Numerical analysis of temperature field in the high speed rotary dry-milling process
NASA Astrophysics Data System (ADS)
Wu, N. X.; Deng, L. J.; Liao, D. H.
2018-01-01
For the effect of the temperature field in the ceramic dry granulation. Based on the Euler-Euler mathematical model, at the same time, made ceramic dry granulation experiment equipment more simplify and established physical model, the temperature of the dry granulation process was simulated with the granulation time. The relationship between the granulation temperature and granulation effect in dry granulation process was analyzed, at the same time, the correctness of numerical simulation was verified by measuring the fluidity index of ceramic bodies. Numerical simulation and experimental results showed that when granulation time was 4min, 5min, 6min, maximum temperature inside the granulation chamber was: 70°C, 85°C, 95°C. And the equilibrium of the temperature in the granulation chamber was weakened, the fluidity index of the billet particles was: 56.4. 89.7. 81.6. Results of the research showed that when granulation time was 5min, the granulation effect was best. When the granulation chamber temperature was more than 85°C, the fluidity index and the effective particles quantity of the billet particles were reduced.
Batra, Amol; Desai, Dipen; Serajuddin, Abu T M
2017-01-01
Traditionally, the melt granulation for pharmaceutical products was performed at low temperature (<90°C) with high-shear granulators using low-melting waxy binders, and tablets produced using such granules were not amenable to large-scale manufacturing. The situation has changed in recent years by the use of twin screw extruder where the processing temperature could be increased to as high as 180°C and polymers with high T g could be used as binders. In this study, different polymeric binders were screened for their suitability in improving compactibility of 2 drugs, metformin hydrochloride and acetaminophen, by twin screw melt granulation. Processing temperatures for the 2 drugs were set at 180°C and 130°C, respectively. Screw configuration, screw speed, and feed rate were optimized such that all polymeric binders used produced granules. Several hydroxypropyl cellulose, hydroxypropyl methylcellulose, polyvinylpyrrolidone, and methacrylate-based polymers, including Klucel ® EXF, Eudragit ® EPO, and Soluplus ® , demonstrated good tablet tensile strength (>2 MPa) when granules were produced using only 10% wt/wt polymer concentration. Certain polymers provided acceptable compactibility even at 5% wt/wt. Thus, twin screw melt granulation process may be used with different polymers at a wide range of temperature. Due to low excipient concentration, this granulation method is especially suitable for high-dose tablets. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Meena, Anuprabha K; Desai, Divyakant; Serajuddin, Abu T M
2017-02-01
The objective of this study was to enhance tabletability of a poorly compactible drug, acetaminophen, by wet granulation using twin screw extruder at high temperature. It was desired that there would be minimum amounts of excipients used and the granules obtained after extrusion would be dry and fall within a size range suitable for tableting without any further processing. Mixtures of acetaminophen (95%) with binders (5% povidone or partially pregelatinized starch) were wet granulated through twin screw extruder at 70°C by adding 7% w/w water. The process had a short granulation time (<1 min), and, on account of the elevated processing temperature used, no drying after extrusion was needed. By optimizing formulation and processing parameters, >90% granules in the size range of 125 to 1000 μm (<3% above 1000 μm and <7% below 125 μm) were obtained without any milling. When the granules were compressed by adding 1% disintegrant and 0.5% lubricant extragranularly, tablets produced (93.6% drug load) had good mechanical strength having hardness >1.7 MPa, which was superior to that of tablets prepared by conventional high shear wet granulation. As the granules could be extruded continuously and did not require drying and milling, the method was amenable to continuous processing. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Stange, Ulrike; Führling, Christian; Gieseler, Henning
2014-09-15
Abstract Orally disintegrating tablets (ODTs) were freeze dried in blisters using the Lyostar® II SMART™ Freeze Dryer Technology. ODT formulations either without non-water soluble particles (placebo) or containing large fractions (717 mg) of taste-masked naproxen sodium (NaS) granules were freeze dried. The process data revealed differences between ODTs with and without embedded granules in the pressure rise curves as well as in the shelf (inlet) temperature adjustments during freeze-drying. Pressure rise curves of the placebo ODTs from eight hours process time showed no distinct temperature-dominated part, and the last optimization step of the shelf temperature to achieve -24.4 °C might be prone to errors. The final shelf temperature of ODTs containing granules was -23.3 °C. The detection of primary drying endpoints using SMART™ Technology or comparative pressure measurements was reliable for both ODT formulations, whereas the application of thermocouples resulted in premature endpoint indication. Product resistance of ODTs containing granules was generally elevated in comparison to ODTs without granules, but increased only slightly over the course of the drying process. In summary, the developed freeze-drying cycle was found applicable for production of elegant ODTs with incorporated taste masked NaS granules.
Real-time assessment of critical quality attributes of a continuous granulation process.
Fonteyne, Margot; Vercruysse, Jurgen; Díaz, Damián Córdoba; Gildemyn, Delphine; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas
2013-02-01
There exists the intention to shift pharmaceutical manufacturing of solid dosage forms from traditional batch production towards continuous production. The currently applied conventional quality control systems, based on sampling and time-consuming off-line analyses in analytical laboratories, would annul the advantages of continuous processing. It is clear that real-time quality assessment and control is indispensable for continuous production. This manuscript evaluates strengths and weaknesses of several complementary Process Analytical Technology (PAT) tools implemented in a continuous wet granulation process, which is part of a fully continuous from powder-to-tablet production line. The use of Raman and NIR-spectroscopy and a particle size distribution analyzer is evaluated for the real-time monitoring of critical parameters during the continuous wet agglomeration of an anhydrous theophylline- lactose blend. The solid state characteristics and particle size of the granules were analyzed in real-time and the critical process parameters influencing these granule characteristics were identified. The temperature of the granulator barrel, the amount of granulation liquid added and, to a lesser extent, the powder feed rate were the parameters influencing the solid state of the active pharmaceutical ingredient (API). A higher barrel temperature and a higher powder feed rate, resulted in larger granules.
De Leersnyder, F; Vanhoorne, V; Bekaert, H; Vercruysse, J; Ghijs, M; Bostijn, N; Verstraeten, M; Cappuyns, P; Van Assche, I; Vander Heyden, Y; Ziemons, E; Remon, J P; Nopens, I; Vervaet, C; De Beer, T
2018-03-30
Although twin screw granulation has already been widely studied in recent years, only few studies addressed the subsequent continuous drying which is required after wet granulation and still suffers from a lack of detailed understanding. The latter is important for optimisation and control and, hence, a cost-effective practical implementation. Therefore, the aim of the current study is to increase understanding of the drying kinetics and the breakage and attrition phenomena during fluid bed drying after continuous twin screw granulation. Experiments were performed on a continuous manufacturing line consisting of a twin-screw granulator, a six-segmented fluid bed dryer, a mill, a lubricant blender and a tablet press. Granulation parameters were fixed in order to only examine the effect of drying parameters (filling time, drying time, air flow, drying air temperature) on the size distribution and moisture content of granules (both of the entire granulate and of size fractions). The wet granules were transferred either gravimetrically or pneumatically from the granulator exit to the fluid bed dryer. After a certain drying time, the moisture content reached an equilibrium. This drying time was found to depend on the applied airflow, drying air temperature and filling time. The moisture content of the granules decreased with an increasing drying time, airflow and drying temperature. Although smaller granules dried faster, the multimodal particle size distribution of the granules did not compromise uniform drying of the granules when the target moisture content was achieved. Extensive breakage of granules was observed during drying. Especially wet granules were prone to breakage and attrition during pneumatic transport, either in the wet transfer line or in the dry transfer line. Breakage and attrition of granules during transport and drying should be anticipated early on during process and formulation development by performing integrated experiments on the granulator, dryer and mill. Copyright © 2018 Elsevier B.V. All rights reserved.
Xu, Ting; Nahar, Kajalajit; Dave, Rutesh; Bates, Simon; Morris, Kenneth
2018-05-10
To study and elucidate the effect of the intensity and duration of processing stresses on the possible solid-state changes during a hot melt extrusion granulation process. Blends of α-indomethacin and PEG 3350 (w/w 4:1) were granulated using various screw sizes/designs on the melt extruder under different temperature regimes. Differential Scanning Calorimetry and X-ray Powder Diffraction were employed for characterization. The dissolution behavior of the pure polymorphs and the resulting granules was determined using in-situ fiber optic UV testing system. An XRPD quantitation method using Excel full pattern fitting was developed to determine the concentration of each constituent (amorphous, α and γ indomethacin and PEG) in samples collected from each functioning zone and in granules. Analysis of in-process samples and granules revealed that higher temperature (≥130°C) and shear stress accelerated the process induced phase transitions from amorphous and/or the α form to γ indomethacin during heating stage. However, rapid cooling resulted in an increased percentage of the α form allowing isolation of the meta-stable form. By determining the conditions that either prevent or facilitate process induced transformations of IMC polymorphs during melt granulation, a design space was developed to control the polymorph present in the resulting granules. This represents the conditions necessary to balance the thermodynamic relationships between the polymorphs of the IMC system and the kinetics of the possible transformations as a function of the processing stresses.
Vanhoorne, V; Vanbillemont, B; Vercruysse, J; De Leersnyder, F; Gomes, P; Beer, T De; Remon, J P; Vervaet, C
2016-05-30
The aim of this study was to evaluate the potential of twin screw granulation for the continuous production of controlled release formulations with hydroxypropylmethylcellulose as hydrophilic matrix former. Metoprolol tartrate was included in the formulation as very water soluble model drug. A premix of metoprolol tartrate, hydroxypropylmethylcellulose and filler (ratio 20/20/60, w/w) was granulated with demineralized water via twin screw granulation. After oven drying and milling, tablets were produced on a rotary Modul™ P tablet press. A D-optimal design (29 experiments) was used to assess the influence of process (screw speed, throughput, barrel temperature and screw design) and formulation parameters (starch content of the filler) on the process (torque), granule (size distribution, shape, friability, density) and tablet (hardness, friability and dissolution) critical quality attributes. The torque was dominated by the number of kneading elements and throughput, whereas screw speed and filling degree only showed a minor influence on torque. Addition of screw mixing elements after a block of kneading elements improved the yield of the process before milling as it resulted in less oversized granules and also after milling as less fines were present. Temperature was also an important parameter to optimize as a higher temperature yielded less fines and positively influenced the aspect ratio. The shape of hydroxypropylmethylcellulose granules was comparable to that of immediate release formulations. Tensile strength and friability of tablets were not dependent on the process parameters. The use of starch as filler was not beneficial with regard to granule and tablet properties. Complete drug release was obtained after 16-20h and was independent of the design's parameters. Copyright © 2016 Elsevier B.V. All rights reserved.
Monteyne, Tinne; Heeze, Liza; Mortier, Severine Therese F C; Oldörp, Klaus; Cardinaels, Ruth; Nopens, Ingmar; Vervaet, Chris; Remon, Jean-Paul; De Beer, Thomas
2016-10-01
Twin screw hot melt granulation (TS HMG) is a valuable, but still unexplored alternative to continuous granulation of moisture sensitive drugs. However, knowledge of the material behavior during TS HMG is crucial to optimize the formulation, process and resulting granule properties. The aim of this study was to evaluate the agglomeration mechanism during TS HMG using a rheometer in combination with differential scanning calorimetry (DSC). An immiscible drug-binder formulation (caffeine-Soluplus(®)) was granulated via TS HMG in combination with thermal and rheological analysis (conventional and Rheoscope), granule characterization and Near Infrared chemical imaging (NIR-CI). A thin binder layer with restricted mobility was formed on the surface of the drug particles during granulation and is covered by a second layer with improved mobility when the Soluplus(®) concentration exceeded 15% (w/w). The formation of this second layer was facilitated at elevated granulation temperatures and resulted in smaller and more spherical granules. The combination of thermal and rheological analysis and NIR-CI images was advantageous to develop in-depth understanding of the agglomeration mechanism during continuous TS HMG and provided insight in the granule properties as function of process temperature and binder concentration.
Silva, A F; Sarraguça, M C; Fonteyne, M; Vercruysse, J; De Leersnyder, F; Vanhoorne, V; Bostijn, N; Verstraeten, M; Vervaet, C; Remon, J P; De Beer, T; Lopes, J A
2017-08-07
A multivariate statistical process control (MSPC) strategy was developed for the monitoring of the ConsiGma™-25 continuous tablet manufacturing line. Thirty-five logged variables encompassing three major units, being a twin screw high shear granulator, a fluid bed dryer and a product control unit, were used to monitor the process. The MSPC strategy was based on principal component analysis of data acquired under normal operating conditions using a series of four process runs. Runs with imposed disturbances in the dryer air flow and temperature, in the granulator barrel temperature, speed and liquid mass flow and in the powder dosing unit mass flow were utilized to evaluate the model's monitoring performance. The impact of the imposed deviations to the process continuity was also evaluated using Hotelling's T 2 and Q residuals statistics control charts. The influence of the individual process variables was assessed by analyzing contribution plots at specific time points. Results show that the imposed disturbances were all detected in both control charts. Overall, the MSPC strategy was successfully developed and applied. Additionally, deviations not associated with the imposed changes were detected, mainly in the granulator barrel temperature control. Copyright © 2017 Elsevier B.V. All rights reserved.
Wöstheinrich, K; Schmidt, P C
2000-06-01
The instrumentation and validation of a laboratory-scale fluidized bed apparatus is described. For continuous control of the process, the apparatus is instrumented with sensors for temperature, relative humidity (RH), and air velocity. Conditions of inlet air, fluidizing air, product, and exhaust air were determined. The temperature sensors were calibrated at temperatures of 0.0 degree C and 99.9 degrees C. The calibration of the humidity sensors covered the range from 12% RH to 98% RH using saturated electrolyte solutions. The calibration of the anemometer took place in a wind tunnel at defined air velocities. The calibrations led to satisfying results concerning sensitivity and precision. To evaluate the reproducibility of the process, 15 granules were prepared under identical conditions. The influence of the type of pump used for delivering the granulating liquid was investigated. Particle size distribution, bulk density, and tapped density were determined. Granules were tableted on a rotary press at four different compression force levels, followed by determination of tablet properties such as weight, crushing strength, and disintegration time. The apparatus was found to produce granules with good reproducibility concerning the granule and tablet properties.
Vercruysse, J; Peeters, E; Fonteyne, M; Cappuyns, P; Delaet, U; Van Assche, I; De Beer, T; Remon, J P; Vervaet, C
2015-01-01
Since small scale is key for successful introduction of continuous techniques in the pharmaceutical industry to allow its use during formulation development and process optimization, it is essential to determine whether the product quality is similar when small quantities of materials are processed compared to the continuous processing of larger quantities. Therefore, the aim of this study was to investigate whether material processed in a single cell of the six-segmented fluid bed dryer of the ConsiGma™-25 system (a continuous twin screw granulation and drying system introduced by GEA Pharma Systems, Collette™, Wommelgem, Belgium) is predictive of granule and tablet quality during full-scale manufacturing when all drying cells are filled. Furthermore, the performance of the ConsiGma™-1 system (a mobile laboratory unit) was evaluated and compared to the ConsiGma™-25 system. A premix of two active ingredients, powdered cellulose, maize starch, pregelatinized starch and sodium starch glycolate was granulated with distilled water. After drying and milling (1000 μm, 800 rpm), granules were blended with magnesium stearate and compressed using a Modul™ P tablet press (tablet weight: 430 mg, main compression force: 12 kN). Single cell experiments using the ConsiGma™-25 system and ConsiGma™-1 system were performed in triplicate. Additionally, a 1h continuous run using the ConsiGma™-25 system was executed. Process outcomes (torque, barrel wall temperature, product temperature during drying) and granule (residual moisture content, particle size distribution, bulk and tapped density, hausner ratio, friability) as well as tablet (hardness, friability, disintegration time and dissolution) quality attributes were evaluated. By performing a 1h continuous run, it was detected that a stabilization period was needed for torque and barrel wall temperature due to initial layering of the screws and the screw chamber walls with material. Consequently, slightly deviating granule and tablet quality attributes were obtained during the start-up phase of the 1h run. For the single cell runs, granule and tablet properties were comparable with results obtained during the second part of the 1h run (after start-up). Although deviating granule quality (particle size distribution and Hausner ratio) was observed due to the divergent design of the ConsiGma™-1 unit and the ConsiGma™-25 system (horizontal set-up) used in this study, tablet quality produced from granules processed with the ConsiGma™-1 system was predictive for tablet quality obtained during continuous production using the ConsiGma™-25 system. Copyright © 2014 Elsevier B.V. All rights reserved.
Djuris, Jelena; Medarevic, Djordje; Krstic, Marko; Djuric, Zorica; Ibric, Svetlana
2013-06-01
This study illustrates the application of experimental design and multivariate data analysis in defining design space for granulation and tableting processes. According to the quality by design concepts, critical quality attributes (CQAs) of granules and tablets, as well as critical parameters of granulation and tableting processes, were identified and evaluated. Acetaminophen was used as the model drug, and one of the study aims was to investigate the possibility of the development of immediate- or extended-release acetaminophen tablets. Granulation experiments were performed in the fluid bed processor using polyethylene oxide polymer as a binder in the direct granulation method. Tablets were compressed in the laboratory excenter tablet press. The first set of experiments was organized according to Plackett-Burman design, followed by the full factorial experimental design. Principal component analysis and partial least squares regression were applied as the multivariate analysis techniques. By using these different methods, CQAs and process parameters were identified and quantified. Furthermore, an in-line method was developed to monitor the temperature during the fluidized bed granulation process, to foresee possible defects in granules CQAs. Various control strategies that are based on the process understanding and assure desired quality attributes of the product are proposed. Copyright © 2013 Wiley Periodicals, Inc.
Burggraeve, A; Van den Kerkhof, T; Hellings, M; Remon, J P; Vervaet, C; De Beer, T
2011-04-18
Fluid bed granulation is a batch process, which is characterized by the processing of raw materials for a predefined period of time, consisting of a fixed spraying phase and a subsequent drying period. The present study shows the multivariate statistical modeling and control of a fluid bed granulation process based on in-line particle size distribution (PSD) measurements (using spatial filter velocimetry) combined with continuous product temperature registration using a partial least squares (PLS) approach. Via the continuous in-line monitoring of the PSD and product temperature during granulation of various reference batches, a statistical batch model was developed allowing the real-time evaluation and acceptance or rejection of future batches. Continuously monitored PSD and product temperature process data of 10 reference batches (X-data) were used to develop a reference batch PLS model, regressing the X-data versus the batch process time (Y-data). Two PLS components captured 98.8% of the variation in the X-data block. Score control charts in which the average batch trajectory and upper and lower control limits are displayed were developed. Next, these control charts were used to monitor 4 new test batches in real-time and to immediately detect any deviations from the expected batch trajectory. By real-time evaluation of new batches using the developed control charts and by computation of contribution plots of deviating process behavior at a certain time point, batch losses or reprocessing can be prevented. Immediately after batch completion, all PSD and product temperature information (i.e., a batch progress fingerprint) was used to estimate some granule properties (density and flowability) at an early stage, which can improve batch release time. Individual PLS models relating the computed scores (X) of the reference PLS model (based on the 10 reference batches) and the density, respectively, flowabililty as Y-matrix, were developed. The scores of the 4 test batches were used to examine the predictive ability of the model. Copyright © 2011 Elsevier B.V. All rights reserved.
Monteyne, Tinne; Vancoillie, Jochem; Remon, Jean-Paul; Vervaet, Chris; De Beer, Thomas
2016-10-01
The pharmaceutical industry has a growing interest in alternative manufacturing models allowing automation and continuous production in order to improve process efficiency and reduce costs. Implementing a switch from batch to continuous processing requires fundamental process understanding and the implementation of quality-by-design (QbD) principles. The aim of this study was to examine the relationship between formulation-parameters (type binder, binder concentration, drug-binder miscibility), process-parameters (screw speed, powder feed rate and granulation temperature), granule properties (size, size distribution, shape, friability, true density, flowability) and tablet properties (tensile strength, friability, dissolution rate) of four different drug-binder formulations using Design of experiments (DOE). Two binders (polyethylene glycol (PEG) and Soluplus®) with a different solid state, semi-crystalline vs amorphous respectively, were combined with two model-drugs, metoprolol tartrate (MPT) and caffeine anhydrous (CAF), both having a contrasting miscibility with the binders. This research revealed that the granule properties of miscible drug-binder systems depended on the powder feed rate and barrel filling degree of the granulator whereas the granule properties of immiscible systems were mainly influenced by binder concentration. Using an amorphous binder, the tablet tensile strength depended on the granule size. In contrast, granule friability was more important for tablet quality using a brittle binder. However, this was not the case for caffeine-containing blends, since these phenomena were dominated by the enhanced compression properties of caffeine Form I, which was formed during granulation. Hence, it is important to gain knowledge about formulation behavior during processing since this influences the effect of process parameters onto the granule and tablet properties. Copyright © 2016 Elsevier B.V. All rights reserved.
Lourenço, Vera; Herdling, Thorsten; Reich, Gabriele; Menezes, José C; Lochmann, Dirk
2011-08-01
A set of 192 fluid bed granulation batches at industrial scale were in-line monitored using microwave resonance technology (MRT) to determine moisture, temperature and density of the granules. Multivariate data analysis techniques such as multiway partial least squares (PLS), multiway principal component analysis (PCA) and multivariate batch control charts were applied onto collected batch data sets. The combination of all these techniques, along with off-line particle size measurements, led to significantly increased process understanding. A seasonality effect could be put into evidence that impacted further processing through its influence on the final granule size. Moreover, it was demonstrated by means of a PLS that a relation between the particle size and the MRT measurements can be quantitatively defined, highlighting a potential ability of the MRT sensor to predict information about the final granule size. This study has contributed to improve a fluid bed granulation process, and the process knowledge obtained shows that the product quality can be built in process design, following Quality by Design (QbD) and Process Analytical Technology (PAT) principles. Copyright © 2011. Published by Elsevier B.V.
On-line monitoring of fluid bed granulation by photometric imaging.
Soppela, Ira; Antikainen, Osmo; Sandler, Niklas; Yliruusi, Jouko
2014-11-01
This paper introduces and discusses a photometric surface imaging approach for on-line monitoring of fluid bed granulation. Five granule batches consisting of paracetamol and varying amounts of lactose and microcrystalline cellulose were manufactured with an instrumented fluid bed granulator. Photometric images and NIR spectra were continuously captured on-line and particle size information was extracted from them. Also key process parameters were recorded. The images provided direct real-time information on the growth, attrition and packing behaviour of the batches. Moreover, decreasing image brightness in the drying phase was found to indicate granule drying. The changes observed in the image data were also linked to the moisture and temperature profiles of the processes. Combined with complementary process analytical tools, photometric imaging opens up possibilities for improved real-time evaluation fluid bed granulation. Furthermore, images can give valuable insight into the behaviour of excipients or formulations during product development. Copyright © 2014 Elsevier B.V. All rights reserved.
Kristó, Katalin; Kovács, Orsolya; Kelemen, András; Lajkó, Ferenc; Klivényi, Gábor; Jancsik, Béla; Pintye-Hódi, Klára; Regdon, Géza
2016-12-01
In the literature there are some publications about the effect of impeller and chopper speeds on product parameters. However, there is no information about the effect of temperature. Therefore our main aim was the investigation of elevated temperature and temperature distribution during pelletization in a high shear granulator according to process analytical technology. During our experimental work, pellets containing pepsin were formulated with a high-shear granulator. A specially designed chamber (Opulus Ltd.) was used for pelletization. This chamber contained four PyroButton-TH® sensors built in the wall and three PyroDiff® sensors 1, 2 and 3cm from the wall. The sensors were located in three different heights. The impeller and chopper speeds were set on the basis of 3 2 factorial design. The temperature was measured continuously in 7 different points during pelletization and the results were compared with the temperature values measured by the thermal sensor of the high-shear granulator. The optimization parameters were enzyme activity, average size, breaking hardness, surface free energy and aspect ratio. One of the novelties was the application of the specially designed chamber (Opulus Ltd.) for monitoring the temperature continuously in 7 different points during high-shear granulation. The other novelty of this study was the evaluation of the effect of temperature on the properties of pellets containing protein during high-shear pelletization. Copyright © 2016 Elsevier B.V. All rights reserved.
Hot granules medium pressure forming process of AA7075 conical parts
NASA Astrophysics Data System (ADS)
Dong, Guojiang; Zhao, Changcai; Peng, Yaxin; Li, Ying
2015-05-01
High strength aluminum alloy plate has a low elongation at room temperature, which leads to the forming of its components need a high temperature. Liquid or gas is used as the pressure-transfer medium in the existing flexible mould forming process, the heat resistance of the medium and pressurizing device makes the application of aluminum alloy plate thermoforming restricted. To solve this problem, the existing medium is replaced by the heat-resisting solid granules and the general pressure equipments are applied. Based on the pressure-transfer performance test of the solid granules medium, the feasibility that the assumption of the extended Drucker-Prager linear model can be used in the finite element analysis is proved. The constitutive equation, the yield function and the theoretical forming limit diagram(FLD) of AA7075 sheet are established. Through the finite element numerical simulation of hot granules medium pressure forming(HGMF) process, not only the influence laws of the process parameters, such as forming temperature, the blank-holder gap and the diameter of the slab, on sheet metal forming performance are discussed, but also the broken area of the forming process is analyzed and predicted, which are coincided with the technological test. The conical part whose half cone angle is 15° and relative height H/d 0 is 0.57, is formed in one process at 250°C. The HGMF process solves the problems of loading and seal in the existing flexible mould forming process and provides a novel technology for thermoforming of light alloy plate, such as magnesium alloy, aluminium alloy and titanium alloy.
[Drying characteristics and apparent change of sludge granules during drying].
Ma, Xue-Wen; Weng, Huan-Xin; Zhang, Jin-Jun
2011-08-01
Three different weight grades of sludge granules (2.5, 5, 10 g) were dried at constant temperature of 100, 200, 300, 400 and 500 degrees C, respectively. Then characteristics of weight loss and change of apparent form during sludge drying were analyzed. Results showed that there were three stages during sludge drying at 100-200 degrees C: acceleration phase, constant-rate phase, and falling-rate phase. At 300-500 degrees C, there were no constant-rate phase, but due to lots of cracks generated at sludge surface, average drying rates were still high. There was a quadratic nonlinear relationship between average drying rate and drying temperature. At 100-200 degrees C, drying processes of different weight grade sludge granules were similar. At 300-500 degrees C, drying processes of same weight grade of sludge granules were similar. Little organic matter decomposed till sludge burning at 100-300 degrees C, while some organic matter began to decompose at the beginning of sludge drying at 400-500 degrees C.
Vanhoorne, V; Bekaert, B; Peeters, E; De Beer, T; Remon, J-P; Vervaet, C
2016-06-15
In most formulations processed via continuous twin screw granulation microcrystalline cellulose (MCC) and/or lactose are used as excipients, but mannitol is also a preferred excipient for wet granulation and tableting due to its non-hygroscopicity and inertness. Therefore, the aim of the current study was to investigate the influence of process parameters on critical quality attributes of granules (moisture content, solid state, morphology, size distribution, specific surface area, friability, flowability and hygroscopicity) and tablets (tensile strength and friability) after twin screw granulation of δ-mannitol. The δ-polymorph was selected since a moisture-induced transformation to β-mannitol was observed during batch wet granulation, which exhibited a unique morphology with a large surface area and improved tabletability. A full factorial experimental design was performed, varying screw speed (400-900rpm), granulation temperature (25-40°C), number of kneading elements (6 or 12) and liquid-to-solid (L/S) ratio, on the granulation unit of a ConsiGma™-25 line (a continuous powder-to-tablet manufacturing system). After tray drying the granules were milled and tableted. The results showed that the polymorphic transition from δ- to β-mannitol also occurred during twin screw granulation, although the residence time and L/S ratios were much lower in continuous twin screw granulation compared to batch processing. However, the polymorphic transition was not complete in all experiments and depended on the L/S ratio, screw speed and number of kneading elements. Nevertheless all granules exhibited the unique morphology linked to the polymorphic transition and had a superior tabletability compared to granules produced with β-mannitol as starting material. This was attributed to enhanced plastic deformation of the granules manufactured using δ-mannitol as starting material. In addition, it was concluded that mannitol was granulated via a different mechanism than other, less-soluble, excipients (e.g. lactose, microcrystalline cellulose) due to its high solubility and dissolution rate as the influence of process parameters on the mannitol granule characteristics was different. Copyright © 2016 Elsevier B.V. All rights reserved.
Xing, Bao-Shan; Guo, Qiong; Jiang, Xiao-Yan; Chen, Qian-Qian; Li, Peng; Ni, Wei-Min; Jin, Ren-Cun
2016-05-01
Preserving active anaerobic ammonium oxidation (anammox) biomass is a potential method for securing sufficient seeding biomass for the rapid start-up of full-scale anammox processes. In this study, anammox granules were cultured in an upflow anaerobic sludge blanket (UASB) reactor (R0), and then the enriched anammox granules were preserved at 35, 20, 4, and -30 °C. The subsequent reactivation characteristics of the granules were evaluated in four UASB reactors (denoted R1, R2, R3, and R4, respectively) to investigate the effect of preservation temperature on the characteristics of anammox granules and their reactivation performance. The results demonstrated that 4 °C was the optimal preservation temperature for maintaining the biomass, activity, settleability, and integrity of the anammox granules and their cellular structures. During the preservation period, a first-order exponential decay model may be used to simulate the decay of anammox biomass and activity. The protein-to-polysaccharide ratio in the extracellular polymeric substances and the heme c content could not effectively indicate the changes in settleability and activity of the anammox granules, respectively, and a loss of bioactivity was positively associated with the degree of anaerobic ammonium-oxidizing bacteria cell lysis. After 42 days of storage, the anammox granules preserved at 4 °C (R3) exhibited a better recovery performance than those preserved at 20 °C (R2), -30 °C (R4), and 35 °C (R1). The comprehensive comparison indicated that 4 °C is the optimal storage temperature for anammox granular sludge because it promotes improved maintenance and recovery performance properties.
Upgrading of automobile shredder residue via innovative granulation process 'ReGran'.
Holthaus, Philip; Kappes, Moritz; Krumm, Wolfgang
2017-01-01
Stricter regulatory requirements concerning end-of-life vehicles and rising disposal costs necessitate new ways for automobile shredder residue utilisation. The shredder granulate and fibres, produced by the VW-SICON-Process, have a high energy content of more than 20 MJ kg -1 , which makes energy recovery an interesting possibility. Shredder fibres have a low bulk density of 60 kg m -3 , which prevents efficient storing and utilisation as a refuse-derived fuel. By mixing fibres with plastic-rich shredder granulate and heating the mixture, defined granules can be produced. With this 'ReGran' process, the bulk density can be enhanced by a factor of seven by embedding shredder fibres in the partially melted plastic mass. A minimum of 26-33 wt% granulate is necessary to create enough melted plastic. The process temperature should be between 240 °C and 250 °C to assure fast melting while preventing extensive outgassing. A rotational frequency of the mixing tool of 1000 r min -1 during heating and mixing ensures a homogenous composition of the granules. During cooling, lower rotational frequencies generate bigger granules with particles sizes of up to 60 mm at 300 r min -1 . To keep outgassing to a minimum, it is suggested to melt shredder granulate first and then add shredder fibres. Adding coal, wood or tyre fluff as a third component reduces chlorine levels to less than 1 wt%. The best results can be achieved with tyre fluff. In combination with the VW-SICON-Process, ReGran produces a solid recovered fuel or 'design fuel' tailored to the requirements of specific thermal processes.
Microencapsulation of fish oil by spray granulation and fluid bed film coating.
Anwar, Sri Haryani; Weissbrodt, Jenny; Kunz, Benno
2010-08-01
The stability of microencapsulated fish oil prepared with 2 production processes, spray granulation (SG) and SG followed by film coating (SG-FC) using a fluid bed equipment, was investigated. In the 1st process, 3 types of fish oil used were based on the ratios of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (10/50, 33/22, and 18/12). Each type was emulsified with soluble soybean polysaccharide (SSPS) and maltodextrin to produce 25% oil powders. In the 2nd process, 15% film coating of hydroxypropyl betacyclodextrin (HPBCD) was applied to the granules from the 1st process. The powder stability against oxidation was examined by measurement of peroxide values (PV) and headspace propanal after storage at room temperature and at 3 to 4 degrees C for 6 wk. Uncoated powder containing the lowest concentration of PUFA (18/12) was found to be stable during storage at room temperature with maximum PV of 3.98 +/- 0.001 meq/kg oil. The PV increased sharply for uncoated powder with higher concentration of omega-3 (in 33/22 and 10/50 fish oils) after 3 wk storage. The PVs were in agreement with the concentration of propanal, and these 2 parameters remained constant for most of the uncoated powders stored at low temperature. Unexpectedly, the outcomes showed that the coated powders had lower stability than uncoated powders as indicated by higher initial PVs; more hydroperoxides were detected as well as increasing propanal concentration. The investigation suggests that the film-coating by HPBCD ineffectively protected fish oil as the coating process might have induced further oxidation; however, SG is a good method for producing fish oil powder and to protect it from oxidation because of the "onion skin" structure of granules produced in this process.
Mathematical Model of Heat Transfer in the Catalyst Granule with Point Reaction Centers
NASA Astrophysics Data System (ADS)
Derevich, I. V.; Fokina, A. Yu.
2018-01-01
This paper considers a catalyst granule with a porous ceramic chemically inert base and active point centers, at which an exothermic reaction of synthesis takes place. The rate of a chemical reaction depends on temperature by the Arrhenius law. The heat is removed from the catalyst granule surface to the synthesis products by heat transfer. Based on the idea of self-consistent field, a closed system of equations is constructed for calculating the temperatures of the active centers. As an example, a catalyst granule of the Fischer-Tropsch synthesis with active metallic cobalt particles is considered. The stationary temperatures of the active centers are calculated by the timedependent technique by solving a system of ordinary differential equations. The temperature distribution inside the granule has been found for the local centers located on one diameter of the granule and distributed randomly in the granule's volume. The existence of the critical temperature inside the reactor has been established, the excess of which leads to substantial superheating of local centers. The temperature distribution with local reaction centers differs qualitatively from the granule temperature calculated in the homogeneous approximation. The results of calculations are given.
Ghorab, Mohamed K; Adeyeye, Moji Christianah
2007-10-19
The aims of the study were to evaluate the effect of high shear mixer (HSM) granulation process parameters and scale-up on wet mass consistency and granulation characteristics. A mixer torque rheometer (MTR) was employed to evaluate the granulating solvents used (water, isopropanol, and 1:1 vol/vol mixture of both) based on the wet mass consistency. Gral 25 and mini-HSM were used for the granulation. The MTR study showed that the water significantly enhanced the beta-cyclodextrin (beta CD) binding tendency and the strength of liquid bridges formed between the particles, whereas the isopropanol/water mixture yielded more suitable agglomerates. Mini-HSM granulation with the isopropanol/water mixture (1:1 vol/vol) showed a reduction in the extent of torque value rise by increasing the impeller speed as a result of more breakdown of agglomerates than coalescence. In contrast, increasing the impeller speed of the Gral 25 resulted in higher torque readings, larger granule size, and consequently, slower dissolution. This was due to a remarkable rise in temperature during Gral granulation that reduced the isopropanol/water ratio in the granulating solvent as a result of evaporation and consequently increased the beta CD binding strength. In general, the HSM granulation retarded ibuprofen dissolution compared with the physical mixture because of densification and agglomeration. However, a successful HSM granulation scale-up was not achieved due to the difference in the solvent mixture's effect from 1 scale to the other.
Fluidized bed heat treating system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ripley, Edward B; Pfennigwerth, Glenn L
Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulatedmore » through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.« less
Granulation of snow: From tumbler experiments to discrete element simulations
NASA Astrophysics Data System (ADS)
Steinkogler, Walter; Gaume, Johan; Löwe, Henning; Sovilla, Betty; Lehning, Michael
2015-06-01
It is well known that snow avalanches exhibit granulation phenomena, i.e., the formation of large and apparently stable snow granules during the flow. The size distribution of the granules has an influence on flow behavior which, in turn, affects runout distances and avalanche velocities. The underlying mechanisms of granule formation are notoriously difficult to investigate within large-scale field experiments, due to limitations in the scope for measuring temperatures, velocities, and size distributions. To address this issue we present experiments with a concrete tumbler, which provide an appropriate means to investigate granule formation of snow. In a set of experiments at constant rotation velocity with varying temperatures and water content, we demonstrate that temperature has a major impact on the formation of granules. The experiments showed that granules only formed when the snow temperature exceeded -1∘C. No evolution in the granule size was observed at colder temperatures. Depending on the conditions, different granulation regimes are obtained, which are qualitatively classified according to their persistence and size distribution. The potential of granulation of snow in a tumbler is further demonstrated by showing that generic features of the experiments can be reproduced by cohesive discrete element simulations. The proposed discrete element model mimics the competition between cohesive forces, which promote aggregation, and impact forces, which induce fragmentation, and supports the interpretation of the granule regime classification obtained from the tumbler experiments. Generalizations, implications for flow dynamics, and experimental and model limitations as well as suggestions for future work are discussed.
Methods of synthesizing hydroxyapatite powders and bulk materials
Luo, Ping
1999-01-12
Methods are provided for producing non-porous controlled morphology hydroxyapatite granules of less than 8 .mu.m by a spray-drying process. Solid or hollow spheres or doughnuts can be formed by controlling the volume fraction and viscosity of the slurry as well as the spray-drying conditions. Methods of providing for homogenous cellular structure hydroxyapatite granules are also provided. Pores or channels or varying size and number can be formed by varying the temperature at which a hydroxyapatite slurry formed in basic, saturated ammonium hydroxide is spray-dried. Methods of providing non-porous controlled morphology hydroxyapatite granules in ammonium hydroxide are also provided. The hydroxyapatite granules and bulk materials formed by these methods are also provided.
Methods of synthesizing hydroxyapatite powders and bulk materials
Luo, P.
1999-01-12
Methods are provided for producing non-porous controlled morphology hydroxyapatite granules of less than 8 {micro}m by a spray-drying process. Solid or hollow spheres or doughnuts can be formed by controlling the volume fraction and viscosity of the slurry as well as the spray-drying conditions. Methods of providing for homogeneous cellular structure hydroxyapatite granules are also provided. Pores or channels or varying size and number can be formed by varying the temperature at which a hydroxyapatite slurry formed in basic, saturated ammonium hydroxide is spray-dried. Methods of providing non-porous controlled morphology hydroxyapatite granules in ammonium hydroxide are also provided. The hydroxyapatite granules and bulk materials formed by these methods are also provided. 26 figs.
Bajdik, János; Baki, Gabriella; Szent-Királlyi, Zsuzsanna; Knop, Klaus; Kleinebudde, Peter; Pintye-Hódi, Klára
2008-11-04
The aim of this work was to evaluate the binder bridges which can form in hydrophilic matrix granules prepared with a small-scale high-shear granulator. Matrices contained hydroxypropyl methylcellulose (HPMC) as a matrix-forming agent, together with lactose monohydrate and microcrystalline cellulose as filler. Water was used as granulating liquid. A 2(4) full factorial design was used to evaluate the effects of the operational parameters (impeller speed, chopper speed, dosing speed and wet massing time) on the granulation process. The temperature of the sample increased relevantly during the preparation in the small-scale apparatus. The same setup induced different temperature increases for different amounts of powder. This alteration enhances the solubility of lactose and decreases that of HPMC, and thus the quantities of the dissolved components can vary. Accordingly, changes in composition of the binder bridge can occur. Since exact determination of the dissolution of these materials during granulation is difficult, the consequences of the changes in solubility were examined. Differential scanning calorimetry (DSC), thermomechanical analysis (TMA) and X-ray diffraction (XRD) measurements were made to evaluate the films prepared from liquids with different ratios of soluble materials. The DSC and XRD measurements confirmed that the lactose lost its crystalline state in the film. The TMA tests revealed that increase of the quantity of lactose in the film decreased the glass transition temperature of the film; this may be attributed to the interaction of the additives. At a lactose content of 37.5%, a second glass transition appeared. This phenomenon may be indicative of a separate amorphous lactose phase.
Chen, Jianlin; Tang, Liang; Shi, Peihua; Yang, Baohua; Sun, Ting; Cao, Weixing; Zhu, Yan
2017-03-01
High temperature causes negative effects on grain yield and quality of rice (Oryza sativa L.). In this study, the effects of short-term high temperature (SHT) on grain quality and starch granules were investigated in two rice cultivars Nanjing 41 (NJ41, heat-sensitive) and Wuxiangjing 14 (WJ14, heat-tolerant) at post-anthesis stage (anthesis and early grain-filling stage). The results of rice quality analysis showed that chalky rate and chalkiness increased while brown rice rate, milled rice rate, and head rice rate decreased in two rice cultivars with the increase of high temperature and prolonged duration. Moreover, SHT stress reduced the accumulation of amylose as well as starch accumulation. The starch accumulation and eating quality were more sensitive to SHT than the appearance and milling quality. The starch structure data observed by scanning electron microscope further showed that the starch granules are arranged loosely and more single starch granules appeared after SHT treatment. The extent of change in rice quality and starch traits of WJ14 under SHT was lower than that of NJ41. The effects of SHT at anthesis stage were greater than that at grain-filling stage. Taken together, the results could help further understand the physiological and biochemical processes governing rice quality under high-temperature conditions.
NASA Astrophysics Data System (ADS)
Valentová, Tereza; Benešová, Lucie; Mastný, Jan; Valentin, Jan
2017-09-01
Lower mixing and paving temperatures of asphalt mixtures, which are an important issue in recent years, with respect to increased energy demand of civil engineering structures during their processing, allow reduction of this demand and result in minimized greenhouse gas production. In present time, there are many possibilities how to achieve reduction of production temperature during the mixing and paving of an asphalt mixture. The existing solutions distinguish in target operating temperature behaviour which has to be achieved in terms of good workability. This paper is focused on technical solutions based on use of new types of selected synthetic and bio-based waxes. In case of bio-based additive sugar cane wax was used, which is free of paraffins and is reclaimed as waste product during processing of sugar cane. The used waxes are added to bituminous binder in form of free-flowing granules or fine-grained powder. Synthetic waxes are represented by new series of Fischer-Tropsch wax in form of fine granules as well as by polyethylene waxes in form of fine-grained powder or granules. Those waxes were used to modify a standard paving grade bitumen dosed into asphalt mixture of ACsurf type containing up to 30 % of reclaimed asphalt (RA).
[Air stripping-UASB process for the treatment of evaporator condensate from a Kraft pulp mill].
Zhou, Wei-li; Qin, Xiao-peng; Yu, Jun; Imai, Tsuyoshi; Ukita, Masao
2006-04-01
Evaporator condensate from a kraft pulp mill is characterized by high temperature, high strength, poor nutrition, and some odor and inhibitive materials. In this study, air stripping-UASB process was developed to treat the wastewater from a kraft pulp mill. The lab scale study demonstrated that air stripping process removed 70%-80% of the volatile organic sulfur compounds. After that, the UASB reactor showed high efficiency, at the organic loading rate (COD) of 30 kg x (m3 x d)(-1), COD removal was retained about 95%. On the other hand, the inoculated granules were broken in the new surroundings and were replaced with the newly formed granules The scanning electronic microscope (SEM) observation showed wide difference of the predominant anaerobic microorganisms in the seed and newly formed granules.
Mechanistic modelling of fluidized bed drying processes of wet porous granules: a review.
Mortier, Séverine Thérèse F C; De Beer, Thomas; Gernaey, Krist V; Remon, Jean Paul; Vervaet, Chris; Nopens, Ingmar
2011-10-01
Fluidized bed dryers are frequently used in industrial applications and also in the pharmaceutical industry. The general incentives to develop mechanistic models for pharmaceutical processes are listed, and our vision on how this can particularly be done for fluidized bed drying processes of wet granules is given. This review provides a basis for future mechanistic model development for the drying process of wet granules in pharmaceutical processes. It is intended for a broad audience with a varying level of knowledge on pharmaceutical processes and mathematical modelling. Mathematical models are powerful tools to gain process insight and eventually develop well-controlled processes. The level of detail embedded in such a model depends on the goal of the model. Several models have therefore been proposed in the literature and are reviewed here. The drying behaviour of one single granule, a porous particle, can be described using the continuum approach, the pore network modelling method and the shrinkage of the diameter of the wet core approach. As several granules dry at a drying rate dependent on the gas temperature, gas velocity, porosity, etc., the moisture content of a batch of granules will reside in a certain interval. Population Balance Model (ling) (PBM) offers a tool to describe the distribution of particle properties which can be of interest for the application. PBM formulation and solution methods are therefore reviewed. In a fluidized bed, the granules show a fluidization pattern depending on the geometry of the gas inlet, the gas velocity, characteristics of the particles, the dryer design, etc. Computational Fluid Dynamics (CFD) allows to model this behaviour. Moreover, turbulence can be modelled using several approaches: Reynolds-averaged Navier-Stokes Equations (RANS) or Large Eddy Simulation (LES). Another important aspect of CFD is the choice between the Eulerian-Lagrangian and the Eulerian-Eulerian approach. Finally, the PBM and CFD frameworks can be integrated, to describe the evolution of the moisture content of granules during fluidized bed drying. Copyright © 2011 Elsevier B.V. All rights reserved.
Formulation design for optimal high-shear wet granulation using on-line torque measurements.
Cavinato, Mauro; Bresciani, Massimo; Machin, Marianna; Bellazzi, Guido; Canu, Paolo; Santomaso, Andrea C
2010-03-15
An alternative procedure for achieving formulation design in a high-shear wet granulation process has been developed. Particularly, a new formulation map has been proposed which describes the onset of a significant granule growth as a function of the formulation variables (diluent, dry and liquid binder). Granule growth has been monitored using on-line impeller torque and evaluated as changes in granule particle size distribution with respect to the dry formulation. It is shown how the onset of granule growth is denoted by an abrupt increase in the torque value requires the amount of binder liquid added to be greater than a certain threshold that is identified here as 'minimum liquid volume'. This minimum liquid volume is determined as a function of dry binder type, amount, hygroscopicity and particle size distribution of diluent. It is also demonstrated how this formulation map can be constructed from independent measurements of binder glass transition temperatures using a static humidity conditioning system. 2009 Elsevier B.V. All rights reserved.
Design Space Approach in Optimization of Fluid Bed Granulation and Tablets Compression Process
Djuriš, Jelena; Medarević, Djordje; Krstić, Marko; Vasiljević, Ivana; Mašić, Ivana; Ibrić, Svetlana
2012-01-01
The aim of this study was to optimize fluid bed granulation and tablets compression processes using design space approach. Type of diluent, binder concentration, temperature during mixing, granulation and drying, spray rate, and atomization pressure were recognized as critical formulation and process parameters. They were varied in the first set of experiments in order to estimate their influences on critical quality attributes, that is, granules characteristics (size distribution, flowability, bulk density, tapped density, Carr's index, Hausner's ratio, and moisture content) using Plackett-Burman experimental design. Type of diluent and atomization pressure were selected as the most important parameters. In the second set of experiments, design space for process parameters (atomization pressure and compression force) and its influence on tablets characteristics was developed. Percent of paracetamol released and tablets hardness were determined as critical quality attributes. Artificial neural networks (ANNs) were applied in order to determine design space. ANNs models showed that atomization pressure influences mostly on the dissolution profile, whereas compression force affects mainly the tablets hardness. Based on the obtained ANNs models, it is possible to predict tablet hardness and paracetamol release profile for any combination of analyzed factors. PMID:22919295
Thermal insulation for high temperature microwave sintering operations and method thereof
Holcombe, Cressie E.; Dykes, Norman L.; Morrow, Marvin S.
1995-01-01
Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.
Method of preparing thermal insulation for high temperature microwave sintering operations
Holcombe, Cressie E.; Dykes, Norman L.; Morrow, Marvin S.
1996-01-01
Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.
Reddy, Jay Poorna; Jones, John W; Wray, Patrick S; Dennis, Andrew B; Brown, Jonathan; Timmins, Peter
2018-04-25
Form changes during drug product processing can be a risk to the final product quality in terms of chemical stability and bioavailability. In this study, online Raman spectroscopy was used to monitor the form changes in real time during high shear wet granulation of Compound A, a highly soluble drug present at a high drug load in an extended release formulation. The effect of water content, temperature, wet massing time and drying technique on the degree of drug transformation were examined. A designed set of calibration standards were employed to develop quantitative partial least square regression models to predict the concentration of each drug form during both wet granulation and the drying process. Throughout all our experiments we observed complex changes of the drug form during granulation, manifest as conversions between the initial non-solvated form of Compound A, the hemi-hydrate form and the "apparent" amorphous form (dissolved drug). The online Raman data demonstrate that the non-solvated form converts to an "apparent" amorphous form (dissolved drug) due to drug dissolution with no appearance of the hemi-hydrate form during water addition stage. The extent of conversion of the non-solvated form was governed by the amount of water added and the rate of conversion was accelerated at higher temperatures. Interestingly, in the wet massing zone, the formation of the hemi-hydrate form was observed at a rate equivalent to the rate of depletion of the non-solvated form with no change in the level of the "apparent amorphous" form generated. The level of hemi-hydrate increased with an increase in wet massing time. The drying process had a significant effect on the proportion of each form. During tray drying, changes in drug form continued for hours. In contrast fluid bed drying appeared to lock the final proportions of drug form product attained during granulation, with comparatively small changes observed during drying. In conclusion, it was possible to simultaneously monitor the three forms in real time during wet granulation and drying using online Raman spectroscopy. The results regarding the effect of process parameters on the degree of transformation are critical for designing a robust process that ensures a consistent form in the final drug product. Copyright © 2018 Elsevier B.V. All rights reserved.
Kristó, Katalin; Pintye-Hódi, Klára
2013-02-01
The main aim of this study was to investigate the effects of pharmaceutical technological methods on pepsin activity during the formulation of solid dosage forms. The circumstances of direct compression and wet granulation were modeled. During direct compression, the heat and the compression force must be taken into consideration. The effects of these parameters were investigated in three materials (pure pepsin, and 1:1 (w/w) pepsin-tartaric acid and 1:1 (w/w) pepsin-citric acid powder mixtures). It was concluded that direct compression is appropriate for the formulation of solid dosage forms containing pepsin through application without acids or with acids at low compression force. The effects of wet granulation were investigated with a factorial design for the same three materials. The factors were time, temperature and moisture content. There was no significant effect of the factors when acids were not applied. Temperature was a significant factor when acids were applied. The negative effect was significantly higher for citric acid than for tartaric acid. It was found that wet granulation can be utilized for the processing of pepsin into solid dosage forms under well-controlled circumstances. The application of citric acid is not recommended during the formulation of solid dosage forms through wet granulation. A mathematically based optimization may be necessary for preformulation studies of the preparation of dosage forms containing sensitive enzymes.
Meier, Robin; Moll, Klaus-Peter; Krumme, Markus; Kleinebudde, Peter
2017-06-01
In a previous study a change of the fill-level in the barrel exerted a huge influence on the twin-screw granulation (TSG) process of a high drug loaded, simplified formulation. The present work investigated this influence systematically. The specific feed load (SFL) indicating the mass per revolution as surrogate parameter for the fill-level was applied and the correlation to the real volumetric fill level of an extruder could be demonstrated by a newly developed method. A design of experiments was conducted to examine the combined influence of SFL and screw speed on the process and on critical quality attributes of granules and tablets. The same formulation was granulated at constant liquid level with the same screw configuration and led to distinctively different results by only changing the fill-level and the screw speed. The power consumption of the extruder increased at higher SFLs with hardly any influence of screw speed. At low SFL the median residence time was mainly fill-level dependent and at higher SFL mainly screw speed dependent. Optimal values for the product characteristics were found at medium values for the SFL. Granule size distributions shifted from mono-modal and narrow shape to broader and even bimodal distributions of larger median granule sizes, when exceeding or falling below a certain fill-level. Deviating from the optimum fill-level, tensile strength of tablets decreased by about 25% and disintegration times of tablets increased for more than one third. At low fill-levels, material accumulation in front of the kneading zone was detected by pressure measurements and was assumed to be responsible for the unfavored product performance. At high fill-levels, granule consolidation due to higher propensity of contact with the result of higher material temperature was accounted for inferior product performance. The fill-level was found to be an important factor in assessment and development of twin-screw granulation processes as it impacted process and product attributes enormously. Copyright © 2017 Elsevier B.V. All rights reserved.
Wilén, Britt-Marie; Liébana, Raquel; Persson, Frank; Modin, Oskar; Hermansson, Malte
2018-06-01
Granular activated sludge has gained increasing interest due to its potential in treating wastewater in a compact and efficient way. It is well-established that activated sludge can form granules under certain environmental conditions such as batch-wise operation with feast-famine feeding, high hydrodynamic shear forces, and short settling time which select for dense microbial aggregates. Aerobic granules with stable structure and functionality have been obtained with a range of different wastewaters seeded with different sources of sludge at different operational conditions, but the microbial communities developed differed substantially. In spite of this, granule instability occurs. In this review, the available literature on the mechanisms involved in granulation and how it affects the effluent quality is assessed with special attention given to the microbial interactions involved. To be able to optimize the process further, more knowledge is needed regarding the influence of microbial communities and their metabolism on granule stability and functionality. Studies performed at conditions similar to full-scale such as fluctuation in organic loading rate, hydrodynamic conditions, temperature, incoming particles, and feed water microorganisms need further investigations.
[Study on spray-drier preparation technology of weitai granules using orthogonal experiments].
Qu, Cai-Hong; Yang, Li; Chen, Zhi-Liang
2006-04-01
To screen preparation technique in order to raise the end-product and economical efficiency of spray-drier preparation technology of weitai granules. Newly Fluid-bed-spray-drier-granulation technique was adoped and taken extracting technique, temperature of exit and entry and the matching of accessories as inspecting factors, two levels of each factors, end-product and the water content of semi-finished weitai granules as inspecting marker, the best preparation technique of weitai granules was screened by orthogonal desing. Among the 3 factors, the matching of accessories was most notalbe (P < 0.01), next was the temperature of exit and entry (P < 0.05). However, the extracting technique was of little importance (P > 0.05). The optimum spray-drier granulation technique of weitai granules is A3B1C3.
Gabbott, Ian P; Al Husban, Farhan; Reynolds, Gavin K
2016-09-01
A pharmaceutical compound was used to study the effect of batch wet granulation process parameters in combination with the residual moisture content remaining after drying on granule and tablet quality attributes. The effect of three batch wet granulation process parameters was evaluated using a multivariate experimental design, with a novel constrained design space. Batches were characterised for moisture content, granule density, crushing strength, porosity, disintegration time and dissolution. Mechanisms of the effect of the process parameters on the granule and tablet quality attributes are proposed. Water quantity added during granulation showed a significant effect on granule density and tablet dissolution rate. Mixing time showed a significant effect on tablet crushing strength, and mixing speed showed a significant effect on the distribution of tablet crushing strengths obtained. The residual moisture content remaining after granule drying showed a significant effect on tablet crushing strength. The effect of moisture on tablet tensile strength has been reported before, but not in combination with granulation parameters and granule properties, and the impact on tablet dissolution was not assessed. Correlations between the energy input during granulation, the density of granules produced, and the quality attributes of the final tablets were also identified. Understanding the impact of the granulation and drying process parameters on granule and tablet properties provides a basis for process optimisation and scaling. Copyright © 2016 Elsevier B.V. All rights reserved.
Reduction of the capillary water absorption of foamed concrete by using the porous aggregate
NASA Astrophysics Data System (ADS)
Namsone, E.; Sahmenko, G.; Namsone, E.; Korjakins, A.
2017-10-01
The article reports on the research of reduction of the capillary water absorption of foamed concrete (FC) by using the porous aggregate such as the granules of expanded glass (EG) and the cenospheres (CS). The EG granular aggregate is produced by using recycled glass and blowing agents, melted down in high temperature. The unique structure of the EG granules is obtained where the air is kept closed inside the pellet. The use of the porous aggregate in the preparation process of the FC samples provides an opportunity to improve some physical and mechanical properties of the FC, classifying it as a product of high-performance. In this research the FC samples were produced by adding the EG granules and the CS. The capillary water absorption of hardened samples has been verified. The pore size distribution has been determined by microscope. It is a very important characteristic, specifically in the cold climate territories-where temperature often falls below zero degrees. It is necessary to prevent forming of the micro sized pores in the final structure of the material as it reduces its water absorption capacity. In addition, at a below zero temperature water inside these micro sized pores can increase them by expanding the stress on their walls during the freezing process. Research of the capillary water absorption kinetics can be practical for prevision of the FC durability.
Method of preparing thermal insulation for high temperature microwave sintering operations
Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.
1996-07-16
Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.
Thermal insulation for high temperature microwave sintering operations and method thereof
Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.
1995-09-12
Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.
NASA Astrophysics Data System (ADS)
Hurkman, William J.; Wood, Delilah F.
2010-06-01
High temperatures during wheat grain fill decrease starch and protein levels, adversely affecting wheat yield and flour quality. To determine the effect of high temperature on starchy endosperm cell development, grain (Triticum aestivum L. 'Butte 86') was produced under a 24/17°C or 37/28°C day/night regimen imposed from flowering to maturity and starch and protein deposition examined using scanning electron microscopy. The high temperature regimen shortened the duration of grain fill from 40 to 18 days. Under the 37/28°C regimen, A- and B-type starch granules decreased in size. A-type starch granules also exhibited pitting, suggesting enhanced action of starch degradative enzymes. Under both temperature regimens, protein bodies originated early in development and coalesced during mid to late development to form a continuous protein matrix surrounding the starch granules. Under the 37/28°C regimen, the proportion of protein matrix increased in endosperm cells of mature grain. Taken together, the changes in starch granule number and size and in protein matrix amount provide clues for understanding how high temperature during grain fill can affect end use properties of wheat flour.
Preparation and evaluation of gelling granules to improve oral administration.
Ito, Ikumi; Ito, Akihiko; Unezaki, Sakae
2015-06-01
We investigated the preparation of oral granules that are solid when stored and that will swell and gel via water absorption, to address problems experienced by patients when taking medication. Important physical properties of gelling granules include elasticity that is normally smooth, quick water absorption and swelling properties that allow easy swallowing. We selected gelatin (GEL), succinylated gelatin (SUC-GEL) and ι-carrageenan (CAR) as matrix polymers that can undergo gelation at room temperature or at cold temperatures. Saccharide and polyethylene glycol (PEG) were added to prepare the experimental granules. The best matrix gelling granule was SUC-GEL. When xylitol (XYL), sorbitol (SOR) and maltitol (MAL) were added, elasticity was improved, and PEG improved the granule's water absorption behavior, which is an important element involved in gelation. The best granules were prepared by selecting SUC-GEL as the matrix and adding a small amount of PEG and XYL in amounts equal to that of SUC-GEL.
The applicability of different waste materials for the production of lightweight aggregates.
Ducman, V; Mirtic, B
2009-08-01
The applicability of different waste materials for the production of lightweight aggregates has been studied. The following waste materials were investigated: silica sludge, superfluous clay in the quarry, waste glass, and residue from the polishing process of different types of stone. SiC and MnO(2) were selected as foaming agents. Feldspar containing minerals and scrap glass were added in order to lower the softening point of the waste materials. The granules were prepared by mixing together finely ground waste with one or both of the selected foaming agents. The granules were then fired at different temperatures above the softening point of the glassy phase within the temperature range from 1150 to 1220 degrees C, where the foaming agent degasses, and the resulting gasses remain trapped in the glassy structure. The foaming process was observed by hot-stage microscopy. The properties of the so-obtained granules, such as their apparent density and compressive strength, were determined, and their microstructures were evaluating using SEM and polarizing microscopy. With the addition to clay of polishing residue from granite-like rocks, after firing at 1220 degrees C homogeneously porous granules with a density down to 0.42 g/cm(3) were obtained, whereas with the addition to waste silica sludge of polishing residue from granite-like rocks and waste glass with a foaming agent, after firing at 1220 degrees C densities from 0.57 to 0.82 g/cm(3) were obtained.
An evaluation of fluid bed drying of aqueous granulations.
Hlinak, A J; Saleki-Gerhardt, A
2000-01-01
The purpose of the work described was twofold: (a) to apply heat and mass balance approaches to evaluate the fluid bed drying cycle of an aqueous granulation, and (b) to determine the effect of the temperature and relative humidity of the drying air on the ability to meet a predetermined moisture content specification. Water content determinations were performed using Karl Fischer titration, and Computrac and Mark 1 moisture analyzers. The water vapor sorption isotherms were measured using a gravimetric moisture sorption apparatus with vacuum-drying capability. Temperature, relative humidity, and air flow were measured during the drying cycle of a production-scale fluid bed dryer. Heat and mass balance equations were used to calculate the evaporation rates. Evaporation rates calculated from heat and mass balance equations agreed well with the experimental data, whereas equilibrium moisture content values provided useful information for determination of the upper limit for inlet air humidity. Increasing the air flow rate and inlet temperature reduced the drying time through the effect on the primary driving force. As expected, additional drying of granules during the equilibration period did not show a significant impact on reducing the final moisture content of granules. Reducing the drying temperature resulted in measurement of higher equilibrium moisture content for the granules, which was in good agreement with the water vapor sorption data. Heat and mass balance equations can be used to successfully model the fluid bed drying cycle of aqueous granulations. The water vapor sorption characteristics of granules dictate the final moisture content at a given temperature and relative humidity.
Mangwandi, Chirangano; Adams, Michael J; Hounslow, Michael J; Salman, Agba D
2012-05-10
Being able to predict the properties of granules from the knowledge of the process and formulation variables is what most industries are striving for. This research uses experimental design to investigate the effect of process variables and formulation variables on mechanical properties of pharmaceutical granules manufactured from a classical blend of lactose and starch using hydroxypropyl cellulose (HPC) as the binder. The process parameters investigated were granulation time and impeller speed whilst the formulation variables were starch-to-lactose ratio and HPC concentration. The granule properties investigated include granule packing coefficient and granule strength. The effect of some components of the formulation on mechanical properties would also depend on the process variables used in granulation process. This implies that by subjecting the same formulation to different process conditions results in products with different properties. Copyright © 2012 Elsevier B.V. All rights reserved.
Pandey, Preetanshu; Levins, Christopher; Pafiakis, Steve; Zacour, Brian; Bindra, Dilbir S; Trinh, Jade; Buckley, David; Gour, Shruti; Sharif, Shasad; Stamato, Howard
2018-07-01
The objective of this study was to improve the disintegration and dissolution characteristics of a highly water-soluble tablet matrix by altering the manufacturing process. A high disintegration time along with high dependence of the disintegration time on tablet hardness was observed for a high drug loading (70% w/w) API when formulated using a high-shear wet granulation (HSWG) process. Keeping the formulation composition mostly constant, a fluid-bed granulation (FBG) process was explored as an alternate granulation method using a 2 (4-1) fractional factorial design with two center points. FBG batches (10 batches) were manufactured using varying disingtegrant amount, spray rate, inlet temperature (T) and atomization air pressure. The resultant final blend particle size was affected significantly by spray rate (p = .0009), inlet T (p = .0062), atomization air pressure (p = .0134) and the interaction effect between inlet T*spray rate (p = .0241). The compactibility of the final blend was affected significantly by disintegrant amount (p < .0001), atomization air pressure (p = .0013) and spray rate (p = .05). It was observed that the fluid-bed batches gave significantly lower disintegration times than the HSWG batches, and mercury intrusion porosimetry data revealed that this was caused by the higher internal pore structure of tablets manufactured using the FBG batches.
Structure and physicochemical properties of starches in lotus (Nelumbo nucifera Gaertn.) rhizome
Yu, Huaguang; Cheng, Libao; Yin, Jingjing; Yan, Shunjun; Liu, Kejun; Zhang, Fengmin; Xu, Bin; Li, Liangjun
2013-01-01
The type and content of starch are believed to be the most critical factors in determining the storage and processing quality of lotus rhizome species, and the intention of this study is to survey the structure and properties of starches isolated from rhizomes of two lotus cultivars using X-ray powder diffraction, solid-state nuclear magnetic resonance spectroscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, scanning electron microscope, differential scanning calorimetry, and rapid viscosity analyzer (RVA). Starch in rhizome of cultivar Meirenhong exhibited C-type X-ray diffraction pattern, while starch in rhizome of cultivar Wawalian showed A-type pattern. 13C cross-polarization magic-angle spinning nuclear magnetic resonance (13C CP-MAS NMR) also confirmed the polymorphs. The relative crystallinity of two starches was quantitatively estimated from two methods and compared. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) results indicated that the external regions of the starch granules had a great level of ordered structure. Starch granules in Meirenhong showed oval-shaped granules, while starch granules in Wawalian were elongated and oval in shape with relatively large size. Gelatinization temperatures of starch in Meirenhong and Wawalian were 330.5 and 342.4 K, respectively, and the gelatinization temperature range of Meirenhong was significantly wider than that of Wawalian. Starch in rhizome of cultivar Meirenhong showed lower pasting temperature, lower hot and cool viscosities, lower setback, and higher peak viscosity and breakdown than those of Wawalian in RVA pasting profiles at 6% starch concentration. PMID:24804031
Layered growth with bottom-spray granulation for spray deposition of drug.
Er, Dawn Z L; Liew, Celine V; Heng, Paul W S
2009-07-30
The gap in scientific knowledge on bottom-spray fluidized bed granulation has emphasized the need for more studies in this area. This paper comparatively studied the applicability of a modified bottom-spray process and the conventional top-spray process for the spray deposition of a micronized drug during granulation. The differences in circulation pattern, mode of growth and resultant granule properties between the two processes were highlighted. The more ordered and consistent circulation pattern of particles in a bottom-spray fluidized bed was observed to give rise to layered granule growth. This resulted in better drug content uniformity among the granule batches and within a granule batch. The processes' sensitivities to wetting and feed material characteristics were also compared and found to differ markedly. Less robustness to differing process conditions was observed for the top-spray process. The resultant bottom-spray granules formed were observed to be less porous, more spherical and had good flow properties. The bottom-spray technique can thus be potentially applied for the spray deposition of drug during granulation and was observed to be a good alternative to the conventional technique for preparing granules.
Milling of rice grains: effects of starch/flour structures on gelatinization and pasting properties.
Hasjim, Jovin; Li, Enpeng; Dhital, Sushil
2013-01-30
Starch gelatinization and flour pasting properties were determined and correlated with four different levels of starch structures in rice flour, i.e. flour particle size, degree of damaged starch granules, whole molecular size, and molecular branching structure. Onset starch-gelatinization temperatures were not significantly different among all flour samples, but peak and conclusion starch-gelatinization temperatures were significantly different and were strongly correlated with the flour particle size, indicating that rice flour with larger particle size has a greater barrier for heat transfer. There were slight differences in the enthalpy of starch gelatinization, which are likely associated with the disruption of crystalline structure in starch granules by the milling processes. Flours with volume-median diameter ≥56 μm did not show a defined peak viscosity in the RVA viscogram, possibly due to the presence of native protein and/or cell-wall structure stabilizing the swollen starch granules against the rupture caused by shear during heating. Furthermore, RVA final viscosity of flour was strongly correlated with the degree of damage to starch granules, suggesting the contribution of granular structure, possibly in swollen form. The results from this study allow the improvement in the manufacture and the selection criteria of rice flour with desirable gelatinization and pasting properties. Copyright © 2012 Elsevier Ltd. All rights reserved.
Segregation of large granules from close-packed cluster of small granules due to buoyancy.
