Results show that internal ice stress gradients accounted for up to 50% of the observed forcing on the floes, and may have reached up to around 0.19 kPa.

  13. The Influence of Wavelength-Dependent Absorption and Temperature Gradients on Temperature Determination in Laser-Heated Diamond-Anvil Cells

    NASA Astrophysics Data System (ADS)

    Deng, J.; Lee, K. K. M.; Du, Z.; Benedetti, L. R.

    2016-12-01

    In situ temperature measurements in the laser-heated diamond-anvil cell (LHDAC) are among the most fundamental experiments undertaken in high-pressure science. Despite its importance, few efforts have been made to examine the alteration of thermal radiation spectra of hot samples by wavelength-dependent absorption of the sample itself together with temperature gradients within samples while laser heating and their influence on temperature measurement. For example, iron-bearing minerals show strong wavelength dependent absorption in the wavelength range used to determine temperature, which, together with temperature gradients can account for largely aliased apparent temperatures (e.g., 1200 K deviation for a 4000 K melting temperature) in some experiments obtained by fitting of detected thermal radiation intensities. As such, conclusions of melting temperatures, phase diagrams and partitioning behavior, may be grossly incorrect for these materials. In general, wavelength-dependent absorption and temperature gradients of samples are two key factors to consider in order to rigorously constrain temperatures, which have been largely ignored in previous LHDAC studies. A reevaluation of temperatures measured in recent high-profile papers will be reviewed.

  14. Real-data tests of a single-Doppler radar assimilation system

    NASA Astrophysics Data System (ADS)

    Nehrkorn, Thomas; Hegarty, James; Hamill, Thomas M.

    1994-06-01

    Real data tests of a single-Doppler radar data assimilation and forecast system have been conducted for a Florida sea breeze case. The system consists of a hydrostatic mesoscale model used for prediction of the preconvective boundary layer, an objective analysis that combines model first guess fields with radar derived horizontal winds, a thermodynamic retrieval scheme that obtains temperature information from the three-dimensional wind field and its temporal evolution, and a Newtonian nudging scheme for forcing the model forecast to closer agreement with the analysis. As was found in earlier experiments with simulated data, assimilation using Newtonian nudging benefits from temperature data in addition to wind data. The thermodynamic retrieval technique was successful in retrieving a horizontal temperature gradient from the radar-derived wind fields that, when assimilated into the model, led to a significantly improved forecast of the seabreeze strength and position.

  15. Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.

    PubMed

    Gul, Aaiza; Khan, Ilyas; Shafie, Sharidan; Khalid, Asma; Khan, Arshad

    2015-01-01

    This study investigated heat transfer in magnetohydrodynamic (MHD) mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4) was selected as a conventional base fluid. In addition, non-magnetic (Al2O3) aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work.

  16. Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel

    PubMed Central

    Gul, Aaiza; Khan, Ilyas; Shafie, Sharidan; Khalid, Asma; Khan, Arshad

    2015-01-01

    This study investigated heat transfer in magnetohydrodynamic (MHD) mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe 3 O 4) was selected as a conventional base fluid. In addition, non-magnetic (Al 2 O 3) aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work. PMID:26550837

  17. Method of simultaneous measurement of two direction force and temperature using FBG sensor head.

    PubMed

    Kisała, Piotr; Cięszczyk, Sławomir

    2015-04-01

    This paper presents a method for measuring two components of bending force and temperature using one sensor head. Indirect inference based on the spectra of two fiber Bragg gratings (FBGs) placed on a cantilever beam is used. The method was developed during work on the inverse problem of determining a nonuniform stress distribution based on FBG spectra. A gradient in the FBG stress profile results in a characteristic shape of its reflective spectrum. The simultaneous measurements of force and temperature were possible through the use of an appropriate layout of the sensor head. The spectral characteristics of the sensor's gratings do not retain full symmetry, which is due to the geometry of the sensor's head and the related difference in the distribution of the axial stress of the gratings. In the proposed approach, the change in width of the sum of the normalized transmission spectra was used to determine the value of the applied force. In the presented method, an increase in the sensitivity of this change to the force is obtained relative to the other known systems. A change in the spectral width was observed for an increase in bending forces from 0 to 150 N. The sensitivity coefficient of the spectral width to force, defined as the ratio of the change of the spectral half-width to the change in force was 2.6e-3  nm/N for the first grating and 1.2e-3  nm/N for the second grating. However, the sensitivity of the whole sensor system was 5.8e-3  nm/N, which is greater than the sum of the sensitivities of the individual gratings. For the purpose of this work, a station with a thermal chamber has been designed with a bracket on which fiber optic transducers have been mounted for use in further measurements. The sensor head in this experiment is considered to be a universal device with potential applications in other types of optical sensors, and it can be treated as a module for development through its multiplication on a single optical fiber.

  18. Temperature gradient interaction chromatography of polymers: A molecular statistical model.

    PubMed

    Radke, Wolfgang; Lee, Sekyung; Chang, Taihyun

    2010-11-01

    A new model describing the retention in temperature gradient interaction chromatography of polymers is developed. The model predicts that polymers might elute in temperature gradient interaction chromatography in either an increasing or decreasing order or even nearly independent of molar mass, depending on the rate of the temperature increase relative to the flow rate. This is in contrast to solvent gradient elution, where polymers elute either in order of increasing molar mass or molar mass independent. The predictions of the newly developed model were verified with the literature data as well as new experimental data. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Carbon dioxide effluxes and their environmental controls in sagebrush steppe ecosystems along an elevation gradient in the Reynolds Creek Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Lohse, K. A.; Fellows, A.; Flerchinger, G. N.; Seyfried, M. S.

    2017-12-01

    The spatial and temporal variation of carbon dioxide effluxes and their environmental controls are poorly constrained in cold shrub steppe ecosystems. The objectives of this study were to 1) analyze environmental parameters in determining soil CO2 efflux, 2) assess the level of agreement between manual chambers and force diffusion (FD) soil CO2 efflux chambers, when both measurements are extrapolated across the growing season, and lastly to compare respiration fluxes to modeled ecosystem respiration fluxes. We installed FD chambers at four sites co-located with eddy covariance (EC) towers and soil moisture and temperature sensors along an elevation gradient in the Reynolds Creek Critical Zone Observatory in SW Idaho. FD chamber fluxes were collected continuously at 15-minute intervals. We sampled soil CO2 efflux with manual chambers at plant and interplant spaces in five plots at each site biweekly to monthly during the growing season. The sites included a Wyoming big sagebrush site, a low sagebrush site, a post-fire mountain big sagebrush site, and a mountain big sagebrush site located at elevations of 1425, 1680, 1808 and 2111 m. Climate variation followed the montane elevation gradient; mean annual precipitation (MAP) at the sites is 290, 337, 425, and 795 mm, respectively, and mean annual temperature is 8.9, 8.4, 6.1, 5.4°C. Automated force diffusion chambers detected large differences in carbon dioxide pulse dynamics along the elevation gradient. Growing season carbon dioxide fluxes were 3 times higher at the 425 mm MAP site compared than the lowest elevation sites at 290 and 337 MAP sites and >1.5 higher than the 795 mm MAP site over the same period. Manual fluxes showed similar seasonal patterns as FD chamber fluxes but often higher and greater spatial variability in fluxes than FD chamber fluxes. Plant and interplant flux differences were surprisingly similar, especially at higher elevations. Soil respiration ranged from 0.2-0.48 of ecosystem respiration suggesting that aboveground maintenance costs were relatively high at all of these sites. We conclude that coupled FD chamber, EC tower, and manual estimates hold promise in helping to partition and scale carbon fluxes from the plot to landscape scale.

  20. The Impact of Gulf Stream-Induced Diabatic Forcing on Coastal Mid-Atlantic Surface Cyclogenesis

    NASA Astrophysics Data System (ADS)

    Cione, Joseph Jerome

    In this dissertation, numerical experiments were conducted using a mesoscale atmospheric model developed at North Carolina State University. Three sets of numerical experiments were conducted and were designed to: quantify the impact Gulf Stream frontal distance, initial surface air temperature and cold air outbreak timing each have on the subsequent development of the marine atmospheric boundary layer during periods of offshore cold advection; investigate critical processes associated with Gulf Stream -induced mesocyclogenesis and; elucidate the role SST gradients and surface fluxes of heat and moisture have on the intensification and track of propagating mesocyclonic systems within the highly baroclinic Gulf Stream region. A major finding from the offshore cold advection simulations is that the initial air-sea contrast is the dominant forcing mechanism linked to the offshore circulation development and marine boundary layer modification. Results from the mesocyclogenesis experiments indicate that surface cyclogenesis was simulated to occur along a Gulf Stream meander in a region where the gradients in sea surface temperature (SST) were maximized. Results from sensitivity experiments illustrate that changes in the Gulf Stream SST gradient pattern can act to alter the timing and degree of cyclonic development simulated, while the inclusion of surface fluxes and moist convective processes during the development phase act to strongly enhance the intensity and/or occurrence of simulated mesocyclogenesis. Both observational and numerical results from studies investigating the impact strong Gulf Stream SST gradients have on the development of pre-existing, propagating cyclonic systems show that the baroclinic nature of the low level environment near the circulation center (as well as the degree of simulated/observed surface cyclonic intensification) appear to be highly dependent upon the mesoscale storm track within the Gulf Stream frontal zone. Furthermore, the numerical storm track experiments conducted in this research illustrate that surfaces fluxes can act to significantly alter the storm track of the surface mesocyclone (in addition to impacting the overall intensification of the simulated cyclonic system). This work also presents the technique development and operational utilization of the recently devised Atlantic Surface Cyclone Intensification Index (ASCII). The index continues to be implemented by the National Weather Service at the Raleigh-Durham and surrounding coastal forecast offices, and to date, has been successfully utilized for 11 coastal winter storm events over the February 1994-January 1996 period.

  1. Influence of hydrogen on the thermoelectric voltage signal in a Pt/WO x /6 H-SiC/Ni/Pt layered structure

    NASA Astrophysics Data System (ADS)

    Zuev, V. V.; Grigoriev, S. N.; Fominski, V. Yu.; Volosova, M. A.; Soloviev, A. A.

    2017-09-01

    The possibility of detecting H2 by registering the thermal electromotive force signal, which arises between the surfaces of 6 H-SiC plates with a thickness of 400 μm, is established. The working surface of the plates is modified by deposition of a WO x film and catalytic Pt. An ohmic contact (Ni/Pt) is created on the rear surface of the plate, and this surface is maintained at a stabilized temperature of 350°C. The temperature gradient through the plate thickness arises due to the cooling of the working surface with the air medium. The delivery of H2 into this medium up to a concentration of 2% gives rise to a 15-fold increase in the electric signal, which considerably exceeds the Pt/WO x /SiC/Ni/Pt system's response registered in the usual way by measuring the current-voltage dependence. In this case, an additional power source for the registration of the thermal electromotive force is not required.

  2. Fast and Slow Responses of the South Asian Monsoon System to Anthropogenic Aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganguly, Dilip; Rasch, Philip J.; Wang, Hailong

    2012-09-25

    Using a global climate model with fully predictive aerosol life cycle, we investigate the fast and slow responses of the South Asian monsoon system to anthropogenic aerosol forcing. Our results show that the feedbacks associated with sea surface temperature (SST) change caused by aerosols play a more important role than the aerosol's direct impact on radiation, clouds and land surface (rapid adjustments) in shaping the total equilibrium climate response of the monsoon system to aerosol forcing. Inhomogeneous SST cooling caused by anthropogenic aerosols eventually reduces the meridional tropospheric temperature gradient and the easterly shear of zonal winds over the region,more » slowing down the local Hadley cell circulation, decreasing the northward moisture transport, and causing a reduction in precipitation over South Asia. Although total responses in precipitation are closer to the slow responses in general, the fast component dominates over land areas north of 25°N. Our results also show an east-west asymmetry in the fast responses to anthropogenic aerosols causing increases in precipitation west of 80°E but decreases east of it.« less

  3. A sandwich-designed temperature-gradient incubator for studies of microbial temperature responses.

    PubMed

    Elsgaard, Lars; Jørgensen, Leif Wagner

    2002-03-01

    A temperature-gradient incubator (TGI) is described, which produces a thermal gradient over 34 aluminium modules (15x30x5 cm) intersected by 2-mm layers of partly insulating graphite foil (SigraFlex Universal). The new, sandwich-designed TGI has 30 rows of six replicate sample wells for incubation of 28-ml test tubes. An electric plate heats one end of the TGI, and the other end is cooled by thermoelectric Peltier elements in combination with a liquid cooling system. The TGI is equipped with 24 calibrated Pt-100 temperature sensors and insulated by polyurethane plates. A PC-operated SCADA (Supervisory Control And Data Acquisition) software (Genesis 4.20) is applied for temperature control using three advanced control loops. The precision of the TGI temperature measurements was better than +/-0.12 degrees C, and for a 0-40 degrees C gradient, the temperature at the six replicate sample wells varied less than +/-0.04 degrees C. Temperatures measured in incubated water samples closely matched the TGI temperatures, which showed a linear relationship to the sample row number. During operation for 8 days with a gradient of 0-40 degrees C, the temperature at the cold end was stable within +/-0.02 degrees C, while the temperatures at the middle and the warm end were stable within +/-0.08 degrees C (n=2370). Using the new TGI, it was shown that the fine-scale (1 degrees C) temperature dependence of S(o) oxidation rates in agricultural soil (0-29 degrees C) could be described by the Arrhenius relationship. The apparent activation energy (E(a)) for S(o) oxidation was 79 kJ mol(-1), which corresponded to a temperature coefficient (Q(10)) of 3.1. These data demonstrated that oxidation of S(o) in soil is strongly temperature-dependent. In conclusion, the new TGI allowed a detailed study of microbial temperature responses as it produced a precise, stable, and certifiable temperature gradient by the new and combined use of sandwich-design, thermoelectric cooling, and advanced control loops. The sandwich-design alone reduced the disadvantageous thermal gradient over individual sample wells by 56%.

  4. Agricultural scene understanding

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A. (Principal Investigator); Bauer, M. E.; Silva, L.; Hoffer, R. M.; Baumgardner, M. F.

    1977-01-01

    The author has identified the following significant results. The LACIE field measurement data were radiometrically calibrated. Calibration enabled valid comparisons of measurements from different dates, sensors, and/or locations. Thermal band canopy results included: (1) Wind velocity had a significant influence on the overhead radiance temperature and the effect was quantized. Biomass and soil temperatures, temperature gradient, and canopy geometry were altered. (2) Temperature gradient was a function of wind velocity. (3) Temperature gradient of the wheat canopy was relatively constant during the day. (4) The laser technique provided good quality geometric characterization.

  5. Marginal sea surface temperature variation as a pre-cursor of heat waves over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Ham, Yoo-Geun; Na, Hye-Yun

    2017-11-01

    This study examines the role of the marginal sea surface temperature (SST) on heat waves over Korea. It is found that sea surface warming in the south sea of Korea/Japan (122-138°E, 24- 33°N) causes heat waves after about a week. Due to the frictional force, the positive geopotential height anomalies associated with the south sea warming induce divergent flows over the boundary layer. This divergent flow induces the southerly in Korea, which leads to a positive temperature advection. On the other hand, over the freeatmosphere, the geostrophic wind around high-pressure anomalies flows in a westerly direction over Korea during the south sea warming, which is not effective in temperature advection. Therefore, the positive temperature advection in Korea due to the south sea warming decreases with height. This reduces the vertical potential temperature gradient, which indicates a negative potential vorticity (PV) tendency over Korea. Therefore, the high-pressure anomaly over the south sea of Korea is propagated northward, which results in heat waves due to more incoming solar radiation.

  6. [Endodontics in motion: new concepts, materials and techniques 3. The role of irrigants during root canal treatment].

    PubMed

    van der Sluis, L W M

    2015-10-01

    The aims of root canal irrigation are the chemical dissolution or disruption and the mechanical detachment of pulp tissue, dentin debris and smear layer (instrumentation products), microorganisms (planktonic or biofilm) and their products from the root canal wall, their removal out of the root canal system and their chemical dissolution or disruption. Each of the endodontic irrigation systems has its own irrigant flow characteristics, which should fulfill these aims. Without flow (convection), the irrigant would have to be distributed through diffusion. This process is slow and depends on temperature and concentration gradients. On the other hand, convection is a faster and more efficient transport mechanism. During irrigant flow, frictional forces will occur, for example between the irrigant and the root canal wall (wall shear stress). These frictional forces have a mechanical cleaning effect on the root canal wall. These frictional forces are the result of the flow characteristics related to the different irrigation systems.

  7. Black carbon aerosol-induced Northern Hemisphere tropical expansion

    DOE PAGES

    Kovilakam, Mahesh; Mahajan, Salil

    2015-06-23

    Global climate models (GCMs) underestimate the observed trend in tropical expansion. Recent studies partly attribute it to black carbon (BC) aerosols, which are poorly represented in GCMs. In this paper, we conduct a suite of idealized experiments with the Community Atmosphere Model version 4 coupled to a slab ocean model forced with increasing BC concentrations covering a large swath of the estimated range of current BC radiative forcing while maintaining their spatial distribution. The Northern Hemisphere (NH) tropics expand poleward nearly linearly as BC radiative forcing increases (0.7° W -1 m 2), indicating that a realistic representation of BC couldmore » reduce GCM biases. We find support for the mechanism where BC-induced midlatitude tropospheric heating shifts the maximum meridional tropospheric temperature gradient poleward resulting in tropical expansion. Finally, we also find that the NH poleward tropical edge is nearly linearly correlated with the location of the Intertropical Convergence Zone, which shifts northward in response to increasing BC.« less

  8. Parametric Amplification Protocol for Frequency-Modulated Magnetic Resonance Force Microscopy Signals

    NASA Astrophysics Data System (ADS)

    Harrell, Lee; Moore, Eric; Lee, Sanggap; Hickman, Steven; Marohn, John

    2011-03-01

    We present data and theoretical signal and noise calculations for a protocol using parametric amplification to evade the inherent tradeoff between signal and detector frequency noise in force-gradient magnetic resonance force microscopy signals, which are manifested as a modulated frequency shift of a high- Q microcantilever. Substrate-induced frequency noise has a 1 / f frequency dependence, while detector noise exhibits an f2 dependence on modulation frequency f . Modulation of sample spins at a frequency that minimizes these two contributions typically results in a surface frequency noise power an order of magnitude or more above the thermal limit and may prove incompatible with sample spin relaxation times as well. We show that the frequency modulated force-gradient signal can be used to excite the fundamental resonant mode of the cantilever, resulting in an audio frequency amplitude signal that is readily detected with a low-noise fiber optic interferometer. This technique allows us to modulate the force-gradient signal at a sufficiently high frequency so that substrate-induced frequency noise is evaded without subjecting the signal to the normal f2 detector noise of conventional demodulation.

  9. Do We Really Need Sinusoidal Surface Temperatures to Apply Heat Tracing Techniques to Estimate Streambed Fluid Fluxes?

    NASA Astrophysics Data System (ADS)

    Luce, C. H.; Tonina, D.; Applebee, R.; DeWeese, T.

    2017-12-01

    Two common refrains about using the one-dimensional advection diffusion equation to estimate fluid fluxes, thermal conductivity, or bed surface elevation from temperature time series in streambeds are that the solution assumes that 1) the surface boundary condition is a sine wave or nearly so, and 2) there is no gradient in mean temperature with depth. Concerns on these subjects are phrased in various ways, including non-stationarity in frequency, amplitude, or phase. Although the mathematical posing of the original solution to the problem might lead one to believe these constraints exist, the perception that they are a source of error is a fallacy. Here we re-derive the inverse solution of the 1-D advection-diffusion equation starting with an arbitrary surface boundary condition for temperature. In doing so, we demonstrate the frequency-independence of the solution, meaning any single frequency can be used in the frequency-domain solutions to estimate thermal diffusivity and 1-D fluid flux in streambeds, even if the forcing has multiple frequencies. This means that diurnal variations with asymmetric shapes, gradients in the mean temperature with depth, or `non-stationary' amplitude and frequency (or phase) do not actually represent violations of assumptions, and they should not cause errors in estimates when using one of the suite of existing solution methods derived based on a single frequency. Misattribution of errors to these issues constrains progress on solving real sources of error. Numerical and physical experiments are used to verify this conclusion and consider the utility of information at `non-standard' frequencies and multiple frequencies to augment the information derived from time series of temperature.