Yang, Xian-qing; Zhou, Kun; Qiu, Kang; Zhao, Yue-min
2006-03-01
Segregation of large granules in a vibrofluidized granular bed with inhomogeneous granular number density distribution is studied by an event-driven algorithm. Simulation results show that the mean vertical position of large granules decreases with the increase of the density ration of the large granules to the small ones. This conclusion is consistent with the explanation that the net pressure due to the small surrounding particle impacts balances the large granular weight, and indict that the upward movement of the large granules is driven by the buoyancy. The values of temperature, density, and pressure of the systems are also computed by changing the conditions such as heating temperature on the bottom and restitution coefficient of particles. These results indicate that the segregation of large granules also happen in the systems with density inversion or even close-packed cluster of particles floating on a low-density fluid, due to the buoyancy. An equation of state is proposed to explain the buoyancy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Praher, B., E-mail: bernhard.praher@jku.at, E-mail: klaus.straka@jku.at, E-mail: jesenka.usanovic@jku.at, E-mail: georg.steinbichler@jku.at; Straka, K., E-mail: bernhard.praher@jku.at, E-mail: klaus.straka@jku.at, E-mail: jesenka.usanovic@jku.at, E-mail: georg.steinbichler@jku.at; Usanovic, J., E-mail: bernhard.praher@jku.at, E-mail: klaus.straka@jku.at, E-mail: jesenka.usanovic@jku.at, E-mail: georg.steinbichler@jku.at
We developed novel non-invasive ultrasound based systems for the measurement of temperature distributions in the screw-ante chamber, the detection of unmelted granules and for the monitoring of the plasticizing process along the screw channel. The temperature of the polymer melt stored in the screw ante-chamber after the plasticization should be homogeneous. However, in reality the polymer melt in the screw ante-chamber is not homogeneous. Due to the fact the sound velocity in a polymer melt is temperature depending, we developed a tomography system using the measured transit times of ultrasonic pulses along different sound paths for calculating the temperature distributionmore » in radial direction of a polymer melt in the screw ante-chamber of an injection moulding machine. For the detection of unmelted granules in the polymer melt we implemented an ultrasound transmission measurement. By analyzing the attenuation of the received pulses it is possible to detect unwanted inclusions. For the monitoring of the plasticizing process in the channels of the screw an ultrasonic pulse is transmitted into the barrel. By analyzing the reflected pulses it is possible to estimate solid bed and melt regions in the screw channel. The proposed systems were tested for accuracy and validity by simulations and test measurements.« less
NASA Astrophysics Data System (ADS)
Sun, Pei; Fang, Z. Zak; Zhang, Ying; Xia, Yang
2017-12-01
Commercial spherical Ti powders for additive manufacturing applications are produced today by melt-atomization methods at relatively high costs. A meltless production method, called granulation-sintering-deoxygenation (GSD), was developed recently to produce spherical Ti alloy powder at a significantly reduced cost. In this new process, fine hydrogenated Ti particles are agglomerated to form spherical granules, which are then sintered to dense spherical particles. After sintering, the solid fully dense spherical Ti alloy particles are deoxygenated using novel low-temperature deoxygenation processes with either Mg or Ca. This technical communication presents results of 3D printing using GSD powder and the selective laser melting (SLM) technique. The results showed that tensile properties of parts fabricated from spherical GSD Ti-6Al-4V powder by SLM are comparable with typical mill-annealed Ti-6Al-4V. The characteristics of 3D printed Ti-6Al-4V from GSD powder are also compared with that of commercial materials.
NASA Astrophysics Data System (ADS)
Sinescu, Cosmin; Topala, Florin I.; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.
2014-01-01
The quality of dental prostheses is essential in providing good quality medical services. The metal ceramic technology applied in dentistry implies ceramic sintering inside the dental oven. Every ceramic material requires a special sintering chart which is recommended by the producer. For a regular dental technician it is very difficult to evaluate if the temperature inside the oven remains the same as it is programmed on the sintering chart. Also, maintaining the calibration in time is an issue for the practitioners. Metal ceramic crowns develop a very accurate pattern for the ceramic layers depending on the temperature variation inside the oven where they are processed. Different patterns were identified in the present study for the samples processed with a variation in temperature of +30 °C to +50 °C, respectively - 30 0°C to -50 °C. The OCT imagistic evaluations performed for the normal samples present a uniform spread of the ceramic granulation inside the ceramic materials. For the samples sintered at a higher temperature an alternation between white and darker areas between the enamel and opaque layers appear. For the samples sintered at a lower temperature a decrease in the ceramic granulation from the enamel towards the opaque layer is concluded. The TD-OCT methods can therefore be used efficiently for the detection of the temperature variation due to the ceramic sintering inside the ceramic oven.
Superconducting transition detectors for low-energy gamma-ray astrophysics
NASA Astrophysics Data System (ADS)
Kurfess, J. D.; Johnson, W. N.; Fritz, G. G.; Strickman, M. S.; Kinzer, R. L.; Jung, G.; Drukier, A. K.; Chmielowski, M.
1990-08-01
A program to investigate superconducting devices such as STDs for use in high-resolution Compton telescopes and coded-aperture detectors is presented. For higher energy applications, techniques are investigated with potential for scaling to large detectors, while also providing excellent energy and positional resolution. STDs are discussed, utilizing a uniform array of spherical granules tens of microns in diameter. The typical temperature-magnetic field phase for a low-temperature superconductor, the signal produced by the superconducting-normal transition in the 32-m diameter Sn granule, and the temperature history of an STD granule following heating by an ionizing particle are illustrated.
Jiang, Yu; Shang, Yu; Wang, Hongyu; Yang, Kai
2016-12-01
The start-up of an aerobic granular sludge (AGS) reactor at low temperature was more difficult than at ambient temperature.The rapid formation and characteristics of AGS in a sequencing batch airlift reactor at low temperature were investigated. The nutrient removal ability of the system was also evaluated. It was found that compact granules with clear boundary were formed within 10 days and steady state was achieved within 25 days. The settling properties of sludge were improved with the increasing secretion of extracellular polymeric substances and removal performances of pollutants were enhanced along with granulation. The average removal efficiencies of COD, NH4(+)-N, total nitrogen (TN), total phosphorus (TP) after aerobic granules maturing were over 90.9%, 94.7%, 75.4%, 80.2%, respectively. The rise of temperature had little impact on pollutant biodegradation while the variation of dissolved oxygen caused obvious changes in TN and TP removal rates. COD concentrations of effluents were below 30 mg l(-1) in most cycles of operation with a wide range of organic loading rates (0.6-3.0 kg COD m(-3) d(-1)). The rapid granulation and good performance of pollutant reduction by the system might provide an alternate for wastewater treatment in cold regions.
Artificial Intelligence Tools for Scaling Up of High Shear Wet Granulation Process.
Landin, Mariana
2017-01-01
The results presented in this article demonstrate the potential of artificial intelligence tools for predicting the endpoint of the granulation process in high-speed mixer granulators of different scales from 25L to 600L. The combination of neurofuzzy logic and gene expression programing technologies allowed the modeling of the impeller power as a function of operation conditions and wet granule properties, establishing the critical variables that affect the response and obtaining a unique experimental polynomial equation (transparent model) of high predictability (R 2 > 86.78%) for all size equipment. Gene expression programing allowed the modeling of the granulation process for granulators of similar and dissimilar geometries and can be improved by implementing additional characteristics of the process, as composition variables or operation parameters (e.g., batch size, chopper speed). The principles and the methodology proposed here can be applied to understand and control manufacturing process, using any other granulation equipment, including continuous granulation processes. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Fayed, Mohamed H; Abdel-Rahman, Sayed I; Alanazi, Fars K; Ahmed, Mahrous O; Tawfeek, Hesham M; Al-Shedfat, Ramadan I
2017-01-01
Application of quality by design (QbD) in high shear granulation process is critical and need to recognize the correlation between the granulation process parameters and the properties of intermediate (granules) and corresponding final product (tablets). The present work examined the influence of water amount (X,) and wet massing time (X2) as independent process variables on the critical quality attributes of granules and corresponding tablets using design of experiment (DoE) technique. A two factor, three level (32) full factorial design was performed; each of these variables was investigated at three levels to characterize their strength and interaction. The dried granules have been analyzed for their size distribution, density and flow pattern. Additionally, the produced tablets have been investigated for weight uniformity, crushing strength, friability and percent capping, disintegration time and drug dissolution. Statistically significant impact (p < 0.05) of water amount was identified for granule growth, percent fines and distribution width and flow behavior. Granule density and compressibility were found to be significantly influenced (p < 0.05) by the two operating conditions. Also, water amount has significant effect (p < 0.05) on tablet weight unifornity, friability and percent capping. Moreover, tablet disintegration time and drug dissolution appears to be significantly influenced (p < 0.05) by the two process variables. On the other hand, the relationship of process parameters with critical quality attributes of granule and final product tablet was identified and correlated. Ultimately, a judicious selection of process parameters in high shear granulation process will allow providing product of desirable quality.
Hao, Tianwei; Mackey, Hamish R; Guo, Gang; Liu, Rulong; Chen, Guanghao
2016-10-01
Sulfate-reducing granular sludge has recently been developed and characterized in detail as part of the development of the sulfate reduction, autotrophic denitrification, nitrification integrated (SANI) process. However, information regarding temperature of granules to environmental fluctuation is lacking, an aspect that is important in dealing with real wastewater. A comprehensive assessment of sulfate-reducing granular sludge performance under various environmental conditions was thus conducted in this study, including temperature, pH, oxygen, nitrite, and free nitrous acid (FNA) as possible encountering conditions in the removal of organics and/or nitrate. Specific chemical oxygen demand removal rate of the granules was determined to be reduced by 65 % when the temperature varied between 10-15 °C, reduced by 70 % when dissolved oxygen (DO) was 0.5 mg/L or greater, and at least, reduced by 75 % when nitrite was 30 mg N/L or above. Nevertheless, the sludge activity recovered by 82, 100, and 86 % from exposure to high oxygen and nitrite and low temperature levels, respectively. Combined inhibition of nitrite and FNA on the sludge is strong and complex, while FNA alone reduced cell viability from 60 to 40 % when its concentration increased to 2.3 mg N/L. The present study demonstrates that sulfate-reducing bacteria (SRB) granules possess high resilience against varying environmental conditions, showing the high application potential of sulfate-reducing granular sludge in dealing with brackish and saline industrial or domestic wastewaters.
Fukui, Atsuko; Fujii, Ryuta; Yonezawa, Yorinobu; Sunada, Hisakazu
2008-04-01
In the pharmaceutical preparation of a controlled release drug, it is very important and necessary to understand the release properties. In previous papers, a combination of the square-root time law and cube-root law equations was confirmed to be a useful equation for qualitative treatment. It was also confirmed that the combination equation could analyze the release properties of layered granules as well as matrix granules. The drug release property from layered granules is different from that of matrix granules. A time lag occurs before release, and the entire release property of layered granules was analyzed using the combination of the square-root time law and cube-root law equations. It is considered that the analysis method is very useful and efficient for both matrix and layered granules. Comparing the granulation methods, it is easier to control the manufacturing process by tumbling granulation (method B) than by tumbling-fluidized bed granulation (method C). Ethylcellulose (EC) layered granulation by a fluidized bed granulator might be convenient for the preparation of controlled release dosage forms as compared with a tumbling granulator, because the layered granules prepared by the fluidized bed granulator can granulate and dry at the same time. The time required for drying by the fluidized bed granulator is shorter than that by the tumbling granulator, so the fluidized bed granulator is convenient for preparation of granules in handling and shorter processing time than the tumbling granulator. It was also suggested that the EC layered granules prepared by the fluidized bed granulator were suitable for a controlled release system as well as the EC matrix granules.
Swelling Kinetics of Waxy Maize Starch
NASA Astrophysics Data System (ADS)
Desam, Gnana Prasuna Reddy
Starch pasting behavior greatly influences the texture of a variety of food products such as canned soup, sauces, baby foods, batter mixes etc. The annual consumption of starch in the U.S. is 3 million metric tons. It is important to characterize the relationship between the structure, composition and architecture of the starch granules with its pasting behavior in order to arrive at a rational methodology to design modified starch of desirable digestion rate and texture. In this research, polymer solution theory was applied to predict the evolution of average granule size of starch at different heating temperatures in terms of its molecular weight, second virial coefficient and extent of cross-link. Evolution of granule size distribution of waxy native maize starch when subjected to heating at constant temperatures of 65, 70, 75, 80, 85 and 90 C was characterized using static laser light scattering. As expected, granule swelling was more pronounced at higher temperatures and resulted in a shift of granule size distribution to larger sizes with a corresponding increase in the average size by 100 to 120% from 13 mum to 25-28 mum. Most of the swelling occurred within the first 10 min of heating. Pasting behavior of waxy maize at different temperatures was also characterized from the measurements of G' and G" for different heating times. G' was found to increase with temperature at holding time of 2 min followed by its decrease at larger holding times. This behavior is believed to be due to the predominant effect of swelling at small times. However, G" was insensitive to temperature and holding times. The structure of waxy maize starch was characterized by cryoscanning electron microscopy. Experimental data of average granule size vs time at different temperatures were compared with model predictions. Also the Experimental data of particle size distribution vs particle size at different times and temperatures were compared with model predictions.
Bär, David; Debus, Heiko; Grune, Christian; Tosch, Stephan; Fischer, Wolfgang; Mäder, Karsten; Imming, Peter
2017-12-01
Naproxen is a typical and well-known analgesic classified as non-steroidal anti-inflammatory drug (NSAID) and is commercialized as tablets or liquid-filled capsules. Naproxen is typically used asa sodium salt because of its better processability compared to Naproxen free acid. This entails hygroscopicity and gives rise to the existence of four different hydrates, which show polymorphic and pseudopolymorphic properties. Solid dosage forms containing Naproxen Sodium often have to be processed in an applicable dosage form by granulation and tablet compression. During granulation, Naproxen Sodium will be in contact with water and is exposed to the drop and rise in temperature and to mechanical stress. The result could be a mixture of different hydrates of Naproxen Sodium. This study showed that a modified designed fluid bed granulation was not affected by differences in the mixing ratio of hydrates when using different water contents after spraying and at the end with the finished granules. Here, X-ray diffraction combined with Rietveld refinement was used to analyze the ratio of the hydrates and its identity. All granulation batches showed a large amount of Naproxen Sodium Monohydrate (>87%) and no differences could be observed during tablet compression. Quantities of other hydrates were negligibly small. Furthermore, this study also demonstrated the influence of tablet compression by transforming the hydrates of the granules. In addition to Naproxen Sodium Monohydrate, a large quantity of amorphous structures has also been found. Rietveld evaluation combined with the preliminary studies of the raw hydrates provided conclusions on the drug release of the tablets containing hydrates of Naproxen Sodium which were influenced by tablet compression. Fast drug release was obtained when a maximum water content of about 21% was used after spraying during granulation, independently of the final water content of the finished granules. A maximum water content of less than 21% after spraying yielded a high quantity of amorphous components after tablet compression and thus worsened the drug release. Copyright © 2017 Elsevier B.V. All rights reserved.
Sorption-desorption of carbamazepine by palygorskite-montmorillonite (PM) filter medium.
Berhane, Tedros M; Levy, Jonathan; Krekeler, Mark P S; Danielson, Neil D; Stalcup, Apryll
2015-01-23
Palygorskite-montmorillonite (PM) was studied as a potential sewage treatment effluent filter material for carbamazepine. Batch sorption experiments were conducted as a function of granule size (0.3-0.6, 1.7-2.0 and 2.8mm) and different sewage effluent conditions (pH, ionic strength and temperature). Results showed PM had a mix of fibrous and plate-like morphologies. Sorption and desorption isotherms were fitted to the Freundlich model. Sorption is granule size-dependent and the medium granule size would be an appropriate size for optimizing both flow and carbamazepine retention. Highest and lowest sorption capacities corresponded to the smallest and the largest granule sizes, respectively. The lowest and the highest equilibrium aqueous (Ce) and sorbed (qe) carbamazepine concentrations were 0.4 mg L(-1) and 4.5 mg L(-1), and 0.6 mg kg(-1) and 411.8 mg kg(-1), respectively. Observed higher relative sorption at elevated concentrations with a Freundlich exponent greater than one, indicated cooperative sorption. The sorption-desorption hysteresis (isotherm non-singularity) indicated irreversible sorption. Higher sorption observed at higher rather than at lower ionic strength conditions is likely due to a salting-out effect. Negative free energy and the inverse sorption capacity-temperature relationship indicated the carbamazepine sorption process was favorable or spontaneous. Solution pH had little effect on sorption. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ching-Fong
A mixture of fine powder including thorium oxide was converted to granulated powder by forming a first-green-body and heat treating the first-green-body at a high temperature to strengthen the first-green-body followed by granulation by crushing or milling the heat-treated first-green-body. The granulated powder was achieved by screening through a combination of sieves to achieve the desired granule size distribution. The granulated powder relies on the thermal bonding to maintain its shape and structure. The granulated powder contains no organic binder and can be stored in a radioactive or other extreme environment. The granulated powder was pressed and sintered to formmore » a dense compact with a higher density and more uniform pore size distribution.« less
The Other Double Helix--The Fascinating Chemistry of Starch
NASA Astrophysics Data System (ADS)
Hancock, Robert D.; Tarbet, Bryon J.
2000-08-01
Current textbooks deal only briefly with the chemistry of starch. A short review with 21 references is presented, describing the structure of starch and indicating the double helix structure of A-type and B-type starch. The structure of the starch granule is examined, pointing out the existence of growth rings of alternating crystalline and noncrystalline starch, with growing amylopectin molecules extending from the hilum (point of origin) to the surface of the starch granule. The swelling of starch granules in water, above the gelatinization temperature of about 60 °C, is discussed. The process of gelatinization involves unraveling of the starch helix and a manyfold increase in volume of the starch granule as water is imbibed and bound to the unraveled starch polymer by hydrogen bonding. Baking bread or pastries causes unraveling of the starch helix, and the process by which these products become stale corresponds primarily to the re-forming of the starch helix. The importance of this phenomenon in food science is discussed. The absorption of nonpolar linear molecules such as I2, or linear nonpolar portions of molecules such as n-butanol or fats and phospholipids, by the C-type helix of starch is examined. The way in which starch is structurally modified to retard staling is discussed in relation to food technology.
Riekel, C.; Burghammer, M.; Davies, R. J.; Di Cola, E.; König, C.; Lemke, H.T.; Putaux, J.-L.; Schöder, S.
2010-01-01
X-ray radiation damage propagation is explored for hydrated starch granules in order to reduce the step resolution in raster-microdiffraction experiments to the nanometre range. Radiation damage was induced by synchrotron radiation microbeams of 5, 1 and 0.3 µm size with ∼0.1 nm wavelength in B-type potato, Canna edulis and Phajus grandifolius starch granules. A total loss of crystallinity of granules immersed in water was found at a dose of ∼1.3 photons nm−3. The temperature dependence of radiation damage suggests that primary radiation damage prevails up to about 120 K while secondary radiation damage becomes effective at higher temperatures. Primary radiation damage remains confined to the beam track at 100 K. Propagation of radiation damage beyond the beam track at room temperature is assumed to be due to reactive species generated principally by water radiolysis induced by photoelectrons. By careful dose selection during data collection, raster scans with 500 nm step-resolution could be performed for granules immersed in water. PMID:20975219
Kumar, Rohit; Kumar, Aman; Sharma, Nand Kishor; Kaur, Navneet; Chunduri, Venkatesh; Chawla, Meenakshi; Sharma, Saloni; Singh, Kashmir; Garg, Monika
2016-01-01
Starch and proteins are major components in the wheat endosperm that affect its end product quality. Between the two textural classes of wheat i.e. hard and soft, starch granules are loosely bound with the lipids and proteins in soft wheat due to higher expression of interfering grain softness proteins. It might have impact on starch granules properties. In this work for the first time the physiochemical and structural properties of different sized starch granules (A-, B- and C-granules) were studied to understand the differences in starches with respect to soft and hard wheat. A-, B- and C-type granules were separated with >95% purity. Average number and proportion of A-, B-, and C-type granules was 18%, 56%, 26% and 76%, 19%, 5% respectively. All had symmetrical birefringence pattern with varied intensity. All displayed typical A-type crystallites. A-type granules also showed V-type crystallinity that is indicative of starch complexes with lipids and proteins. Granules differing in gelatinization temperature (ΔH) and transition temperature (ΔT), showed different enthalpy changes during heating. Substitution analysis indicated differences in relative substitution pattern of different starch granules. Birefringence, percentage crystallinity, transmittance, gelatinization enthalpy and substitution decreased in order of A>B>C being higher in hard wheat than soft wheat. Amylose content decreased in order of A>B>C being higher in soft wheat than hard wheat. Reconstitution experiment showed that starch properties could be manipulated by changing the composition of starch granules. Addition of A-granules to total starch significantly affected its thermal properties. Effect of A-granule addition was higher than B- and C-granules. Transmittance of the starch granules paste showed that starch granules of hard wheat formed clear paste. These results suggested that in addition to differences in protein concentration, hard and soft wheat lines have differences in starch composition also. PMID:26824830
Kumar, Rohit; Kumar, Aman; Sharma, Nand Kishor; Kaur, Navneet; Chunduri, Venkatesh; Chawla, Meenakshi; Sharma, Saloni; Singh, Kashmir; Garg, Monika
2016-01-01
Starch and proteins are major components in the wheat endosperm that affect its end product quality. Between the two textural classes of wheat i.e. hard and soft, starch granules are loosely bound with the lipids and proteins in soft wheat due to higher expression of interfering grain softness proteins. It might have impact on starch granules properties. In this work for the first time the physiochemical and structural properties of different sized starch granules (A-, B- and C-granules) were studied to understand the differences in starches with respect to soft and hard wheat. A-, B- and C-type granules were separated with >95% purity. Average number and proportion of A-, B-, and C-type granules was 18%, 56%, 26% and 76%, 19%, 5% respectively. All had symmetrical birefringence pattern with varied intensity. All displayed typical A-type crystallites. A-type granules also showed V-type crystallinity that is indicative of starch complexes with lipids and proteins. Granules differing in gelatinization temperature (ΔH) and transition temperature (ΔT), showed different enthalpy changes during heating. Substitution analysis indicated differences in relative substitution pattern of different starch granules. Birefringence, percentage crystallinity, transmittance, gelatinization enthalpy and substitution decreased in order of A>B>C being higher in hard wheat than soft wheat. Amylose content decreased in order of A>B>C being higher in soft wheat than hard wheat. Reconstitution experiment showed that starch properties could be manipulated by changing the composition of starch granules. Addition of A-granules to total starch significantly affected its thermal properties. Effect of A-granule addition was higher than B- and C-granules. Transmittance of the starch granules paste showed that starch granules of hard wheat formed clear paste. These results suggested that in addition to differences in protein concentration, hard and soft wheat lines have differences in starch composition also.
Koide, Tatsuo; Nagato, Takuya; Kanou, Yoshiyuki; Matsui, Kou; Natsuyama, Susumu; Kawanishi, Toru; Hiyama, Yukio
2013-01-30
The objective of this study was to evaluate the high shear granulation process using near-infrared (NIR) chemical imaging technique and to make the findings available for pharmaceutical development. We prepared granules and tablets made under appropriate- and over-granulation conditions with high shear granulation and observed these granules and tablets using NIR chemical imaging system. We found an interesting phenomenon: lactose agglomeration and segregation of ingredients occurred in experimental tablets when over-granulation conditions, including greater impeller rotation speeds and longer granulation times, were employed. Granules prepared using over-granulation conditions were larger and had progressed to the consolidation stage; segregation between ethenzamide and lactose occurred within larger granules. The segregation observed here is not detectable using conventional analytical technologies such as high pressure liquid chromatography (HPLC) because the content of the granules remained uniform despite the segregation. Therefore, granule visualization using NIR chemical imaging is an effective method for investigating and evaluating the granulation process. Copyright © 2012 Elsevier B.V. All rights reserved.
Roßteuscher-Carl, Katrin; Fricke, Sabine; Hacker, Michael C; Schulz-Siegmund, Michaela
2015-12-30
Ethinylestradiol (EE) as a highly active and low dosed compound is prone to oxidative degradation. The stability of the drug substance is therefore a critical parameter that has to be considered during drug formulation. Beside the stability of the drug substance, granule particle size and moisture are critical quality attributes (CQA) of the fluid bed granulation process which influence the tableting ability of the resulting granules. Both CQA should therefore be monitored during the production process by process analytic technology (PAT) according to ICH Q8. This work focusses on the effects of drying conditions on the stability of EE in a fluid-bed granulation process. We quantified EE degradation products 6-alpha-hydroxy-EE, 6-beta-hydroxy-EE, 9(11)-dehydro-EE and 6-oxo-EE during long time storage and accelerated conditions. PAT-tools that monitor granule particle size (Spatial filtering technology) and granule moisture (Microwave resonance technology) were applied and compared with off-line methods. We found a relevant influence of residual granule moisture and thermic stress applied during granulation on the storage stability of EE, whereas no degradation was found immediately after processing. Hence we conclude that drying parameters have a relevant influence on long term EE stability. Copyright © 2015 Elsevier B.V. All rights reserved.
Chevalier, E; Viana, M; Cazalbou, S; Chulia, D
2009-10-01
Calcium phosphate porous ceramics present a great interest not only as complex bone defect fillers but also as drug delivery systems. Most of the methods described in the literature to fabricate pellets are based on compaction, casting into spherical molds, or on processes such as liquid immiscibility or foaming. Despite wet granulation is used in a wide range of applications in pharmaceuticals, food, detergents, fertilizers, and minerals, it is not applied in the biomaterial field to produce granules. In this study physicochemical and in vitro drug delivery properties of implantable calcium phosphate granules, produced by two wet agglomeration processes, were compared. Pellets obtained by high shear granulation (granulation in a Mi-Pro apparatus) were shown to be more spherical and less friable than granules elaborated by low shear process (granulation in a Kenwood apparatus). Although Mi-Pro pellets had a slightly lower porosity compared to Kenwood granules, ibuprofen loading efficiency and dissolution profiles were not statistically different and the release mechanism was mainly controlled by diffusion, in both cases. Mi-Pro pellets appeared to be better candidates as bone defect fillers and local drug delivery systems as far as they were more spherical and less friable than Kenwood agglomerates.
Grymonpré, W; Verstraete, G; Vanhoorne, V; Remon, J P; De Beer, T; Vervaet, C
2018-03-01
The concept of twin-screw melt granulation (TSMG) has steadily (re)-gained interest in pharmaceutical formulation development as an intermediate step during tablet manufacturing. However, to be considered as a viable processing option for solid oral dosage forms there is a need to understand all critical sources of variability which could affect this granulation technique. The purpose of this study was to provide an in-depth analysis of the continuous TSMG process in order to expose the critical process parameters (CPP) and elucidate the impact of process and formulation parameters on the critical quality attributes (CQA) of granules and tablets during continuous TSMG. A first part of the study dealt with the screening of various amorphous polymers as binder for producing high-dosed melt granules of two model drug (i.e. acetaminophen and hydrochlorothiazide). The second part of this study described a quality-by-design (QbD) approach for melt granulation of hydrochlorothiazide in order to thoroughly evaluate TSMG, milling and tableting stage of the continuous TSMG line. Using amorphous polymeric binders resulted in melt granules with high milling efficiency due to their brittle behaviour without producing excessive amounts of fines, providing high granule yields with low friability. Therefore, it makes them extremely suitable for further downstream processing. One of the most important CPP during TSMG with polymeric binders was the granulation-torque, which - in case of polymers with high T g - increased during longer granulation runs to critical levels endangering the continuous process flow. However, by optimizing both screw speed and throughput or changing to polymeric binders with lower T g it was possible to significantly reduce this risk. This research paper highlighted that TSMG must be considered as a viable option during formulation development of solid oral dosage forms based on the robustness of the CQA of both melt granules and tablets. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nardova, A.K.; Filippov, E.A.; Glagolenko, Y.B.
1996-05-01
This report presents the results of investigations of plutonium immobilization from solutions on inorganic matrices with the purpose of producing a solid waste form. High-temperature sorption is described which entails the adsorption of radionuclides from solutions on porous, inorganic matrices, as for example silica gel. The solution is brought to a boil with additional thermal process (calcination) of the saturated granules.
Gyanani, Vijay; Siddalingappa, Basavaraj; Betageri, Guru V
2015-01-01
Insoluble drugs often formulated with various excipients to enhance the dissolution. Cyclodextrins (CDs) are widely used excipients to improve dissolution profile of poorly soluble drugs. Drug-CD complexation process is complex and often requires multiple processes to produce solid dosage form. Hence, this study explored commonly used granulation processes for simultaneous complexation and granulation. Poorly soluble drugs ibuprofen and glyburide were selected as experimental drugs. Co-evaporation of drug:CD mixture from a solvent followed by wet granulation with water was considered as standard process for comparison. Spray granulation and fluid bed processing (FBP) using drug:CD solution in ethanol were evaluated as an alternative processes. The dissolution data of glyburide tablets indicated that tablets produced by spray granulation, FBP and co-evaporation-granulation have almost identical dissolution profile in water and 0.1% SLS (>70% in water and >60% in SLS versus 30 and 34%, respectively for plain tablet, in 120 min). Similarly, ibuprofen:CD tablets produced by co-evaporation-granulation and FBP displayed similar dissolution profile in 0.01 M HCl (pH 2.0) and buffer pH 5.5 (>90 and 100% versus 44 and 80% respectively for plain tablets, 120 min). Results of this study demonstrated that spray granulation is simple and cost effective process for low dose poorly soluble drugs to incorporate drug:CD complex into solid dosage form, whereas FBP is suitable for poorly soluble drugs with moderate dose.
Tao, Han; Wang, Pei; Zhang, Bao; Wu, Fengfeng; Jin, Zhengyu; Xu, Xueming
2016-06-05
The effect of freezing on functionality of native and sodium dodecyl sulfate (SDS)-treated wheat starches was investigated, with the aim of understanding the role of water absorption during freezing process. SDS is one of most efficient detergents to remove non-starch components (such as proteins and lipids) for starches but does not cause any apparent damage on granular structure. Slow swelling could be converted to rapid swelling by SDS washing, indicating higher water absorption. Freezing process induced slight roughness on starch granules but the non-starch components content was little affected. Combined SDS+freezing treatment significantly decreased both amylose and proteins non-starch components contents, which was accompanied with high gelatinization temperatures, melting enthalpy, and pasting viscosities. A smaller bread specific volume was obtained from SDS+freezing-treated starches while the crumb firmness significantly increased (p<0.05). SDS mainly extracted the surface components from starch granules, leading to high water absorption and making granules sensitive to the freezing treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Narang, Ajit S; Sheverev, Valery; Freeman, Tim; Both, Douglas; Stepaniuk, Vadim; Delancy, Michael; Millington-Smith, Doug; Macias, Kevin; Subramanian, Ganeshkumar
2016-01-01
Drag flow force (DFF) sensor that measures the force exerted by wet mass in a granulator on a thin cylindrical probe was shown as a promising process analytical technology for real-time in-line high-resolution monitoring of wet mass consistency during high shear wet granulation. Our previous studies indicated that this process analytical technology tool could be correlated to granulation end point established independently through drug product critical quality attributes. In this study, the measurements of flow force by a DFF sensor, taken during wet granulation of 3 placebo formulations with different binder content, are compared with concurrent at line FT4 Powder Rheometer characterization of wet granules collected at different time points of the processing. The wet mass consistency measured by the DFF sensor correlated well with the granulation's resistance to flow and interparticulate interactions as measured by FT4 Powder Rheometer. This indicated that the force pulse magnitude measured by the DFF sensor was indicative of fundamental material properties (e.g., shear viscosity and granule size/density), as they were changing during the granulation process. These studies indicate that DFF sensor can be a valuable tool for wet granulation formulation and process development and scale up, as well as for routine monitoring and control during manufacturing. Copyright © 2016. Published by Elsevier Inc.
Liebrich, Marietta; Kleyböcker, Anne; Kasina, Monika; Miethling-Graff, Rona; Kassahun, Andrea; Würdemann, Hilke
2016-01-01
The composition, structure and function of granules formed during process recovery with calcium oxide in a laboratory-scale fermenter fed with sewage sludge and rapeseed oil were studied. In the course of over-acidification and successful process recovery, only minor changes were observed in the bacterial community of the digestate, while granules appeared during recovery. Fluorescence microscopic analysis of the granules showed a close spatial relationship between calcium and oil and/or long chain fatty acids. This finding further substantiated the hypothesis that calcium precipitated with carbon of organic origin and reduced the negative effects of overloading with oil. Furthermore, the enrichment of phosphate minerals in the granules was shown, and molecular biological analyses detected polyphosphate-accumulating organisms as well as methanogenic archaea in the core. Organisms related to Methanoculleus receptaculi were detected in the inner zones of a granule, whereas they were present in the digestate only after process recovery. This finding indicated more favorable microhabitats inside the granules that supported process recovery. Thus, the granule formation triggered by calcium oxide addition served as a tool to influence the composition of the microbial community and to stabilize the process after overloading with oil. PMID:27681911
Liebrich, Marietta; Kleyböcker, Anne; Kasina, Monika; Miethling-Graff, Rona; Kassahun, Andrea; Würdemann, Hilke
2016-03-17
The composition, structure and function of granules formed during process recovery with calcium oxide in a laboratory-scale fermenter fed with sewage sludge and rapeseed oil were studied. In the course of over-acidification and successful process recovery, only minor changes were observed in the bacterial community of the digestate, while granules appeared during recovery. Fluorescence microscopic analysis of the granules showed a close spatial relationship between calcium and oil and/or long chain fatty acids. This finding further substantiated the hypothesis that calcium precipitated with carbon of organic origin and reduced the negative effects of overloading with oil. Furthermore, the enrichment of phosphate minerals in the granules was shown, and molecular biological analyses detected polyphosphate-accumulating organisms as well as methanogenic archaea in the core. Organisms related to Methanoculleus receptaculi were detected in the inner zones of a granule, whereas they were present in the digestate only after process recovery. This finding indicated more favorable microhabitats inside the granules that supported process recovery. Thus, the granule formation triggered by calcium oxide addition served as a tool to influence the composition of the microbial community and to stabilize the process after overloading with oil.
Asmeda, R; Noorlaila, A; Norziah, M H
2016-01-15
This research was conducted to investigate the effects of different grinding techniques (dry, semi-wet and wet) of milled rice grains on the damaged starch and particle size distribution of flour produced from a new variety, MR263, specifically related to the pasting and thermal profiles. The results indicated that grinding techniques significantly (p<0.05) affected starch damage content and particle size distribution of rice flour. Wet grinding process yields flour with lowest percentage of starch damage (7.37%) and finest average particle size (8.52μm). Pasting and gelatinization temperature was found in the range of 84.45-89.63°C and 59.86-75.31°C, respectively. Dry ground flour attained the lowest pasting and gelatinization temperature as shown by the thermal and pasting profiles. Correlation analysis revealed that percentage of damaged starch granules had a significant, negative relationship with pasting temperature while average particle size distribution had a significant, strong negative relationship with gelatinization temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.
Takasaki, Hiroshi; Yonemochi, Etsuo; Ito, Masanori; Wada, Koichi; Terada, Katsuhide
2015-01-01
The aim of this study was to evaluate binders to improve the flowability of granulates and compactibility of Metformin HCL (Met) using the moist aqueous granulation (MAG) process. The effect of the binder moisture content on granulate and tablet quality was also evaluated. Vinylpyrrolidone-vinyl acetate copolymer (Kollidon VA64 fine: VA64), polyvidone (Povidone K12: PVP), hydroxypropyl cellulose (HPC SSL SF: HPC) and hydroxypropyl methylcellulose (Methocel E5 LV: HPMC) were evaluated as binders. These granulates, except for HPMC, had a lower yield pressure than Met active pharmaceutical ingredient (API). HPMC Met was not sufficiently granulated with low water volume. No problems were observed with the VA64 Met granulates during the tableting process. However, HPC Met granulates had a bowl-forming tendency, and PVP Met granulates had the tendency to stick during the tableting process. These bowl-forming and sticking tendencies may have been due to the low moisture absorbency of HPC and the high volume of bound water of PVP, respectively. VA64 Met granulates had the highest ambient moisture content (bulk water, bound water) and moisture absorbency. It was concluded that the type of binder used for the Met MAG process has an impact on granulate flow and compactibility, as well as moisture absorbency and maintenance of moisture balance.
Takasaki, Hiroshi; Yonemochi, Etsuo; Ito, Masanori; Wada, Koichi; Terada, Katsuhide
2015-01-01
The aim of this study was to evaluate binders to improve the flowability of granulates and compactibility of Metformin HCL (Met) using the moist aqueous granulation (MAG) process. The effect of the binder moisture content on granulate and tablet quality was also evaluated. Vinylpyrrolidone–vinyl acetate copolymer (Kollidon VA64 fine: VA64), polyvidone (Povidone K12: PVP), hydroxypropyl cellulose (HPC SSL SF: HPC) and hydroxypropyl methylcellulose (Methocel E5 LV: HPMC) were evaluated as binders. These granulates, except for HPMC, had a lower yield pressure than Met active pharmaceutical ingredient (API). HPMC Met was not sufficiently granulated with low water volume. No problems were observed with the VA64 Met granulates during the tableting process. However, HPC Met granulates had a bowl-forming tendency, and PVP Met granulates had the tendency to stick during the tableting process. These bowl-forming and sticking tendencies may have been due to the low moisture absorbency of HPC and the high volume of bound water of PVP, respectively. VA64 Met granulates had the highest ambient moisture content (bulk water, bound water) and moisture absorbency. It was concluded that the type of binder used for the Met MAG process has an impact on granulate flow and compactibility, as well as moisture absorbency and maintenance of moisture balance. PMID:26779418
Keary, Colin M; Sheskey, Paul J
2004-09-01
Spray granulation is commonly used to improve the flow of drug formulation powders by adding liquid binders. We have discovered a new granulation process whereby liquid binders are added as aqueous foam. Initial experiments indicate that foam granulations require less binder than spray granulations, less water is added to the powder mass, rates of addition of foam can be greater than rates of addition of sprayed liquids, and foam can be added in a single batch to the surface of the powder mass for incorporation at some later stage in the process. This new process appears to have no detrimental effects on granulate, tablet, or in vitro drug dissolution properties. In addition, the elimination of spray addition reduces the complexity of the process and avoids the plugging problems associated with spray nozzles. Several formulations were successfully scaled up from laboratory scale (1.5 kg) to pilot scale (15 kg). Process control was good and there was no detrimental effect on tablet and drug dissolution properties. This paper also proposes a working hypothesis of the mechanism by which foam granulation operates.
Kinetics of Brominated Flame Retardant (BFR) Releases from Granules of Waste Plastics.
Sun, Bingbing; Hu, Yuanan; Cheng, Hefa; Tao, Shu
2016-12-20
Plastic components of e-waste contain high levels of brominated flame retardants (BFRs), whose releases cause environmental and human health concerns. This study characterized the release kinetics of polybrominated diphenyl ethers (PBDEs) from millimeter-sized granules processed from the plastic exteriors of two scrap computer displays at environmentally relevant temperatures. The release rate of a substitute of PBDEs, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), from the waste plastics, was reported for the first time. Deca-BDE was the most abundant PBDE congeners in both materials (87-89%), while BTBPE was also present at relatively high contents. The release kinetics of BFRs could be modeled as one-dimensional diffusion, while the temperature dependence of diffusion coefficients was well described by the Arrhenius equation. The diffusion coefficients of BFRs (at 30 °C) in the plastic matrices were estimated to be in the range of 10 -27.16 to 10 -19.96 m 2 ·s -1 , with apparent activation energies between 88.4 and 154.2 kJ·mol -1 . The half-lives of BFR releases (i.e., 50% depletion) from the plastic granules ranged from thousands to tens of billions of years at ambient temperatures. These findings suggest that BFRs are released very slowly from the matrices of waste plastics through molecular diffusion, while their emissions can be significantly enhanced with wear-and-tear and pulverization.
Schumacher, Kirstin; Matz, Magnus; Brüning, Dennis; Baumann, Knut; Rustenbeck, Ingo
2015-05-01
The pre-exocytotic behavior of insulin granules was studied against the background of the entirety of submembrane granules in MIN6 cells, and the characteristics were compared with the macroscopic secretion pattern and the cytosolic Ca(2+) concentration of MIN6 pseudo-islets at 22°C, 32°C and 37°C. The mobility of granules labeled by insulin-EGFP and the fusion events were assessed by TIRF microscopy utilizing an observer-independent algorithm. In the z-dimension, 40 mm K(+) or 30 mm glucose increased the granule turnover. The effect of high K(+) was quickly reversible. The increase by glucose was more sustained and modified the efficacy of a subsequent K(+) stimulus. The effect size of glucose increased with physiological temperature whereas that of high K(+) did not. The mobility in the x/y-dimension and the fusion rates were little affected by the stimuli, in contrast to secretion. Fusion and secretion, however, had the same temperature dependence. Granules that appeared and fused within one image sequence had significantly larger caging diameters than pre-existent granules that underwent fusion. These in turn had a different mobility than residence-matched non-fusing granules. In conclusion, delivery to the membrane, tethering and fusion of granules are differently affected by insulinotropic stimuli. Fusion rates and secretion do not appear to be tightly coupled. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Fayed, Mohamed H; Abdel-Rahman, Sayed I; Alanazi, Fars K; Ahmed, Mahrous O; Tawfeek, Hesham M; Al-Shdefat, Ramadan I
2017-10-01
The aim of this work was to study the application of design of experiment (DoE) approach in defining design space for granulation and tableting processes using a novel gentle-wing high-shear granulator. According to quality-by-design (QbD) prospective, critical attributes of granules, and tablets should be ensured by manufacturing process design. A face-centered central composite design has been employed in order to investigate the effect of water amount (X 1 ), impeller speed (X 2 ), wet massing time (X 3 ), and water addition rate (X 4 ) as independent process variables on granules and tablets characteristics. Acetaminophen was used as a model drug and granulation experiments were carried out using dry addition of povidone k30. The dried granules have been analyzed for their size distribution, density, and flow pattern. Additionally, the produced tablets have been investigated for; weight uniformity, breaking force, friability and percent capping, disintegration time, and drug dissolution. Results of regression analysis showed that water amount, impeller speed and wet massing time have significant (p < .05) effect on granules and tablets characteristics. However, the water amount had the most pronounced effect as indicated by its higher parameter estimate. On the other hand, water addition rate showed a minimal impact on granules and tablets properties. In conclusion, water amount, impeller speed, and wet massing time could be considered as critical process variables. Thus, understanding the relationship between these variables and quality attributes of granules and corresponding tablets provides the basis for adjusting granulation variables in order to optimize product performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Elizabeth A.; Parkes, Gareth M. B.; Bond, Gary
This article describes a system to investigate the parameters for the remediation of organic vapors using microwave-induced plasma on fluidized carbon granules. The system is based on a single mode microwave apparatus with a variable power (2.45 GHz) generator. Carbon granules are fluidized in a silica tube situated in the sample section of a waveguide incorporating two additional ports to allow plasma intensity monitoring using a light sensor and imaging with a digital camera. A fluoroptic probe is used for in situ measurement of the carbon granule temperature, while the effluent gas temperature is measured with a thermocouple situated inmore » the silica tube outside the cavity. Data acquisition and control software allow experiments using a variety of microwave power regimes while simultaneously recording the light intensity of any plasma generated within the carbon bed, together with its temperature. Evaluation using two different granular activated carbons and ethyl acetate, introduced as a vapor into the fluidizing air stream at a concentration of 1 ppm, yielded results which indicated that significant destruction of ethyl acetate, as monitored using a mass spectrometer, was achieved only with the carbon granules showing high plasma activity under pulsed microwave conditions. The system is therefore suitable for comparison of the relative microwave activities of various activated carbon granules and their performance in microwave remediation and regeneration.« less
Fonteyne, Margot; Wickström, Henrika; Peeters, Elisabeth; Vercruysse, Jurgen; Ehlers, Henrik; Peters, Björn-Hendrik; Remon, Jean Paul; Vervaet, Chris; Ketolainen, Jarkko; Sandler, Niklas; Rantanen, Jukka; Naelapää, Kaisa; De Beer, Thomas
2014-07-01
Continuous manufacturing gains more and more interest within the pharmaceutical industry. The International Conference of Harmonisation (ICH) states in its Q8 'Pharmaceutical Development' guideline that the manufacturer of pharmaceuticals should have an enhanced knowledge of the product performance over a range of raw material attributes, manufacturing process options and process parameters. This fits further into the Process Analytical Technology (PAT) and Quality by Design (QbD) framework. The present study evaluates the effect of variation in critical raw material properties on the critical quality attributes of granules and tablets, produced by a continuous from-powder-to-tablet wet granulation line. The granulation process parameters were kept constant to examine the differences in the end product quality caused by the variability of the raw materials properties only. Theophylline-Lactose-PVP (30-67.5-2.5%) was used as model formulation. Seven different grades of theophylline were granulated. Afterward, the obtained granules were tableted. Both the characteristics of granules and tablets were determined. The results show that differences in raw material properties both affect their processability and several critical quality attributes of the resulting granules and tablets. Copyright © 2014 Elsevier B.V. All rights reserved.
Cytoplasmic RNA Granules in Somatic Maintenance.
Moujaber, Ossama; Stochaj, Ursula
2018-05-30
Cytoplasmic RNA granules represent subcellular compartments that are enriched in protein-bound RNA species. RNA granules are produced by evolutionary divergent eukaryotes, including yeast, mammals, and plants. The functions of cytoplasmic RNA granules differ widely. They are dictated by the cell type and physiological state, which in turn is determined by intrinsic cell properties and environmental factors. RNA granules provide diverse cellular functions. However, all of the granules contribute to aspects of RNA metabolism. This is exemplified by transcription, RNA storage, silencing, and degradation, as well as mRNP remodeling and regulated translation. Several forms of cytoplasmic mRNA granules are linked to normal physiological processes. For instance, they may coordinate protein synthesis and thereby serve as posttranscriptional "operons". RNA granules also participate in cytoplasmic mRNA trafficking, a process particularly well understood for neurons. Many forms of RNA granules support the preservation of somatic cell performance under normal and stress conditions. On the other hand, severe insults or disease can cause the formation and persistence of RNA granules that contribute to cellular dysfunction, especially in the nervous system. Neurodegeneration and many other diseases linked to RNA granules are associated with aging. Nevertheless, information related to the impact of aging on the various types of RNA granules is presently very limited. This review concentrates on cytoplasmic RNA granules and their role in somatic cell maintenance. We summarize the current knowledge on different types of RNA granules in the cytoplasm, their assembly and function under normal, stress, or disease conditions. Specifically, we discuss processing bodies, neuronal granules, stress granules, and other less characterized cytoplasmic RNA granules. Our focus is primarily on mammalian and yeast models, because they have been critical to unravel the physiological role of various RNA granules. RNA granules in plants and pathogens are briefly described. We conclude our viewpoint by summarizing the emerging concepts for RNA granule biology and the open questions that need to be addressed in future studies. © 2018 S. Karger AG, Basel.
Liu, Huolong; Galbraith, S C; Ricart, Brendon; Stanton, Courtney; Smith-Goettler, Brandye; Verdi, Luke; O'Connor, Thomas; Lee, Sau; Yoon, Seongkyu
2017-06-15
In this study, the influence of key process variables (screw speed, throughput and liquid to solid (L/S) ratio) of a continuous twin screw wet granulation (TSWG) was investigated using a central composite face-centered (CCF) experimental design method. Regression models were developed to predict the process responses (motor torque, granule residence time), granule properties (size distribution, volume average diameter, yield, relative width, flowability) and tablet properties (tensile strength). The effects of the three key process variables were analyzed via contour and interaction plots. The experimental results have demonstrated that all the process responses, granule properties and tablet properties are influenced by changing the screw speed, throughput and L/S ratio. The TSWG process was optimized to produce granules with specific volume average diameter of 150μm and the yield of 95% based on the developed regression models. A design space (DS) was built based on volume average granule diameter between 90 and 200μm and the granule yield larger than 75% with a failure probability analysis using Monte Carlo simulations. Validation experiments successfully validated the robustness and accuracy of the DS generated using the CCF experimental design in optimizing a continuous TSWG process. Copyright © 2017 Elsevier B.V. All rights reserved.
Corrosion behavior of HVOF coated sheets
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Abdul-Aleem, B. J.; Khalid, M.
2003-12-01
High velocity oxygen-fuel (HVOF) thermal spray coating finds application in industry due to its superior resistance to corrosion and thermal loading. In the HVOF process, the metallic powders at elevated temperature are sprayed at supersonic speed onto a substrate material. The powder granules sprayed impact onto each other, forming a mechanical bonding across the coating layer. In most of the cases, the distances among the particles (powder granules sprayed) are not the same, which in turn results in inhomogeneous structure across the coating layer. Moreover, the rate of oxidation of the powder granules during the spraying process varies. Consequently, the electrochemical response of the coating layer surfaces next to the base material and free to atmosphere differs. In the current study, the electrochemical response of a coating sheet formed during HVOF thermal spraying was investigated. NiCrMoNb alloy (similar to Inconel 625) wass used for the powder granules. Thermal spraying was carried out onto a smooth surface of stainless steel workpiece (without grid blasting), and later the coating layer was removed from the surface to obtain the coating sheet for the electrochemical tests. It was found that the corrosion rate of the smooth surface (surface next to the stainless steel surface before its removal) is considerably larger than that corresponding to the rough surface (free surface) of the coating sheet, and no specific patterns were observed for the pit sites.
Increase in energy efficiency of use of vegetable waste
NASA Astrophysics Data System (ADS)
Safin, R. R.; Safiullina, A. K.; Nazipova, F. V.
2017-10-01
Wastes of woodworking which are exposed to granulation for equalization of humidity, dispersion and also for increase in energy efficiency are the most widespread types of alternative fuel in Russia. Besides, one of the effective methods of the increase in calorific capability of granulates now is the preliminary torrefaction of wood waste - heat treatment without air oxygen access. However this technology is rather researched in detail only in relation to wood particles, while pellets from wastes of agricultural productions are also popular in the market in recent years. The possibility of the increase of the efficiency of production of pellets from sunflower pod by torrefaction is considered in this article, and the analysis of their characteristics in comparison with wood pellets is carried out. It is established that the process of heat treatment of waste of sunflower production is similar to torrefaction of wood raw materials in many respects; therefore, the equipment with similar characteristics can be used. According to the received results on pellet’s properties it is established that hygroscopicity and swelling of samples of fuel granules from sunflower pod considerably decreases with the increase in temperature of treatment that simplifies requirements for their storage and transportation. Besides, it is defined that torrefaction of the granulated fuel from sunflower pod does not yield in calorific properties to the similar fuel granules made of wood sawdust. Thus feasibility of use of heat treatment in production of fuel granules from waste of vegetable raw materials is proved.
Hailei, Wang; Ping, Li; Qianlong, Jin; Ge, Qin
2014-03-01
Aerobic granules were firstly developed in a completely mixed tank reactor (CMTR) by seeding micro-mycelial pellets (MMPs) of Phanerochaete chrysosporium. During phenol wastewater treatment, sludge granulation rate reached 67 % after 15-day operation. The granules in CMTR are different from aerobic granules described in literature in morphology, and a majority of them are rod-shaped or rodlike sludge besides spherical granules. The polymorphic granules, having no essential difference with aerobic granules previously reported, achieve advantages over conventional activated sludge in settling ability, biomass concentration, density, integrity coefficient and removal ability to phenol wastewater. The optimized parameters for sludge granulation in CMTR including temperature, inoculum quantity, rotary speed and superficial air upflow velocity are 30 °C, 5–7 g/l, 150 rpm, and 0.5 cm/s, respectively. Analysis on sludge granulation mechanism indicates that MMPs not only result in the formation of aerobic granules containing MMPs as nuclei, but also induce the formation of biogranules which do not have MMP at their cores. The work challenges the general belief that the homogenous circular flow pattern of microbial aggregates is necessary for aerobic sludge granulation.
Vercruysse, Jurgen; Toiviainen, Maunu; Fonteyne, Margot; Helkimo, Niko; Ketolainen, Jarkko; Juuti, Mikko; Delaet, Urbain; Van Assche, Ivo; Remon, Jean Paul; Vervaet, Chris; De Beer, Thomas
2014-04-01
Over the last decade, there has been increased interest in the application of twin screw granulation as a continuous wet granulation technique for pharmaceutical drug formulations. However, the mixing of granulation liquid and powder material during the short residence time inside the screw chamber and the atypical particle size distribution (PSD) of granules produced by twin screw granulation is not yet fully understood. Therefore, this study aims at visualizing the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging. In first instance, the residence time of material inside the barrel was investigated as function of screw speed and moisture content followed by the visualization of the granulation liquid distribution as function of different formulation and process parameters (liquid feed rate, liquid addition method, screw configuration, moisture content and barrel filling degree). The link between moisture uniformity and granule size distributions was also studied. For residence time analysis, increased screw speed and lower moisture content resulted to a shorter mean residence time and narrower residence time distribution. Besides, the distribution of granulation liquid was more homogenous at higher moisture content and with more kneading zones on the granulator screws. After optimization of the screw configuration, a two-level full factorial experimental design was performed to evaluate the influence of moisture content, screw speed and powder feed rate on the mixing efficiency of the powder and liquid phase. From these results, it was concluded that only increasing the moisture content significantly improved the granulation liquid distribution. This study demonstrates that NIR chemical imaging is a fast and adequate measurement tool for allowing process visualization and hence for providing better process understanding of a continuous twin screw granulation system. Copyright © 2013 Elsevier B.V. All rights reserved.
Orawetz, Tom; Malinova, Irina; Orzechowski, Slawomir; Fettke, Joerg
2016-03-01
Tubers of potato (Solanum tuberosum L.), one of the most important crops, are a prominent example for an efficient production of storage starch. Nevertheless, the synthesis of this storage starch is not completely understood. The plastidial phosphorylase (Pho1; EC 2.4.1.1) catalyzes the reversible transfer of glucosyl residues from glucose-1-phosphate to the non-reducing end of α-glucans with the release of orthophosphate. Thus, the enzyme is in principle able to act during starch synthesis. However, so far under normal growth conditions no alterations in tuber starch metabolism were observed. Based on analyses of other species and also from in vitro experiments with potato tuber slices it was supposed, that Pho1 has a stronger impact on starch metabolism, when plants grow under low temperature conditions. Therefore, we analyzed the starch content, granule size, as well as the internal structure of starch granules isolated from potato plants grown under low temperatures. Besides wild type, transgenic potato plants with a strong reduction in the Pho1 activity were analyzed. No significant alterations in starch content and granule size were detected. In contrast, when plants were cultivated at low temperatures the chain length distributions of the starch granules were altered. Thus, the granules contained more short glucan chains. That was not observed in the transgenic plants, revealing that Pho1 in wild type is involved in the formation of the short glucan chains, at least at low temperatures. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Adsorption of hexavalent chromium on cationic cross-linked starches of different botanic origins.
Klimaviciute, Rima; Bendoraitiene, Joana; Rutkaite, Ramune; Zemaitaitis, Algirdas
2010-09-15
The influence of origin of native starch used to obtain cationic cross-linked starch (CCS) on the adsorption of Cr(VI) onto CCS has been investigated. CCS granule size is influenced by the botanic source of native starch. The equilibrium adsorption of Cr(VI) onto CCS was described by the Langmuir, Freundlich, Dubinin-Radushkevich and Temkin models. The more equal the adsorption energy of the quaternary ammonium groups in CCS granule as indicated by low value of change of Temkin adsorption energy DeltaE(T) the greater amount of Cr(VI) was adsorbed onto CCS. The value of DeltaE(T) decreased and sorption capacity of CCS increased with the decrease of CCS granule size and with the increase of number of amorphous regions in CCS granules. The affinity of dichromate anions increases and adsorption proceeds more spontaneously when Cr(VI) is adsorbed onto more amorphous CCS. Adsorption process of Cr(VI) onto such CCS is more exothermic and order of system undergoes major changes during adsorption. After the adsorption on CCS Cr(VI) could be regenerated by incineration at temperature of 800 degrees C. Copyright 2010 Elsevier B.V. All rights reserved.
Optimization for blast furnace slag dry cooling granulation device
NASA Astrophysics Data System (ADS)
Dazhan, Sheng; Yali, Wang; Ruiyun, Wang; Suping, Cui; Xiaoyu, Ma
2017-03-01
Since the large accumulation amount of blast furnace slag (BFS) with recycling value, it has become a hot topic for recovery utilization. Compared with the existing various BFS granulation process, the dry granulation process can promote the use of blast furnace granulated slag as cement substitute and concrete admixtures. Our research group developed a novel dry cooling granulation experiment device to treat BFS. However, there are still some problems to be solved. The purpose of this research is to improve the cooling and granulation efficiency of the existing dry type cooling equipment. This topic uses the FLUENT simulation software to study the impact of the number of air inlet on the cooling effect of the device. The simulation result is that the device possessing eight air inlets can increase the number of hot and cold gas exchanged, resulting in a better cooling effect. According to the power consumption, LCA analysis was carried out on the cooling granulation process. The results show that the device equipped eight air inlets not only improved the original equipment cooling granulation effect, but also increased resource utilization ratio, realized energy-saving and emission reduction.
Kallakunta, Venkata Raman; Tiwari, Roshan; Sarabu, Sandeep; Bandari, Suresh; Repka, Michael A
2018-05-14
The current study's aim is to prepare lipid based sustained release tablets via a twin-screw granulation technique and compare those dosage forms with conventional techniques, namely wet granulation and direct compression. The granules were successfully manufactured in a single-step, continuous twin-screw granulation process with a low proportion of binder (Klucel™ EF, HPC SSL) using Compritol® 888 ATO, Precirol® ATO 5 and Geleol™ as sustained release agents. The granules prepared showed good flow characteristics and compaction properties. DSC and XRD studies were conducted to characterize the granules prepared via a twin-screw granulation method and the results demonstrated the crystalline nature of lipids within the granules. FTIR data indicated that there were no interactions with the formulation components investigated. The formulations developed by all three methods were compressed into tablets with a mechanical strength of 14-16 KP. The tablets formulated were characterized for physicochemical properties, in vitro drug release studies, water uptake and erosion studies. These results showed that the drug was not completely released after 24 h for tablets developed by the wet granulation process using all three lipids. The tablets prepared by the direct compression method demonstrated a burst release within 8 to 10 h from Precirol ATO 5® and Geleol™ formulations compared to Compritol® 888 ATO. However, tablets prepared using twin-screw granulation exhibited sustained release of the drug over 24 h and the water uptake and erosion results were in accordance with dissolution data. Stability data for 45 days at accelerated conditions (40 °C/75% RH) showed similar release profiles with ƒ2 values above 50 for all of the twin screw granulation formulations, indicating the suitability of the process for formulating sustained release tablets. These findings of a single-step, continuous twin-screw granulation process are novel and demonstrate new opportunities for development of sustained release tablets. Copyright © 2017. Published by Elsevier B.V.
The influence of porosity and structural parameters on different kinds of gas hydrate dissociation
Misyura, S. Y.
2016-01-01
Methane hydrate dissociation at negative temperatures was studied experimentally for different artificial and natural samples, differing by macro- and micro-structural parameters. Four characteristic dissociation types are discussed in the paper. The internal kinetics of artificial granule gas hydrates and clathrate hydrates in coal is dependent on the porosity, defectiveness and gas filtration rate. The density of pores distribution in the crust of formed ice decreases by the several orders of magnitude and this change significantly the rate of decay. Existing models for describing dissociation at negative temperatures do not take into account the structural parameters of samples. The dissociation is regulated by internal physical processes that must be considered in the simulation. Non-isothermal dissociation with constant external heat flux was simulated numerically. The dissociation is simulated with consideration of heat and mass transfer, kinetics of phase transformation and gas filtering through a porous medium of granules for the negative temperatures. It is shown that the gas hydrate dissociation in the presence of mainly microporous structures is fundamentally different from the disintegration of gas hydrates containing meso and macropores. PMID:27445113
Insensitivity of compaction properties of brittle granules to size enlargement by roller compaction.
Wu, Sy-Juen; Sun, Changquan 'Calvin'
2007-05-01
Pharmaceutical granules prepared by roller compaction often exhibit significant loss of tabletability, that is, reduction in tensile strength, when compared to virgin powder. This may be attributed to granule size enlargement for highly plastic materials, for example, microcrystalline cellulose. The sensitivity of powder compaction properties on granule size variations impacts the robustness of the dry granulation process. We hypothesize that such sensitivity of compaction properties on granule size is minimum for brittle materials because extensive fracture of brittle granules during compaction minimizes differences in initial granule size. We tested the hypothesis using three common brittle excipients. Results show that the fine (44-106 microm), medium (106-250 microm), and coarse (250-500 microm) granules exhibit essentially identical tabletability below a certain critical compaction pressure, 100, 140, and 100 MPa for spray-dried lactose monohydrate, anhydrous dibasic calcium phosphate, and mannitol, respectively. Above respective critical pressure, tabletability lines diverge with smaller granules exhibiting slightly higher tablet tensile strength at identical compaction conditions. Overall, tabletability of brittle granules is insensitive to granule size enlargement. The results provide a scientific basis to the common practice of incorporating brittle filler to a typical tablet formulation processed by roller compaction granulation. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.
Direct fabrication of /sup 238/PuO/sub 2/ fuel forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burney, G.A.; Congdon, J.W.
1982-07-01
The current process for the fabrication of /sup 238/PuO/sub 2/ heat sources includes precipitation of small particle plutonium oxalate crystals (4 to 6 ..mu..m diameter), a calcination to PuO/sub 2/, ball milling, cold pressing, granulation (60 to 125 ..mu..m), and granule sintering prior to hot pressing the fuel pellet. A new two-step direct-strike Pu(III) oxalate precipitation method which yields mainly large well-developed rosettes (50 to 100 ..mu..m diameter) has been demonstrated in the laboratory and in the plant. These large rosettes are formed by agglomeration of small (2 to 4 ..mu..m) crystals, and after calcining and sintering, were directly hotmore » pressed into fuel forms, thus eliminating several of the powder conditioning steps. Conditions for direct hot pressing of the large heat-treated rosettes were determined and a full-scale General Purpose Heat Source pellet was fabricated. The pellet had the desired granule-type microstructure to provide dimensional stability at high temperature. 27 figures.« less
Distribution of binder in granules produced by means of twin screw granulation.
Fonteyne, Margot; Fussell, Andrew Luke; Vercruysse, Jurgen; Vervaet, Chris; Remon, Jean Paul; Strachan, Clare; Rades, Thomas; De Beer, Thomas
2014-02-28
According to the quality by design principle processes may not remain black-boxes and full process understanding is required. The granule size distribution of granules produced via twin screw granulation is often found to be bimodal. The aim of this study was to gain a better understanding of binder distribution within granules produced via twin screw granulation in order to investigate if an inhomogeneous spread of binder is causing this bimodal size distribution. Theophylline-lactose-polyvinylpyrrolidone K30 (PVP) (30-67.5-2.5%, w/w) was used as a model formulation. The intra-granular distribution of PVP was evaluated by means of hyperspectral coherent anti-Stokes Raman scattering (CARS) microscopy. For the evaluated formulation, no PVP rich zones were detected when applying a lateral spatial resolution of 0.5 μm, indicating that PVP is homogenously distributed within the granules. Copyright © 2013 Elsevier B.V. All rights reserved.
Prabhu, Nimali N; Santimano, Maria Celisa; Mavinkurve, Suneela; Bhosle, Saroj N; Garg, Sandeep
2010-01-01
A rapidly growing marine derived Bacillus sp. strain NQ-11/A2, identified as Bacillus megaterium, accumulated 61% polyhydroxyalkanoate by weight. Diverse carbon sources served as substrates for the accumulation of short chain length polyhydroxyalkanoate. Three to nine granules either single or attached as buds could be isolated intact from each cell. Maximum activity of polyhydroxyalkanoate synthase was associated with the granules. Granule-bound polyhydroxyalkanoate synthase had a K(m) of 7.1 x 10(-5) M for DL-beta-hydroxybutyryl-CoA. Temperature and pH optima for maximum activity were 30 degrees C and 7.0, respectively. Sodium ions were required for granule-bound polyhydroxyalkanoate synthase activity and inhibited by potassium. Granule-bound polyhydroxyalkanoate synthase was apparently covalently bound to the polyhydroxyalkanoate-core of the granules and affected by the chaotropic reagent urea. Detergents inhibited the granule-bound polyhydroxyalkanoate synthase drastically whilst glycerol and bovine serum albumin stabilized the synthase.
NASA Astrophysics Data System (ADS)
Kuzmina, J. S.; Milovanov, O. Yu; Sinelshchikov, V. A.; Sytchev, G. A.; Zaichenko, V. M.
2015-11-01
Effect of torrefaction on consumer characteristics of fuel pellets made of low-grade and agricultural waste is shown. Data on the volatile content, ash content, calorific value and hygroscopicity for initial pellets and pellets, heat-treated at various temperatures are presented. The experimental study of the combustion process of initial and heat-treated pellets showed that torrefaction of pellets leads to a decreasing of the ignition temperature and an increasing of the efficiency of boiler plant.
Bär, David; Debus, Heiko; Brzenczek, Sina; Fischer, Wolfgang; Imming, Peter
2018-03-20
Near-infrared spectroscopy is frequently used by the pharmaceutical industry to monitor and optimize several production processes. In combination with chemometrics, a mathematical-statistical technique, the following advantages of near-infrared spectroscopy can be applied: It is a fast, non-destructive, non-invasive, and economical analytical method. One of the most advanced and popular chemometric technique is the partial least square algorithm with its best applicability in routine and its results. The required reference analytic enables the analysis of various parameters of interest, for example, moisture content, particle size, and many others. Parameters like the correlation coefficient, root mean square error of prediction, root mean square error of calibration, and root mean square error of validation have been used for evaluating the applicability and robustness of these analytical methods developed. This study deals with investigating a Naproxen Sodium granulation process using near-infrared spectroscopy and the development of water content and particle-size methods. For the water content method, one should consider a maximum water content of about 21% in the granulation process, which must be confirmed by the loss on drying. Further influences to be considered are the constantly changing product temperature, rising to about 54 °C, the creation of hydrated states of Naproxen Sodium when using a maximum of about 21% water content, and the large quantity of about 87% Naproxen Sodium in the formulation. It was considered to use a combination of these influences in developing the near-infrared spectroscopy method for the water content of Naproxen Sodium granules. The "Root Mean Square Error" was 0.25% for calibration dataset and 0.30% for the validation dataset, which was obtained after different stages of optimization by multiplicative scatter correction and the first derivative. Using laser diffraction, the granules have been analyzed for particle sizes and obtaining the summary sieve sizes of >63 μm and >100 μm. The following influences should be considered for application in routine production: constant changes in water content up to 21% and a product temperature up to 54 °C. The different stages of optimization result in a "Root Mean Square Error" of 2.54% for the calibration data set and 3.53% for the validation set by using the Kubelka-Munk conversion and first derivative for the near-infrared spectroscopy method for a particle size >63 μm. For the near-infrared spectroscopy method using a particle size >100 μm, the "Root Mean Square Error" was 3.47% for the calibration data set and 4.51% for the validation set, while using the same pre-treatments. - The robustness and suitability of this methodology has already been demonstrated by its recent successful implementation in a routine granulate production process. Copyright © 2018 Elsevier B.V. All rights reserved.
Evolution of Morphology and Crystallinity of Silica Minerals Under Hydrothermal Conditions
NASA Astrophysics Data System (ADS)
Isobe, H.
2011-12-01
Silica minerals are quite common mineral species in surface environment of the terrestrial planets. They are good indicator of terrestrial processes including hydrothermal alteration, diagenesis and soil formation. Hydrothermal quartz, metastable low temperature cristobalite and amorphous silica show characteristic morphology and crystallinity depending on their formation processes and kinetics under wide range of temperature, pressure, acidity and thermal history. In this study, silica minerals produced by acidic hydrothermal alteration related to volcanic activities and hydrothermal crystallization experiments from diatom sediment are examined with crystallographic analysis and morphologic observations. Low temperature form of cistobalite is a metastable phase and a common alteration product occured in highly acidic hydrothermal environment around fumaroles in geothermal / volcanic areas. XRD analysis revealed that the alteration degree of whole rock is represented by abundance of cristobalite. Detailed powder XRD analysis show that the primary diffraction peak of cristobalite composed with two or three phases with different d-spacing and FWHM by peak profile fitting analysis. Shorter d-spacing and narrower FWHM cristobalite crystallize from precursor materials with less-crystallized, longer d-spacing and wider FWHM cristobalite. Textures of hydrothermal cristobalite in altered rock shows remnant of porphylitic texture of the host rock, pyroxene-amphibole andesite. Diatom has amorphous silica shell and makes diatomite sediment. Diatomite found in less diagenetic Quarternary formation keeps amorphous silica diatom shells. Hydrothermal alteration experiments of amorphous silica diatomite sediment are carried out from 300 °C to 550 °C. Mineral composition of run products shows crystallization of cristobalite and quartz progress depending on temperature and run durations. Initial crystallization product, cristobalite grains occur as characteristic lepispheres and granules with various surface structures. At the very initial stage of cristobalite crystallization within 2 days run duration, cristobalite shows lepispheres a few micron meters in diameter with irregular, submicron scale ridges and grooves on the surface. With the run duration up to 7 days, lepispheres change to granules with smooth surface remaining a few micron meters in diameter. Crystallinity of cristobalite lepispheres and granules corresponds to opal-CT. Euhedral quartz crystals grow with dissolution of cristobalite grains. Growth rate of cristobalite and quartz is controlled by crystallization kinetics with induction period strongly depending on temperature. Induction period of cristobalite crystallization from amorphous silica may exceed several million years at temperature below 100 °C. Crystallinity, morphology and growth rate of silica minerals occurred in various terrestrial and planetary processes are controlled by temperature and acidity of hydrothermal fluid and nucleation and growth kinetics of silica minerals.