  10. Microfludic Device for Creating Ionic Strength Gradients over DNA Microarrays for Efficient DNA Melting Studies and Assay Development

    PubMed Central

    Petersen, Jesper; Poulsen, Lena; Birgens, Henrik; Dufva, Martin

    2009-01-01

    The development of DNA microarray assays is hampered by two important aspects: processing of the microarrays is done under a single stringency condition, and characteristics such as melting temperature are difficult to predict for immobilized probes. A technical solution to these limitations is to use a thermal gradient and information from melting curves, for instance to score genotypes. However, application of temperature gradients normally requires complicated equipment, and the size of the arrays that can be investigated is restricted due to heat dissipation. Here we present a simple microfluidic device that creates a gradient comprising zones of defined ionic strength over a glass slide, in which each zone corresponds to a subarray. Using this device, we demonstrated that ionic strength gradients function in a similar fashion as corresponding thermal gradients in assay development. More specifically, we noted that (i) the two stringency modulators generated melting curves that could be compared, (ii) both led to increased assay robustness, and (iii) both were associated with difficulties in genotyping the same mutation. These findings demonstrate that ionic strength stringency buffers can be used instead of thermal gradients. Given the flexibility of design of ionic gradients, these can be created over all types of arrays, and encompass an attractive alternative to temperature gradients, avoiding curtailment of the size or spacing of subarrays on slides associated with temperature gradients. PMID:19277213

  11. Microfludic device for creating ionic strength gradients over DNA microarrays for efficient DNA melting studies and assay development.

    PubMed

    Petersen, Jesper; Poulsen, Lena; Birgens, Henrik; Dufva, Martin

    2009-01-01

    The development of DNA microarray assays is hampered by two important aspects: processing of the microarrays is done under a single stringency condition, and characteristics such as melting temperature are difficult to predict for immobilized probes. A technical solution to these limitations is to use a thermal gradient and information from melting curves, for instance to score genotypes. However, application of temperature gradients normally requires complicated equipment, and the size of the arrays that can be investigated is restricted due to heat dissipation. Here we present a simple microfluidic device that creates a gradient comprising zones of defined ionic strength over a glass slide, in which each zone corresponds to a subarray. Using this device, we demonstrated that ionic strength gradients function in a similar fashion as corresponding thermal gradients in assay development. More specifically, we noted that (i) the two stringency modulators generated melting curves that could be compared, (ii) both led to increased assay robustness, and (iii) both were associated with difficulties in genotyping the same mutation. These findings demonstrate that ionic strength stringency buffers can be used instead of thermal gradients. Given the flexibility of design of ionic gradients, these can be created over all types of arrays, and encompass an attractive alternative to temperature gradients, avoiding curtailment of the size or spacing of subarrays on slides associated with temperature gradients.

  12. IMPROVED TEMPERATURE GRADIENT FOR MONITORING BEHAVIORAL THERMOREGULATION IN THE RAT

    EPA Science Inventory

    Past studies have found that the laboratory rat placed In a temperature gradient prefers temperatures that are markedly below its lower critical ambient temperature (LCT), whereas other rodents (e.g., mouse, hamster, and guinea pig) generally select thermal environments associate...

  13. Forced convective head cooling device reduces human cross-sectional brain temperature measured by magnetic resonance: a non-randomized healthy volunteer pilot study.

    PubMed

    Harris, B A; Andrews, P J D; Marshall, I; Robinson, T M; Murray, G D

    2008-03-01

    This pilot study in five healthy adult humans forms the pre-clinical assessment of the effect of a forced convective head cooling device on intracranial temperature, measured non-invasively by magnetic resonance spectroscopy (MRS). After a 10 min baseline with no cooling, subjects received 30 min of head cooling followed by 30 min of head and neck cooling via a hood and neck collar delivering 14.5 degrees C air at 42.5 litre s(-1). Over baseline and at the end of both cooling periods, MRS was performed, using chemical shift imaging, to measure brain temperature simultaneously across a single slice of brain at the level of the basal ganglia. Oesophageal temperature was measured continuously using a fluoroptic thermometer. MRS brain temperature was calculated for baseline and the last 10 min of each cooling period. The net brain temperature reduction with head cooling was 0.45 degrees C (SD 0.23 degrees C, P=0.01, 95% CI 0.17-0.74 degrees C) and with head and neck cooling was 0.37 degrees C (SD 0.30 degrees C, P=0.049, 95% CI 0.00-0.74 degrees C). The equivalent net reductions in oesophageal temperature were 0.16 degrees C (SD 0.04 degrees C) and 0.36 degrees C (SD 0.12 degrees C). Baseline-corrected brain temperature gradients from outer through intermediate to core voxels were not significant for either head cooling (P=0.43) or head and neck cooling (P=0.07), indicating that there was not a significant reduction in cooling with progressive depth into the brain. Convective head cooling reduced MRS brain temperature and core brain was cooled.

  14. Effect of Sequence Blockiness on the Morphologies of Surface-grafted Elastin-like Polypeptides

    NASA Astrophysics Data System (ADS)

    Albert, Julie; Sintavanon, Kornkanok; Mays, Robin; MacEwan, Sarah; Chilkoti, Ashutosh; Genzer, Jan

    2014-03-01

    The inter- and intra- molecular interactions among monomeric units of copolymers and polypeptides depend strongly on monomer sequence distribution and dictate the phase behavior of these species both in solution and on surfaces. To study the relationship between sequence and phase behavior, we have designed a series of elastin-like polypeptides (ELPs) with controlled monomer sequences that mimic copolymers with various co-monomer sequence distributions and attached them covalently to silicon substrates from buffer solutions at temperatures below and above the bulk ELPs' lower critical solution temperatures (LCSTs). The dependence of ELP grafting density on solution temperature was examined by ellipsometry and the resultant surface morphologies were examined in air and under water with atomic force microscopy. Depositions performed above the LCST resulted in higher grafting densities and greater surface roughness of ELPs relative to depositions carried out below the LCST. In addition, we are using gradient substrates to examine the effect of ELP grafting density on temperature responsiveness.

  15. Structure and Dynamics of Decadal Anomalies in the Wintertime Midlatitude North Pacific Ocean-Atmosphere System

    NASA Astrophysics Data System (ADS)

    Fang, J.

    2017-12-01

    The structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean- atmosphere system are examined in this study, using the NCEP/NCAR atmospheric reanalysis, HadISST SST and Simple Ocean Data Assimilation data for 1960-2010. The midlatitude decadal anomalies associated with the Pacific Decadal Oscillation are identified, being characterized by an equivalent barotropic atmospheric low (high) pressure over a cold (warm) oceanic surface. Such a unique configuration of decadal anomalies can be maintained by an unstable ocean-atmosphere interaction mechanism in the midlatitudes, which is hypothesized as follows. Associated with a warm PDO phase, an initial midlatitude surface westerly anomaly accompanied with intensified Aleutian low tends to force a negative SST anomaly by increasing upward surface heat fluxes and driving southward Ekman current anomaly. The SST cooling tends to increase the meridional SST gradient, thus enhancing the subtropical oceanic front. As an adjustment of the atmospheric boundary layer to the enhanced oceanic front, the low-level atmospheric meridional temperature gradient and thus the low-level atmospheric baroclinicity tend to be strengthened, inducing more active transient eddy activities that increase transient eddy vorticity forcing. The vorticity forcing that dominates the total atmospheric forcing tends to produce an equivalent barotropic atmospheric low pressure north of the initial westerly anomaly, intensifying the initial anomalies of the midlatitude surface westerly and Aleutian low. Therefore, it is suggested that the midlatitude ocean-atmosphere interaction can provide a positive feedback mechanism for the development of initial anomaly, in which the oceanic front and the atmospheric transient eddy are the indispensable ingredients. Such a positive ocean-atmosphere feedback mechanism is fundamentally responsible for the observed decadal anomalies in the midlatitude North Pacific ocean-atmosphere system.

  16. A stochastic, evolutionary model for range shifts and richness on tropical elevational gradients under Quaternary glacial cycles

    PubMed Central

    Colwell, Robert K.; Rangel, Thiago F.

    2010-01-01

    Quaternary glacial–interglacial cycles repeatedly forced thermal zones up and down the slopes of mountains, at all latitudes. Although no one doubts that these temperature cycles have left their signature on contemporary patterns of geography and phylogeny, the relative roles of ecology and evolution are not well understood, especially for the tropics. To explore key mechanisms and their interactions in the context of chance events, we constructed a geographical range-based, stochastic simulation model that incorporates speciation, anagenetic evolution, niche conservatism, range shifts and extinctions under late Quaternary temperature cycles along tropical elevational gradients. In the model, elevational patterns of species richness arise from the differential survival of founder lineages, consolidated by speciation and the inheritance of thermal niche characteristics. The model yields a surprisingly rich variety of realistic patterns of phylogeny and biogeography, including close matches to a variety of contemporary elevational richness profiles from an elevational transect in Costa Rica. Mountaintop extinctions during interglacials and lowland extinctions at glacial maxima favour mid-elevation lineages, especially under the constraints of niche conservatism. Asymmetry in temperature (greater duration of glacial than of interglacial episodes) and in lateral area (greater land area at low than at high elevations) have opposing effects on lowland extinctions and the elevational pattern of species richness in the model—and perhaps in nature, as well. PMID:20980317

  17. Influence of natural temperature gradients on measurements of xylem sap flow with thermal dissipation probes. 1. Field observations and possible remedies.

    PubMed

    Do, F; Rocheteau, A

    2002-06-01

    The thermal dissipation method is simple and widely used for measuring sap flow in large stems. As with several other thermal methods, natural temperature gradients are assumed to be negligible in the sapwood being measured. We studied the magnitude and variability of natural temperature gradients in sapwood of Acacia trees growing in the Sahelian zone of Senegal, analyzed their effects on sap flow measurements, and investigated possible solutions. A new measurement approach employing cyclic heating (45 minutes of heating and 15 minutes of cooling; 45/15) was also tested. Three-day measurement sequences that included 1 day without heating, a second day with continuous heating and a third day with cyclic heating were recorded during a 6.5-month period using probes installed at three azimuths in a tree trunk. Natural temperature gradients between the two probes of the sensor unit, spaced 8 to 10 cm vertically, were rarely negligible (i.e., < 0.2 degrees C): they were positive during the night and negative during the day, with an amplitude ranging from 0.3 to 3.5 degrees C depending on trunk azimuth, day and season. These temperature gradients had a direct influence on the signal from the continuously heated sensors, inducing fluctuations in the nighttime reference signal. The resulting errors in sap flow estimates can be greater than 100%. Correction protocols have been proposed in previous studies, but they were unsuitable because of the high spatial and temporal variability of the natural temperature gradients. We found that a measurement signal derived from a noncontinuous heating system could be an attractive solution because it appears to be independent of natural temperature gradients. The magnitude and variability of temperature gradients that we observed were likely exacerbated by the combination of open stand, high solar radiation and low sap flow rate. However, for all applications of the thermal dissipation method, it is wise to check regularly for natural temperature gradients by switching off the heater.

  18. Cooling optically levitated dielectric nanoparticles via parametric feedback

    NASA Astrophysics Data System (ADS)

    Neukirch, Levi; Rodenburg, Brandon; Bhattacharya, Mishkatul; Vamivakas, Nick

    2015-05-01

    The inability to leverage resonant scattering processes involving internal degrees of freedom differentiates optical cooling experiments performed with levitated dielectric nanoparticles, from similar atomic and molecular traps. Trapping in optical cavities or the application of active feedback techniques have proven to be effective ways to circumvent this limitation. We present our nanoparticle optical cooling apparatus, which is based on parametric feedback modulation of a single-beam gradient force optical trap. This scheme allows us to achieve effective center-of-mass temperatures well below 1 kelvin for our ~ 1 ×10-18 kg particles, at modest vacuum pressures. The method provides a versatile platform, with parameter tunability not found in conventional tethered nanomechanical systems. Potential applications include investigations of nonequilibrium nanoscale thermodynamics, ultra-sensitive force metrology, and mesoscale quantum mechanics and hybrid systems. Supported by the office of Naval Research award number N000141410442.

  19. Adaptive evolution of Escherichia coli to Ciprofloxacin in controlled stress environments: emergence of tolerance in spatial and temporal gradients

    NASA Astrophysics Data System (ADS)

    Deng, J.; Sanford, R. A.; Dong, Y.; Shechtman, L. A.; Zhou, L.; Alcalde, R.; Werth, C. J.; Fouke, B. W.

    2016-12-01

    Microorganisms in nature have evolved in response to a variety of environmental stresses, including gradients of temperature, pH, substrate availability and aqueous chemistry. While environmental stresses are considered to be the driving forces of adaptive evolution, the impact and extent of any specific stress needed to drive such changes has not been well characterized. In this study, the antibiotic Ciprofloxacin was used as a stressor and systematically applied to E. coli st. 307 cells via a spatial gradient in a microfluidic pore network and a temporal gradient in batch cultures. The microfluidic device facilitated in vitro real-time tracking of bacterial abundances and dynamic spatial distributions in response to the gradients of both the antibiotic and nutrients. Cells collected from the microfluidic device showed growth on plates containing up to 10-times the original minimum inhibition concentration (MIC). In batch systems, Ciprofloxacin was used to evaluate adaptive responses via temporal gradients, in which the stressor concentration was incrementally increased over time with each transfer of the culture after 24 hours of growth. Responses of E. coli 307 to these stress patterns were measured by quantifying changes in the MIC for Ciprofloxacin. Over a period of 18 days of step-wise concentration increments, bacterial cells were observed to acquire tolerance gradually and eventually adapt to a 28-fold increase in the original MIC. Samples at different stages within the temporal Ciprofloxacin gradient treatment show different extents of resistance. All samples exhibited resistance exceeding the highest exposure stress concentration. In combination with the spatial and temporal gradient systems, this work provides the first comprehensive measure of the dynamic resistance of E. coli in response to Ciprofloxacin concentration gradients. These will provide invaluable insights to understand the effects of antibiotic stresses on bacterial adaptive evolution in medical settings and shed light on understanding the mechanics of microbial evolution.

  20. Evolution of Elemental Composition and Morphology in Fusion Reactor's First Wall

    NASA Astrophysics Data System (ADS)

    Kim, Yong W.

    2007-11-01

    Forcing of a multi-element alloy by a gradient field can modify the spatial profile of its elemental composition. The gradient field may be in the imposed temperature or the flux of impinging particles. In a fusion device, both scenarios apply. The consequences must be well understood because they change the thermal transport properties as well as the strength, corrosion and wear characteristics of the first wall materials. Given the large number of directions material evolution can take, new robust methods of near-surface composition analyses are needed. This paper presents a new measurement methodology and requisite instrumentation, which can provide measures of local elemental composition and transport properties simultaneously by time-resolved spectroscopy of laser-produced plasma (LPP) plume emissions from the specimen surfaces. The studies to date show that the composition profiles can be modified thermally in a reproducible manner; disparate thermal transport of constituent atoms can incur modifications of near-surface composition profiles.[Y.W. Kim, Int. J. Thermophysics 28, 732 (2007)] Also, disparate fluxes of fuel particles, fusion products and impurities force the first walls in myriad ways. Repetitive application of the LPP analysis can resolve the near-surface composition profile as well as transport properties over several microns with depth resolutions to 20 nm. Work supported in part by NSF-DMR.

  1. Observations of Inner Shelf Flows Influenced by a Small-Scale River Plume in the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Roth, M.; MacMahan, J.; Reniers, A.; Ozgokmen, T. M.

    2016-02-01

    Recent work has demonstrated that wind and waves are important forcing mechanisms for the inner shelf vertical current structure. Here, the inner shelf flows are evaluated away from an adjacent inlet where a small-scale buoyant plume emerges. The plume's nearshore extent, speed, vertical thickness, and density are controlled by the passage of low-pressure extratropical cyclones that are common in the northern Gulf of Mexico. The colder, brackish plume water provides vertical stratification and a cross-shore density gradient with the warmer, saline oceanic water. An Acoustic Doppler Current Profiler (ADCP) was deployed in 10m water depth as part of an intensive 2-week experiment (SCOPE), which also obtained wind and cross-shelf temperature, salinity, and velocity. The 10m ADCP remained collecting an additional year of velocity observations. The plume was not always present, but episodically influenced the experiment site. When the plume reached the site, the alongshore surface and subsurface typically flowed in opposite directions, likely caused by plume-induced pressure gradients. Plumes that extended into the subsurface appear to have caused depth-averaged onshore flow above that expected from wind and wave-driven forcing. Observations from SCOPE and the 1-year ADCP are used to describe seasonal full-depth flow patterns influenced by wind, waves, and plume presence.

  2. Magnetic Susceptibility Effects and Lorentz Damping in Diamagnetic Fluids

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Leslie, Fred W.

    2000-01-01

    A great number of crystals (semi-conductor and protein) grown in space are plagued by convective motions which contribute to structural flaws. The character of these instabilities is not well understood but is associated with density variations in the presence of residual gravity and g-jitter. Both static and dynamic (rotating or travelling wave) magnetic fields can be used to reduce the effects of convection in materials processing. In semi-conductor melts, due to their relatively high electrical conductivity, the induced Lorentz force can be effectively used to curtail convective effects. In melts/solutions with reduced electrical conductivity, such as aqueous solutions used in solution crystal growth, protein crystal growth and/or model fluid experiments for simulating melt growth, however, the variation of the magnetic susceptibility with temperature and/or concentration can be utilized to better damp fluid convection than the Lorentz force method. This paper presents a comprehensive, comparative numerical study of the relative damping effects using static magnetic fields and gradients in a simple geometry subjected to a thermal gradient. The governing equations are formulated in general terms and then simplified for the numerical calculations. Operational regimes, based on the best damping technique for different melts/solutions are identified based on fluid properties. Comparisons are provided between the numerical results and available results from experiments in surveyed literature.

  3. Numerical Analysis of Temperature Gradients and Interface Shape During Directional Solidification of Al and Al-Cu Alloy Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Sen, Subhayu; Mukherjee, Sundeep; Catalina, Adrian; Stefanescu, Doru M.

    1999-01-01

    Numerical modeling was undertaken to analyze the influence of radial thermal gradient on solid/liquid (s/1) interface shape and convection patterns during solidification of pure Al and Al-4 wt% Cu alloy. The objective of the numerical task was to predict the influence of convective velocity on an insoluble particle near a s/l interface. These predictions would then be used to define the minimum gravity level (g) required to investigate the fundamental physics of interaction between a particle and a s/I interface. To satisfy this objective, steady state calculations were performed for different gravity levels and orientations with the gravity vector. ne furnace configuration used in this analysis is the proposed International Space Station Furnace, Quench Module Insert (QMI) 1. Results from a thermal model of the furnace core were used as initial boundary conditions for solidification modeling. General model of binary alloy solidification was based on the finite element code FIDAP. It was found that for the worst case orientation of 90 degrees with the gravity vector and a g level of 10(exp -4)g(sub o) (g(sub o) = 9.8 m/s(exp 2)) the dominant forces acting on the particle would be the fundamental drag and interfacial forces.