Plant RNA Regulatory Network and RNA Granules in Virus Infection.
Mäkinen, Kristiina; Lõhmus, Andres; Pollari, Maija
2017-01-01
Regulation of post-transcriptional gene expression on mRNA level in eukaryotic cells includes translocation, translation, translational repression, storage, mRNA decay, RNA silencing, and nonsense-mediated decay. These processes are associated with various RNA-binding proteins and cytoplasmic ribonucleoprotein complexes many of which are conserved across eukaryotes. Microscopically visible aggregations formed by ribonucleoprotein complexes are termed RNA granules. Stress granules where the translationally inactive mRNAs are stored and processing bodies where mRNA decay may occur present the most studied RNA granule types. Diverse RNP-granules are increasingly being assigned important roles in viral infections. Although the majority of the molecular level studies on the role of RNA granules in viral translation and replication have been conducted in mammalian systems, some studies link also plant virus infection to RNA granules. An increasing body of evidence indicates that plant viruses require components of stress granules and processing bodies for their replication and translation, but how extensively the cellular mRNA regulatory network is utilized by plant viruses has remained largely enigmatic. Antiviral RNA silencing, which is an important regulator of viral RNA stability and expression in plants, is commonly counteracted by viral suppressors of RNA silencing. Some of the RNA silencing suppressors localize to cellular RNA granules and have been proposed to carry out their suppression functions there. Moreover, plant nucleotide-binding leucine-rich repeat protein-mediated virus resistance has been linked to enhanced processing body formation and translational repression of viral RNA. Many interesting questions relate to how the pathways of antiviral RNA silencing leading to viral RNA degradation and/or repression of translation, suppression of RNA silencing and viral RNA translation converge in plants and how different RNA granules and their individual components contribute to these processes. In this review we discuss the roles of cellular RNA regulatory mechanisms and RNA granules in plant virus infection in the light of current knowledge and compare the findings to those made in animal virus studies.
NASA Astrophysics Data System (ADS)
da Silva, Wilton Pereira; Nunes, Jarderlany Sousa; Gomes, Josivanda Palmeira; de Araújo, Auryclennedy Calou; e Silva, Cleide M. D. P. S.
2018-05-01
Anthocyanin extraction kinetics was described for jambolan fruits. The spherical granules obtained were dried at 40 °C and the average radius of the sphere equivalent to the granules was determined. Solid-solvent ratio was fixed at 1:20 and temperature at 35 °C. A mixture of ethyl alcohol and hydrochloric acid (85:15) was used as solvent. Experiments were conducted with the following stirring frequencies: 0, 50, 100 and 150 rpm. Two diffusion models were used to describe the extraction process. The first one used an analytical solution, with boundary condition of the first kind. The second one used a numerical solution, with boundary condition of the third kind. The second model was the most adequate, and its results were used to determine empirical equations relating the process parameters with the stirring frequency, allowing to simulate new extraction kinetics.
Kraciuk, Radosław; Sznitowska, Malgorzata
2011-12-01
The objective of this study was to investigate the properties of granules and tablets with carbamazepine which were prepared employing a fluidized hot-melt granulation (FHMG) technique. The FHMG process was carried out at 65°C. Macrogol 6000 (PEG 6000) was used as a binder at the content 10% (w/w) of the granulated mass. Granules containing up to 70% (w/w) of the drug and 20-90% (w/w) of a filler (lactose, mannitol, calcium hydrogen phosphate (Di-Cafos), pregelatinized starch, and microcrystalline cellulose (MCC)) were produced. When the drug content was 30% (w/w), the yield of the process was satisfying (>95%) and flowability of the granules was better than placebo granules or drug-loaded granules prepared by wet granulation. Type of a filler had strong impact on physical properties of granules, and size distribution of the particles was the most homogenous when lactose or Di-Cafos were used. The FHMG technique enabled preparation of granules with better compressability compared with the wet-granulated product or with non-granulated powders. Tablets with shorter disintegration time than 10 min were obtained with 2.0% crospovidone added as a disintegrant. In comparison to tablets prepared from the wet-granulated mass, employment of the FHMG method resulted in tablets with faster dissolution of carbamazepine (more than 80% of the drug released within 15 min). This was achieved with mannitol or lactose/MCC, as fillers.
Yeast Hog1 proteins are sequestered in stress granules during high-temperature stress.
Shiraishi, Kosuke; Hioki, Takahiro; Habata, Akari; Yurimoto, Hiroya; Sakai, Yasuyoshi
2018-01-09
The yeast high-osmolarity glycerol (HOG) pathway plays a central role in stress responses. It is activated by various stresses, including hyperosmotic stress, oxidative stress, high-temperature stress and exposure to arsenite. Hog1, the crucial MAP kinase of the pathway, localizes to the nucleus in response to high osmotic concentrations, i.e. high osmolarity; but, otherwise, little is known about its intracellular dynamics and regulation. By using the methylotrophic yeast Candida boidinii , we found that CbHog1-Venus formed intracellular dot structures after high-temperature stress in a reversible manner. Microscopic observation revealed that CbHog1-mCherry colocalized with CbPab1-Venus, a marker protein of stress granules. Hog1 homologs in Pichia pastoris and Schizosaccharomyces pombe also exhibited similar dot formation under high-temperature stress, whereas Saccharomyces cerevisiae Hog1 (ScHog1)-GFP did not. Analysis of CbHog1-Venus in C. boidinii revealed that a β-sheet structure in the N-terminal region was necessary and sufficient for its localization to stress granules. Physiological studies revealed that sequestration of activated Hog1 proteins in stress granules was responsible for downregulation of Hog1 activity under high-temperature stress.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.
Liu, Ronghua; Li, Lian; Yin, Wenping; Xu, Dongbo; Zang, Hengchang
2017-09-15
The fluidized bed granulation and pellets coating technologies are widely used in pharmaceutical industry, because the particles made in a fluidized bed have good flowability, compressibility, and the coating thickness of pellets are homogeneous. With the popularization of process analytical technology (PAT), real-time analysis for critical quality attributes (CQA) was getting more attention. Near-infrared (NIR) spectroscopy, as a PAT tool, could realize the real-time monitoring and control during the granulating and coating processes, which could optimize the manufacturing processes. This article reviewed the application of NIR spectroscopy in CQA (moisture content, particle size and tablet/pellet thickness) monitoring during fluidized bed granulation and coating processes. Through this review, we would like to provide references for realizing automated control and intelligent production in fluidized bed granulation and pellets coating of pharmaceutical industry. Copyright © 2017 Elsevier B.V. All rights reserved.
Biosorption of Cu(II) by powdered anaerobic granular sludge from aqueous medium.
Zhou, Xu; Chen, Chuan; Wang, Aijie; Jiang, Guangming; Liu, Lihong; Xu, Xijun; Yuan, Ye; Lee, Duu-Jung; Ren, Nanqi
2013-01-01
Copper(II) biosorption processes by two pre-treated powdered anaerobic granular sludges (PAGS) (original sludges were methanogenic anaerobic granules and denitrifying sulfide removal (DSR) anaerobic granules) were investigated through batch tests. Factors affecting the biosorption process, such as pH, temperature and initial copper concentrations, were examined. Also, the physico-chemical characteristics of the anaerobic sludge were analyzed by Fourier transform infrared spectroscopy, scanning electron microscopy image, surface area and elemental analysis. A second-order kinetic model was applied to describe the biosorption process, and the model could fit the biosorption process. The Freundlich model was used for describing the adsorption equilibrium data and could fit the equilibrium data well. It was found that the methanogenic PAGS was more effective in Copper(II) biosorption process than the DSR PAGS, whose maximum biosorption capacity was 39.6% lower. The mechanisms of the biosorption capacities for different PAGS were discussed, and the conclusion suggested that the environment and biochemical reactions during the growth of biomass may have affected the structure of the PAGS. The methanogenic PAGS had larger specific surface area and more biosorption capacity than the DSR PAGS.
Granule size control and targeting in pulsed spray fluid bed granulation.
Ehlers, Henrik; Liu, Anchang; Räikkönen, Heikki; Hatara, Juha; Antikainen, Osmo; Airaksinen, Sari; Heinämäki, Jyrki; Lou, Honxiang; Yliruusi, Jouko
2009-07-30
The primary aim of the study was to investigate the effects of pulsed liquid feed on granule size. The secondary aim was to increase knowledge of this technique in granule size targeting. Pulsed liquid feed refers to the pump changing between on- and off-positions in sequences, called duty cycles. One duty cycle consists of one on- and off-period. The study was performed with a laboratory-scale top-spray fluid bed granulator with duty cycle length and atomization pressure as studied variables. The liquid feed rate, amount and inlet air temperature were constant. The granules were small, indicating that the powder has only undergone ordered mixing, nucleation and early growth. The effect of atomizing pressure on granule size depends on inlet air relative humidity, with premature binder evaporation as a reason. The duty cycle length was of critical importance to the end product attributes, by defining the extent of intermittent drying and rewetting. By varying only the duty cycle length, it was possible to control granule nucleation and growth, with a wider granule size target range in increased relative humidity. The present study confirms that pulsed liquid feed in fluid bed granulation is a useful tool in end product particle size targeting.
DEVELOPMENT OF A FABRICATION PROCESS FOR SOL-GEL/METAL HYDRIDE COMPOSITE GRANULES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, E; Eric Frickey, E; Leung Heung, L
An external gelation process was developed to produce spherical granules that contain metal hydride particles in a sol-gel matrix. Dimensionally stable granules containing metal hydrides are needed for applications such as hydrogen separation and hydrogen purification that require columns containing metal hydrides. Gases must readily flow through the metal hydride beds in the columns. Metal hydrides reversibly absorb and desorb hydrogen and hydrogen isotopes. This is accompanied by significant volume changes that cause the metal hydride to break apart or decrepitate. Repeated cycling results in very fine metal hydride particles that are difficult to handle and contain. Fine particles tendmore » to settle and pack making it more difficult to flow gases through a metal hydride bed. Furthermore, the metal hydrides can exert a significant force on the containment vessel as they expand. These problems associated with metal hydrides can be eliminated with the granulation process described in this report. Small agglomerates of metal hydride particles and abietic acid (a pore former) were produced and dispersed in a colloidal silica/water suspension to form the feed slurry. Fumed silica was added to increase the viscosity of the feed slurry which helped to keep the agglomerates in suspension. Drops of the feed slurry were injected into a 27-foot tall column of hot ({approx}70 C), medium viscosity ({approx}3000 centistokes) silicone oil. Water was slowly evaporated from the drops as they settled. The drops gelled and eventually solidified to form spherical granules. This process is referred to as external gelation. Testing was completed to optimize the design of the column, the feed system, the feed slurry composition, and the operating parameters of the column. The critical process parameters can be controlled resulting in a reproducible fabrication technique. The residual silicone oil on the surface of the granules was removed by washing in mineral spirits. The granules were dried in air at 40 C. The granules were heated to 230 C for 30 minutes in argon to remove the remaining water and organic materials. The resulting product was spherical composite granules (100 to 2000 micron diameter) with a porous silica matrix containing small agglomerates of metal hydride particles. Open porosity in the silica matrix allows hydrogen to permeate rapidly through the matrix but the pores are small enough to contain the metal hydride particles. Additional porosity around the metal hydride particles, induced using abietic acid as a pore former, allows the particles to freely expand and contract without fracturing the brittle sol-gel matrix. It was demonstrated that the granules readily absorb and desorb hydrogen while remaining integral and dimensionally stable. Microcracking was observed after the granules were cycled in hydrogen five times. The strength of the granules was improved by coating them with a thin layer of a micro-porous polymer sol-gel that would allow hydrogen to freely pass through the coating but would filter out metal hydride poisons such as water and carbon monoxide. It was demonstrated that if a thin sol-gel coating was applied after the granules were cycled, the coating not only improved the strength of the granules but the coated granules retained their strength after additional hydrogen cycling tests. This additional strength is needed to extend the lifetime of the granules and to survive the compressive load in a large column of granules. Additional hydrogen adsorption tests are planned to evaluate the performance of coated granules after one hundred cycles. Tests will also be performed to determine the effects of metal hydride poisons on the granules. The results of these tests will be documented in a separate report. The process that was developed to form these granules could be scaled to a production process. The process to form granules from a mixture of metal hydride particles and pore former such as abietic acid can be scaled up using commercial granulators. The current laboratory-scale external gelation column produces approximately one gram of granules per hour. To increase the production output from a single column, multiple feed injection systems in a larger diameter column could be used.« less
Di Martino, Piera; Censi, Roberta; Malaj, Ledjan; Martelli, Sante; Joiris, Etienne; Barthélémy, Christine
2007-02-01
Metronidazole is a good example of high-dose drug substance with poor granulating and tableting properties. Tablets are generally produced by liquid granulation; however, the technological process failure is quite frequent. In order to verify how the metronidazole particle characteristics can influence granule properties, three metronidazole batches differing for crystal habit, mean particle size, BET surface area and wettability were selected, primarily designed according to their different elongation ratio: needle-shaped, stick-shaped, and isodimensional. In the presence of lactose monohydrate and pregelatinized maize starch, respectively as diluent and binder, they were included in a formula for wet granulation in a high-shear mixer-granulator. In order to render the process comparable as far as possible, all parameters and experimental conditions were maintained constant. Four granule batches were obtained: granules from placebo (G-placebo), granules from needle-shaped crystals (G-needle-shaped), granules from stick-shaped crystals (G-stick-shaped), and granules from isodimensional crystals (G-isodimensional). Different granule properties were considered, in particular concerning porosity, friability, loss on drying (LOD), and flowability. In order to study their tabletability and compressibility, the different granules obtained were then compressed in a rotary press. The best tabletability was obtained with the isodimensional batch, while the poorest was exhibited by the stick-shaped one. Differences in tabletability are in good accordance with compressibility results: to a better tabletability corresponds an important granule ability to undergo a volume reduction as a result of an applied pressure. In particular, it was proposed that the greatest compressibility of the G-isodimensional must be related to the greatest granule porosity percentage.
Loh, Z H; Sia, B Y; Heng, Paul W S; Lee, C C; Liew, Celine V
2011-12-01
Recently, microwave-induced melt granulation was shown to be a promising alternative to conventional melt granulation with improved process monitoring capabilities. This study aimed to compare the physicochemical and compaction properties of granules produced from microwave-induced and conventional melt granulation. Powder admixtures comprising equivalent proportions by weight of lactose 200 M and anhydrous dicalcium phosphate were granulated with polyethylene glycol 3350 under the influence of microwave-induced and conventional heating in a 10-L single pot high shear processor. The properties of the granules and compacts produced from the two processes were compared. Relative to conventional melt granulation, the rates at which the irradiated powders heated up in microwave-induced melt granulation were lower. Agglomerate growth proceeded at a slower rate, and this necessitated longer massing durations for growth induction. These factors prompted greater evaporative moisture losses from the melt granules. Additionally, nonuniform heating of the powders under the influence of microwaves led to increased inter-batch variations in the binder contents of resultant melt granules and a reliance of content homogeneity on massing duration. Agglomerate growth proceeded more rapidly under the influence of conventional heating due to the enhanced heating capabilities of the powders. Melt granules produced using the conventional method possessed higher moisture contents and improved content homogeneity. The compaction behavior of melt granules were affected by their mean sizes, porosities, flow properties, binder, and moisture contents. The last two factors were responsible for the disparities in compaction behavior of melt granules produced from microwave-induced and conventional melt granulation.
Shi, Limin; Feng, Yushi; Sun, Changquan Calvin
2011-05-18
The influence of massing during high shear wet granulation (HSWG) process on granule properties and performance was investigated using microcrystalline cellulose (MCC). Massing time varied from 0 to 40 min while other factors were fixed. Granule physical properties, including morphology, size, porosity, and specific surface area (SSA), were characterized. Changes in powder properties were profound in the first 10 min of massing but negligible beyond 10 min. With 10 min of massing, granule tabletability decreased by 75% while flowability increased by 75%. The significantly deteriorated tabletability and improved flowability resulted from dramatic changes in granule morphology, porosity, and SSA. The results confirm that massing time is a key process parameter in HSWG, and it must be carefully evaluated and controlled during process development, scale up, and manufacturing. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Núñez-Santiago, María C.; Maristany-Cáceres, Amira J.; Suárez, Francisco J. García; Bello-Pérez, Arturo
2008-07-01
Rheological behavior at 60 °C, granule size distribution and Differential Scanning Calorimetry (DSC) tests were employed to study the effect of diverse reaction conditions: adipic acid concentration, pH and temperature during cross-linking of banana (Musa paradisiaca) starch. These properties were determined in native banana starch pastes for the purpose of comparison. Rheological behavior from pastes of cross-linked starch at 60 °C did not show hysteresis, probably due the cross-linkage of starch that avoided disruption of granules, elsewhere, native starch showed hysteresis in a thixotropic loop. All pastes exhibited non-Newtonian shear thinning behavior. In all cases, size distribution showed a decrease in the median diameter in cross-linked starches. This condition produces a decrease in swelling capacity of cross-linked starch. The median diameter decreased with an increase of acid adipic concentration; however, an increase of pH and Temperature produced an increase in this variable. Finally, an increase in gelatinization temperature and entalphy (ΔH) were observed as an effect of cross-linkage. An increase in acid adipic concentration produced an increase in Tonset and a decrease in ΔH. pH and temperature. The cross-linked of banana starch produced granules more resistant during the pasting procedure.
Ye, Zhi-Long; Deng, Yujun; Ye, Xin; Lou, Yaoyin; Chen, Shaohua
2018-01-01
Fluidized granulation is one of the common methods used in wastewater treatment and resource recovery with harvesting millimeter-scale large particles. Presently, effective methods are lacking to measure the fluidized granules ranging from micro- to millimeter scales, with the consequence of ineffectively controlling and optimizing the granulation process. In this work, recovering struvite (MgNH 4 PO 4 ·6H 2 O) from swine wastewater by using a fluidized bed was taken as an example. Image processing was applied to analyze the properties of different types of struvite granules, including morphology, particle size distribution, number density and mass concentration. Four stages of the struvite crystal evolution were therefore defined: aggregation, aggregate compaction, cluster-agglomerating and coating growth. These stages could occur simultaneously or sequentially. Up-flow rates of 30-80 mm/s in the fluidized bed sustained 600-876 g/L granular solids. Results revealed that the coating-growth granules were formed with compact aggregates or cluster-agglomerating granules as the nuclei. The growth rates for the different types of particles, including population growth, mass increase and particle size enlargement, were determined. In final, a schematic illustration for struvite granulation process is also presented.
NASA Astrophysics Data System (ADS)
The liquefaction of pre-gelatinized starch was studied with various analytical techniques to determine the effects of starch molecular weight, granule structure, granule size, and mechanical depolymerization. Also, improvements were made in the chromatographic system used to characterize starch hydrolysates. Progress is reported on protein removal. The effects of pH, temperature, and ionic strength were examined for the removal of protein from a syrup stream by adsorption on a phenolic resin. Buffered systems, which maintain more stable pH values, were also examined. Mathematical modeling of the results is in progress. The pilot plant facility is complete and in operation. Starch streams containing 1% protein are being produced by the protein extraction process.
Process of forming a sol-gel/metal hydride composite
Congdon, James W [Aiken, SC
2009-03-17
An external gelation process is described which produces granules of metal hydride particles contained within a sol-gel matrix. The resulting granules are dimensionally stable and are useful for applications such as hydrogen separation and hydrogen purification. An additional coating technique for strengthening the granules is also provided.
Physicochemical properties of maca starch.
Zhang, Ling; Li, Guantian; Wang, Sunan; Yao, Weirong; Zhu, Fan
2017-03-01
Maca (Lepidium meyenii Walpers) is gaining research attention due to its unique bioactive properties. Starch is a major component of maca roots, thus representing a novel starch source. In this study, the properties of three maca starches (yellow, purple and black) were compared with commercially maize, cassava, and potato starches. The starch granule sizes ranged from 9.0 to 9.6μm, and the granules were irregularly oval. All the maca starches presented B-type X-ray diffraction patterns, with the relative degree of crystallinity ranging from 22.2 to 24.3%. The apparent amylose contents ranged from 21.0 to 21.3%. The onset gelatinization temperatures ranged from 47.1 to 47.5°C as indicated by differential scanning calorimetry. Significant differences were observed in the pasting properties and textural parameters among all of the studied starches. These characteristics suggest the utility of native maca starch in products subjected to low temperatures during food processing and other industrial applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Guo, Cheng-Long; Cao, Hong-Xia; Pei, Hong-Shan; Guo, Fei-Qiang; Liu, Da-Meng
2015-04-01
A multiphase mixture model was developed for revealing the interaction mechanism between biochemical reactions and transfer processes in the entrapped-cell photobioreactor packed with gel granules containing Rhodopseudomonas palustris CQK 01. The effects of difference operation parameters, including operation temperature, influent medium pH value and porosity of packed bed, on substrate concentration distribution characteristics and photo-hydrogen production performance were investigated. The results showed that the model predictions were in good agreement with the experimental data reported. Moreover, the operation temperature of 30 °C and the influent medium pH value of 7 were the most suitable conditions for photo-hydrogen production by biodegrading substrate. In addition, the lower porosity of packed bed was beneficial to enhance photo-hydrogen production performance owing to the improvement on the amount of substrate transferred into gel granules caused by the increased specific area for substrate transfer in the elemental volume. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knieper, A., E-mail: Alexander.Knieper@lbf.fraunhofer.de, E-mail: Christian.Beinert@lbf.fraunhofer.de; Beinert, C., E-mail: Alexander.Knieper@lbf.fraunhofer.de, E-mail: Christian.Beinert@lbf.fraunhofer.de
The initial melting of the first granules through plastic energy dissipation (PED) at the beginning of the melting zone, in the co-rotating twin-screw extruder is visualized in this work. The visualization was created through the use of a high speed camera in the cross section of the melting zone. The parameters screw speed, granule-temperature, temperature-profile, type of polymer and back pressure were examined. It was shown that the screw speed and the temperature-profile have significant influence on the rate of initial melting.
Acoustic emission monitoring from a lab scale high shear granulator--a novel approach.
Watson, N J; Povey, M J W; Reynolds, G K; Xu, B H; Ding, Y
2014-04-25
A new approach to the monitoring of granulation processes using passive acoustics together with precise control over the granulation process has highlighted the importance of particle-particle and particle-bowl collisions in acoustic emission. The results have shown that repeatable acoustic results could be obtained but only when a spray nozzle water addition system was used. Acoustic emissions were recorded from a transducer attached to the bowl and an airborne transducer. It was found that the airborne transducer detected very little from the granulation and only experienced small changes throughout the process. The results from the bowl transducer showed that during granulation the frequency content of the acoustic emission shifted towards the lower frequencies. Results from the discrete element model indicate that when larger particles are used the number of collisions the particles experience reduces. This is a result of the volume conservation methodology used in this study, therefore larger particles results in less particles. These simulation results coupled with previous theoretical work on the frequency content of an impacting sphere explain why the frequency content of the acoustic emissions reduces during granule growth. The acoustic system used was also clearly able to identify when large over-wetted granules were present in the system, highlighting its benefit for detecting undesirable operational conditions. High-speed photography was used to study if visual changes in the granule properties could be linked with the changing acoustic emissions. The high speed photography was only possible towards the latter stages of the granulation process and it was found that larger granules produced a higher magnitude of acoustic emission across a broader frequency range. Copyright © 2014 Elsevier B.V. All rights reserved.
Carbon, nitrogen and phosphorus removal mechanisms of aerobic granules.
Sarma, Saurabh Jyoti; Tay, Joo-Hwa
2018-04-10
Aerobic granules are the potential tools to develop modern wastewater treatment technologies with improved nutrient removal efficiency. These granules have several promising advantages over conventional activated sludge-based wastewater treatment processes. This technology has the potential of reducing the infrastructure and operation costs of wastewater treatment by 25%, energy requirement by 30%, and space requirement by 75%. The nutrient removal mechanisms of aerobic granules are slightly different from that of the activated sludge. For instance, unlike activated sludge process, according to some reports, as high as 70% of the total phosphorus removed by aerobic granules were attributed to precipitation within the granules. Similarly, aerobic granule-based technology reduces the total amount of sludge produced during wastewater treatment. However, the reason behind this observation is unknown and it needs further explanations based on carbon and nitrogen removal mechanisms. Thus, as a part of the present review, a set of new hypotheses have been proposed to explain the peculiar nutrient removal mechanisms of the aerobic granules.
Initial Processing of Infrared Spectral Data
NASA Technical Reports Server (NTRS)
De Picciotto, Solomon; Chang, Albert; Sun, Zi-Ping; Ting, Yuan-Ti; Manning, Evan; Gaiser, Steven; Lambrigtsen, Bjorn; Hofstadter, Mark; Hearty, Thomas; Pagano, Thomas;
2004-01-01
The Atmospheric Infrared Spectrometer (AIRS) Science Processing System is a collection of computer programs, denoted product generation executives (PGEs), for processing the readings of the AIRS suite of infrared and microwave instruments orbiting the Earth aboard NASA's Aqua spacecraft. Following from level 0 (representing raw AIRS data), the PGEs and their data products are denoted by alphanumeric labels (1A, 1B, and 2) that signify the successive stages of processing. Once level-0 data have been received, the level-1A PGEs begin processing, performing such basic housekeeping tasks as ensuring that all the Level-0 data are present and ordering the data according to observation times. The level-1A PGEs then perform geolocation-refinement calculations and conversions of raw data numbers to engineering units. Finally, the level-1A data are grouped into packages, denoted granules, each of which contain the data from a six-minute observation period. The granules are forwarded, along with calibration data, to the Level-1B PGEs for processing into calibrated, geolocated radiance products. The Level-2 PGEs, which are not yet operational, are intended to process the level-1B data into temperature and humidity profiles, and other geophysical properties.
Crivellato, Enrico; Belloni, Anna; Nico, Beatrice; Nussdorfer, Gastone G; Ribatti, Domenico
2004-03-01
Exocytosis is considered the main route of granule discharge in chromaffin cells. We recently provided ultrastructural evidence suggesting that piecemeal degranulation (PMD) occurs in mouse adrenal chromaffin cells. In the present study, we processed rat adrenal glands for transmission electron microscopy (TEM), and examined chromaffin cells for changes characteristic of PMD. Both adrenaline (A)- and noradrenaline (NA)-storing cells express ultrastructural features suggestive of a slow and particulate mode of granule discharge. In adrenaline-containing cells, some granules present enlarged dimensions accompanied by eroded or dissolved matrices. Likewise, a number of granules in NA-releasing cells show content reduction with variably expanded granule chambers. Dilated, empty granule containers are recognizable in the cytoplasm of both cell types. Characteristically, altered granules and empty containers are seen intermingled with normal, resting granules. In addition, chromaffin granules often show irregular profiles, with budding or tail-like projections of their limiting membranes. Thirty 150-nm-diameter membrane-bound vesicles with a moderately electron-dense or -lucent internal structure are observable in the cytoplasm of both cell types. These vesicles are seen among the granules and some of them are fused with the perigranule membranes in the process of attachment to or budding from the granules. These data add further support to the concept that PMD may be an alternative secretory pathway in adrenal chromaffin cells. Copyright 2004 Wiley-Liss, Inc.
Peters, Johanna; Bartscher, Kathrin; Döscher, Claas; Taute, Wolfgang; Höft, Michael; Knöchel, Reinhard; Breitkreutz, Jörg
2017-08-01
Microwave resonance technology (MRT) is known as a process analytical technology (PAT) tool for moisture measurements in fluid-bed granulation. It offers a great potential for wet granulation processes even where the suitability of near-infrared (NIR) spectroscopy is limited, e.g. colored granules, large variations in bulk density. However, previous sensor systems operating around a single resonance frequency showed limitations above approx. 7.5% granule moisture. This paper describes the application of a novel sensor working with four resonance frequencies. In-line data of all four resonance frequencies were collected and further processed. Based on calculation of density-independent microwave moisture values multiple linear regression (MLR) models using Karl-Fischer titration (KF) as well as loss on drying (LOD) as reference methods were build. Rapid, reliable in-process moisture control (RMSEP≤0.5%) even at higher moisture contents was achieved. Copyright © 2017 Elsevier B.V. All rights reserved.
Surface Localization of Zein Storage Proteins in Starch Granules from Maize Endosperm1
Mu-Forster, Chen; Wasserman, Bruce P.
1998-01-01
Starch granules from maize (Zea mays) contain a characteristic group of polypeptides that are tightly associated with the starch matrix (C. Mu-Forster, R. Huang, J.R. Powers, R.W. Harriman, M. Knight, G.W. Singletary, P.L. Keeling, B.P. Wasserman [1996] Plant Physiol 111: 821–829). Zeins comprise about 50% of the granule-associated proteins, and in this study their spatial distribution within the starch granule was determined. Proteolysis of starch granules at subgelatinization temperatures using the thermophilic protease thermolysin led to selective removal of the zeins, whereas granule-associated proteins of 32 kD or above, including the waxy protein, starch synthase I, and starch-branching enzyme IIb, remained refractory to proteolysis. Granule-associated proteins from maize are therefore composed of two distinct classes, the surface-localized zeins of 10 to 27 kD and the granule-intrinsic proteins of 32 kD or higher. The origin of surface-localized δ-zein was probed by comparing δ-zein levels of starch granules obtained from homogenized whole endosperm with granules isolated from amyloplasts. Starch granules from amyloplasts contained markedly lower levels of δ-zein relative to granules prepared from whole endosperm, thus indicating that δ-zein adheres to granule surfaces after disruption of the amyloplast envelope. Cross-linking experiments show that the zeins are deposited on the granule surface as aggregates. In contrast, the granule-intrinsic proteins are prone to covalent modification, but do not form intermolecular cross-links. We conclude that individual granule intrinsic proteins exist as monomers and are not deposited in the form of multimeric clusters within the starch matrix. PMID:9536075
Phosphatidylinositol kinase. A component of the chromaffin-granule membrane
Phillips, John H.
1973-01-01
Phosphorylation of bovine chromaffin granules by ATP leads to the formation of diphosphoinositide in the granule membrane. Both phosphatidylinositol kinase and its substrate are components of this membrane, and triphosphoinositide is not formed under the conditions of the assay. The reaction is Mg2+-dependent and is stimulated by Mn2+ and F− ions. The initial reaction is rapid, with a broad pH profile and a `transition' temperature for its activation energy at 27°C. The apparent Km for ATP is 5μm. ATP, N-ethylmaleimide, Cu2+ ions and NaIO4 are inhibitory. The phospholipids of chromaffin-granule membranes have been analysed: 6.8% of the lipid P is found in phosphatidylinositol, and only 2–3% in phosphatidylserine. Comparison of the rate of phosphorylation of intact and lysed granules suggests that the sites for phosphorylation are on the outer (cytoplasmic) surface of the granules, and diphosphoinositide may therefore make an important contribution to the charge of the chromaffin granule in vivo. PMID:4360713
Košir, Darjan; Ojsteršek, Tadej; Vrečer, Franc
2018-06-14
Wet granulation is mostly used process for manufacturing matrix tablets. Compared to the direct compression method, it allows for a better flow and compressibility properties of compression mixtures. Granulation, including process parameters and tableting, can influence critical quality attributes (CQAs) of hydrophilic matrix tablets. One of the most important CQAs is the drug release profile. We studied the influence of granulation process parameters (type of nozzle and water quantity used as granulation liquid) and tablet hardness on the drug release profile. Matrix tablets contained HPMC K4M hydrophilic matrix former and carvedilol as a model drug. The influence of selected HPMC characteristics on the drug release profile was also evaluated using two additional HPMC batches. For statistical evaluation, partial least square (PLS) models were generated for each time point of the drug release profile using the same number of latent factors. In this way, it was possible to evaluate how the importance of factors influencing drug dissolution changes in dependence on time throughout the drug release profile. The results of statistical evaluation show that the granulation process parameters (granulation liquid quantity and type of nozzle) and tablet hardness significantly influence the release profile. On the other hand, the influence of HPMC characteristics is negligible in comparison to the other factors studied. Using a higher granulation liquid quantity and the standard nozzle type results in larger granules with a higher density and lower porosity, which leads to a slower drug release profile. Lower tablet hardness also slows down the release profile.
NASA Astrophysics Data System (ADS)
Jung, Joontaek; Annapureddy, Venkateswarlu; Hwang, Geon-Tae; Song, Youngsup; Lee, Wonjun; Kang, Woojin; Ryu, Jungho; Choi, Hongsoo
2017-05-01
A piezoelectric micromachined ultrasonic transducer (pMUT) is an ideal device for portable medical diagnosis systems, intravascular ultrasound systems, and ultrasonic cameras because of its favorable characteristics including small size, acoustic impedance matching with the body, low power consumption, and simple integration with the systems. Despite these advantages, practical applications are limited because of insufficient acoustic pressure of the pMUT caused by the thin active piezoelectric layer. Here, we report the fabrication of a thick piezoelectric Pb(Zr,Ti)O3 (PZT) film-based pMUT device having high deflection at low driving voltage using the granule spraying in vacuum (GSV) process. Pre-patterned high-density thick (exceeding 8 μm) PZT films were grown on 6-inch-diameter Si/SiO2/Ti/Pt silicon-on-insulator wafers at room temperature at a high deposition rate of ˜5 μm min-1. The fabrication process using the proposed GSV process was simple and fast, and the deflection of the pMUT exhibited a high value of 0.8 μm.
Application of ultra high pressure (UHP) in starch chemistry.
Kim, Hyun-Seok; Kim, Byung-Yong; Baik, Moo-Yeol
2012-01-01
Ultra high pressure (UHP) processing is an attractive non-thermal technique for food treatment and preservation at room temperature, with the potential to achieve interesting functional effects. The majority of UHP process applications in food systems have focused on shelf-life extension associated with non-thermal sterilization and a reduction or increase in enzymatic activity. Only a few studies have investigated modifications of structural characteristics and/or protein functionalities. Despite the rapid expansion of UHP applications in food systems, limited information is available on the effects of UHP on the structural and physicochemical properties of starch and/or its chemical derivatives included in most processed foods as major ingredients or minor additives. Starch and its chemical derivatives are responsible for textural and physical properties of food systems, impacting their end-use quality and/or shelf-life. This article reviews UHP processes for native (unmodified) starch granules and their effects on the physicochemical properties of UHP-treated starch. Furthermore, functional roles of UHP in acid-hydrolysis, hydroxypropylation, acetylation, and cross-linking reactions of starch granules, as well as the physicochemical properties of UHP-assisted starch chemical derivatives, are discussed.
Deng, Jia; Staufenbiel, Sven; Hao, Shilei; Wang, Bochu; Dashevskiy, Andriy; Bodmeier, Roland
2017-06-10
The purpose of this study was to discriminate the release behavior from three differently formulated racecadotril (BCS II) granules and to establish an in vitro-in vivo correlation. Three granule formulations of the lipophilic drug were prepared with equivalent composition but prepared with different manufacturing processes (dry granulation, wet granulation with or without binder). In vitro release of the three granules was investigated using a biphasic dissolution system (phosphate buffer pH6.8 and octanol) and compared to the conventional single phase USP II dissolution test performed under sink and non-sink conditions. In vivo studies with each granule formulation were performed in rats. Interestingly, the granule formulations exhibited pronouncedly different behavior in the different dissolution systems depending on different wetting and dissolution conditions. Single phase USP II dissolution tests lacked discrimination. In contrast, remarkable discrimination between the granule formulations was observed in the octanol phase of biphasic dissolution system with a rank order of release from granules prepared by wet granulation with binder>wet granulation without binder>dry granulation. This release order correlated well with the wettability of these granules. An excellent correlation was also established between in vitro release in the octanol phase of the biphasic test and in vivo data (R 2 =0.999). Compared to conventional dissolution methods, the biphasic method provides great potential to discriminate between only minor formulation and process changes within the same dosage form for poorly soluble drugs. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matyas, Josef; Robinson, Matthew J.; Fryxell, Glen E.
Materials are being developed in U.S. for the removal and immobilization of iodine from gaseous products of nuclear fuel reprocessing in support of the Fuel Cycle Technology Separations and Waste Forms Campaign. The silver-functionalized silica aerogel proved to be an excellent candidate for this treatment because of its high selectivity and sorption capacity for radioiodine and its possible conversion to a durable silica-based waste form. The present study investigated with nitrogen sorption and helium pycnometry the effect of pressureless isothermal sintering at temperatures of 900-1400°C for 2.5-90 min or isothermal hot-pressing at 1200°C for 2.5 min on densification of rawmore » and silver-functionalized silica aerogel granules. Rapid sintering was observed at 1050 and 1200°C. Only 15 min of pressureless sintering at 1200°C resulted in almost complete densification. The macropores disappeared, surface area decreased from 1114 m2/g to 25 m2/g, pore volume from 7.41 cm3/g to 0.09 cm3/g, and adsorption pore size from 18.7 to 7 nm. The skeletal density of sintered granules was similar to the bulk density of amorphous silica (2.2 g/cm3). The hot-pressing accelerated the sintering process, decreasing significantly the pore size and volume.« less
Clean recycle and utilization of hazardous iron-bearing waste in iron ore sintering process.
Gan, Min; Ji, Zhiyun; Fan, Xiaohui; Chen, Xuling; Zhou, Yang; Wang, Guojing; Tian, Ye; Jiang, Tao
2018-04-18
Applying recycled iron-bearing waste materials (RIM) into iron ore sintering process is the general disposal approach worldwide, while its use is still a thorny problem. Results showed that adding RIM increased contents of hazardous elements (K, Na, Pb, Zn, and Cl) in sinter product, and also enhanced emission concentration of PM 2.5 in flue gas; increasing reaction temperature, and contents of CaO & coke breeze in raw mixtures improved hazardous elements removal. Based on these features, a novel method through granulating natural iron ores and RIM separately and distributing granulated RIM in bottom sintering layers was proposed for clean RIM cycle. When recycling 5% RIM, granulating RIM separately with higher contents of CaO and coke breeze removed hazardous elements effectively, the contents of which in sinter were reduced to comparable level of the case without RIM. Moreover, distributing RIM in bottom sintering layer reached intensive release of hazardous elements and PM 2.5 during sintering, which reduced the flue gas volume needing purification by about 2/3. Through activated carbon purification, about 60% of PM 2.5 comprised high contents of hazardous elements was removed. Novel technique eliminated the negative impact of RIM and has the prospect to reach clean recycle in sinter-making plants. Copyright © 2018. Published by Elsevier B.V.
Asada, Takumi; Yoshihara, Naoki; Ochiai, Yasushi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru
2018-04-25
Water-soluble polymers with high viscosity are frequently used in the design of sustained-release formulations of poorly water-soluble drugs to enable complete release of the drug in the gastrointestinal tract. Tablets containing matrix granules with a water-soluble polymer are preferred because tablets are easier to handle and the multiple drug-release units of the matrix granules decreases the influences of the physiological environment on the drug. However, matrix granules with a particle size of over 800 μm sometimes cause a content uniformity problem in the tableting process because of the large particle size. An effective method of manufacturing controlled-release matrix granules with a smaller particle size is desired. The aim of this study was to develop tablets containing matrix granules with a smaller size and good controlled-release properties, using phenytoin as a model poorly water-soluble drug. We adapted the recently developed hollow spherical granule granulation technology, using water-soluble polymers with different viscosities. The prepared granules had an average particle size of 300 μm and sharp particle size distribution (relative width: 0.52-0.64). The values for the particle strength of the granules were 1.86-1.97 N/mm 2 , and the dissolution profiles of the granules were not affected by the tableting process. The dissolution profiles and the blood concentration levels of drug released from the granules depended on the viscosity of the polymer contained in the granules. We succeeded in developing the desired controlled-release granules, and this study should be valuable in the development of sustained-release formulations of poorly water-soluble drugs. Copyright © 2018 Elsevier B.V. All rights reserved.
Aerobic granulation in a sequencing batch reactor (SBR) for industrial wastewater treatment.
Inizan, M; Freval, A; Cigana, J; Meinhold, J
2005-01-01
Aerobic granulation seems to be an a attractive process for COD removal from industrial wastewater, characterised by a high content of soluble organic compounds. In order to evaluate the practical aspects of the process, comparative experimental tests are performed on synthetic and on industrial wastewater, originating from pharmaceutical industry. Two pilot plants are operated as sequencing batch bubble columns. Focus was put on the feasibility of the process for high COD removal and on its operational procedure. For both wastewaters, a rapid formation of aerobic granules is observed along with a high COD removal rate. Granule characteristics are quite similar with respect to the two types of wastewater. It seems that filamentous bacteria are part of the granule structure and that phosphorus precipitation can play an important role in granule formation. For both wastewaters similar removal performances for dissolved biodegradable COD are observed (> 95%). However, a relatively high concentration of suspended solids in the outlet deteriorates the performance with regard to total COD removal. Biomass detachment seems to play a non-negligible role in the current set-up. After a stable operational phase the variation of the pharmaceutical wastewater caused a destabilisation and loss of the granules, despite the control for balanced nutrient supply. The first results with real industrial wastewater demonstrate the feasibility of this innovative process. However, special attention has to be paid to the critical aspects such as granule stability as well as the economic competitiveness, which both will need further investigation and evaluation.
NASA Astrophysics Data System (ADS)
Özcan, Selçuk; Açıkbaş, Gökhan; Çalış Açıkbaş, Nurcan
2018-04-01
Hydrophobic surfaces are also known to have antimicrobial effect by restricting the adherence of microorganisms. However, ceramic products are produced by high temperature processes resulting in a hydrophilic surface. In this study, an industrial ceramic wall tile glaze composition was modified by the inclusion of metallic zinc powder in the glaze suspension applied on the pre-sintered wall tile bodies by spraying. The glazed tiles were gloss fired at industrially applicable peak temperatures ranging from 980 °C to 1100 °C. The fired tile surfaces were coated with a commercial fluoropolymer avoiding water absorption. The surfaces were characterized with SEM, EDS, XRD techniques, roughness, sessile water drop contact angle, surface energy measurements, and standard antimicrobial tests. The surface hydrophobicity and the antimicrobial activity results were compared with that of unmodified, uncoated gloss fired wall tiles. A superhydrophobic contact angle of 150° was achieved at 1000 °C peak temperature due to the formation of micro-structured nanocrystalline zinc oxide granules providing a specific surface topography. At higher peak temperatures the hydrophobicity was lost as the specific granular surface topography deteriorated with the conversion of zinc oxide granules to the ubiquitous willemite crystals embedded in the glassy matrix. The antimicrobial efficacy also correlated with the hydrophobic character.
The influence of granulation on super disintegrant performance.
Zhao, Na; Augsburger, Larry L
2006-02-01
The purpose of this study is to identify the causes of efficiency loss of super disintegrants following granulation or reworking. Two processes, precompression and prewetting, were proposed to simulate the processes during dry and wet granulation, respectively. The disintegration efficiency of the resulting disintegrant granules was tested in model formulations composed of dicalcium phosphate and lactose with the unprocessed disintegrants as controls. No significant difference was shown in the intrinsic swelling and the water uptake abilities of all super disintegrants following dry granulation. However, a significant decrease was observed for both Primojel and Polyplasdone XL10 in the rate of water being absorbed into the tablet matrix following wet granulation, but not for Ac-Di-Sol. United States Pharmacopeia (USP) disintegration testing without disc revealed a significant increase in disintegration time for tablets formulated with dry granulated Primojel and Polyplasdone XL10 and all wet granulated disintegrants. The increase in particle size following granulation appears to be the cause of the loss in disintegration efficiency. In conclusion, Ac-Di-Sol is less affected by both precompression and prewetting. The efficiency of Primojel and Polyplasdone XL10 is highly dependent on their particle size. Descreasing the particle size tends to increase their efficiency. Due to the size increase following granulation, a higher addition level of super disintegrant is required to ensure fast and uniform disintegration of tablets prepared by granulation.
Evaluating scale-up rules of a high-shear wet granulation process.
Tao, Jing; Pandey, Preetanshu; Bindra, Dilbir S; Gao, Julia Z; Narang, Ajit S
2015-07-01
This work aimed to evaluate the commonly used scale-up rules for high-shear wet granulation process using a microcrystalline cellulose-lactose-based low drug loading formulation. Granule properties such as particle size, porosity, flow, and tabletability, and tablet dissolution were compared across scales using scale-up rules based on different impeller speed calculations or extended wet massing time. Constant tip speed rule was observed to produce slightly less granulated material at the larger scales. Longer wet massing time can be used to compensate for the lower shear experienced by the granules at the larger scales. Constant Froude number and constant empirical stress rules yielded granules that were more comparable across different scales in terms of compaction performance and tablet dissolution. Granule porosity was shown to correlate well with blend tabletability and tablet dissolution, indicating the importance of monitoring granule densification (porosity) during scale-up. It was shown that different routes can be chosen during scale-up to achieve comparable granule growth and densification by altering one of the three parameters: water amount, impeller speed, and wet massing time. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Effect of granular activated carbon on the aerobic granulation of sludge and its mechanism.
Tao, Jia; Qin, Lian; Liu, Xiaoying; Li, Bolin; Chen, Junnan; You, Juan; Shen, Yitian; Chen, Xiaoguo
2017-07-01
The granulation of activated sludge and effect of granular activated carbon (GAC) was investigated under the alternative anaerobic and aerobic conditions. The results showed that GAC accelerated the granulation, but had no obvious effect on the bacterial community structure of granules. The whole granulation process could be categorized into three phases, i.e. lag, granulation and granule maturation phase. During lag period GAC provided nuclei for sludge to attach, and thus enhanced the morphological regularization of sludge. During granulation period the granule size increased significantly due to the growth of bacteria in granules. GAC reduced the compression caused by the inter-particle collisions and thus accelerate the granulation. GAC has no negative effect on the performance of SBR, and thus efficient simultaneous removal of COD, nitrogen and phosphorus were obtained during most of the operating time. Copyright © 2017. Published by Elsevier Ltd.
Albertini, Beatrice; Cavallari, Cristina; Passerini, Nadia; Voinovich, Dario; González-Rodríguez, Marisa L; Magarotto, Lorenzo; Rodriguez, Lorenzo
2004-02-01
The aim of this study was to prepare and to investigate acetaminophen taste-masked granules obtained in a high-shear mixer using three different wet granulation methods (method A: water granulation, method B: granulation with a polyvinylpyrrolidone (PVP) binding solution and method C: steam granulation). The studied formulation was: acetaminophen 15%, alpha-lactose monohydrate 30%, cornstarch 45%, polyvinylpyrrolidone K30 5% and orange flavour 5% (w/w). In vitro dissolution studies, performed at pH 6.8, showed that steam granules enabled the lower dissolution rate in comparison to the water and binding solution granules; these results were then confirmed by their lower surface reactivity (D(R)) during the dissolution process. Moreover, the results of the gustatory sensation test performed by six volunteers confirmed the taste-masking effects of the granules, especially steam granules (P<0.001). Morphological, fractal and porosity analysis were then performed to explain the dissolution profiles and the results of the gustatory sensation test. Scanning electron microscopy (SEM) analysis revealed the smoother and the more regular surface of steam granules with respect to the samples obtained using methods A and B; these results were also confirmed by their lower fractal dimension (D(s)) and porosity values. Finally, differential scanning calorimetry (DSC) results showed a shift of the melting point of the drug, which was due to the simple mixing of the components and not to the granulation processes. In conclusion, the steam granulation technique resulted a suitable method to comply the purpose of this work, without modifying the availability of the drug.
Continuous twin screw granulation of controlled release formulations with various HPMC grades.
Vanhoorne, V; Janssens, L; Vercruysse, J; De Beer, T; Remon, J P; Vervaet, C
2016-09-25
HPMC is a popular matrix former to formulate tablets with extended drug release. Tablets with HPMC are preferentially produced by direct compression. However, granulation is often required prior to tableting to overcome poor flowability of the formulation. While continuous twin screw granulation has been extensively evaluated for granulation of immediate release formulations, twin screw granulation of controlled release formulations including the dissolution behavior of the formulations received little attention. Therefore, the influence of the HPMC grade (viscosity and substitution degree) and the particle size of theophylline on critical quality attributes of granules (continuously produced via twin screw granulation) and tablets was investigated in the current study. Formulations with 20 or 40% HPMC, 20% theophylline and lactose were granulated with water at fixed process parameters via twin screw granulation. The torque was influenced by the viscosity and substitution degree of HPMC, but was not a limiting factor for the granulation process. An optimal L/S ratio was selected for each formulation based on the granule size distribution. The granule size distributions were influenced by the substitution degree and concentration of HPMC and the particle size of theophylline. Raman and UV spectroscopic analysis on 8 sieve fractions of granules indicated an inhomogeneous distribution of theophylline over the size fractions. However, this phenomenon was not correlated with the hydration rate or viscosity of HPMC. Controlled release of theophylline could be obtained over 24h with release profiles close to zero-order. The release of theophylline could be tailored via selection of the substitution degree and viscosity of HPMC. Copyright © 2016 Elsevier B.V. All rights reserved.
Characterization by X-ray tomography of granulated alumina powder during in situ die compaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cottrino, Sandrine; Jorand, Yves, E-mail: yves.jorand@insa-lyon.fr; Maire, Eric
2013-07-15
Compaction process, the aim of which being to obtain green bodies with low porosity and small size, is often used before sintering treatment. Prior to die filling, the ceramic powder is generally granulated to improve flowability. However during compaction, density heterogeneity and critical size defects may appear due to intergranule and granule-die wall frictions. In this work, the influence of granule formulation on the compact morphology has been studied. To do so, a compaction setup was installed inside an X-ray tomography equipment so that the evolution of the compact morphology could be analysed during the whole compaction process. We havemore » demonstrated that high humidity rate and the addition of binder in the granule formulation increase density heterogeneity and generate larger defects. - Highlights: • An original compaction set up was installed inside an X-Ray tomography equipment. • The compaction process of granulated ceramic powder is imaged. • The compact green microstructure is quantified and related to the compaction stages. • The most detrimental defects of dry-pressed parts are caused by hollow granules. • Formulations without binder allow a reduction of the number of large defects.« less
The Impact of Granule Density on Tabletting and Pharmaceutical Product Performance.
van den Ban, Sander; Goodwin, Daniel J
2017-05-01
The impact of granule densification in high-shear wet granulation on tabletting and product performance was investigated, at pharmaceutical production scale. Product performance criteria need to be balanced with the need to deliver manufacturability criteria to assure robust industrial scale tablet manufacturing processes. A Quality by Design approach was used to determine in-process control specifications for tabletting, propose a design space for disintegration and dissolution, and to understand the permitted operating limits and required controls for an industrial tabletting process. Granules of varying density (filling density) were made by varying water amount added, spray rate, and wet massing time in a design of experiment (DoE) approach. Granules were compressed into tablets to a range of thicknesses to obtain tablets of varying breaking force. Disintegration and dissolution performance was evaluated for the tablets made. The impact of granule filling density on tabletting was rationalised with compressibility, tabletability and compactibility. Tabletting and product performance criteria provided competing requirements for porosity. An increase in granule filling density impacted tabletability and compactability and limited the ability to achieve tablets of adequate mechanical strength. An increase in tablet solid fraction (decreased porosity) impacted disintegration and dissolution. An attribute-based design space for disintegration and dissolution was specified to achieve both product performance and manufacturability. The method of granulation and resulting granule filling density is a key design consideration to achieve both product performance and manufacturability required for modern industrial scale pharmaceutical product manufacture and distribution.
Pijuan, Maite; Werner, Ursula; Yuan, Zhiguo
2011-10-15
One of the main challenging issues for the aerobic granular sludge technology is the long startup time when dealing with real wastewaters. This study presents a novel strategy to reduce the time required for granulation while ensuring a high level of nutrient removal. This new approach consists of seeding the reactor with a mixture of crushed aerobic granules and floccular sludge. The effectiveness of the strategy was demonstrated using abattoir wastewater, containing nitrogen and phosphorus at approximately 250 mgN/L and 30 mgP/L, respectively. Seven different mixtures of crushed granules and floccular sludge at granular sludge fractions (w/w in dry mass) of 0%, 5%, 10%, 15%, 25%, 30% and 50% were used to start eight granulation processes. The granulation time (defined as the time when the 10th percentile bacterial aggregate size is larger than 200 μm) displayed a strong dependency on the fraction of granular sludge. The shortest granulation time of 18 days was obtained with 50% crushed granules, in comparison with 133 days with 5% crushed granules. Full granulation was not achieved in the two trials without seeding with crushed granules. In contrast to the 100% floccular sludge cases, where a substantial loss of biomass occurred during granulation, the biomass concentration in all other trails did not decrease during granulation. This allowed that good nitrogen removal was maintained in all the reactors during the granulation process. However, enhanced biological phosphorus removal was achieved in only one of the eight trials. This was likely due to the temporary accumulation of nitrite, a strong inhibitor of polyphosphate accumulating organisms. Copyright © 2011 Elsevier Ltd. All rights reserved.
Development of the Direct Fabrication Process for Plutonium Immobilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congdon, J.W.
2001-07-10
The current baseline process for fabricating pucks for the Plutonium Immobilization Program includes granulation of the milled feed prior to compaction. A direct fabrication process was demonstrated that eliminates the need for granulation.
NASA Astrophysics Data System (ADS)
Haque, Syed N.; Hussain, Tariq; Chowdhry, Babur Z.; Douroumis, Dennis; Scoutaris, Nikolaos; Nokhodchi, Ali; Maniruzzaman, Mohammed
2017-12-01
This study investigated the surface of semi-crystalline composite granules produced via a novel mechano-chemical process and assessed the effect of electrostatic charging. Ibuprofen (IBU), a model drug with low solubility and known associated processing challenges was loaded in composite granules to improve its processibility and dissolution rates. Synthetic amorphous mesoporous magnesium alumina metasilicate (MAS) was co-processed with hydrophilic HPMC polymer in the presence of polyethylene glycol 2000 (PEG) and deionised water. The solid state analyses conducted by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) revealed the existence of semi-crystalline IBU in the complex composite structures. Dynamic vapour sorption (DVS) study showed the water sorption and desorption profiles of the manufactured composite granules as well as the effect of water on the solid-state stability of IBU in various formulations. Advanced surface analysis conducted via energy dispersive X-ray (EDS) revealed homogenous distribution of the drug/excipients on the surface of the granules while atomic force microscopy (AFM) complemented the findings. The electrostatic charge analysis showed variable charge property which is affected by the size of the particles/granules. As expected, the in vitro dissolution study showed about 5 fold increase in the release rates of IBU compared to that of the bulk drug. The mechanochemical processing has been demonstrated as an efficient technique to develop semi-crystalline composite granules with enhanced dissolution rates of water insoluble drugs.
State of the art of aerobic granulation in continuous flow bioreactors.
Kent, Timothy R; Bott, Charles B; Wang, Zhi-Wu
In the wake of the success of aerobic granulation in sequential batch reactors (SBRs) for treating wastewater, attention is beginning to turn to continuous flow applications. This is a necessary step given the advantages of continuous flow treatment processes and the fact that the majority of full-scale wastewater treatment plants across the world are operated with aeration tanks and clarifiers in a continuous flow mode. As in SBRs, applying a selection pressure, based on differences in either settling velocity or the size of the biomass, is essential for successful granulation in continuous flow reactors (CFRs). CFRs employed for aerobic granulation come in multiple configurations, each with their own means of achieving such a selection pressure. Other factors, such as bioaugmentation and hydraulic shear force, also contribute to aerobic granulation to some extent. Besides the formation of aerobic granules, long-term stability of aerobic granules is also a critical issue to be addressed. Inorganic precipitation, special inocula, and various operational optimization strategies have been used to improve granule long-term structural integrity. Accumulated studies reviewed in this work demonstrate that aerobic granulation in CFRs is capable of removing a wide spectrum of contaminants and achieving properties generally comparable to those in SBRs. Despite the notable research progress made toward successful aerobic granulation in lab-scale CFRs, to the best of our knowledge, there are only three full-scale tests of the technique, two being seeded with anammox-supported aerobic granules and the other with conventional aerobic granules; two other process alternatives are currently in development. Application of settling- or size-based selection pressures and feast/famine conditions are especially difficult to implement to these and similar mainstream systems. Future research efforts needs to be focused on the optimization of the granule-to-floc ratio, enhancement of granule activity, improvement of long-term granule stability, and a better understanding of aerobic granulation mechanisms in CFRs, especially in full-scale applications. Copyright © 2018 Elsevier Inc. All rights reserved.
Effect of roll-compaction and milling conditions on granules and tablet properties.
Perez-Gandarillas, Lucia; Perez-Gago, Ana; Mazor, Alon; Kleinebudde, Peter; Lecoq, Olivier; Michrafy, Abderrahim
2016-09-01
Dry granulation is an agglomeration process used to produce size-enlarged particles (granules), improving the handling properties of powders such as flowability. In this process, powders are compacted using a roll press to produce ribbons, which are milled in granules used further in the tableting process. The granule and tablet properties are influenced by the existence of different designs of the roll compactors, milling systems and the interaction between process parameters and raw material properties. The main objective of this work was to investigate how different roll-compaction conditions and milling process parameters impact on ribbons, granules and tablet properties, highlighting the role of the sealing system (cheek plates and rimmed roll). In this context, two common excipients differing in their mechanical behaviour (MCC and mannitol) are used. The study is based on the analysis of granule size distribution together with the characterization of loss of compactability during die compaction. Results show that the tensile strength of tablets is lower when using granules than when the raw materials are compressed. Moreover, the plastic material (MCC) is more sensitive than the brittle one (mannitol). Regarding the roll-force, it is observed that the higher the roll force, the lower the tensile strength of tablets from granulated material is. These findings are in agreement with the literature. The comparison of sealing systems shows that the rimmed-roll system leads to slightly stronger tablets than the use of cheek plates. In addition, the use of the rimmed-roll system reduces the amount of fines, in particular when high roll force is applied. Overall, it can be concluded that roll-compaction effect is predominant over the milling effect on the production of fines but less significant on the tablet properties. This study points out that the balance between a good flowability by reducing the amount of fines and appropriate tablet strength is achieved with rimmed-roll and the highest roll-force used. Copyright © 2016 Elsevier B.V. All rights reserved.
Tao, Han; Wang, Pei; Wu, Fengfeng; Jin, Zhengyu; Xu, Xueming
2016-02-10
The impact of freezing on the wheat starches with different particle size was studied using a range of characterization methods including X-ray diffraction, differential scanning calorimetry, the Rapid Visco Analyser and a reconstitution dough system. Wheat starches were fractionated into A- and B-type granules, and then subjected to freezing/thawing treatment for 3 cycles. The freezing treatment did not cause apparent damage on A-type granular surface but induced cracked structure on B-type granules. It facilitated materials such as amylose, proteins, and lipids leaching from starch granule and an increase in gelatinization temperatures, melting enthalpy, and pasting viscosities. A smaller bread specific volume was obtained from freezing-treated B-granules while the crumb firmness significantly increased (p>0.05). No marked differences were observed in the counterparts of A-granules after freezing treatment. It seemed that the B-type granules were more sensitive to the freezing/thawing treatment, thus facilitating structural transformations from dough to bread. Results indicated that the deterioration in frozen bread quality derived from starch could be minimized by increasing the A-granules content. Copyright © 2015 Elsevier Ltd. All rights reserved.
Recovery of copper from PVC multiwire cable waste by steam gasification.
Zabłocka-Malicka, Monika; Rutkowski, Piotr; Szczepaniak, Włodzimierz
2015-12-01
Screened multiwire, PVC insulated tinned copper cable was gasified with steam at high temperature (HTSG) under atmospheric pressure for recovery of cooper. Gases from the process were additionally equilibrated at 850°C on the bed of calcined clay granules and more than 98% of C+H content in the cable was transformed to non-condensing species. Granules prepared from local clay were generally resistant for chlorination, there was also almost no deposition of metals, Cu and Sn, on the catalytic bed. It was found that 28% of chlorine reacted to form CaCl2, 71% was retained in aqueous condensate and only 0.6% was absorbed in alkaline scrubber. More than 99% of calcium existed in the process solid residue as a mixture of calcium chloride and calcium oxide/hydroxide. PVC and other hydrocarbon constituents were completely removed from the cable sample. Copper was preserved in original form and volatilization of copper species appeared insignificant. Tin was alloying with copper and its volatilization was less than 1%. Fractionation and speciation of metals, chlorine and calcium were discussed on the basis of equilibrium model calculated with HSC Chemistry software. High temperature steam gasification prevents direct use of the air and steam/water is in the process simultaneously gaseous carrier and reagent, which may be recycled together with hydrocarbon condensates. Copyright © 2015 Elsevier Ltd. All rights reserved.
Xie, Xuan; Matsumoto, Shunsuke; Endo, Akinori; Fukushima, Toshiaki; Kawahara, Hiroyuki; Saeki, Yasushi; Komada, Masayuki
2018-04-12
Stress granules are transient cytoplasmic foci induced by various stresses that contain translation-stalled mRNAs and RNA-binding proteins. They are proposed to modulate mRNA translation and stress responses. Here, we show that the deubiquitylases USP5 and USP13 are recruited to heat-induced stress granules. Heat-induced stress granules also contained K48- and K63-linked ubiquitin chains. Depletion of USP5 or USP13 resulted in elevated ubiquitin chain levels and accelerated assembly of heat-induced stress granules, suggesting that these enzymes regulate the stability of the stress granules through their ubiquitin isopeptidase activity. Moreover, disassembly of heat-induced stress granules after returning the cells to normal temperatures was markedly repressed by individual depletion of USP5 or USP13. Finally, overexpression of a ubiquitin mutant lacking the C-terminal diglycine motif caused the accumulation of unanchored ubiquitin chains and the repression of the disassembly of heat-induced stress granules. As unanchored ubiquitin chains are preferred substrates for USP5, we suggest that USP5 regulates the assembly and disassembly of heat-induced stress granules by mediating the hydrolysis of unanchored ubiquitin chains while USP13 regulates stress granules through deubiquitylating protein-conjugated ubiquitin chains.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.
El-Labban, N G; Wood, R D
1982-11-01
Serial sections of the so-called membrane-coating granules have been examined in keratinized oral epithelium of lichen planus lesions. As with 'granules' apparent in non-keratinized epithelium, it is found they do not represent specialized intra-cytoplasmic organelles, but are the result of sectioning at different areas, levels and planes through the plasma membrane of interdigitating cell processes. Such 'granules' appear mostly in the superficial, but not deep, part of the cytoplasm of the upper prickle cells. This is considered to be due to topographic differences between the upper and under surfaces of these cells and the presence of narrower intercellular spaces than those between deeper epithelial cells. Such arrangement often results in cell processes in sections appearing free in the superficial part of the cell below. The appearance of 'granules' arises when the plane of section is not at right angles to the two plasma membranes surrounding these processes.
Hayashi, Yoshihiro; Kosugi, Atsushi; Miura, Takahiro; Takayama, Kozo; Onuki, Yoshinori
2018-01-01
The influence of granule size on simulation parameters and residual shear stress in tablets was determined by combining the finite element method (FEM) into the design of experiments (DoE). Lactose granules were prepared using a wet granulation method with a high-shear mixer and sorted into small and large granules using sieves. To simulate the tableting process using the FEM, parameters simulating each granule were optimized using a DoE and a response surface method (RSM). The compaction behavior of each granule simulated by FEM was in reasonable agreement with the experimental findings. Higher coefficients of friction between powder and die/punch (μ) and lower by internal friction angle (α y ) were generated in the case of small granules, respectively. RSM revealed that die wall force was affected by α y . On the other hand, the pressure transmissibility rate of punches value was affected not only by the α y value, but also by μ. The FEM revealed that the residual shear stress was greater for small granules than for large granules. These results suggest that the inner structure of a tablet comprising small granules was less homogeneous than that comprising large granules. To evaluate the contribution of the simulation parameters to residual stress, these parameters were assigned to the fractional factorial design and an ANOVA was applied. The result indicated that μ was the critical factor influencing residual shear stress. This study demonstrates the importance of combining simulation and statistical analysis to gain a deeper understanding of the tableting process.
Summary of Granulation Matrix Testing for the Plutonium Immobilization Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herman, C.C.
2001-10-19
In FY00, a matrix for process development testing was created to identify those items related to the ceramic process that had not been fully developed or tested and to help identify variables that needed to be tested. This matrix, NMTP/IP-99-003, was jointly created between LLNL and SRTC and was issued to all affected individuals. The matrix was also used to gauge the progress of the development activities. As part of this matrix, several series of tests were identified for the granulation process. This summary provides the data and results from the granulation testing. The results of the granulation matrix testingmore » were used to identify the baseline process for testing in the PuCTF with cold surrogates in B241 at LLNL.« less
Castaño, J; Rodríguez-Llamazares, S; Contreras, K; Carrasco, C; Pozo, C; Bouza, R; Franco, C M L; Giraldo, D
2014-11-04
Starch isolated from non-edible Aesculus hippocastanum seeds was characterized and used for preparing starch-based materials. The apparent amylose content of the isolated starch was 33.1%. The size of starch granules ranged from 0.7 to 35 μm, and correlated with the shape of granules (spherical, oval and irregular). The chain length distribution profile of amylopectin showed two peaks, at polymerization degree (DP) of 12 and 41-43. Around 53% of branch unit chains had DP in the range of 11-20. A. hippocastanum starch displayed a typical C-type pattern and the maximum decomposition temperature was 317 °C. Thermoplastic starch (TPS) prepared from A. hippocastanum with glycerol and processed by melt blending exhibited adequate mechanical and thermal properties. In contrast, plasticized TPS with glycerol:malic acid (1:1) showed lower thermal stability and a pasty and sticky behavior, indicating that malic acid accelerates degradation of starch during processing. Copyright © 2014 Elsevier Ltd. All rights reserved.
Research and development in pilot plant production of granular NPK fertilizer
NASA Astrophysics Data System (ADS)
Failaka, Muhamad Fariz; Firdausi, Nadia Zahrotul; Chairunnisa, Altway, Ali
2017-05-01
PT Pupuk Kaltim (Pupuk Kaltim) as one of the biggest fertilizer manufacturer in Indonesia, always striving to improve the product quality and achieve the optimal performance while facing the challenges of global competition NPK (Nitrogen, Phosphorus, Potassium) market. In order to continuously improve operations and processes of two units NPK compound plant, Pupuk Kaltim has successfully initiated a new facility which is referred to as a NPK pilot-scale research facility with design capacity of 30 kg/hr. This mini-plant is used to assist in the scale up of new innovations from laboratory research to better understand the effect of using new raw materials and experiment with process changes to improve quality and efficiency. The pilot installation is composed of the following main parts: mixer, screw feeder, granulator, dryer and cooler. The granulator is the equipment where NPK granules is formed by spraying appropriate steam and water onto raw materials in a rotating drum. The rotary dryer and cooler are intended for the drying process where temperature reduction and the final moisture are obtained. As a part of innovations project since 2014, the pilot plant has conducted many of experiments such as trials using Ammonium Sulfate (ZA) as a new raw material, alternative raw materials of Diammonium Phosphate (DAP), Potassium Chloride (KCl) and clay, and using a novel material of fly ash. In addition, the process engineering staff also conduct the trials of raw materials ratio so that an ideal formulation with lower cost can be obtained especially when it is applied in the existing full-scale plant.
Jagia, Moksh; Trivedi, Maitri; Dave, Rutesh H
2016-08-01
The solvent used for preparing the binder solution in wet granulation can affect the granulation end point and also impact the thermal, rheological, and flow properties of the granules. The present study investigates the effect of solvents and percentage relative humidity (RH) on the granules of microcrystalline cellulose (MCC) with hydroxypropyl methyl cellulose (HPMC) as the binder. MCC was granulated using 2.5% w/w binder solution in water and ethanol/water mixture (80:20 v/v). Prepared granules were dried until constant percentage loss on drying, sieved, and further analyzed. Dried granules were exposed to different percentage RH for 48 h at room temperature. Powder rheometer was used for the rheological and flow characterization, while thermal effusivity and differential scanning calorimeter were used for thermal analysis. The thermal effusivity values for the wet granules showed a sharp increase beginning 50% w/w binder solution in both cases, which reflected the over-wetting of granules. Ethanol/water solvent batches showed greater resistance to flow as compared to the water solvent batches in the wet granule stage, while the reverse was true for the dried granule stage, as evident from the basic flowability energy values. Although the solvents used affected the equilibration kinetics of moisture content, the RH-exposed granules remained unaffected in their flow properties in both cases. This study indicates that the solvents play a vital role on the rheology and flow properties of MCC granules, while the different RH conditions have little or no effect on them for the above combination of solvent and binder.
Two- and multi-step annealing of cereal starches in relation to gelatinization.
Shi, Yong-Cheng
2008-02-13
Two- and multi-step annealing experiments were designed to determine how much gelatinization temperature of waxy rice, waxy barley, and wheat starches could be increased without causing a decrease in gelatinization enthalpy or a decline in X-ray crystallinity. A mixture of starch and excess water was heated in a differential scanning calorimeter (DSC) pan to a specific temperature and maintained there for 0.5-48 h. The experimental approach was first to anneal a starch at a low temperature so that the gelatinization temperature of the starch was increased without causing a decrease in gelatinization enthalpy. The annealing temperature was then raised, but still was kept below the onset gelatinization temperature of the previously annealed starch. When a second- or third-step annealing temperature was high enough, it caused a decrease in crystallinity, even though the holding temperature remained below the onset gelatinization temperature of the previously annealed starch. These results support that gelatinization is a nonequilibrium process and that dissociation of double helices is driven by the swelling of amorphous regions. Small-scale starch slurry annealing was also performed and confirmed the annealing results conducted in DSC pans. A three-phase model of a starch granule, a mobile amorphous phase, a rigid amorphous phase, and a crystalline phase, was used to interpret the annealing results. Annealing seems to be an interplay between a more efficient packing of crystallites in starch granules and swelling of plasticized amorphous regions. There is always a temperature ceiling that can be used to anneal a starch without causing a decrease in crystallinity. That temperature ceiling is starch-specific, dependent on the structure of a starch, and is lower than the original onset gelatinization of a starch.
To determine the end point of wet granulation by measuring powder energies and thermal properties.
Dave, Rutesh H; Wu, Stephen H; Contractor, Labdhi D
2012-04-01
Wet granulation has been widely used in pharmaceutical industry as a tablet manufacturing process. However, end-point determination of wet granulation process has always remained a challenge. Many traditional methods are available for end-point determination, yet accuracy and reproducibility still remain a challenge. Microcrystalline cellulose, widely used as an excipient in pharmaceutical industry, was granulated using water. Wet mass was passed through sieve # 12 and dried till constant percentage loss on drying was obtained and dried granules were obtained. Wet and dried granules collected were subjected to basic flow energy, specific energy, bulk density, pressure drop, differential scanning calorimetry and effusivity measurements. Analysis of data revealed various stages of granule growth from initial seed formation by adding 200-400 g of water, granule growth was observed by adding 600-800 g of water and over wetting was observed at 1155 g of water. In this work, we have justified our work to properly identify and utilize this technique for practical purpose to correctly identify the end-point determination of microcrystalline cellulose and explain various principles underlying energies associated with powder and thermal measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garderen, Noemie van; Clemens, Frank J.; Scharf, Dagobert
2010-05-30
Highly porous diatomite based granulates with a diameter of 500 mum have been produced by an extrusion method. In order to investigate the relation between microstructure, phase composition and attrition resistance of the final product, the granulates were sintered between 800 and 1300 deg. C. Mean pore size of the granulates was evaluated by Hg-porosimetry. An increase of the pore size is observed in the range of 3.6 nm to 40 mum with increasing sintering temperature. Higher mean pore radii of 1.6 mum and 5.7 mum obtained by sintering at 800 and 1300 deg. C respectively. X-ray diffraction shows thatmore » mullite phase appears at 1100 deg. C due to the presence of clay. At 1100 deg. C diatomite (amorphous silicate) started to transform into alpha-cristobalite. Attrition resistance was determined by evaluating the amount of ground material passed through a sieve with a predefined mesh size. It was observed that a material sintered at high temperature leads to an increase of attrition resistance due to the decrease of total porosities and phase transformation. Due to the reason that attrition resistance significantly increased by sintering the granulates at higher temperature, a so called attrition resistance index was determined in order to compare all the different attrition resistance values. This attrition resistance index was determined by using the exponential component of the equation obtained from attrition resistance curves. It permits comparison of the attrition behaviour without a time influence.« less
Cui, Xiang-Long; Xu, Bing; Sun, Fei; Dai, Sheng-Yun; Shi, Xin-Yuan; Qiao, Yan-Jiang
2017-03-01
In this paper, under the guidance of quality by design (QbD) concept, the control strategy of the high shear wet granulation process of the ginkgo leaf tablet based on the design space was established to improve the process controllability and product quality consistency. The median granule size (D50) and bulk density (Da) of granules were identified as critical quality attributes (CQAs) and potential critical process parameters (pCPPs) were determined by the failure modes and effect analysis (FMEA). The Plackeet-Burmann experimental design was used to screen pCPPs and the results demonstrated that the binder amount, the wet massing time and the wet mixing impeller speed were critical process parameters (CPPs). The design space of the high shear wet granulation process was developed within pCPPs range based on the Box-Behnken design and quadratic polynomial regression models. ANOVA analysis showed that the P-values of model were less than 0.05 and the values of lack of fit test were more than 0.1, indicating that the relationship between CQAs and CPPs could be well described by the mathematical models. D₅₀ could be controlled within 170 to 500 μm, and the bulk density could be controlled within 0.30 to 0.44 g•cm⁻³ by using any CPPs combination within the scope of design space. Besides, granules produced by process parameters within the design space region could also meet the requirement of tensile strength of the ginkgo leaf tablet.. Copyright© by the Chinese Pharmaceutical Association.
Compressibility and compactibility of granules produced by wet and dry granulation.
Bacher, C; Olsen, P M; Bertelsen, P; Sonnergaard, J M
2008-06-24
The bulk properties, compactibility and compressibility of granules produced by wet and dry granulation were compared applying a rotary tablet press, three different morphological forms of calcium carbonate and two particle sizes of sorbitol. Granules from both granulation methods possessed acceptable flow properties; however, the ground (Mikhart) and cubic (Scoralite) calcium carbonate demonstrated better die-filling abilities in the tablet press than the scalenhedral calcium carbonate (Sturcal). The wet processed granules showed in general larger compression properties. This was explained as these granules were mechanical stronger and had a higher initial porosity. In some cases, a large particle surface area of calcium carbonate and sorbitol resulted in a small, insignificant improvement of the consolidation characteristics. A correlation between the compression and compaction characteristics was demonstrated.
Preparation of Grinding Aid Using Waste Acid Residue from Plasticizer Plant
NASA Astrophysics Data System (ADS)
Li, Lingxiao; Feng, Yanchao; Liu, Manchao; Zhao, Fengqing
2017-09-01
The grinding aid for granulated blast-furnace slag were prepared from waste acid residue from plasticizer plant through neutralization, de-methanol and granulation process. In this process, sulfuric acid was transformed into gypsum which has much contribution for grinding effect by combined use with the glycerol and poly glycerin in the waste. Fly ash was used for granulation for the composite grinding aid. Methanol can be recycled in the process. The result showed that the suitable addition of grinding aid is 0.03 % of granulated blast-furnace slag (mass). In this case, the specific surface area is 14% higher than that of the blank. Compared with the common grinding aids, it has excellent performance and low cost.
Wang, Hongyu; He, Jiajie; Yang, Kai
2010-01-01
This study evaluated the partial nitrification performances of two biofilm filters over a synthetic non-ammonium-rich wastewater at a 20°C room temperature under both limited DO (∼2.0 mg/L) and unlimited DO (∼4.0 mg/L) conditions. The two filters were each of 80 cm long and used different biofilm carriers: activated carbon and ceramic granule. Results showed that partial nitrification was accomplished for both filters under the limited DO condition. However, the effluent NO(2)-N was higher in the ceramic granule filter than in the activated carbon filter, and was less susceptible to the influent COD/N changes. Further investigation into the water phase COD and NH(4)-N depth profiles and bacteria population within the two filters showed that by putting upper filter layer (upstream) to confront relatively higher influent COD/N ratios, the filtration process naturally put lower filter layers (downstream) relatively more favorable for nitrifying bacteria (ammonia oxidizing bacteria in this study) to prosper, making the filter depth left for nitrification a crucial factor for the effectiveness of nitrification with a filter. The potentially different porous flow velocities of the two filters might be the reason to cause their different partial nitrification performances, with a lower porous flow velocity (the ceramic granule filter) favoring partial nitrification more. In summation, DO, filter depth, and filtration speed should be played together to successfully operate a biofilm filter for partial nitrification.
Snapin mediates insulin secretory granule docking, but not trans-SNARE complex formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somanath, Sangeeta; Partridge, Christopher J.; Marshall, Catriona
Secretory granule exocytosis is a tightly regulated process requiring granule targeting, tethering, priming, and membrane fusion. At the heart of this process is the SNARE complex, which drives fusion through a coiled-coil zippering effect mediated by the granule v-SNARE protein, VAMP2, and the plasma membrane t-SNAREs, SNAP-25 and syntaxin-1A. Here we demonstrate that in pancreatic β-cells the SNAP-25 accessory protein, snapin, C-terminal H2 domain binds SNAP-25 through its N-terminal Sn-1 domain. Interestingly whilst snapin binds SNAP-25, there is only modest binding of this complex with syntaxin-1A under resting conditions. Instead synataxin-1A appears to be recruited in response to secretory stimulation.more » These results indicate that snapin plays a role in tethering insulin granules to the plasma membrane through coiled coil interaction of snapin with SNAP-25, with full granule fusion competency only resulting after subsequent syntaxin-1A recruitment triggered by secretory stimulation. - Highlights: • Snapin mediates granule docking. • Snapin binds SNAP-25. • SNARE complex forms downstream.« less
Microbial community variation in cryoconite granules on Qaanaaq Glacier, NW Greenland.
Uetake, Jun; Tanaka, Sota; Segawa, Takahiro; Takeuchi, Nozomu; Nagatsuka, Naoko; Motoyama, Hideaki; Aoki, Teruo
2016-09-01
Cryoconite granules are aggregations of microorganisms with mineral particles that form on glacier surfaces. To understand the processes by which the granules develop, this study focused on the altitudinal distribution of the granules and photosynthetic microorganisms on the glacier, bacterial community variation with granules size and environmental factors affecting the growth of the granules. Size-sorted cryoconite granules collected from five different sites on Qaanaaq Glacier were analyzed. C and N contents were significantly higher in large (diameter greater than 250 μm) granules than in smaller (diameter 30-249 μm) granules. Bacterial community structures, based on 16S rRNA gene amplicon sequencing, were different between the smaller and larger granules. The filamentous cyanobacterium Phormidesmis priestleyi was the dominant bacterial species in larger granules. Multivariate analysis suggests that the abundance of mineral particles on the glacier surface is the main factor controlling growth of these cyanobacteria. These results show that the supply of mineral particles on the glacier enhances granule development, that P. priestleyi is likely the key species for primary production and the formation of the granules and that the bacterial community in the granules changes over the course of the granule development. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Steurer, Wolfgang
1992-01-01
The vapor phase pyrolysis process is designed exclusively for the lunar production of oxygen. In this concept, granulated raw material (soil) that consists almost entirely of metal oxides is vaporized and the vapor is raised to a temperature where it dissociates into suboxides and free oxygen. Rapid cooling of the dissociated vapor to a discrete temperature causes condensation of the suboxides, while the oxygen remains essentially intact and can be collected downstream. The gas flow path and flow rate are maintained at an optimum level by control of the pressure differential between the vaporization region and the oxygen collection system with the aid of the environmental vacuum.
Kumar, Ashish; Vercruysse, Jurgen; Vanhoorne, Valérie; Toiviainen, Maunu; Panouillot, Pierre-Emmanuel; Juuti, Mikko; Vervaet, Chris; Remon, Jean Paul; Gernaey, Krist V; De Beer, Thomas; Nopens, Ingmar
2015-04-25
Twin-screw granulation is a promising continuous alternative for traditional batchwise wet granulation processes. The twin-screw granulator (TSG) screws consist of transport and kneading element modules. Therefore, the granulation to a large extent is governed by the residence time distribution within each module where different granulation rate processes dominate over others. Currently, experimental data is used to determine the residence time distributions. In this study, a conceptual model based on classical chemical engineering methods is proposed to better understand and simulate the residence time distribution in a TSG. The experimental data were compared with the proposed most suitable conceptual model to estimate the parameters of the model and to analyse and predict the effects of changes in number of kneading discs and their stagger angle, screw speed and powder feed rate on residence time. The study established that the kneading block in the screw configuration acts as a plug-flow zone inside the granulator. Furthermore, it was found that a balance between the throughput force and conveying rate is required to obtain a good axial mixing inside the twin-screw granulator. Although the granulation behaviour is different for other excipients, the experimental data collection and modelling methods applied in this study are generic and can be adapted to other excipients. Copyright © 2015 Elsevier B.V. All rights reserved.
Yan, Lawrence K Q; Fung, Ka Y; Ng, Ka M
2018-06-01
In this study, the capability of using aerobic granules to undergo simultaneous anaerobic decolorization and aerobic aromatic amines degradation was demonstrated for azo dye wastewater treatment. An integrated acclimation-granulation process was devised, with Mordant Orange 1 as the model pollutant. Performance tests were carried out in a batch column reactor to evaluate the effect of various operating parameters. The optimal condition was to use 1.0-1.7 mm (1.51 ± 0.33 mm) granules, 5 g/L biomass, and 4000 mg/L organics as nutrient; and supplement the wastewater with 1 mg/L dissolved oxygen. This led to a dye mineralization of 61 ± 2%, an anaerobic dye removal of 88 ± 1%, and an aerobic aromatic amines removal of 70 ± 3% within 48 h. This study showed that simultaneous anaerobic/aerobic process by aerobic granules could be a possible alternative to the conventional activated sludge process.
Cellular stress induces cytoplasmic RNA granules in fission yeast.
Nilsson, Daniel; Sunnerhagen, Per
2011-01-01
Severe stress causes plant and animal cells to form large cytoplasmic granules containing RNA and proteins. Here, we demonstrate the existence of stress-induced cytoplasmic RNA granules in Schizosaccharomyces pombe. Homologs to several known protein components of mammalian processing bodies and stress granules are found in fission yeast RNA granules. In contrast to mammalian cells, poly(A)-binding protein (Pabp) colocalizes in stress-induced granules with decapping protein. After glucose deprivation, protein kinase A (PKA) is required for accumulation of Pabp-positive granules and translational down-regulation. This is the first demonstration of a role for PKA in RNA granule formation. In mammals, the translation initiation protein eIF2α is a key regulator of formation of granules containing poly(A)-binding protein. In S. pombe, nonphosphorylatable eIF2α does not block but delays granule formation and subsequent clearance after exposure to hyperosmosis. At least two separate pathways in S. pombe appear to regulate stress-induced granules: pka1 mutants are fully proficient to form granules after hyperosmotic shock; conversely, eIF2α does not affect granule formation in glucose starvation. Further, we demonstrate a Pka1-dependent link between calcium perturbation and RNA granules, which has not been described earlier in any organism.
Bao, Ruiling; Yu, Shuili; Shi, Wenxin; Zhang, Xuedong; Wang, Yulan
2009-09-15
To understand the effect of low temperature on the formation of aerobic granules and their nutrient removal characteristics, an aerobic granular sequencing batch airlift reactor (SBAR) has been operated at 10 degrees C using a mixed carbon source of glucose and sodium acetate. The results showed that aerobic granules were obtained and that the reactor performed in stable manner under the applied conditions. The granules had a compact structure and a clear out-surface. The average parameters of the granules were: diameter 3.4mm, wet density 1.036 g mL(-1), sludge volume index 37 mL g(-1), and settling velocity 18.6-65.1 cm min(-1). Nitrite accumulation was observed, with a nitrite accumulation rate (NO(2)(-)-N/NO(x)(-)-N) between 35% and 43% at the beginning of the start-up stage. During the stable stage, NO(x) was present at a level below the detection limit. However, when the influent COD concentration was halved (resulting in COD/N a reduction of the COD/N from 20:1 to 10:1) nitrite accumulation was observed once more with an effluent nitrite accumulation rate of 94.8%. Phosphorus release was observed in the static feeding phase and also during the initial 20-30 min of the aerobic phase. Neither the low temperature nor adjustment of the COD/P ratio from 100:1 to 25:1 had any influence on the phosphorus removal efficiency under the operating conditions. In the granular reactor with the influent load rates for COD, NH(4)(+)-N, and PO(4)(3-)-P of 1.2-2.4, 0.112 and 0.012-0.024 kg m(-3)d(-1), the respective removal efficiencies at low temperature were 90.6-95.4%, 72.8-82.1% and 95.8-97.9%.
Jung, Yi-seul; Lee, Byung-Hoo
2017-01-01
Porous starch granules (PSGs) with various pores and cavity sizes were prepared by amylolysis enzymes. The greatest hydrolysis rate on corn starch granule was observed with α-amylase, followed by gluco- and β-amylases. Temperature increase enhanced glucoamylase reaction rate more drastically than other enzyme treatments. Final hydrolysis level with glucoamylase reached to 66.9%, close to 67.5% of α-amylolysis. The α-amylase-treated PSGs displayed the greatest pore size and ratio of cavity-to-granule diameters. Gelatinization onset temperatures of PSGs increased to 72.1 (α-), 68.7 (β-), and 68.1°C (gluco-amylolysis) after 8 h; enthalpy changes of β- and gluco-amylase-treated PSGs increased to 13.4, and 13.1 J/g but α-amylase-treated one showed slightly reduced value of 8.5 J/g. Water holding capacities of PSGs were 209.7 (α-), 94.6 (β-), and 133.8% (gluco-amylolysis), and the untreated control had 89.1%; oil holding capacities of them showed 304.5, 182.7, and 211.5%, respectively, while the untreated control had 161.8%. Thus, enzyme types and their reaction conditions can be applied to generate desirable cavity and pore sizes in starch granules. This biocatalytic approach could contribute to develop tailor-made PSGs with distinct internal structure for specific uses in wide range of food, pharmaceutical and other industrial applications. PMID:28727742
A Spectral-line Analysis of the G8 III Standard ɛ VIR
NASA Astrophysics Data System (ADS)
Gray, David F.
2017-08-01
Eleven seasons of spectroscopic data comprised of 107 exposures for the stable G8 III standard star, ɛ Vir are analyzed for projected rotation rate and granulation parameters. A Fourier analysis of the line shapes yield v sin I = 3.06 ± 0.20 km s-1 and a radial-tangential macroturbulence dispersion ζ RT = 5.16 ± 0.08 km s-1. The radial velocity over nine seasons is constant to 18 m s-1. The absolute radial velocity with granulation blueshifts (but not gravitational redshift) removed is -14120 ± 75 m s-1. Line-depth ratios show the temperature to be constant to 0.7 K over 11 years, although a small secular rise or cyclic variation ˜1 K cannot be ruled out. The third-signature plot shows that the star has granulation velocities 10% larger than the Sun's. Mapping the Fe I λ6253 line bisector on to the third-signature plot indicates a normal-for-giants flux deficit area of 12.8%, indicating ˜134 K temperature difference between granules and lanes. Deficit velocities of GK giants are seen to shift to higher values with higher luminosity, ˜0.75 km s-1 over ΔM V ˜ 1.5, indicating larger velocity differences between granules and lanes for giants higher in the HR diagram.
Large granulation cells on the surface of the giant star π1 Gruis
NASA Astrophysics Data System (ADS)
Paladini, C.; Baron, F.; Jorissen, A.; Le Bouquin, J.-B.; Freytag, B.; van Eck, S.; Wittkowski, M.; Hron, J.; Chiavassa, A.; Berger, J.-P.; Siopis, C.; Mayer, A.; Sadowski, G.; Kravchenko, K.; Shetye, S.; Kerschbaum, F.; Kluska, J.; Ramstedt, S.
2018-01-01
Convection plays a major part in many astrophysical processes, including energy transport, pulsation, dynamos and winds on evolved stars, in dust clouds and on brown dwarfs. Most of our knowledge about stellar convection has come from studying the Sun: about two million convective cells with typical sizes of around 2,000 kilometres across are present on the surface of the Sun—a phenomenon known as granulation. But on the surfaces of giant and supergiant stars there should be only a few large (several tens of thousands of times larger than those on the Sun) convective cells, owing to low surface gravity. Deriving the characteristic properties of convection (such as granule size and contrast) for the most evolved giant and supergiant stars is challenging because their photospheres are obscured by dust, which partially masks the convective patterns. These properties can be inferred from geometric model fitting, but this indirect method does not provide information about the physical origin of the convective cells. Here we report interferometric images of the surface of the evolved giant star π1 Gruis, of spectral type S5,7. Our images show a nearly circular, dust-free atmosphere, which is very compact and only weakly affected by molecular opacity. We find that the stellar surface has a complex convective pattern with an average intensity contrast of 12 per cent, which increases towards shorter wavelengths. We derive a characteristic horizontal granule size of about 1.2 × 1011 metres, which corresponds to 27 per cent of the diameter of the star. Our measurements fall along the scaling relations between granule size, effective temperature and surface gravity that are predicted by simulations of stellar surface convection.
Large granulation cells on the surface of the giant star π1 Gruis.
Paladini, C; Baron, F; Jorissen, A; Le Bouquin, J-B; Freytag, B; Van Eck, S; Wittkowski, M; Hron, J; Chiavassa, A; Berger, J-P; Siopis, C; Mayer, A; Sadowski, G; Kravchenko, K; Shetye, S; Kerschbaum, F; Kluska, J; Ramstedt, S
2018-01-18
Convection plays a major part in many astrophysical processes, including energy transport, pulsation, dynamos and winds on evolved stars, in dust clouds and on brown dwarfs. Most of our knowledge about stellar convection has come from studying the Sun: about two million convective cells with typical sizes of around 2,000 kilometres across are present on the surface of the Sun-a phenomenon known as granulation. But on the surfaces of giant and supergiant stars there should be only a few large (several tens of thousands of times larger than those on the Sun) convective cells, owing to low surface gravity. Deriving the characteristic properties of convection (such as granule size and contrast) for the most evolved giant and supergiant stars is challenging because their photospheres are obscured by dust, which partially masks the convective patterns. These properties can be inferred from geometric model fitting, but this indirect method does not provide information about the physical origin of the convective cells. Here we report interferometric images of the surface of the evolved giant star π 1 Gruis, of spectral type S5,7. Our images show a nearly circular, dust-free atmosphere, which is very compact and only weakly affected by molecular opacity. We find that the stellar surface has a complex convective pattern with an average intensity contrast of 12 per cent, which increases towards shorter wavelengths. We derive a characteristic horizontal granule size of about 1.2 × 10 11 metres, which corresponds to 27 per cent of the diameter of the star. Our measurements fall along the scaling relations between granule size, effective temperature and surface gravity that are predicted by simulations of stellar surface convection.
Asada, Takumi; Kobiki, Mitsuaki; Ochiai, Yasushi; Iwao, Yasunori; Itai, Shigeru
2017-05-15
The aim of this study was to prepare controlled-release (CR) granules with suitable particle strength, flowability, particle size distribution (PSD) and density characteristics for blending with other excipients. We also wanted these CR granules to contain large quantities of active pharmaceutical ingredient (API). A high shear mixer was used to mix an API with various polymers at various feed ratios, and the resulting granulated materials were sprayed with solvent. The wet granules were dried using a fluidized bed dryer to give CR granules. The API content of the granules was determined to be 95wt%. The granules were found to be spherical in shape with smooth surfaces by scanning electron microscopy. The inner structure of each granule was determined to be hollow by X-ray computed tomography, highlighting the unusual mechanism of this granulation process. The PSD of the granules was found to be dependent on that of the constituent polymer, and a narrow PSD was obtained by adjusting the PSD of the polymer. The dissolution profile of the granules was also dependent on the constituent polymer. Taken together, these results show that we have successfully developed a new manufacturing technology for the simple and low-cost preparation of ideal CR granules. Copyright © 2017 Elsevier B.V. All rights reserved.
Otsuka, Tomoko; Kuroiwa, Yosuke; Sato, Kazunari; Yamashita, Kazunari; Hakomori, Tadashi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru
2018-01-01
The properties of wet mass, which indicate the progress of high shear granulation processes, usually have an effect on final product properties, such as tablet dissolution. The mixer torque rheometer (MTR) is a useful tool for quantitatively measuring the 'kneading state' of wet mass and detecting differences in granules. However, there have been no studies of the relationship between the MTR torque and the final product properties to date. In this study, we measured the MTR torque of wet granules at different kneading states, which were prepared by changing the granulation conditions. We then evaluated the relationship between the MTR torque and the dissolution rate of the final product properties. The amperage of the high shear granulator is usually monitored during granulation, but we could not detect a difference in the kneading state through the amperage. However, using MTR torque we were able to quantify the difference of the wet mass. Moreover, MTR torque showed a high correlation with dissolution, compared with the correlations with other intermediate properties, such as granules particle size and tablet hardness. These other properties are affected by following processes and are not properties that directly relate to the kneading state. Thus, MTR torque is a property of wet mass after granulation, and it can be used to directly evaluate differences of the kneading state, and as a result, dissolution. These results indicate the importance of controlling the kneading state, i.e., the progress of granulation, and the utility of MTR for detecting differences in wet mass.
Application of tumbling melt granulation (TMG) method to prepare controlled-release fine granules.
Maejima, T; Kubo, M; Osawa, T; Nakajima, K; Kobayashi, M
1998-03-01
The tumbling melt granulation (TMG) method was applied to prepare controlled-release fine granules of diltiazem hydrochloride (DH). The entire process, from the preparation of the cores by the adherence of DH to the sucrose crystal to the subsequent coating of the controlled-release layer, was performed without using any solvent. A mixture of meltable material, talc, and ethylcellulose was used for the controlled-release layer and controlled-release fine granules approximately 400 microns in diameter were obtained with excellent producibility. The dissolution rate of DH from these fine granules was similar to that of a once-a-day dosage form obtained in the market; further, the dependency of the dissolution profile on pH of the media was less. Thus, it was concluded that this TMG method was very useful for preparing not only controlled-release beads of granule size (usually 500 to 1400 microns) but also fine granules.
Holmes, Kristen J; Klass, Daniel M; Guiney, Evan L; Cyert, Martha S
2013-01-01
RNA binding proteins (RBPs) are vital to the regulation of mRNA transcripts, and can alter mRNA localization, degradation, translation, and storage. Whi3 was originally identified in a screen for small cell size mutants, and has since been characterized as an RBP. The identification of Whi3-interacting mRNAs involved in mediating cellular responses to stress suggested that Whi3 might be involved in stress-responsive RNA processing. We show that Whi3 localizes to stress granules in response to glucose deprivation or heat shock. The kinetics and pattern of Whi3 localization in response to a range of temperatures were subtly but distinctly different from those of known components of RNA processing granules. Deletion of Whi3 resulted in an increase in the relative abundance of Whi3 target RNAs, either in the presence or absence of heat shock. Increased levels of the CLN3 mRNA in whi3Δ cells may explain their decreased cell size. Another mRNA target of Whi3 encodes the zinc-responsive transcription factor Zap1, suggesting a role for Whi3 in response to zinc stress. Indeed, we found that whi3Δ cells have enhanced sensitivity to zinc toxicity. Together our results suggest an expanded model for Whi3 function: in addition to its role as a regulator of the cell cycle, Whi3 may have a role in stress-dependent RNA processing and responses to a variety of stress conditions.
GRANULATION IN THE PHOTOSPHERE OF {zeta} CYGNI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, David F., E-mail: dfgray@uwo.ca
2012-05-15
A series of 35 high-resolution spectra are used to measure the third-signature plot of the G8 III star, {zeta} Cygni, which shows convective velocities only 8% larger than the Sun. Bisector mapping yields a flux deficit, a measure of granulation contrast, typical of other giants. The observations also give radial velocities with errors {approx}30 m s{sup -1} and allow the orbit to be refined. Velocity excursions relative to the smooth orbital motion, possibly from the granulation, have values exceeding 200 m s{sup -1}. Temperature variations were looked for using line-depth ratios, but none were found.
NASA Astrophysics Data System (ADS)
Aziz, I. H.; Abdullah, M. M. A. B.; Yong, H. C.; Ming, L. Y.; Panias, D.; Sakkas, K.
2017-06-01
Geopolymers are inorganic materials with huge potential applications including building material, fire resistant materials, and agricultural construction materials. Various parameters influenced the final properties of these geopolymer concretes. This study developed the effects of several factors such as solid-to-liquid ratio, NaOH concentration, and Na2SiO3/NaOH ratio on the compressive strength of granulated ground blast furnace slag (GGBFS) by statistical design of experiment (DOE) approach. Analysis of the experimental results through ANOVA exhibited that the specimen with NaOH concentration of 10M, Na2SiO3/NaOH ratio equals to 2.5, and solid-to-liquid ratio of 3.0 curing at room temperatures for 28 days was potential of highest strength (168.705 MPa) in the considered procedure. Besides, the relationship between compressive strength and influential factors could be suitably by fraction factorial design method.
Chaudhari, Ashvini U; Paul, Dhiraj; Dhotre, Dhiraj; Kodam, Kisan M
2017-10-01
Treatment of textile wastewater containing anthraquinone dye is quite a huge challenge due to its complex aromatic structure and toxicity. Present study deals with the degradation and detoxification of anthraquinone dye reactive blue 4 using aerobic bacterial granules. Bacterial granules effectively decolorized reactive blue 4 at wide range of pH (4.0-11.0) and temperature (20-55 °C) as well as decolorized and tolerated high concentration of reactive blue 4 dye upto 1000 mg l -1 with V max 6.16 ± 0.82 mg l -1 h -1 and K m 227 ± 41 mg l -1 . Metagenomics study evaluates important role of Clostridia, Actinobacteria, and Proteobacterial members in biotransformation and tolerance of high concentrations of reactive blue 4 dye. Up-regulation of xenobiotic degradation and environmental information processing pathways during dye exposure signifies their noteworthy role in dye degradation. Biotransformation of dye was confirmed by significant decrease in the values of total suspended solids, biological and chemical oxygen demand. The metabolites formed after biotransformation was characterized by FT-IR and GC-MS analysis. The reactive blue 4 dye was found to be phytotoxic, cytotoxic and genotoxic whereas its biotransformed product were non-toxic. This study comprehensively illustrates that, bacterial aerobic granules can be used for eco-friendly remediation and detoxification of wastewater containing high organic load of anthraquinone dye. Copyright © 2017 Elsevier Ltd. All rights reserved.
Real-time feedback control of twin-screw wet granulation based on image analysis.
Madarász, Lajos; Nagy, Zsombor Kristóf; Hoffer, István; Szabó, Barnabás; Csontos, István; Pataki, Hajnalka; Démuth, Balázs; Szabó, Bence; Csorba, Kristóf; Marosi, György
2018-06-04
The present paper reports the first dynamic image analysis-based feedback control of continuous twin-screw wet granulation process. Granulation of the blend of lactose and starch was selected as a model process. The size and size distribution of the obtained particles were successfully monitored by a process camera coupled with an image analysis software developed by the authors. The validation of the developed system showed that the particle size analysis tool can determine the size of the granules with an error of less than 5 µm. The next step was to implement real-time feedback control of the process by controlling the liquid feeding rate of the pump through a PC, based on the real-time determined particle size results. After the establishment of the feedback control, the system could correct different real-life disturbances, creating a Process Analytically Controlled Technology (PACT), which guarantees the real-time monitoring and controlling of the quality of the granules. In the event of changes or bad tendencies in the particle size, the system can automatically compensate the effect of disturbances, ensuring proper product quality. This kind of quality assurance approach is especially important in the case of continuous pharmaceutical technologies. Copyright © 2018 Elsevier B.V. All rights reserved.
NEW METHODOLOGY FOR DEVELOPMENT OF ORODISPERSIBLE TABLETS USING HIGH-SHEAR GRANULATION PROCESS.
Ali, Bahaa E; Al-Shedfat, Ramadan I; Fayed, Mohamed H; Alanazi, Fars K
2017-05-01
Development of orodispersible delivery system of high mechanical properties and low disintegration time is a big challenge. The aim of the current work was to assess and optimize the high shear granulation process as a new methodology for development of orodispersible tablets of high quality attributes using design of experiment approach. A two factor, three levels (32), full factorial design was carried out to investigate the main and interaction effects of independent variables, water amount (XI) and granulation time (X2) on the characteristics of granules and final product, tablet. The produced granules were analyzed for their granule size, density and flowability. Furthermore, the produced tablets were tested for: weight variation, breaking force/ crushing strength, friability, disintegration time and drug dissolution. Regression analysis results of multiple linear models showed a high correlation between the adjusted R-squared and predicted R-squared for all granules and tablets characteristics, the difference is less than 0.2. All dependent responses of granules and tablets were found to be impacted significantly (p < 0.05) by the two independent variables. However, water amount demonstrated the most dominant effect for all granules and tablet characteristics as shown by higher its coefficient estimate for all selected responses. Numerical optimization using desirability function was performed to optimize the variables under study to provide orodispersible system within the USP limit with respect of mechanical properties and disintegration time. It was found that the higher desirability (0.915) could be attained at the low level pf water (180 g) and short granulation time (1.65 min). Eventually, this study provides the formulator with helpful information in selecting the proper level of water and granulation time to provide an orodispersible system of high crushing strength and very low disintegration time, when high shear granulation methodology was used as a method of manufacture.
Mineralogy and cooling history of magnesian lunar granulite 67415
NASA Technical Reports Server (NTRS)
Takeda, Hiroshi; Miyamoto, Masamichi
1993-01-01
Apollo granulite 67415 was investigated by mineralogical techniques to gain better understanding of cooling histories of lunar granulities. Cooling rates were estimated from chemical zoning of olivines in magnesian granulitic clasts by computer simulation of diffusion processes. The cooling rate of 10 deg C/yr obtained is compatible with a model of the granulite formation, in which the impact deposit was cooled from high temperature or annealed, at the depth of about 25 m beneath the surface.
Li, Yun; Yang, Shu-Fang; Zhang, Jian-Jun; Li, Xiao-Yan
2014-01-01
In this study, gelation-facilitated biofilm formation as a new mechanism is proposed for the phenomenon of aerobic granulation in biological wastewater treatment. To obtain an experimental proof for the gelation-based theory, the granulation process was simulated in a chemical system using latex particles for bacterial cells and organic polymers (alginate and peptone) for extracellular polymeric substances (EPS) in a solution with the addition of cations (Ca²⁺, Mg²⁺ and Fe³⁺). The results showed that at a low alginate content (70 mg g⁻¹ mixed liquid suspended solids (MLSS)) flocculation was observed in the suspension with loose flocs. At a higher alginate content (180 mg g⁻¹ MLSS), together with discharge of small flocs, formation of artificial gel granules was successfully achieved leading to granulation. The artificial granules show a morphological property similar to that of actual microbial granules. However, if the protein content increased, granulation became difficult with little gel formation. The experimental work demonstrates the importance of the bonding interactions between EPS functional groups and cations in gel formation and granulation. The laboratory results on the formation of artificial granules provide a sound proof for the theory of gelation-facilitated biofilm formation as the main mechanism for aerobic granulation in sludge suspensions.
Roll Compaction and Tableting of High Loaded Metformin Formulations Using Efficient Binders.
Arndt, Oscar-Rupert; Kleinebudde, Peter
2018-04-23
Metformin has a poor tabletability and flowability. Therefore, metformin is typically wet granulated with a binder before tableting. To save production costs, it would be desirable to implement a roll compaction/dry granulation (RCDG) process for metformin instead of using wet granulation. In order to implement RCDG, the efficiency of dry binders is crucial to ensure a high drug load and suitable properties of dry granules and tablets. This study evaluates dry granules manufactured by RCDG and subsequently tableting of high metformin content formulations (≥ 87.5%). Based on previous results, fine particle grades of hydroxypropylcellulose and copovidone in different fractions were compared as dry binders. The formulations are suitable for RCDG and tableting. Furthermore, results can be connected to in-die and out-of-die compressibility analysis. The addition of 7% of dry binder is a good compromise to generate sufficient mechanical properties on the one hand, but also to save resources and ensure a high metformin content on the other hand. Hydroxypropylcellulose was more efficient in terms of granule size, tensile strength and friability. Three percent croscarmellose was added to reach the specifications of the US Pharmacopeia regarding dissolution. The final formulation has a metformin content of 87.5%. A loss in tabletability does not occur for granules compressed at different specific compaction forces, which displays a robust tensile strength of tablets independent of the granulation process.
Effects of processing on the release profiles of matrix systems containing 5-aminosalicylic acid.
Korbely, Anita; Kelemen, András; Kása, Péter; Pintye-Hódi, Klára
2012-12-01
The aim of this study was to investigate the influence of different processing methods on the profiles of 5-aminosalicylic acid dissolution from controlled-release matrix systems based on Eudragit® RL and Eudragit® RS water-insoluble polymers. The pure polymers and their mixtures were studied as matrix formers using different processing methods, i.e., direct compression, wet granulation of the active ingredient with the addition of polymer(s) to the external phase, wet granulation with water, and wet granulation with aqueous dispersions. In comparison with the directly compressed tablets, tablets made by wet granulation with water demonstrated a 6-19% increase in final drug dissolution, whereas when polymers were applied in the external phase during compression, a 0-13% decrease was observed in the amount of drug released. Wet granulation with aqueous polymer dispersions delayed the release of the drug; this was especially marked (a 54-56% decrease in drug release) in compositions, which contained a high amount of Eudragit RL 30D. The release profiles were mostly described by the Korsmeyer-Peppas model or the Hopfenberg model.
Willecke, N; Szepes, A; Wunderlich, M; Remon, J P; Vervaet, C; De Beer, T
2018-04-21
The overall objective of this work is to understand how excipient characteristics influence the drug product quality attributes and process performance of a continuous twin screw wet granulation process. The knowledge gained in this study is intended to be used for Quality by Design (QbD)-based formulation design and formulation optimization. Three principal components which represent the overarching properties of 8 selected pharmaceutical fillers were used as factors, whereas factors 4 and 5 represented binder type and binder concentration in a design of experiments (DoE). The majority of process parameters were kept constant to minimize their influence on the granule and drug product quality. 27 DoE batches consisting of binary filler/binder mixtures were processed via continuous twin screw wet granulation followed by tablet compression. Multiple linear regression models were built providing understanding of the impact of filler and binder properties on granule and tablet quality attributes (i.e. 16 DoE responses). The impact of fillers on the granule and tablet responses was more dominant compared to the impact of binder type and concentration. The filler properties had a relevant effect on granule characteristics, such as particle size, friability and specific surface area. Binder type and concentration revealed a relevant influence on granule flowability and friability as well as on the compactability (required compression force during tableting to obtain target hardness). In order to evaluate the DoE models' validity, a verification of the DoE models was performed with new formulations (i.e. a new combination of filler, binder type and binder concentration) which were initially not included in the dataset used to build the DoE models. The combined PCA (principle component analysis)/DoE approach allowed to link the excipient properties with the drug product quality attributes. Copyright © 2018 Elsevier B.V. All rights reserved.
DEPS-1 promotes P-granule assembly and RNA interference in C. elegans germ cells
Spike, Caroline A.; Bader, Jason; Reinke, Valerie; Strome, Susan
2008-01-01
P granules are germ-cell-specific cytoplasmic structures containing RNA and protein, and required for proper germ cell development in C. elegans. PGL-1 and GLH-1 were previously identified as critical components of P granules. We have identified a new P-granule-associated protein, DEPS-1, the loss of which disrupts P-granule structure and function. DEPS-1 is required for the proper localization of PGL-1 to P granules, the accumulation of glh-1 mRNA and protein, and germ cell proliferation and fertility at elevated temperatures. In addition, DEPS-1 is required for RNA interference (RNAi) of germline-expressed genes, possibly because DEPS-1 promotes the accumulation of RDE-4, a dsRNA-binding protein required for RNAi. A genome wide analysis of gene expression in deps-1 mutant germ lines identified additional targets of DEPS-1 regulation, many of which are also regulated by the RNAi factor RDE-3. Our studies suggest that DEPS-1 is a key component of the P-granule assembly pathway and that its roles include promoting accumulation of some mRNAs, such as glh-1 and rde-4, and reducing accumulation of other mRNAs, perhaps by collaborating with RDE-3 to generate endogenous short interfering RNAs (endo-siRNAs). PMID:18234720
DEPS-1 promotes P-granule assembly and RNA interference in C. elegans germ cells.
Spike, Caroline A; Bader, Jason; Reinke, Valerie; Strome, Susan
2008-03-01
P granules are germ-cell-specific cytoplasmic structures containing RNA and protein, and required for proper germ cell development in C. elegans. PGL-1 and GLH-1 were previously identified as critical components of P granules. We have identified a new P-granule-associated protein, DEPS-1, the loss of which disrupts P-granule structure and function. DEPS-1 is required for the proper localization of PGL-1 to P granules, the accumulation of glh-1 mRNA and protein, and germ cell proliferation and fertility at elevated temperatures. In addition, DEPS-1 is required for RNA interference (RNAi) of germline-expressed genes, possibly because DEPS-1 promotes the accumulation of RDE-4, a dsRNA-binding protein required for RNAi. A genome wide analysis of gene expression in deps-1 mutant germ lines identified additional targets of DEPS-1 regulation, many of which are also regulated by the RNAi factor RDE-3. Our studies suggest that DEPS-1 is a key component of the P-granule assembly pathway and that its roles include promoting accumulation of some mRNAs, such as glh-1 and rde-4, and reducing accumulation of other mRNAs, perhaps by collaborating with RDE-3 to generate endogenous short interfering RNAs (endo-siRNAs).
Harting, Julia; Kleinebudde, Peter
2018-04-01
Raman spectroscopy was evaluated as a process analytical technology (PAT) tool for continuous API quantification during twin-screw wet granulation. Therefore, a Raman probe was implemented in front of the granulator barrel. This setup enabled the collection of Raman spectra upon a constant granule flow. To develop an in-line PLS calibration model, eight binary mixtures of the API and lactose monohydrate with API contents between 5 and 50% were pre-blended and granulated in a twin-screw granulator with a screw speed of 150 rpm and a powder feed rate of 40 g/min. Water was used as a granulation liquid with different liquid to solid ratios depending on the API content. Ibuprofen and diclofenac sodium were chosen as model drugs and separated PLS models were built for each API. The predictive performance of the developed PLS models was determined by granulating and monitoring new test samples containing different API concentrations. This evaluation showed that the models were able to predict the API concentration with an RMSEP of 0.59% for ibuprofen and 1.5% for diclofenac sodium. In a second part, the developed in-line Raman spectroscopic method was used to determine the API concentration during a split feeding process. Therefore, the API and lactose monohydrate were added by two independently adjustable feeders into the twin-screw granulator barrel. The in-line spectroscopy analysis which was verified by UV-analysis indicated that the mixing ability of the twin-screw granulator was good for the used settings and all adjusted API concentrations. Copyright © 2018 Elsevier B.V. All rights reserved.
Albertini, Beatrice; Cavallari, Cristina; Passerini, Nadia; González-Rodríguez, M L; Rodriguez, Lorenzo
2003-11-01
The present investigation aimed at evaluating the use of different excipients, beta-lactose and polyvinylpyrrolidone of two molecular weights (PVP K12 and PVP K90), in the production of improved release piroxicam granules, by wet granulation using both water and steam as granulation liquid. The formulations examined were: piroxicam (Px)/beta-lactose; Px/PVP K12 and Px/PVP K90, each one at a 1:9 weight ratio. The most significant difference between beta-lactose and PVP is that, using the first excipient, both steam and water granules were produced while, when PVP were employed, only steam granules were obtained. Image analysis revealed that beta-lactose steam granules had a larger surface area with respect to water granules, whereas lower values of this parameter were observed in PVP-s granules, confirming the Scanning Electron Microscopy micrographs and the fractal analysis results. As regards the enhancement of the dissolution profiles, the best result was obtained using beta-lactose steam granules followed by PVP K12 ones, even if the reactive dimension values indicated that during the dissolution process PVP K12 granules modified the surface more than beta-lactose granules. As regards PVP K90, this excipient was the one less influencing the granule morphology and the dissolution behaviour. Differential Scanning Calorimetry analysis suggested the partial amorphisation of the drug in the granules containing the three excipients. This result was then confirmed by X-ray powder diffraction analysis. Therefore, beta-lactose and PVP K12 could be proposed as useful excipients to enhance the dissolution rate of Px from granules prepared using the steam granulation technique.
Fonteyne, Margot; Gildemyn, Delphine; Peeters, Elisabeth; Mortier, Séverine Thérèse F C; Vercruysse, Jurgen; Gernaey, Krist V; Vervaet, Chris; Remon, Jean Paul; Nopens, Ingmar; De Beer, Thomas
2014-08-01
Classically, the end point detection during fluid bed drying has been performed using indirect parameters, such as the product temperature or the humidity of the outlet drying air. This paper aims at comparing those classic methods to both in-line moisture and solid-state determination by means of Process Analytical Technology (PAT) tools (Raman and NIR spectroscopy) and a mass balance approach. The six-segmented fluid bed drying system being part of a fully continuous from-powder-to-tablet production line (ConsiGma™-25) was used for this study. A theophylline:lactose:PVP (30:67.5:2.5) blend was chosen as model formulation. For the development of the NIR-based moisture determination model, 15 calibration experiments in the fluid bed dryer were performed. Six test experiments were conducted afterwards, and the product was monitored in-line with NIR and Raman spectroscopy during drying. The results (drying endpoint and residual moisture) obtained via the NIR-based moisture determination model, the classical approach by means of indirect parameters and the mass balance model were then compared. Our conclusion is that the PAT-based method is most suited for use in a production set-up. Secondly, the different size fractions of the dried granules obtained during different experiments (fines, yield and oversized granules) were compared separately, revealing differences in both solid state of theophylline and moisture content between the different granule size fractions. Copyright © 2014 Elsevier B.V. All rights reserved.
Kumar, Vijay; Taylor, Michael K; Mehrotra, Amit; Stagner, William C
2013-06-01
Focused beam reflectance measurement (FBRM) was used as a process analytical technology tool to perform inline real-time particle size analysis of a proprietary granulation manufactured using a continuous twin-screw granulation-drying-milling process. A significant relationship between D20, D50, and D80 length-weighted chord length and sieve particle size was observed with a p value of <0.0001 and R(2) of 0.886. A central composite response surface statistical design was used to evaluate the effect of granulator screw speed and Comil® impeller speed on the length-weighted chord length distribution (CLD) and particle size distribution (PSD) determined by FBRM and nested sieve analysis, respectively. The effect of granulator speed and mill speed on bulk density, tapped density, Compressibility Index, and Flowability Index were also investigated. An inline FBRM probe placed below the Comil-generated chord lengths and CLD data at designated times. The collection of the milled samples for sieve analysis and PSD evaluation were coordinated with the timing of the FBRM determinations. Both FBRM and sieve analysis resulted in similar bimodal distributions for all ten manufactured batches studied. Within the experimental space studied, the granulator screw speed (650-850 rpm) and Comil® impeller speed (1,000-2,000 rpm) did not have a significant effect on CLD, PSD, bulk density, tapped density, Compressibility Index, and Flowability Index (p value > 0.05).
NASA Astrophysics Data System (ADS)
Pop, P. A.; Ungur, P. A.; Lazar, L.; Marcu, F.
2009-11-01
The EU Norms about of protection environment, outside and inside ambient, and human health demands has lead at obtain of new materials on the base of airborne material, with high thermo and phonic-absorbent properties, porous and lightweight. The α and β-modeling gypsum plaster quality and lightweight depend on many factors as: fabrication process, granulation, roast temperature, work temperature, environment, additives used, breakage, etc. Also, the objectively appraisal of modeling gypsum quality depends of proper tests methods selection, which are legislated in norms, standards and recommendations. In Romanian Standards SR EN 13279-1/2005 and SR EN 13279-2/2005, adaptable from EU Norms EN 13279-1/2004 and EN 13279-2/2004, the characteristics gypsum family tests are well specification, as: granule-metric analysis, determination of water/plaster ratio, setting time, mechanical characteristics, adhesions and water restrain. For plaster with special use (phonic-absorbent and orthopedic materials, etc.) these determinations are not concluding, being necessary more parameters finding, as: elastic constant, phonic-absorbent coefficient, porosity, working, etc., which is imposed the completion of norms and standards with new determinations.
Alkali metal nitrate purification
Fiorucci, Louis C.; Morgan, Michael J.
1986-02-04
A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.
A Spectral-line Analysis of the G8 III Standard ε VIR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, David F., E-mail: dfgray@uwo.ca
Eleven seasons of spectroscopic data comprised of 107 exposures for the stable G8 III standard star, ε Vir are analyzed for projected rotation rate and granulation parameters. A Fourier analysis of the line shapes yield v sin i = 3.06 ± 0.20 km s{sup −1} and a radial-tangential macroturbulence dispersion ζ {sub RT} = 5.16 ± 0.08 km s{sup −1}. The radial velocity over nine seasons is constant to 18 m s{sup −1}. The absolute radial velocity with granulation blueshifts (but not gravitational redshift) removed is −14120 ± 75 m s{sup −1}. Line-depth ratios show the temperature to be constantmore » to 0.7 K over 11 years, although a small secular rise or cyclic variation ∼1 K cannot be ruled out. The third-signature plot shows that the star has granulation velocities 10% larger than the Sun's. Mapping the Fe i λ 6253 line bisector on to the third-signature plot indicates a normal-for-giants flux deficit area of 12.8%, indicating ∼134 K temperature difference between granules and lanes. Deficit velocities of GK giants are seen to shift to higher values with higher luminosity, ∼0.75 km s{sup −1} over Δ M {sub V} ∼ 1.5, indicating larger velocity differences between granules and lanes for giants higher in the HR diagram.« less
Fukui, Atsuko; Fujii, Ryuta; Yonezawa, Yorinobu; Sunada, Hisakazu
2002-11-01
The release properties of phenylpropanolamine hydrochloride (PPA) from ethylcellulose (EC, ethylcellulose 10 cps (EC#10) and/or 100 cps (EC#100)) matrix granules prepared by the extrusion granulation method were examined. The release process could be divided into two parts, and was well analyzed by applying square-root time law and cube root law equations, respectively. The validity of the treatments was confirmed by the fitness of the simulation curve with the measured curve. At the initial stage, PPA was released from the gel layer of swollen EC in the matrix granules. At the second stage, the drug existing below the gel layer dissolved, and was released through the gel layer. Also, the time and release ratio at the connection point of the simulation curves was examined to determine the validity of the analysis. Comparing the release properties of PPA from the two types of EC matrix granules, EC#100 showed more effective sustained release than EC#10. On the other hand, changes in the release property of the EC#10 matrix granule were relatively more clear than that of the EC#100 matrix granule. Thus, it was supposed that EC#10 is more available for controlled and sustained release formulations than EC#100.
The role of mammalian Staufen on mRNA traffic: a view from its nucleocytoplasmic shuttling function.
Miki, Takashi; Takano, Keizo; Yoneda, Yoshihiro
2005-01-01
The localization of mRNA in neuronal dendrites plays a role in both locally and temporally regulated protein synthesis, which is required for certain forms of synaptic plasticity. RNA granules constitute a dendritic mRNA transport machinery in neurons, which move along microtubules. RNA granules contain densely packed clusters of ribosomes, but lack some factors that are required for translation, suggesting that they are translationally incompetent. Recently some of the components of RNA granules have been identified, and their functions are in the process of being examined, in attempts to better understand the properties of RNA granules. Mammalian Staufen, a double-stranded RNA binding protein, is a component of RNA granules. Staufen is localized in the somatodendritic domain of neurons, and plays an important role in dendritic mRNA targeting. Recently, one of the mammalian homologs of Staufen, Staufen2 (Stau2), was shown to shuttle between the nucleus and the cytoplasm. This finding suggests the possibility that Stau2 binds RNA in the nucleus and that this ribonucleoprotein particle is transported from the nucleus to RNA granules in the cytoplasm. A closer study of this process might provide a clue to the mechanism by which RNA granules are formed.
Vigorous convection in a sunspot granular light bridge
NASA Astrophysics Data System (ADS)
Lagg, Andreas; Solanki, Sami K.; van Noort, Michiel; Danilovic, Sanja
2014-08-01
Context. Light bridges are the most prominent manifestation of convection in sunspots. The brightest representatives are granular light bridges composed of features that appear to be similar to granules. Aims: An in-depth study of the convective motions, temperature stratification, and magnetic field vector in and around light bridge granules is presented with the aim of identifying similarities and differences to typical quiet-Sun granules. Methods: Spectropolarimetric data from the Hinode Solar Optical Telescope were analyzed using a spatially coupled inversion technique to retrieve the stratified atmospheric parameters of light bridge and quiet-Sun granules. Results: Central hot upflows surrounded by cooler fast downflows reaching 10 km s-1 clearly establish the convective nature of the light bridge granules. The inner part of these granules in the near surface layers is field free and is covered by a cusp-like magnetic field configuration. We observe hints of field reversals at the location of the fast downflows. The quiet-Sun granules in the vicinity of the sunspot are covered by a low-lying canopy field extending radially outward from the spot. Conclusions: The similarities between quiet-Sun and light bridge granules point to the deep anchoring of granular light bridges in the underlying convection zone. The fast, supersonic downflows are most likely a result of a combination of invigorated convection in the light bridge granule due to radiative cooling into the neighboring umbra and the fact that we sample deeper layers, since the downflows are immediately adjacent to the slanted walls of the Wilson depression. The two movies are available in electronic form at http://www.aanda.org
Development of the cascade inertial-confinement-fusion reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitts, J.H.
Caqscade, originally conceived as a football-shaped, steel-walled reactor containing a Li/sub 2/O granule blanket, is now envisaged as a double-cone-shaped reactor containing a two-layered (three-zone) flowing blanket of BeO and LiAlO/sub 2/ granules. Average blanket exit temperature is 1670 K and gross plant efficiency (net thermal conversion efficiency) using a Brayton cycle is 55%. The reactor has a low-activation SiC-tiled wall. It rotates at 50 rpm, and the granules are transported to the top of the heat exchanger using their peripheral speed; no conveyors or lifts are required. The granules return to the reactor by gravity. After considerable analysis andmore » experimentation, we continue to regard Cascade as a promising reactor concept with the advantages of safety, efficiency, and low activation.« less
Development of the cascade inertial-confinement-fusion reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitts, J.H.
Cascade, originally conceived as a football-shaped, steel-walled reactor containing a Li/sub 2/O granule blanket, is now envisaged as a double-cone-shaped reactor containing a two-layered (three-zone) flowing blanket of BeO and LiAlO/sub 2/ granules. Average blanket exit temperature is 1670/sup 0/K and gross plant efficiency (net thermal conversion efficiency) using a Brayton cycle is 55%. The reactor has a low-activation SiC-tiled wall. It rotates at 50 rpm, and the granules are transported to the top of the heat exchanger using their peripheral speed; no conveyors or lifts are required. The granules return to the reactor by gravity. After considerable analysis andmore » experimentation, we continue to regard Cascade as a promising reactor concept with the advantages of safety, efficiency, and low activation.« less
Crumpton-Taylor, Matilda; Pike, Marilyn; Lu, Kuan-Jen; Hylton, Christopher M; Feil, Regina; Eicke, Simona; Lunn, John E; Zeeman, Samuel C; Smith, Alison M
2013-01-01
Arabidopsis thaliana mutants lacking the SS4 isoform of starch synthase have strongly reduced numbers of starch granules per chloroplast, suggesting that SS4 is necessary for the normal generation of starch granules. To establish whether it plays a direct role in this process, we investigated the circumstances in which granules are formed in ss4 mutants. Starch granule numbers and distribution and the accumulation of starch synthase substrates and products were investigated during ss4 leaf development, and in ss4 mutants carrying mutations or transgenes that affect starch turnover or chloroplast volume. We found that immature ss4 leaves have no starch granules, but accumulate high concentrations of the starch synthase substrate ADPglucose. Granule numbers are partially restored by elevating the capacity for glucan synthesis (via expression of bacterial glycogen synthase) or by increasing the volumes of individual chloroplasts (via introduction of arc mutations). However, these granules are abnormal in distribution, size and shape. SS4 is an essential component of a mechanism that coordinates granule formation with chloroplast division during leaf expansion and determines the abundance and the flattened, discoid shape of leaf starch granules. PMID:23952675
Aerobic granulation in a modified oxidation ditch with an adjustable volume intraclarifier.
Li, Jun; Cai, Ang; Wang, Miao; Ding, Libin; Ni, Yongjiong
2014-04-01
A modified oxidation ditch (MOD) with an adjustable volume intraclarifier was proposed and used to achieve aerobic sludge granulation in continuous flow process. This MOD with working volume of 60L treated onsite wastewater from a town. Excellent aerobic granules with mean diameter of 600μm and sludge volume index (SVI) of 44mL/g were obtained in 120day. Bacterial community analysis revealed that most species from seed sludge were preserved in both MOD and granule SBR (G-SBR) except bacteria (Bacteroidetes) might be easily washed out during granulation. Some different bacterial communities were found in sludges from sequencing batch and continuous flow reactors. Presence of metal ions and inorganics in raw wastewater had positive effect on granule formation, but an adjustable volume intraclarifier for controlling selection pressure and deleting return sludge pump played a key role in aerobic sludge granulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tabara, Aya; Yamane, Chihiro; Seguchi, Masaharu
2012-01-01
We baked low-calorie bread by mixing charred cellulose granules with wheat flour, using the charred cellulose granules to eliminate toxic xanthene food dyes contained in processed foods from the alimentary canal. The size of the charred cellulose granules played an important role in determining good breadmaking properties in respect of the bread height (mm) and specific volume (SV, cm3/g). Charred cellulose granules with a diameter above 270 μm were blended with wheat flour at 10% to obtain bread with a lower caloric content (1020 kcal/gram of bread) than the control bread (1126 kcal) made solely from wheat flour. The charred cellulose granules taken out from the bread adsorbed toxic xanthene food dyes at around pH 6.5, such that toxic food dyes taken into the alimentary canal were excreted in the feces with the non-digestible cellulose granules.
Specific lignin accumulation in granulated juice sacs of Citrus maxima.
Wu, Jia-Ling; Pan, Teng-Fei; Guo, Zhi-Xiong; Pan, Dong-Ming
2014-12-17
Juice sac granulation occurring in pummelo fruits [Citrus maxima (Burm.) Merr.] is an undesirable trait, and the underlying mechanism remains unresolved. Previous studies have shown that lignin metabolism is closely associated with the process of juice sac granulation. Here, a method suitable for lignin isolation from pummelo tissues is established. Acetylated lignins from different pummelo tissues and cultivars were analyzed by HSQC NMR. The results showed that lignins in granulated juice sacs were characterized by an extremely high abundance of guaiacyl units (91.13-96.82%), in contrast to lignins from other tissues, including leaves, stems, and segment membranes. The abnormally accumulated lignins in granulated juice sacs were specific and mainly polymerized from coniferyl alcohol. No significant difference was found in lignin types among various cultivars. These findings indicated that the mechanism of juice sac granulation might be similar among various cultivars, although very different degrees of juice sac granulation can be observed.
Simultaneous Comparison of Two Roller Compaction Techniques and Two Particle Size Analysis Methods.
Saarinen, Tuomas; Antikainen, Osmo; Yliruusi, Jouko
2017-11-01
A new dry granulation technique, gas-assisted roller compaction (GARC), was compared with conventional roller compaction (CRC) by manufacturing 34 granulation batches. The process variables studied were roll pressure, roll speed, and sieve size of the conical mill. The main quality attributes measured were granule size and flow characteristics. Within granulations also the real applicability of two particle size analysis techniques, sieve analysis (SA) and fast imaging technique (Flashsizer, FS), was tested. All granules obtained were acceptable. In general, the particle size of GARC granules was slightly larger than that of CRC granules. In addition, the GARC granules had better flowability. For example, the tablet weight variation of GARC granules was close to 2%, indicating good flowing and packing characteristics. The comparison of the two particle size analysis techniques showed that SA was more accurate in determining wide and bimodal size distributions while FS showed narrower and mono-modal distributions. However, both techniques gave good estimates for mean granule sizes. Overall, SA was a time-consuming but accurate technique that provided reliable information for the entire granule size distribution. By contrast, FS oversimplified the shape of the size distribution, but nevertheless yielded acceptable estimates for mean particle size. In general, FS was two to three orders of magnitude faster than SA.
Fukui, Atsuko; Fujii, Ryuta; Yonezawa, Yorinobu; Sunada, Hisakazu
2004-03-01
The release properties of phenylpropanolamine hydrochloride (PPA) from ethylcellulose (EC) matrix granules prepared by an extrusion granulation method were examined. The release process could be divided into two parts; the first and second stages were analyzed by applying square-root time law and cube-root law equations, respectively. The validity of the treatments was confirmed by the fitness of a simulation curve with the measured curve. In the first stage, PPA was released from the gel layer of swollen EC in the matrix granules. In the second stage, the drug existing below the gel layer dissolved and was released through the gel layer. The effect of the binder solution on the release from EC matrix granules was also examined. The binder solutions were prepared from various EC and ethanol (EtOH) concentrations. The media changed from a good solvent to a poor solvent with decreasing EtOH concentration. The matrix structure changed from loose to compact with increasing EC concentration. The preferable EtOH concentration region was observed when the release process was easily predictable. The time and release ratio at the connection point of the simulation curves were also examined to determine the validity of the analysis.
Nozawa, Kenji; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru
2015-11-10
To generate products containing a stable form of clarithromycin (CAM) (form II) regardless of the initial crystal form of CAM or type of granulation solvent, the effects of five surfactants, or a water-soluble polymer (macrogol 400) were determined on the crystal transition of CAM. The metastable form (form I) was kneaded with water, after adding surfactants, or a water-soluble polymer. Form II was also kneaded with ethanol, after adding the same additives. The resulting samples were analyzed by powder X-ray diffraction. Form I was completely converted to form II by a wet granulation using water with additives bearing polyoxyethylene chains such as polysorbate 80 (PS80), polyoxyl 40 stearate or macrogol 400. The granulation of the form II using ethanol with these additives did not result in a crystal transition to form I. Furthermore, CAM tablets were manufactured using granules with PS80, and these crystal forms and dissolution behaviors were investigated. As a result, the wet granulation of CAM with PS80 gave CAM tablets containing only form II and PS80 did not have any adverse effects on tablet characteristics. Therefore, these data suggests that the crystal form of CAM can be controlled to be form II using a wet granulation process with additives bearing polyoxyethylene chains regardless of the initial crystal form of CAM or type of granulation solvent. Copyright © 2015 Elsevier B.V. All rights reserved.
Heiman, Johanna; Tajarobi, Farhad; Gururajan, Bindhumadhavan; Juppo, Anne; Abrahmsén-Alami, Susanna
2015-04-01
The present study shows that roller compaction (RC) can successfully be used as a granulation method to prepare hydroxypropyl methylcellulose (HPMC)-based extended release matrix tablets containing a high drug load, both for materials deforming mainly by fragmentation (paracetamol) as for those having mainly plastic deformation (ibuprofen). The combined effect of RC process variables and composition on the manufacturability of HPMC tablets was investigated. Standard wet granulation grade HPMC was compared with a larger particle size direct compressible HPMC grade. Higher roll pressure was found to result in larger paracetamol granules and narrower granule particle size distributions, especially for formulations containing smaller size HPMC. However, for ibuprofen, no clear effect of roll pressure was observed. High roll pressure also resulted in denser ribbon and less bypass fines during RC. Loss of compactibility was observed for granules compared to powder blends, which was found to be related to differences in granule porosity and morphology. Using the large-sized HPMC grade did in some cases result in lower tensile strength tablets but had the advantage to improve the powder flow into the roller compactor. This work also indicates that when the HPMC level lies near the percolation threshold, significant changes can occur in the drug release rate due to changes in other factors (raw material characteristics and processing).
Uhumwangho, M U; Okor, R S
2006-01-01
Acetaminophen granules have been formed by a melt granulation process with the objective of retarding drug release for prolonged action formulations. The waxes used were goat wax, carnuba wax and glyceryl monostearate. In the melt granulation procedure, acetaminophen powder was triturated with the melted waxes and passed through a sieve of mesh 10 (aperture size 710 microm). The content of wax in resulting granules ranged from 10 to 40%w/w. Acetaminophen granules were also formed by the convectional method of wet granulation with starch mucilage (20%w/w). The granules were subjected to in-vitro drug release tests. The release data were subjected to analysis by three different well-established mathematical models (release kinetics) namely, - zero order flux, first order, and the Higuchi square root of time relationship. The convectional granules exhibited an initial zero order flux (first 55%) followed by a first order release profile (the remaining 45%). The pattern of drug release from the melt granulations was consistent with the first order kinetic and the Higuchi square root of time relationship, indicating a diffusion-controlled release mechanism. The first order release rate constant of the convectional granules was 1.95 +/- 0.02 h(-1). After melt granulation (wax content, 20%w/w) the rate constants dropped drastically to 0.130+/-0.001 h(-1) (goat wax), 0.120+/-0.003 h(-1) (carnuba wax), and 0.130+/-0.002 h(-1) (glyceryl monosterate) indicating that all three waxes were equivalent in retarding drug release from the melt granulations.
Teaching Population Balances for Chemical Engineering Students: Application to Granulation Processes
ERIC Educational Resources Information Center
Bucala, Veronica; Pina, Juliana
2007-01-01
The population balance equation (PBE) is a useful tool to predict particle size distributions in granulation processes. When PBE is taught to advanced chemical engineering students, the internal coordinates (particle properties) are particularly hard to understand. In this paper, the flow of particles along different coordinates is carefully…
In-line monitoring of granule moisture in fluidized-bed dryers using microwave resonance technology.
Buschmüller, Caroline; Wiedey, Wolfgang; Döscher, Claas; Dressler, Jochen; Breitkreutz, Jörg
2008-05-01
This is the first report on in-line moisture measurement of pharmaceutical products by microwave resonance technology. In order to meet the FDA's PAT approach, a microwave resonance sensor appropriate for pharmaceutical use was developed and implemented into two different fluidized-bed dryers. The novel sensor enables a continuous moisture measurement independent from the product density. Hence, for the first time precise real time determination of the moisture in pharmaceutical granules becomes possible. The qualification of the newly developed sensor was performed by drying placebo granules under experimental conditions and the validation using drug loaded granules under real process conditions. The results of the investigations show good correlations between water content of the granules determined by the microwave resonance sensor and both reference methods, loss on drying by infrared light exposure and Karl Fischer titration. Furthermore, a considerable time saving in the drying process was achieved through monitoring the residual water content continuously by microwave resonance technology instead of the formerly used discontinuous methods.
Tran, Thuy T B; Shelat, Kinnari J; Tang, Daniel; Li, Enpeng; Gilbert, Robert G; Hasjim, Jovin
2011-04-27
Whole polished rice grains were ground using cryogenic and hammer milling to understand the mechanisms of degradation of starch granule structure, whole (branched) molecular structure, and individual branches of the molecules during particle size reduction (grinding). Hammer milling caused greater degradation to starch granules than cryogenic milling when the grains were ground to a similar volume-median diameter. Molecular degradation of starch was not evident in the cryogenically milled flours, but it was observed in the hammer-milled flours with preferential cleavage of longer (amylose) branches. This can be attributed to the increased grain brittleness and fracturability at cryogenic temperatures, reducing the mechanical energy required to diminish the grain size and thus reducing the probability of chain scission. The results indicate, for the first time, that branching, whole molecule, and granule structures of starch can be independently altered by varying grinding conditions, such as grinding force and temperature.