  4. Air temperature gradient in large industrial hall

    NASA Astrophysics Data System (ADS)

    Karpuk, Michał; Pełech, Aleksander; Przydróżny, Edward; Walaszczyk, Juliusz; Szczęśniak, Sylwia

    2017-11-01

    In the rooms with dominant sensible heat load, volume airflow depends on many factors incl. pre-established temperature difference between exhaust and supply airflow. As the temperature difference is getting higher, airflow volume drops down, consequently, the cost of AHU is reduced. In high industrial halls with air exhaust grids located under the ceiling additional temperature gradient above working zone should be taken into consideration. In this regard, experimental research of the vertical air temperature gradient in high industrial halls were carried out for the case of mixing ventilation system The paper presents the results of air temperature distribution measurements in high technological hall (mechanically ventilated) under significant sensible heat load conditions. The supply airflow was delivered to the hall with the help of the swirl diffusers while exhaust grids were located under the hall ceiling. Basing on the air temperature distribution measurements performed on the seven pre-established levels, air temperature gradient in the area between 2.0 and 7.0 m above the floor was calculated and analysed.

  5. Effects of low central fuelling on density and ion temperature profiles in reversed shear plasmas on JT-60U

    NASA Astrophysics Data System (ADS)

    Takenaga, H.; Ide, S.; Sakamoto, Y.; Fujita, T.; JT-60 Team

    2008-07-01

    Effects of low central fuelling on density and ion temperature profiles have been investigated using negative ion based neutral beam injection and electron cyclotron heating (ECH) in reversed shear plasmas on JT-60U. Strong internal transport barrier (ITB) was maintained in density and ion temperature profiles, when central fuelling was decreased by switching positive ion based neutral beam injection to ECH after the strong ITB formation. Similar density and ion temperature ITBs were formed for the low and high central fuelling cases during the plasma current ramp-up phase. Strong correlation between the density gradient and the ion temperature gradient was observed, indicating that particle transport and ion thermal transport are strongly coupled or the density gradient assists the ion temperature ITB formation through suppression of drift wave instabilities such as ion temperature gradient mode. These results support that the density and ion temperature ITBs can be formed under reactor relevant conditions.

  6. The coupled atmosphere-chemistry-ocean model SOCOL-MPIOM

    NASA Astrophysics Data System (ADS)

    Muthers, S.; Anet, J. G.; Stenke, A.; Raible, C. C.; Rozanov, E.; Brönnimann, S.; Peter, T.; Arfeuille, F. X.; Shapiro, A. I.; Beer, J.; Steinhilber, F.; Brugnara, Y.; Schmutz, W.

    2014-05-01

    The newly developed atmosphere-ocean-chemistry-climate model SOCOL-MPIOM is presented by demonstrating the influence of the interactive chemistry module on the climate state and the variability. Therefore, we compare pre-industrial control simulations with (CHEM) and without (NOCHEM) interactive chemistry. In general, the influence of the chemistry on the mean state and the variability is small and mainly restricted to the stratosphere and mesosphere. The largest differences are found for the atmospheric dynamics in the polar regions, with slightly stronger northern and southern winter polar vortices in CHEM. The strengthening of the vortex is related to larger stratospheric temperature gradients, which are attributed to a parametrization of the absorption of ozone and oxygen in the Lyman-alpha, Schumann-Runge, Hartley, and Higgins bands. This effect is parametrized in the version with interactive chemistry only. A second reason for the temperature differences between CHEM and NOCHEM is related to diurnal variations in the ozone concentrations in the higher atmosphere, which are missing in NOCHEM. Furthermore, stratospheric water vapour concentrations differ substantially between the two experiments, but their effect on the temperatures is small. In both setups, the simulated intensity and variability of the northern polar vortex is inside the range of present day observations. Sudden stratospheric warming events are well reproduced in terms of their frequency, but the distribution amongst the winter months is too uniform. Additionally, the performance of SOCOL-MPIOM under changing external forcings is assessed for the period 1600-2000 using an ensemble of simulations driven by a spectral solar forcing reconstruction. The amplitude of the reconstruction is large in comparison to other state-of-the-art reconstructions, providing an upper limit for the importance of the solar signal. In the pre-industrial period (1600-1850) the simulated surface temperature trends are in reasonable agreement with temperature reconstructions, although the multi-decadal variability is more pronounced. This enhanced variability can be attributed to the variability in the solar forcing. The simulated temperature reductions during the Maunder Minimum are in the lowest probability range of the proxy records. During the Dalton Minimum, when also volcanic forcing is an important driver of temperature variations, the agreement is better. In the industrial period from 1850 onward SOCOL-MPIOM overestimates the temperature increase in comparison to observational data sets. Sensitivity simulations show that this overestimation can be attributed to the increasing trend in the solar forcing reconstruction that is used in this study and an additional warming induced by the simulated ozone changes.

  7. Global simulation of the induction heating TSSG process of SiC for the effects of Marangoni convection, free surface deformation and seed rotation

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takuya; Okano, Yasunori; Ujihara, Toru; Dost, Sadik

    2017-07-01

    A global numerical simulation was performed for the induction heating Top-Seeded Solution Growth (TSSG) process of SiC. Analysis included the furnace and growth melt. The effects of interfacial force due to free surface tension gradient, the RF coil-induced electromagnetic body force, buoyancy, melt free surface deformation, and seed rotation were examined. The simulation results showed that the contributions of free surface tension gradient and the electromagnetic body force to the melt flow are significant. Marangoni convection affects the growth process adversely by making the melt flow downward in the region under the seed crystal. This downward flow reduces carbon flux into the seed and consequently lowers growth rate. The effects of free surface deformation and seed rotation, although positive, are not so significant compared with those of free surface tension gradient and the electromagnetic body force. Due to the small size of the melt the contribution of buoyancy is also small.

  8. Results of temperature gradient and heat flow in Santiam Pass Area, Oregon, Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, B.L.; Gardner, M.C.; Koenig, J.B.

    The conclusions of this report are: (1) There is a weakly defined thermal anomaly within the area examined by temperature-gradient holes in the Santiam Pass area. This is a relict anomaly showing differences in permeability between the High Cascades and Western Cascades areas, more than a fundamental difference in shallow crustal temperatures. (2) The anomaly as defined by the 60 F isotherms at 400 feet follows a north-south trend immediately westward of the Cascade axis in the boundary region. It is clear that all holes spudded into High Cascades rocks result in isothermal and reversal gradients. Holes spudded in Westernmore » Cascades rocks result in positive gradients. (3) Cold groundwater flow influences and masks temperature gradients in the High Cascades to a depth of at least 700 feet, especially eastward from the major north-south trending faults. Pleistocene and Holocene rocks are very permeable aquifers. (4) Shallow gradient drilling in the lowlands westward of the faults provides more interpretable information than shallow drilling in the cold-water recharge zones. Topographic and climatological effects can be filtered out of the temperature gradient results. (5) The thermal anomaly seems to have 2 centers: one in the Belknap-Foley area, and one northward in the Sand Mountain area. The anomalies may or may not be connected along a north-south trend. (6) A geothermal effect is seen in holes downslope of the Western-High Cascade boundary. Mixing with cold waters is a powerful influence on temperature gradient data. (7) The temperature-gradient program has not yet examined and defined the geothermal resources potential of the area eastward of the Western Cascades-High Cascades boundary. Holes to 1500-2000 feet in depth are required to penetrate the high permeability-cold groundwater regime. (8) Drilling conditions are unfavorable. There are very few accessible level drill sites. Seasonal access problems and environmental restrictions together with frequent lost circulation results in very high costs per foot drilled.« less

  9. Ion temperature gradient mode driven solitons and shocks

    NASA Astrophysics Data System (ADS)

    Zakir, U.; Adnan, Muhammad; Haque, Q.; Qamar, Anisa; Mirza, Arshad M.

    2016-04-01

    Ion temperature gradient (ITG) driven solitons and shocks are studied in a plasma having gradients in the equilibrium number density and equilibrium ion temperature. In the linear regime, it is found that the ion temperature and the ratio of the gradient scale lengths, ηi=Ln/LT , affect both the real frequency and the growth rate of the ITG driven wave instability. In the nonlinear regime, for the first time we derive a Korteweg de Vries-type equation for the ITG mode, which admits solitary wave solution. It is found that the ITG mode supports only compressive solitons. Further, it is noticed that the soliton amplitude and width are sensitive to the parameter ηi=Ln/LT . Second, in the presence of dissipation in the system, we obtain a Burger type equation, which admits the shock wave solution. This work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron-ion plasma having density and ion temperature gradients. For illustration, the model has been applied to tokamak plasma.

  10. Study of Chemotaxis and Cell–Cell Interactions in Cancer with Microfluidic Devices

    PubMed Central

    Sai, Jiqing; Rogers, Matthew; Hockemeyer, Kathryn; Wikswo, John P.; Richmond, Ann

    2017-01-01

    Microfluidic devices have very broad applications in biological assays from simple chemotaxis assays to much more complicated 3D bioreactors. In this chapter, we describe the design and methods for performing chemotaxis assays using simple microfluidic chemotaxis chambers. With these devices, using real-time video microscopy we can examine the chemotactic responses of neutrophil-like cells under conditions of varying gradient steepness or flow rate and then utilize software programs to calculate the speed and angles of cell migration as gradient steepness and flow are varied. Considering the shearing force generated on the cells by the constant flow that is required to produce and maintain a stable gradient, the trajectories of the cell migration will reflect the net result of both shear force generated by flow and the chemotactic force resulting from the chemokine gradient. Moreover, the effects of mutations in chemokine receptors or the presence of inhibitors of intracellular signals required for gradient sensing can be evaluated in real time. We also describe a method to monitor intracellular signals required for cells to alter cell polarity in response to an abrupt switch in gradient direction. Lastly, we demonstrate an in vitro method for studying the interactions of human cancer cells with human endothelial cells, fibroblasts, and leukocytes, as well as environmental chemokines and cytokines, using 3D microbioreactors that mimic the in vivo microenvironment. PMID:26921940

  11. The semi-diurnal cycle of dissipation in a ROFI: model-measurement comparisons

    NASA Astrophysics Data System (ADS)

    Simpson, John H.; Burchard, Hans; Fisher, Neil R.; Rippeth, Tom P.

    2002-07-01

    The Liverpool Bay Region of Freshwater Influence in the Irish Sea exhibits strong horizontal gradients which interact with the dominant tidal flow. A 25 h series of measurements of the cycle of turbulent dissipation with the FLY dissipation profiler shows a strong asymmetry between ebb and flood which is associated with a cycle of increasing stratification on the ebb and progressive mixing on the flood which results in vertical homogeneity as high water is approached. At this time strong dissipation extends throughout the water column in contrast to the ebb when there is a near shutdown of dissipation in the upper half of the column. The cycle of stratification and dissipation is closely consistent for the two semi-diurnal tidal cycles observed. We have attempted to simulate this situation, which involves a complex suite of processes including tidal straining and mixing, using a version of the k-ɛ closure scheme in a 1-d dynamical model which is forced by a combination of the observed tidal flow and horizontal temperature and salinity gradients. The latter were measured directly at the end of the observational series but, in order to focus on the cycle of dissipation, the correct reproduction of the temperature and salinity cycle can be assured by a nudging procedure which obliges the model temperature and salinity values to track the observations. With or without this procedure, the model gives a reasonable account of the dissipation and its asymmetric behaviour on ebb and flood although nudging improves the timing of peak dissipation in the upper part of the water column near highwater. The model has also been used to examine the ratio of shear production (P/ɛ) and buoyancy inputs to dissipation (B/ɛ). The variation of these quantities over the tidal cycle confirms the important role of convective motions forced by tidal straining near the end of the flood phase of the tide.

  12. Sensitivity of idealised baroclinic waves to mean atmospheric temperature and meridional temperature gradient changes

    NASA Astrophysics Data System (ADS)

    Rantanen, Mika; Räisänen, Jouni; Sinclair, Victoria A.; Järvinen, Heikki

    2018-06-01

    The sensitivity of idealised baroclinic waves to different atmospheric temperature changes is studied. The temperature changes are based on those which are expected to occur in the Northern Hemisphere with climate change: (1) uniform temperature increase, (2) decrease of the lower level meridional temperature gradient, and (3) increase of the upper level temperature gradient. Three sets of experiments are performed, first without atmospheric moisture, thus seeking to identify the underlying adiabatic mechanisms which drive the response of extra-tropical storms to changes in the environmental temperature. Then, similar experiments are performed in a more realistic, moist environment, using fixed initial relative humidity distribution. Warming the atmosphere uniformly tends to decrease the kinetic energy of the cyclone, which is linked both to a weaker capability of the storm to exploit the available potential energy of the zonal mean flow, and less efficient production of eddy kinetic energy in the wave. Unsurprisingly, the decrease of the lower level temperature gradient weakens the resulting cyclone regardless of the presence of moisture. The increase of the temperature gradient in the upper troposphere has a more complicated influence on the storm dynamics: in the dry atmosphere the maximum eddy kinetic energy decreases, whereas in the moist case it increases. Our analysis suggests that the slightly unexpected decrease of eddy kinetic energy in the dry case with an increased upper tropospheric temperature gradient originates from the weakening of the meridional heat flux by the eddy. However, in the more realistic moist case, the diabatic heating enhances the interaction between upper- and low-level potential vorticity anomalies and hence helps the surface cyclone to exploit the increased upper level baroclinicity.

  13. Effect of temperature gradient on the optical quality of mercurous chloride crystals

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Davies, D. K.; Gottlieb, M.; Henningsen, T.; Mazelsky, R.

    1989-01-01

    Single crystals of mercurous chloride were grown at temperature gradients of 8, 11 and 17 K/cm by the physical vapor transport method. The optical quality of these crystals was evaluated by measuring bulk scattering and inhomogeneity of refractive index by birefringence interferometry. It was observed that a high temperature gradient at the solid-vapor interface induced thermal stresses and crystals showed higher scattering and irregular fringes.

  14. Influence of the Latitudinal Temperature Gradient on Soil Dust Concentration and Deposition in Greenland

    NASA Technical Reports Server (NTRS)

    Tegen, Ina; Rind, David

    2000-01-01

    To investigate the effects of changes in the latitudinal temperature gradient and the global mean temperature on dust concentration in the Northern Hemisphere, experiments with the Goddard Institute for Space Studies General Circulation Model (GISS GCM) are performed. The dust concentration over Greenland is calculated from sources in central and eastern Asia, which are integrated on-line in the model. The results show that an increase in the latitudinal temperature gradient increases both the Asian dust source strength and the concentration over Greenland. The source increase is the result of increased surface winds, and to a minor extent, the increase in Greenland dust is also associated with increased northward transport. Cooling the climate in addition to this increased gradient leads to a decrease in precipitation scavenging, which helps produce a further (slight) increase in Greenland dust in this experiment. Reducing the latitudinal gradient reduces the surface wind and hence the dust source, with a subsequent reduction in Greenland dust concentrations. Warming the climate in addition to this reduced gradient leads to a further reduction in Greenland dust due to enhanced precipitation scavenging. These results can be used to evaluate the relationship of Greenland ice core temperature changes to changes in the latitudinal and global temperatures.

  15. Shadowgraph Study of Gradient Driven Fluctuations

    NASA Technical Reports Server (NTRS)

    Cannell, David; Nikolaenko, Gennady; Giglio, Marzio; Vailati, Alberto; Croccolo, Fabrizio; Meyer, William

    2002-01-01

    A fluid or fluid mixture, subjected to a vertical temperature and/or concentration gradient in a gravitational field, exhibits greatly enhanced light scattering at small angles. This effect is caused by coupling between the vertical velocity fluctuations due to thermal energy and the vertically varying refractive index. Physically, small upward or downward moving regions will be displaced into fluid having a refractive index different from that of the moving region, thus giving rise to the enhanced scattering. The scattered intensity is predicted to vary with scattering wave vector q, as q(sup -4), for sufficiently large q, but the divergence is quenched by gravity at small q. In the absence of gravity, the long wavelength fluctuations responsible for the enhanced scattering are predicted to grow until limited by the sample dimensions. It is thus of interest to measure the mean-squared amplitude of such fluctuations in the microgravity environment for comparison with existing theory and ground based measurements. The relevant wave vectors are extremely small, making traditional low-angle light scattering difficult or impossible because of stray elastically scattered light generated by optical surfaces. An alternative technique is offered by the shadowgraph method, which is normally used to visualize fluid flows, but which can also serve as a quantitative tool to measure fluctuations. A somewhat novel shadowgraph apparatus and the necessary data analysis methods will be described. The apparatus uses a spatially coherent, but temporally incoherent, light source consisting of a super-luminescent diode coupled to a single-mode optical fiber in order to achieve extremely high spatial resolution, while avoiding effects caused by interference of light reflected from the various optical surfaces that are present when using laser sources. Results obtained for a critical mixture of aniline and cyclohexane subjected to a vertical temperature gradient will be presented. The sample was confined between two horizontal parallel sapphire plates with a vertical spacing of 1 mm. The temperatures of the sapphire plates were controlled by independent circulating water loops that used Peltier devices to add or remove heat from the room air as required. For a mixture with a temperature gradient, two effects are involved in generating the vertical refractive index gradient, namely thermal expansion and the Soret effect, which generates a concentration gradient in response to the applied temperature gradient. For the aniline/cyclohexane system, the denser component (aniline) migrates toward the colder surface. Consequently, when heating from above, both effects result in the sample density decreasing with altitude and are stabilizing in the sense that no convective motion occurs regardless of the magnitude of the applied temperature gradient. The Soret effect is strong near a binary liquid critical point, and thus the dominant effect is due to the induced concentration gradient. The results clearly show the divergence at low q and the predicted gravitational quenching. Results obtained for different applied temperature gradients at varying temperature differences from the critical temperature, clearly demonstrate the predicted divergence of the thermal diffusion ratio. Thus, the more closely the critical point is approached, the smaller becomes the temperature gradient required to generate the same signal. Two different methods have been used to generate pure concentration gradients. In the first, a sample cell was filled with a single fluid, ethylene glycol, and a denser miscible fluid, water, was added from below thus establishing a sharp interface to begin the experiment. As time went on the two fluids diffused into each other, and large amplitude fluctuations were clearly observed at low q. The effects of gravitational quenching were also evident. In the second method, the aniline/cyclohexane sample was used, and after applying a vertical temperature gradient for several hours, the top and bottom temperatures were set equal and the thermal gradient died on a time scale of seconds, leaving the Soret induced concentration gradient in place. Again, large-scale fluctuations were observed and died away slowly in amplitude as diffusion destroyed the initial concentration gradient.

  16. Can a reduction of solar irradiance counteract CO2-induced climate change? - Results from four Earth system models

    NASA Astrophysics Data System (ADS)

    Schmidt, H.; Alterskjær, K.; Karam, D. Bou; Boucher, O.; Jones, A.; Kristjansson, J. E.; Niemeier, U.; Schulz, M.; Aaheim, A.; Benduhn, F.; Lawrence, M.; Timmreck, C.

    2012-01-01

    In this study we compare the response of four state-of-the-art Earth system models to climate engineering under scenario G1 of the GeoMIP and IMPLICC model intercomparison projects. In G1, the radiative forcing from an instantaneous quadrupling of the CO2 concentration, starting from the preindustrial level, is balanced by a reduction of the solar constant. Model responses to the two counteracting forcings in G1 are compared to the preindustrial climate in terms of global means and regional patterns and their robustness. While the global mean surface air temperature in G1 remains almost unchanged, the meridional temperature gradient is reduced in all models compared to the control simulation. Another robust response is the global reduction of precipitation with strong effects in particular over North and South America and northern Eurasia. It is shown that this reduction is only partly compensated by a reduction in evaporation so that large continental regions are drier in the engineered climate. In comparison to the climate response to a quadrupling of CO2 alone the temperature responses are small in experiment G1. Precipitation responses are, however, of comparable magnitude but in many regions of opposite sign.