Enterovirus Control of Translation and RNA Granule Stress Responses.
Lloyd, Richard E
2016-03-30
Enteroviruses such as poliovirus (PV) and coxsackievirus B3 (CVB3) have evolved several parallel strategies to regulate cellular gene expression and stress responses to ensure efficient expression of the viral genome. Enteroviruses utilize their encoded proteinases to take over the cellular translation apparatus and direct ribosomes to viral mRNAs. In addition, viral proteinases are used to control and repress the two main types of cytoplasmic RNA granules, stress granules (SGs) and processing bodies (P-bodies, PBs), which are stress-responsive dynamic structures involved in repression of gene expression. This review discusses these processes and the current understanding of the underlying mechanisms with respect to enterovirus infections. In addition, the review discusses accumulating data suggesting linkage exists between RNA granule formation and innate immune sensing and activation.
Fettke, Joerg; Leifels, Lydia; Brust, Henrike; Herbst, Karoline; Steup, Martin
2012-01-01
Parenchyma cells from tubers of Solanum tuberosum L. convert several externally supplied sugars to starch but the rates vary largely. Conversion of glucose 1-phosphate to starch is exceptionally efficient. In this communication, tuber slices were incubated with either of four solutions containing equimolar [U-14C]glucose 1-phosphate, [U-14C]sucrose, [U-14C]glucose 1-phosphate plus unlabelled equimolar sucrose or [U-14C]sucrose plus unlabelled equimolar glucose 1-phosphate. 14C-incorporation into starch was monitored. In slices from freshly harvested tubers each unlabelled compound strongly enhanced 14C incorporation into starch indicating closely interacting paths of starch biosynthesis. However, enhancement disappeared when the tubers were stored. The two paths (and, consequently, the mutual enhancement effect) differ in temperature dependence. At lower temperatures, the glucose 1-phosphate-dependent path is functional, reaching maximal activity at approximately 20 °C but the flux of the sucrose-dependent route strongly increases above 20 °C. Results are confirmed by in vitro experiments using [U-14C]glucose 1-phosphate or adenosine-[U-14C]glucose and by quantitative zymograms of starch synthase or phosphorylase activity. In mutants almost completely lacking the plastidial phosphorylase isozyme(s), the glucose 1-phosphate-dependent path is largely impeded. Irrespective of the size of the granules, glucose 1-phosphate-dependent incorporation per granule surface area is essentially equal. Furthermore, within the granules no preference of distinct glucosyl acceptor sites was detectable. Thus, the path is integrated into the entire granule biosynthesis. In vitro 14C-incorporation into starch granules mediated by the recombinant plastidial phosphorylase isozyme clearly differed from the in situ results. Taken together, the data clearly demonstrate that two closely but flexibly interacting general paths of starch biosynthesis are functional in potato tuber cells. PMID:22378944
Fettke, Joerg; Leifels, Lydia; Brust, Henrike; Herbst, Karoline; Steup, Martin
2012-05-01
Parenchyma cells from tubers of Solanum tuberosum L. convert several externally supplied sugars to starch but the rates vary largely. Conversion of glucose 1-phosphate to starch is exceptionally efficient. In this communication, tuber slices were incubated with either of four solutions containing equimolar [U-¹⁴C]glucose 1-phosphate, [U-¹⁴C]sucrose, [U-¹⁴C]glucose 1-phosphate plus unlabelled equimolar sucrose or [U-¹⁴C]sucrose plus unlabelled equimolar glucose 1-phosphate. C¹⁴-incorporation into starch was monitored. In slices from freshly harvested tubers each unlabelled compound strongly enhanced ¹⁴C incorporation into starch indicating closely interacting paths of starch biosynthesis. However, enhancement disappeared when the tubers were stored. The two paths (and, consequently, the mutual enhancement effect) differ in temperature dependence. At lower temperatures, the glucose 1-phosphate-dependent path is functional, reaching maximal activity at approximately 20 °C but the flux of the sucrose-dependent route strongly increases above 20 °C. Results are confirmed by in vitro experiments using [U-¹⁴C]glucose 1-phosphate or adenosine-[U-¹⁴C]glucose and by quantitative zymograms of starch synthase or phosphorylase activity. In mutants almost completely lacking the plastidial phosphorylase isozyme(s), the glucose 1-phosphate-dependent path is largely impeded. Irrespective of the size of the granules, glucose 1-phosphate-dependent incorporation per granule surface area is essentially equal. Furthermore, within the granules no preference of distinct glucosyl acceptor sites was detectable. Thus, the path is integrated into the entire granule biosynthesis. In vitro C¹⁴C-incorporation into starch granules mediated by the recombinant plastidial phosphorylase isozyme clearly differed from the in situ results. Taken together, the data clearly demonstrate that two closely but flexibly interacting general paths of starch biosynthesis are functional in potato tuber cells.
Zhang, Yan-jun; Liu, Li-li; Hu, Jun-hua; Wu, Yun; Chao, En-xiang; Xiao, Wei
2015-11-01
First with the qualified rate of granules as the evaluation index, significant influencing factors were firstly screened by Plackett-Burman design. Then, with the qualified rate and moisture content as the evaluation indexes, significant factors that affect one-step pelletization technology were further optimized by Box-Behnken design; experimental data were imitated by multiple regression and second-order polynomial equation; and response surface method was used for predictive analysis of optimal technology. The best conditions were as follows: inlet air temperature of 85 degrees C, sample introduction speed of 33 r x min(-1), density of concrete 1. 10. One-step pelletization technology of Biqiu granules by Plackett-Burman design and Box-Behnken response surface methodology was stable and feasible with good predictability, which provided reliable basis for the industrialized production of Biqiu granules.
Wang, Shaobo; Brunne, Bianka; Zhao, Shanting; Chai, Xuejun; Li, Jiawei; Lau, Jeremie; Failla, Antonio Virgilio; Zobiak, Bernd; Sibbe, Mirjam; Westbrook, Gary L; Lutz, David; Frotscher, Michael
2018-01-03
Reelin controls neuronal migration and layer formation. Previous studies in reeler mice deficient in Reelin focused on the result of the developmental process in fixed tissue sections. It has remained unclear whether Reelin affects the migratory process, migration directionality, or migrating neurons guided by the radial glial scaffold. Moreover, Reelin has been regarded as an attractive signal because newly generated neurons migrate toward the Reelin-containing marginal zone. Conversely, Reelin might be a stop signal because migrating neurons in reeler , but not in wild-type mice, invade the marginal zone. Here, we monitored the migration of newly generated proopiomelanocortin-EGFP -expressing dentate granule cells in slice cultures from reeler , reeler -like mutants and wild-type mice of either sex using real-time microscopy. We discovered that not the actual migratory process and migratory speed, but migration directionality of the granule cells is controlled by Reelin. While wild-type granule cells migrated toward the marginal zone of the dentate gyrus, neurons in cultures from reeler and reeler -like mutants migrated randomly in all directions as revealed by vector analyses of migratory trajectories. Moreover, live imaging of granule cells in reeler slices cocultured to wild-type dentate gyrus showed that the reeler neurons changed their directions and migrated toward the Reelin-containing marginal zone of the wild-type culture, thus forming a compact granule cell layer. In contrast, directed migration was not observed when Reelin was ubiquitously present in the medium of reeler slices. These results indicate that topographically administered Reelin controls the formation of a granule cell layer. SIGNIFICANCE STATEMENT Neuronal migration and the various factors controlling its onset, speed, directionality, and arrest are poorly understood. Slice cultures offer a unique model to study the migration of individual neurons in an almost natural environment. In the present study, we took advantage of the expression of proopiomelanocortin-EGFP by newly generated, migrating granule cells to analyze their migratory trajectories in hippocampal slice cultures from wild-type mice and mutants deficient in Reelin signaling. We show that the compartmentalized presence of Reelin is essential for the directionality, but not the actual migratory process or speed, of migrating granule cells leading to their characteristic lamination in the dentate gyrus. Copyright © 2018 the authors 0270-6474/18/380137-12$15.00/0.
Tan, Bernice Mei Jin; Loh, Zhi Hui; Soh, Josephine Lay Peng; Liew, Celine Valeria; Heng, Paul Wan Sia
2014-01-02
Binder distribution in the powder mass during high shear granulation is especially critical with the use of viscous liquid binders and with short processing times. A viscous liquid binder was delivered into the powder mass at two flow rates using three methods: pouring, pumping and spraying from a pressure pot. Binder content analyses at the scale of individual granules were conducted to investigate the impact of different delivery conditions on the homogeneity of binder distribution. There was clear evidence of non-uniformity of binder content among individual granules across all delivery conditions, particularly for the fast rates of delivery. Poorer reproducibility values of tablet thickness and disintegration time were observed when binder was poured but this may be overcome by pumping or spraying from the pressure pot. Greater homogeneity of binder distribution occurred with the slow rates of delivery and led to the earlier onset of granule growth and a consequent increase in granule size. Larger granule size and lower proportion of fines were in turn associated with increased granule bulk density and improvement of granule flow. In conclusion, delivery of a viscous binder at a slow rate either by pumping or via a pressure pot was most desirable during granulation. Copyright © 2013 Elsevier B.V. All rights reserved.
Bin, Zhang; Bin, Xue; Zhigang, Qiu; Zhiqiang, Chen; Junwen, Li; Taishi, Gong; Wenci, Zou; Jingfeng, Wang
2015-01-01
Denitrifying capability of glycogen accumulating organisms (GAOs) has received great attention in environmental science and microbial ecology. Combining this ability with granule processes would be an interesting attempt. Here, a laboratory-scale sequencing batch reactor (SBR) was operated to enrich GAOs and enable sludge granulation. The results showed that the GAO granules were cultivated successfully and the granules had denitrifying capability. The batch experiments demonstrated that all NO3−-N could be removed or reduced, some amount of NO2−-N were accumulated in the reactor, and N2 was the main gaseous product. SEM analysis suggested that the granules were tightly packed with a large amount of tetrad-forming organisms (TFOs); filamentous bacteria served as the supporting structures for the granules. The microbial community structure of GAO granules was differed substantially from the inoculant conventional activated sludge. Most of the bacteria in the seed sludge grouped with members of Proteobacterium. FISH analysis confirmed that GAOs were the predominant members in the granules and were distributed evenly throughout the granular space. In contrast, PAOs were severely inhibited. Overall, cultivation of the GAO granules and utilizing their denitrifying capability can provide us with a new approach of nitrogen removal and saving more energy. PMID:26257096
Bin, Zhang; Bin, Xue; Zhigang, Qiu; Zhiqiang, Chen; Junwen, Li; Taishi, Gong; Wenci, Zou; Jingfeng, Wang
2015-08-10
Denitrifying capability of glycogen accumulating organisms (GAOs) has received great attention in environmental science and microbial ecology. Combining this ability with granule processes would be an interesting attempt. Here, a laboratory-scale sequencing batch reactor (SBR) was operated to enrich GAOs and enable sludge granulation. The results showed that the GAO granules were cultivated successfully and the granules had denitrifying capability. The batch experiments demonstrated that all NO3(-)-N could be removed or reduced, some amount of NO2(-)-N were accumulated in the reactor, and N2 was the main gaseous product. SEM analysis suggested that the granules were tightly packed with a large amount of tetrad-forming organisms (TFOs); filamentous bacteria served as the supporting structures for the granules. The microbial community structure of GAO granules was differed substantially from the inoculant conventional activated sludge. Most of the bacteria in the seed sludge grouped with members of Proteobacterium. FISH analysis confirmed that GAOs were the predominant members in the granules and were distributed evenly throughout the granular space. In contrast, PAOs were severely inhibited. Overall, cultivation of the GAO granules and utilizing their denitrifying capability can provide us with a new approach of nitrogen removal and saving more energy.
NASA Astrophysics Data System (ADS)
Bin, Zhang; Bin, Xue; Zhigang, Qiu; Zhiqiang, Chen; Junwen, Li; Taishi, Gong; Wenci, Zou; Jingfeng, Wang
2015-08-01
Denitrifying capability of glycogen accumulating organisms (GAOs) has received great attention in environmental science and microbial ecology. Combining this ability with granule processes would be an interesting attempt. Here, a laboratory-scale sequencing batch reactor (SBR) was operated to enrich GAOs and enable sludge granulation. The results showed that the GAO granules were cultivated successfully and the granules had denitrifying capability. The batch experiments demonstrated that all NO3--N could be removed or reduced, some amount of NO2--N were accumulated in the reactor, and N2 was the main gaseous product. SEM analysis suggested that the granules were tightly packed with a large amount of tetrad-forming organisms (TFOs); filamentous bacteria served as the supporting structures for the granules. The microbial community structure of GAO granules was differed substantially from the inoculant conventional activated sludge. Most of the bacteria in the seed sludge grouped with members of Proteobacterium. FISH analysis confirmed that GAOs were the predominant members in the granules and were distributed evenly throughout the granular space. In contrast, PAOs were severely inhibited. Overall, cultivation of the GAO granules and utilizing their denitrifying capability can provide us with a new approach of nitrogen removal and saving more energy.
Eshleman, Nichole; Liu, Guangbo; McGrath, Kaitlyn; Parker, Roy; Buchan, J. Ross
2016-01-01
The nuclear THO and TREX-2 complexes are implicated in several steps of nuclear mRNP biogenesis, including transcription, 3′ end processing and export. In a recent genomic microscopy screen in Saccharomyces cerevisiae for mutants with constitutive stress granules, we identified that absence of THO and TREX-2 complex subunits leads to the accumulation of Pab1-GFP in cytoplasmic foci. We now show that these THO/TREX-2 mutant induced foci (“TT foci”) are not stress granules but instead are a mRNP granule containing poly(A)+ mRNA, some mRNP components also found in stress granules, as well several proteins involved in mRNA 3′ end processing and export not normally seen in stress granules. In addition, TT foci are resistant to cycloheximide-induced disassembly, suggesting the presence of mRNPs impaired for entry into translation. THO mutants also exhibit defects in normal stress granule assembly. Finally, our data also suggest that TT foci are targeted by autophagy. These observations argue that defects in nuclear THO and TREX-2 complexes can affect cytoplasmic mRNP function by producing aberrant mRNPs that are exported to cytosol, where they accumulate in TT foci and ultimately can be cleared by autophagy. This identifies a novel mechanism of quality control for aberrant mRNPs assembled in the nucleus. PMID:27251550
Rolewicz, M; Rusek, P; Borowik, K
2018-06-15
The article presents research results on obtaining phosphorus granulated fertilizers on the basis of microbiologically activated sewage sludge ashes, ground bones and dried blood from meat industry. Granulation tests were carried out using a laboratory pan granulator as well as on an experimental pilot plant. The aim of the studies was to select the proper composition of the mixture of raw materials and binding agents to obtain granulated fertilizers from waste materials such as MSSA and MBM and bacteria lyophilisate. Obtained fertilizer samples were subjected to physical tests (granulation tests etc.) and quality assessment. The tests confirmed that it was possible to produce granulated phosphate fertilizers using the Bacillus megaterium for solubilization of phosphorus in a simple process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ito, Azusa; Hattori, Makoto; Yoshida, Tadashi; Takahashi, Koji
2006-01-01
The effects of lysine (Lys), monosodium glutamate (GluNa), glycine, alanine and epsilon-poly(L-lysine) (PL) with different degrees of polymerization on the gelatinization behavior of potato starch granules were investigated by DSC, viscosity and swelling measurements, microscopic observation, and measurement of the retained amino acid amount to clarify the contribution of the net charge to their regulatory effects on the gelatinization behavior. The amino acids and PL each contributed to an increase in the gelatinization temperature, and a decrease in the peak viscosity and swelling. These effects strongly depended on the absolute value of their net charge. The disappearance of a negative or positive net charge by adjusting the pH value weakened the contribution. The swelling index and size of the potato starch granules changed according to replacement of the swelling medium. The amino acids and PL were easily retained by the swollen potato starch granules according to replacement of the outer solution of the starch granules.
Niepielko, Matthew G; Eagle, Whitby V I; Gavis, Elizabeth R
2018-06-18
The formation of ribonucleoprotein assemblies called germ granules is a conserved feature of germline development. In Drosophila, germ granules form at the posterior of the oocyte in a specialized cytoplasm called the germ plasm, which specifies germline fate during embryogenesis. mRNAs, including nanos (nos) and polar granule component (pgc), that function in germline development are localized to the germ plasm through their incorporation into germ granules, which deliver them to the primordial germ cells. Germ granules are nucleated by Oskar (Osk) protein and contain varying combinations and quantities of their constituent mRNAs, which are organized as spatially distinct, multi-copy homotypic clusters. The process that gives rise to such heterogeneous yet organized granules remains unknown. Here, we show that individual nos and pgc transcripts can populate the same nascent granule, and these first transcripts then act as seeds, recruiting additional like transcripts to form homotypic clusters. Within a granule, homotypic clusters grow independently of each other but depend on the simultaneous acquisition of additional Osk. Although granules can contain multiple clusters of a particular mRNA, granule mRNA content is dominated by cluster size. These results suggest that the accumulation of mRNAs in the germ plasm is controlled by the mRNAs themselves through their ability to form homotypic clusters; thus, RNA self-association drives germ granule mRNA localization. We propose that a stochastic seeding and self-recruitment mechanism enables granules to simultaneously incorporate many different mRNAs while ensuring that each becomes enriched to a functional threshold. Copyright © 2018 Elsevier Ltd. All rights reserved.
Storage and growth of denitrifiers in aerobic granules: part I. model development.
Ni, Bing-Jie; Yu, Han-Qing
2008-02-01
A mathematical model, based on the Activated Sludge Model No.3 (ASM3), is developed to describe the storage and growth activities of denitrifiers in aerobic granules under anoxic conditions. In this model, mass transfer, hydrolysis, simultaneous anoxic storage and growth, anoxic maintenance, and endogenous decay are all taken into account. The model established is implemented in the well-established AQUASIM simulation software. A combination of completely mixed reactor and biofilm reactor compartments provided by AQUASIM is used to simulate the mass transport and conversion processes occurring in both bulk liquid and granules. The modeling results explicitly show that the external substrate is immediately utilized for storage and growth at feast phase. More external substrates are diverted to storage process than the primary biomass production process. The model simulation indicates that the nitrate utilization rate (NUR) of granules-based denitrification process includes four linear phases of nitrate reduction. Furthermore, the methodology for determining the most important parameter in this model, that is, anoxic reduction factor, is established. (c) 2007 Wiley Periodicals, Inc.
Genetics Home Reference: Renpenning syndrome
... to play a role in processing and transporting RNA, a chemical cousin of DNA that serves as ... binding protein 1 is found in structures called RNA granules. These granules allow the transport and storage ...
A service for the application of data quality information to NASA earth science satellite records
NASA Astrophysics Data System (ADS)
Armstrong, E. M.; Xing, Z.; Fry, C.; Khalsa, S. J. S.; Huang, T.; Chen, G.; Chin, T. M.; Alarcon, C.
2016-12-01
A recurring demand in working with satellite-based earth science data records is the need to apply data quality information. Such quality information is often contained within the data files as an array of "flags", but can also be represented by more complex quality descriptions such as combinations of bit flags, or even other ancillary variables that can be applied as thresholds to the geophysical variable of interest. For example, with Level 2 granules from the Group for High Resolution Sea Surface Temperature (GHRSST) project up to 6 independent variables could be used to screen the sea surface temperature measurements on a pixel-by-pixel basis. Quality screening of Level 3 data from the Soil Moisture Active Passive (SMAP) instrument can be become even more complex, involving 161 unique bit states or conditions a user can screen for. The application of quality information is often a laborious process for the user until they understand the implications of all the flags and bit conditions, and requires iterative approaches using custom software. The Virtual Quality Screening Service, a NASA ACCESS project, is addressing these issues and concerns. The project has developed an infrastructure to expose, apply, and extract quality screening information building off known and proven NASA components for data extraction and subset-by-value, data discovery, and exposure to the user of granule-based quality information. Further sharing of results through well-defined URLs and web service specifications has also been implemented. The presentation will focus on overall description of the technologies and informatics principals employed by the project. Examples of implementations of the end-to-end web service for quality screening with GHRSST and SMAP granules will be demonstrated.
Treatment of HMX-production wastewater in an aerobic granular reactor.
Zhang, Jin-Hua; Wang, Min-Hui; Zhu, Xiao-Meng
2013-04-01
Aerobic granules were applied to the treatment of HMX-production wastewater using a gradual domestication method in a SBR. During the process, the granules showed a good settling ability, a high biomass retention rate, and high biological activity. After 40 days of stable operation, aerobic granular sludge performed very effectively in the removal of carbon and nitrogen compounds from HMX-production wastewater. Organic matter removal rates up to 97.57% and nitrogen removal efficiencies up to 80% were achieved during the process. Researchers conclude that using aerobic granules to treat explosive wastewater has good prospects for success.
Kamitakahara, Masanobu; Ohtoshi, Naohiro; Kawashita, Masakazu; Ioku, Koji
2016-05-01
Spherical porous granules of hydroxyapatite (HA) containing magnetic nanoparticles would be suitable for the hyperthermia treatment of bone tumor, because porous HA granules act as a scaffold for bone regeneration, and magnetic nanoparticles generate sufficient heat to kill tumor cells under an alternating magnetic field. Although magnetic nanoparticles are promising heat generators, their small size makes them difficult to support in porous HA ceramics. We prepared micrometer-sized composites of magnetic and HA nanoparticles, and then supported them in porous HA granules composed of rod-like particles. The spherical porous HA granules containing the composites of magnetic and HA nanoparticle were successfully prepared using a hydrothermal process without changing the crystalline phase and heat generation properties of the magnetic nanoparticles. The obtained granules generated sufficient heat for killing tumor cells under an alternating magnetic field (300 Oe at 100 kHz). The obtained granules are expected to be useful for the hyperthermia treatment of bone tumors.
Isolation of new polar granule components in Drosophila reveals P body and ER associated proteins
Thomson, Travis; Liu, Niankun; Arkov, Alexey; Lehmann, Ruth; Lasko, Paul
2008-01-01
Germ plasm, a specialized cytoplasm present at the posterior of the early Drosophila embryo, is necessary and sufficient for germ cell formation. Germ plasm is rich in mitochondria and contains electron dense structures called polar granules. To identify novel polar granule components we isolated proteins that associate in early embryos with Vasa (VAS) and Tudor (TUD), two known polar granule associated molecules. We identified Maternal expression at 31B (ME31B), eIF4A, Aubergine (AUB) and Transitional Endoplasmic Reticulum 94 (TER94) as components of both VAS and TUD complexes and confirmed their localization to polar granules by immuno-electron microscopy. ME31B, eIF4A and AUB are also present in processing (P) bodies, suggesting that polar granules, which are necessary for germ line formation, might be related to P bodies. Our recovery of ER associated proteins TER94 and ME31B confirms that polar granules are closely linked to the translational machinery and to mRNP assembly. PMID:18590813
The effect of process parameters on audible acoustic emissions from high-shear granulation.
Hansuld, Erin M; Briens, Lauren; Sayani, Amyn; McCann, Joe A B
2013-02-01
Product quality in high-shear granulation is easily compromised by minor changes in raw material properties or process conditions. It is desired to develop a process analytical technology (PAT) that can monitor the process in real-time and provide feedback for quality control. In this work, the application of audible acoustic emissions (AAEs) as a PAT tool was investigated. A condenser microphone was placed at the top of the air exhaust on a PMA-10 high-shear granulator to collect AAEs for a design of experiment (DOE) varying impeller speed, total binder volume and spray rate. The results showed the 10 Hz total power spectral densities (TPSDs) between 20 and 250 Hz were significantly affected by the changes in process conditions. Impeller speed and spray rate were shown to have statistically significant effects on granulation wetting, and impeller speed and total binder volume were significant in terms of process end-point. The DOE results were confirmed by a multivariate PLS model of the TPSDs. The scores plot showed separation based on impeller speed in the first component and spray rate in the second component. The findings support the use of AAEs to monitor changes in process conditions in real-time and achieve consistent product quality.
Hein, Stephanie; Picker-Freyer, Katharina M; Langridge, John
2008-01-01
Tablets are by far the most common solid oral dosage forms, and many drugs need to be granulated before they can be tableted. Increasingly roller compaction is being used as a dry granulation technique; however it is a very time and material intensive method. Thus some mini roller compactors and simulations of the roller compaction process have been developed as a means of studying the technique at small scale. An important factor in the selection of materials for roller compaction is their ability to be recompressed into tablets after the initial roller compaction and milling steps. In this paper the roller compaction process was simulated on the basis of some models by Gereg and Cappola (2002) and Zinchuk et al. (2004). An eccentric tableting machine was used to make compacts from alpha-lactose monohydrate, anhydrous beta-lactose, spray-dried lactose and microcrystalline cellulose at different maximum relative densities (rho rel,max 0.6-0.9). These compacts were milled immediately to granules with a rotary granulator. The properties of the granules were analyzed and compared to the properties of the original powders. These granules and powders were then tableted at different maximum relative densities (rho rel,max 0.75-0.95) and their properties including elastic recovery, crushing force and 3D-model were analyzed. The properties of the tablets made from the granules were compared to the properties of the tablets made from the powders to determine which excipients are most suitable for the roller compaction process. The study showed that anhydrous beta-lactose is the preferred form of lactose for use in roller compaction since compaction did not affect tablet crushing force to a large extent. With the simulation of roller compaction process one is able to find qualified materials for use in roller compaction without the necessity of a great deal of material and time.
Mechanisms and kinetics of granulated sewage sludge combustion.
Kijo-Kleczkowska, Agnieszka; Środa, Katarzyna; Kosowska-Golachowska, Monika; Musiał, Tomasz; Wolski, Krzysztof
2015-12-01
This paper investigates sewage sludge disposal methods with particular emphasis on combustion as the priority disposal method. Sewage sludge incineration is an attractive option because it minimizes odour, significantly reduces the volume of the starting material and thermally destroys organic and toxic components of the off pads. Additionally, it is possible that ashes could be used. Currently, as many as 11 plants use sewage sludge as fuel in Poland; thus, this technology must be further developed in Poland while considering the benefits of co-combustion with other fuels. This paper presents the results of experimental studies aimed at determining the mechanisms (defining the fuel combustion region by studying the effects of process parameters, including the size of the fuel sample, temperature in the combustion chamber and air velocity, on combustion) and kinetics (measurement of fuel temperature and mass changes) of fuel combustion in an air stream under different thermal conditions and flow rates. The combustion of the sludge samples during air flow between temperatures of 800 and 900°C is a kinetic-diffusion process. This process determines the sample size, temperature of its environment, and air velocity. The adopted process parameters, the time and ignition temperature of the fuel by volatiles, combustion time of the volatiles, time to reach the maximum temperature of the fuel surface, maximum temperature of the fuel surface, char combustion time, and the total process time, had significant impacts. Copyright © 2015 Elsevier Ltd. All rights reserved.
Physicochemical and tablet properties of Cyperus alulatus rhizomes starch granules.
Paramakrishnan, N; Jha, S; Kumar, K Jayaram
2015-05-01
The starch extracted from rhizomes of Cyperus alulatus (CA) was characterized for its physicochemical, morphological and tableting properties. Rhizomes of CA yield a significant quantity of starch granules (CASG) i.e., 11.93%. CASG was characterized in terms of moisture, ash and amylose contents, solubility and swelling power, paste clarity and water retention capacity. The swelling power was found to be significantly improved with the increase in temperature. Scanning electron micrographs revealed that the granule's surface was smooth, the granules were spherical, mostly round, disc like, and the size range was 6.65-12.13 μm. Finger print region in FTIR spectra confirmed its carbohydrate nature. The evaluated micromeritic properties of extracted granule's bulk density, tapped density, Carr's index, Hausner ratio, true density and porosity render unique practicability of CASG being used as an adjuvant in pharmaceutical solid dosage forms. Tablets prepared by using CASG showed higher mechanical strength and more disintegration time, which depicted the characteristic binding nature of the starch granules. As CASG is imparting better binding properties in less concentration and also it can be used in combination with the established starches to get the synergistic effect; this starch can be used commercially in the tablet preparation. Copyright © 2015 Elsevier B.V. All rights reserved.
Olfactory granule cell development in normal and hyperthyroid rats.
Brunjes, P C; Schwark, H D; Greenough, W T
1982-10-01
Dendritic development was examined in olfactory bulbs of both normal 7-, 14-, 21- and 60-day-old rats and littermates treated on postnatal days 1-4 with 1 microgram/g body weight of L-thyroxine sodium. Tissue was processed via the Golgi-Cox technique and subjected to quantitative analyses of mitral and internal layer granule cell development. These populations of granule cells were selected because their pattern of late proliferation suggested potentially greater susceptibility to postnatal hormonal alterations. Although neonatal hyperthyroidism induces widespread acceleration of maturation, including precocious chemosensitivity, granule cell development was unaffected relative to littermate controls. Both normal and hyperthyroid groups exhibited an inverted U-shaped pattern of cellular development, with rapid dendritic dendritic growth and expansion occurring during the earliest ages tested, but with loss of processes and dendritic field size occurring after day 21.
Tan, Manrong; Yan, Dan; Qiu, Lingling; Chen, Longhu; Yan, Yan; Jin, Cheng; Li, Hanbing; Xiao, Xiaohe
2012-04-01
For the quality management system of herbal medicines, intermediate and finished products it exists the " short board" effect of methodologies. Based on the concept of process control, new strategies and new methods of the production process quality control had been established with the consideration of the actual production of traditional Chinese medicine an the characteristics of Chinese medicine. Taking Banlangen granule as a practice example, which was effective and widespread application, character identification, determination of index components, chemical fingerprint and biometrics technology were sequentially used respectively to assess the quality of Banlangen herbal medicines, intermediate (water extraction and alcohol precipitation) and finished product. With the transfer rate of chemical information and biological potency as indicators, the effectiveness and transmission of the above different assessments and control methods had been researched. And ultimately, the process quality control methods of Banlangen granule, which were based on chemical composition analysis-biometric analysis, had been set up. It can not only validly solute the current status that there were many manufacturers varying quality of Banlangen granule, but also ensure and enhance its clinical efficacy. Furthermore it provided a foundation for the construction of the quality control of traditional Chinese medicine production process.
Fernandez, Carlos J.; Haugwitz, Michael; Eaton, Benjamin; Moore, Hsiao-Ping H.
1997-01-01
The biogenesis of peptide hormone secretory granules involves a series of sorting, modification, and trafficking steps that initiate in the trans-Golgi and trans-Golgi network (TGN). To investigate their temporal order and interrelationships, we have developed a pulse–chase protocol that follows the synthesis and packaging of a sulfated hormone, pro-opiomelanocortin (POMC). In AtT-20 cells, sulfate is incorporated into POMC predominantly on N-linked endoglycosidase H-resistant oligosaccharides. Subcellular fractionation and pharmacological studies confirm that this sulfation occurs at the trans-Golgi/TGN. Subsequent to sulfation, POMC undergoes a number of molecular events before final storage in dense-core granules. The first step involves the transfer of POMC from the sulfation compartment to a processing compartment (immature secretory granules, ISGs): Inhibiting export of pulse-labeled POMC by brefeldin A (BFA) or a 20°C block prevents its proteolytic conversion to mature adrenocorticotropic hormone. Proteolytic cleavage products were found in vesicular fractions corresponding to ISGs, suggesting that the processing machinery is not appreciably activated until POMC exits the sulfation compartment. A large portion of the labeled hormone is secreted from ISGs as incompletely processed intermediates. This unregulated secretory process occurs only during a limited time window: Granules that have matured for 2 to 3 h exhibit very little unregulated release, as evidenced by the efficient storage of the 15-kDa N-terminal fragment that is generated by a relatively late cleavage event within the maturing granule. The second step of granule biogenesis thus involves two maturation events: proteolytic activation of POMC in ISGs and a transition of the organelle from a state of high unregulated release to one that favors intracellular storage. By using BFA, we show that the two processes occurring in ISGs may be uncoupled: although the unregulated secretion from ISGs is impaired by BFA, proteolytic processing of POMC within this organelle proceeds unaffected. The finding that BFA impairs constitutive secretion from both the TGN and ISGs also suggests that these secretory processes may be related in mechanism. Finally, our data indicate that the unusually high levels of unregulated secretion often associated with endocrine tumors may result, at least in part, from inefficient storage of secretory products at the level of ISGs. PMID:9362061
Fernandez, C J; Haugwitz, M; Eaton, B; Moore, H P
1997-11-01
The biogenesis of peptide hormone secretory granules involves a series of sorting, modification, and trafficking steps that initiate in the trans-Golgi and trans-Golgi network (TGN). To investigate their temporal order and interrelationships, we have developed a pulse-chase protocol that follows the synthesis and packaging of a sulfated hormone, pro-opiomelanocortin (POMC). In AtT-20 cells, sulfate is incorporated into POMC predominantly on N-linked endoglycosidase H-resistant oligosaccharides. Subcellular fractionation and pharmacological studies confirm that this sulfation occurs at the trans-Golgi/TGN. Subsequent to sulfation, POMC undergoes a number of molecular events before final storage in dense-core granules. The first step involves the transfer of POMC from the sulfation compartment to a processing compartment (immature secretory granules, ISGs): Inhibiting export of pulse-labeled POMC by brefeldin A (BFA) or a 20 degrees C block prevents its proteolytic conversion to mature adrenocorticotropic hormone. Proteolytic cleavage products were found in vesicular fractions corresponding to ISGs, suggesting that the processing machinery is not appreciably activated until POMC exits the sulfation compartment. A large portion of the labeled hormone is secreted from ISGs as incompletely processed intermediates. This unregulated secretory process occurs only during a limited time window: Granules that have matured for 2 to 3 h exhibit very little unregulated release, as evidenced by the efficient storage of the 15-kDa N-terminal fragment that is generated by a relatively late cleavage event within the maturing granule. The second step of granule biogenesis thus involves two maturation events: proteolytic activation of POMC in ISGs and a transition of the organelle from a state of high unregulated release to one that favors intracellular storage. By using BFA, we show that the two processes occurring in ISGs may be uncoupled: although the unregulated secretion from ISGs is impaired by BFA, proteolytic processing of POMC within this organelle proceeds unaffected. The finding that BFA impairs constitutive secretion from both the TGN and ISGs also suggests that these secretory processes may be related in mechanism. Finally, our data indicate that the unusually high levels of unregulated secretion often associated with endocrine tumors may result, at least in part, from inefficient storage of secretory products at the level of ISGs.
Patidar, S K; Tare, Vinod
2004-01-01
This paper describes the effect of the nutrients iron (Fe), nickel (Ni), zinc (Zn), cobalt (Co), and molybdenum (Mo) on biomass evolution in an upflow anaerobic sludge blanket (UASB) reactor metabolizing synthetic sulfate-laden organics at varying operating conditions during a period of 540 days. A bench-scale model of a UASB reactor was operated at a temperature of 35 degrees C for a chemical oxygen demand-to-sulfate (COD/SO4(2-)) ratio of 8.59 to 2.0, a sulfate loading rate of 0.54 to 1.88 kg SO4(2-)/m3 x d, and an organic loading rate of 1.9 to 5.75 kg COD/m3 x d. Biomass was characterized in terms of total methanogenic activity, acetate-utilizing methanogenic activity, total sulfidogenic activity, acetate-utilizing sulfidogenic activity, and scanning electron microscopy (SEM). Nickel and cobalt limitation appears to affect the activity of hydrogen-utilizing methane-producing bacteria (HMPB) significantly without having an appreciable effect on the activity of acetate-utilizing methane-producing bacteria (AMPB). Nickel and cobalt supplementation resulted in increased availability and, consequently, restoration of biomass activity and process performance. Iron limitation and sulfidogenic conditions resulted in the growth of low-density, hollow, fragile granules that washed out, causing process instability and performance deterioration. Iron and cobalt supplementation indicated significant stimulation of AMPB with slight inhibition of HMPB. Examination of biomass through SEM indicated a population shift with dominance of sarcina-type organisms and the formation of hollow granules. Granule disintegration was observed toward the end of the study.
Starch granule initiation is controlled by a heteromultimeric isoamylase in potato tubers
Bustos, Regla; Fahy, Brendan; Hylton, Christopher M.; Seale, Robert; Nebane, N. Miranda; Edwards, Anne; Martin, Cathie; Smith, Alison M.
2004-01-01
Starch granule initiation is not understood, but recent evidence implicates a starch debranching enzyme, isoamylase, in the control of this process. Potato tubers contain isoamylase activity attributable to a heteromultimeric protein containing Stisa1 and Stisa2, the products of two of the three isoamylase genes of potato. To discover whether this enzyme is involved in starch granule initiation, activity was reduced by expression of antisense RNA for Stisa1 or Stisa2. Transgenic tubers accumulated a small amount of a soluble glucan, similar in structure to the phytoglycogen of cereal, Arabidopsis, and Chlamydomonas mutants lacking isoamylase. The major effect, however, was on the number of starch granules. Transgenic tubers accumulated large numbers of tiny granules not seen in normal tubers. These data indicate that the heteromultimeric isoamylase functions during starch synthesis to suppress the initiation of glucan molecules in the plastid stroma that would otherwise crystallize to nucleate new starch granules. PMID:14766984
NASA Technical Reports Server (NTRS)
Wood, P. C.; Wydeven, T.
1985-01-01
In portable breathing apparatus applications at 1 atm, potassium superoxide (KO2) has exhibited low-utilization efficiency of the available oxygen (O2) and diminished carbon dioxide-(CO2) scrubbing capacity caused by the formation of a fused, hydrated-hydroxide/carbonate product coating on the superoxide granules. In earlier work, it was discovered that granules fabricated from an intimate mixture of KO2 and calcium superoxide, Ca(O2)2, did not exhibit formation of a fused product coating and the utilization efficiency with respect to both O2 release and CO2 absorption was superior to KO2 granules when both types of granules were reacted with humidified CO2 under identified conditions. In the work described here, single pellets of KO2, KO2/Ca(O2), mixtures and commercially available KO2 tables and granules were reacted with a flow of humidified CO2 in helium at 1- and 10-atm total pressure and at an initial temperature of 40 C. In the 1-atm flow tests, the reaction rates and utilization efficiency of the KO2/Ca(O2)2 pellets were markedly superior to the KO2 pellets, tablets, and granules when the samples were reacted under identical conditions. However, at 10 atm, the rates of O2 release and CO2 absorption, as well as the utilization efficiencies of all the superoxide samples, were one-third to one-eighth of the values observed at 1 atm. The decrease in reaction performance at 10 atm compared to that at 1 atm has been attributed principally to the lower bulk diffusivity of the CO2 and H2O reactants in helium at the higher pressure and secondarily to the moderation of the reaction temperature caused by the higher heat capacity of the 10-atm helium.
Thermal insulation of pipelines by foamed glass-ceramic
NASA Astrophysics Data System (ADS)
Apkaryan, A. S.; Kudyakov, A. I.
2015-01-01
Based on broken glass, clay and organic additives granular insulating glass crystalline material and technology of its receipt are developed. The regularities of the effect of composition and firing temperature on the properties of the granules are specified. The resulting granular thermally insulating material is produced with a bulk density of 260-280 kg/m3 pellet strength - 1.74 MPa, thermal conductivity - 0.075 W/m °C, water absorption - 2.6 % by weight. The effect of the basic physical characteristics of the components of the charge on the process of pore formation is studied. According to the research results, basic parameters affecting the sustainability of the swelling glass are specified. Rational charge composition, thermal and gas synthesis mode are chosen so that the partial pressure of gases is below the surface tension of the melt. This enables the formation of granules with small closed pores and vitrified surface. The article is the result of studies on the application of materials for pipe insulation of heating mains with foamed glass ceramics.
Effect of high pressure on rheological and thermal properties of quinoa and maize starches.
Li, Guantian; Zhu, Fan
2018-02-15
Quinoa starch has small granules with relatively low gelatinization temperatures and amylose content. High hydrostatic pressure (HHP) is a non-thermal technique for food processing. In this study, effects of HHP up to 600MPa on physical properties of quinoa starch were studied and compared with those of a normal maize starch. Both starches gelatinized at 500 and 600MPa. The pressure of 600MPa completely gelatinized quinoa starch as revealed by thermal analysis. Dynamic rheological analysis showed that HHP improved the gel stability of both starches during cooling. HHP had little effects on amylopectin recrystallization and gel textural properties of starch. Overall, quinoa starch was more susceptible to HHP than maize starch. The effects of HHP on some rheological properties such as frequency dependence were different between these two types of starches. The differences could be attributed to the different composition, granular and chemical structures of starch, and the presence of granule remnants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of hydroxyapatite derived from Indian coral.
Sivakumar, M; Kumar, T S; Shantha, K L; Rao, K P
1996-09-01
A simple method of converting the calcium carbonate skeleton of the corals available in the Indian coast into hydroxyapatite granules has been developed. By heating the coral to 900 degrees C, the organic materials were eliminated. Powder X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) were employed to characterize the coral and to optimize the processing parameters as well as to confirm the hydroxyapatite formation. The coral used exhibits the presence of both aragonite and calcite phases (dimorphism). At a temperature of 900 degrees C the coral was found to decompose all the carbonate phases. The pre-heated coral is converted into hydroxyapatite by a chemical exchange reaction with di-ammonium phosphate under hydrothermal conditions. The hydroxyapatite obtained was in powder form and does not contain any impurities. The in vitro solubility test of the apatite granules performed in Gomoris, Michalelis, Sorensens, Ringer's and phosphate buffer of pH 7.2 and de-ionized water indicated the stability of the coralline hydroxyapatite.
Zhai, H; Jones, D S; McCoy, C P; Madi, A M; Tian, Y; Andrews, G P
2014-10-06
The objective of this work was to investigate the feasibility of using a novel granulation technique, namely, fluidized hot melt granulation (FHMG), to prepare gastroretentive extended-release floating granules. In this study we have utilized FHMG, a solvent free process in which granulation is achieved with the aid of low melting point materials, using Compritol 888 ATO and Gelucire 50/13 as meltable binders, in place of conventional liquid binders. The physicochemical properties, morphology, floating properties, and drug release of the manufactured granules were investigated. Granules prepared by this method were spherical in shape and showed good flowability. The floating granules exhibited sustained release exceeding 10 h. Granule buoyancy (floating time and strength) and drug release properties were significantly influenced by formulation variables such as excipient type and concentration, and the physical characteristics (particle size, hydrophilicity) of the excipients. Drug release rate was increased by increasing the concentration of hydroxypropyl cellulose (HPC) and Gelucire 50/13, or by decreasing the particle size of HPC. Floating strength was improved through the incorporation of sodium bicarbonate and citric acid. Furthermore, floating strength was influenced by the concentration of HPC within the formulation. Granules prepared in this way show good physical characteristics, floating ability, and drug release properties when placed in simulated gastric fluid. Moreover, the drug release and floating properties can be controlled by modification of the ratio or physical characteristics of the excipients used in the formulation.
Mineral-bearing vesicle transport in sea urchin embryos.
Vidavsky, Netta; Masic, Admir; Schertel, Andreas; Weiner, Steve; Addadi, Lia
2015-12-01
Sea urchin embryos sequester calcium from the sea water. This calcium is deposited in a concentrated form in granule bearing vesicles both in the epithelium and in mesenchymal cells. Here we use in vivo calcein labeling and confocal Raman spectroscopy, as well as cryo-FIB-SEM 3D structural reconstructions, to investigate the processes occurring in the internal cavity of the embryo, the blastocoel. We demonstrate that calcein stained granules are also present in the filopodial network within the blastocoel. Simultaneous fluorescence imaging and Raman spectroscopy show that these granules do contain a calcium mineral. By tracking the movements of these granules, we show that the granules in the epithelium and primary mesenchymal cells barely move, but those in the filopodial network move long distances. We could however not detect any unidirectional movement of the filopodial granules. We also show the presence of mineral containing multivesicular vesicles that also move in the filopodial network. We conclude that the filopodial network is an integral part of the mineral transport process, and possibly also for sequestering calcium and other ions. Although much of the sequestered calcium is deposited in the mineralized skeleton, a significant amount is used for other purposes, and this may be temporarily stored in these membrane-delineated intracellular deposits. Copyright © 2015 Elsevier Inc. All rights reserved.
Li, Yadi; Li, Caiming; Gu, Zhengbiao; Hong, Yan; Cheng, Li; Li, Zhaofeng
2017-10-01
Steady and dynamic shear measurements were used to investigate the rheological properties of cassava starches modified using the 1,4-α-glucan branching enzyme (GBE) from Geobacillus thermoglucosidans STB02. GBE treatment lowered the hysteresis loop areas, the activation energy (E a ) values and the parameters in rheological models of cassava starch pastes. Moreover, GBE treatment increased its storage (G') and loss (G″) moduli, and decreased their tan δ (ratio of G″/G') values and frequency-dependencies. Scanning electron microscopic studies showed the selective and particular attack of GBE on starch granules, and X-ray diffraction analyses showed that GBE treatment produces significant structural changes in amylose and amylopectin. These changes demonstrate that GBE modification produces cassava starch with a more structured network and improved stability towards mechanical processing. Differential scanning calorimetric analysis and temperature sweeps indicated greater resistance to granule rupture, higher gel rigidity, and a large decrease in the rate of initial conformational ordering with increasing GBE treatment time. Pronounced changes in rheological parameters revealed that GBE modification enhances the stability of cassava starch and its applicability in the food processing industry. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
He, Xiangming; Li, Jianjun; Cheng, Hongwei; Jiang, Changyin; Wan, Chunrong
A novel synthesis of controlled crystallization and granulation was attempted to prepare nano-scale β-Ni(OH) 2 cathode materials for high power Ni-MH batteries. Nano-scale β-Ni(OH) 2 and Co(OH) 2 with a diameter of 20 nm were prepared by controlled crystallization, mixed by ball milling, and granulated to form about 5 μm spherical grains by spray drying granulation. Both the addition of nano-scale Co(OH) 2 and granulation significantly enhanced electrochemical performance of nano-scale Ni(OH) 2. The XRD and TEM analysis shown that there were a large amount of defects among the crystal lattice of as-prepared nano-scale Ni(OH) 2, and the DTA-TG analysis shown that it had both lower decomposition temperature and higher decomposition reaction rate, indicating less thermal stability, as compared with conventional micro-scale Ni(OH) 2, and indicating that it had higher electrochemical performance. The granulated grains of nano-scale Ni(OH) 2 mixed with nano-scale Co(OH) 2 at Co/Ni = 1/20 presented the highest specific capacity reaching its theoretical value of 289 mAh g -1 at 1 C, and also exhibited much improved electrochemical performance at high discharge capacity rate up to 10 C. The granulated grains of nano-scale β-Ni(OH) 2 mixed with nano-scale Co(OH) 2 is a promising cathode active material for high power Ni-MH batteries.
Fukui, Atsuko; Fujii, Ryuta; Yonezawa, Yorinobu; Sunada, Hisakazu
2007-11-01
In the pharmaceutical preparation of a controlled release drug, it is very important and necessary to understand the release properties. The dissolution test is a very important and useful method for understanding and predicting drug-release properties. It was readily confirmed in the previous paper that the release process could be assessed quantitatively by a combination of the square-root time law and cube-root law equations for ethylcellulose (EC) matrix granules of phenylpropanolamine hydrochloride (PPA). In this paper EC layered granules were used in addition to EC matrix. The relationship between release property and the concentration of PPA in plasma after administration using beagle dogs were examined. Then it was confirmed that the correlativity for EC layered granules and EC matrix were similar each other. Therefore, it was considered that the dissolution test is useful for prediction of changes in concentration of PPA in the blood with time. And it was suggested that EC layered granules were suitable as a controlled release system as well as EC matrix.
Hall, Mary Beth
2016-03-01
Evaluation of physical, chemical, and enzymatic hydrolysis characteristics of protozoal glycogen is best performed on a pure substrate to avoid interference from other cell components. A method for isolating protozoal glycogen granules without use of detergents or other potentially contaminating chemicals was developed. Rumen inoculum was incubated anerobically in vitro with glucose. Glycogen-laden protozoa produced in the fermentation, primarily isotrichids, were allowed to sediment in a separatory funnel and were dispensed. The protozoa were processed through repeated centrifugations and sonication to isolate glycogen granules largely free of feed and cellular debris. The final water-insoluble lyophilized product analyzed as 98.3% α-glucan with very rare starch granules and 1.9% protein. Observed losses of glycogen granules during the clean-up process indicate that this procedure should not be used for quantitative assessment of protozoal glycogen from fermentations. Further optimization of this procedure to enhance the amount of glycogen obtained per fermentation may be possible. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Li, Wenhao; Tian, Xiaoling; Wang, Peng; Saleh, Ahmed S M; Luo, Qingui; Zheng, Jianmei; Ouyang, Shaohui; Zhang, Guoquan
2016-02-01
High hydrostatic pressure (HHP) can lead to starch gelatinization at room temperature, while the retrogradation mechanism of HHP gelatinized starch is not well known. HHP gelatinized normal and waxy corn starches were stored at room temperature for 192 h in order to investigate the retrogradation characteristics. The scanning electron microscopy (SEM), polarised light microscopy and differential scanning calorimetric (DSC) analysis showed that the pressurization of normal and waxy corn starch suspensions with concentration of 30% (w/v) at 600 MPa for 15 min resulted in a complete gelatinization. In addition, the pressure-gelatinized normal and waxy corn starch gels were stored and subjected to X-ray diffraction (XRD) analysis, resistant starch content determination, swelling power and pasting behavior. The retrograded normal maize and waxy maize starch showed a substantial loss of A-type crystallinity. Both pressure-gelatinized normal and waxy corn starches showed an increase in resistant starch content and relative crystallinity degree with the increase of storage time. In addition, restricted starch swelling power and lower pasting viscosities were observed for these two retrograded starches. The amylose molecule within starch granules has been regarded as the main factor to affect the structural and physicochemical properties during the retrogradation process of HHP-gelatinized starch granules. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tomo, H. S. S.; Ujianto, O.; Rizal, R.; Pratama, Y.
2017-07-01
Composite material thermoplastic was prepared from polypropilen granule as matrix, kenaf fiber as reinforcement and grafted polypropylene copolymer maleic anhydride as coupling agent. Composite products were produced as sandwich structures using compression molding. This research aimed to observe the influence of number of ply, temperature, pressure, and compression time using factorial design. Effects of variables on tensile and flexural strength were analyzed. Experimental results showed that tensile and flexural strength were influenced by degradation, fiber compaction, and matrix - fiber interaction mechanisms. Flexural strength was significantly affected by number of ply and its interaction to another process parameters (temperature, pressure, and compression time), but no significant effect of process parameters on tensile strength. The highest tensile strength (62.0 MPa) was produced at 3 ply, 210 °C, 50 Bar, and 3 min compression time (low, high, high, low), while the highest flexural strength (80.3 MPa) was produced at 3 ply, 190 °C, 50 Bar, and 3 min compression time (low, low, high, low).
A quality by design approach to scale-up of high-shear wet granulation process.
Pandey, Preetanshu; Badawy, Sherif
2016-01-01
High-shear wet granulation is a complex process that in turn makes scale-up a challenging task. Scale-up of high-shear wet granulation process has been studied extensively in the past with various different methodologies being proposed in the literature. This review article discusses existing scale-up principles and categorizes the various approaches into two main scale-up strategies - parameter-based and attribute-based. With the advent of quality by design (QbD) principle in drug product development process, an increased emphasis toward the latter approach may be needed to ensure product robustness. In practice, a combination of both scale-up strategies is often utilized. In a QbD paradigm, there is also a need for an increased fundamental and mechanistic understanding of the process. This can be achieved either by increased experimentation that comes at higher costs, or by using modeling techniques, that are also discussed as part of this review.
Zhou, Jia-Heng; Zhang, Zhi-Ming; Zhao, Hang; Yu, Hai-Tian; Alvarez, Pedro J J; Xu, Xiang-Yang; Zhu, Liang
2016-09-01
A novel funnel-shaped internals was proposed to enhance the stability and pollutant removal performance of an aerobic granular process by optimizing granule size distribution. Results showed up to 68.3±1.4% of granules in novel reactor (R1) were situated in optimal size range (700-1900μm) compared to less than 29.7±1.1% in conventional reactor (R2), and overgrowth of large granules was effectively suppressed without requiring additional energy. Consequently, higher total nitrogen (TN) removal (81.6±2.1%) achieved in R1 than in R2 (48.1±2.7%). Hydraulic analysis revealed the existence of selectively assigning hydraulic pressure in R1. The total shear rate (τtotal) on large granules was 3.07±0.14 times higher than that of R2, while τtotal of small granules in R1 was 70.7±4.6% in R2. Furthermore, large granules in R1 with intact extracellular polymeric substances (EPS) outer layer structure entrapped hydroxyapatite at center, which formed a core structure and further enhanced the stability of aerobic granules. Copyright © 2016 Elsevier Ltd. All rights reserved.
Szymońska, Joanna; Molenda, Marcin; Wieczorek, Jerzy
2015-12-10
Interactions of potato and corn starch granules with ions in diluted solutions of silver, lead, copper or iron salts were investigated. It was shown experimentally that granules accumulated the cations in amounts depending on the granule structure and water content as well as a type of both metal and counter-ions present in solution. Potato starch retained almost three times more cations compared to corn starch what was proportional to the total phosphorous content in these starches. Quantity of milligrams of cations bound by 1g of starch was inversely correlated with the cation hydration. Ag(+), Pb(2+) and Cu(2+) were connected in stoichiometric amounts of moles to semicrystalline and amorphous parts of the granules. Fe(3+) ions were accumulated in higher than stoichiometric quantities mainly in granule amorphous regions. Metal ions penetrated into granules together with anions except nitrates which remained on surface of potato starch granules. Cations facilitated the starch thermal decomposition in accordance with values of their standard redox potentials. Nitrates supported this process only in the presence of base metal cations. Copyright © 2015 Elsevier Ltd. All rights reserved.
THE ORBIT, ROTATION, AND GRANULATION OF THE G7 GIANT β Her
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, David F., E-mail: dfgray@uwo.ca
The G7 IIIa single-lined spectroscopic binary, β Her, is studied with high-resolution, high-signal-to-noise spectra taken over 10 seasons from 23MR2000 to 10MY2009. Absolute radial velocities, corrected for convective blueshifts, are determined and new orbital parameters are derived. Line-depth ratios are used to measure temperature variation ∼2 K. A Fourier analysis is done for the line broadening, yielding a projected rotation velocity of 3.27 ± 0.20 km s{sup -1} and a radial–tangential macroturbulence dispersion of 6.43 ± 0.08 km s{sup -1}. The “C” shaped bisector of Fe i λ 6253 has its blue-most point at a relative flux level of 0.52,more » consistent with what is expected from β Her’s absolute magnitude. The third-signature plot indicates granulation velocities 20% larger than the Sun’s. Mapping the λ 6253 line bisector onto the third-signature curve results in a flux deficit of 12.6 ± 1.0% that can be interpreted as arising from a temperature difference between granules and inter-granular lanes of 132 K. The flux deficit peaks near 5.5 km s{sup -1} from the line center, suggesting the velocity difference between granules and lanes is ∼20% larger than that found for recently analyzed K giants.« less
Santos, Adriana; García, Magda; Cotes, Alba Marina; Villamizar, Laura
2012-01-01
Four biopesticide prototypes formulated as dispersible granules and dry powders based on 2 Colombian isolates of Trichoderma koningiopsis (Th003) and T. asperellum (Th034) were developed. These microorganisms have antagonist activity against Fusarium oxysporum f. sp. lycopersici and Rhizoctonia solani with a reduction in incidence of between 70 and 100% in tomato crops and potato crops, respectively. To determine the effect of the formulation on the shelf-life of 4 biopesticides based on T. koningiopsis Th003 and Trichoderma asperellum Th034 at 3 different temperatures. The formulation effect was determined by evaluating the germination of unformulated and formulated conidia (dispersible granules and dry powder) stored at 8, 18 and 28°C for 18 months. Germination kinetics were used to estimate the shelf-life by using different mathematical models (zero order, first order, second order, Higuchi model, Korsmeyer-Peppas model and polynomial model). The products showed high stability of the conidia germination when they were stored at 8 and 18° C, with shelf-lives of 14.4 and 13.9 months for dry powder based on Th003, and 12.0 and 10.8 months for dry powder based on Th034, respectively. Prototypes formulated as dispersible granules stored at the same temperatures (8 and 18°C) showed lower shelf-lives, with values of 11.6 and 10.9 months for the Th003 product, and 10.7 and 7.2 months for the dispersible granules based on Th034. Significant reductions in germination were observed on unformulated conidia at all storage temperatures evaluated. The formulation type affected the conidia stability of the 2 Trichoderma spp. Colombian isolates. Dry powder was the prototype with the highest stability and shelf-life at all temperatures evaluated. Copyright © 2011 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathur, S.; Hekker, S.; Trampedach, R.
2011-11-10
The granulation pattern that we observe on the surface of the Sun is due to hot plasma rising to the photosphere where it cools down and descends back into the interior at the edges of granules. This is the visible manifestation of convection taking place in the outer part of the solar convection zone. Because red giants have deeper convection zones than the Sun, we cannot a priori assume that their granulation is a scaled version of solar granulation. Until now, neither observations nor one-dimensional analytical convection models could put constraints on granulation in red giants. With asteroseismology, this studymore » can now be performed. We analyze {approx}1000 red giants that have been observed by Kepler during 13 months. We fit the power spectra with Harvey-like profiles to retrieve the characteristics of the granulation (timescale {tau}{sub gran} and power P{sub gran}). We search for a correlation between these parameters and the global acoustic-mode parameter (the position of maximum power, {nu}{sub max}) as well as with stellar parameters (mass, radius, surface gravity (log g), and effective temperature (T{sub eff})). We show that {tau}{sub eff}{proportional_to}{nu}{sup -0.89}{sub max} and P{sub gran}{proportional_to}{nu}{sup -1.90}{sub max}, which is consistent with the theoretical predictions. We find that the granulation timescales of stars that belong to the red clump have similar values while the timescales of stars in the red giant branch are spread in a wider range. Finally, we show that realistic three-dimensional simulations of the surface convection in stars, spanning the (T{sub eff}, log g) range of our sample of red giants, match the Kepler observations well in terms of trends.« less
Registering parameters and granules of wave observations: IMAGE RPI success story
NASA Astrophysics Data System (ADS)
Galkin, I. A.; Charisi, A.; Fung, S. F.; Benson, R. F.; Reinisch, B. W.
2015-12-01
Modern metadata systems strive to help scientists locate data relevant to their research and then retrieve them quickly. Success of this mission depends on the organization and completeness of metadata. Each relevant data resource has to be registered; each content has to be described; each data file has to be accessible. Ultimately, data discoverability is about the practical ability to describe data content and location. Correspondingly, data registration has a "Parameter" level, at which content is specified by listing available observed properties (parameters), and a "Granule" level, at which download links are given to data records (granules). Until recently, both parameter- and granule-level data registrations were accomplished at NASA Virtual System Observatory easily by listing provided parameters and building Granule documents with URLs to the datafile locations, usually those at NASA CDAWeb data warehouse. With the introduction of the Virtual Wave Observatory (VWO), however, the parameter/granule concept faced a scalability challenge. The wave phenomenon content is rich with descriptors of the wave generation, propagation, interaction with propagation media, and observation processes. Additionally, the wave phenomenon content varies from record to record, reflecting changes in the constituent processes, making it necessary to generate granule documents at sub-minute resolution. We will present the first success story of registering 234,178 records of IMAGE Radio Plasma Imager (RPI) plasmagram data and Level 2 derived data products in ESPAS (near-Earth Space Data Infrastructure for e-Science), using the VWO-inspired wave ontology. The granules are arranged in overlapping display and numerical data collections. Display data include (a) auto-prospected plasmagrams of potential interest, (b) interesting plasmagrams annotated by human analysts or software, and (c) spectacular plasmagrams annotated by analysts as publication-quality examples of the RPI science. Numerical data products include plasmagram-derived records containing signatures of local and remote signal propagation, as well as field-aligned profiles of electron density in the plasmasphere. Registered granules of RPI observations are available in ESPAS for their content-targeted search and retrieval.
Amyloid-like aggregation of provasopressin in diabetes insipidus and secretory granule sorting.
Beuret, Nicole; Hasler, Franziska; Prescianotto-Baschong, Cristina; Birk, Julia; Rutishauser, Jonas; Spiess, Martin
2017-01-26
Aggregation of peptide hormone precursors in the trans-Golgi network is an essential process in the biogenesis of secretory granules in endocrine cells. It has recently been proposed that this aggregation corresponds to the formation of functional amyloids. Our previous finding that dominant mutations in provasopressin, which cause cell degeneration and diabetes insipidus, prevent native folding and produce fibrillar aggregates in the endoplasmic reticulum (ER) might thus reflect mislocalized amyloid formation by sequences that evolved to mediate granule sorting. Here we identified two sequences responsible for fibrillar aggregation of mutant precursors in the ER: the N-terminal vasopressin nonapeptide and the C-terminal glycopeptide. To test their role in granule sorting, the glycopeptide was deleted and/or vasopressin mutated to inactivate ER aggregation while still permitting precursor folding and ER exit. These mutations strongly reduced sorting into granules and regulated secretion in endocrine AtT20 cells. The same sequences - vasopressin and the glycopeptide - mediate physiological aggregation of the wild-type hormone precursor into secretory granules and the pathological fibrillar aggregation of disease mutants in the ER. These findings support the amyloid hypothesis for secretory granule biogenesis.
Sun, Fei; Xu, Bing; Zhang, Yi; Dai, Shengyun; Shi, Xinyuan; Qiao, Yanjiang
2017-01-01
ABSTRACT The dissolution is one of the critical quality attributes (CQAs) of oral solid dosage forms because it relates to the absorption of drug. In this paper, the influence of raw materials, granules and process parameters on the dissolution of paracetamol tablet was analyzed using latent variable modeling methods. The variability in raw materials and granules was understood based on the principle component analysis (PCA), respectively. A multi-block partial least squares (MBPLS) model was used to determine the critical factors affecting the dissolution. The results showed that the binder amount, the post granulation time, the API content in granule, the fill depth and the punch tip separation distance were the critical factors with variable importance in the projection (VIP) values larger than 1. The importance of each unit of the whole process was also ranked using the block importance in the projection (BIP) index. It was concluded that latent variable models (LVMs) were very useful tools to extract information from the available data and improve the understanding on dissolution behavior of paracetamol tablet. The obtained LVMs were also helpful to propose the process design space and to design control strategies in the further research. PMID:27689242
Khorasani, Milad; Amigo, José M; Sun, Changquan Calvin; Bertelsen, Poul; Rantanen, Jukka
2015-06-01
In the present study the application of near-infrared chemical imaging (NIR-CI) supported by chemometric modeling as non-destructive tool for monitoring and assessing the roller compaction and tableting processes was investigated. Based on preliminary risk-assessment, discussion with experts and current work from the literature the critical process parameter (roll pressure and roll speed) and critical quality attributes (ribbon porosity, granule size, amount of fines, tablet tensile strength) were identified and a design space was established. Five experimental runs with different process settings were carried out which revealed intermediates (ribbons, granules) and final products (tablets) with different properties. Principal component analysis (PCA) based model of NIR images was applied to map the ribbon porosity distribution. The ribbon porosity distribution gained from the PCA based NIR-CI was used to develop predictive models for granule size fractions. Predictive methods with acceptable R(2) values could be used to predict the granule particle size. Partial least squares regression (PLS-R) based model of the NIR-CI was used to map and predict the chemical distribution and content of active compound for both roller compacted ribbons and corresponding tablets. In order to select the optimal process, setting the standard deviation of tablet tensile strength and tablet weight for each tablet batch was considered. Strong linear correlation between tablet tensile strength and amount of fines and granule size was established, respectively. These approaches are considered to have a potentially large impact on quality monitoring and control of continuously operating manufacturing lines, such as roller compaction and tableting processes. Copyright © 2015 Elsevier B.V. All rights reserved.
Kazemi, Pezhman; Khalid, Mohammad Hassan; Pérez Gago, Ana; Kleinebudde, Peter; Jachowicz, Renata; Szlęk, Jakub; Mendyk, Aleksander
2017-01-01
Dry granulation using roll compaction is a typical unit operation for producing solid dosage forms in the pharmaceutical industry. Dry granulation is commonly used if the powder mixture is sensitive to heat and moisture and has poor flow properties. The output of roll compaction is compacted ribbons that exhibit different properties based on the adjusted process parameters. These ribbons are then milled into granules and finally compressed into tablets. The properties of the ribbons directly affect the granule size distribution (GSD) and the quality of final products; thus, it is imperative to study the effect of roll compaction process parameters on GSD. The understanding of how the roll compactor process parameters and material properties interact with each other will allow accurate control of the process, leading to the implementation of quality by design practices. Computational intelligence (CI) methods have a great potential for being used within the scope of quality by design approach. The main objective of this study was to show how the computational intelligence techniques can be useful to predict the GSD by using different process conditions of roll compaction and material properties. Different techniques such as multiple linear regression, artificial neural networks, random forest, Cubist and k-nearest neighbors algorithm assisted by sevenfold cross-validation were used to present generalized models for the prediction of GSD based on roll compaction process setting and material properties. The normalized root-mean-squared error and the coefficient of determination (R2) were used for model assessment. The best fit was obtained by Cubist model (normalized root-mean-squared error =3.22%, R2=0.95). Based on the results, it was confirmed that the material properties (true density) followed by compaction force have the most significant effect on GSD. PMID:28176905
Kazemi, Pezhman; Khalid, Mohammad Hassan; Pérez Gago, Ana; Kleinebudde, Peter; Jachowicz, Renata; Szlęk, Jakub; Mendyk, Aleksander
2017-01-01
Dry granulation using roll compaction is a typical unit operation for producing solid dosage forms in the pharmaceutical industry. Dry granulation is commonly used if the powder mixture is sensitive to heat and moisture and has poor flow properties. The output of roll compaction is compacted ribbons that exhibit different properties based on the adjusted process parameters. These ribbons are then milled into granules and finally compressed into tablets. The properties of the ribbons directly affect the granule size distribution (GSD) and the quality of final products; thus, it is imperative to study the effect of roll compaction process parameters on GSD. The understanding of how the roll compactor process parameters and material properties interact with each other will allow accurate control of the process, leading to the implementation of quality by design practices. Computational intelligence (CI) methods have a great potential for being used within the scope of quality by design approach. The main objective of this study was to show how the computational intelligence techniques can be useful to predict the GSD by using different process conditions of roll compaction and material properties. Different techniques such as multiple linear regression, artificial neural networks, random forest, Cubist and k-nearest neighbors algorithm assisted by sevenfold cross-validation were used to present generalized models for the prediction of GSD based on roll compaction process setting and material properties. The normalized root-mean-squared error and the coefficient of determination ( R 2 ) were used for model assessment. The best fit was obtained by Cubist model (normalized root-mean-squared error =3.22%, R 2 =0.95). Based on the results, it was confirmed that the material properties (true density) followed by compaction force have the most significant effect on GSD.
Uhumwangho, M U; Okor, R S
2006-04-01
Matrix granules of acetaminophen have been formed by a melt granulation process whereby the acetaminophen powder was triturated with the melted wax--goat wax, glyceryl monostearate or carnuba wax. The compressibility of the matrix granules and their admixture, with diluent granules (lactose, alpha-cellulose or microcrystalline cellulose) was investigated. The granules were compressed to tablets at a constant load (30 arbitrary units on the load scale) of a manesty single punch machine. Resulting tablets were evaluated for tensile strength (T) and disintegration times (DT). Granule flow was determined by measuring their angle of repose when allowed to fall freely on a level surface. Matrix granules prepared by melt granulation with goat wax or glyceryl monostearate were too sticky and therefore did not flow at all. They were also poorly compressible (T values = 0.20MN/m2). Inclusion of the diluent remarkably improved granule flow property and compressibility. The T values of the tablets (measure of compressibility) increased from about 0.24 to 0.65 MN/m2 during increase in diluent (lactose) content from 20 to 80 %w/w. Microcrystalline cellulose and alpha-cellulose were more effective than lactose in promoting compressibility of the granules. By contrast the matrix granules formed with carnuba wax were free flowing (angle of repose, 18.60). Addition of the diluent further improved flowability slightly. The matrix granules (without a diluent) were readily compressible (T value, 1.79MN/m2). Addition of the diluent (80%w/w) reduced T values (MN/m2) slightly to 1.32 (lactose), 1.48 (alpha-cellulose) and 1.74 (microcrystalline cellulose). Tablets of the matrix granules only, disintegrated rapidly within 3 minutes. DT was further reduced to <30 s by addition of any of the diluents. The indication is that the inclusion of the diluents studied can be used to improve the compressibility of the otherwise poorly compressible matrix granules. Based on the flowability, compressibility, and disintegration data, carnuba wax proved most promising in the melt granulation of the test drug for sustained release applications.
Ghorab, M K; Adeyeye, M C
2001-08-01
The effect of oven-dried wet granulation on the complexation of beta-cyclodextrin with ibuprofen (IBU) in solution was investigated using Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1H NMR), and molecular modeling. Granulation was carried out using 5 mL of three different granulating solvents; water, ethanol (95% v/v), and isopropanol and the granules were oven-dried at 60 degrees C for 2 h. The granules were compared to oven-dried physical mixture and conventionally prepared complex. Phase solubility study was performed to investigate the stability of the granulation-formed complexes in solution. FT-IR was used to examine the complexation in the granules while 1H NMR, and molecular modeling studies were carried out to determine the mechanism of complexation in the water-prepared granules. The solubility studies suggested a 1:1 complex between IBU and betaCD. It also showed that the stability of the complex in solution was in the following order with respect to the granulating solvents: ethanol > water > isopropanol. The FT-IR study revealed a shift in the carboxylic acid stretching band and decrease in the intensities of the C-H bending bands of the isopropyl group and the out-of-plane aromatic ring, of IBU, in granules compared to the oven-dried physical mixture. This indicated that granules might have some extent of solid state complexation that could further enhance dissolution and the IBU-betaCD solution state complexation. 1H NMR showed that water prepared oven-dried granules had a different 1H NMR spectrum compared to similarly made oven-dried physical mixture, indicative of complexation in the former. The 1H NMR and the molecular modeling studies together revealed that solution state complexation from the granules occurred by inclusion of the isopropyl group together with part of the aromatic ring of IBU into the betaCD cavity probably through its wider side. These results indicate that granulation process induced faster complexation in solution which enhances the solubility and the dissolution rate of poorly soluble drugs. The extent of complexation in the granules was dependent on the type of solvent used.
Copper-granule-catalyzed microwave-assisted click synthesis of polyphenol dendrimers.
Lee, Choon Young; Held, Rich; Sharma, Ajit; Baral, Rom; Nanah, Cyprien; Dumas, Dan; Jenkins, Shannon; Upadhaya, Samik; Du, Wenjun
2013-11-15
Syringaldehyde- and vanillin-based antioxidant dendrimers were synthesized via microwave-assisted alkyne-azide 1,3-dipolar cycloaddition using copper granules as a catalyst. The use of Cu(I) as a catalyst resulted in copper contaminated dendrimers. To produce copper-free antioxidant dendrimers for biological applications, Cu(I) was substituted with copper granules. Copper granules were ineffective at both room temperature and under reflux conditions (<5% yield). However, they were an excellent catalyst when dendrimer synthesis was performed under microwave irradiation, giving yields up to 94% within 8 h. ICP-mass analysis of the antioxidant dendrimers obtained with this method showed virtually no copper contamination (9 ppm), which was the same as the background level. The synthesized antioxidants, free from copper contamination, demonstrated potent radical scavenging with IC50 values of less than 3 μM in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. In comparison, dendrimers synthesized from Cu(I)-catalyzed click chemistry showed a high level of copper contamination (4800 ppm) and no detectable antioxidant activity.
Qiang, Dongmei; Gunn, Jocelyn A; Schultz, Leon; Li, Z Jane
2010-12-01
The objective of this study was to investigate the effects of sodium lauryl sulfate (SLS) from different sources on solubilization/wetting, granulation process, and tablet dissolution of BILR 355 and the potential causes. The particle size distribution, morphology, and thermal behaviors of two pharmaceutical grades of SLS from Spectrum and Cognis were characterized. The surface tension and drug solubility in SLS solutions were measured. The BILR 355 tablets were prepared by a wet granulation process and the dissolution was evaluated. The critical micelle concentration was lower for Spectrum SLS, which resulted in a higher BILR 355 solubility. During wet granulation, less water was required to reach the same end point using Spectrum than Cognis SLS. In general, BILR 355 tablets prepared with Spectrum SLS showed a higher dissolution than the tablets containing Cognis SLS. Micronization of SLS achieved the same improved tablet dissolution as micronized active pharmaceutical ingredient. The observed differences in wetting and solubilization were likely due to the different impurity levels in SLS from two sources. This study demonstrated that SLS from different sources could have significant impact on wet granulation process and dissolution. Therefore, it is critical to evaluate SLS properties from different suppliers, and then identify optimal formulation and process parameters to ensure robustness of drug product manufacture process and performance.
Choi, Kwangseok; Taghavivand, Milad; Zhang, Lifeng
2017-03-15
Pharmaceutical powders are mainly organic materials and are likely to be charged due to repeated inter-particle and particle-wall contacts during industrial processes. This study experimentally investigated the effect of moisture content (ranging from approximately 1.8 to 30wt.%) on tribocharging behaviour of pharmaceutical granules, as well as their apparent volume resistivity. The tribocharging behaviour of pharmaceutical granules was investigated using a rotating device and apparent volume resistivity was measured in a conventional volume resistivity test cell. Additional measurements were performed on individual ingredients, each having the same moisture content as that of the granules, in order to investigate the effect of each single ingredient on the apparent volume resistivity of granules. In this work, the individual ingredients used for granules were: α-Lactose Monohydrate (α-LMH), Microcrystalline Cellulose (MCC), Hydroxypropyl Methylcellulose (HPMC), and Croscarmellose Sodium (CCS). The results showed that the specific charge of granules began to increase at the moisture contents below 5wt.%, which can be referred as critical moisture content of granules. The apparent volume resistivity showed the same behaviour, indicating that the specific charge could be due to an increase in apparent volume resistivity of granules at reduced moisture content. Finally, it was shown that the apparent volume resistivity measured for granules was mainly affected by that of the α-LMH, the major component of granules accounting for 40wt.%. Copyright © 2017 Elsevier B.V. All rights reserved.
Shiino, Kai; Fujinami, Yukari; Kimura, Shin-Ichiro; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru
2017-01-01
We have focused on melt adsorption as manufacture method of wax matrices to control particles size of granules more easily than melt granulation. The purpose of present study was to investigate the possibility of identifying a hydrophobic material with a low melting point, currently used as a meltable binder of melt granulation, to apply as a novel carrier in melt adsorption. Glyceryl monostearate (GM) and stearic acid (SA) were selected as candidate hydrophobic materials with low melting points. Neusilin US2 (US2), with a particle diameter of around 100 µm was selected as a surface adsorbent, while dibasic calcium phosphate dihydrate (DCPD), was used as a non-adsorbent control to prepare melting granules as a standard for comparison. We prepared granules containing ibuprofen (IBU) by melt adsorption or melt granulation and evaluated the particle size, physical properties and crystallinity of granules. Compared with melt granulation using DCPD, melt adsorption can be performed over a wide range of 14 to 70% for the ratio of molten components. Moreover, the particle size; d50 of obtained granules was 100-200 µm, and these physical properties showed good flowability and roundness. The process of melt adsorption did not affect the crystalline form of IBU. Therefore, the present study has demonstrated for the first time that melt adsorption using a hydrophobic material, GM or SA, has the potential capability to control the particle size of granules and offers the possibility of application as a novel controlled release technique.
NASA Astrophysics Data System (ADS)
Wang, H. G.; Zhang, J. L.; Ramli, M. F.; Mao, M. X.; Ye, J. M.; Yang, W. Q.; Wu, Z. P.
2016-11-01
The moisture content of granules in fluidised bed drying, granulation and coating processes can typically be between 1%~25%, resulting in the change of permittivity and conductivity during the processes. Electrical capacitance tomography (ECT) has been used for this purpose, but has a limit because too much water can cause a problem in capacitance measurement. Considering that microwave tomography (MWT) has a wide range of frequency (1~2.5 GHz) and can be used to measure materials with high permittivity and conductivity, the objective of this research is to combine ECT and MWT together to investigate the solids concentration with different moisture content and different flow patterns. The measurement results show that both ECT and MWT are functions of moisture content as well as flow patterns, and their measurements are complementary to each other. This is the first time that these two tomography modalities have been combined together and applied to image the complex solids distribution. The obtained information may be used for the process control of fluidised bed drying, granulation and coating to improve operation efficiency.
Mei, Ran; Narihiro, Takashi; Bocher, Benjamin T. W.; Yamaguchi, Takashi; Liu, Wen-Tso
2016-01-01
Upflow anaerobic sludge blanket (UASB) reactor has served as an effective process to treat industrial wastewater such as purified terephthalic acid (PTA) wastewater. For optimal UASB performance, balanced ecological interactions between syntrophs, methanogens, and fermenters are critical. However, much of the interactions remain unclear because UASB have been studied at a “macro”-level perspective of the reactor ecosystem. In reality, such reactors are composed of a suite of granules, each forming individual micro-ecosystems treating wastewater. Thus, typical approaches may be oversimplifying the complexity of the microbial ecology and granular development. To identify critical microbial interactions at both macro- and micro- level ecosystem ecology, we perform community and network analyses on 300 PTA–degrading granules from a lab-scale UASB reactor and two full-scale reactors. Based on MiSeq-based 16S rRNA gene sequencing of individual granules, different granule-types co-exist in both full-scale reactors regardless of granule size and reactor sampling depth, suggesting that distinct microbial interactions occur in different granules throughout the reactor. In addition, we identify novel networks of syntrophic metabolic interactions in different granules, perhaps caused by distinct thermodynamic conditions. Moreover, unseen methanogenic relationships (e.g. “Candidatus Aminicenantes” and Methanosaeta) are observed in UASB reactors. In total, we discover unexpected microbial interactions in granular micro-ecosystems supporting UASB ecology and treatment through a unique single-granule level approach. PMID:27936088
Vadlja, Denis; Koller, Martin; Novak, Mario; Braunegg, Gerhart; Horvat, Predrag
2016-12-01
Statistical distribution of cell and poly[3-(R)-hydroxybutyrate] (PHB) granule size and number of granules per cell are investigated for PHB production in a five-stage cascade (5CSTR). Electron microscopic pictures of cells from individual cascade stages (R1-R5) were converted to binary pictures to visualize footprint areas for polyhydroxyalkanoate (PHA) and non-PHA biomass. Results for each stage were correlated to the corresponding experimentally determined kinetics (specific growth rate μ and specific productivity π). Log-normal distribution describes PHA granule size dissimilarity, whereas for R1 and R4, gamma distribution best reflects the situation. R1, devoted to balanced biomass synthesis, predominately contains cells with rather small granules, whereas with increasing residence time τ, maximum and average granule sizes by trend increase, approaching an upper limit determined by the cell's geometry. Generally, an increase of intracellular PHA content and ratio of granule to cell area slow down along the cascade. Further, the number of granules per cell decreases with increasing τ. Data for μ and π obtained by binary picture analysis correlate well with the experimental results. The work describes long-term continuous PHA production under balanced, transient, and nutrient-deficient conditions, as well as their reflection on the granules size, granule number, and cell structure on the microscopic level.
Wang, Shuo; Yu, Shui-Li; Shi, Wen-Xin; Bao, Rui-Ling; Yi, Xue-Song; Li, Jian-Zheng
2012-04-01
COD decreased obviously in normal molasses wastewater after anaerobic treatment, however, concentrations of nitrogen and phosphorus were still higher in the effluent which seriously damaged the ecological balance. In this study, aerobic granules cultivated in sequencing batch airlift reactor (SBAR) were carried out for treating the effluent; phosphorus removal processes and characteristics were discussed as well. The mean diameter of aerobic granules cultivated by multiple carbon sources (acetate, propionate and butyrate) was 1.7 mm. The average phosphorus removal efficiency was 90.9% and the level of phosphorus in effluent was only 1.3 mg x L(-1); TP released per COD consumed was 0.571 and the specific rate of TP released was 5.73 mg x (g x h)(-1). NO3(-) -N usage of phosphorus accumulating organisms (PAOs) improved during denitrifying process because the concentration of propionate and butyrate increased in multiple carbon sources which means the phosphorus uptake efficiency increased when per NO3(-) -N consumed. Phosphorus content represented a stronger correlation with magnesium, calcium and ferrum contents in aerobic granules and their extracellular polymeric substances (EPS), the phosphorus adsorption by EPS could enhance phosphorus removal. 61.9% of phosphorus accumulating organisms were denitrifying phosphorus accumulating organisms in aerobic granules and TP uptake per NO3(-) -N consumed was 1.14 which was higher than that of aerobic granules only cultivated by acetate.
Möhn, H; Le Cabec, V; Fischer, S; Maridonneau-Parini, I
1995-07-15
The src-family protein-tyrosine kinase p59hck is mainly expressed in neutrophils; however, its functional role in these cells is unknown. Several other src-family members are localized on secretory vesicles and have been proposed to regulate intracellular traffic. We have established here the subcellular localization of p59hck in human neutrophils. Immunoblotting of subcellular fractions showed that approx. 60% of the p59hck per cell is localized on the secretory granules; the other 40% is distributed equally between non-granular membranes and the cytosol. Immunofluorescence of neutrophils and HL60 cells suggests that the p59hck-positive granules are azurophil granules. Granular p59hck is highly susceptible to degradation by an azurophil-granule proteinase. Different forms of p59hck occur in the three subcellular compartments: a 61 kDa form is mainly found in the granules, a 59 kDa form is predominant in the non-granular membranes, whereas cytosolic p59hck migrates as a doublet at 63 kDa. During the process of phagocytosis-linked degranulation, induced by serum-opsonized zymosan in neutrophils or HL60 cells, granular p59hck translocates towards the phagosome. The subcellular localization of p59hck suggests that the enzyme could be involved in the regulation of the degranulation process.
Simplified formulations with high drug loads for continuous twin-screw granulation.
Meier, R; Thommes, M; Rasenack, N; Krumme, M; Moll, K-P; Kleinebudde, P
2015-12-30
As different batches of the same excipients will be intermixed during continuous processes, the traceability of batches is complicated. Simplified formulations may help to reduce problems related to batch intermixing and traceability. Twin-screw granulation with subsequent tableting was used to produce granules and tablets, containing drug, disintegrant and binder (binary and ternary mixtures), only. Drug loads up to 90% were achieved and five different disintegrants were screened for keeping their disintegration suitability after wetting. Granule size distributions were consistently mono-modal and narrow. Granule strength reached higher values, using ternary mixtures. Tablets containing croscarmellose-Na as disintegrant displayed tensile strengths up to 3.1MPa and disintegration times from 400 to 466s, resulting in the most robust disintegrant. Dissolution was overall complete and above 96% within 30 min. Na-starch glycolate offers tensile strengths up to 2.8MPa at disintegration times from 25s to 1031s, providing the broadest application window, as it corresponds in some parts to different definitions of orodispersible tablets. Tablets containing micronized crospovidone are not suitable for immediate release, but showed possibilities to produce highly drug loaded, prolonged release tablets. Tablets and granules from simplified formulations offer great opportunities to improve continuous processes, present performances comparable to more complicated formulations and are able to correspond to requirements of the authorities. Copyright © 2015 Elsevier B.V. All rights reserved.
Biofilm formation and granule properties in anaerobic digestion at high salinity.
Gagliano, M C; Ismail, S B; Stams, A J M; Plugge, C M; Temmink, H; Van Lier, J B
2017-09-15
For the anaerobic biological treatment of saline wastewater, Anaerobic Digestion (AD) is currently a possibility, even though elevated salt concentrations can be a major obstacle. Anaerobic consortia and especially methanogenic archaea are very sensitive to fluctuations in salinity. When working with Upflow Sludge Blanket Reactor (UASB) technology, in which the microorganisms are aggregated and retained in the system as a granular biofilm, high sodium concentration negatively affects aggregation and consequently process performances. In this research, we analysed the structure of the biofilm and granules formed during the anaerobic treatment of high salinity (at 10 and 20 g/L of sodium) synthetic wastewater at lab scale. The acclimated inoculum was able to accomplish high rates of organics removal at all the salinity levels tested. 16S rRNA gene clonal analysis and Fluorescence In Situ Hybridization (FISH) analyses identified the acetoclastic Methanosaeta harundinacea as the key player involved acetate degradation and microbial attachment/granulation. When additional calcium (1 g/L) was added to overcome the negative effect of sodium on microbial aggregation, during the biofilm formation process microbial attachment and acetate degradation decreased. The same result was observed on granules formation: while calcium had a positive effect on granules strength when added to UASB reactors, Methanosaeta filaments were not present and the degradation of the partially acidified substrate was negatively influenced. This research demonstrated the possibility to get granulation at high salinity, bringing to the forefront the importance of a selection towards Methanosaeta cells growing in filamentous form to obtain strong and healthy granules. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Flament-Durand, J; Couck, A M; Dustin, P
1975-11-26
Intrathecal administration of 20 mug of vincristine sulphate in the rat induced in vivo the formation of paracrystalline inclusions mainly in axonal processes. This is associated with an impairment in the migration of neurosecretory granules as shown by their accumulation in the perikarya of the magnocellular neurons. The granules are intermixed with numerous dense bodies of various shape, sometimes with a fibrillar content, and probably of lysosomal origin. In addition to the impairment of the flow of neurosecretory granules, there is also a striking accumulation of mitochondria and synaptic vesicles, and an apparent proliferation of the smooth endoplasmic reticulum. In the posterior lobe, the axonal endings contain a large number of neurosecretory granules, intermingled with bodies of varying shapes and electron density. Occasionally, a dense membrane surrounding a group of elementary granules is observed, reacting positively for acid phosphatase. This suggests an attempted crinophagia.
NASA Astrophysics Data System (ADS)
Hu, Wei; Xu, Qiang; Wang, Gonghui; Scaringi, Gianvito; Mcsaveney, Mauri; Hicher, Pierre-Yves
2017-11-01
We present results of ring shear frictional resistance for mudstone granules of different size obtained from a landslide shear zone. Little rate dependency of shear resistance was observed in sand-sized granules in any wet or dry test, while saturated gravel-sized granules exhibited significant and abrupt reversible rate-weakening (from μ = 0.6 to 0.05) at about 2 mm/s. Repeating resistance variations occurred also under constant shear displacement rate. Mudstone granules generate mud as they are crushed and softened. Shear-thinning and thixotropic behavior of the mud can explain the observed behavior: with the viscosity decreasing, the mud can flow through the coarser soil pores and migrate out from the shear zone. This brings new granules into contact which produces new mud. Thus, the process can start over. Similarities between experimental shear zones and those of some landslides in mudstone suggest that the observed behavior may play a role in some landslide kinematics.
NK cells converge lytic granules to promote cytotoxicity and prevent bystander killing
Hsu, Hsiang-Ting; Viswanath, Dixita I.; Önfelt, Björn
2016-01-01
Natural killer (NK) cell activation triggers sequential cellular events leading to destruction of diseased cells. We previously identified lytic granule convergence, a dynein- and integrin signal–dependent movement of lysosome-related organelles to the microtubule-organizing center, as an early step in the cell biological process underlying NK cell cytotoxicity. Why lytic granules converge during NK cell cytotoxicity, however, remains unclear. We experimentally controlled the availability of human ligands to regulate NK cell signaling and promote granule convergence with either directed or nondirected degranulation. By the use of acoustic trap microscopy, we generated specific effector–target cell arrangements to define the impact of the two modes of degranulation. NK cells with converged granules had greater targeted and less nonspecific “bystander” killing. Additionally, NK cells in which dynein was inhibited or integrin blocked under physiological conditions demonstrated increased nondirected degranulation and bystander killing. Thus, NK cells converge lytic granules and thereby improve the efficiency of targeted killing and prevent collateral damage to neighboring healthy cells. PMID:27903610
Wei, Benxi; Cai, Canxin; Xu, Baoguo; Jin, Zhengyu; Tian, Yaoqi
2018-02-01
The mechanism underlying the fragmentation of waxy maize starch (WMS) granules during high-pressure homogenization (HPH) was studied and the results were interpreted in terms of granular and molecular aspects. The diameter of disrupted starch granules decreased exponentially with increasing HPH pressure, but decreased linearly with increasing of HPH cycles. Scanning electron microscopy revealed a cone-like inside-out disruption pattern through the channels that resulted in separation of blocklets fragments or starch fragments. The M w of amylopectin was reduced by ∼half following treatment at 150MPa with two cycles, or at 100MPa for eight cycles, and the decrease was in accordance with the disruption of starch granules. This indicated that amylopectin was "protected" by blocklets, and the disruption of WMS granules mainly occurred close to the linkage among blocklets. Increasing the HPH pressure appeared to be more effective for breaking starch granules than increasing the number of HPH cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Flow regions of granules in Dorfan Impingo filter for gas cleanup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, J.T.; Smid, J.; Hsiau, S.S.
1999-07-01
Inside a two-dimensional model of the louvered Dorfan Impingo panel with transparent front and rear walls the flow region of filter granules without gas cross flow were observed. The white PE beads were used as filter granules. Colored PE beads served as tracers. Filter granules were discharged and circulated to the bed. The flow rate of filter medium was controlled by the belt conveyor. The image processing system including a Frame Grabber and JVC videocamera was used to record the granular flow. Every image of motion was digitized and stored in a file. The flow patterns and the quasi-stagnant zonesmore » history in the moving granular bed were evaluated. The experiment showed fast central moving region (flowing core) of filter granules and quasi-stagnant zones close to louver walls.« less
Decreasing effect and mechanism of moisture content of sludge biomass by granulation process.
Zhao, Xia; Xu, Hao; Shen, Jimin; Yu, Bo; Wang, Xiaochun
2016-01-01
Disposal of a high volume of sludge significantly raises water treatment costs. A method for cultivating aerobic granules in a sequencing batch airlift bioreactor to significantly produce lower moisture content is described. Results indicate that optimization of settling time and control of the shear stresses acted on the granules. The diameter of the granule was within the range of 1.0-4.0 mm, and its sludge volume index was stabilized at 40-50 mL g(-1). Its specific gravity was increased by a factor of 0.0392, and specific oxygen uptake rate reached 60.126 mg h(-1) g(-1). Moreover, the percentage of its moisture content in the reactor ranged from 96.73% to 97.67%, and sludge volume was reduced to approximately 60%, greatly due to the presence of extracellular polymeric substances in the granules, as well as changes in their hydrophobic protein content. The removal rate of chemical oxygen demand and [Formula: see text] reaches up to 92.6% and 98%, respectively. The removal rates of total phosphorus is over 85%. Therefore, aerobic granular sludge process illustrates a good biological activity.
Korang-Yeboah, Maxwell; Rahman, Ziyaur; Shah, Dhaval; Mohammad, Adil; Wu, Suyang; Siddiqui, Akhtar; Khan, Mansoor A
2016-02-29
Understanding the impact of pharmaceutical processing, formulation excipients and their interactions on the solid-state transitions of pharmaceutical solids during use and in storage is critical in ensuring consistent product performance. This study reports the effect of polymer viscosity, diluent type, granulation and granulating fluid (water and isopropanol) on the pseudopolymorphic transition of theophylline anhydrous (THA) in controlled release formulations as well as the implications of this transition on critical quality attributes of the tablets. Accordingly, 12 formulations were prepared using a full factorial screening design and monitored over a 3 month period at 40 °C and 75%. Physicochemical characterization revealed a drastic drop in tablet hardness accompanied by a very significant increase in moisture content and swelling of all formulations. Spectroscopic analysis (ssNMR, Raman, NIR and PXRD) indicated conversion of THA to theophylline monohydrate (TMO) in all formulations prepared by aqueous wet granulation in as early as two weeks. Although all freshly prepared formulations contained THA, the hydration-dehydration process induced during aqueous wet granulation hastened the pseudopolymorphic conversion of theophylline during storage through a cascade of events. On the other hand, no solid state transformation was observed in directly compressed formulations and formulations in which isopropanol was employed as a granulating fluid even after the twelve weeks study period. The transition of THA to TMO resulted in a decrease in dissolution while an increase in dissolution was observed in directly compressed and IPA granulated formulation. Consequently, the impact of pseudopolymorphic transition of theophylline on dissolution in controlled release formulations may be the net result of two opposing factors: swelling and softening of the tablets which tend to favor an increase in drug dissolution and hydration of theophylline which decreases the drug dissolution. Published by Elsevier B.V.
Nellore, R V; Rekhi, G S; Hussain, A S; Tillman, L G; Augsburger, L L
1998-01-02
This research study was designed to develop model extended-release (ER) matrix tablet formulations for metoprolol tartrate (100 mg) sufficiently sensitive to manufacturing variable and to serve as the scientific basis for regulatory policy development on scale-up and post approval changes for modified-release dosage forms (SUPAC-MR). Several grades and levels of hydroxypropyl methylcellulose (Methocel K4M, K15M, K100M and K100LV), fillers and binders and studied. Three granulation processes were evaluated; direct compression, fluid-bed or high-shear granulation. Lubrication was performed in a V-blender and tablets were compressed on an instrumented rotary tablet press. Direct compression formulations exhibited poor flow, picking and sticking problems during tableting. High-shear granulation resulted in the formation of hard granules that were difficult to mill but yielded good tablets. Fluid-bed granulations were made using various binders and appeared to be satisfactory in terms of flow and tableting performance. In vitro drug release testing was performed in pH 6.8 phosphate buffer using USP apparatus 2 (paddle) at 50 rpm. At a fixed polymer level, drug release from the higher viscosity grades (K100M) was slower as compared to the lower viscosity grades (K100LV). In addition, release from K100LV was found to be more sensitive to polymer level changes. Increased in polymer level from 10 to 40% and/or filler change from lactose to dicalcium phosphate resulted in about 25-30% decrease in the amount of metoprolol release after 12 h. The results of this study led to the choice of Methocel K100LV as the hydrophilic matrix polymer and fluid-bed granulation as the process of choice for further evaluation of critical and non-critical formulation and processing variables.
1984-05-01
Although it was a very sweet variety, the growers failed to develop a granulation process and at best only obtained syrup from the cane. In addition...and cotton; thus a shift was made in agricultural production. Etienne de Bore, convinced that he could granulate sugar, imported a Tahitian variety of...successfully granulated sugar from the cane the following year and received $12,000 for his crop, a number of other plantation owners emulated him. By
Manufacturing of novel low-cost adsorbent: Co-granulation of limestone and coffee waste.
Iakovleva, Evgenia; Sillanpää, Mika; Maydannik, Philipp; Liu, Jiang Tao; Allen, Stephen; Albadarin, Ahmad B; Mangwandi, Chirangano
2017-12-01
Limestone and coffee waste were used during the wet co-granulation process for the production of efficient adsorbents to be used in the removal of anionic and cationic dyes. The adsorbents were characterized using different analytical techniques such as XRD, SEM, FTIR, organic elemental analysis, the nitrogen adsorption method, with wettability, strength and adsorption tests. The adsorption capacity of granules was determined by removal of methylene blue (MB) and orange II (OR) from single and mixed solutions. In the mixed solution, co-granules removed 100% of MB and 85% of OR. The equilibria were established after 6 and 480 h for MB and OR, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
The liquid wood heat flow and material properties as a function of temperature
NASA Astrophysics Data System (ADS)
Mazurchevici, Simona; Quadrini, Fabrizio; Nedelcu, Dumitru
2018-03-01
There are three types of ‘liquid wood’, Arbofill, Arboblend and Arboform and will replace plastics materials in the near future taking into account the biodegradability and higher properties versus common used plastics materials. In order to get more information about the materials properties of ‘liquid wood’ the granules and samples obtained by injection molding were studied using Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) for Arboform L,V3 Nature-‘liquid wood’ (A-LW) and Arboform L, V3 Nature reinforced with Aramid Fibers (A-LWAF).In case of A-LW granule studied, the DSC analysis presents that at 97 °C appears an endoderm peak which represents the crystallization of the material, at 175 °C the exoderm peak which means the melting point of the material. After the tested granule cooling period of time this one was tested again and the endoderm peak disappears, which means that crystallization of material disappeared. The melting point of the second test decreases slightly at 174.6 °C. Also, the new test shows that at 61.7 °C the glass transition temperature appears and the melting point slightly decreases. In case of A-LW samples the DSC analyses shows that the melting point increased by 2.77 °C compared to the melting point of Arboform granule. The material behavior is more or less the same without the crystallization area.
Antioxidant activity evaluation of new dosage forms as vehicles for dehydrated vegetables.
Romero-de Soto, María Dolores; García-Salas, Patricia; Fernández-Arroyo, Salvador; Segura-Carretero, Antonio; Fernández-Campos, Francisco; Clares-Naveros, Beatriz
2013-06-01
A dehydrated vegetables mixture loaded in four pharmaceutical dosage forms as powder, effervescent granulate, sugar granulate and gumdrops were investigated for their antioxidant capacity using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging capacity assay, oxygen radical absorbance capacity assay and ferric reducing antioxidant potential assay. Total phenolic content of dehydrated vegetables powder mixture was also measured by the Folin-Ciocalteu method, so as to evaluate its contribution to their total antioxidant function. The effect of different temperatures on stability of these systems after 90 days storage was also evaluated. These formulations presented strong antioxidant properties and high phenolic content (279 mg gallic acid equivalent/g of sample) and thus could be potential rich sources of natural antioxidants. Antioxidant properties differed significantly among selected formulations (p < 0.05). Generally, the losses were lower in samples stored under refrigeration. To interpret the antioxidant properties a kinetic approach was performed. Degradation kinetics for the phenolic content and antioxidant capacity followed a zero-order function. Effervescent granulate was the formulation which underwent faster degradation. Contrary, sugar granulate and gumdrops were much more slowly. Time required to halve the initial amount of phenolic compounds was 589 ± 45 days for samples stored at 4 º C, and 312 ± 16 days for samples stored at room temperature. These developed dosage forms are new and innovative approach for vegetable intakes in population with special requirements providing an improvement in the administration of vegetables and fruits.
Alkali-silica reactivity of expanded glass granules in structure of lightweight concrete
NASA Astrophysics Data System (ADS)
Bumanis, G.; Bajare, D.; Locs, J.; Korjakins, A.
2013-12-01
Main component in the lightweight concrete, which provides its properties, is aggregate. A lot of investigations on alkali silica reaction (ASR) between cement and lightweight aggregates have been done with their results published in the academic literature. Whereas expanded glass granules, which is relatively new product in the market of building materials, has not been a frequent research object. Therefore lightweight granules made from waste glass and eight types of cement with different chemical and mineralogical composition were examined in this research. Expanded glass granules used in this research is commercially available material produced by Penostek. Lightweight concrete mixtures were prepared by using commercial chemical additives to improve workability of concrete. The aim of the study is to identify effect of cement composition to the ASR reaction which occurs between expanded glass granules and binder. Expanded glass granules mechanical and physical properties were determined. In addition, properties of fresh and hardened concrete were determined. The ASR test was processed according to RILEM AAR-2 testing recommendation. Tests with scanning electron microscope and microstructural investigations were performed for expanded glass granules and hardened concrete specimens before and after exposing them in alkali solution.
Jereb, Saša; Hwang, Hun-Way; Van Otterloo, Eric; Govek, Eve-Ellen; Fak, John J; Yuan, Yuan; Hatten, Mary E
2018-01-01
Alternative polyadenylation (APA) regulates mRNA translation, stability, and protein localization. However, it is unclear to what extent APA regulates these processes uniquely in specific cell types. Using a new technique, cTag-PAPERCLIP, we discovered significant differences in APA between the principal types of mouse cerebellar neurons, the Purkinje and granule cells, as well as between proliferating and differentiated granule cells. Transcripts that differed in APA in these comparisons were enriched in key neuronal functions and many differed in coding sequence in addition to 3’UTR length. We characterize Memo1, a transcript that shifted from expressing a short 3’UTR isoform to a longer one during granule cell differentiation. We show that Memo1 regulates granule cell precursor proliferation and that its long 3’UTR isoform is targeted by miR-124, contributing to its downregulation during development. Our findings provide insight into roles for APA in specific cell types and establish a platform for further functional studies. PMID:29578408
Cerebellar granule cells encode the expectation of reward
Wagner, Mark J; Kim, Tony Hyun; Savall, Joan; Schnitzer, Mark J; Luo, Liqun
2017-01-01
The human brain contains ~60 billion cerebellar granule cells1, which outnumber all other neurons combined. Classical theories posit that a large, diverse population of granule cells allows for highly detailed representations of sensorimotor context, enabling downstream Purkinje cells to sense fine contextual changes2–6. Although evidence suggests a role for cerebellum in cognition7–10, granule cells are known to encode only sensory11–13 and motor14 context. Using two-photon calcium imaging in behaving mice, here we show that granule cells convey information about the expectation of reward. Mice initiated voluntary forelimb movements for delayed water reward. Some granule cells responded preferentially to reward or reward omission, whereas others selectively encoded reward anticipation. Reward responses were not restricted to forelimb movement, as a Pavlovian task evoked similar responses. Compared to predictable rewards, unexpected rewards elicited markedly different granule cell activity despite identical stimuli and licking responses. In both tasks, reward signals were widespread throughout multiple cerebellar lobules. Tracking the same granule cells over several days of learning revealed that cells with reward-anticipating responses emerged from those that responded at the start of learning to reward delivery, whereas reward omission responses grew stronger as learning progressed. The discovery of predictive, non-sensorimotor encoding in granule cells is a major departure from current understanding of these neurons and dramatically enriches contextual information available to postsynaptic Purkinje cells, with important implications for cognitive processing in the cerebellum. PMID:28321129
Updike, Dustin L.; Strome, Susan
2009-01-01
P granules are non-membrane-bound organelles found in the germ-line cytoplasm throughout Caenorhabditis elegans development. Like their “germ granule” counterparts in other animals, P granules are thought to act as determinants of the identity and special properties of germ cells, properties that include the unique ability to give rise to all tissues of future generations of an organism. Therefore, understanding how P granules work is critical to understanding how cellular immortality and totipotency are retained, gained, and lost. Here we report on a genomewide RNAi screen in C. elegans, which identified 173 genes that affect the stability, localization, and function of P granules. Many of these genes fall into specific classes with shared P-granule phenotypes, allowing us to better understand how cellular processes such as protein degradation, translation, splicing, nuclear transport, and mRNA homeostasis converge on P-granule assembly and function. One of the more striking phenotypes is caused by the depletion of CSR-1, an Argonaute associated with an endogenous siRNA pathway that functions in the germ line. We show that CSR-1 and two other endo-siRNA pathway members, the RNA-dependent RNA polymerase EGO-1 and the helicase DRH-3, act to antagonize RNA and P-granule accumulation in the germ line. Our findings strengthen the emerging view that germ granules are involved in numerous aspects of RNA metabolism, including an endo-siRNA pathway in germ cells. PMID:19805813
Hayashi, Yoshihiro; Oshima, Etsuko; Maeda, Jin; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo
2012-01-01
A multivariate statistical technique was applied to the design of an orally disintegrating tablet and to clarify the causal correlation among variables of the manufacturing process and pharmaceutical responses. Orally disintegrating tablets (ODTs) composed mainly of mannitol were prepared via the wet-granulation method using crystal transition from the δ to the β form of mannitol. Process parameters (water amounts (X(1)), kneading time (X(2)), compression force (X(3)), and amounts of magnesium stearate (X(4))) were optimized using a nonlinear response surface method (RSM) incorporating a thin plate spline interpolation (RSM-S). The results of a verification study revealed that the experimental responses, such as tensile strength and disintegration time, coincided well with the predictions. A latent structure analysis of the pharmaceutical formulations of the tablet performed using a Bayesian network led to the clear visualization of a causal connection among variables of the manufacturing process and tablet characteristics. The quantity of β-mannitol in the granules (Q(β)) was affected by X(2) and influenced all granule properties. The specific surface area of the granules was affected by X(1) and Q(β) and had an effect on all tablet characteristics. Moreover, the causal relationships among the variables were clarified by inferring conditional probability distributions. These techniques provide a better understanding of the complicated latent structure among variables of the manufacturing process and tablet characteristics.
2014-01-01
Studies in Arabidopsis and rice suggest that manipulation of starch synthase I (SSI) expression in wheat may lead to the production of wheat grains with novel starch structure and properties. This work describes the suppression of SSI expression in wheat grains using RNAi technology, which leads to a low level of enzymatic activity for SSI in the developing endosperm, and a low abundance of SSI protein inside the starch granules of mature grains. The amylopectin fraction of starch from the SSI suppressed lines showed an increased frequency of very short chains (degree of polymerization, dp 6 and 7), a lower proportion of short chains (dp 8–12), and more intermediate chains (dp 13–20) than in the grain from their negative segregant lines. In the most severely affected line, amylose content was significantly increased, the morphology of starch granules was changed, and the proportion of B starch granules was significantly reduced. The change of the fine structure of the starch in the SSI-RNAi suppression lines alters the gelatinization temperature, swelling power, and viscosity of the starch. This work demonstrates that the roles of SSI in the determination of starch structure and properties are similar among different cereals and Arabidopsis. PMID:24634486
Wei, Mei; Du, Lan-zhe; Li, Hui; Zhang, Guang-da; Chen, Xiang-dong
2015-05-01
To study the correlation of characteristic spectra of Vinegar Corydalis Rhizoma decoction pieces, water decoction and formula granules by HPLC, and to investigate the transfer of the main chemical constituents between three different forms. The analysis was carried out by a Phenomenex Gemini C18 column (250 mm x 4.6 mm,5 μm) with acetonitrile-1% acetic acid and ammonium acetate buffer solution (pH 6.0) as the mobile phase in a gradient elution mode. The detection wavelength was 280 nm with a flow rate of 0.8 mL /min. The column temperature was 30 degrees C. The characteristic spectra from 11 batches of Vinegar Corydalis Rhizoma decoction pieces, 11 batches of water decoction and 11 batches of formula granules were established respectively. Ten peaks in the HPLC characteristic spectra from 11 batches of formula granules could be tracked in the water decoction, nine peaks in the HPLC characteristic spectra could be tracked in the decoction pieces. In the ten common peaks, four components such as protopine, palnatine chloride, berberine hydrochloride and tetrahydropalmatine were verified. The main chemical components of Vinegar Corydalis Rhizoma decoction pieces, water decoction and formula granules are basically the same, the common component contents have similar proportion.
Teżyk, Michał; Jakubowska, Emilia; Milanowski, Bartłomiej; Lulek, Janina
2017-10-01
The aim of this study was to optimize the process of tablets compression and identification of film-coating critical process parameters (CPPs) affecting critical quality attributes (CQAs) using quality by design (QbD) approach. Design of experiment (DOE) and regression methods were employed to investigate hardness, disintegration time, and thickness of uncoated tablets depending on slugging and tableting compression force (CPPs). Plackett-Burman experimental design was applied to identify critical coating process parameters among selected ones that is: drying and preheating time, atomization air pressure, spray rate, air volume, inlet air temperature, and drum pressure that may influence the hardness and disintegration time of coated tablets. As a result of the research, design space was established to facilitate an in-depth understanding of existing relationship between CPPs and CQAs of intermediate product (uncoated tablets). Screening revealed that spray rate and inlet air temperature are two most important factors that affect the hardness of coated tablets. Simultaneously, none of the tested coating factors have influence on disintegration time. The observation was confirmed by conducting film coating of pilot size batches.
Möhn, H; Le Cabec, V; Fischer, S; Maridonneau-Parini, I
1995-01-01
The src-family protein-tyrosine kinase p59hck is mainly expressed in neutrophils; however, its functional role in these cells is unknown. Several other src-family members are localized on secretory vesicles and have been proposed to regulate intracellular traffic. We have established here the subcellular localization of p59hck in human neutrophils. Immunoblotting of subcellular fractions showed that approx. 60% of the p59hck per cell is localized on the secretory granules; the other 40% is distributed equally between non-granular membranes and the cytosol. Immunofluorescence of neutrophils and HL60 cells suggests that the p59hck-positive granules are azurophil granules. Granular p59hck is highly susceptible to degradation by an azurophil-granule proteinase. Different forms of p59hck occur in the three subcellular compartments: a 61 kDa form is mainly found in the granules, a 59 kDa form is predominant in the non-granular membranes, whereas cytosolic p59hck migrates as a doublet at 63 kDa. During the process of phagocytosis-linked degranulation, induced by serum-opsonized zymosan in neutrophils or HL60 cells, granular p59hck translocates towards the phagosome. The subcellular localization of p59hck suggests that the enzyme could be involved in the regulation of the degranulation process. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7626033
Hussein, Khaled; Türk, Michael; Wahl, Martin A
2008-03-03
To improve dissolution properties of drugs, a supercritical fluid (SCF) technique was used to load these drugs into a solid carrier. In this study, granules based on beta-cyclodextrin (betaCD) were applied as a carrier for poor water-soluble drug and loaded with a model drug (ibuprofen) using two different procedures: controlled particle deposition (CPD), SCF process and solution immersion (SI) as a conventional method for comparison. Using the CPD technique, 17.42+/-2.06wt.% (n=3) ibuprofen was loaded into betaCD-granules, in contrast to only 3.8+/-0.15wt.% (n=3) in the SI-product. The drug loading was confirmed as well by reduction of the BET surface area for the CPD-product (1.134+/-0.07m(2)/g) compared to the unloaded-granules (1.533+/-0.031m(2)/g). Such a reduction was not seen in the SI-product (1.407+/-0.048m(2)/g). The appearance of an endothermic melting peak at 77 degrees C and X-ray patterns representing ibuprofen in drug-loaded granules can be attributed to the amount of ibuprofen loaded in its crystalline form. A significant increase in drug dissolution was achieved by either drug-loading procedures compared to the unprocessed ibuprofen. In this study, the CPD technique, a supercritical fluid process avoiding the use of toxic or organic solvents was successfully applied to load drug into solid carriers, thereby improving the water-solubility of the drug.
Improving Metadata Compliance for Earth Science Data Records
NASA Astrophysics Data System (ADS)
Armstrong, E. M.; Chang, O.; Foster, D.
2014-12-01
One of the recurring challenges of creating earth science data records is to ensure a consistent level of metadata compliance at the granule level where important details of contents, provenance, producer, and data references are necessary to obtain a sufficient level of understanding. These details are important not just for individual data consumers but also for autonomous software systems. Two of the most popular metadata standards at the granule level are the Climate and Forecast (CF) Metadata Conventions and the Attribute Conventions for Dataset Discovery (ACDD). Many data producers have implemented one or both of these models including the Group for High Resolution Sea Surface Temperature (GHRSST) for their global SST products and the Ocean Biology Processing Group for NASA ocean color and SST products. While both the CF and ACDD models contain various level of metadata richness, the actual "required" attributes are quite small in number. Metadata at the granule level becomes much more useful when recommended or optional attributes are implemented that document spatial and temporal ranges, lineage and provenance, sources, keywords, and references etc. In this presentation we report on a new open source tool to check the compliance of netCDF and HDF5 granules to the CF and ACCD metadata models. The tool, written in Python, was originally implemented to support metadata compliance for netCDF records as part of the NOAA's Integrated Ocean Observing System. It outputs standardized scoring for metadata compliance for both CF and ACDD, produces an objective summary weight, and can be implemented for remote records via OPeNDAP calls. Originally a command-line tool, we have extended it to provide a user-friendly web interface. Reports on metadata testing are grouped in hierarchies that make it easier to track flaws and inconsistencies in the record. We have also extended it to support explicit metadata structures and semantic syntax for the GHRSST project that can be easily adapted to other satellite missions as well. Overall, we hope this tool will provide the community with a useful mechanism to improve metadata quality and consistency at the granule level by providing objective scoring and assessment, as well as encourage data producers to improve metadata quality and quantity.
Turnover of pigment granules: cyclic catabolism and anabolism of ommochromes within epidermal cells.
Insausti, T C; Casas, J
2009-12-01
Ommochromes are end products of the tryptophan metabolism in arthropods. While the anabolism of ommochromes has been well studied, the catabolism is totally unknown. In order to study it, we used the crab-spider Misumena vatia, which is able to change color reversibly in a few days, from yellow to white and back. Ommochromes is the only pigment class responsible for the body coloration in this animal. The aim of this study was to analyze the fine structure of the epidermal cells in bleaching spiders, in an attempt to correlate morphological changes with the fate of the pigment granules. Central to the process of bleaching is the lysis of the ommochrome granules. In the same cell, intact granules and granules in different degradation stages are found. The degradation begins with granule autolysis. Some components are extruded in the extracellular space and others are recycled via autophagy. Abundant glycogen appears associated to granulolysis. In a later stage of bleaching, ommochrome progranules, typical of white spiders, appear in the distal zone of the same epidermal cell. Catabolism and anabolism of pigment granules thus take place simultaneously in spider epidermal cells. A cyclic pathway of pigment granules formation and degradation, throughout a complete cycle of color change is proposed, together with an explanation for this turnover, involving photoprotection against UV by ommochromes metabolites. The presence of this turnover for melanins is discussed.
An, Chun-jiang; He, Yan-ling; Huang, Guo-he; Liu, Yong-hong
2010-07-15
The performance of mesophilic anaerobic granules to degrade octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) was investigated under various conditions. The results of batch experiments showed that anaerobic granules were capable of removing HMX from aqueous solution with high efficiency. Both biotic and abiotic mechanisms contributed to the removal of HMX by anaerobic granules under mesophilic conditions. Adsorption appeared to play a significant role in the abiotic process. Furthermore, HMX could be biodegraded by anaerobic granules as the sole substrate. After 16 days of incubation, 99.04% and 96.42% of total HMX could be removed by 1g VSS/L acclimated and unacclimated granules, respectively. Vancomycin, an inhibitor of acetogenic bacteria, caused a significant inhibition of HMX biotransformation, while 2-bromoethanesulfonic acid, an inhibitor of methanogenic bacteria, only resulted in a slight decrease of metabolic activity. The presence of the glucose, as a suitable electron donor and carbon source, was found to enhance the degradation of HMX by anaerobic granules. Our study showed that sulfate had little adverse effects on biotransformation of HMX by anaerobic granules. However, nitrate had significant inhibitory effect on the extent of HMX removal especially in the initial period. This study offered good prospects of using high-rate anaerobic technology in the treatment of munition wastewater. 2010 Elsevier B.V. All rights reserved.
Viljoen, Joe M; Steenekamp, Jan H; Marais, Andries F; Kotzé, Awie F
2014-06-01
Chitosan does not rank highly regarding its employment as tablet filler due to certain limitations. Undesirable properties that limit its utilization as excipient in solid dosage forms include its hydration propensity that negatively affects tablet stability, strength and disintegration. The objective of this study was to investigate the physical stability of chitosan powder, mixtures, granules and tablets under accelerated conditions such as elevated temperatures and humidity over different periods of time. Selected physico-chemical properties of pure chitosan powder, physical mixtures of chitosan with Kollidon® VA64 (BASF, Ludwigshafen, Germany), chitosan granules, as well as tablets were evaluated under conditions of elevated humidity and temperature. The physical stability of chitosan tablets exhibited sensitivity towards varying exposure conditions. It was furthermore evident that the presence of moisture (sorbed water) had a marked influence on the physical stability of chitosan powder and tablets. It was evident that the presence of Kollidon® VA64 as well as the method of inclusion of this binder influenced the properties of chitosan tablets. The physical stability of chitosan powder deteriorated to a greater extent compared to that of the chitosan tablets, which were subjected to the same conditions. It is recommended that tablets containing chitosan should be stored at a temperature not exceeding 25 °C as well as at a relatively low humidity (<60%) to prevent deterioration of physical properties. Direct compression of chitosan granules which contained 5%w/w Kollidon® VA64 produced the best formulation in terms of physical stability at the different conditions.
Sun, J L; Shang, C; Kikkert, G A
2013-01-01
A renewable granular iron-based technology for hydrogen sulfide removal from sediment and water in box culverts and storm drains is discussed. Iron granules, including granular ferric hydroxide (GFH), granular ferric oxide (GFO) and rusted waste iron crusts (RWIC) embedded in the sediment phase removed aqueous hydrogen sulfide formed from sedimentary biological sulfate reduction. The exhausted iron granules were exposed to dissolved oxygen and this regeneration process recovered the sulfide removal capacities of the granules. The recovery is likely attributable to the oxidation of the ferrous iron precipitates film and the formation of new reactive ferric iron surface sites on the iron granules and sand particles. GFH and RWIC showed larger sulfide removal capacities in the sediment phase than GFO, likely due to the less ordered crystal structures on their surfaces. This study demonstrates that the iron granules are able to remove hydrogen sulfide from sediment and water in box culverts and storm drains and they have the potential to be regenerated and reused by contacting with dissolved oxygen.
Audible acoustics in high-shear wet granulation: application of frequency filtering.
Hansuld, Erin M; Briens, Lauren; McCann, Joe A B; Sayani, Amyn
2009-08-13
Previous work has shown analysis of audible acoustic emissions from high-shear wet granulation has potential as a technique for end-point detection. In this research, audible acoustic emissions (AEs) from three different formulations were studied to further develop this technique as a process analytical technology. Condenser microphones were attached to three different locations on a PMA-10 high-shear granulator (air exhaust, bowl and motor) to target different sound sources. Size, flowability and tablet break load data was collected to support formulator end-point ranges and interpretation of AE analysis. Each formulation had a unique total power spectral density (PSD) profile that was sensitive to granule formation and end-point. Analyzing total PSD in 10 Hz segments identified profiles with reduced run variability and distinct maxima and minima suitable for routine granulation monitoring and end-point control. A partial least squares discriminant analysis method was developed to automate selection of key 10 Hz frequency groups using variable importance to projection. The results support use of frequency refinement as a way forward in the development of acoustic emission analysis for granulation monitoring and end-point control.
Iwaki, Aya; Kawai, Takao; Yamamoto, Yosuke; Izawa, Shingo
2013-03-01
Various forms of stress can cause an attenuation of bulk translation activity and the accumulation of nontranslating mRNAs into cytoplasmic messenger RNP (mRNP) granules termed processing bodies (P-bodies) and stress granules (SGs) in eukaryotic cells. Furfural and 5-hydroxymethylfurfural (HMF), derived from lignocellulosic biomass, inhibit yeast growth and fermentation as stressors. Since there is no report regarding their effects on the formation of cytoplasmic mRNP granules, here we investigated whether furfural and HMF cause the assembly of yeast P-bodies and SGs accompanied by translational repression. We found that furfural and HMF cause the attenuation of bulk translation activity and the assembly of cytoplasmic mRNP granules in Saccharomyces cerevisiae. Notably, a combination of furfural and HMF induced the remarkable repression of translation initiation and SG formation. These findings provide new information about the physiological effects of furfural and HMF on yeast cells, and also suggest the potential usefulness of cytoplasmic mRNP granules as a warning sign or index of the deterioration of cellular physiological status in the fermentation of lignocellulosic hydrolysates.
Iwaki, Aya; Kawai, Takao; Yamamoto, Yosuke
2013-01-01
Various forms of stress can cause an attenuation of bulk translation activity and the accumulation of nontranslating mRNAs into cytoplasmic messenger RNP (mRNP) granules termed processing bodies (P-bodies) and stress granules (SGs) in eukaryotic cells. Furfural and 5-hydroxymethylfurfural (HMF), derived from lignocellulosic biomass, inhibit yeast growth and fermentation as stressors. Since there is no report regarding their effects on the formation of cytoplasmic mRNP granules, here we investigated whether furfural and HMF cause the assembly of yeast P-bodies and SGs accompanied by translational repression. We found that furfural and HMF cause the attenuation of bulk translation activity and the assembly of cytoplasmic mRNP granules in Saccharomyces cerevisiae. Notably, a combination of furfural and HMF induced the remarkable repression of translation initiation and SG formation. These findings provide new information about the physiological effects of furfural and HMF on yeast cells, and also suggest the potential usefulness of cytoplasmic mRNP granules as a warning sign or index of the deterioration of cellular physiological status in the fermentation of lignocellulosic hydrolysates. PMID:23275506
Melo, Fabio Rabelo; Waern, Ida; Rönnberg, Elin; Åbrink, Magnus; Lee, David M.; Schlenner, Susan M.; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Turk, Boris; Wernersson, Sara; Pejler, Gunnar
2011-01-01
Mast cell secretory granules (secretory lysosomes) contain large amounts of fully active proteases bound to serglycin proteoglycan. Damage to the granule membrane will thus lead to the release of serglycin and serglycin-bound proteases into the cytosol, which potentially could lead to proteolytic activation of cytosolic pro-apoptotic compounds. We therefore hypothesized that mast cells are susceptible to apoptosis induced by permeabilization of the granule membrane and that this process is serglycin-dependent. Indeed, we show that wild-type mast cells are highly sensitive to apoptosis induced by granule permeabilization, whereas serglycin-deficient cells are largely resistant. The reduced sensitivity of serglycin−/− cells to apoptosis was accompanied by reduced granule damage, reduced release of proteases into the cytosol, and defective caspase-3 activation. Mechanistically, the apoptosis-promoting effect of serglycin involved serglycin-dependent proteases, as indicated by reduced sensitivity to apoptosis and reduced caspase-3 activation in cells lacking individual mast cell-specific proteases. Together, these findings implicate serglycin proteoglycan as a novel player in mast cell apoptosis. PMID:21123167
Bowman, G R; Turkewitz, A P
2001-12-01
The formation of dense core granules (DCGs) requires both the sorting of granule contents from other secretory proteins and a postsorting maturation process. The Tetrahymena thermophila strain SB281 fails to synthesize DCGs, and previous analysis suggested that the defect lay at or near the sorting step. Because this strain represents one of the very few mutants in this pathway, we have undertaken a more complete study of the phenotype. Genetic epistasis analysis places the defect upstream of those in two other characterized Tetrahymena mutants. Using immunofluorescent detection of granule content proteins, as well as GFP tagging, we describe a novel cytoplasmic compartment to which granule contents can be sorted in growing SB281 cells. Cell fusion experiments indicate that this compartment is not a biosynthetic intermediate in DCG synthesis. Sorting in SB281 is strongly conditional with respect to growth. When cells are starved, the storage compartment is degraded and de novo synthesized granule proteins are rapidly secreted. The mutation in SB281 therefore appears to affect DCG synthesis at the level of both sorting and maturation.
Bowman, G R; Turkewitz, A P
2001-01-01
The formation of dense core granules (DCGs) requires both the sorting of granule contents from other secretory proteins and a postsorting maturation process. The Tetrahymena thermophila strain SB281 fails to synthesize DCGs, and previous analysis suggested that the defect lay at or near the sorting step. Because this strain represents one of the very few mutants in this pathway, we have undertaken a more complete study of the phenotype. Genetic epistasis analysis places the defect upstream of those in two other characterized Tetrahymena mutants. Using immunofluorescent detection of granule content proteins, as well as GFP tagging, we describe a novel cytoplasmic compartment to which granule contents can be sorted in growing SB281 cells. Cell fusion experiments indicate that this compartment is not a biosynthetic intermediate in DCG synthesis. Sorting in SB281 is strongly conditional with respect to growth. When cells are starved, the storage compartment is degraded and de novo synthesized granule proteins are rapidly secreted. The mutation in SB281 therefore appears to affect DCG synthesis at the level of both sorting and maturation. PMID:11779800
A new biological recovery approach for PHA using mealworm, Tenebrio molitor.
Murugan, Paramasivam; Han, Lizhu; Gan, Chee-Yuen; Maurer, Frans H J; Sudesh, Kumar
2016-12-10
Bacterial polyhydroxyalkanoates (PHA) are expensive partly due to the recovery and purification processes. Thus, many studies have been carried out in order to minimize the cost. Here we report on the use of mealworm, which is the larva of mealworm beetle (Tenebrio molitor) to recover PHA granules from Cupriavidus necator. Mealworms were shown to readily consume the freeze-dried C. necator cells and excrete the PHA granules in the form of whitish feces. Further purification using water, detergent and heat resulted in almost 100% pure PHA granules. Comparison with chloroform extraction showed no signs of reduction in the molecular weight and dispersion of the PHA molecules. Scanning electron microscopy and dynamic light scattering measurements revealed that the biologically recovered PHA granules retained their native spherical morphology. The PHA granules were subjected to a battery of tests to determine their purity and properties in comparison to the chloroform extracted PHA. This study has demonstrated the possibility of using mealworms as a biological agent to partially purify the PHA granules. Copyright © 2016 Elsevier B.V. All rights reserved.
Microstructural and techno-functional properties of cassava starch modified by ultrasound.
Monroy, Yuliana; Rivero, Sandra; García, María A
2018-04-01
This work was focused on the correlation between the structural and techno-functional properties of ultrasound treated cassava starch for the preparation of tailor-made starch-based ingredients and derivatives. Furthermore, the effect of treatment time, sample conditioning and ultrasound amplitude was studied. Ultrasonic treatment of cassava starch induced structural disorganization and microstructural changes evidenced mainly in the morphological characteristics of the granules and in their degrees of crystallinity. These structural modifications were supported by ATR-FTIR and SEM and CSLM studies as well as DRX and thermal analysis. The selection of the processing conditions is critical due to the complete gelatinization of the starch was produced with the maximum amplitude tested and without temperature control. Rheological dynamical analysis indicated changes at the molecular level in starch granules due to the ultrasound treated, revealing the paste stability under refrigeration condition. PCA allow to establish the interrelationships between microstructural and techno-functional properties. In summary, different starch derivatives could be obtained by adjusting the ultrasound treatment conditions depending on their potential applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Properties of hot-melt extruded theophylline tablets containing poly(vinyl acetate).
Zhang, F; McGinity, J W
2000-09-01
The objectives of this study were to investigate the properties of poly(vinyl acetate) (PVAc) as a retardant polymer and to study the drug release mechanism of theophylline from matrix tablets prepared by hot-melt extrusion. A physical mixture of drug, polymer, and drug release modifiers was fed into the equipment and heated inside the barrel of the extruder. The cylindrical extrudates were either cut into tablets or ground into granules and compressed with other excipients into tablets. Due to the low glass transition temperature of the PVAc, the melt extrusion process was conducted at approximately 70 degrees C. Theophylline was used as the model drug in this study. Theophylline was present in the extrudate in its crystalline form and was released from the tablets by diffusion. The Higuchi diffusion model and percolation theories were applied to the dissolution data to explain the drug release properties of the matrix systems. The release rate was shown to be dependent on the granule size, drug particle size, and drug loading in the tablets. Water-soluble polymers were demonstrated to be efficient release rate modifiers for this system.
The role and function of chlorine in the preparation of high-ratio cake flour.
Gough, B M; Whitehouse, M E; Greenwood, C T
1978-01-01
The literature on the role of chlorine treatment of flour for use in high-ratio cake production is discussed in relation to current knowledge of cereal chemistry and cake technology. A brief perspective of the present use of chlorine in high-ratio cake flours is included. Investigations of the uptake of gaseous chlorine by flour and its distribution among and chemical action upon the major flour components (water, protein, lipid, and carbohydrate) are assessed. The physical effects of chlorination as demonstrated by experiments with batters and cakes and by physicochemical observations of flour and its fractions are also considered. The characteristics of the starch in flour appear to be critical in high-ratio cakes. Chlorine treatment modifies the gelatinization behavior of the starch granules yet does not change their gelatinization temperature not is there evidence of chemical attack upon the starch molecules. Therefore, it is suggested that chlorine effects the necessary changes in starch behavior by reacting with the noncarbohydrate surface contaminants on the granules. Alternative methods of improving high-ratio cake flours are mentioned, particularly heat-treatment processes.
Zhao, Yang; Gong, Xiao-Jian; He, Yan; Ma, Feng-Wei; Zhou, Mei; Zhao, Chao; Niu, Yi; Deng, Jie
2015-01-01
Objective To more scientifically and reasonably control the quality of Huangqi Granules, preliminary studies on the pharmacodynamics and serum pharmacochemistry of this medicine were performed. DPPH and MTT experiments showed that water extracts of Huangqi Granules had good antioxidant activity and increased immunity. Timed blood samples collected 5 min, 15 min, and 30 min after oral administration of a set amount of Huangqi Granules were collected and tested using UPLC-ESI-MS/MS. As a result, calycosin-7-O-β-D-glucoside, ononin, calycosin, astragaloside IV, and formononetin were found to exist in rat blood after dosing, indicating that the five chemical compounds might have pharmacological activity, and based on this result, they were designated biomarkers for quality control of Huangqi Granules. Consequently, a simple, rapid and efficient method was developed in the present study for the simultaneous determination of the five characteristic compounds in Huangqi Granules using HPLC-DAD-ELSD. Materials and Methods The separation was performed using an Agilent Hypersil ODS column (4.6 × 250 mm, 5 μm) at 30 ℃. The mobile phase was composed of water (solvent A) and acetonitrile (solvent B) with a flow rate of 1 mL/min. The drift tube temperature of the ELSD system was set to 85 ℃, and the nitrogen pressure was 3.5 bar. Results All five characteristic compounds had good linear behavior with r2 values greater than 0.9972. The recoveries varied from 96.31% to 101.22%. Subsequently, the developed method was applied to evaluate the quality of Huangqi Granules from different batches, and hierarchical clustering analysis (HCA) was used to analyze the classification of the samples based on the values of the five compounds. Conclusion The established HPLC method combined with HCA proved to be effective to evaluate the quality of Huangqi Granules. PMID:25915040
FUEL ELEMENTS FOR NUCLEAR REACTORS AND PROCESS OF MAKING
Roake, W.E.
1958-08-19
A process is described for producing uranium metal granules for use in reactor fuel elements. The granules are made by suspending powdered uramiunn metal or uranium hydride in a viscous, non-reactive liquid, such as paraffin oil, aad pouring the resulting suspension in droplet, on to a bed of powdered absorbent. In this manner the liquid vehicle is taken up by the sorbent and spherical pellets of uranium metal are obtained. The
FUS/TLS assembles into stress granules and is a prosurvival factor during hyperosmolar stress.
Sama, Reddy Ranjith K; Ward, Catherine L; Kaushansky, Laura J; Lemay, Nathan; Ishigaki, Shinsuke; Urano, Fumihiko; Bosco, Daryl A
2013-11-01
FUsed in Sarcoma/Translocated in LipoSarcoma (FUS/TLS or FUS) has been linked to several biological processes involving DNA and RNA processing, and has been associated with multiple diseases, including myxoid liposarcoma and amyotrophic lateral sclerosis (ALS). ALS-associated mutations cause FUS to associate with stalled translational complexes called stress granules under conditions of stress. However, little is known regarding the normal role of endogenous (non-disease linked) FUS in cellular stress response. Here, we demonstrate that endogenous FUS exerts a robust response to hyperosmolar stress induced by sorbitol. Hyperosmolar stress causes an immediate re-distribution of nuclear FUS to the cytoplasm, where it incorporates into stress granules. The redistribution of FUS to the cytoplasm is modulated by methyltransferase activity, whereas the inhibition of methyltransferase activity does not affect the incorporation of FUS into stress granules. The response to hyperosmolar stress is specific, since endogenous FUS does not redistribute to the cytoplasm in response to sodium arsenite, hydrogen peroxide, thapsigargin, or heat shock, all of which induce stress granule assembly. Intriguingly, cells with reduced expression of FUS exhibit a loss of cell viability in response to sorbitol, indicating a prosurvival role for endogenous FUS in the cellular response to hyperosmolar stress. Copyright © 2013 Wiley Periodicals, Inc.
Investigation of polymorphic transitions of piracetam induced during wet granulation.
Potter, Catherine B; Kollamaram, Gayathri; Zeglinski, Jacek; Whitaker, Darren A; Croker, Denise M; Walker, Gavin M
2017-10-01
Piracetam was investigated as a model API which is known to exhibit a number of different polymorphic forms. It is freely soluble in water so the possibility exists for polymorphic transformations to occur during wet granulation. Analysis of the polymorphic form present during lab-scale wet granulation, using water as a granulation liquid, was studied with powder X-ray diffraction and Raman spectroscopy as off-line and inline analysis tools respectively. Different excipients with a range of hydrophilicities, aqueous solubilities and molecular weights were investigated to examine their influence on these solution-mediated polymorphic transitions and experimental results were rationalised using molecular modelling. Our results indicated that as an increasing amount of water was added to the as-received piracetam FIII, a greater amount of the API dissolved which recrystallised upon drying to the metastable FII(6.403) via a monohydrate intermediary. Molecular level analysis revealed that the observed preferential transformation of monohydrate to FII is linked with a greater structural similarity between the monohydrate and FII polymorph in comparison to FIII. The application of Raman spectroscopy as a process analytical technology (PAT) tool to monitor the granulation process for the production of the monohydrate intermediate as a precursor to the undesirable metastable form was demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.
FUS/TLS assembles into stress granules and is a prosurvival factor during hyperosmolar stress
Sama, Reddy Ranjith K; Ward, Catherine L.; Kaushansky, Laura J.; Lemay, Nathan; Ishigaki, Shinsuke; Urano, Fumihiko; Bosco, Daryl A.
2014-01-01
FUsed in Sarcoma/Translocated in LipoSarcoma (FUS/TLS or FUS) has been linked to several biological processes involving DNA and RNA processing, and has been associated with multiple diseases, including myxoid liposarcoma and amyotrophic lateral sclerosis (ALS). ALS-associated mutations cause FUS to associate with stalled translational complexes called stress granules under conditions of stress. However, little is known regarding the normal role of endogenous (non-disease linked) FUS in cellular stress response. Here, we demonstrate that endogenous FUS exerts a robust response to hyperosmolar stress induced by sorbitol. Hyperosmolar stress causes an immediate re-distribution of nuclear FUS to the cytoplasm, where it incorporates into stress granules. The redistribution of FUS to the cytoplasm is modulated by methyltransferase activity, whereas the inhibition of methyltransferase activity does not affect the incorporation of FUS into stress granules. The response to hyperosmolar stress is specific, since endogenous FUS does not redistribute to the cytoplasm in response to sodium arsenite, hydrogen peroxide, thapsigargin, or heat shock, all of which induce stress granule assembly. Intriguingly, cells with reduced expression of FUS exhibit a loss of cell viability in response to sorbitol, indicating a prosurvival role for endogenous FUS in the cellular response to hyperosmolar stress. PMID:23625794
Koshimizu, Hisatsugu; Kim, Taeyoon; Cawley, Niamh X; Loh, Y Peng
2010-11-30
Chromogranin A (CgA), a member of the granin family serves several important cell biological roles in (neuro)endocrine cells which are summarized in this review. CgA is a "prohormone" that is synthesized at the rough endoplasmic reticulum and transported into the cisternae of this organelle via its signal peptide. It is then trafficked to the Golgi complex and then to the trans-Golgi network (TGN) where CgA aggregates at low pH in the presence of calcium. The CgA aggregates provide the physical driving force to induce budding of the TGN membrane resulting in dense core granule (DCG) formation. Within the granule, a small amount of the CgA is processed to bioactive peptides, including a predicted C-terminal peptide, serpinin. Upon stimulation, DCGs undergo exocytosis and CgA and its derived peptides are released. Serpinin, acting extracellularly is able to signal the increase in transcription of a serine protease inhibitor, protease nexin-1 (PN-1) that protects DCG proteins against degradation in the Golgi complex, which then enhances DCG biogenesis to replenish those that were released. Thus CgA and its derived peptide, serpinin, plays a significant role in granule formation and regulation of granule biogenesis, respectively, in (neuro) endocrine cells. Copyright © 2010. Published by Elsevier B.V.
Koshimizu, Hisatsugu; Kim, Taeyoon; Cawley, Niamh X.; Loh, Y. Peng
2014-01-01
Chromogranin A (CgA), a member of the granin family serves several important cell biological roles in (neuro) endocrine cells which are summarized in this review. CgA is a “prohormone” that is synthesized at the rough endoplasmic reticulum and transported into the cisternae of this organelle via its signal peptide. It is then trafficked to the Golgi complex and then to the trans-Golgi network (TGN) where CgA aggregates at low pH in the presence of calcium. The CgA aggregates provide the physical driving force to induce budding of the TGN membrane resulting in dense core granule (DCG) formation. Within the granule, a small amount of the CgA is processed to bioactive peptides, including a predicted C-terminal peptide, serpinin. Upon stimulation, DCGs undergo exocytosis and CgA and its derived peptides are released. Serpinin, acting extracellularly is able to signal the increase in transcription of a serine protease inhibitor, protease nexin-1 (PN-1) that protects DCG proteins against degradation in the Golgi complex, which then enhances DCG biogenesis to replenish those that were released. Thus CgA and its derived peptide, serpinin, plays a significant role in granule formation and regulation of granule biogenesis, respectively, in (neuro) endocrine cells. PMID:20920534
Chromogranin A: a new proposal for trafficking, processing and induction of granule biogenesis.