  17. Evaporative cooling of the dipolar hydroxyl radical.

    PubMed

    Stuhl, Benjamin K; Hummon, Matthew T; Yeo, Mark; Quéméner, Goulven; Bohn, John L; Ye, Jun

    2012-12-20

    Atomic physics was revolutionized by the development of forced evaporative cooling, which led directly to the observation of Bose-Einstein condensation, quantum-degenerate Fermi gases and ultracold optical lattice simulations of condensed-matter phenomena. More recently, substantial progress has been made in the production of cold molecular gases. Their permanent electric dipole moment is expected to generate systems with varied and controllable phases, dynamics and chemistry. However, although advances have been made in both direct cooling and cold-association techniques, evaporative cooling has not been achieved so far. This is due to unfavourable ratios of elastic to inelastic scattering and impractically slow thermalization rates in the available trapped species. Here we report the observation of microwave-forced evaporative cooling of neutral hydroxyl (OH(•)) molecules loaded from a Stark-decelerated beam into an extremely high-gradient magnetic quadrupole trap. We demonstrate cooling by at least one order of magnitude in temperature, and a corresponding increase in phase-space density by three orders of magnitude, limited only by the low-temperature sensitivity of our spectroscopic thermometry technique. With evaporative cooling and a sufficiently large initial population, much colder temperatures are possible; even a quantum-degenerate gas of this dipolar radical (or anything else it can sympathetically cool) may be within reach.

  18. Geothermal Exploration of the Winston Graben, Central New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Sophy, M. J.; Kelley, S. A.

    2011-12-01

    We are assessing the geothermal potential of the Winston Graben of central New Mexico using borehole temperature logs and geophysical data. The Winston Graben is a late Cenozoic rift basin, part of the larger Rio Grande rift, which is 5 to 10 km wide and 56 km long with northern and southern termini occurring at accommodation zones that coincide with late Cenozoic volcanic lineaments. The graben is interpreted to be symmetric based on geologic mapping, with 2 km of stratigraphic offset on both the western and eastern margins. The graben is bordered by the Black Range to the west and is separated from the Rio Grande valley by the Sierra Cuchillo, a horst block made of Paleozoic rocks intruded by a laccolith. Geothermal and geophysical data, including water table measurements, well temperature logs, thermal conductivity samples, bottom hole temperatures, water chemistry, and gravity data have been extracted from the New Mexico Geothermal Database, part of the National Geothermal Database, and the Geonet Gravity and Magnetic Dataset Repository. Combined with existing geologic maps of the Winston Graben and surroundings, these data help to identify spatial relationships between geologic structures and groundwater parameters and distribution. Geothermal gradients from industry temperature-depth well profiles range from 20°C/km to 60°C/km with a spatial distribution of higher gradients located on the eastern side of the Sierra Cuchillo horst, which is where a mapped warm spring is located. Lower thermal gradients were observed to the west in the groundwater recharge area of the basin. Analysis of Bouguer gravity data indicate a gravity low coinciding with the center of the Winston Graben, which is attributed to be the deepest part of the basin, symetrically surrounded by gravity highs. Gravity highs coincide with the middle Cenozoic Morenci and Chise volcanic lineaments along the northern and southern ends of the graben. The mapped warm spring occurs at the intersection of basin bounding faults and the Chise lineament. Water table gradient information from phreatic aquifers less than 75 meters deep suggests both along axis and cross axis flow direction within the basin. Because the temperature anomalies trend east-west and water table gradients trend north-south, a two component hydrogeologic system may exist. The east-west trend may be the result of deep groundwater, heated along its flowpath beneath the basin and the Sierra Cuchillo, being forced to the surface at structural zones. Major rift bounding faults along the Sierra Cuchillo horst block serve as fluid pathways for the existing warm springs, and a low temperature geothermal resource may have formed as deep warm, and shallow cool waters interact. Planned work on this project includes collecting hydrogen and oxygen isotopic data of precipitation and groundwater which may show distinct water chemistries of a two component system, continued temperature logging of deeper wells in order to understand temperature distributions at depth, and an increased number of gravity measurements of the southern end of the Winston Graben to improve mapping of the southern accommodation zone relative to the hydrogeologic system.

  19. On the use of high-gradient magnetic force field in capturing airborne particles

    DOE PAGES

    Cheng, Mengdawn; Murphy, Bart L.; Moon, Ji Won; ...

    2018-06-01

    Airborne particles in the environment are generally smaller than a couple of microns. Use of magnetic force to collect aerosol particles thus has not been popular as the other means. There are billions of airborne particles emitted by a host of man-made sources with the particle size smaller than 1 µm and possess some magnetic susceptibility. We are thus interested in the use of high-gradient magnetic collection to extract the magnetic fraction in an aerosol population. Here in this study, we reported that the magnetic force is the dominant force in collection of ferromagnetic particles of mobility equivalent size largermore » than or equal to 50 nm in a high-gradient permanent-magnetic aerosol collector, while the diffusiophoretic force is responsible for particles smaller than 10 nm. Both forces compete for particles in between these two sizes in the magnetic aerosol collector designed for this study. To enable a wide-range effective collection of aerosol particles across entire size spectrum from a few nanometers to tens of a micron, the ORNL-designed high-gradient magnetic collector would require the use of an engineered matrix. Thus, the matrix design for a specific application becomes application specific. Irrespective of the collection efficiency, the use of permanent magnets to collect magnetic particles is feasible and also highly selective because it tunes into the magnetic susceptibility of the particles as well as the size. Lastly, the use of permanent magnets enables the collector to be operated at a minimal power requirement, which is a critical factor in long-term field operation.« less

  20. On the use of high-gradient magnetic force field in capturing airborne particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Mengdawn; Murphy, Bart L.; Moon, Ji Won

    Airborne particles in the environment are generally smaller than a couple of microns. Use of magnetic force to collect aerosol particles thus has not been popular as the other means. There are billions of airborne particles emitted by a host of man-made sources with the particle size smaller than 1 µm and possess some magnetic susceptibility. We are thus interested in the use of high-gradient magnetic collection to extract the magnetic fraction in an aerosol population. Here in this study, we reported that the magnetic force is the dominant force in collection of ferromagnetic particles of mobility equivalent size largermore » than or equal to 50 nm in a high-gradient permanent-magnetic aerosol collector, while the diffusiophoretic force is responsible for particles smaller than 10 nm. Both forces compete for particles in between these two sizes in the magnetic aerosol collector designed for this study. To enable a wide-range effective collection of aerosol particles across entire size spectrum from a few nanometers to tens of a micron, the ORNL-designed high-gradient magnetic collector would require the use of an engineered matrix. Thus, the matrix design for a specific application becomes application specific. Irrespective of the collection efficiency, the use of permanent magnets to collect magnetic particles is feasible and also highly selective because it tunes into the magnetic susceptibility of the particles as well as the size. Lastly, the use of permanent magnets enables the collector to be operated at a minimal power requirement, which is a critical factor in long-term field operation.« less

  1. Laser guidance of mesoscale particles

    NASA Astrophysics Data System (ADS)

    Underdown, Frank Hartman, Jr.

    Mesoscale particles are guided and trapped in hollow optical fibers using radiation pressure forces. Laser light from a 0.4W, 780nm diode laser is guided in a low- loss fiber mode and used to generate the guidance forces. Laser scattering and absorption forces propels particles along the fiber and polarization gradient forces attract them to the fiber's axial center. Using two counter propagating laser beams, inside the fiber, particles can be trapped in three dimensions. Measuring the spring constant of the trap gives the gradient force. This dissertation describes Rayleigh and Mie scattering models for calculating guidance forces. Calculated forces as a function of particle size and composition (i.e. dielectric, semiconductor, and metals) will be presented. For example, under typical experimental conditions 100nm Au particles are guided by a 2 × 10-14 N propulsive force in a water filled fiber. In comparison, the measured force, obtained from the particle's velocity and Stokes' law, is 7.98 × 10-14 N.

  2. A wind comparison study using an ocean general circulation model for the 1997-1998 El Niño

    NASA Astrophysics Data System (ADS)

    Hackert, Eric C.; Busalacchi, Antonio J.; Murtugudde, Ragu

    2001-02-01

    Predictions of the 1997-1998 El Niño exhibited a wide range of forecast skill that were dependent, in part, on the wind-driven initial conditions for the ocean. In this study the results of a reduced gravity, primitive equation, sigma coordinate ocean general circulation model are compared and contrasted when forced by several different wind products for the 1997-1998 El Niño/La Niña. The different wind products include atmospheric model winds, satellite wind products, and a subjective analysis of ship and in situ winds. The model results are verified against fields of observed sea level anomalies from TOPEX/Poseidon data, sea surface temperature analyses, and subsurface temperature from the Tropical Atmosphere-Ocean buoy array. Depending on which validation data type one chooses, different wind products provide the best forcing fields for simulating the observed signal. In general, the model results forced by satellite winds provide the best simulations of the spatial and temporal signal of the observed sea level. This is due to the accuracy of the meridional gradient of the zonal wind stress component that these products provide. Differences in wind forcing also affect subsurface dynamics and thermodynamics. For example, the wind products with the weakest magnitude best reproduce the sea surface temperature (SST) signal in the eastern Pacific. For these products the mixed layer is shallower, and the thermocline is closer to the surface. For such simulations the subsurface thermocline variability influences the variation in SST more than in reality. The products with the greatest wind magnitude have a strong cold bias of >1.5°C in the eastern Pacific because of increased mixing. The satellite winds along with the analysis winds correctly reproduce the depth of the thermocline and the general subsurface temperature structure.

  3. Motion Driven by Strain Gradient Fields

    PubMed Central

    Wang, Chao; Chen, Shaohua

    2015-01-01

    A new driving mechanism for direction-controlled motion of nano-scale objects is proposed, based on a model of stretching a graphene strip linked to a rigid base with linear springs of identical stiffness. We find that the potential energy difference induced by the strain gradient field in the graphene strip substrate can generate sufficient force to overcome the static and kinetic friction forces between the nano-flake and the strip substrate, resulting in the nanoscale flake motion in the direction of gradient reduction. The dynamics of the nano-flake can be manipulated by tuning the stiffness of linear springs, stretching velocity and the flake size. This fundamental law of directional motion induced by strain gradient could be very useful for promising designs of nanoscale manipulation, transportation and smart surfaces. PMID:26323603

  4. Microstructure and Property Modifications of Cold Rolled IF Steel by Local Laser Annealing

    NASA Astrophysics Data System (ADS)

    Hallberg, Håkan; Adamski, Frédéric; Baïz, Sarah; Castelnau, Olivier

    2017-10-01

    Laser annealing experiments are performed on cold rolled IF steel whereby highly localized microstructure and property modification are achieved. The microstructure is seen to develop by strongly heterogeneous recrystallization to provide steep gradients, across the submillimeter scale, of grain size and crystallographic texture. Hardness mapping by microindentation is used to reveal the corresponding gradients in macroscopic properties. A 2D level set model of the microstructure development is established as a tool to further optimize the method and to investigate, for example, the development of grain size variations due to the strong and transient thermal gradient. Particular focus is given to the evolution of the beneficial γ-fiber texture during laser annealing. The simulations indicate that the influence of selective growth based on anisotropic grain boundary properties only has a minor effect on texture evolution compared to heterogeneous stored energy, temperature variations, and nucleation conditions. It is also shown that although the α-fiber has an initial frequency advantage, the higher probability of γ-nucleation, in combination with a higher stored energy driving force in this fiber, promotes a stronger presence of the γ-fiber as also observed in experiments.

  5. Convergence of soil nitrogen isotopes across global climate gradients

    USGS Publications Warehouse

    Craine, Joseph M.; Elmore, Andrew J.; Wang, Lixin; Augusto, Laurent; Baisden, W. Troy; Brookshire, E. N. J.; Cramer, Michael D.; Hasselquist, Niles J.; Hobbie, Erik A.; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J. Marty; Mack, Michelle C.; Marin-Spiotta, Erika; Mayor, Jordan R.; McLauchlan, Kendra K.; Michelsen, Anders; Nardoto, Gabriela B.; Oliveira, Rafael S.; Perakis, Steven S.; Peri, Pablo L.; Quesada, Carlos A.; Richter, Andreas; Schipper, Louis A.; Stevenson, Bryan A.; Turner, Benjamin L.; Viani, Ricardo A. G.; Wanek, Wolfgang; Zeller, Bernd

    2015-01-01

    Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15 N: 14 N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15 N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.

  6. Convergence of soil nitrogen isotopes across global climate gradients.

    PubMed

    Craine, Joseph M; Elmore, Andrew J; Wang, Lixin; Augusto, Laurent; Baisden, W Troy; Brookshire, E N J; Cramer, Michael D; Hasselquist, Niles J; Hobbie, Erik A; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J Marty; Mack, Michelle C; Marin-Spiotta, Erika; Mayor, Jordan R; McLauchlan, Kendra K; Michelsen, Anders; Nardoto, Gabriela B; Oliveira, Rafael S; Perakis, Steven S; Peri, Pablo L; Quesada, Carlos A; Richter, Andreas; Schipper, Louis A; Stevenson, Bryan A; Turner, Benjamin L; Viani, Ricardo A G; Wanek, Wolfgang; Zeller, Bernd

    2015-02-06

    Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the (15)N:(14)N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in (15)N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ(15)N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ(15)N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.

  7. Review of Railgun Modeling Techniques: The Computation of Railgun Force and Other Key Factors

    NASA Astrophysics Data System (ADS)

    Eckert, Nathan James

    Currently, railgun force modeling either uses the simple "railgun force equation" or finite element methods. It is proposed here that a middle ground exists that does not require the solution of partial differential equations, is more readily implemented than finite element methods, and is more accurate than the traditional force equation. To develop this method, it is necessary to examine the core railgun factors: power supply mechanisms, the distribution of current in the rails and in the projectile which slides between them (called the armature), the magnetic field created by the current flowing through these rails, the inductance gradient (a key factor in simplifying railgun analysis, referred to as L'), the resultant Lorentz force, and the heating which accompanies this action. Common power supply technologies are investigated, and the shape of their current pulses are modeled. The main causes of current concentration are described, and a rudimentary method for computing current distribution in solid rails and a rectangular armature is shown to have promising accuracy with respect to outside finite element results. The magnetic field is modeled with two methods using the Biot-Savart law, and generally good agreement is obtained with respect to finite element methods (5.8% error on average). To get this agreement, a factor of 2 is added to the original formulation after seeing a reliable offset with FEM results. Three inductance gradient calculations are assessed, and though all agree with FEM results, the Kerrisk method and a regression analysis method developed by Murugan et al. (referred to as the LRM here) perform the best. Six railgun force computation methods are investigated, including the traditional railgun force equation, an equation produced by Waindok and Piekielny, and four methods inspired by the work of Xu et al. Overall, good agreement between the models and outside data is found, but each model's accuracy varies significantly between comparisons. Lastly, an approximation of the temperature profile in railgun rails originally presented by McCorkle and Bahder is replicated. In total, this work describes railgun technology and moderately complex railgun modeling methods, but is inconclusive about the presence of a middle-ground modeling method.

  8. What are the driving forces for water lifting in the xylem conduit?

    PubMed

    Zimmermann, Ulrich; Schneider, Heike; Wegner, Lars H; Wagner, Hans-Jürgen; Szimtenings, Michael; Haase, Axel; Bentrup, Friedrich-Wilhelm

    2002-03-01

    After Renner had shown convincingly in 1925 that the transpirational water loss generates tensions larger than 0.1 MPa (i.e. negative pressures) in the xylem of cut leafy twigs the Cohesion Theory proposed by Böhm, Askenasy, Dixon and Joly at the end of the 19th century was immediately accepted by plant physiologists. Introduction of the pressure chamber technique by Scholander et al. in 1965 enforced the general belief that tension is the only driving force for water lifting although substantial criticism regarding the technique and/or the Cohesion Theory was published by several authors. As typical for scientific disciplines, the advent of minimal- and non-invasive techniques in the last decade as well as the development of a new, reliable method for xylem sap sampling have challenged this view. Today, xylem pressure gradients, potentials, ion concentrations and volume flows as well as cell turgor pressure gradients can be monitored online in intact transpiring higher plants, and within a given physiological context by using the pressure probe technique and high-resolution NMR imaging techniques, respectively. Application of the pressure probe technique to transpiring plants has shown that negative absolute pressures (down to - 0.6 MPa) and pressure gradients can exist temporarily in the xylem conduit, but that the magnitude and (occasionally) direction of gradients contrasts frequently the belief that tension is the only driving force. This seems to be particularly the case for plants faced with problems of height, drought, freezing and salinity as well as with cavitation of the tensile water. Reviewing the current data base shows that other forces come into operation when exclusively tension fails to lift water against gravity due to environmental conditions. Possible candidates are longitudinal cellular and xylem osmotic pressure gradients, axial potential gradients in the vessels as well as gel- and gas bubble-supported interfacial gradients. The multiforce theory overcomes the problem of the Cohesion Theory that life on earth depends on water being in a highly metastable state.

  9. Effects of spatial gradients in thermophysical properties on the topology of turbulence in heated channel flow of supercritical fluids

    NASA Astrophysics Data System (ADS)

    Azih, Chukwudi; Yaras, Metin I.

    2018-01-01

    The current literature suggests that large spatial gradients of thermophysical properties, which occur in the vicinity of the pseudo-critical thermodynamic state, may result in significant variations in forced-convection heat transfer rates. Specifically, these property gradients induce inertia- and buoyancy-driven phenomena that may enhance or deteriorate the turbulence-dominated heat convection process. Through direct numerical simulations, the present study investigates the role of coherent flow structures in channel geometries for non-buoyant and buoyant flows of supercritical water, with buoyant configurations involving wall-normal oriented gravitational acceleration and downstream-oriented gravitational acceleration. This sequence of simulations enables the evaluation of the relative contributions of inertial and buoyancy phenomena to heat transfer variations. In these simulations, the state of the working fluid is in the vicinity of the pseudo-critical point. The uniform wall heat flux and the channel mass flux are specified such that the heat to mass flux ratio is 3 kJ/kg, with an inflow Reynolds number of 12 000 based on the channel hydraulic diameter, the area-averaged inflow velocity, and fluid properties evaluated at the bulk temperature and pressure of the inflow plane. In the absence of buoyancy forces, notable reductions in the density and viscosity in close proximity of the heated wall are observed to promote generation of small-scale vortices, with resultant breakdown into smaller scales as they interact with preexisting larger near-wall vortices. This interaction results in a reduction in the overall thermal mixing at particular wall-normal regions of the channel. Under the influence of wall-normal gravitational acceleration, the wall-normal density gradients are noted to enhance ejection motions due to baroclinic vorticity generation on the lower wall, thus providing additional wall-normal thermal mixing. Along the upper wall, the same mechanism generates streamwise vorticity of the opposing sense of rotation in the close vicinity to the respective legs of the hairpin vortices causing a net reduction in thermal mixing. Finally, in the case of downstream-oriented gravitational acceleration, baroclinic vorticity generation as per spanwise density gradients causes additional wall-normal thermal mixing by promoting larger-scale ejection and sweep motions.

  10. The truncated conjugate gradient (TCG), a non-iterative/fixed-cost strategy for computing polarization in molecular dynamics: Fast evaluation of analytical forces

    NASA Astrophysics Data System (ADS)

    Aviat, Félix; Lagardère, Louis; Piquemal, Jean-Philip

    2017-10-01

    In a recent paper [F. Aviat et al., J. Chem. Theory Comput. 13, 180-190 (2017)], we proposed the Truncated Conjugate Gradient (TCG) approach to compute the polarization energy and forces in polarizable molecular simulations. The method consists in truncating the conjugate gradient algorithm at a fixed predetermined order leading to a fixed computational cost and can thus be considered "non-iterative." This gives the possibility to derive analytical forces avoiding the usual energy conservation (i.e., drifts) issues occurring with iterative approaches. A key point concerns the evaluation of the analytical gradients, which is more complex than that with a usual solver. In this paper, after reviewing the present state of the art of polarization solvers, we detail a viable strategy for the efficient implementation of the TCG calculation. The complete cost of the approach is then measured as it is tested using a multi-time step scheme and compared to timings using usual iterative approaches. We show that the TCG methods are more efficient than traditional techniques, making it a method of choice for future long molecular dynamics simulations using polarizable force fields where energy conservation matters. We detail the various steps required for the implementation of the complete method by software developers.

  11. The truncated conjugate gradient (TCG), a non-iterative/fixed-cost strategy for computing polarization in molecular dynamics: Fast evaluation of analytical forces.

    PubMed

    Aviat, Félix; Lagardère, Louis; Piquemal, Jean-Philip

    2017-10-28

    In a recent paper [F. Aviat et al., J. Chem. Theory Comput. 13, 180-190 (2017)], we proposed the Truncated Conjugate Gradient (TCG) approach to compute the polarization energy and forces in polarizable molecular simulations. The method consists in truncating the conjugate gradient algorithm at a fixed predetermined order leading to a fixed computational cost and can thus be considered "non-iterative." This gives the possibility to derive analytical forces avoiding the usual energy conservation (i.e., drifts) issues occurring with iterative approaches. A key point concerns the evaluation of the analytical gradients, which is more complex than that with a usual solver. In this paper, after reviewing the present state of the art of polarization solvers, we detail a viable strategy for the efficient implementation of the TCG calculation. The complete cost of the approach is then measured as it is tested using a multi-time step scheme and compared to timings using usual iterative approaches. We show that the TCG methods are more efficient than traditional techniques, making it a method of choice for future long molecular dynamics simulations using polarizable force fields where energy conservation matters. We detail the various steps required for the implementation of the complete method by software developers.

  12. Study of adhesion and friction properties on a nanoparticle gradient surface: transition from JKR to DMT contact mechanics.

    PubMed

    Ramakrishna, Shivaprakash N; Nalam, Prathima C; Clasohm, Lucy Y; Spencer, Nicholas D

    2013-01-08

    We have previously investigated the dependence of adhesion on nanometer-scale surface roughness by employing a roughness gradient. In this study, we correlate the obtained adhesion forces on nanometer-scale rough surfaces to their frictional properties. A roughness gradient with varying silica particle (diameter ≈ 12 nm) density was prepared, and adhesion and frictional forces were measured across the gradient surface in perfluorodecalin by means of atomic force microscopy with a polyethylene colloidal probe. Similarly to the pull-off measurements, the frictional forces initially showed a reduction with decreasing particle density and later an abrupt increase as the colloidal sphere began to touch the flat substrate beneath, at very low particle densities. The friction-load relation is found to depend on the real contact area (A(real)) between the colloid probe and the underlying particles. At high particle density, the colloidal sphere undergoes large deformations over several nanoparticles, and the contact adhesion (JKR type) dominates the frictional response. However, at low particle density (before the colloidal probe is in contact with the underlying surface), the colloidal sphere is suspended by a few particles only, resulting in local deformations of the colloid sphere, with the frictional response to the applied load being dominated by long-range, noncontact (DMT-type) interactions with the substrate beneath.

  13. Groundwater/Seawater Exchange over Multiple Time Scales: Two Years of High-Frequency Data from the Coastal Seabed

    NASA Astrophysics Data System (ADS)

    Karam, H. N.; Mulligan, A. E.; Abarca, E.; Gardner, A.; Hemond, H.; Harvey, C. F.

    2013-12-01

    We present time series of vertical pressure gradients in the sea floor at Waquoit Bay, MA, collected along a transect of locations perpendicular to shore, with a 10-minute resolution over two years. The custom-made instruments used for data collection measure pressure differences with an accuracy of 0.5 mm freshwater head, and record pore water and surface water salinities, allowing a robust calculation of the direction and magnitude of flux across the sediment-water interface given an estimate of sediment permeability. Distinct processes of seawater circulation in the subsurface driven by different forcings, including storms, tides, variations in fresh groundwater head, and salinity gradients in coastal groundwater, are manifest as different frequency components in the time series. We characterize the relative contributions of these different forcings to seafloor fluxes at our site, as a function of the time of year and the distance from shore. We find that: 1) Sea level variations drive variations in seafloor flux at time scales of hours to weeks, around a mean flux that is produced by processes with longer time scales, including the seasonal cycle in fresh groundwater head and the density-driven circulation of seawater through the coastal aquifer. 2) Seafloor flux responds non-linearly to shifts in seawater level. Furthermore, this response is asymmetric, with very low tides producing an amplified response in submarine groundwater discharge relative to the recharge produced by equivalently high tides. 3) The amplitude of seafloor pressure gradients shows a three-fold increase during winters relative to summers. We present a model to explain this effect based on the increase in shallow pore water viscosity at colder temperatures. We generalize our findings to help guide the design of sampling studies of seafloor fluxes at other sites. Finally, we present the distribution of subsurface residence times for seawater in Waquoit Bay, derived from our pressure gradient data sets, and discuss the implications for surface water and sediment chemistry.

  14. Heat flow and subsurface temperature as evidence for basin-scale ground-water flow, North Slope of Alaska

    USGS Publications Warehouse

    Deming, D.; Sass, J.H.; Lachenbruch, A.H.; De Rito, R. F.

    1992-01-01

    Several high-resolution temperature logs were made in each of 21 drillholes and a total of 601 thermal conductivity measurements were made on drill cuttings and cores. Near-surface heat flow (??20%) is inversely correlated with elevation and ranges from a low of 27 mW/m2 in the foothills of the Brooks Range in the south, to a high of 90 mW/m2 near the north coast. Subsurface temperatures and thermal gradients estimated from corrected BHTs are similarly much higher on the coastal plain than in the foothills province to the south. Significant east-west variation in heat flow and subsurface temperature is also observed; higher heat flow and temperature coincide with higher basement topography. The observed thermal pattern is consistent with forced convection by a topographically driven ground-water flow system. Average ground-water (Darcy) velocity in the postulated flow system is estimated to be of the order of 0.1 m/yr; the effective basin-scale permeability is estimated to be of the order of 10-14 m2. -from Authors

  15. Modelling transient temperature distribution for injecting hot water through a well to an aquifer thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Yang, Shaw-Yang; Yeh, Hund-Der; Li, Kuang-Yi

    2010-10-01

    Heat storage systems are usually used to store waste heat and solar energy. In this study, a mathematical model is developed to predict both the steady-state and transient temperature distributions of an aquifer thermal energy storage (ATES) system after hot water is injected through a well into a confined aquifer. The ATES has a confined aquifer bounded by aquicludes with different thermomechanical properties and geothermal gradients along the depth. Consider that the heat is transferred by conduction and forced convection within the aquifer and by conduction within the aquicludes. The dimensionless semi-analytical solutions of temperature distributions of the ATES system are developed using Laplace and Fourier transforms and their corresponding time-domain results are evaluated numerically by the modified Crump method. The steady-state solution is obtained from the transient solution through the final-value theorem. The effect of the heat transfer coefficient on aquiclude temperature distribution is appreciable only near the outer boundaries of the aquicludes. The present solutions are useful for estimating the temperature distribution of heat injection and the aquifer thermal capacity of ATES systems.

  16. Development and Testing of Ceramic Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Miller, Robert A.

    2004-01-01

    Ceramic thermal barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. Durability of the coating systems remains a critical issue with the ever-increasing temperature requirements. Thermal conductivity increase and coating degradation due to sintering and phase changes are known to be detrimental to coating performance. There is a need to characterize the coating behavior and temperature limits, in order to potentially take full advantage of the current coating capability, and also accurately assess the benefit gained from advanced coating development. In this study, thermal conductivity behavior and cyclic durability of plasma-sprayed ZrO2-8wt%Y2O3 thermal barrier coatings were evaluated under laser heat-flux simulated high temperature, large thermal gradient and thermal cycling conditions. The coating degradation and failure processes were assessed by real-time monitoring of the coating thermal conductivity under the test conditions. The ceramic coating crack propagation driving forces and resulting failure modes will be discussed in light of high temperature mechanical fatigue and fracture testing results.

  17. Development and Fatigue Testing of Ceramic Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, Sung R.; Miller, Robert A.

    2004-01-01

    Ceramic thermal barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. Durability of the coating systems remains a critical issue with the ever-increasing temperature requirements. Thermal conductivity increase and coating degradation due to sintering and phase changes are known to be detrimental to coating performance. There is a need to characterize the coating thermal fatigue behavior and temperature limit, in order to potentially take full advantage of the current coating capability. In this study, thermal conductivity and cyclic fatigue behaviors of plasma-sprayed ZrO2-8wt%Y2O3 thermal barrier coatings were evaluated under high temperature, large thermal gradient and thermal cycling conditions. The coating degradation and failure processes were assessed by real-time monitoring of the coating thermal conductivity under the test conditions. The ceramic coating crack initiation and propagation driving forces and failure modes under the cyclic thermal loads will be discussed in light of the high temperature mechanical fatigue and fracture testing results.

  18. Comparison of forced-air warming systems with lower body blankets using a copper manikin of the human body.

    PubMed

    Bräuer, A; English, M J M; Lorenz, N; Steinmetz, N; Perl, T; Braun, U; Weyland, W

    2003-01-01

    Forced-air warming has gained high acceptance as a measure for the prevention of intraoperative hypothermia. However, data on heat transfer with lower body blankets are not yet available. This study was conducted to determine the heat transfer efficacy of six complete lower body warming systems. Heat transfer of forced-air warmers can be described as follows:[1]Qdot;=h.DeltaT.A where Qdot; = heat transfer [W], h = heat exchange coefficient [W m-2 degrees C-1], DeltaT = temperature gradient between blanket and surface [ degrees C], A = covered area [m2]. We tested the following forced-air warmers in a previously validated copper manikin of the human body: (1) Bair Hugger and lower body blanket (Augustine Medical Inc., Eden Prairie, MN); (2) Thermacare and lower body blanket (Gaymar Industries, Orchard Park, NY); (3) WarmAir and lower body blanket (Cincinnati Sub-Zero Products, Cincinnati, OH); (4) Warm-Gard(R) and lower body blanket (Luis Gibeck AB, Upplands Väsby, Sweden); (5) Warm-Gard and reusable lower body blanket (Luis Gibeck AB); and (6) WarmTouch and lower body blanket (Mallinckrodt Medical Inc., St. Luis, MO). Heat flux and surface temperature were measured with 16 calibrated heat flux transducers. Blanket temperature was measured using 16 thermocouples. DeltaT was varied between -10 and +10 degrees C and h was determined by a linear regression analysis as the slope of DeltaT vs. heat flux. Mean DeltaT was determined for surface temperatures between 36 and 38 degrees C, because similar mean skin temperatures have been found in volunteers. The area covered by the blankets was estimated to be 0.54 m2. Heat transfer from the blanket to the manikin was different for surface temperatures between 36 degrees C and 38 degrees C. At a surface temperature of 36 degrees C the heat transfer was higher (between 13.4 W to 18.3 W) than at surface temperatures of 38 degrees C (8-11.5 W). The highest heat transfer was delivered by the Thermacare system (8.3-18.3 W), the lowest heat transfer was delivered by the Warm-Gard system with the single use blanket (8-13.4 W). The heat exchange coefficient varied between 12.5 W m-2 degrees C-1 and 30.8 W m-2 degrees C-1, mean DeltaT varied between 1.04 degrees C and 2.48 degrees C for surface temperatures of 36 degrees C and between 0.50 degrees C and 1.63 degrees C for surface temperatures of 38 degrees C. No relevant differences in heat transfer of lower body blankets were found between the different forced-air warming systems tested. Heat transfer was lower than heat transfer by upper body blankets tested in a previous study. However, forced-air warming systems with lower body blankets are still more effective than forced-air warming systems with upper body blankets in the prevention of perioperative hypothermia, because they cover a larger area of the body surface.

  19. Response of hatchling and yearling turtles to thermal gradients: Comparison of Chelydra serpentina and Trachemys scripta

    USGS Publications Warehouse

    Bury, R. Bruce; Nebeker, A.B.; Adams, Michael J.

    2000-01-01

    In laboratory tests, young Chelydra serpentina and Trachemys scripta altered their distribution in the presence of a temperature gradient. Selection of temperatures in the gradient for hatchlings and yearlings showed that body temperatures (Tbs) of C. serpentina were lower than T. scripta, but the difference was insignificant. Relatively low Tbs could allow greater activity range and reduced metabolic maintenance cost for C. serpentina, which seldom leaves water.

  20. Crystal growth and annealing for minimized residual stress

    DOEpatents

    Gianoulakis, Steven E.

    2002-01-01

    A method and apparatus for producing crystals that minimizes birefringence even at large crystal sizes, and is suitable for production of CaF.sub.2 crystals. The method of the present invention comprises annealing a crystal by maintaining a minimal temperature gradient in the crystal while slowly reducing the bulk temperature of the crystal. An apparatus according to the present invention includes a thermal control system added to a crystal growth and annealing apparatus, wherein the thermal control system allows a temperature gradient during crystal growth but minimizes the temperature gradient during crystal annealing.

  1. Method for single crystal growth of photovoltaic perovskite material and devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jinsong; Dong, Qingfeng

    Systems and methods for perovskite single crystal growth include using a low temperature solution process that employs a temperature gradient in a perovskite solution in a container, also including at least one small perovskite single crystal, and a substrate in the solution upon which substrate a perovskite crystal nucleates and grows, in part due to the temperature gradient in the solution and in part due to a temperature gradient in the substrate. For example, a top portion of the substrate external to the solution may be cooled.

  2. Temperature gradient measurements by using thermoelectric effect in CNTs-silicone adhesive composite.

    PubMed

    Chani, Muhammad Tariq Saeed; Karimov, Kh S; Asiri, Abdullah M; Ahmed, Nisar; Bashir, Muhammad Mehran; Khan, Sher Bahadar; Rub, Malik Abdul; Azum, Naved

    2014-01-01

    This work presents the fabrication and investigation of thermoelectric cells based on composite of carbon nanotubes (CNT) and silicone adhesive. The composite contains CNT and silicon adhesive 1∶1 by weight. The current-voltage characteristics and dependences of voltage, current and Seebeck coefficient on the temperature gradient of cell were studied. It was observed that with increase in temperature gradient the open circuit voltage, short circuit current and the Seebeck coefficient of the cells increase. Approximately 7 times increase in temperature gradient increases the open circuit voltage and short circuit current up to 40 and 5 times, respectively. The simulation of experimental results is also carried out; the simulated results are well matched with experimental results.

  3. Temperature Gradient Measurements by Using Thermoelectric Effect in CNTs-Silicone Adhesive Composite

    PubMed Central

    Chani, Muhammad Tariq Saeed; Karimov, Kh. S.; Asiri, Abdullah M.; Ahmed, Nisar; Bashir, Muhammad Mehran; Khan, Sher Bahadar; Rub, Malik Abdul; Azum, Naved

    2014-01-01

    This work presents the fabrication and investigation of thermoelectric cells based on composite of carbon nanotubes (CNT) and silicone adhesive. The composite contains CNT and silicon adhesive 1∶1 by weight. The current-voltage characteristics and dependences of voltage, current and Seebeck coefficient on the temperature gradient of cell were studied. It was observed that with increase in temperature gradient the open circuit voltage, short circuit current and the Seebeck coefficient of the cells increase. Approximately 7 times increase in temperature gradient increases the open circuit voltage and short circuit current up to 40 and 5 times, respectively. The simulation of experimental results is also carried out; the simulated results are well matched with experimental results. PMID:24748375

  4. Novel Applications of Magnetic Fields for Fluid Flow Control and for Simulating Variable Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.

    2005-01-01

    Static and dynamic magnetic fields have been used to control convection in many materials processing applications. In most of the applications, convection control (damping or enhancement) is achieved through the Lorentz force that can be tailored to counteract/assist dominant system flows. This technique has been successfully applied to liquids that are electrically conducting, such as high temperature melts of semiconductors, metals and alloys, etc. In liquids with low electrical conductivity such as ionic solutions of salts in water, the Lorentz force is weak and hence not very effective and alternate ways of flow control are necessary. If the salt in solution is paramagnetic then the variation of magnetic susceptibility with temperature and/or concentration can be used for flow control. For thermal buoyancy driven flows this can be accomplished in a temperature range below the Curie point of the salt. The magnetic force is proportional to the magnetic susceptibility and the product of the magnetic field and its gradient. By suitably positioning the experiment cell in the magnet, system flows can be assisted or countered, as desired. A similar approach can be extended to diamagnetic substances and fluids but the required magnetic force is considerably larger than that required for paramagnetic substances. The presentation will provide an overview of work to date on a NASA fluid physics sponsored project that aims to test the hypothesis of convective flow control using strong magnetic fields in protein crystal growth. The objective is to understand the nature of the various forces that come into play, delineate causative factors for fluid flow and to quantify them through experiments, analysis, and numerical modeling. The seminar will report specifically on the experimental results using paramagnetic salts and solutions in magnetic fields and compare them to analytical predictions. Applications of the concept to protein crystallization studies will be discussed. The use of strong magnetic fields for terrestrially simulating variable gravity environments and applications supporting the NASA Exploration Initiative will also be briefly discussed.

  5. The mean Evershed flow

    NASA Astrophysics Data System (ADS)

    Hu, W.-R.

    1984-09-01

    The paper gives a theoretical analysis of the overall characteristics of the Evershed flow (one of the main features of sunspots), with particular attention given to its outward flow from the umbra in the photosphere, reaching a maximum somewhere in the penumbra, and decreasing rapidly further out, and its inward flow of a comparable magnitude in chromosphere. Because the inertial force of the flow is small, the relevant dynamic process can be divided into a base state and a perturbation. The base-state solution yields the equilibrium relations between the pressure gradient, the Lorentz force, and gravity, and the flow law. The perturbation describes the force driving the Evershed flow. Since the pressure gradient in the base state is already in equilibrium with the Lorentz force and the gravity, the driving force of the mean Evershed flow is small.

  6. Generation of a wakefield undulator in plasma with transverse density gradient

    DOE PAGES

    Stupakov, Gennady V.

    2017-11-30

    Here, we show that a short relativistic electron beam propagating in a plasma with a density gradient perpendicular to the direction of motion generates a wakefield in which a witness bunch experiences a transverse force. A density gradient oscillating along the beam path would create a periodically varying force$-$an undulator, with an estimated strength of the equivalent magnetic field more than ten Tesla. This opens an avenue for creation of a high-strength, short-period undulators, which eventually may lead to all-plasma, free electron lasers where a plasma wakefield acceleration is naturally combined with a plasma undulator in a unifying, compact setup.

  7. Generation of a wakefield undulator in plasma with transverse density gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stupakov, Gennady V.

    Here, we show that a short relativistic electron beam propagating in a plasma with a density gradient perpendicular to the direction of motion generates a wakefield in which a witness bunch experiences a transverse force. A density gradient oscillating along the beam path would create a periodically varying force$-$an undulator, with an estimated strength of the equivalent magnetic field more than ten Tesla. This opens an avenue for creation of a high-strength, short-period undulators, which eventually may lead to all-plasma, free electron lasers where a plasma wakefield acceleration is naturally combined with a plasma undulator in a unifying, compact setup.

  8. Self-thermophoresis and thermal self-diffusion in liquids and gases.

    PubMed

    Brenner, Howard

    2010-09-01

    This paper demonstrates the existence of self-thermophoresis, a phenomenon whereby a virtual thermophoretic force arising from a temperature gradient in a quiescent single-component liquid or gas acts upon an individual molecule of that fluid in much the same manner as a "real" thermophoretic force acts upon a macroscopic, non-Brownian body immersed in that same fluid. In turn, self-thermophoresis acting in concert with Brownian self-diffusion gives rise to the phenomenon of thermal self-diffusion in single-component fluids. The latter furnishes quantitative explanations of both thermophoresis in pure fluids and thermal diffusion in binary mixtures (the latter composed of a dilute solution of a physicochemically inert solute whose molecules are large compared with those of the solvent continuum). Explicitly, the self-thermophoretic theory furnishes a simple expression for both the thermophoretic velocity U of a macroscopic body in a single-component fluid subjected to a temperature gradient ∇T , and the intimately related binary thermal diffusion coefficient D{T} for a two-component colloidal or macromolecular mixture. The predicted expressions U=-D{T}∇T≡-βD{S}∇T and D{T}=βD{S} (with β and D{S} the pure solvent's respective thermal expansion and isothermal self-diffusion coefficients) are each noted to accord reasonably well with experimental data for both liquids and gases. The likely source of systematic deviations of the predicted values of D{T} from these data is discussed. This appears to be the first successful thermodiffusion theory applicable to both liquids and gases, a not insignificant achievement considering that the respective thermal diffusivities and thermophoretic velocities of these two classes of fluids differ by as much as six orders of magnitude.