Koshimizu, Hisatsugu; Kim, Taeyoon; Cawley, Niamh X; Loh, Y Peng
2010-02-25
Chromogranin A (CgA), a member of the granin family serves several important cell biological roles in (neuro)endocrine cells which are summarized in this review. CgA is a "prohormone" that is synthesized at the rough endoplasmic reticulum and transported into the cisternae of this organelle via its signal peptide. It is then trafficked to the Golgi complex and then to the trans-Golgi network (TGN) where CgA aggregates at low pH in the presence of calcium. The CgA aggregates provide the physical driving force to induce budding of the TGN membrane resulting in dense core granule (DCG) formation. Within the granule, a small amount of the CgA is processed to bioactive peptides, including a predicted C-terminal peptide, serpinin. Upon stimulation, DCGs undergo exocytosis and CgA and its derived peptides are released. Serpinin, acting extracellularly is able to signal the increase in transcription of a serine protease inhibitor, protease nexin-1 (PN-1) that protects DCG proteins against degradation in the Golgi complex, which then enhances DCG biogenesis to replenish those that were released. Thus CgA and its derived peptide, serpinin, plays a significant role in granule formation and regulation of granule biogenesis, respectively, in (neuro) endocrine cells. Published by Elsevier B.V.
Movements of echinochrome pigment granules in sea urchin embryos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belanger, Ann Metcalf
1973-01-01
Characteristic movements of echinochrome pigment granules are known to accompany specific events in the embryonic development of the sea urchin Arbacia punctulata. This investigation has been concerned with processes involved in each of these movements, with particular emphasis on clear area formation and its relationship to mitosis and cleavage.
Limmatvapirat, Sontaya; Limmatvapirat, Chutima; Puttipipatkhachorn, Satit; Nunthanid, Jurairat; Luangtana-anan, Manee; Sriamornsak, Pornsak
2008-08-01
A new oral-controlled release matrix tablet based on shellac polymer was designed and developed, using metronidazole (MZ) as a model drug. The shellac-based matrix tablets were prepared by wet granulation using different amounts of shellac and lactose. The effect of annealing temperature and pH of medium on drug release from matrix tablets was investigated. The increased amount of shellac and increased annealing temperature significantly affected the physical properties (i.e., tablet hardness and tablet disintegration) and MZ release from the matrix tablets. The in-situ polymerization played a major role on the changes in shellac properties during annealing process. Though the shellac did not dissolve in acid medium, the MZ release in 0.1N HCl was faster than in pH 7.3 buffer, resulting from a higher solubility of MZ in acid medium. The modulation of MZ release kinetics from shellac-based matrix tablets could be accomplished by varying the amount of shellac or annealing temperature. The release kinetics was shifted from relaxation-controlled release to diffusion-controlled release when the amount of shellac or the annealing temperature was increased.
Fayed, Mohamed H; Abdel-Rahman, Sayed I; Alanazi, Fars K; Ahmed, Mahrous O; Tawfeek, Hesham M; Ali, Bahaa E
2017-03-01
High shear wet granulation is a significant component procedure in the pharmaceutical industry. The objective of the study was to investigate the influence of two independent formulation variables; polyvinypyrrolidone (PVP) as a binder (X,) and croscarmellose sodium (CCS) as a disintegrant (X2) on the crit- ical quality attributes of acetaminophen granules and their corresponding tablets using design of experiment (DoE) approach. A two factor, three level (32) full factorial design has been applied; each variable was investi- gated at three levels to characterize their strength and interaction. The dried granules have been analyzed for their density, granule size and flowability. Additionally, the produced tablets have been investigated for: break- ing force, friability, disintegration time and t. of drug dissolution. The analysis of variance (ANOVA) showed that the two variables had a significant impact (p < 0.05) on granules and tablets characteristics, while only the binder concentration influenced the tablets friability. Furthermore, significant interactions (p < 0.05) between the two variables, for granules and tablets attributes, were also found. However, variables interaction showed minimal effect for granules flowability as well as tablets friability. Desirability function was carried out to opti- mize the variables under study to obtain product within the USP limit. It was found that the higher desirability (0.985) could be obtained at the medium level of PVP and low level of CCS. Ultimately, this study supplies the formulator with beneficial tools in selecting the proper level of binder and disintegrant to attain product with desired characteristics.
Biphasic adaptation to osmotic stress in the C. elegans germ line.
Davis, Michael; Montalbano, Andrea; Wood, Megan P; Schisa, Jennifer A
2017-06-01
Cells respond to environmental stress in multiple ways. In the germ line, heat shock and nutritive stress trigger the assembly of large ribonucleoprotein (RNP) granules via liquid-liquid phase separation (LLPS). The RNP granules are hypothesized to maintain the quality of oocytes during stress. The goal of this study was to investigate the cellular response to glucose in the germ line and determine if it is an osmotic stress response. We found that exposure to 500 mM glucose induces the assembly of RNP granules in the germ line within 1 h. Interestingly, the RNP granules are maintained for up to 3 h; however, they dissociate after longer periods of stress. The RNP granules include processing body and stress granule proteins, suggesting shared functions. Based on several lines of evidence, the germ line response to glucose largely appears to be an osmotic stress response, thus identifying osmotic stress as a trigger of LLPS. Although RNP granules are not maintained beyond 3 h of osmotic stress, the quality of oocytes does not appear to decrease after longer periods of stress, suggesting a secondary adaptation in the germ line. We used an indirect marker of glycerol and observed high levels after 5 and 20 h of glucose exposure. Moreover, in gpdh-1;gpdh-2 germ lines, glycerol levels are reduced concomitant with RNP granules being maintained for an extended period. We speculate that increased glycerol levels may function as a secondary osmoregulatory adaptive response in the germ line, following a primary response of RNP granule assembly. Copyright © 2017 the American Physiological Society.
Lin, Ximao; Wang, Yayi
2017-09-01
The anammox process represents a sustainable and cost-effective technique for nitrogen removal from wastewater, where granulation of anammox bacteria could be of great benefit to the system performance. However, knowledge of the specific properties of anammox granules is currently unsatisfactory. In this study, the organization of anammox granules was comprehensively studied from macro to micro scale with a range of microscale techniques. Scanning and transmission electron microscopy and multiple fluorescence labeling combined with confocal laser scanning microscopy were included. Simultaneously, the associated mechanical properties were studied in-depth by rheometry in combination with selective enzymatic hydrolysis. Anammox granules follow a tertiary organization regime, where interactions between individual anammox bacteria made up the primary base, then, the grouping of anammox bacterial cells encapsulated within a thin extracellular polymeric substance (EPS) layer comprised a second arrangement level, and, finally, the cementing of these groups together with other bacteria and polymers gave rise to compact aggregates. α-Polysaccharides and proteins were considered the backbones of anammox granules, contributing greatly to their excellent intensity. β-Polysaccharides concentrated at the outer rims of anammox granules and combined with other macromolecules to form a buffer zone or protective barrier, beneath which anammox bacteria proliferated. Divalent cationic bridging for EPS binding was prevalent and of great significance within the dense anammox granules, while there was also much weak monovalent ionic interaction. The specific organization and composition of anammox granules endows them with excellent intensity and integrity, which can be of importance for full-scale reactor operations where diverse shocks can be expected. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gopal, Pallavi P; Nirschl, Jeffrey J; Klinman, Eva; Holzbaur, Erika L F
2017-03-21
Ribonucleoprotein (RNP) granules are enriched in specific RNAs and RNA-binding proteins (RBPs) and mediate critical cellular processes. Purified RBPs form liquid droplets in vitro through liquid-liquid phase separation and liquid-like non-membrane-bound structures in cells. Mutations in the human RBPs TAR-DNA binding protein 43 (TDP-43) and RNA-binding protein FUS cause amyotrophic lateral sclerosis (ALS), but the biophysical properties of these proteins have not yet been studied in neurons. Here, we show that TDP-43 RNP granules in axons of rodent primary cortical neurons display liquid-like properties, including fusion with rapid relaxation to circular shape, shear stress-induced deformation, and rapid fluorescence recovery after photobleaching. RNP granules formed from wild-type TDP-43 show distinct biophysical properties depending on axonal location, suggesting maturation to a more stabilized structure is dependent on subcellular context, including local density and aging. Superresolution microscopy demonstrates that the stabilized population of TDP-43 RNP granules in the proximal axon is less circular and shows spiculated edges, whereas more distal granules are both more spherical and more dynamic. RNP granules formed by ALS-linked mutant TDP-43 are more viscous and exhibit disrupted transport dynamics. We propose these altered properties may confer toxic gain of function and reflect differential propensity for pathological transformation.
Bann, Darrin V; Beyer, Andrea R; Parent, Leslie J
2014-04-01
The Gag protein of the murine retrovirus mouse mammary tumor virus (MMTV) orchestrates the assembly of immature virus particles in the cytoplasm which are subsequently transported to the plasma membrane for release from the cell. The morphogenetic pathway of MMTV assembly is similar to that of Saccharomyces cerevisiae retrotransposons Ty1 and Ty3, which assemble virus-like particles (VLPs) in intracytoplasmic ribonucleoprotein (RNP) complexes. Assembly of Ty1 and Ty3 VLPs depends upon cellular mRNA processing factors, prompting us to examine whether MMTV utilizes a similar set of host proteins to facilitate viral capsid assembly. Our data revealed that MMTV Gag colocalized with YB-1, a translational regulator found in stress granules and P bodies, in intracytoplasmic foci. The association of MMTV Gag and YB-1 in cytoplasmic granules was not disrupted by cycloheximide treatment, suggesting that these sites were not typical stress granules. However, the association of MMTV Gag and YB-1 was RNA dependent, and an MMTV RNA reporter construct colocalized with Gag and YB-1 in cytoplasmic RNP complexes. Knockdown of YB-1 resulted in a significant decrease in MMTV particle production, indicating that YB-1 plays a role in MMTV capsid formation. Analysis by live-cell imaging with fluorescence recovery after photobleaching (FRAP) revealed that the population of Gag proteins localized within YB-1 complexes was relatively immobile, suggesting that Gag forms stable complexes in association with YB-1. Together, our data imply that the formation of intracytoplasmic Gag-RNA complexes is facilitated by YB-1, which promotes MMTV virus assembly. Cellular mRNA processing factors regulate the posttranscriptional fates of mRNAs, affecting localization and utilization of mRNAs under normal conditions and in response to stress. RNA viruses such as retroviruses interact with cellular mRNA processing factors that accumulate in ribonucleoprotein complexes known as P bodies and stress granules. This report shows for the first time that mouse mammary tumor virus (MMTV), a mammalian retrovirus that assembles intracytoplasmic virus particles, commandeers the cellular factor YB-1, a key regulator of translation involved in the cellular stress response. YB-1 is essential for the efficient production of MMTV particles, a process directed by the viral Gag protein. We found that Gag and YB-1 localize together in cytoplasmic granules. Functional studies of Gag/YB-1 granules suggest that they may be sites where virus particles assemble. These studies provide significant insights into the interplay between mRNA processing factors and retroviruses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peric, A.
1997-12-31
The rutile form of titanium dioxide and granules of high density polyethylene (PEHD) and low density polyethylene (PELD) were used to prepare mortar matrices for immobilization of radioactive waste materials containing {sup 137}Cs. PELD, PEHD and TiO{sub 2} were added to mortar matrix preparations with the objective of improving physico-chemical characteristics of the radwaste-mortar matrix mixtures, in particular the leach-rate of the immobilized radionuclide. One type of PELD and two types of PEHD were used to replace 50 wt.% of stone granules normally used in the matrix, in order to decrease the porosity and density of the mortar matrix andmore » to avoid segregation of the stone particles at the bottom of the immobilized radioactive waste cylindrical form. TiO{sub 2} was also added to the mortar formulation, replacing 5 and 8 wt.% of the total cement weight. Cured samples were investigated under temperature stress conditions, where the temperature extremes were: T{sub min} = {minus}20 C, T{sub max} = +70 C. Samples were periodically immersed in distilled water at the ambient room temperature, after each freezing and heating treatment. Results of accelerated leaching experiments for these samples and samples prepared exclusively with polyethylenes replacing 100% of the stone granules and TiO{sub 2}, treated in nonaccelerated leaching experiments, were compared. Even using an accelerated ageing leach test that overestimates {sup 137}Cs leach rates, it can be deduced, that radionuclide leach rates from the radioactive waste mortar mixture forms were improved. Leach rates decreased from 5%, for the material prepared with stone aggregate, to 3.1 to 4.0%, for the materials prepared solely with PEHD, PELD or TiO{sub 2}, and to about 3% for all six types of the TiO{sub 2}-PEHD and TiO{sub 2}-PELD mixtures tested.« less
Short-term temperature impact on simultaneous biological nitrogen-sulphur treatment in EGSB reactor.
Sposob, Michal; Dinamarca, Carlos; Bakke, Rune
2016-10-01
Sulphides are present in many wastewater streams; their removal is important due to corrosiveness, toxicity and unpleasant odour, and can be carried out by anaerobic biological treatment. This study focuses on the temperature effect (25-10 °C) on an expanded granular sludge bed (EGSB) reactor for sulphide removal using nitrate as electron acceptor. The reactor was run at a NO 3 - /HS - molar ratio of 0.35 and pH of 8.5-9.0. Samples were analysed by ion chromatography (NO 3 - , SO 4 2- and S 2 O 3 2- ), spectrophotometry (S 2- ) and by scanning electron microscopy (SEM). S 2- and NO 3 - removal was 99.74 ± 0.04 and 99.5 ± 2.9%, respectively. Sulphur (S 0 ) was found on the outer granule surface and struvite inside the granule, by SEM. Sulphide conversion to sulphur was up to 76%. Temperature transitions and levels influenced S 2 O 3 2- and SO 4 2- concentrations.
Chekmareva, I A
2002-02-01
Quantitative and structural functional analysis of granulation tissue cells during treatment with protein-polysaccharide dressing Collahit F was carried out. The preparation effectively cleansed the wound from detritus, prevented secondary infection due to stimulation of the functional activity of macrophages and due to the effect of its antiseptic component (furagin), and stimulated proliferative activity of fibroblasts and granulation tissue microvessels on day 5 of treatment, thus promoting repair processes in the wound.
Process for treating moisture laden coal fines
Davis, Burl E.; Henry, Raymond M.; Trivett, Gordon S.; Albaugh, Edgar W.
1993-01-01
A process is provided for making a free flowing granular product from moisture laden caked coal fines, such as wet cake, by mixing a water immiscible substance, such as oil, with the caked coal, preferably under low shear forces for a period of time sufficient to produce a plurality of free flowing granules. Each granule is preferably comprised of a dry appearing admixture of one or more coal particle, 2-50% by weight water and the water immiscible substance.
Technological effect of vibroprocessing by flows of organic granular media
NASA Astrophysics Data System (ADS)
Lebedev, V. A.; Shishkina, A. P.; Davydova, I. V.; Morozova, A. V.
2018-03-01
The analysis of approaches to modeling of vibrational processing by granulated media is carried out. The vibroprocessing model which provides effective finishing of the surfaces of the parts due to the stone fruit organic media granules is developed. The model is based on the granule flow energy impact on the surface being treated. As the main characteristic of the organic media processing, a specific volumetric metal scrap is used, the physical meaning of which is the increase rate in the thickness of the material removed from the surface at a given velocity and pressure of the medium. It is shown that the metal scrap depends on the medium flow velocity, the height of the loading column of the granular medium, and the conditions for the formation of a medium stationary circulation motion. Based on the analysis of the results of experimental studies of the influence of amplitude-frequency characteristics on the removal of metal in the process of vibroprocessing with abrasive granules, the dependence of the specific volume metal removal is proposed for organic media processing, taking into account the threshold amplitude and frequency of oscillations of the working chamber, at which the effect of surface treatment is observed. The established set of relationships describing the effective conditions for vibroprocessing with stone organic media was obtained using experimental data, which allows us to assume that the model obtained is valid.
Influence of substrate surface loading on the kinetic behaviour of aerobic granules.
Liu, Yu; Liu, Yong-Qiang; Wang, Zhi-Wu; Yang, Shu-Fang; Tay, Joo-Hwa
2005-06-01
In the aerobic granular sludge reactor, the substrate loading is related to the size of the aerobic granules cultivated. This study investigated the influence of substrate surface loading on the growth and substrate-utilization kinetics of aerobic granules. Results showed that microbial surface growth rate and surface biodegradation rate are fairly related to the substrate surface loading by the Monod-type equation. In this study, both the theoretical maximum growth yield and the Pirt maintenance coefficient were determined. It was found that the estimated theoretical maximum growth yield of aerobic granules was as low as 0.2 g biomass g(-1) chemical oxygen demand (COD) and 10-40% of input substrate-COD was consumed through the maintenance metabolism, while experimental results further showed that the unit oxygen uptake by aerobic granules was 0.68 g oxygen g(-1) COD, which was much higher than that reported in activated sludge processes. Based on the growth yield and unit oxygen uptake determined, an oxidative assimilation equation of acetate-fed aerobic granules was derived; and this was confirmed by respirometric tests. In aerobic granular culture, about 74% of the input substrate-carbon was converted to carbon dioxide. The growth yield of aerobic granules was three times lower than that of activated sludge. It is likely that high carbon dioxide production is the main cause of the low growth yield of aerobic granules, indicating a possible energy uncoupling in aerobic granular culture.
Colchicine induced intraneuronal free zinc accumulation and dentate granule cell degeneration.
Choi, Bo Young; Lee, Bo Eun; Kim, Jin Hee; Kim, Hyun Jung; Sohn, Min; Song, Hong Ki; Chung, Tae Nyoung; Suh, Sang Won
2014-08-01
Colchicine has been discovered to inhibit many inflammatory processes such as gout, familial Mediterranean fever, pericarditis and Behcet disease. Other than these beneficial anti-inflammatory effects, colchicine blocks microtubule-assisted axonal transport, which results in the selective loss of dentate granule cells of the hippocampus. The mechanism of the colchicine-induced dentate granule cell death and depletion of mossy fiber terminals still remains unclear. In the present study, we hypothesized that colchicine-induced dentate granule cell death may be caused by accumulation of labile intracellular zinc. 10 μg kg(-1) of colchicine was injected into the adult rat hippocampus and then brain sections were evaluated at 1 day or 1 week later. Neuronal cell death was evaluated by H&E staining or Fluoro-Jade B. Zinc accumulation and vesicular zinc were detected by N-(6-methoxy-8-quinolyl)-para-toluene sulfonamide (TSQ) staining. To test whether an extracellular zinc chelator can prevent this process, CaEDTA was injected into the hippocampus over a 5 min period with colchicine. To test whether other microtubule toxins also produce similar effects as colchicine, vincristine was injected into the hippocampus. The present study found that colchicine injection induced intracellular zinc accumulation in the dentate granule cells and depleted vesicular zinc from mossy fiber terminals. Injection of a zinc chelator, CaEDTA, did not block the zinc accumulation and neuronal death. Vincristine also produced intracellular zinc accumulation and neuronal death. These results suggest that colchicine-induced dentate granule cell death is caused by blocking axonal zinc flow and accumulation of intracellular labile zinc.
Surface Modification of Porous Titanium Granules for Improving Bioactivity.
Karaji, Zahra Gorgin; Houshmand, Behzad; Faghihi, Shahab
The highly porous titanium granules are currently being used as bone substitute material and for bone tissue augmentation. However, they suffer from weak bone bonding ability. The aim of this study was to create a nanostructured surface oxide layer on irregularly shaped titanium granules to improve their bioactivity. This could be achieved using optimized electrochemical anodic oxidation (anodizing) and heat treatment processes. The anodizing process was done in an ethylene glycol-based electrolyte at an optimized condition of 60 V for 3 hours. The anodized granules were subsequently annealed at 450°C for 1 hour. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD) were used to characterize the surface structure and morphology of the granules. The in vitro bioactivity of the samples was evaluated by immersion of specimens in simulated body fluid (SBF) for 1, 2, and 3 weeks. The human osteoblastic sarcoma cell line, MG63, was used to evaluate cell viability on the samples using dimethylthiazol-diphenyl tetrazolium bromide (MTT) assay. The results demonstrated the formation of amorphous nanostructured titanium oxide after anodizing, which transformed to crystalline anatase and rutile phases upon heat treatment. After immersion in SBF, spherical aggregates of amorphous calcium phosphate were formed on the surface of the anodized sample, which turned into crystalline hydroxyapatite on the surface of the anodized annealed sample. No cytotoxicity was detected among the samples. It is suggested that anodic oxidation followed by heat treatment could be used as an effective surface treatment procedure to improve bioactivity of titanium granules implemented for bone tissue repair and augmentation.
Tanaka, Hironori; Iwao, Yasunori; Izumikawa, Masahiro; Sano, Syusuke; Ishida, Hitoshi; Noguchi, Shuji; Itai, Shigeru
2016-01-01
In the present study, a microwave treatment process has been applied to prepare orally disintegrating tablets (ODTs) containing powdered tea leaves with enriched levels of the anti-inflammatory compounds such as chafuroside A (CFA) and chafuroside B (CFB). The use of distilled water as the adsorbed and granulation solvents in this preparation process afforded tablets with a long disintegration time (more than 120 s). The CFA and CFB contents of these tablets did not also change after 4 min of microwave irradiation due to the tablet temperature, which only increased to 100°C. In contrast, the tablet temperature increased up to 140°C after 3 min of microwave irradiation when a 1.68 M Na2HPO4 solution instead of distilled water. Notably, the disintegration time of these tablets was considerably improved (less than 20 s) compared with the microwave-untreated tablets, and there were 7- and 11-fold increases in their CFA and CFB contents. In addition, the operational conditions for the preparation of the tablets were optimized by face-centered composite design based on the following criteria: tablet hardness greater than 13 N, disintegration time less than 30 s and friability less than 0.5%. The requirements translated into X1 (the amount of granulation solvent), X2 (tableting pressure) and X3 (content of the powdered tea leaves) values of 45%, 0.43 kN and 32%, respectively, and the ODTs containing powdered tea leaves prepared under these optimized conditions were found to show excellent tablet properties and contain enriched levels of CFA and CFB.
Provansal-Baudez, A; Baudry-Partiaoglou, N
1983-03-01
Ultrastructural comparison of different types of perisympathetic organs (POs) in three species of Coleoptera (Chrysocarabus auronitens, Oryctes rhinoceros, and Tenebrio molitor) showed that the structure of these organs was not related to their morphological types but to their topography. Two kinds of PO structure may be distinguished: compact median and diffuse lateral. They were similar in that both were surrounded by thin neural lamellae and exhibited numerous glial cells originating in the perineurium (type I perineurial cells) as well as abundant neurosecretory endings. They were different in as much as in median POs, the neurosecretory endings were generally surrounded by perineurial processes but in transverse POs, these endings were sheathless. Only one type of neurosecretory axon was distinguished in the median organs but three or four in the transverse. The nature of the processes by which neurosecretory granules are released may depend on the type of neurosecretory axon. For instance, exocytosis always occurred for dense spherical granules, and granule fragmentation was visualized for granules of smaller size.
Wang, Xiaolong; Gao, Dawen
2018-02-01
Granular deammonification process is a good way to retain aerobic and anaerobic ammonia oxidizing bacteria (AOB and anammox bacteria) and exhaust flocculent nitrite oxidizing bacteria (NOB). In this study, to facilitate indigenous AOB growth on anammox granules, by stepwise reducing influent nitrite, anammox granules were effectively transformed into deammonification granules in a micro-aerobic EGSB in 100 days. Total nitrogen removal efficiency of 90% and nitrogen removal rate of 2.3 g N/L/d were reached at stable deammonification stage. High influent FA and limited oxygen supply contributed suppression for Nitrospira-like NOB. In transition stages, Proteobacteria and Chloroflexi were always dominated. Anammox abundance decreased, while AOB abundance grew fast. Anammox bacteria and AOB were dominated by Brocadia fulgida and Nitrosomonas europaea, respectively. Denitrification activity and bacteria existed although without influent organic. The final AOB abundance was about 4.55-13.8 times more than anammox bacteria abundance, with almost equal potential activities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Live cell imaging of Argonaute proteins in mammalian cells.
Pare, Justin M; Lopez-Orozco, Joaquin; Hobman, Tom C
2011-01-01
The central effector of mammalian RNA interference (RNAi) is the RNA-induced silencing complex (RISC). Proteins of the Argonaute family are the core components of RISC. Recent work from multiple laboratories has shown that Argonaute family members are associated with at least two types of cytoplasmic RNA granules: GW/Processing bodies and stress granules. These Argonaute-containing granules harbor proteins that function in mRNA degradation and translational repression in response to stress. The known role of Argonaute proteins in miRNA-mediated translational repression and siRNA-directed mRNA cleavage (i.e., Argonaute 2) has prompted speculation that the association of Argonautes with these granules may reflect the activity of RNAi in vivo. Accordingly, studying the dynamic association between Argonautes and RNA granules in living cells will undoubtedly provide insight into the regulatory mechanisms of RNA-based silencing. This chapter describes a method for imaging fluorescently tagged Argonaute proteins in living mammalian cells using spinning disk confocal microscopy.
The Prohormone VGF Regulates β Cell Function via Insulin Secretory Granule Biogenesis.
Stephens, Samuel B; Edwards, Robert J; Sadahiro, Masato; Lin, Wei-Jye; Jiang, Cheng; Salton, Stephen R; Newgard, Christopher B
2017-09-05
The prohormone VGF is expressed in neuroendocrine and endocrine tissues and regulates nutrient and energy status both centrally and peripherally. We and others have shown that VGF-derived peptides have direct action on the islet β cell as secretagogues and cytoprotective agents; however, the endogenous function of VGF in the β cell has not been described. Here, we demonstrate that VGF regulates secretory granule formation. VGF loss-of-function studies in both isolated islets and conditional knockout mice reveal a profound decrease in stimulus-coupled insulin secretion. Moreover, VGF is necessary to facilitate efficient exit of granule cargo from the trans-Golgi network and proinsulin processing. It also functions to replenish insulin granule stores following nutrient stimulation. Our data support a model in which VGF operates at a critical node of granule biogenesis in the islet β cell to coordinate insulin biosynthesis with β cell secretory capacity. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Killingsworth, Murray C; Lai, Ken; Wu, Xiaojuan; Yong, Jim L C; Lee, C Soon
2012-11-01
Quantum dot nanocrystal probes (QDs) have been used for detection of somatostatin hormone in secretory granules of somatostatinoma tumor cells by immunofluorescence light microscopy, super-resolution light microscopy, and immunoelectron microscopy. Immunostaining for all modalities was done using sections taken from an epoxy resin-embedded tissue specimen and a similar labeling protocol. This approach allowed assessment of labeling at light microscopy level before examination at super-resolution and electron microscopy level and was a significant aid in interpretation. Etching of ultrathin sections with saturated sodium metaperiodate was a critical step presumably able to retrieve some tissue antigenicity masked by processing in epoxy resin. Immunofluorescence microscopy of QD-immunolabeled sections showed somatostatin hormone localization in cytoplasmic granules. Some variable staining of tumor gland-like structures appeared related to granule maturity and dispersal of granule contents within the tumor cell cytoplasm. Super-resolution light microscopy demonstrated localization of somatostatin within individual secretory granules to be heterogeneous, and this staining pattern was confirmed by immunoelectron microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braumann, Andreas; Kraft, Markus, E-mail: mk306@cam.ac.u; Wagner, Wolfgang
2010-10-01
This paper is concerned with computational aspects of a multidimensional population balance model of a wet granulation process. Wet granulation is a manufacturing method to form composite particles, granules, from small particles and binders. A detailed numerical study of a stochastic particle algorithm for the solution of a five-dimensional population balance model for wet granulation is presented. Each particle consists of two types of solids (containing pores) and of external and internal liquid (located in the pores). Several transformations of particles are considered, including coalescence, compaction and breakage. A convergence study is performed with respect to the parameter that determinesmore » the number of numerical particles. Averaged properties of the system are computed. In addition, the ensemble is subdivided into practically relevant size classes and analysed with respect to the amount of mass and the particle porosity in each class. These results illustrate the importance of the multidimensional approach. Finally, the kinetic equation corresponding to the stochastic model is discussed.« less
Lai, Ken; Wu, Xiaojuan; Yong, Jim L. C.; Lee, C. Soon
2012-01-01
Quantum dot nanocrystal probes (QDs) have been used for detection of somatostatin hormone in secretory granules of somatostatinoma tumor cells by immunofluorescence light microscopy, super-resolution light microscopy, and immunoelectron microscopy. Immunostaining for all modalities was done using sections taken from an epoxy resin-embedded tissue specimen and a similar labeling protocol. This approach allowed assessment of labeling at light microscopy level before examination at super-resolution and electron microscopy level and was a significant aid in interpretation. Etching of ultrathin sections with saturated sodium metaperiodate was a critical step presumably able to retrieve some tissue antigenicity masked by processing in epoxy resin. Immunofluorescence microscopy of QD-immunolabeled sections showed somatostatin hormone localization in cytoplasmic granules. Some variable staining of tumor gland-like structures appeared related to granule maturity and dispersal of granule contents within the tumor cell cytoplasm. Super-resolution light microscopy demonstrated localization of somatostatin within individual secretory granules to be heterogeneous, and this staining pattern was confirmed by immunoelectron microscopy. PMID:22899862
Powder metallurgy preparation of Mg-Ca alloy for biodegradable implant application
NASA Astrophysics Data System (ADS)
Annur, D.; Suhardi, A.; Amal, M. I.; Anwar, M. S.; Kartika, I.
2017-04-01
Magnesium and its alloys is a promising candidate for implant application especially due to its biodegradability. In this study, Mg-7Ca alloys (in weight %) were processed by powder metallurgy from pure magnesium powder and calcium granule. Milling process was done in a shaker mill using stainless steel balls in various milling time (3, 5, and 8 hours) followed by compaction and sintering process. Different sintering temperatures were used (450°C and 550°C) to examine the effect of sintering temperature on mechanical properties and corrosion resistance. Microstructure evaluation was characterized by X-ray diffraction, scanning electron microscope and energy dispersive X-ray spectroscopy. Mechanical properties and corrosion behavior were examined through hardness testing and electrochemical testing in Hank’s solution (simulation body fluid). In this report, a prolonged milling time reduced particle size and later affected mechanical properties of Mg alloy. Meanwhile, the phase analysis showed that α Mg, Mg2Ca, MgO phases were formed after the sintering process. Further, this study showed that Mg-Ca alloy with different powder metallurgy process would have different corrosion rate although there were no difference of Ca content in the alloy.
Boersen, Nathan; Carvajal, M Teresa; Morris, Kenneth R; Peck, Garnet E; Pinal, Rodolfo
2015-01-01
While previous research has demonstrated roller compaction operating parameters strongly influence the properties of the final product, a greater emphasis might be placed on the raw material attributes of the formulation. There were two main objectives to this study. First, to assess the effects of different process variables on the properties of the obtained ribbons and downstream granules produced from the rolled compacted ribbons. Second, was to establish if models obtained with formulations of one active pharmaceutical ingredient (API) could predict the properties of similar formulations in terms of the excipients used, but with a different API. Tolmetin and acetaminophen, chosen for their different compaction properties, were roller compacted on Fitzpatrick roller compactor using the same formulation. Models created using tolmetin and tested using acetaminophen. The physical properties of the blends, ribbon, granule and tablet were characterized. Multivariate analysis using partial least squares was used to analyze all data. Multivariate models showed that the operating parameters and raw material attributes were essential in the prediction of ribbon porosity and post-milled particle size. The post compacted ribbon and granule attributes also significantly contributed to the prediction of the tablet tensile strength. Models derived using tolmetin could reasonably predict the ribbon porosity of a second API. After further processing, the post-milled ribbon and granules properties, rather than the physical attributes of the formulation were needed to predict downstream tablet properties. An understanding of the percolation threshold of the formulation significantly improved the predictive ability of the models.
NASA Astrophysics Data System (ADS)
Han, Y.; Chen, D. H.; Zhang, L.
2008-08-01
Novel photocatalytic coatings containing strontium hydroxyapatite (SrHA), strontium titanate (SrTiO3), and TiO2 were formed by micro-arc oxidation (MAO) in an aqueous electrolyte containing strontium acetate and β-glycerophosphate disodium at 530 V for 0.1-5 min. The structure evolution of the coatings was investigated as a function of processing time, and the photocatalytic activity of the coatings was evaluated by measuring the decomposition rate of methyl orange under ultraviolet irradiation. During the MAO processing of the coatings, it was observed that some granules appeared in the electrolyte adjacent to the anode and they increased in amount as the processing time was prolonged. The obtained results show that the granules are amorphous and poorly crystallized SrHA with negative charges. The coating prepared for 5 min presents a microporous structure of SrHA/SrHA-SrTiO3/SrTiO3-TiO2 multilayers, in which the SrHA outermost layer and the SrHA-SrTiO3 intermediate layer are nanocrystallized. It is suggested that formation of the granules, electro-migration of the granules onto the pre-formed layer, and crystallization of the adhered granules are possible mechanisms for the formation of a SrHA/SrHA-SrTiO3/SrTiO3-TiO2 multilayer coating. This coating shows much higher photocatalytic decomposition efficiency relative to the MAO-formed TiO2 coating, and is expected to have an important photocatalytic application.
The functional morphology of color changing in a spider: development of ommochrome pigment granules.
Insausti, Teresita C; Casas, Jérôme
2008-03-01
Studies on the formation of ommochrome pigment granules are very few, despite their generalized occurrence as screening pigments in insect eyes. This is particularly true for ommochrome granules responsible for epidermal coloration. The aims of this study were to characterize the localization of major body pigments in a color changing mimetic spider, Misumena vatia (Thomisidae), and to describe the formation and location of ommochrome pigment granules responsible for the spider's color change from white to yellow. The unpigmented cuticula of this spider is transparent. Both the guanine localized in guanine cells in the opisthosoma and the uric acid localized in epidermis cells in the prosoma are responsible for the white coloration. The bright yellow color is due to the combination of ommochrome pigment granules and the white reflectance from coincident guanine and/or uric acid. The formation of ommochrome pigment granules in epidermis cells proceeds via three distinctive steps. Translucent, UV fluorescent, progranules (type I) are produced by a dense network of endoplasmic reticulum associated with numerous mitochondria and glycogen rosettes. These progranules are present in white spiders only, and regularly distributed in the cytoplasm. The merging of several progranules of type I into a transient state (progranule type II) leads to the formation of granules (type III) characterized by their lack of fluorescence, their spherical sections and their osmophilic-electron-dense contents. They are found in yellow spiders and in the red stripes on the body sides. Their color varies from yellow to red. Thus, white spiders contain only type I granules, yellow tinted spiders contain type II and III granules and bright yellow spiders contain only type III granules. We present a synthetic view of the ontogeny of ommochrome granules. We discuss the physiology of color changing and the nature of the chemical compounds in the different types of granules. Extended studies on the ultrastructural modification and physiological processes associated with color change are required before any statement about the adaptiveness of the color change can be made.
Huang, Wenli; Cai, Wei; Huang, He; Lei, Zhongfang; Zhang, Zhenya; Tay, Joo Hwa; Lee, Duu-Jong
2015-01-01
Phosphorus (P) recovery from sewage sludge is necessary for a sustainable development of the environment and thus the society due to gradual depletion of non-renewable P resources. Aerobic granular sludge is a promising biotechnology for wastewater treatment, which could achieve P-rich granules during simultaneous nitrification and denitrification processes. This study aimed to disclose the changes in inorganic and organic P species and their correlation with P mobility and bio-availability in aerobic granules. Two identical square reactors were used to cultivate aerobic granules, which were operated for 120 days with influent ammonia nitrogen (NH₄-N) of 100 mg/L before day 60 and then increased to 200 mg/L during the subsequent 60 days (chemical oxygen demand (COD) was kept constant at 600 mg/L). The aerobic granules exhibited excellent COD removal and nitrification efficiency. Results showed that inorganic P (IP) was about 61.4-67.7% of total P (TP) and non-apatite inorganic P (NAIP) occupied 61.9-70.2% of IP in the granules. The enrichment amount of NAIP and apatite P (AP) in the granules had strongly positive relationship with the contents of metal ions, i.e. Fe and Ca, respectively accumulated in the granules. X-ray diffraction (XRD) analysis and solution index calculation demonstrated that hydroxyapatite (Ca₅(PO₄)₃(OH)) and iron phosphate (Fe₇(PO₄)₆) were the major P minerals in the granules. Organic P (OP) content maintained around 7.5 mg per gram of biomass in the aerobic granules during the 120 days' operation. Monoester phosphate (21.8% of TP in extract), diester phosphate (1.8%) and phosphonate (0.1%) were identified as OP species by Phosphorus-31 nuclear magnetic resonance (³¹P NMR). The proportion of NAIP + OP to TP was about 80% in the granules, implying high potentially mobile and bio-available P was stored in the nitrifying aerobic granules. The present results provide a new insight into the characteristics of P species in aerobic granules, which could be helpful for developing P removal and recovery techniques through biological wastewater treatment.
Li, Rui; Zhai, Hua-Qiang; Tian, Wei-Lan; Hou, Ji-Ru; Jin, Shi-Yuan; Wang, Yong-Yan
2016-03-01
In this study, the origin and causes of cooked traditional Chinese medicine powder were reviewed, and a comprehensive analysis was made for the time background of modern traditional Chinese medicine formula granules and the future development trend, in order to provide reference for application and promotion of traditional Chinese medicine formula granules. By reference to ancient medical books of previous dynasties, a system review was conducted for infancy, formation, maturity and transition of cooked traditional Chinese medicine powder, and a comprehensive analysis was made for the six factors of cooked traditional Chinese medicine powder's maturity in the Song Dynasty. Efforts were made to collect domestic and foreign research literatures of modern formula granules, understand the detailed development, and conduct an objective analysis of the current clinical application of modern formula granules. According to the comparative analysis for the application characteristics of cooked traditional Chinese medicine powder and modern formula granules, ①the popularity of cooked traditional Chinese medicine powder in the Song Dynasty has six factors: soaring numbers of medical students and medical practitioners, high medical expenses due to huge army, rapid population growth, frequent epidemics and increasing diseases, and insufficient finances of central and local governments. ②On the basis of clinical application characteristics of traditional Chinese medicine formula granules, traditional Chinese medicine formula granules contain extracted and concentrated effective components, which guarantee the curative effect, meet modern people's demands for "quick, simple and convenience" traditional Chinese medicine decoctions, show a relatively high cost performance; however, formula granules are restricted by their varieties and lack unified quality control standards, and single-extract formula granules have not synergy and attenuation effects of combined traditional Chinese medicine decoctions, which also restricts its clinical application and promotion. ③Both have advantages in the process of clinical application, and shall be used based on syndromes. In conclusion, traditional Chinese medicine formula granules do not have disadvantages of "difficult, complicated, turbid and disorderly" cooked traditional Chinese medicine powder, and solve such problems as "inflexibility, expensiveness, restriction, disorder and inefficacy", which is the important basis for promoting traditional Chinese medicine formula granules. Copyright© by the Chinese Pharmaceutical Association.
Effect of natural and synthetic organics on the processing of ceramics
NASA Astrophysics Data System (ADS)
Schulz, Brett M.
Dry pressing has been shown to be an efficient and cost effective method of manufacturing ceramic ware. Dry pressed parts are typically manufactured with a low moisture content which has the further advantage of eliminating the drying step that is necessary for plastic formed ware, i.e., jiggered or ram pressed. Problems associated with the use of dry pressing in an industrial setting involve the high loss rate during the bisque firing process and the poor surface finish of the green (unfired) ware. It was the goal of this research to improve the surface finish of dry pressed ware to a level that is satisfactory for decorating of the bisque fired ware. The adsorption of organic additives, specifically dispersants, on the surface of particles is an important aspect of ceramic processing. The interactions between organic additives, specifically sodium poly[acrylic acid] and poly[vinyl alcohol], have been demonstrated to result in phase separation into distinct domains during the spray-drying process. This phase separation leads to a poly[vinyl alcohol]-rich film on the surface of the granulate which will increase the P1 value, the pressure at the onset of granule deformation, of the granulate. This negative interaction between the organics increases the surface roughness of the dry pressed ware. The roughness of the industrially prepared ware was determined using an optical interferometer to set a baseline for improvements in the surface finish of the dry pressed ware. Blending of dried granulate was determined to significantly improve the surface finish of the ware. Alternative binders to replace a plasticized poly[vinyl alcohol] were observed to show improvements in the surface finish of the ware dry pressed in a semi-isostatic die. In summary the most important aspect to improving the surface finish of dry pressed ware, i.e. facilitating compaction, is the selection of the organic additives. Additives which are observed to have a negative interaction, i.e. to phase separate into distinct domains, will result in an organic rich film at the surface of the granule thus increasing the P1 value of the granulate.
Aponte, Maria; Ungaro, Francesca; d'Angelo, Ivana; De Caro, Carmen; Russo, Roberto; Blaiotta, Giuseppe; Dal Piaz, Fabrizio; Calignano, Antonio; Miro, Agnese
2018-05-30
This study reports novel food-grade granules for co-delivery of L. plantarum 299v and a standardized extract of Olea europaea leaves (Phenolea®) as oral carrier of probiotics and hydroxytyrosol. Different granule formulations containing either L. plantarum 299v (Lac), or the olive leave extract (Phe) or their combination (Lac-Phe) have been successfully produced through wet granulation employing excipients generally regarded as safe as granulating/binding agents. L. plantarum cells withstood the manufacturing process and were stable upon storage at 4 °C for more than 6 months. In vitro dissolution studies in simulated gastro-intestinal fluids showed the capability of the granules to rapidly dissolve and deliver both olive leave phenols and living L. plantarum cells. In simulated digestion conditions, Lac and Lac-Phe granules protected L. plantarum against the harsh environment of the gastro-intestinal tract. Co-administration of Lac and Phe oral granules to healthy mice provided for higher amounts of hydroxytyrosol in urines as compared to Phe granules alone, suggesting that L. plantarum 299v boosted in vivo conversion of oleuropein to hydroxytyrosol. On the other hand, PCR-assisted profiling of the Lactobacillus population in faeces obtained from mice treated with Lac or Lac plus Phe confirmed that the probiotic arrived alive to colon and was there able to exert a sort of perturbing effect on the climax colonic microflora. Overall, these results pave the way towards the development of a nutraceutical useful for combined delivery of bioactive hydroxytyrosol and probiotics to colon site. Copyright © 2018 Elsevier B.V. All rights reserved.
Padalino, Lucia; Caliandro, Rocco; Chita, Giuseppe; Conte, Amalia; Del Nobile, Matteo Alessandro
2016-11-20
The influence of drying temperature on the starch crystallites and its impact on durum wheat pasta sensory properties is addressed in this work. In particular, spaghetti were produced by means of a pilot plant using 5 different drying temperature profiles. The sensory properties, as well as the cooking quality of pasta were assessed. X-ray powder diffraction was used for investigating changes in the crystallinity content of the samples. Starch crystallinity, size and density of the starch crystallites were determined from the analysis of the diffraction profiles. As expected, spaghetti sensory properties improved as the drying temperatures increased. In particular, attributes as resistance to break for uncooked samples and firmness, elasticity, bulkiness and stickiness for cooked samples, all benefit from drying temperature increase. The spaghetti cooking quality was also positively affected by the drying temperature increase. Diffraction analysis suggested that the improvement of sensory properties and cooking quality of pasta were directly related to the increase in density of both physical crosslink of starch granules and chemical crosslink of protein matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.
Influence of dissolved oxygen concentration on the start-up of the anammox-based process: ELAN®.
Morales, N; Val del Río, A; Vázquez-Padín, J R; Gutiérrez, R; Fernández-González, R; Icaran, P; Rogalla, F; Campos, J L; Méndez, R; Mosquera-Corral, A
2015-01-01
The anammox-based process ELAN® was started-up in two different sequencing batch reactor (SBR) pilot plant reactors treating municipal anaerobic digester supernatant. The main difference in the operation of both reactors was the dissolved oxygen (DO) concentration in the bulk liquid. SBR-1 was started at a DO value of 0.4 mg O2/L whereas SBR-2 was started at DO values of 3.0 mg O2/L. Despite both reactors working at a nitrogen removal rate of around 0.6 g N/(L d), in SBR-1, granules represented only a small fraction of the total biomass and reached a diameter of 1.1 mm after 7 months of operation, while in SBR-2 the biomass was mainly composed of granules with an average diameter of 3.2 mm after the same operational period. Oxygen microelectrode profiling revealed that granules from SBR-2 where only fully penetrated by oxygen with DO concentrations of 8 mg O2/L while granules from SBR-1 were already oxygen penetrated at DO concentrations of 1 mg O2/L. In this way granules from SBR-2 performed better due to the thick layer of ammonia oxidizing bacteria, which accounted for up to 20% of all the microbial populations, which protected the anammox bacteria from non-suitable liquid media conditions.
Hattori, Yusuke; Otsuka, Makoto
2017-05-30
In the pharmaceutical industry, the implementation of continuous manufacturing has been widely promoted in lieu of the traditional batch manufacturing approach. More specially, in recent years, the innovative concept of feed-forward control has been introduced in relation to process analytical technology. In the present study, we successfully developed a feed-forward control model for the tablet compression process by integrating data obtained from near-infrared (NIR) spectra and the physical properties of granules. In the pharmaceutical industry, batch manufacturing routinely allows for the preparation of granules with the desired properties through the manual control of process parameters. On the other hand, continuous manufacturing demands the automatic determination of these process parameters. Here, we proposed the development of a control model using the partial least squares regression (PLSR) method. The most significant feature of this method is the use of dataset integrating both the NIR spectra and the physical properties of the granules. Using our model, we determined that the properties of products, such as tablet weight and thickness, need to be included as independent variables in the PLSR analysis in order to predict unknown process parameters. Copyright © 2017 Elsevier B.V. All rights reserved.
Fujita, Megumi; Himi, Satoshi; Iwata, Motokazu
2010-03-01
SX-3228, 6-benzyl-3-(5-methoxy-1,3,4-oxadiazol-2-yl)-5,6,7,8-tetrahydro-1,6-naphthyridin-2(1H)-one, is a newly-synthesized benzodiazepine receptor agonist intended to be developed as a tablet preparation. This compound, however, becomes chemically unstable due to decreased crystallinity when it undergoes mechanical treatments such as grinding and compression. A wet-granule tableting method, where wet granules are compressed before being dried, was therefore investigated as it has the advantage of producing tablets of sufficient hardness at quite low compression pressures. The results of the stability testing showed that the drug substance was chemically considerably more stable in wet-granule compression tablets compared to conventional tablets. Furthermore, the drug substance was found to be relatively chemically stable in wet-granule compression tablets even when high compression pressure was used and the effect of this pressure was small. After investigating the reason for this excellent stability, it became evident that near-isotropic pressure was exerted on the crystals of the drug substance because almost all the empty spaces in the tablets were occupied with water during the wet-granule compression process. Decreases in crystallinity of the drug substance were thus small, making the drug substance chemically stable in the wet-granule compression tablets. We believe that this novel approach could be useful for many other compounds that are destabilized by mechanical treatments.
Iizaka, Shinji; Kaitani, Toshiko; Sugama, Junko; Nakagami, Gojiro; Naito, Ayumi; Koyanagi, Hiroe; Konya, Chizuko; Sanada, Hiromi
2013-01-01
This multicenter prospective cohort study examined the predictive validity of granulation tissue color evaluated by digital image analysis for deep pressure ulcer healing. Ninety-one patients with deep pressure ulcers were followed for 3 weeks. From a wound photograph taken at baseline, an image representing the granulation red index (GRI) was processed in which a redder color represented higher values. We calculated the average GRI over granulation tissue and the proportion of pixels exceeding the threshold intensity of 80 for the granulation tissue surface (%GRI80) and wound surface (%wound red index 80). In the receiver operating characteristics curve analysis, most GRI parameters had adequate discriminative values for both improvement of the DESIGN-R total score and wound closure. Ulcers were categorized by the obtained cutoff points of the average GRI (≤80, >80), %GRI80 (≤55, >55-80, >80%), and %wound red index 80 (≤25, >25-50, >50%). In the linear mixed model, higher classes for all GRI parameters showed significantly greater relative improvement in overall wound severity during the 3 weeks after adjustment for patient characteristics and wound locations. Assessment of granulation tissue color by digital image analysis will be useful as an objective monitoring tool for granulation tissue quality or surrogate outcomes of pressure ulcer healing. © 2012 by the Wound Healing Society.
Vangsgaard, Anna Katrine; Mauricio-Iglesias, Miguel; Valverde-Pérez, Borja; Gernaey, Krist V; Sin, Gürkan
2013-01-01
A pH simulator consisting of an efficient numerical solver of a system of nine nonlinear equations was constructed and implemented in the modeling software MATLAB. The pH simulator was integrated in a granular biofilm model and used to simulate the pH profiles within granules performing the nitritation-anammox process for a range of operating points. The simulation results showed that pH profiles were consistently increasing with increasing depth into the granule, since the proton-producing aerobic ammonium-oxidizing bacteria (AOB) were located close to the granule surface. Despite this pH profile, more NH3 was available for AOB than for anaerobic ammonium oxidizers, located in the center of the granules. However, operating at a higher oxygen loading resulted in steeper changes in pH over the depth of the granule and caused the NH3 concentration profile to increase from the granule surface towards the center. The initial value of the background charge and influent bicarbonate concentration were found to greatly influence the simulation result and should be accurately measured. Since the change in pH over the depth of the biofilm was relatively small, the activity potential of the microbial groups affected by the pH did not change more than 5% over the depth of the granules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, David F., E-mail: dfgray@uwo.ca
The red giant α Ser was observed over 10 seasons, 2001–2010, at the Elginfield Observatory with the high-resolution coudé spectrograph. Season-mean radial velocities appear to show a small secular rise ∼11 ± 3 m s{sup 1} yr{sup 1}. The absolute spectroscopic radial velocity with convective blueshifts taken into account is 2730 m s{sup 1}. Ten line-depth ratios were investigated and show that the star's temperature is constant with any secular variation below 1.3 ± 1.0 K over the 11 years of observation. Fourier analysis of the line broadening yields v sin i = 2.0 ± 0.3 km s{sup 1} andmore » a radial-tangential macroturbulence dispersion ζ {sub RT} = 4.50 ± 0.10 km s{sup 1}. The third-granulation-signature plot shows that the granulation velocities of α Ser are only 0.55 ± 0.10 as large as the Sun's. The line bisector of Fe i λ 6253 has the usual “C” shape and when mapped onto the third-signature plot results in a flux deficit that is slightly broader than seen in other measured K giants. The deficit fractional area of 12.3 ± 1.5% suggests a temperature difference between granules and lanes of 105 K as seen averaged over the stellar disk.« less
ERIC Educational Resources Information Center
Jessberger, Sebastian; Clark, Robert E.; Broadbent, Nicola J.; Clemenson, Gregory D., Jr.; Consiglio, Antonella; Lie, D. Chichung; Squire, Larry R.; Gage, Fred H.
2009-01-01
New granule cells are born throughout life in the dentate gyrus of the hippocampal formation. Given the fundamental role of the hippocampus in processes underlying certain forms of learning and memory, it has been speculated that newborn granule cells contribute to cognition. However, previous strategies aiming to causally link newborn neurons…
NASA Astrophysics Data System (ADS)
Szymanska, Joanna; Mizera, Jaroslaw
2017-04-01
Poland is one of few European countries undertaking innovative research towards effective exploration of hydrocarbons form shale deposits. With regard for strict geological conditions, which occur during hydraulic fracturing, it is required to apply ceramic proppants enhancing extraction of shale gas. Ceramic proppants are granules (16/30 - 70/120 Mesh) classified as propping agents. These granules located in the newly created fissures (due to injected high pressure fluid) in the shale rock, act as a prop, what enables gas flow up the well. It occurs if the proppants can resist high stress of the closing fractures. Commonly applied proppants are quartz sands used only for shallow reservoirs and fissile shales (in the USA). Whereas, the ceramic granules are proper for extraction of gas on the high depths at hard geomechanical conditions (in Europe) to increase output even by 30 - 50%. In comparison to other propping materials, this kind of proppants predominate with mechanical strength, smoother surface, lower solubility in acids and also high stability in water. Such parameters can be available through proper raw materials selection to further proppants production. The Polish ceramic proppants are produced from natural resources as kaolin, bauxite and white clay mixed with water and binders. Afterwards, the slurries are subjected to granulation in a mechanical granulator and sintered at high temperatures (1200 - 1550°C). Taking into consideration presence of geomechanical barriers, that prevent fracture propagation beyond shale formations, it is crucial to determine quality of applied natural deposits. Next step is to optimize the proppants production and select the best kind of granules, what was the aim of this research. Utility of the raw materials was estimated on basis of their particle size distribution, bulk density, specific surface area (BET) and thermal analysis (thermogravimetry). Morphology and shape were determined by Scanning Electron Microscopy (SEM). Energy Dispersive Spectroscopy (EDS) enabled analysis of their chemical composition, what was compared with X-ray fluorescence (XRF) results. Crystallinity of the raw compounds was established by X-ray diffraction (XRD). Characterization of loamy materials enabled evaluation of their impact on ceramic slurries preparation for further granulation and sintering. The proppants were analyzed with X-Ray Tomography to determine their shape and pore distribution. 3D models also enabled prediction of proppant settlement in the fracture. The crucial parameter as mechanical strength, that influences the integrity of created fractures (fines exceeding 1 % reduce fracture conductivity), was established during the crush tests. High roundness coefficient, uniformity and bulk density results informed about stability of the prop. Environmental proppants interaction was evaluated by turbidity and solubility in acid measurements, which reflect a threat of the proppants decay in the well. The obtained outcomes prove the utility of applied natural resources in the granules production. In consequence, the obtained proppants can be used for hydraulic fracturing in high pressure, temperature and low permeable shale formations. The granules fulfil the norms thus are prospective on a global proppants market.
Shah, Khyati H; Nostramo, Regina; Zhang, Bo; Varia, Sapna N; Klett, Bethany M; Herman, Paul K
2014-12-01
The cytoplasm of the eukaryotic cell is subdivided into distinct functional domains by the presence of a variety of membrane-bound organelles. The remaining aqueous space may be further partitioned by the regulated assembly of discrete ribonucleoprotein (RNP) complexes that contain particular proteins and messenger RNAs. These RNP granules are conserved structures whose importance is highlighted by studies linking them to human disorders like amyotrophic lateral sclerosis. However, relatively little is known about the diversity, composition, and physiological roles of these cytoplasmic structures. To begin to address these issues, we examined the cytoplasmic granules formed by a key set of signaling molecules, the protein kinases of the budding yeast Saccharomyces cerevisiae. Interestingly, a significant fraction of these proteins, almost 20%, was recruited to cytoplasmic foci specifically as cells entered into the G0-like quiescent state, stationary phase. Colocalization studies demonstrated that these foci corresponded to eight different granules, including four that had not been reported previously. All of these granules were found to rapidly disassemble upon the resumption of growth, and the presence of each was correlated with cell viability in the quiescent cultures. Finally, this work also identified new constituents of known RNP granules, including the well-characterized processing body and stress granule. The composition of these latter structures is therefore more varied than previously thought and could be an indicator of additional biological activities being associated with these complexes. Altogether, these observations indicate that quiescent yeast cells contain multiple distinct cytoplasmic granules that may make important contributions to their long-term survival. Copyright © 2014 by the Genetics Society of America.
Pallas-Bazarra, Noemí; Kastanauskaite, Asta; Avila, Jesús; DeFelipe, Javier; Llorens-Martín, María
2017-01-01
The dentate gyrus (DG) plays a crucial role in hippocampal-related memory. The most abundant cellular type in the DG, namely granule neurons, are developmentally generated around postnatal day P6 in mice. Moreover, a unique feature of the DG is the occurrence of adult hippocampal neurogenesis, a process that gives rise to newborn granule neurons throughout life. Adult-born and developmentally generated granule neurons share some maturational aspects but differ in others, such as in their positioning within the granule cell layer. Adult hippocampal neurogenesis encompasses a series of plastic changes that modify the function of the hippocampal trisynaptic network. In this regard, it is known that glycogen synthase kinase 3β (GSK-3β) regulates both synaptic plasticity and memory. By using a transgenic mouse overexpressing GSK-3β in hippocampal neurons, we previously demonstrated that the overexpression of this kinase has deleterious effects on the maturation of newborn granule neurons. In the present study, we addressed the effects of GSK-3β overexpression on the morphology and number of dendritic spines of developmentally generated granule neurons. To this end, we performed intracellular injections of Lucifer Yellow in developmentally generated granule neurons of wild-type and GSK-3β-overexpressing mice and analyzed the number and morphologies of dendritic spines (namely, stubby, thin and mushroom). GSK-3β overexpression led to a general reduction in the number of dendritic spines. In addition, it caused a slight reduction in the percentage, head diameter and length of thin spines, whereas the head diameter of mushroom spines was increased.
Pallas-Bazarra, Noemí; Kastanauskaite, Asta; Avila, Jesús; DeFelipe, Javier; Llorens-Martín, María
2017-01-01
The dentate gyrus (DG) plays a crucial role in hippocampal-related memory. The most abundant cellular type in the DG, namely granule neurons, are developmentally generated around postnatal day P6 in mice. Moreover, a unique feature of the DG is the occurrence of adult hippocampal neurogenesis, a process that gives rise to newborn granule neurons throughout life. Adult-born and developmentally generated granule neurons share some maturational aspects but differ in others, such as in their positioning within the granule cell layer. Adult hippocampal neurogenesis encompasses a series of plastic changes that modify the function of the hippocampal trisynaptic network. In this regard, it is known that glycogen synthase kinase 3β (GSK-3β) regulates both synaptic plasticity and memory. By using a transgenic mouse overexpressing GSK-3β in hippocampal neurons, we previously demonstrated that the overexpression of this kinase has deleterious effects on the maturation of newborn granule neurons. In the present study, we addressed the effects of GSK-3β overexpression on the morphology and number of dendritic spines of developmentally generated granule neurons. To this end, we performed intracellular injections of Lucifer Yellow in developmentally generated granule neurons of wild-type and GSK-3β-overexpressing mice and analyzed the number and morphologies of dendritic spines (namely, stubby, thin and mushroom). GSK-3β overexpression led to a general reduction in the number of dendritic spines. In addition, it caused a slight reduction in the percentage, head diameter and length of thin spines, whereas the head diameter of mushroom spines was increased. PMID:28344548
Fonteyne, Margot; Vercruysse, Jurgen; De Leersnyder, Fien; Besseling, Rut; Gerich, Ad; Oostra, Wim; Remon, Jean Paul; Vervaet, Chris; De Beer, Thomas
2016-09-07
This study focuses on the twin screw granulator of a continuous from-powder-to-tablet production line. Whereas powder dosing into the granulation unit is possible from a container of preblended material, a truly continuous process uses several feeders (each one dosing an individual ingredient) and relies on a continuous blending step prior to granulation. The aim of the current study was to investigate the in-line blending capacity of this twin screw granulator, equipped with conveying elements only. The feasibility of in-line NIR (SentroPAT, Sentronic GmbH, Dresden, Germany) spectroscopy for evaluating the blend uniformity of powders after the granulator was tested. Anhydrous theophylline was used as a tracer molecule and was blended with lactose monohydrate. Theophylline and lactose were both fed from a different feeder into the twin screw granulator barrel. Both homogeneous mixtures and mixing experiments with induced errors were investigated. The in-line spectroscopic analyses showed that the twin screw granulator is a useful tool for in-line blending in different conditions. The blend homogeneity was evaluated by means of a novel statistical method being the moving F-test method in which the variance between two blocks of collected NIR spectra is evaluated. The α- and β-error of the moving F-test are controlled by using the appropriate block size of spectra. The moving F-test method showed to be an appropriate calibration and maintenance free method for blend homogeneity evaluation during continuous mixing. Copyright © 2016 Elsevier B.V. All rights reserved.
Minia, Igor; Merce, Clementine; Terrao, Monica; Clayton, Christine
2016-09-01
African trypanosome procyclic forms multiply in the midgut of tsetse flies, and are routinely cultured at 27°C. Heat shocks of 37°C and above result in general inhibition of translation, and severe heat shock (41°C) results in sequestration of mRNA in granules. The mRNAs that are bound by the zinc-finger protein ZC3H11, including those encoding refolding chaperones, escape heat-induced translation inhibition. At 27°C, ZC3H11 mRNA is predominantly present as an untranslated cytosolic messenger ribonucleoprotein particle, but after heat shocks of 37°C-41°C, the ZC3H11 mRNA moves into the polysomal fraction. To investigate the scope and specificities of heat-shock translational regulation and granule formation, we analysed the distributions of mRNAs on polysomes at 27°C and after 1 hour at 39°C, and the mRNA content of 41°C heat shock granules. We found that mRNAs that bind to ZC3H11 remained in polysomes at 39°C and were protected from sequestration in granules at 41°C. As previously seen for starvation stress granules, the mRNAs that encode ribosomal proteins were excluded from heat-shock granules. 70 mRNAs moved towards the polysomal fraction after the 39°C heat shock, and 260 increased in relative abundance. Surprisingly, many of these mRNAs are also increased when trypanosomes migrate to the tsetse salivary glands. It therefore seems possible that in the wild, temperature changes due to diurnal variations and periodic intake of warm blood might influence the efficiency with which procyclic forms develop into mammalian-infective forms.
Ran, GanQiao; Tan, Dan; Dai, WeiEr; Zhu, XinLiang; Zhao, JiPing; Ma, Qi; Lu, XiaoYun
2017-04-01
Alkaline polygalacturonate lyase (PGL), one of the pectinolytic enzymes, has been widely used for the bioscouring of cotton fibers, biodegumming, and biopulp production. In our study, PGL from Bacillus subtilis was successfully immobilized on the surface of polyhydroxyalkanoate (PHA) nanogranules by fusing PGL to the N-terminal of PHA synthase from Ralstonia eutropha via a designed linker. The PGL-decorated PHA beads could be simply achieved by recombinant fermentation and consequent centrifugation. The fused PGL occupied 0.985% of the total weight of purified PHA granules, which was identified by mass spectrometer-based quantitative proteomics. The activity of immobilized PGL (184.67 U/mg PGL protein) was a little lower than that of the free PGL (215.93 U/mg PGL protein). The immobilization process did not affect the optimal pH and the optimal temperature of the PGL, but it did enhance the thermostability as well as the pH stability at certain conditions, which will extend the practicability of the immobilized PGL-PHA beads in the alkaline and generally harsh bioscouring process. Furthermore, the immobilized PGL still retained more than 60% of its initial activity after 8 cycles of reuse. Our study provided a novel and promising approach for cost-efficient in vivo PGL immobilization, contributing to wider commercialization of this environmental-friendly biocatalyst.
Simulation of the ELMs triggering by lithium pellet on EAST tokamak using BOUT + +
NASA Astrophysics Data System (ADS)
Wang, Y. M.; Xu, X. Q.; Wang, Z.; Sun, Z.; Hu, J. S.; Gao, X.
2017-10-01
A new lithium granule injector (LGI) was developed on EAST. Using the LGI, lithium granules can be efficiently injected into EAST tokamak with the granule radius 0.2-1 mm and the granules velocity 30-110 m/s. ELM pacing was realized during EAST shot #70123 at time window from 4.4-4.7s, the average velocity of the pellet was 75 m/s and the average injection rate is at 99Hz. The BOUT + + 6-field electromagnetic turbulence code has been used to simulate the ELM pacing process. A neutral gas shielding (NGS) model has been implemented during the pellet ablation process. The neutral transport code is used to evaluate the ionized electron and Li ion densities with the charge exchange as a dominant factor in the neutral cloud diffusion process. The snapshot plasma profiles during the pellet ablation and toroidal symmetrization process are used in the 6-field turbulence code to evaluate the impact of the pellets on ELMs. Destabilizing effects of the peeling-ballooning modes are found with lithium pellet injection, which is consistent with the experimental results. A scan of the pellet size, shape and the injection velocity will be conducted, which will benefit the pellet injection design in both the present and future devices. Prepared by LLNL under Contract DE-AC52-07NA27344 and this work is supported by the National Natural Science Fonudation of China (Grant No. 11505221) and China Scholarship Council (Grant No. 201504910132).
Physicochemical properties of giant embryo rice Seonong 17 and Keunnunjami.
Chung, Soo Im; Lee, Sang Chul; Kang, Mi Young
2017-05-01
This study was carried out to determine the physicochemical properties of giant embryo rice "Seonong 17" and "Keunnunjami" in comparison with the normal embryo rice. Scanning electron microscopy revealed that Seonong 17 and Keunnunjami have larger embryo and that starch granules from Keunnunjami were more tightly packed with smaller air spaces between granules. Seonong 17 exhibited the lowest amylose content. Keunnunjami showed the highest protein content, pasting temperature, peak and breakdown viscosities, and gelatinization temperature and enthalpy. Both giant embryo rice samples contained significantly higher amounts of essential amino acids and unsaturated fatty acids than the normal rice. Proteomic analysis using two-dimensional gel electrophoresis revealed differences in the protein profile of Seonong 17 and Keunnunjami. The results could serve as baseline information in evaluating the quality of these two giant embryo rice cultivars and provide a better understanding of their potential uses and food industry applications.
DAZL is essential for stress granule formation implicated in germ cell survival upon heat stress.
Kim, Byunghyuk; Cooke, Howard J; Rhee, Kunsoo
2012-02-01
Mammalian male germ cells should be maintained below body temperature for proper development. Here, we investigated how male germ cells respond to heat stress. A short exposure of mouse testes to core body temperature induced phosphorylation of eIF2α and the formation of stress granules (SGs) in male germ cells. We observed that DAZL, a germ cell-specific translational regulator, was translocated to SGs upon heat stress. Furthermore, SG assembly activity was significantly diminished in the early male germ cells of Dazl-knockout mice. The DAZL-containing SGs played a protective role against heat stress-induced apoptosis by the sequestration of specific signaling molecules, such as RACK1, and the subsequent blockage of the apoptotic MAPK pathway. Based on these results, we propose that DAZL is an essential component of the SGs, which prevent male germ cells from undergoing apoptosis upon heat stress.
Continuous and line spectra of granules and intergranular lanes
NASA Astrophysics Data System (ADS)
Suemoto, Z.; Hiei, E.; Nakagomi, Y.
1990-05-01
Temperature and velocity structures above granules and intergranular lanes were studied on spectrograms covering Ca II H and K lines. In agreement with earlier results, it was confirmed more quantitatively that there appear two kinds of bright continua, one in the outer wings (granular continuum) and the other in the inner wings (temporarily called K0-continuum) of Ca II H and K lines, and that these two kinds of bright continua are located more or less in a complementary fashion. Further, it was found that the bright K0-continuum is well associated with higher central residual intensity of absorption lines. These facts suggest that, in the upper photosphere, there are high temperature regions in the intergranular lanes. Motions above granular regions are essentially upwards, whereas those of intergranular regions are predominantly downwards, and in the uppermost photosphere the motions become more random.
Besbes, Emna; Le Bail, Alain; Seetharaman, Koushik
2016-01-01
The impact of hydrothermal processing undergone by bread dough during baking on the degree of starch granule disruption, on leaching of soluble amylose, on water mobility, on firmness and on amylopectin retrogradation during staling has been investigated. Two heating rates during baking have been considered (4.67 and 6.31 °C/min) corresponding respectively to baking temperature of 220 and 240 °C. An increase in firmness and in the amount of retrogradated amylopectin accompanied by a decrease in freezable water has been observed during staling. Although a lower heating rate yielded in larger amount of retrogradated amylopectin retrogradation, it resulted in a lower firmness. Additionally, the amount of soluble amylose and the relaxation times of water measured by Nuclear Magnetic Resonance NMR (T20, T21 and T22) decreased during staling. It was demonstrated that the amount of soluble amylose was higher for bread crumb baked at lower heating rate, indicating that an increasing amount of amylose is leached outside the starch granules. This was corresponding to a greater amount of retrograded amylopectin during staling. Moreover, it was found that the degree of gelatinization differs locally in a same bread slice between the top, the centre and the bottom locations in the crumb. This was attributed to the differences in kinetics of heating, the availability of water during baking and the degree of starch granule disruption during baking. Based on first order kinetic model, it was found that staling kinetics were faster for samples baked at higher heating rate.