  9. Global warming and tropical Pacific sea surface temperature: Why models and observations do not agree

    NASA Astrophysics Data System (ADS)

    Coats, Sloan; Karnauskas, Kristopher

    2017-04-01

    The pattern of sea surface temperature (SST) in the tropical Pacific Ocean provides an important control on global climate, necessitating an understanding of how this pattern will change in response to anthropogenic radiative forcing. State-of-the-art climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5) overwhelmingly project a decrease in the tropical Pacific zonal SST gradient over the coming century. This decrease is, in part, a response of the ocean to a weakening Walker circulation in the CMIP5 models, a consequence of the mass and energy balances of the hydrologic cycle identified by Held and Soden (2006). CMIP5 models, however, are not able to reproduce the observed increase in the zonal SST gradient between 1900-2013 C.E., which we argue to be robust using advanced statistical techniques and new observational datasets. While this increase is suggestive of the ocean dynamical thermostat mechanism of Clement et al. (1996), we provide evidence that a strengthening Equatorial Undercurrent (EUC) also contributes to eastern equatorial Pacific cooling. Importantly, the strengthening EUC is a response of the ocean to a weakening Walker circulation and thus can help to reconcile the range of opposing theories and observations of anthropogenic climate change in the tropical Pacific Ocean. Because of a newly identified bias in their simulation of equatorial coupled atmosphere-ocean dynamics, however, CMIP5 models do not capture the magnitude of the response of the EUC to anthropogenic radiative forcing. Consequently, they project a continuation of the opposite to what has been observed in the real world, with potentially serious consequences for projected climate impacts that are influenced by the tropical Pacific Ocean.

  10. Interaction of lateral baroclinic forcing and turbulence in an estuary

    USGS Publications Warehouse

    Lacy, J.R.; Stacey, M.T.; Burau, J.R.; Monismith, Stephen G.

    2003-01-01

    Observations of density and velocity in a channel in northern San Francisco Bay show that the onset of vertical density stratification during flood tides is controlled by the balance between the cross-channel baroclinic pressure gradient and vertical mixing due to turbulence. Profiles of velocity, salinity, temperature, and suspended sediment concentration were measured in transects across Suisun Cutoff, in northern San Francisco Bay, on two days over the 12.5-hour tidal cycle. During flood tides an axial density front developed between fresher water flowing from the shallows of Grizzly Bay into the northern side of Suisun Cutoff and saltier water flowing up the channel. North of the front, transverse currents were driven by the lateral salinity gradient, with a top-to-bottom velocity difference greater than 30 cm/s. South of the front, the secondary circulation was weak, and along-channel velocities were greater than to the north. The gradient Richardson number shows that stratification was stable north of the front, while the water column was turbulently mixed south of the front. Time-series measurements of velocity and salinity demonstrate that the front develops during each tidal cycle. In estuaries, longitudinal dynamics predict less stratification during flood than ebb tides. These data show that stratification can develop during flood tides due to a lateral baroclinic pressure gradient in estuaries with complex bathymetry.

  11. Statistics of velocity gradients in two-dimensional Navier-Stokes and ocean turbulence.

    PubMed

    Schorghofer, Norbert; Gille, Sarah T

    2002-02-01

    Probability density functions and conditional averages of velocity gradients derived from upper ocean observations are compared with results from forced simulations of the two-dimensional Navier-Stokes equations. Ocean data are derived from TOPEX satellite altimeter measurements. The simulations use rapid forcing on large scales, characteristic of surface winds. The probability distributions of transverse velocity derivatives from the ocean observations agree with the forced simulations, although they differ from unforced simulations reported elsewhere. The distribution and cross correlation of velocity derivatives provide clear evidence that large coherent eddies play only a minor role in generating the observed statistics.

  12. A silicon-nanowire memory driven by optical gradient force induced bistability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, B.; Institute of Microelectronics, A*STAR; Cai, H., E-mail: caih@ime.a-star.edu.sg

    2015-12-28

    In this paper, a bistable optical-driven silicon-nanowire memory is demonstrated, which employs ring resonator to generate optical gradient force over a doubly clamped silicon-nanowire. Two stable deformation positions of a doubly clamped silicon-nanowire represent two memory states (“0” and “1”) and can be set/reset by modulating the light intensity (<3 mW) based on the optical force induced bistability. The time response of the optical-driven memory is less than 250 ns. It has applications in the fields of all optical communication, quantum computing, and optomechanical circuits.

  13. Optical ray tracing method for simulating beam-steering effects during laser diagnostics in turbulent media.

    PubMed

    Wang, Yejun; Kulatilaka, Waruna D

    2017-04-10

    In most coherent spectroscopic methods used in gas-phase laser diagnostics, multiple laser beams are focused and crossed at a specific location in space to form the probe region. The desired signal is then generated as a result of nonlinear interactions between the beams in this overlapped region. When such diagnostic schemes are implemented in practical devices having turbulent reacting flow fields with refractive index gradients, the resulting beam steering can give rise to large measurement uncertainties. The objective of this work is to simulate beam-steering effects arising from pressure and temperature gradients in gas-phase media using an optical ray tracing approach. The ZEMAX OpticStudio software package is used to simulate the beam crossing and uncrossing effects in the presence of pressure and temperature gradients, specifically the conditions present in high-pressure, high-temperature combustion devices such as gas turbine engines. Specific cases involving two-beam and three-beam crossing configurations are simulated. The model formulation, the effects of pressure and temperature gradients, and the resulting beam-steering effects are analyzed. The results show that thermal gradients in the range of 300-3000 K have minimal effects, while pressure gradients in the range of 1-50 atm result in pronounced beam steering and the resulting signal fluctuations in the geometries investigated. However, with increasing pressures, the temperature gradients can also have a pronounced effect on the resultant signal levels.

  14. Remobilizing the Interfaces of Thermocapillary Driven Bubbles Retarded by the Adsorption of a Surfactant Impurity on the Bubble Surface

    NASA Technical Reports Server (NTRS)

    Palaparthi, Ravi; Maldarelli, Charles; Papageorgiou, Dimitri; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    Thermocapillary migration is a method for moving bubbles in space in the absence of buoyancy. A temperature gradient is applied to the continuous phase in which a bubble is situated, and the applied gradient impressed on the bubble surface causes one pole of the drop to be cooler than the opposite pole. As the surface tension is a decreasing function of temperature, the cooler pole pulls at the warmer pole, creating a flow which propels the bubble in the direction of the warmer fluid. A major impediment to the practical use of thermocapillarity to direct the movement of bubbles in space is the fact that surfactant impurities which are unavoidably present in the continuous phase can significantly reduce the migration velocity. A surfactant impurity adsorbed onto the bubble interface is swept to the trailing end of the bubble. When bulk concentrations are low (which is the case with an impurity), diffusion of surfactant to the front end is slow relative to convection, and surfactant collects at the back end of the bubble. Collection at the back lowers the surface tension relative to the front end setting up a reverse tension gradient. For buoyancy driven bubble motions in the absence of a thermocapillarity, the tension gradient opposes the surface flow, and reduces the surface and terminal velocities (the interface becomes more solid-like). When thermocapillary forces are present, the reverse tension gradient set up by the surfactant accumulation reduces the temperature tension gradient, and decreases to near zero the thermocapillary velocity. The objective of our research is to develop a method for enhancing the thermocapillary migration of bubbles which have been retarded by the adsorption onto the bubble surface of a surfactant impurity, Our remobilization theory proposes to use surfactant molecules which kinetically rapidly exchange between the bulk and the surface and are at high bulk concentrations. Because the remobilizing surfactant is present at much higher concentrations than the impurity, it adsorbs to the bubble much faster than the impurity when the bubble is formed, and thereby prevents the impurity from adsorbing onto the surface. In addition the rapid kinetic exchange and high bulk concentration maintain a saturated surface with a uniform surface concentrations. This prevents retarding surface tension gradients and keeps the velocity high. In our first report last year, we detailed experimental results which verified the theory of remobilization in ground based experiments in which the steady velocity of rising bubbles was measured in a continuous phase consisting of a glycerol/water mixture containing a polyethylene glycol surfactant C12E6 (CH3(CH2)11(OCH2CH2)6OH). In our report this year, we detail our efforts to describe theoretically the remobilization observed. We construct a model in which a bubble rises steadily by buoyancy in a continuous (Newtonian) viscous fluid containing surfactant with a uniform far field bulk concentration. We account for the effects of inertia as well as viscosity in the flow in the continuous phase caused by the bubble motion (order one Reynolds number), and we assume that the bubble shape remains spherical (viscous and inertial forces are smaller than capillary forces, i e. small Weber and capillary numbers). The surfactant distribution is calculated by solving the mass transfer equations including convection and diffusion in the bulk, and finite kinetic exchange the bulk and the surface. Convective effects dominate diffusive mass transfer in the bulk of the liquid (high Peclet numbers) except in a thin boundary layer near the surface. A finite volume method is used to numerically solve the hydrodynamic and mass transfer equations on a staggered grid which accounts specifically for the thin boundary layer. We present the results of the nondimensional drag as a function of the bulk concentration of surfactant for different rates of kinetic exchange, from which we develop criteria for the concentration necessary to develop a prescribed degree of remobilization. The criteria compare favorably with the experimental results.

  15. Thermal Motion and Forced Migration of Colloidal Particles Generate Hydrostatic Pressure in Solvent

    PubMed Central

    Hammel, H. T.; Scholander, P. F.

    1973-01-01

    A colloidal solution of ferrite particles in an osmometer has been used to demonstrate that the property that propels water across the semipermeable membrane is the decrease in hydrostatic pressure in the water of the solution. A magnetic field gradient directed so as to force the ferrite particles away from the semipermeable membrane of the osmometer and toward the free surface of the solution enhanced the colloidal osmotic pressure. The enhancement of this pressure was always exactly equal to the augmentation of the pressure as measured by the outward force of the particles, against the area of the free surface. Contrariwise, directing the magnetic field gradient so as to force the ferrite particles away from the free surface and toward the semipermeable membrane diminished the colloidal osmotic pressure of the solution. For a sufficiently forceful field gradient, the initial colloidal osmotic pressure could be negative, followed by an equilibrium pressure approaching zero regardless of the force of the particles against the membrane. Thus, the osmotic pressure of a solution is to be attributed to the pressure in the solvent generated in opposition to the pressure of the solute particles caused by their interaction with the free surface (Brownian motion and/or an external field force), or by their viscous shear when they migrate through the solvent, or both. PMID:16592046

  16. Pressure anisotropy and radial stress balance in the Jovian neutral sheet

    NASA Technical Reports Server (NTRS)

    Paranicas, C. P.; Mauk, B. H.; Krimigis, S. M.

    1991-01-01

    By examining particle and magnetic field data from the Voyager 1 and 2 spacecraft, signatures were found indicating that the (greater than about 28 keV) particle pressure parallel to the magnetic field is greater than the pressure perpendicular to the field within the nightside neutral sheet (three nightside neutral sheet crossings, with favorable experimental conditions, were used). By incorporating the pressure anisotropy into the calculation of radial forces within the hightside neutral sheet, it is found that (1) force balance is approximately achieved and (2) the anisotropy force term provides the largest contribution of the other particle forces considered (pressure gradients and the corotation centrifugal force). With regard to the problem of understanding the balance of radial forces within the dayside neutral sheet (McNutt, 1984; Mauk and Krimigis, 1987), the nightside pressure anisotropy force is larger than the dayside pressure gradient forces at equivalent radial distances; however, a full accounting of the dayside regions remains to be achieved.

  17. Nonstationary Gravity Wave Forcing of the Stratospheric Zonal Mean Wind

    NASA Technical Reports Server (NTRS)

    Alexander, M. J.; Rosenlof, K. H.

    1996-01-01

    The role of gravity wave forcing in the zonal mean circulation of the stratosphere is discussed. Starting from some very simple assumptions about the momentum flux spectrum of nonstationary (non-zero phase speed) waves at forcing levels in the troposphere, a linear model is used to calculate wave propagation through climatological zonal mean winds at solstice seasons. As the wave amplitudes exceed their stable limits, a saturation criterion is imposed to account for nonlinear wave breakdown effects, and the resulting vertical gradient in the wave momentum flux is then used to estimate the mean flow forcing per unit mass. Evidence from global, assimilated data sets are used to constrain these forcing estimates. The results suggest the gravity-wave-driven force is accelerative (has the same sign as the mean wind) throughout most of the stratosphere above 20 km. The sense of the gravity wave forcing in the stratosphere is thus opposite to that in the mesosphere, where gravity wave drag is widely believed to play a principal role in decelerating the mesospheric jets. The forcing estimates are further compared to existing gravity wave parameterizations for the same climatological zonal mean conditions. Substantial disagreement is evident in the stratosphere, and we discuss the reasons for the disagreement. The results suggest limits on typical gravity wave amplitudes near source levels in the troposphere at solstice seasons. The gravity wave forcing in the stratosphere appears to have a substantial effect on lower stratospheric temperatures during southern hemisphere summer and thus may be relevant to climate.

  18. High resolution temperature mapping of gas turbine combustor simulator exhaust with femtosecond laser induced fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Walker, Robert B.; Yun, Sangsig; Ding, Huimin; Charbonneau, Michel; Coulas, David; Lu, Ping; Mihailov, Stephen J.; Ramachandran, Nanthan

    2017-04-01

    Femtosecond infrared (fs-IR) laser written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent in advanced gas turbine engines under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper discusses fabrication and deployment of several fs-IR written FBG arrays, for monitoring exhaust temperature gradients of a gas turbine combustor simulator. Results include: contour plots of measured temperature gradients, contrast with thermocouple data.

  19. Sapwood temperature gradients between lower stems and the crown do not influence estimates of stand-level stem CO(2) efflux.

    PubMed

    Bowman, William P; Turnbull, Matthew H; Tissue, David T; Whitehead, David; Griffin, Kevin L

    2008-10-01

    Temperature plays a critical role in the regulation of respiration rates and is often used to scale measurements of respiration to the stand-level and calculate annual respiratory fluxes. Previous studies have indicated that failure to consider temperature gradients between sun-exposed stems and branches in the crown and shaded lower stems may result in errors when deriving stand-level estimates of stem CO(2) efflux. We measured vertical gradients in sapwood temperature in a mature lowland podocarp rain forest in New Zealand to: (1) estimate the effects of within-stem temperature variation on the vertical distribution of stem CO(2) efflux; and (2) use these findings to estimate stand-level stem CO(2) efflux for this forest. Large within-stem gradients in sapwood temperature (1.6 +/- 0.1 to 6.0 +/- 0.5 degrees C) were observed. However, these gradients did not significantly influence the stand-level estimate of stem CO(2) efflux in this forest (536 +/- 42 mol CO(2) ha(-1) day(-1)) or the vertical distribution of stem CO(2) efflux, because of the opposing effects of daytime warming and nighttime cooling on CO(2) efflux in the canopy, and the small fraction of the woody biomass in the crowns of forest trees. Our findings suggest that detailed measurements of within-stand temperature gradients are unlikely to greatly improve the accuracy of tree- or stand-level estimates of stem CO(2) efflux.

  20. Rapid warming forces contrasting growth trends of subalpine fir ( Abies fabri ) at higher- and lower-elevations in the eastern Tibetan Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenzhi; Jia, Min; Wang, Genxu

    Tree radial growth is expected to increase at higher elevations under climate warming, while lower elevation tree growth is expected to decline. However, numerous studies have found tree radial growth responds consistently to climate along elevational gradients. Here, we sampled five plots across the subalpine Abies fabri forest belt on Gongga Mountain in the eastern Tibetan Plateau to determine tree radial growth trends and responses to climate. Three commonly used detrending methods all consistently showed that tree radial growth at high elevation (> 3100 m) increased, while tree growth declined at the lower elevations (2700 m–2900 m) over the lastmore » three decades. Increasing late-growing season temperature positively (p < 0.05) correlated to tree radial growth at higher elevations, but the sign of this relationship reversed to become negative at lower elevations. Moving-window correlation analyses indicated the difference between high and low elevations response to temperature variation increased strongly with warming. Placing our result into the global context, 62% of 39 published studies found that trees along elevation gradients respond divergently to warming, and that these are located in warmer and wetter regions of the Earth. Notably, 28% of studies found non-significant responses to temperature at both high and low elevations. Our findings in the subalpine mountain forest in the eastern Tibetan Plateau were consistent with the majority of published datasets, and imply increasing temperature benefit for tree populations at higher elevation, while warming dampens growth at lower elevations.« less

  1. Continuous gradient temperature Raman spectroscopy of unsaturated fatty acids

    USDA-ARS?s Scientific Manuscript database

    A new innovative technique gradient temperature, Raman spectroscopy (GTRS), identifies Raman frequency shifts in solid or liquid samples, and correlates them with specific temperature ranges within which flexible structures absorb heat. GTRS can easily detect changes that occur within one celcius te...

  2. Parallelism between gradient temperature raman spectroscopy and differential scanning calorimetry results

    USDA-ARS?s Scientific Manuscript database

    Temperature dependent Raman spectroscopy (TDR) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDR and D...

  3. CENTRIFUGAL SEPARATORS

    DOEpatents

    Skarstrom, C.

    1959-03-10

    A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.

  4. Reducing the data: Analysis of the role of vascular geometry on blood flow patterns in curved vessels

    NASA Astrophysics Data System (ADS)

    Alastruey, Jordi; Siggers, Jennifer H.; Peiffer, Véronique; Doorly, Denis J.; Sherwin, Spencer J.

    2012-03-01

    Three-dimensional simulations of blood flow usually produce such large quantities of data that they are unlikely to be of clinical use unless methods are available to simplify our understanding of the flow dynamics. We present a new method to investigate the mechanisms by which vascular curvature and torsion affect blood flow, and we apply it to the steady-state flow in single bends, helices, double bends, and a rabbit thoracic aorta based on image data. By calculating forces and accelerations in an orthogonal coordinate system following the centreline of each vessel, we obtain the inertial forces (centrifugal, Coriolis, and torsional) explicitly, which directly depend on vascular curvature and torsion. We then analyse the individual roles of the inertial, pressure gradient, and viscous forces on the patterns of primary and secondary velocities, vortical structures, and wall stresses in each cross section. We also consider cross-sectional averages of the in-plane components of these forces, which can be thought of as reducing the dynamics of secondary flows onto the vessel centreline. At Reynolds numbers between 50 and 500, secondary motions in the directions of the local normals and binormals behave as two underdamped oscillators. These oscillate around the fully developed state and are coupled by torsional forces that break the symmetry of the flow. Secondary flows are driven by the centrifugal and torsional forces, and these are counterbalanced by the in-plane pressure gradients generated by the wall reaction. The viscous force primarily opposes the pressure gradient, rather than the inertial forces. In the axial direction, and depending on the secondary motion, the curvature-dependent Coriolis force can either enhance or oppose the bulk of the axial flow, and this shapes the velocity profile. For bends with little or no torsion, the Coriolis force tends to restore flow axisymmetry. The maximum circumferential and axial wall shear stresses along the centreline correlate well with the averaged in-plane pressure gradient and the radial displacement of the peak axial velocity, respectively. We conclude with a discussion of the physiological implications of these results.

  5. Correlation of Aerogravity and BHT Data to Develop a Geothermal Gradient Map of the Northern Western Desert of Egypt using an Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Mohamed, Haby S.; Abdel Zaher, Mohamed; Senosy, Mahmoud M.; Saibi, Hakim; El Nouby, Mohamed; Fairhead, J. Derek

    2015-06-01

    The northern part of the Western Desert of Egypt represents the second most promising area of hydrocarbon potential after the Gulf of Suez province. An artificial neural network (ANN) approach was used to develop a new predictive model for calculation of the geothermal gradients in this region based on gravity and corrected bottom-hole temperature (BHT) data. The best training data set was obtained with an ANN architecture composed of seven neurons in the hidden layer, which made it possible to predict the geothermal gradient with satisfactory efficiency. The BHT records of 116 deep oil wells (2,000-4,500 m) were used to evaluate the geothermal resources in the northern Western Desert. Corrections were applied to the BHT data to obtain the true formation equilibrium temperatures, which can provide useful constraints on the subsurface thermal regime. On the basis of these corrected data, the thermal gradient was computed for the linear sections of the temperature-versus-depth data at each well. The calculated geothermal gradient using temperature log data was generally 30 °C/km, with a few local high geothermal gradients in the northwestern parts of the study area explained by potential local geothermal fields. The Bouguer gravity values from the study area ranged from -60 mGal in the southern parts to 120 mGal in the northern areas, and exhibited NE-SW and E-W trends associated with geological structures. Although the northern Western Desert of Egypt has low regional temperature gradients (30 °C/km), several potential local geothermal fields were found (>40 °C/km). The heat flow at each well was also computed by combining sets of temperature gradients and thermal conductivity data. Aerogravity data were used to delineate the subsurface structures and tectonic framework of the region. The result of this study is a new geothermal gradient map of the northern Western Desert developed from gravity and BHT log data.

  6. Customised spatiotemporal temperature gradients created by a liquid metal enabled vortex generator.

    PubMed

    Zhu, Jiu Yang; Thurgood, Peter; Nguyen, Ngan; Ghorbani, Kamran; Khoshmanesh, Khashayar

    2017-11-07

    Generating customised temperature gradients in miniaturised flow-free liquid chambers is challenging due to the dominance of diffusion. Inducing internal flows in the form of vortices is an effective strategy for overcoming the limitations of diffusion in such environments. Vortices can be produced by applying pressure, temperature and electric potential gradients via miniaturised actuators. However, the difficulties associated with the fabrication, integration, maintenance and operation of such actuators hinder their utility. Here, we utilise liquid metal enabled pumps to induce vortices inside a miniaturised liquid chamber. The configuration and rotational velocity of these vortices can be controlled by tuning the polarity and frequency of the energising electrical signal. This allows creation of customised spatial temperature gradients inside the chamber. The absence of conventional moving elements in the pumps facilitates the rapid reconfiguration of vortices. This enables quick transition from one temperature profile to another, and creates customised spatiotemporal temperature gradients. This allows temperature oscillation from 35 to 62 °C at the hot spot, and from 25 to 27 °C at the centre of the vortex within 15 seconds. Our liquid metal enabled vortex generator can be fabricated, integrated and operated easily, and offers opportunities for studying thermo-responsive materials and biological samples.

  7. Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Khomyakov, Nikita; Myachina, Olga; Kuzyakov, Yakov

    2016-02-01

    Short-term acceleration of soil organic matter decomposition by increasing temperature conflicts with the thermal adaptation observed in long-term studies. Here we used the altitudinal gradient on Mt. Kilimanjaro to demonstrate the mechanisms of thermal adaptation of extra- and intracellular enzymes that hydrolyze cellulose, chitin and phytate and oxidize monomers (14C-glucose) in warm- and cold-climate soils. We revealed that no response of decomposition rate to temperature occurs because of a cancelling effect consisting in an increase in half-saturation constants (Km), which counteracts the increase in maximal reaction rates (Vmax with temperature). We used the parameters of enzyme kinetics to predict thresholds of substrate concentration (Scrit) below which decomposition rates will be insensitive to global warming. Increasing values of Scrit, and hence stronger canceling effects with increasing altitude on Mt. Kilimanjaro, explained the thermal adaptation of polymer decomposition. The reduction of the temperature sensitivity of Vmax along the altitudinal gradient contributed to thermal adaptation of both polymer and monomer degradation. Extrapolating the altitudinal gradient to the large-scale latitudinal gradient, these results show that the soils of cold climates with stronger and more frequent temperature variation are less sensitive to global warming than soils adapted to high temperatures.

  8. Tecuamburro Volcano, Guatemala: exploration geothermal gradient drilling and results

    USGS Publications Warehouse

    Goff, S.J.; Goff, F.; Janik, C.J.

    1992-01-01

    Results of geological, volcanological, hydrogeochemical, and geophysical field studies conducted in 1988 and 1989 at the Tecuamburro geothermal site, Guatemala, indicate that there is a substantial shallow heat source beneath the area of youngest volcanism. Gases from acid-sulfate springs near Laguna Ixpaco consistently yield maximum estimated subsurface temperatures of 300??C. To obtain information on subsurface temperatures and temperature gradients, stratigraphy, fracturing, hydrothermal alteration, and hydrothermal fluids, a geothermal gradient core hole (TCB-1) was drilled to 808 m low on the northern flank of the Tecuamburro Volcano complex. The hole is located 300 m south of a 300m-diameter phreatic crater. Laguna Ixpaco, dated at 2910 years. TCB-1 temperature logs do not indicate isothermal conditions at depth and the calculated thermal gradient from 500-800 m is 230??C/km. Bottom hole temperature is close to 240??C. Calculated heat flow values are around 350-400 mW/m2. Fluid-inclusion and secondary-alteration studies indicate that veins and secondary minerals were formed at temperatures equal to or slightly less than present temperatures; thus, the Tecuamburro geothermal system may still be heating up. The integration of results from the TCB-1 gradient core hole with results from field studies provides strong evidence that the Tecuamburro area holds great promise for geothermal resource development. ?? 1992.

  9. Thermal-gradient migration of brine inclusions in salt crystals. [Synthetic single crystals of NaCl and KCl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yagnik, S.K.

    1982-09-01

    It has been proposed that high-level nuclear waste be disposed in a geologic repository. Natural-salt deposits, which are being considered for this purpose, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive-decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In this work, thermal gradient migration of bothmore » all-liquid and gas-liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot-stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is non-linear.At high axial loads, however, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, three different gas phases (helium, air and argon) were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large angle grain boundaries was observed. 35 figures, 3 tables.« less

  10. Effects of solid-propellant temperature gradients on the internal ballistics of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Sforzini, R. H.; Foster, W. A., Jr.; Shackelford, B. W., Jr.

    1978-01-01

    The internal ballistic effects of combined radial and circumferential grain temperature gradients are evaluated theoretically for the Space Shuttle solid rocket motors (SRMs). A simplified approach is devised for representing with closed-form mathematical expressions the temperature distribution resulting from the anticipated thermal history prior to launch. The internal ballistic effects of the gradients are established by use of a mathematical model which permits the propellant burning rate to vary circumferentially. Comparative results are presented for uniform and axisymmetric temperature distributions and the anticipated gradients based on an earlier two-dimensional analysis of the center SRM segment. The thrust imbalance potential of the booster stage is also assessed based on the difference in the thermal loading of the individual SRMs of the motor pair which may be encountered in both summer and winter environments at the launch site. Results indicate that grain temperature gradients could cause the thrust imbalance to be approximately 10% higher in the Space Shuttle than the imbalance caused by SRM manufacturing and propellant physical property variability alone.

  11. Meissner motor using high-Tc ceramic superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeoka, A.; Ishikawa, A.; Suzuki, M.

    1989-03-01

    The authors developed a brand new superconducting motor using high-Tc ceramic superconductors for the first time. This motor utilizes the repulsive force caused by the Meissner effect, which appears below Tc and disappears above that, and is therefore referred to as the Meissner Motor. The motor rotated at a maximum speed of 40 rpm. Though the repulsive force to drive the motor increased with the decrease of temperature or the increase of the gradient magnetic field, it was only about 1.1 gf/g at 77 K in 3500 G/cm. The motor has a maximum torque of 5.0 gf-cm theoretically, but actuallymore » had a torque below 0.66 gf-cm, because it took some time to be cooled below Tc. The rotating speed of the motor was limited by heating ability and its torque was limited by cooling ability.« less

  12. A new blackhole theorem and its applications to cosmology and astrophysics

    NASA Astrophysics Data System (ADS)

    Wang, Shouhong; Ma, Tian

    2015-04-01

    We shall present a blackhole theorem and a theorem on the structure of our Universe, proved in a recently published paper, based on 1) the Einstein general theory of relativity, and 2) the cosmological principle that the universe is homogeneous and isotropic. These two theorems are rigorously proved using astrophysical dynamical models coupling fluid dynamics and general relativity based on a symmetry-breaking principle. With the new blackhole theorem, we further demonstrate that both supernovae explosion and AGN jets, as well as many astronomical phenomena including e.g. the recent reported are due to combined relativistic, magnetic and thermal effects. The radial temperature gradient causes vertical Benard type convection cells, and the relativistic viscous force (via electromagnetic, the weak and the strong interactions) gives rise to a huge explosive radial force near the Schwarzschild radius, leading e.g. to supernovae explosion and AGN jets.

  13. Brownian motion in inhomogeneous suspensions.

    PubMed

    Yang, Mingcheng; Ripoll, Marisol

    2013-06-01

    The Langevin description of Brownian motion in inhomogeneous suspensions is here revisited. Inhomogeneous suspensions are characterized by a position-dependent friction coefficient, which can significantly influence the dynamics of the suspended particles. Outstanding examples are suspensions in confinement or in the presence of a temperature gradient. The Langevin approach in inhomogeneous systems encounters a fundamental difficulty related to the interpretation of the multiplicative noise induced by the position-dependent friction. We show that the so-called Ito-Stratonovich dilemma is originated by the violation of the macroscopic force balance condition in the traditional procedure of eliminating the fast variables. Repairing this deficit, we rederive the extended overdamped Langevin equation directly from the infradamped Langevin equation. This is without invoking the Fokker-Planck formalism, such that the self-completeness of the Langevin framework is restored. Furthermore, we derive the generalized forms of the drift-force relation and the Smoluchowski equation for inhomogeneous suspensions in a straightforward manner.

  14. Thermo-Electric-Magnetic Hydrodynamics in Solidification: In Situ Observations and Theory

    NASA Astrophysics Data System (ADS)

    Fautrelle, Y.; Wang, J.; Salloum-Abou-Jaoude, G.; Abou-Khalil, L.; Reinhart, G.; Li, X.; Ren, Z. M.; Nguyen-Thi, H.

    2018-02-01

    Solidification of liquid metals contains all the ingredients for the development of the thermo-electric (TE) effect, namely liquid-solid interface and temperature gradients. The combination of TE currents with a superimposed magnetic field gives rise to thermo-electromagnetic (TEM) volume forces acting on both liquid and solid. This results in the generation of fluid flows, which considerably modifies the morphology of the solidification front as well as that of the mushy zone. TEM forces also act on the solid and cause both fragmentation of dendrite branches and a movement of equiaxed grains in suspension. These phenomena have already been unveiled by post-mortem analysis of samples, but they can be analyzed in more detail by using x-ray in situ and real-time observations. Here, we present conclusive evidence of all the aforementioned effects thanks to in situ observations of Al-Cu alloy solidification under static magnetic field.

  15. Confinement effect on the dynamics of non-equilibrium concentration fluctuations far from the onset of convection.

    PubMed

    Giraudet, Cédric; Bataller, Henri; Sun, Yifei; Donev, Aleksandar; Ortiz de Zárate, José M; Croccolo, Fabrizio

    2016-12-01

    In a recent letter (C. Giraudet et al., EPL 111, 60013 (2015)) we reported preliminary data showing evidence of a slowing-down of non-equilibrium fluctuations of the concentration in thermodiffusion experiments on a binary mixture of miscible fluids. The reason for this slowing-down was attributed to the effect of confinement. Such tentative explanation is here experimentally corroborated by new measurements and theoretically substantiated by studying analytically and numerically the relevant fluctuating hydrodynamics equations. In the new experiments presented here, the magnitude of the temperature gradient is changed, confirming that the system is controlled solely by the solutal Rayleigh number, and that the slowing-down is dominated by a combined effect of the driving force of buoyancy, the dissipating force of diffusion and the confinement provided by the vertical extension of the sample cell. Moreover, a compact phenomenological interpolating formula is proposed for easy analysis of experimental results.

  16. Electromagnetic needles with submicron pole tip radii for nanomanipulation of biomolecules and living cells

    NASA Astrophysics Data System (ADS)

    Matthews, Benjamin D.; LaVan, David A.; Overby, Darryl R.; Karavitis, John; Ingber, Donald E.

    2004-10-01

    We describe the design and fabrication of a temperature-controlled electromagnetic microneedle (EMN) to generate custom magnetic field gradients for biomedical and biophysical applications. An electropolishing technique was developed to sharpen the EMN pole tip to any desired radius between 100 nm and 20 μm. The EMN can be used to apply strong static or dynamic forces (>50nN) to micrometer- or nanometer-sized magnetic beads without producing significant heating or needle movement. Large tip radii (20 μm) allow magnetic force application to multiple magnetic beads over a large area, while small radii (0.1-6 μm) can be used to selectively pull or capture single magnetic beads from within a large population of similar particles. The customizable EMN is thus well suited for micro- and nanomanipulation of magnetic particles linked to biomolecules or living cells.

  17. In Search for Diffuse Hydrothermal Venting at North Pond, Western Flank of the Mid-Atlantic-Ridge

    NASA Astrophysics Data System (ADS)

    Villinger, H. W.; Becker, K.; Hulme, S.; Kaul, N. E.; Müller, P.; Wheat, C. G.

    2015-12-01

    We present results from temperature measurements made with a ROV temperature lance in sediments deposited on the slopes of abyssal hills and small basins surrounding North Pond. North Pond is a ~8x15 km large sediment basin located on ~7 Ma year old crust west of the Mid-Atlantic Ridge at 23°N. Data were collected with the ROV Jason II during cruise MSM37 on the German RV Maria S. Merian in April 2014. The temperature lance consists of a 60 cm long stainless steel tube (o.d. 12 mm) housing 8 thermistors with a spacing of 80 mm, resulting in an active length of 56 cm. Data are logged with an 8-channel data logger (XR-420-T8, RBR, Ottawa) and transmitted online to the control van of the ROV. Data reduction and temperature gradient calculation is done according to the HFRED algorithm (Villinger & Davis, 1987). 90 sites in total were visited, 88 gave good data for temperature gradient calculation. Calculated gradients are usually of good to very good quality. The gradients vary between less than 20 to more than 1000 mK/m reflecting the very heterogeneous distribution of geothermal heat flow. The expected conductive lithospheric heat flow for North Pond is ~190 mW/m2 (geothermal gradient of ~190 mK/m with a thermal conductivity of 1 W/Km). The highest temperature gradients are measured in places where temperature ~50 cm below the sediment-water boundary exceeds bottom water temperature by ~0.5 K . These high temperature gradients may reflect local hydrothermal circulation within the pillow lavas, however no focused discharge was detected. The analysis of temperature measurements made with the ROV-mounted CTD shows clearly detectable bottom water temperature anomalies. We infer that they are either caused by hydrothermal discharge through the thin sediment cover or through unsedimented pillow basalts nearby. Hydrothermal circulation in a North-Pond-like environment appears to be diffuse in nature, hence very difficult if not impossible to detect and to quantify.

  18. Dynamic response of porous functionally graded material nanobeams subjected to moving nanoparticle based on nonlocal strain gradient theory

    NASA Astrophysics Data System (ADS)

    Barati, Mohammad Reza

    2017-11-01

    Up to now, nonlocal strain gradient theory (NSGT) is broadly applied to examine free vibration, static bending and buckling of nanobeams. This theory captures nonlocal stress field effects together with the microstructure-dependent strain gradient effects. In this study, forced vibrations of NSGT nanobeams on elastic substrate subjected to moving loads are examined. The nanobeam is made of functionally graded material (FGM) with even and uneven porosity distributions inside the material structure. The graded material properties with porosities are described by a modified power-law model. Dynamic deflection of the nanobeam is obtained via Galerkin and inverse Laplace transform methods. The importance of nonlocal parameter, strain gradient parameter, moving load velocity, porosity volume fraction, type of porosity distribution and elastic foundation on forced vibration behavior of nanobeams are discussed.

  19. The Role of Rotation in Convective Heat Transport: an Application to Low-Mass Stars

    NASA Astrophysics Data System (ADS)

    Matilsky, Loren; Hindman, Bradley W.; Toomre, Juri; Featherstone, Nicholas

    2018-06-01

    It is often supposed that the convection zones (CZs) of low-mass stars are purely adiabatically stratified. This is thought to be because convective motions are extremely efficient at homogenizing entropy within the CZ. For a purely adiabatic fluid layer, only very small temperature variations are required to drive convection, making the amplitude and overall character of the convection highly sensitive to the degree of adiabaticity established in the CZ. The presence of rotation, however, fundamentally changes the dynamics of the CZ; the strong downflow plumes that are required to homogenize entropy are unable to penetrate through the entire fluid layer if they are deflected too soon by the Coriolis force. This talk discusses 3D global models of spherical-shell convection subject to different rotation rates. The simulation results emphasize the possibility that for stars with a high enough rotation rate, large fractions of their CZs are not in fact adiabatically stratified; rather, there is a finite superadiabatic gradient that varies in magnitude with radius, being at a minimum in the CZ’s middle layers. Two consequences of the varying superadiabatic gradient are that the convective amplitudes at the largest length scales are effectively suppressed and that there is a strong latitudinal temperature gradient from a cold equator to a hot pole, which self-consistently drives a thermal wind. A connection is naturally drawn to the Sun’s CZ, which has supergranulation as an upper limit to its convective length scales and isorotational contours along radial lines, which can be explained by the presence of a thermal wind.

  20. High temperature skin friction measurement

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Holmes, Harlan K.; Supplee, Frank H., Jr.

    1989-01-01

    Skin friction measurement in the NASA Langley hypersonic propulsion facility is described. The sensor configuration utilized an existing balance, modified to provide thermal isolation and an increased standoff distance. For test run times of about 20 sec and ambient-air cooling of the test section and balance, the modified balance performed satisfactorily, even when it was subjected to acoustic and structural vibration. The balance is an inertially balanced closed-loop servo system where the current to a moving-coil motor needed to restore or null the output from the position sensor is a measure of the force or skin friction tending to displace the moving element. The accuracy of the sensor is directly affected by the position sensor in the feedback loop, in this case a linear-variable differential transformer which has proven to be influenced by temperature gradients.

  1. Study of bubble behavior in weightlessness (effects of thermal gradient and acoustic stationary wave) (M-16)

    NASA Technical Reports Server (NTRS)

    Azuma, H.

    1993-01-01

    The aim of this experiment is to understand how bubbles behave in a thermal gradient and acoustic stationary wave under microgravity. In microgravity, bubble or bubbles in a liquid will not rise upward as they do on Earth but will rest where they are formed because there exists no gravity-induced buoyancy. We are interested in how bubbles move and in the mechanisms which support the movement. We will try two ways to make bubbles migrate. The first experiment concerns behavior of bubbles in a thermal gradient. It is well known than an effect of surface tension which is masked by gravity on the ground becomes dominant in microgravity. The surface tension on the side of the bubble at a lower temperature is stronger than at a higher temperature. The bubble migrates toward the higher temperature side due to the surface tension difference. The migration speed depends on the so-called Marangoni number, which is a function of the temperature difference, the bubble diameter, liquid viscosity, and thermal diffusivity. At present, some experimental data about migration speeds in liquids with very small Marangoni numbers were obtained in space experiments, but cases of large Marangoni number are rarely obtained. In our experiment a couple of bubbles are to be injected into a cell filled with silicon oil, and the temperature gradient is to be made gradually in the cell by a heater and a cooler. We will be able to determine migration speeds in a very wide range of Marangoni numbers, as well as study interactions between the bubbles. We will observe bubble movements affected by hydrodynamical and thermal interactions, the two kinds of interactions which occur simultaneously. These observation data will be useful for analyzing the interactions as well as understanding the behavior of particles or drops in materials processing. The second experiment concerns bubble movement in an acoustic stationary wave. It is known that a bubble in a stationary wave moves toward the node or the loop according to whether its diameter is larger or smaller than that of the main resonant radius. In our experiment fine bubbles will be observed to move according to an acoustic field formed in a cylindrical cell. The existence of bubbles varies the acoustic speed, and the interactive force between bubbles will make the bubble behavior collective and complicated. This experiment will be very useful to development of bubble removable technology as well as to the understanding of bubble behavior.

  2. Analysis of magnetic gradients to study gravitropism.

    PubMed

    Hasenstein, Karl H; John, Susan; Scherp, Peter; Povinelli, Daniel; Mopper, Susan

    2013-01-01

    Gravitropism typically is generated by dense particles that respond to gravity. Experimental stimulation by high-gradient magnetic fields provides a new approach to selectively manipulate the gravisensing system. The movement of corn, wheat, and potato starch grains in suspension was examined with videomicroscopy during parabolic flights that generated 20 to 25 s of weightlessness. During weightlessness, a magnetic gradient was generated by inserting a wedge into a uniform, external magnetic field that caused repulsion of starch grains. The resultant velocity of movement was compared with the velocity of sedimentation under 1 g conditions. The high-gradient magnetic fields repelled the starch grains and generated a force of at least 0.6 g. Different wedge shapes significantly affected starch velocity and directionality of movement. Magnetic gradients are able to move diamagnetic compounds under weightless or microgravity conditions and serve as directional stimulus during seed germination in low-gravity environments. Further work can determine whether gravity sensing is based on force or contact between amyloplasts and statocyte membrane system.

  3. A Simple Temperature Gradient Apparatus To Determine Thermal Preference in "Daphnia."

    ERIC Educational Resources Information Center

    Fenske, Christiane; McCauley, Robert

    2002-01-01

    Explores the dominant factor controlling the distribution of Daphnia. Describes components of a temperature gradient apparatus that can be assembled from materials readily obtainable in the laboratory and hardware stores. Investigates whether the mean depth of Daphnia is determined by temperature. (KHR)

  4. Magnetic Field Generation Processes Involving Gravity and Differential Rotation. Solitary Plasma Rings Formation around Black Holes

    NASA Astrophysics Data System (ADS)

    Coppi, Bruno

    2012-10-01

    A clear theoretical framework to describe how magnetic fields are generated and amplified is provided by the magneto-gravitational modes that involve both differential rotation and gravity and for which other factors such as temperature gradients can contribute to their excitation. These modes are shown to be important for the evolution of plasma disks surrounding black holes.footnotetextB. Coppi, Phys. Plasmas 18, 032901 (2011) Non-linear and axi-symmetric plasmas and associated field configurations are found under stationary conditions that do not involve the presence of a pre-existing ``seed'' magnetic field unlike other configurations found previously.footnotetextIbid. The relevant magnetic energy density is of the order of the gravitationally confined plasma pressure. The solitary plasma rings that characterize these configurations are localized radially over regions with vanishing differential rotation and can be envisioned as the saturated state of magneto-gravitational modes. The ``source'' of these configurations is the combination of the gravitational force and of the plasma density gradient orthogonal to it.

  5. Electro-diffusion in a plasma with two ion species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kagan, Grigory; Tang Xianzhu

    2012-08-15

    Electric field is a thermodynamic force that can drive collisional inter-ion-species transport in a multicomponent plasma. In an inertial confinement fusion capsule, such transport causes fuel ion separation even with a target initially prepared to have equal number densities for the two fuel ion species. Unlike the baro-diffusion driven by ion pressure gradient and the thermo-diffusion driven by ion and electron temperature gradients, electro-diffusion has a critical dependence on the charge-to-mass ratio of the ion species. Specifically, it is shown here that electro-diffusion vanishes if the ion species have the same charge-to-mass ratio. An explicit expression for the electro-diffusion ratiomore » is obtained and used to investigate the relative importance of electro- and baro-diffusion mechanisms. In particular, it is found that electro-diffusion reinforces baro-diffusion in the deuterium and tritium mix, but tends to cancel it in the deuterium and helium-3 mix.« less

  6. Mixing and unmixedness in plasma jets 1: Near-field analysis

    NASA Technical Reports Server (NTRS)

    Ilegbusi, Olusegun J.

    1993-01-01

    The flow characteristics in the near-field of a plasma jet are simulated with a two-fluid model. This model accounts for both gradient-diffusion mixing and uni-directional sifting motion resulting from pressure-gradient-body-force imbalance. This latter mechanism is believed to be responsible for the umixedness observed in plasma jets. The unmixedness is considered to be essentially a Rayleigh-Taylor kind instability. Transport equations are solved for the individual plasma and ambient gas velocities, temperatures and volume fractions. Empirical relations are employed for the interface transfers of mass, momentum and heat. The empirical coefficients are first established by comparison of predictions with available experimental data for shear flows. The model is then applied to an Argon plasma jet ejecting into stagnant air. The predicted results show the significant build-up of unmixed air within the plasma gas, even relatively far downstream of the torch. By adjusting the inlet condition, the model adequately reproduces the experimental data.

  7. First results of a study on turbulent boundary layers in oscillating flow with a mean adverse pressure gradient

    NASA Technical Reports Server (NTRS)

    Houdeville, R.; Cousteix, J.

    1979-01-01

    The development of a turbulent unsteady boundary layer with a mean pressure gradient strong enough to induce separation, in order to complete the extend results obtained for the flat plate configuration is presented. The longitudinal component of the velocity is measured using constant temperature hot wire anemometer. The region where negative velocities exist is investigated with a laser Doppler velocimeter system with BRAGG cells. The boundary layer responds by forced pulsation to the perturbation of potential flow. The unsteady effects observed are very important. The average location of the zero skin friction point moves periodically at the perturbation frequency. Average velocity profiles from different instants in the cycle are compared. The existence of a logarithmic region enables a simple calculation of the maximum phase shift of the velocity in the boundary layer. An attempt of calculation by an integral method of boundary layer development is presented, up to the point where reverse flow starts appearing.

  8. Comment on "the one dimensional acoustic field with arbitrary mean axial temperature gradient and mean flow" (J.Li and A.S.Morgans, Journal of Sound and Vibration 400 (2017) 248-269)

    NASA Astrophysics Data System (ADS)

    Dokumaci, Erkan

    2017-12-01

    In a recent study, Li and Morgans [1] present an ingenious WKB approximation for the acoustic plane wave field in a straight uniform duct with mean temperature gradient and mean flow. The authors state that the previous solutions are limited to small linear mean temperature gradients and low mean flow Mach numbers and claim that their solution applies for arbitrary mean temperature profiles and moderate-to-large mean flow velocity Mach numbers at both low and high frequencies.

  9. Quantifying the atomic-level mechanics of single long physisorbed molecular chains.

    PubMed

    Kawai, Shigeki; Koch, Matthias; Gnecco, Enrico; Sadeghi, Ali; Pawlak, Rémy; Glatzel, Thilo; Schwarz, Jutta; Goedecker, Stefan; Hecht, Stefan; Baratoff, Alexis; Grill, Leonhard; Meyer, Ernst

    2014-03-18

    Individual in situ polymerized fluorene chains 10-100 nm long linked by C-C bonds are pulled vertically from an Au(111) substrate by the tip of a low-temperature atomic force microscope. The conformation of the selected chains is imaged before and after manipulation using scanning tunneling microscopy. The measured force gradient shows strong and periodic variations that correspond to the step-by-step detachment of individual fluorene repeat units. These variations persist at constant intensity until the entire polymer is completely removed from the surface. Calculations based on an extended Frenkel-Kontorova model reproduce the periodicity and magnitude of these features and allow us to relate them to the detachment force and desorption energy of the repeat units. The adsorbed part of the polymer slides easily along the surface during the pulling process, leading to only small oscillations as a result of the high stiffness of the fluorenes and of their length mismatch with respect to the substrate surface structure. A significant lateral force also is caused by the sequential detachment of individual units. The gained insight into the molecule-surface interactions during sliding and pulling should aid the design of mechanoresponsive nanosystems and devices.

  10. The potential for free and mixed convection in sedimentary basins

    USGS Publications Warehouse

    Raffensperger, Jeff P.; Vlassopoulos, D.

    1999-01-01

    Free thermal convection and mixed convection are considered as potential mechanisms for mass and heat transport in sedimentary basins. Mixed convection occurs when horizontal flows (forced convection) are superimposed on thermally driven flows. In cross section, mixed convection is characterized by convection cells that migrate laterally in the direction of forced convective flow. Two-dimensional finite-element simulations of variable-density groundwater flow and heat transport in a horizontal porous layer were performed to determine critical mean Rayleigh numbers for the onset of free convection, using both isothermal and semi-conductive boundaries. Additional simulations imposed a varying lateral fluid flux on the free-convection pattern. Results from these experiments indicate that forced convection becomes dominant, completely eliminating buoyancy-driven circulation, when the total forced-convection fluid flux exceeds the total flux possible due to free convection. Calculations of the thermal rock alteration index (RAI=q????T) delineate the patterns of potential diagenesis produced by fluid movement through temperature gradients. Free convection produces a distinct pattern of alternating positive and negative RAIs, whereas mixed convection produces a simpler layering of positive and negative values and in general less diagenetic alteration. ?? Springer-Verlag.

  11. Electrokinetically driven continuous-flow enrichment of colloidal particles by Joule heating induced temperature gradient focusing in a convergent-divergent microfluidic structure.

    PubMed

    Zhao, Cunlu; Ge, Zhengwei; Song, Yongxin; Yang, Chun

    2017-09-07

    Enrichment of colloidal particles in continuous flow has not only numerous applications but also poses a great challenge in controlling physical forces that are required for achieving particle enrichment. Here, we for the first time experimentally demonstrate the electrokinetically-driven continuous-flow enrichment of colloidal particles with Joule heating induced temperature gradient focusing (TGF) in a microfluidic convergent-divergent structure. We consider four mechanisms of particle transport, i.e., advection due to electroosmosis, electrophoresis, dielectrophoresis and, and further clarify their roles in the particle enrichment. It is experimentally determined and numerically verified that the particle thermophoresis plays dominant roles in enrichment of all particle sizes considered in this study and the combined effect of electroosmosis-induced advection and electrophoresis is mainly to transport particles to the zone of enrichment. Specifically, the enrichment of particles is achieved with combined DC and AC voltages rather than a sole DC or AC voltage. A numerical model is formulated with consideration of the abovementioned four mechanisms, and the model can rationalize the experimental observations. Particularly, our analysis of numerical and experimental results indicates that thermophoresis which is usually an overlooked mechanism of material transport is crucial for the successful electrokinetic enrichment of particles with Joule heating induced TGF.

  12. Supercritical Fluid Chromatography of Drugs: Parallel Factor Analysis for Column Testing in a Wide Range of Operational Conditions

    PubMed Central

    Al-Degs, Yahya; Andri, Bertyl; Thiébaut, Didier; Vial, Jérôme

    2017-01-01

    Retention mechanisms involved in supercritical fluid chromatography (SFC) are influenced by interdependent parameters (temperature, pressure, chemistry of the mobile phase, and nature of the stationary phase), a complexity which makes the selection of a proper stationary phase for a given separation a challenging step. For the first time in SFC studies, Parallel Factor Analysis (PARAFAC) was employed to evaluate the chromatographic behavior of eight different stationary phases in a wide range of chromatographic conditions (temperature, pressure, and gradient elution composition). Design of Experiment was used to optimize experiments involving 14 pharmaceutical compounds present in biological and/or environmental samples and with dissimilar physicochemical properties. The results showed the superiority of PARAFAC for the analysis of the three-way (column × drug × condition) data array over unfolding the multiway array to matrices and performing several classical principal component analyses. Thanks to the PARAFAC components, similarity in columns' function, chromatographic trend of drugs, and correlation between separation conditions could be simply depicted: columns were grouped according to their H-bonding forces, while gradient composition was dominating for condition classification. Also, the number of drugs could be efficiently reduced for columns classification as some of them exhibited a similar behavior, as shown by hierarchical clustering based on PARAFAC components. PMID:28695040

  13. Comparison of Alcator C data with the Rebut-Lallia-Watkins critical gradient scaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, I.H.

    The critical temperature gradient model of Rebut, Lallia and Watkins is compared with data from Alcator C. The predicted central electron temperature is derived from the model, and a simple analytic formula is given. It is found to be in quite good agreement with the observed temperatures on Alcator C under ohmic heating conditions. However, the thermal diffusivity postulated in the model for gradients that exceed the critical is not consistent with the observed electron heating by Lower Hybrid waves.

  14. Minimum maximum temperature gradient coil design.

    PubMed

    While, Peter T; Poole, Michael S; Forbes, Larry K; Crozier, Stuart

    2013-08-01

    Ohmic heating is a serious problem in gradient coil operation. A method is presented for redesigning cylindrical gradient coils to operate at minimum peak temperature, while maintaining field homogeneity and coil performance. To generate these minimaxT coil windings, an existing analytic method for simulating the spatial temperature distribution of single layer gradient coils is combined with a minimax optimization routine based on sequential quadratic programming. Simulations are provided for symmetric and asymmetric gradient coils that show considerable improvements in reducing maximum temperature over existing methods. The winding patterns of the minimaxT coils were found to be heavily dependent on the assumed thermal material properties and generally display an interesting "fish-eye" spreading of windings in the dense regions of the coil. Small prototype coils were constructed and tested for experimental validation and these demonstrate that with a reasonable estimate of material properties, thermal performance can be improved considerably with negligible change to the field error or standard figures of merit. © 2012 Wiley Periodicals, Inc.

  15. Large polarization gradients and temperature-stable responses in compositionally-graded ferroelectrics

    DOE PAGES

    Damodaran, Anoop R.; Pandya, Shishir; Qi, Yubo; ...

    2017-05-10

    A range of modern applications require large and tunable dielectric, piezoelectric or pyroelectric response of ferroelectrics. Such effects are intimately connected to the nature of polarization and how it responds to externally applied stimuli. Ferroelectric susceptibilities are, in general, strongly temperature dependent, diminishing rapidly as one transitions away from the ferroelectric phase transition (T C). In turn, researchers seek new routes to manipulate polarization to simultaneously enhance susceptibilities and broaden operational temperature ranges. Here, we demonstrate such a capability by creating composition and strain gradients in Ba 1-xSr xTiO 3 films which result in spatial polarization gradients as large asmore » 35 μC cm -2 across a 150 nm thick film. These polarization gradients allow for large dielectric permittivity with low loss (ε r≈775, tan δ<0.05), negligible temperature-dependence (13% deviation over 500 °C) and high-dielectric tunability (greater than 70% across a 300 °C range). The role of space charges in stabilizing polarization gradients is also discussed.« less

  16. Large polarization gradients and temperature-stable responses in compositionally-graded ferroelectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damodaran, Anoop R.; Pandya, Shishir; Qi, Yubo

    A range of modern applications require large and tunable dielectric, piezoelectric or pyroelectric response of ferroelectrics. Such effects are intimately connected to the nature of polarization and how it responds to externally applied stimuli. Ferroelectric susceptibilities are, in general, strongly temperature dependent, diminishing rapidly as one transitions away from the ferroelectric phase transition (T C). In turn, researchers seek new routes to manipulate polarization to simultaneously enhance susceptibilities and broaden operational temperature ranges. Here, we demonstrate such a capability by creating composition and strain gradients in Ba 1-xSr xTiO 3 films which result in spatial polarization gradients as large asmore » 35 μC cm -2 across a 150 nm thick film. These polarization gradients allow for large dielectric permittivity with low loss (ε r≈775, tan δ<0.05), negligible temperature-dependence (13% deviation over 500 °C) and high-dielectric tunability (greater than 70% across a 300 °C range). The role of space charges in stabilizing polarization gradients is also discussed.« less

  17. Phoresis in fluids.

    PubMed

    Brenner, Howard

    2011-12-01

    This paper presents a unified theory of phoretic phenomena in single-component fluids. Simple formulas are given for the phoretic velocities of small inert force-free non-Brownian particles migrating through otherwise quiescent single-component gases and liquids and animated by a gradient in the fluid's temperature (thermophoresis), pressure (barophoresis), density (pycnophoresis), or any combination thereof. The ansatz builds upon a recent paper [Phys. Rev. E 84, 046309 (2011)] concerned with slip of the fluid's mass velocity at solid surfaces--that is, with phenomena arising from violations of the classical no-slip fluid-mechanical boundary condition. Experimental and other data are cited in support of the phoretic model developed herein.

  18. Temperature and diet effects on omnivorous fish performance: Implications for the latitudinal diversity gradient in herbivorous fishes

    USGS Publications Warehouse

    Behrens, M.D.; Lafferty, K.D.

    2007-01-01

    Herbivorous fishes show a clear latitudinal diversity gradient, making up a larger proportion of the fish species in a community in tropical waters than in temperate waters. One proposed mechanism that could drive this gradient is a physiological constraint due to temperature. One prediction based on this mechanism is that if herbivorous fishes could shift their diet to animal material, they would be better able to grow, survive, and reproduce in cold waters. We tested this prediction on the omnivore Girella nigricans under different temperature and diet regimes using RNA-DNA ratios as an indicator of performance. Fish had increased performance (100%) at low temperatures (12??C) when their diet was supplemented with animal material. In contrast, at higher temperatures (17, 22, and 27??C) fish showed no differences between diets. This indicates that omnivorous fishes could increase their performance at low temperatures by consuming more animal matter. This study supports the hypothesis that a relative increase in the nutritional value of plant material at warmer temperatures could drive the latitudinal diversity gradient in herbivorous fishes. ?? 2007 NRC.

  19. The impact of summer rainfall on the temperature gradient along the United States-Mexico border

    NASA Technical Reports Server (NTRS)

    Balling, Robert C., Jr.

    1989-01-01

    The international border running through the Sonoran Desert in southern Arizona and northern Sonora is marked by a sharp discontinuity in albedo and grass cover. The observed differences in surface properties are a result of long-term, severe overgrazing of the Mexican lands. Recently, investigators have shown the Mexican side of the border to have higher surface and air temperatures when compared to adjacent areas in the United State. The differences in temperatures appear to be more associated with differential evapotranspiration rates than with albedo changes along the border. In this study, the impact of summer rainfall on the observed seasonal and daily gradient in maximum temperature is examined. On a seasonal time scale, the temperature gradient increases with higher moisture levels, probably due to a vegetative response on the United States' side of the border; at the daily level, the gradient in maximum temperature decreases after a rain event as evaporation rates equalize between the countries. The results suggest that temperature differences between vegetated and overgrazed landscapes in arid areas are highly dependent upon the amount of moisture available for evapotranspiration.

  20. Active thermal fine laser tuning in a broad spectral range and optical properties of cholesteric liquid crystal.

    PubMed

    Jeong, Mi-Yun; Kwak, Keumcheol

    2016-11-20

    In this study, we achieved active fine laser tuning in a broad spectral range with dye-doped cholesteric liquid crystal wedge-type cells through temperature control. The spatial pitch gradient of each position of the wedge cell at room temperature was almost maintained after developing a temperature gradient. To achieve the maximum tuning range, the chiral dopant concentration, thickness, thickness gradient, and temperature gradient on the wedge cell should be matched properly. In order to understand the laser tuning mechanism for temperature change, we studied the temperature dependence of optical properties of the photonic bandgap of cholesteric liquid crystals. In our cholesteric liquid crystal samples, when temperature was increased, photonic bandgaps were shifted toward blue, while the width of the photonic bandgap was decreased, regardless of whether the helicity was left-handed or right-handed. This is mainly due to the combination of decreased refractive indices, higher molecular anisotropy of chiral molecules, and increased chiral molecular solubility. We envisage that this kind of study will prove useful in the development of practical active tunable CLC laser devices.

Top