Murakami, H; Yoneyama, T; Nakajima, K; Kobayashi, M
2001-03-23
The objectives of this study were to prepare the lactose granules by various granulation methods using polyethylene glycol 6000 (PEG 6000) as a binder and to evaluate the effects of granulation methods on the compressibility and compactibility of granules in tabletting. Lactose was granulated by seven granulation methods -- four wet granulations including wet massing granulation, wet high-speed mixer granulation, wet fluidized bed granulation and wet tumbling fluidized bed granulation; and three melt granulations including melt high-speed mixer granulation, melt fluidized bed granulation and melt tumbling fluidized bed granulation. The loose density, angle of repose, granule size distribution, mean diameter of granules, and the tensile strength and porosity of tablets were evaluated. The compactibilities of granules were varied by the granulation methods. However, the difference in compactibility of granules could not be explained due to the difference in compressibility, since there was no difference in Heckel plots due to granulation methods. Among their granule properties, the loose density of granules seemed to have a correlation with the tablet strength regardless of the granulation methods.
NASA Technical Reports Server (NTRS)
Schatten, H.; Chakrabarti, A.; Taylor, M.; Sommer, L.; Levine, H.; Anderson, K.; Runco, M.; Kemp, R.
1999-01-01
Calcium loss and muscle atrophy are two of the main metabolic changes experienced by astronauts and crew members during exposure to microgravity in space. Calcium and cytoskeletal events were investigated within sea urchin embryos which were cultured in space under both microgravity and 1 g conditions. Embryos were fixed at time-points ranging from 3 h to 8 days after fertilization. Investigative emphasis was placed upon: (1) sperm-induced calcium-dependent exocytosis and cortical granule secretion, (2) membrane fusion of cortical granule and plasma membranes; (3) microfilament polymerization and microvilli elongation; and (5) embryonic development into morula, blastula, gastrula, and pluteus stages. For embryos cultured under microgravity conditions, the processes of cortical granule discharge, fusion of cortical granule membranes with the plasma membrane, elongation of microvilli and elevation of the fertilization coat were reduced in comparison with embryos cultured at 1 g in space and under normal conditions on Earth. Also, 4% of all cells undergoing division in microgravity showed abnormalities in the centrosome-centriole complex. These abnormalities were not observed within the 1 g flight and ground control specimens, indicating that significant alterations in sea urchin development processes occur under microgravity conditions. Copyright 1999 Academic Press.
Kulkova, Julia; Moritz, Niko; Huhtinen, Hannu; Mattila, Riina; Donati, Ivan; Marsich, Eleonora; Paoletti, Sergio; Vallittu, Pekka K
2017-11-01
In skeletal reconstructions, composites, such as bisphenol-A-glycidyldimethacrylate resin reinforced with glass fibers, are potentially useful alternatives to metallic implants. Recently, we reported a novel method to prepare bioactive surfaces for these composites. Surface etching by Excimer laser was used to expose bioactive glass granules embedded in the resin. The purpose of this study was to analyze two types of bioactive surfaces created by this technique. The surfaces contained bioactive glass and hydroxyapatite granules. The selected processing parameters were adequate for the creation of the surfaces. However, the use of porous hydroxyapatite prevented the complete exposure the granules. In cell culture, for bioactive glass coatings, the pattern of proliferation of MG63 cells was comparable to that in the positive control group (Ti6Al4V) while inferior cell proliferation was observed on the surfaces containing hydroxyapatite granules. Scanning electron microscopy revealed osteointegration of implants with both types of surfaces. The technique is suitable for the exposure of solid bioactive glass granules. However, the long-term performance of the surfaces needs further assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Bing; Huang, Wenli; Zhang, Chao; Feng, Sisi; Zhang, Zhenya; Lei, Zhongfang; Sugiura, Norio
2015-01-01
The influence of TiO2 nanoparticles (TiO2-NPs) (10-50mg/L) on aerobic granulation of algal-bacterial symbiosis system was investigated by using two identical sequencing batch reactors (SBRs). Although little adverse effect was observed on their nitritation efficiency (98-100% in both reactors), algal-bacterial granules in the control SBR (Rc) gradually lost stability mainly brought about by algae growth. TiO2-NPs addition to RT was found to enhance the granulation process achieving stable and compact algal-bacterial granules with remarkably improved nitratation thus little nitrite accumulation in RT when influent TiO2-NPs⩾30mg/L. Despite almost similar organics and phosphorus removals obtained in both reactors, the stably high nitratation efficiency in addition to much stable granular structure in RT suggests that TiO2-NPs addition might be a promising remedy for the long-term operation of algal-bacterial granular system, most probably attributable to the stimulated excretion of extracellular polymeric substances and less filamentous TM7. Copyright © 2015 Elsevier Ltd. All rights reserved.
Holcombe, Cressie E.; Dykes, Norman L.
1991-01-01
A ceramic composition is described. The ceramic composition consists essentially of from about 84 to 96 w/o titanium diboride, from about 1 to 9 w/o chromium diboride, and from about 3 to about 15 w/o yttrium-titanium-oxide. A method of making the ceramic composition is also described. The method of making the ceramic composition comprises the following steps: Step 1--A consolidated body containing stoichiometric quantities of titanium diboride and chromium diboride is provided. Step 2--The consolidated body is enclosed in and in contact with a thermally insulated package of yttria granules having a thickness of at least 0.5 inches. Step 3--The consolidated body enclosed in the thermally insulated package of yttria granules is heated in a microwave oven with microwave energy to a temperature equal to or greater than 1,900 degrees centigrade to sinter and uniformly disperse yttria particles having a size range from about 1 to about 12 microns throughout the consolidated body forming a densified body consisting essentially of titanium diboride, chromium diboride, and yttrium-titanium-oxide. The resulting densified body has enhanced fracture toughness and hardness.
Process for making a titanium diboride-chromium diboride-yttrium titanium oxide ceramic composition
Holcombe, Cressie E.; Dykes, Norman L.
1992-01-01
A ceramic composition composition is described. The ceramic composition consists essentially of from about 84 to 96 w/o titanium diboride, from about 1 to 9 w/o chromium diboride, and from about 3 to aobut 15 w/o yttrium-titanium-oxide. A method of making the ceramic composition is also described. The method of making the ceramic composition comprises the following steps: Step 1--A consolidated body containing stoichiometric quantities of titanium diboride and chromium diboride is provided. Step 2--The consolidated body is enclosed in and in contact with a thermally insulated package of yttria granules having a thickness of at least 0.5 inches. Step 3--The consolidated body enclosed in the thermally insulated package of yttria granules is heated in a microwave oven with microwave energy to a temperature equal to or greater than 1,900 degrees centigrade to sinter and uniformly disperse yttria particles having a size range from about 1 to about 12 microns throughout the consolidated body forming a densified body consisting essentially of titanium diboride, chromium diboride, and yttrium-titanium-oxide. The resulting densified body has enhanced fracture toughness and hardness.
Process for making a titanium diboride-chromium diboride-yttrium titanium oxide ceramic composition
Holcombe, C.E.; Dykes, N.L.
1992-04-28
A ceramic composition is described. The ceramic composition consists essentially of from about 84 to 96 w/o titanium diboride, from about 1 to 9 w/o chromium diboride, and from about 3 to about 15 w/o yttrium-titanium-oxide. A method of making the ceramic composition is also described. The method of making the ceramic composition comprises the following steps: Step 1--A consolidated body containing stoichiometric quantities of titanium diboride and chromium diboride is provided. Step 2--The consolidated body is enclosed in and in contact with a thermally insulated package of yttria granules having a thickness of at least 0.5 inches. Step 3--The consolidated body enclosed in the thermally insulated package of yttria granules is heated in a microwave oven with microwave energy to a temperature equal to or greater than 1,900 degrees centigrade to sinter and uniformly disperse yttria particles having a size range from about 1 to about 12 microns throughout the consolidated body forming a densified body consisting essentially of titanium diboride, chromium diboride, and yttrium-titanium-oxide. The resulting densified body has enhanced fracture toughness and hardness. No Drawings
Kasina, M; Kleyböcker, A; Michalik, M; Würdemann, H
2015-01-01
In a co-digestion system running with rapeseed oil and sewage sludge, an extremely fast increase in the organic loading rate was studied to develop a procedure to allow for flexible and demand-driven energy production. The over-acidification of the digestate was successfully prevented by calcium oxide dosage, which resulted in granule formation. Mineralogical analyses revealed that the granules were composed of insoluble salts of long chain fatty acids and calcium and had a porous structure. Long chain fatty acids and calcium formed the outer cover of granules and offered interfaces on the inside thereby enhancing the growth of biofilms. With granule size and age, the pore size increased and indicated degradation of granular interfaces. A stable biogas production up to the organic loading rate of 10.4 kg volatile solids m(-3) d(-1) was achieved although the hydrogen concentration was not favorable for propionic acid degradation. However, at higher organic loading rates, unbalanced granule formation and degradation were observed. Obviously, the adaption time for biofilm growth was too short to maintain the balance, thereby resulting in a low methane yield.
Liu, Lin; Zeng, Zhichao; Bee, Mingyang; Gibson, Valerie; Wei, Lili; Huang, Xu; Liu, Chaoxiang
2018-05-05
The characteristics and performance of algae-bacteria granular consortia which cultivated with aerobic granules and targeted algae (Chlorella and Scenedesmus), and the essential difference between granular consortia and aerobic granules were investigated in this experiment. The result indicated that algae-bacteria granular consortia could be successfully developed, and the algae present in the granular consortia were mainly Chlorella and Scenedesmus. Although the change of chlorophyll composition revealed the occurrence of light limitation for algal growth, the granular consortia could maintain stable granular structure, and even showed better settling property than aerobic granules. Total nitrogen and phosphate in the algal-bacterial granular system showed better removal efficiencies (50.2% and 35.7%) than those in the aerobic granular system (32.8% and 25.6%) within one cycle (6 h). The biodiesel yield of aerobic granules could be significantly improved by algal coupled process, yet methyl linolenate and methyl palmitoleate were the dominant composition of biodiesel obtained from granular consortia and aerobic granules, respectively. Meanwhile, the difference of dominant bacterial communities in the both granules was found at the order level and family level, and alpha diversity indexes revealed the granular consortia had a higher microbial diversity. Copyright © 2018. Published by Elsevier B.V.
Notario-Pérez, Fernando; Martín-Illana, Araceli; Cazorla-Luna, Raúl; Ruiz-Caro, Roberto; Peña, Juan; Veiga, María-Dolores
2018-05-30
Sustained-release vaginal microbicides hold out great hope for the prevention of sexual transmission of HIV from men to women. Tenofovir (TFV) -an antiretroviral drug- sustained-release vaginal compacts combining two release control systems (by drug-loading granules with hydrophobic polymers and incorporating them in a hydrophilic matrix) are proposed in this work as a possible microbicide. The polymers used for the drug granules are Eudragit® RS (ERS), an acrylic derivative, and Zein, a maize protein. The hydrophilic matrix is composed of a mixture of hydroxypropylmethyl cellulose (HPMC) and chitosan (CH). The thermal, microscopic, spectrophotometric and X-ray diffraction analysis showed that the drug was not altered during the granulation process. Studies of TFV release, swelling and ex vivo mucoadhesion were subsequently performed on simulated vaginal fluid. The formulation whereby TFV is granulated using twice its weight in ERS, and then including these granules in a matrix in which the CH predominates over HPMC, allows the sustained release of TFV for 144 h, mucoadhesion to the vaginal mucosa for 150 h and a moderate swelling, making it the most suitable formulation of all those studied. These compacts would therefore offer women protection against the sexual acquisition of HIV. Copyright © 2018 Elsevier B.V. All rights reserved.
Ishikawa, Kunio; Putri, Tansza Setiana; Tsuchiya, Akira; Tanaka, Keisuke; Tsuru, Kanji
2018-03-01
β-Tricalcium phosphate [β-TCP] is the typical bone substitute due to its excellent osteoconductivity and bioresorbability. One of the keys to improve its potential as bone substitute is to introduce porous structure and its regulation. In this study, interconnected porous β-TCP blocks were fabricated through a setting reaction of β-TCP granules and subsequent heat treatment. First, β-TCP granules were mixed with HNO 3 . Upon mixing, β-TCP granules were bridged with dicalcium phosphate dihydrate [DCPD: CaHPO 4 ·2H 2 O] containing Ca(NO 3 ) 2 . Then, the DCPD-bridged β-TCP was heated at 1100°C. During the heating process, DCPD containing Ca(NO 3 ) 2 transformed into β-TCP and bonded with β-TCP granules. As a result, an interconnected porous β-TCP block formed. The diametral tensile strength and porosity of the interconnected porous β-TCP block fabricated from 200-300-μm β-TCP granules and 5 N HNO 3 and then heated at 1,100°C were 1.4 ± 0.2 MPa and 57% ± 2%, respectively. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 797-804, 2018. © 2017 Wiley Periodicals, Inc.
Recent advances on biosorption by aerobic granular sludge.
Wang, Li; Liu, Xiang; Lee, Duu-Jong; Tay, Joo-Hwa; Zhang, Yi; Wan, Chun-Li; Chen, Xiao-Feng
2018-06-04
Aerobic granular sludge is a form of microbial auto-aggregation, and a promising biotechnology for wastewater treatment. This review aims at providing the first comprehensive, systematic, and in-depth overview on the application of aerobic granules as biosorbents. The target pollutants encompass heavy metals (both cationic and oxyanionic), nuclides, dyes, and inorganic non-metal substances. Different granule types are discussed, i.e. intact and fragmented, compact and fluffy, original and modified, and the effects of granule surface modification are introduced. A detailed comparison is conducted on the characteristics of granular biomass, the conditions of the adsorption tests, and the resultant performance towards various sorbates. Analytical and mathematical tools typically employed are presented, and possible interactions between the pollutants and granules are theorized, leading to an analysis on the mechanisms of the adsorption processes. Original granules appear highly effective towards cationic metals, while surface modification by organic and inorganic agents can expand their applicability to other pollutants. Combined with their advantages of high mechanical strength, density, and settling speed, aerobic granules possess exceptional potential in real wastewater treatment as biosorbents. Possible future research, both fundamental and practical, is suggested to gain more insights into the mechanism of their function, and to advance their industrial application. Copyright © 2018 Elsevier B.V. All rights reserved.
Xu, Bing; Cui, Xiang-Long; Yang, Chan; Wang, Xin; Shi, Xin-Yuan; Qiao, Yan-Jiang
2017-03-01
Quality by design (QbD) highlights the concept of "begin with the end", which means to thoroughly understand the target product quality first, and then guide pharmaceutical process development and quality control throughout the whole manufacturing process. In this paper, the Ginkgo biloba granules intermediates were taken as the research object, and the requirements of the tensile strength of tablets were treated as the goals to establish the methods for identification of granules' critical quality attributes (CQAs) and establishment of CQAs' limits. Firstly, the orthogonal partial least square (OPLS) model was adopted to build the relationship between the micromeritic properties of 29 batches of granules and the tensile strength of ginkgo leaf tablets, and thereby the potential critical quality attributes (pCQAs) were screened by variable importance in the projection (VIP) indexes. Then, a series of OPLS models were rebuilt by reducing pCQAs variables one by one in view of the rule of VIP values from low to high in sequence. The model performance results demonstrated that calibration and predictive performance of the model had no decreasing trend after variables reduction. In consideration of the results from variables selection as well as the collinearity test and testability of the pCQAs, the median particle size (D₅₀) and the bulk density (Da) were identified as critical quality attributes (CQAs). The design space of CQAs was developed based on a multiple linear regression model established between the CQAs (D₅₀ and Da) and the tensile strength. The control constraints of the CQAs were determined as 170 μm< D₅₀<500 μm and 0.30 g•cm⁻³
Melanin may promote photooxidation of linoleic acid
NASA Astrophysics Data System (ADS)
Glickman, Randolph D.; Lam, Kwok-Wai
1995-05-01
We have previously shown that laser-exposed melanin granules isolated from the retinal pigment epithelium (RPE) are capable of oxidizing ascorbic acid. We are now characterizing the reactions of light- activated melanin with other cellular components such as linoleic acid, a polyunsaturated fatty acid. Commercial linoleic acid, and melanin granules isolated from bovine RPE cells, are mixed and exposed to the broad band output of a 150 W Xenon arc lamp or the CW output of an Argon laser. Native linoleic acid is separated from its hydroperoxides by HPLC, and the relative amounts of each are detected by UV absorbance at 210 and 232 nm, respectively. Exposure of the linoleic acid alone to the xenon arc source results in production of linoleic hydroperoxides (LHP) in an intensity-dependent reaction that doubles in extent over the temperature range of 0° to 80°C. Addition of melanin granules at a density of 108 granules/ml reduces the production of LHP, probably because of light absorption and self-screening by the melanin. At or below a density of 107 granules/ml, however, the light-driven production of LHP is enhanced, especially during exposure to the blue- green output of the Argon laser. Physiological antioxidants (Vit. C,E protect the linoleic acid from photo-oxidation in the presence or absence of melanin. These observations support the hypothesis that light-activated melanin can react with some cellular components and thereby contribute to photochemical damage, especially if endogenous antioxidants are depleted.
NMDA-receptor dependent synaptic activation of TRPC channels in olfactory bulb granule cells
Stroh, Olga; Freichel, Marc; Kretz, Oliver; Birnbaumer, Lutz; Hartmann, Jana; Egger, Veronica
2012-01-01
TRPC channels are widely expressed throughout the nervous system including the olfactory bulb where their function is largely unknown. Here we describe their contribution to central synaptic processing at the reciprocal mitral and tufted cell - granule cell microcircuit, the most abundant synapse of the mammalian olfactory bulb. Suprathreshold activation of the synapse causes sodium action potentials in mouse granule cells and a subsequent long-lasting depolarization (LLD) linked to a global dendritic postsynaptic calcium signal recorded with two-photon laser scanning microscopy. These signals are not observed after action potentials evoked by current injection in the same cells. The LLD persists in the presence of group I metabotropic glutamate receptor antagonists but is entirely absent from granule cells deficient for the NMDA receptor subunit NR1. Moreover, both depolarization and Ca2+ rise are sensitive to the blockade of NMDA receptors. The LLD and the accompanying Ca2+ rise are also absent in granule cells from mice deficient for both TRPC channel subtypes 1 and 4, whereas the deletion of either TRPC1 or TRPC4 results in only a partial reduction of the LLD. Recordings from mitral cells in the absence of both subunits reveal a reduction of asynchronous neurotransmitter release from the granule cells during recurrent inhibition. We conclude that TRPC1 and TRPC4 can be activated downstream of NMDA receptor activation and contribute to slow synaptic transmission in the olfactory bulb, including the calcium dynamics required for asynchronous release from the granule cell spine. PMID:22539836
Shah, R D; Kabadi, M; Pope, D G; Augsburger, L L
1994-03-01
Extrusion-spheronization is a popular means of producing spheres which can be coated to form a controlled-release system. In the extrusion process, stress is necessary to force a wet mass through small orifices, and as a result, frictional heat builds up at the screen. Therefore, the quantitative measurement of the screen pressure and screen temperature is described and shown to provide objective measures of extrudability. A strain gauge load cell was mounted tangentially to the screen of a Luwa EXDS-60 extruder with a specifically fabricated holder. The load cell output was calibrated in terms of pressure inside the screen with a special rubber plug system. A fast-response thermocouple was used to measure the screen temperature. Experiments with 50/50 lactose/Avicel PH101 revealed that a linear relationship exists between the amount of water used in the granulation and the screen pressure, that the percentage open area of the screen determines the rank order of the screen pressure, and that the maximal yield of 18/25-mesh cut pellets was uniquely related to the screen pressure. Also, a high degree of correlation was observed between the screen pressure and the screen temperature.
D'Hulst, Christophe; Mérida, Angel
2010-10-01
Starch is the main polymer in which carbon and energy are stored in land plants, algae and some cyanobacteria. It plays a crucial role in the physiology of these organisms and also represents an important polymer for humans, in terms of both diet and nonfood industry uses. Recent efforts have elucidated most of the steps involved in the synthesis of starch. However, the process that initiates the synthesis of the starch granule remains unclear. Here, we outline the similarities between the synthesis of starch and the synthesis of glycogen, the other widespread and abundant glucose-based polymer in living cells. We place special emphasis on the mechanisms of initiation of the glycogen granule and current knowledge concerning the initiation of the starch granule. We also discuss recent discoveries regarding the function of starch synthases in the priming of the starch granule and possible interactions with other elements of the starch synthesis machinery.
Enhanced performance of denitrifying sulfide removal process under micro-aerobic condition.
Chen, Chuan; Ren, Nanqi; Wang, Aijie; Liu, Lihong; Lee, Duu-Jong
2010-07-15
The denitrifying sulfide removal (DSR) process with bio-granules comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide and acetate into di-nitrogen gas, elementary sulfur and carbon dioxide, respectively, at high loading rates. This study determines the reaction rate of sulfide oxidized into sulfur, as well as the reduction of nitrate to nitrite, would be enhanced under a micro-aerobic condition. The presence of limited oxygen mitigated the inhibition effects of sulfide on denitrifier activities, and enhanced the performance of DSR granules. The advantages and disadvantages of applying the micro-aerobic condition to the DSR process are discussed. 2010 Elsevier B.V. All rights reserved.
Long-term potentiation in hilar circuitry modulates gating by the dentate gyrus.
Wright, Brandon J; Jackson, Meyer B
2014-07-16
The dentate gyrus serves as a gateway to the hippocampus, filtering and processing sensory inputs as an animal explores its environment. The hilus occupies a strategic position within the dentate gyrus from which it can play a pivotal role in these functions. Inputs from dentate granule cells converge on the hilus, and excitatory hilar mossy cells redistribute these signals back to granule cells to transform a pattern of cortical input into a new pattern of output to the hippocampal CA3 region. Using voltage-sensitive dye to image electrical activity in rat hippocampal slices, we explored how long-term potentiation (LTP) of different excitatory synapses modifies the flow of information. Theta burst stimulation of the perforant path potentiated responses throughout the molecular layer, but left responses in the CA3 region unchanged. By contrast, theta burst stimulation of the granule cell layer potentiated responses throughout the molecular layer, as well as in the CA3 region. Theta burst stimulation of the granule cell layer potentiated CA3 responses not only to granule cell layer stimulation but also to perforant path stimulation. Potentiation of responses in the CA3 region reflected NMDA receptor-dependent LTP of upstream synapses between granule cells and mossy cells, with no detectable contribution from NMDA receptor-independent LTP of local CA3 mossy fiber synapses. Potentiation of transmission to the CA3 region required LTP in both granule cell→mossy cell and mossy cell→granule cell synapses. This bidirectional plasticity enables hilar circuitry to regulate the flow of information through the dentate gyrus and on to the hippocampus. Copyright © 2014 the authors 0270-6474/14/349743-11$15.00/0.
Changes in biochemical processes in cerebellar granule cells of mice exposed to methylmercury.
Bellum, Sairam; Bawa, Bhupinder; Thuett, Kerry A; Stoica, Gheorghe; Abbott, Louise C
2007-01-01
At postnatal day 34, male and female C57BL/6J mice were exposed orally once a day to a total of five doses totaling 1.0 or 5.0 mg/kg of methylmercuric chloride or sterile deionized water in moistened rodent chow. Eleven days after the last dose cerebellar granule cells were acutely isolated to measure reactive oxygen species (ROS) levels and mitochondrial membrane potential using CM-H(2)DCFDA and TMRM dyes, respectively. For visualizing intracellular calcium ion distribution using transmission electron microscopy, mice were perfused 11 days after the last dose of methylmercury (MeHg) using the oxalate-pyroantimonate method. Cytosolic and mitochondrial protein fractions from acutely isolated granule cells were analyzed for cytochrome c content using Western blot analysis. Histochemistry (Fluoro-Jade dye) and immunohistochemistry (activated caspase 3) was performed on frozen serial cerebellar sections to label granule cell death and activation of caspase 3, respectively. Granule cells isolated from MeHg-treated mice showed elevated ROS levels and decreased mitochondrial membrane potential when compared to granule cells from control mice. Electron photomicrographs of MeHg-treated granule cells showed altered intracellular calcium ion homeostasis ([Ca(2+)](i)) when compared to control granule cells. However, in spite of these subcellular changes and moderate relocalization of cytochrome c into the cytosol, the concentrations of MeHg used in this study did not produce significant neuronal cell death/apoptosis at the time point examined, as evidenced by Fluoro-Jade and activated caspase 3 immunostaining, respectively. These results demonstrate that short-term in vivo exposure to total doses of 1.0 and 5.0 mg/kg MeHg through the most common exposure route (oral) can result in significant subcellular changes that are not accompanied by overt neuronal cell death.
Dontsov, A E; Sakina, N L; Ostrovsky, M A
2017-08-01
The effect of superoxide radicals on melanin destruction and degradation of melanosomes isolated from cells of retinal pigment epithelium (RPE) of the human eye was studied. We found that potassium superoxide causes destruction of melanin in melanosomes of human and bovine RPE, as well as destruction of melanin from the ink bag of squid, with the formation of fluorescent decay products having an emission maximum at 520-525 nm. The initial kinetics of the accumulation of the fluorescent decay products is linear. Superoxide radicals lead simultaneously to a decrease in the number of melanosomes and to a decrease in concentration of paramagnetic centers in them. Complete degradation of melanosomes leads to the formation of a transparent solution containing dissolved proteins and melanin degradation products that do not exhibit paramagnetic properties. To completely degrade one melanosome of human RPE, 650 ± 100 fmol of superoxide are sufficient. The concentration of paramagnetic centers in a melanolipofuscin granule of human RPE is on average 32.5 ± 10.4% (p < 0.05, 150 eyes) lower than in a melanosome, which indicates melanin undergoing a destruction process in these granules. RPE cells also contain intermediate granules that have an EPR signal with a lower intensity than that of melanolipofuscin granules, but higher than that of lipofuscin granules. This signal is due to the presence of residual melanin in these granules. Irradiation of a mixture of melanosomes with lipofuscin granules with blue light (450 nm), in contrast to irradiation of only melanosomes, results in the appearance of fluorescent melanin degradation products. We suggest that one of the main mechanisms of age-related decrease in melanin concentration in human RPE cells is its destruction in melanolipofuscin granules under the action of superoxide radicals formed during photoinduced oxygen reduction by lipofuscin fluorophores.
Yatsuzuka, Kenji; Sato, Shin-Ichi; Pe, Kathleen Beverly; Katsuda, Yousuke; Takashima, Ippei; Watanabe, Mizuki; Uesugi, Motonari
2018-06-08
Here, we developed two pairs of high-contrast chemical probes and their RNA aptamers with distinct readout channels that permitted simultaneous live-cell imaging of endogenous β-actin and cortactin mRNAs. Application of this technology allowed the direct observation of the formation process of stress granules, protein-RNA assemblies essential for cellular response to the environment.
Suomi NPP Ground System Performance
NASA Astrophysics Data System (ADS)
Grant, K. D.; Bergeron, C.
2013-12-01
The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). JPSS will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The first satellite in the JPSS constellation, known as the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite, was launched on 28 October 2011, and is currently undergoing product calibration and validation activities. As products reach a beta level of maturity, they are made available to the community through NOAA's Comprehensive Large Array-data Stewardship System (CLASS). CGS's data processing capability processes the satellite data from the Joint Polar Satellite System satellites to provide environmental data products (including Sensor Data Records (SDRs) and Environmental Data Records (EDRs)) to NOAA and Department of Defense (DoD) processing centers operated by the United States government. CGS is currently processing and delivering SDRs and EDRs for Suomi NPP and will continue through the lifetime of the Joint Polar Satellite System programs. Following the launch and sensor activation phase of the Suomi NPP mission, full volume data traffic is now flowing from the satellite through CGS's C3, data processing, and data delivery systems. Ground system performance is critical for this operational system. As part of early system checkout, Raytheon measured all aspects of data acquisition, routing, processing, and delivery to ensure operational performance requirements are met, and will continue to be met throughout the mission. Raytheon developed a tool to measure, categorize, and automatically adjudicate packet behavior across the system, and metrics collected by this tool form the basis of the information to be presented. This presentation will provide details of ground system processing performance, such as data rates through each of the CGS nodes, data accounting statistics, and retransmission rates and success, along with data processing throughput, data availability, and latency. In particular, two key metrics relating to the most important operational measures, availability (the ratio of actual granules delivered to the theoretical maximum number of granules that could be delivered over a particular period) and latency (the time from the detection of a photon by an instrument to the time a product is made available to the data consumer's interface), are provided for Raw Data Records (RDRs), SDRs, and EDRs. Specific availability metrics include Adjusted Expected Granules (the count of the theoretical maximum number of granules minus adjudicated exceptions (granules missing due to factors external to the CGS)), Data Made Available (DMA) (the number of granules provided to CLASS) and Availability Results. Latency metrics are similar, including Data Made Available Minus Exceptions, Data Made Latency, and Latency Results. Overall results, measured during a ninety day period from October 2012 through January 2013, are excellent, with all values surpassing system requirements.
Wang, Shaopo; Liu, Yuan; Niu, Qigui; Ji, Jiayuan; Hojo, Toshimasa; Li, Yu-You
2017-07-01
The operation performance of a novel micro-granule based syntrophic system of nitritation and anammox was studied by controlling the oxygen concentration and maintaining a constant temperature of 25°C. With the oxygen concentration of around 0.11 (<0.15)mg/L, the single-stage nitritation-anammox system was startup successfully at a nitrogen loading rate (NLR) of 1.5kgN/m 3 /d. The reactor was successfully operated at volumetric N loadings ranging from 0.5 to 2.5kgN/m 3 /d with a high nitrogen removal of 82%. The microbial community was composed by ammonia oxidizing bacteria (AOB) and anammox bacteria forming micro-granules with an average diameter of 0.8mm and good settleability. Results from pyrosequencing analysis revealed that Ca. Kuenenia and Nitrosomonas were selected and enriched in the community over the startup period, and these were identified as the dominant anammox bacteria and AOB species, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mukherjee, Tusharmouli; Plakogiannis, Fotios M
2012-01-01
The purpose of this study was to select the critical process parameters of the fluid bed processes impacting the quality attribute of a solid self-microemulsifying (SME) system of albendazole (ABZ). A fractional factorial design (2(4-1)) with four parameters (spray rate, inlet air temperature, inlet air flow, and atomization air pressure) was created by MINITAB software. Batches were manufactured in a laboratory top-spray fluid bed at 625-g scale. Loss on drying (LOD) samples were taken throughout each batch to build the entire moisture profiles. All dried granulation were sieved using mesh 20 and analyzed for particle size distribution (PSD), morphology, density, and flow. It was found that as spray rate increased, sauter-mean diameter (D(s)) also increased. The effect of inlet air temperature on the peak moisture which is directly related to the mean particle size was found to be significant. There were two-way interactions between studied process parameters. The main effects of inlet air flow rate and atomization air pressure could not be found as the data were inconclusive. The partial least square (PLS) regression model was found significant (P < 0.01) and predictive for optimization. This study established a design space for the parameters for solid SME manufacturing process.
Wang, Shujun; Luo, Heyang; Zhang, Jian; Zhang, Yan; He, Zhonghu; Wang, Shuo
2014-04-23
The bread wheat starch was treated with 0.025 and 0.0625 M NaOH solution for 1, 2, and 3 weeks at 30 °C, and the changes in functionality and in vitro digestibility were evaluated. NaOH treatment reduced protein and lipid contents of wheat starch from 0.46 to 0.20% and from 0.59 to 0.25%, respectively. No significant changes were observed in the amylose content, relative crystallinity, and short-range order of double helices, but there was evidence showing that morphology of some starch granules was altered. The swelling power and starch solubility of wheat starch increased from 11.4 to 14.1 g/g and from 10.9 to 22.1%, respectively. The thermal transition temperatures were increased greatly, but the enthalpy change remained largely unchanged. Alkali treatment greatly decreased the pasting temperature, but the pasting viscosities were altered in different ways. The resistant starch (RS) content of wheat starch was decreased significantly from 69.9 to 45.2%, while the starch that is digested slowly (SDS) content was increased greatly from 13.6 to 34.5%. Our results showed that alkali treatment can significantly alter the functionality and in vitro digestibility of wheat starch granules by removing the surface proteins and lipids rather than significantly altering the internal structure of starch granules.
Elnaggar, Yosra Shaaban R; El-Massik, Magda A; Abdallah, Ossama Y; Ebian, Abd Elazim R
2010-06-01
The recent challenge in orally disintegrating tablets (ODT) manufacturing encompasses the compromise between instantaneous disintegration, sufficient hardness, and standard processing equipment. The current investigation constitutes one attempt to fulfill this challenge. Maltodextrin, in the present work, was utilized as a novel excipient to prepare ODT of meclizine. Tablets were prepared by both direct compression and wet granulation techniques. The effect of maltodextrin concentrations on ODT characteristics--manifested as hardness and disintegration time--was studied. The effect of conditioning (40 degrees C and 75% relative humidity) as a post-compression treatment on ODT characteristics was also assessed. Furthermore, maltodextrin-pronounced hardening effect was investigated using differential scanning calorimetry (DSC) and X-ray analysis. Results revealed that in both techniques, rapid disintegration (30-40 s) would be achieved on the cost of tablet hardness (about 1 kg). Post-compression conditioning of tablets resulted in an increase in hardness (3 kg), while keeping rapid disintegration (30-40 s) according to guidance of the FDA for ODT. However, direct compression-conditioning technique exhibited drawbacks of long conditioning time and appearance of the so-called patch effect. These problems were, yet, absent in wet granulation-conditioning technique. DSC and X-ray analysis suggested involvement of glass-elastic deformation in maltodextrin hardening effect. High-performance liquid chromatography analysis of meclizine ODT suggested no degradation of the drug by the applied conditions of temperature and humidity. Overall results proposed that maltodextrin is a promising saccharide for production of ODT with accepted hardness-disintegration time compromise, utilizing standard processing equipment and phenomena of phase transition.
Govoni, John J; Morris, James A; Evans, David W
2017-09-01
Exposure to mercury (Hg) results in reproductive abnormalities and deficiencies in female fish. We traced the maternal assimilation and redistribution of dietary inorganic (HgII) and organic (MeHg) forms of Hg in a coastal marine fish, the Spot Leiostomus xanthurus. We conducted a 90-d laboratory experiment in which treatment Spot were fed muscle of Blue Marlin Makaira nigricans with elevated concentrations of Hg mixed with a commercial fish food, while control Spot were fed only commercial food pellets. Gonadal maturation was induced by shortening the photoperiod and increasing the temperature. Spawning was induced by intramuscular injection of human chorionic gonadotropin at 100 IU/kg. Solid-sampling atomic absorption spectrophotometry measured the total Hg (THg), HgII, and MeHg in Blue Marlin muscle. Autometallography located Hg-sulfide granules in the liver, ovaries, and spawned eggs, and densitometry provided comparisons of Hg-sulfide granules in the ovaries of treatment and control Spot. Overall, the intensity and prevalence of Hg-sulfide granules were greater in the liver, ovaries, and eggs from treatment Spot than in those from controls. The tissue and cellular distribution of Hg-sulfide granules differed. Received November 18, 2016; accepted June 18, 2017.
Accumulation of Poly(3-hydroxybutyrate) Helps Bacterial Cells to Survive Freezing
Krzyzanek, Vladislav; Mravec, Filip; Hrubanova, Kamila; Samek, Ota; Kucera, Dan; Benesova, Pavla; Marova, Ivana
2016-01-01
Accumulation of polyhydroxybutyrate (PHB) seems to be a common metabolic strategy adopted by many bacteria to cope with cold environments. This work aimed at evaluating and understanding the cryoprotective effect of PHB. At first a monomer of PHB, 3-hydroxybutyrate, was identified as a potent cryoprotectant capable of protecting model enzyme (lipase), yeast (Saccharomyces cerevisiae) and bacterial cells (Cupriavidus necator) against the adverse effects of freezing-thawing cycles. Further, the viability of the frozen–thawed PHB accumulating strain of C. necator was compared to that of the PHB non-accumulating mutant. The presence of PHB granules in cells was revealed to be a significant advantage during freezing. This might be attributed to the higher intracellular level of 3-hydroxybutyrate in PHB accumulating cells (due to the action of parallel PHB synthesis and degradation, the so-called PHB cycle), but the cryoprotective effect of PHB granules seems to be more complex. Since intracellular PHB granules retain highly flexible properties even at extremely low temperatures (observed by cryo-SEM), it can be expected that PHB granules protect cells against injury from extracellular ice. Finally, thermal analysis indicates that PHB-containing cells exhibit a higher rate of transmembrane water transport, which protects cells against the formation of intracellular ice which usually has fatal consequences. PMID:27315285
Ultrastructural identification of Langerhans cells in normal swine epidermis.
Romano, J; Balaguer, L
1991-01-01
Langerhans cells of the epidermis of 6-month-old white crossbred farm pigs were identified by electron microscopy. Ultrastructurally they were similar to those described in other mammals. They were present in basal and suprabasal layers and were characterised by a lobulated nucleus and an electrolucent cytoplasm with occasional dendritic processes, and the absence of tonofilaments and specialised unions with surrounding keratinocytes. They were specifically identified by the presence of characteristic rod or racquet-shaped intracytoplasmic granules. Intraepidermal clear cells without specific granules were present, although no melanocytes were observed. This is the first report of the presence of Birbeck granules in porcine Langerhans cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:1817140
Horisawa, E; Danjo, K; Sunada, H
2000-06-01
The physical and mechanical properties of lactose (LC) and microcrystalline cellulose (MCC) granules prepared by various granulating methods were determined, and their effects on the compression and strength of the tablets were examined. From the force-displacement curve obtained in a crushing test on a single granule, all LC granules appeared brittle, and MCC granules were somewhat plastically deformable. Inter-granular porosity epsilon inter clearly decreased with greater spherical granule shape for both materials. Decrease in intragranular porosity epsilon intra enhanced the crushing force of a single granule Fg. Agitating granulation brought about the most compactness and hardness of granules. In granule compression tests, the initial slope of Heckel plots K1 appeared closely related to ease of filling voids in a granule bed by the slippage or rolling of granules. The reciprocal of the slope in the succeeding step 1/K2 in compression of MCC granules indicated positive correlation to Fg, while in LC granules, no such obvious relation was evident. 1/K2 differed only slightly among granulating methods. Tensile strength of tablets Tt obtained by compression of various LC granules was low as a whole and was little influenced by granulating method. For MCC granules, which are plastically deformable, tablet strength greatly depended on granulation. Granules prepared by extruding or dry granulation gave strong tablets. Tablets prepared from granules made by the agitating method showed particularly low Tt. From stereomicroscopic observation, the contact area between granule particles in a tablet appeared smaller; this would explain the decrease in inter-granular bond formation.
Latent structure analysis in the pharmaceutical process of tablets prepared by wet granulation.
Uehara, Naoto; Hayashi, Yoshihiro; Mochida, Hiroshi; Otoguro, Saori; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo
2016-01-01
Granule characteristics are some of the important intermediate qualities that determine tablet properties. However, the relationships between granule and tablet characteristics are poorly understood. The aim of this study was to elucidate relationships among formulation factors, granule characteristics, and tablet properties using a non-linear response surface method (RSM) incorporating a thin-plate spline interpolation (RSM-S) and a Bayesian network (BN). Tablets containing lactose (Lac), cornstarch (CS), and microcrystalline cellulose (MCC) were prepared by wet granulation. Ten formulations were prepared by an extreme vertices design. The angle of repose (Y 1 ), compressibility (Y 2 ), cohesion force (Y 3 ), internal friction angle (Y 4 ), and mean particle size (Y 5 ) were measured as granule characteristics. Tensile strength (TS) and disintegration time (DT) were measured as tablet properties. RSM-S results showed that TS increased with increasing amounts of MCC and Lac. DT decreased with increasing amounts of MCC and CS. The optimal BN models were predicted using four evaluation indices -Y 3 was shown to be the most important factor for TS, whereas Y 2 , Y 3 , and Y 4 were relatively important for predicting DT. Moreover, tablets with excellent tablet properties (i.e. high TS and low DT) were produced by relatively high Y 1 , low Y 2 , high Y 3 , high Y 4 , and middle Y 5 values, and resulted from the middle of MCC, middle-to-low CS, low Lac, and middle-to-low magnesium stearate (Mg-St) amounts. The RSM-S and BN techniques are useful for revealing complex relationships among formulation factors, granule characteristics, and tablet properties.
MicroRNAs Promote Granule Cell Expansion in the Cerebellum Through Gli2.
Constantin, Lena; Wainwright, Brandon J
2015-12-01
MicroRNAs (miRNAs) are important regulators of cerebellar function and homeostasis. Their deregulation results in cerebellar neuronal degeneration and spinocerebellar ataxia type 1 and contributes to medulloblastoma. Canonical miRNA processing involves Dicer, which cleaves precursor miRNAs into mature double-stranded RNA duplexes. In order to address the role of miRNAs in cerebellar granule cell precursor development, loxP-flanked exons of Dicer1 were conditionally inactivated using the granule cell precursor-specific Atoh1-Cre recombinase. A reduction of 87% in Dicer1 transcript was achieved in this conditional Dicer knockdown model. Although knockdown resulted in normal survival, mice had disruptions to the cortical layering of the anterior cerebellum, which resulted from the premature differentiation of granule cell precursors in this region during neonatal development. This defect manifested as a thinner external granular layer with ectopic mature granule cells, and a depleted internal granular layer. We found that expression of the activator components of the Hedgehog-Patched pathway, the Gli family of transcription factors, was perturbed in conditional Dicer knockdown mice. We propose that loss of Gli2 mRNA mediated the anterior-restricted defect in conditional Dicer knockdown mice and, as proof of principle, were able to show that miR-106b positively regulated Gli2 mRNA expression. These findings confirm the importance of miRNAs as positive mediators of Hedgehog-Patched signalling during granule cell precursor development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shtarkman, N.B.; Obraztova, A.Y.; Laurinavichyus, K.S.
1995-03-01
The role of a specific anaerobic microflora in the initiation of degradation of (meth)acrylic acids to methane by granular sludge from a UASB reactor was investigated. Associations of anaerobic bacteria isolated from the anaerobic sludge, which was used for a long time for treatment of wastewater from (meth)acrylate production, were able to realize the initial stage of (meth)acrylic acid decomposition, i.e., a conversion of acrylic and methacrylic acids to propionic and isobutyric acids, respectively. When added to granules, these association played a role of an {open_quotes}initiator{close_quotes} of the degradation process, which was then continued by the granular sludge microflora utilizingmore » propionate and isobutyrate. Some characteristics of the granules adapted to propionate or isobutyrate are presented. The rates of propionate and isobutyrate consumption by adapted granules is, respectively, 21 and 53 times higher than the values obtained for nonadapted granules. A combined use of {open_quotes}initiating{close_quotes} bacteria and adapted granules provided degradation of (meth)acrylic acids with a maximum methane yield. The possibility is discussed of employing the granules, which are adapted to short-chain fatty acids, and the {open_quotes}initiating{close_quotes} bacteria, which accomplish the initial steps of the organic material decomposition to lower fatty acids, for the conversion of various chemical compounds to methane. 10 refs., 3 figs., 2 tabs.« less
Iwao, Yasunori; Kimura, Shin-Ichiro; Ishida, Masayuki; Mise, Ryohei; Yamada, Masaki; Namiki, Noriyuki; Noguchi, Shuji; Itai, Shigeru
2015-01-01
The manufacture of highly drug-loaded fine globular granules eventually applied for orally disintegrating tablets has been investigated using a unique multi-functional rotor processor with acetaminophen, which was used as a model drug substance. Experimental design and statistical analysis were used to evaluate potential relationships between three key operating parameters (i.e., the binder flow rate, atomization pressure and rotating speed) and a series of associated micromeritics (i.e., granule mean size, proportion of fine particles (106-212 µm), flowability, roundness and water content). The results of multiple linear regression analysis revealed several trends, including (1) the binder flow rate and atomization pressure had significant positive and negative effects on the granule mean size value, Carr's flowability index, granular roundness and water content, respectively; (2) the proportion of fine particles was positively affected by the product of interaction between the binder flow rate and atomization pressure; and (3) the granular roundness was negatively and positively affected by the product of interactions between the binder flow rate and the atomization pressure, and the binder flow rate and rotating speed, respectively. The results of this study led to the identification of optimal operating conditions for the preparation of granules, and could therefore be used to provide important information for the development of processes for the manufacture of highly drug-loaded fine globular granules.
RTD-based Material Tracking in a Fully-Continuous Dry Granulation Tableting Line.
Martinetz, M C; Karttunen, A-P; Sacher, S; Wahl, P; Ketolainen, J; Khinast, J G; Korhonen, O
2018-06-06
Continuous manufacturing (CM) offers quality and cost-effectiveness benefits over currently dominating batch processing. One challenge that needs to be addressed when implementing CM is traceability of materials through the process, which is needed for the batch/lot definition and control strategy. In this work the residence time distributions (RTD) of single unit operations (blender, roller compactor and tablet press) of a continuous dry granulation tableting line were captured with NIR based methods at selected mass flow rates to create training data. RTD models for continuous operated unit operations and the entire line were developed based on transfer functions. For semi-continuously operated bucket conveyor and pneumatic transport an assumption based the operation frequency was used. For validation of the parametrized process model, a pre-defined API step change and its propagation through the manufacturing line was computed and compared to multi-scale experimental runs conducted with the fully assembled continuous operated manufacturing line. This novel approach showed a very good prediction power at the selected mass flow rates for a complete continuous dry granulation line. Furthermore, it shows and proves the capabilities of process simulation as a tool to support development and control of pharmaceutical manufacturing processes. Copyright © 2018. Published by Elsevier B.V.
Fra-Vázquez, A; Morales, N; Figueroa, M; Val Del Río, A; Regueiro, L; Campos, J L; Mosquera-Corral, A
2016-09-01
Aerobic granular sludge represents an interesting approach for simultaneous organic matter and nitrogen removal in wastewater treatment plants. However, the information about microbial communities in aerobic granular systems dealing with industrial wastewater like pig slurry is limited. Herein, bacterial diversity and dynamics were assessed in a pilot scale plant using aerobic granular sludge for organic matter and nitrogen elimination from swine slurry during more than 300 days. Results indicated that bacterial composition evolved throughout the operational period from flocculent activated sludge, used as inoculum, to mature aerobic granules. Bacterial diversity increased at the beginning of the granulation process and then declined due to the application of transient organic matter and nitrogen loads. The operational conditions of the pilot plant and the degree of granulation determined the microbial community of the aerobic granules. Brachymonas, Zoogloea and Thauera were attributed with structural function as they are able to produce extracellular polymeric substances to maintain the granular structure. Nitrogen removal was justified by partial nitrification (Nitrosomonas) and denitrification (Thauera and Zoogloea), while Comamonas was identified as the main organic matter oxidizing bacteria. Overall, clear links between bacterial dynamics and composition with process performance were found and will help to predict their biological functions in wastewater ecosystems improving the future control of the process. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1212-1221, 2016. © 2016 American Institute of Chemical Engineers.
Mast cells and angiogenesis in wound healing.
Gaber, Mohamed A; Seliet, Iman A; Ehsan, Nermin A; Megahed, Mohamed A
2014-02-01
To investigate the role of mast cells and vascular endothelial growth factor (VEGF) as a mediator of angiogenesis to promote wound healing in surgical and pathological scars. The study was carried out on 40 patients who presented with active scar lesions. They were subdivided into 4 groups. They included granulation tissue (10 cases), surgical scar (10 cases), hypertrophic scar (10 cases), and keloid scar (10 cases). Also 10 healthy volunteers of the same age and sex were selected as a control group. Skin biopsies were taken from the patients and the control group. Skin biopsies from clinically assessed studied groups were processed for routine histology and embedded in paraffin. Four sections were prepared from each paraffin block. The first section was stained with hematoxylin and eosin for histological evaluation. The second and third sections were processed for immunostaining of mast cells that contain chymase (MCCs) and mast cells that contain tryptase (MCTs). The fourth section was processed for immunostaining of VEGF. MCCs exhibited mild expression in normal tissue, granulation tissue, and surgical, hypertrophic and keloid scars. MCTs exhibited mild expression in normal tissue, granulation tissue and keloid, whereas moderate expression was exhibited in hypertrophic and surgical scars. VEGF expression was absent in normal tissue, mild in keloid, surgical and hypertrophic scars, and moderate in keloids and granulation tissue. Mast cell expression variation among different scar types signals the pathological evolution of the lesion, and hence may guide the need for therapeutic intervention.
[Research on change process of nitrosation granular sludge in continuous stirred-tank reactor].
Yin, Fang-Fang; Liu, Wen-Ru; Wang, Jian-Fang; Wu, Peng; Shen, Yao-Liang
2014-11-01
In order to investigate the effect of different types of reactors on the nitrosation granular sludge, a continuous stirred-tank reactor (CSTR) was studied, using mature nitrosation granular sludge cultivated in sequencing batch reactor (SBR) as seed sludge. Results indicated that the change of reactor type and influent mode could induce part of granules to lose stability with gradual decrease in sludge settling ability during the initial period of operation. However, the flocs in CSTR achieved fast granulation in the following reactor operation. In spite of the changes of particle size distribution, e. g. the decreasing number of granules with diameter larger than 2.5 mm and the increasing number of granules with diameter smaller than 0.3 mm, granular sludge held the absolute predominance of sludge morphology in CSTR during the entire experimental period. Moreover, results showed that the change of reactor type and influent mode didn't affect the nitrite accumulation rate which was still kept at about 85% in effluent. Additionally, the average activity of the sludge in CSTR was stronger than that of the seed sludge, because the newly generated small particles in CSTR had higher specific reactive activity than the larger granules.
Evaluation of the binding effect of human serum albumin on the properties of granules.
Kristó, Katalin; Bajdik, János; Eros, István; Pintye-Hódi, Klára
2008-11-01
The main objective of this study was the application of a solution of human serum albumin as a granulating fluid. The properties of the granules formed were evaluated and compared with those when a conventional binder was applied in the same concentration. The powder mixture contained a soluble (mannitol) and an insoluble component (different types of cellulose). The protein solution applied exerted an appropriate aggregating effect if the system contained microcrystalline celluloses. Powdered cellulose was not suitable for the granulation with human serum albumin solution. As compared with the same concentration of the conventionally applied cellulose ethers as binder, the prepared granules exhibited a larger particle size, a significantly better compressibility, a higher breaking hardness and a favourable deformation process. These findings mainly reflect the good adhesive properties of the protein. The best compressibility and mechanical behaviour were attained on the application of the microcrystalline cellulose Vivapur type 105. This favourable behaviour may be connected with the wettability of cellulose. These results suggest that the formulation of tablets may be easier from an active agent in the serum that binds to albumin (e.g. interferon) since the amount of additives (binder) can be reduced.
Aslani, Abolfazl; Fattahi, Fatemeh
2013-01-01
The aim of this study was to design and formulation of potassium citrate effervescent tablet for reduction of calcium oxalate and urate kidney stones in patients suffering from kidney stones. In this study, 13 formulations were prepared from potassium citrate and effervescent base in different concentration. The flowability of powders and granules was studied. Then effervescent tablets were prepared by direct compression, fusion and wet granulation methods. The prepared tablets were evaluated for hardness, friability, effervescent time, pH, content uniformity. To amend taste of formulations, different flavoring agents were used and then panel test was done by using Latin Square method by 30 volunteers. Formulations obtained from direct compression and fusion methods had good flow but low hardness. Wet granulation improves flowability and other physicochemical properties such as acceptable hardness, effervescence time ≤3 minutes, pH<6, friability < 1%, water percentage < 0.5% and accurate content uniformity. In panel test, both of combination flavors; (orange - lemon) and (strawberry - raspberry) had good acceptability. The prepared tablets by wet granulation method using PVP solution had more tablet hardness. It is a reproducible process and suitable to produce granules that are compressed into effervescent tablets due to larger agglomerates.
Aslani, Abolfazl; Fattahi, Fatemeh
2013-01-01
Purpose: The aim of this study was to design and formulation of potassium citrate effervescent tablet for reduction of calcium oxalate and urate kidney stones in patients suffering from kidney stones. Methods: In this study, 13 formulations were prepared from potassium citrate and effervescent base in different concentration. The flowability of powders and granules was studied. Then effervescent tablets were prepared by direct compression, fusion and wet granulation methods. The prepared tablets were evaluated for hardness, friability, effervescent time, pH, content uniformity. To amend taste of formulations, different flavoring agents were used and then panel test was done by using Latin Square method by 30 volunteers. Results: Formulations obtained from direct compression and fusion methods had good flow but low hardness. Wet granulation improves flowability and other physicochemical properties such as acceptable hardness, effervescence time ≤3 minutes, pH<6, friability < 1%, water percentage < 0.5% and accurate content uniformity. In panel test, both of combination flavors; (orange - lemon) and (strawberry - raspberry) had good acceptability. Conclusion: The prepared tablets by wet granulation method using PVP solution had more tablet hardness. It is a reproducible process and suitable to produce granules that are compressed into effervescent tablets due to larger agglomerates. PMID:24312839
Gohel, Mukesh; Patel, Madhabhai; Amin, Avani; Agrawal, Ruchi; Dave, Rikita; Bariya, Nehal
2004-04-26
The purpose of this research was to develop mouth dissolve tablets of nimesulide. Granules containing nimesulide, camphor, crospovidone, and lactose were prepared by wet granulation technique. Camphor was sublimed from the dried granules by exposure to vacuum. The porous granules were then compressed. Alternatively, tablets were first prepared and later exposed to vacuum. The tablets were evaluated for percentage friability, wetting time, and disintegration time. In the investigation, a 32 full factorial design was used to investigate the joint influence of 2 formulation variables: amount of camphor and crospovidone. The results of multiple linear regression analysis revealed that for obtaining a rapidly disintegrating dosage form, tablets should be prepared using an optimum concentration of camphor and a higher percentage of crospovidone. A contour plot is also presented to graphically represent the effect of the independent variables on the disintegration time and percentage friability. A checkpoint batch was also prepared to prove the validity of the evolved mathematical model. Sublimation of camphor from tablets resulted in superior tablets as compared with the tablets prepared from granules that were exposed to vacuum. The systematic formulation approach helped in understanding the effect of formulation processing variables.
Arruda, Thiago; Sukekava, Flávia; de Souza, André B; Rasmusson, Lars; Araújo, Maurício G
2013-07-01
The aim of the present study was to evaluate the effect of the placement of titanium granules in fresh extraction sockets on early bone formation. The mesial roots of the third maxillary premolars of five adult beagle dogs were removed. On one side of the maxilla (Test group) the fresh extraction socket was grafted with titanium granules, while the contra-lateral socket was left non-grafted (Control group). After 1 month of healing, the dogs were euthanized and biopsies were obtained. The healing tissues were described, and histometric measurements were performed to obtain the percentage area occupied by connective tissue, new mineralized bone, bone marrow, and biomaterial particles. After 1 month of healing the findings from the histological examination revealed the titanium graft to be well incorporated into the provisional connective tissue or newly formed woven bone. The histometric measurements showed, however, that less mineralized bone was formed in the Test group than in the Control group. The present study suggests that the use of titanium granules in fresh extraction sockets was conducive to new bone formation. The graft of titanium granules seems, however, to delay the early phase of the healing process. Copyright © 2012 Wiley Periodicals, Inc.
Kretzschmar, D; Poeck, B; Roth, H; Ernst, R; Keller, A; Porsch, M; Strauss, R; Pflugfelder, G O
2000-01-01
Lysosomal protein trafficking is a fundamental process conserved from yeast to humans. This conservation extends to lysosome-like organelles such as mammalian melanosomes and insect eye pigment granules. Recently, eye and coat color mutations in mouse (mocha and pearl) and Drosophila (garnet and carmine) were shown to affect subunits of the heterotetrameric adaptor protein complex AP-3 involved in vesicle trafficking. Here we demonstrate that the Drosophila eye color mutant ruby is defective in the AP-3beta subunit gene. ruby expression was found in retinal pigment and photoreceptor cells and in the developing central nervous system. ruby mutations lead to a decreased number and altered size of pigment granules in various cell types in and adjacent to the retina. Humans with lesions in the related AP-3betaA gene suffer from Hermansky-Pudlak syndrome, which is caused by defects in a number of lysosome-related organelles. Hermansky-Pudlak patients have a reduced skin pigmentation and suffer from internal bleeding, pulmonary fibrosis, and visual system malfunction. The Drosophila AP-3beta adaptin also appears to be involved in processes other than eye pigment granule biogenesis because all ruby allele combinations tested exhibited defective behavior in a visual fixation paradigm. PMID:10790396
Receiving and use of streams of monodisperse ice granules for cleaning and deactivation of surfaces
NASA Astrophysics Data System (ADS)
Boukharov, A.; Balashov, A.; Timohin, A.; Ivanov, A.; Holin, B.
2017-11-01
The most generally useful methods for cleaning and processing of surfaces are the sand-jets and shot blasting jets. Installations of this kind are used for cleaning of corrosion surfaces, the oil-dirt deposits, paint coatings. However the use of these installations follows to high investment and operational expenditure, larger risk of operators disease, the negative affect for a environment. These problems can be solved with the use of new cleaning method through application of mono-disperse (identical by the size and the form) ice granules of 300 - 1000 microns, accelerated by air stream in the nozzle device to the speed of 10 - 100 m/s. In view of the extreme complexity of the receiving such particles by means of cooling and the subsequent freezing of water drops are necessary additional experimental researches. For study of thermal processes of receiving mono-disperse ice granules the experimental installation was created and experiments on deactivation and cleaning of surfaces with pollution of various types are made. Experiments showed that by means of a stream of the accelerated ice granules it is rather successfully possible to delete oil-dirt deposits, outdated paint coats and rust. Besides, efficient deactivation of radioactive surfaces is possible. The coefficient deactivation of γ activity is highest.
Chromogranin A: A New Proposal for Trafficking, Processing and Induction of Granule Biogenesis
Koshimizu, Hisatsugu; Kim, Taeyoon; Cawley, Niamh X.; Loh, Y. Peng
2009-01-01
Chromogranin A (CgA), a member of the granin family serves several important cell biological roles in (neuro)endocrine cells which are summarized in this review. CgA is a “prohormone” that is synthesized at the rough endoplasmic reticulum and transported into the cisternae of this organelle via its signal peptide. It is then trafficked to the Golgi complex and then to the trans-Golgi network (TGN) where CgA aggregates at low pH in the presence of calcium. The CgA aggregates provide the physical driving force to induce budding of the TGN membrane resulting in dense core granule (DCG) formation. Within the granule, a small amount of the CgA is processed to bioactive peptides, including a predicted C-terminal peptide, serpinin. Upon stimulation, DCGs undergo exocytosis and CgA and its derived peptides are released. Serpinin, acting extracellularly is able to signal the increase in transcription of a serine protease inhibitor, protease nexin-1 (PN-1) that protects DCG proteins against degradation in the Golgi complex, which then enhances DCG biogenesis to replenish those that were released. Thus CgA and its derived peptide, serpinin, plays a significant role in the formation and regulation, respectively, of granule biogenesis in (neuro)endocrine cells. PMID:20006653
Kona, Ravikanth; Fahmy, Raafat M; Claycamp, Gregg; Polli, James E; Martinez, Marilyn; Hoag, Stephen W
2015-02-01
The objective of this study is to use near-infrared spectroscopy (NIRS) coupled with multivariate chemometric models to monitor granule and tablet quality attributes in the formulation development and manufacturing of ciprofloxacin hydrochloride (CIP) immediate release tablets. Critical roller compaction process parameters, compression force (CFt), and formulation variables identified from our earlier studies were evaluated in more detail. Multivariate principal component analysis (PCA) and partial least square (PLS) models were developed during the development stage and used as a control tool to predict the quality of granules and tablets. Validated models were used to monitor and control batches manufactured at different sites to assess their robustness to change. The results showed that roll pressure (RP) and CFt played a critical role in the quality of the granules and the finished product within the range tested. Replacing binder source did not statistically influence the quality attributes of the granules and tablets. However, lubricant type has significantly impacted the granule size. Blend uniformity, crushing force, disintegration time during the manufacturing was predicted using validated PLS regression models with acceptable standard error of prediction (SEP) values, whereas the models resulted in higher SEP for batches obtained from different manufacturing site. From this study, we were able to identify critical factors which could impact the quality attributes of the CIP IR tablets. In summary, we demonstrated the ability of near-infrared spectroscopy coupled with chemometrics as a powerful tool to monitor critical quality attributes (CQA) identified during formulation development.
Next Generation Ceramic Substrate Fabricated at Room Temperature.
Kim, Yuna; Ahn, Cheol-Woo; Choi, Jong-Jin; Ryu, Jungho; Kim, Jong-Woo; Yoon, Woon-Ha; Park, Dong-Soo; Yoon, Seog-Young; Ma, Byungjin; Hahn, Byung-Dong
2017-07-26
A ceramic substrate must not only have an excellent thermal performance but also be thin, since the electronic devices have to become thin and small in the electronics industry of the next generation. In this manuscript, a thin ceramic substrate (thickness: 30-70 µm) is reported for the next generation ceramic substrate. It is fabricated by a new process [granule spray in vacuum (GSV)] which is a room temperature process. For the thin ceramic substrates, AlN GSV films are deposited on Al substrates and their electric/thermal properties are compared to those of the commercial ceramic substrates. The thermal resistance is significantly reduced by using AlN GSV films instead of AlN bulk-ceramics in thermal management systems. It is due to the removal of a thermal interface material which has low thermal conductivity. In particular, the dielectric strengths of AlN GSV films are much higher than those of AlN bulk-ceramics which are commercialized, approximately 5 times. Therefore, it can be expected that this GSV film is a next generation substrate in thermal management systems for the high power application.
Gasification of the char derived from distillation of granulated scrap tyres.
López, Félix A; Centeno, Teresa A; Alguacil, Francisco José; Lobato, Belén; López-Delgado, Aurora; Fermoso, Javier
2012-04-01
This work reports the effect of pressure on the steam/oxygen gasification at 1000°C of the char derived from low temperature-pressure distillation of granulated scrap tyres (GST). The study was based on the analysis of gas production, carbon conversion, cold gas efficiency and the high heating value (HHV) of the product. For comparison, similar analyses were carried out for the gasification of coals with different rank. In spite of the relatively high ash (≈12 wt.%) and sulphur (≈3 wt.%) contents, the char produced in GST distillation can be regarded as a reasonable solid fuel with a calorific value of 34MJkg(-1). The combustion properties of the char (E(A)≈50 kJ mol(-1)), its temperature of self-heating (≈264°C), ignition temperature (≈459°C) and burn-out temperature (≈676°C) were found to be similar to those of a semi-anthracite. It is observed that the yield, H(2) and CO contents and HHV of the syngas produced from char gasification increase with pressure. At 0.1 MPa, 4.6 Nm(3)kg(char)(-1) of syngas was produced, containing 28%v/v of H(2) and CO and with a HHV around 3.7 MJ Nm(-3). At 1.5 MPa, the syngas yield achieved 4.9N m(3)kg(char)(-1) with 30%v/v of H(2)-CO and HHV of 4.1 MJ Nm(-3). Carbon conversion significantly increased from 87% at 0.1 MPa to 98% at 1.5 MPa. It is shown that the char derived from distillation of granulated scrap tyres can be further gasified to render a gas of considerable heating value, especially when gasification proceeds at high pressure. Copyright © 2011 Elsevier Ltd. All rights reserved.
Optically Transparent Ferromagnetic Nanogranular Films with Tunable Transmittance
Kobayashi, Nobukiyo; Masumoto, Hiroshi; Takahashi, Saburo; Maekawa, Sadamichi
2016-01-01
Developing optically transparent magnets at room temperature is an important challenge. They would bring many innovations to various industries, not only for electronic and magnetic devices but also for optical applications. Here we introduce FeCo-(Al-fluoride) nanogranular films exhibiting ferromagnetic properties with high optical transparency in the visible light region. These films have a nanocomposite structure, in which nanometer-sized FeCo ferromagnetic granules are dispersed in an Al-fluoride crystallized matrix. The optical transmittance of these films is controlled by changing the magnetization. This is a new type of magneto-optical effect and is explained by spin-dependent charge oscillation between ferromagnetic granules due to quantum-mechanical tunneling. PMID:27677710
PREPARATION OF HIGH-DENSITY THORIUM OXIDE SPHERES
McNees, R.A. Jr.; Taylor, A.J.
1963-12-31
A method of preparing high-density thorium oxide spheres for use in pellet beds in nuclear reactors is presented. Sinterable thorium oxide is first converted to free-flowing granules by means such as compression into a compact and comminution of the compact. The granules are then compressed into cubes having a density of 5.0 to 5.3 grams per cubic centimeter. The cubes are tumbled to form spheres by attrition, and the spheres are then fired at 1250 to 1350 deg C. The fired spheres are then polished and fired at a temperature above 1650 deg C to obtain high density. Spherical pellets produced by this method are highly resistant to mechanical attrition hy water. (AEC)
Resource recovery of organic sludge as refuse derived fuel by fry-drying process.
Chang, Fang-Chih; Ko, Chun-Han; Wu, Jun-Yi; Wang, H Paul; Chen, Wei-Sheng
2013-08-01
The organic sludge and waste oil were collected from the industries of thin film transistor liquid crystal display and the recycled cooking oil. The mixing ratio of waste cooking oil and organic sludge, fry-drying temperatures, fry-drying time, and the characteristics of the organic sludge pellet grain were investigated. After the fry-drying process, the moisture content of the organic sludge pellet grain was lower than 5% within 25 min and waste cooking oil was absorbed on the dry solid. The fry-drying organic sludge pellet grain was easy to handle and odor free. Additionally, it had a higher calorific value than the derived fuel standards and could be processed into organic sludge derived fuels. Thus, the granulation and fry-drying processes of organic sludge with waste cooking oil not only improves the calorific value of organic sludge and becomes more valuable for energy recovery, but also achieves waste material disposal and cost reduction. Copyright © 2013 Elsevier Ltd. All rights reserved.
Structural phase transitions in isotropic magnetic elastomers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meilikhov, E. Z., E-mail: meilikhov@yandex.ru; Farzetdinova, R. M.
Magnetic elastomers represent a new type of materials that are “soft” matrices with “hard” magnetic granules embedded in them. The elastic forces of the matrix and the magnetic forces acting between granules are comparable in magnitude even under small deformations. As a result, these materials acquire a number of new properties; in particular, their mechanical and/or magnetic characteristics can depend strongly on the polymer matrix filling with magnetic particles and can change under the action of an external magnetic field, pressure, and temperature. To describe the properties of elastomers, we use a model in which the interaction of magnetic granulesmore » randomly arranged in space with one another is described in the dipole approximation by the distribution function of dipole fields, while their interaction with the matrix is described phenomenologically. A multitude of deformation, magnetic-field, and temperature effects that are described in this paper and are quite accessible to experimental observation arise within this model.« less
Tan, Xiaoyan; Li, Xiaoxi; Chen, Ling; Xie, Fengwei; Li, Lin; Huang, Jidong
2017-04-01
Breadfruit starch was subjected to heat-moisture treatment (HMT) at different moisture content (MC). HMT did not apparently change the starch granule morphology but decreased the molecular weight and increased the amylose content. With increased MC, HMT transformed the crystalline structure (B→A+B→A) and decreased the relative crystallinity. With ≥25% MC, the scattering peak at ca. 0.6nm -1 disappeared, suggesting the lamellar structure was damaged. Compared with native starch, HMT-modified samples showed greater thermostability. Increased MC contributed to a higher pasting temperature, lower viscosity, and no breakdown. The pasting temperature of native and HMT samples ranged from 68.8 to 86.2°C. HMT increased the slowly-digestible starch (SDS) and resistant starch (RS) contents. The SDS content was 13.24% with 35% MC, which was 10.25% higher than that of native starch. The increased enzyme resistance could be ascribed to the rearrangement of molecular chains and more compact granule structure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Structure and properties of starches from Arracacha (Arracacia xanthorrhiza) roots.
Castanha, Nanci; Villar, James; Matta Junior, Manoel Divino da; Anjos, Carlota Boralli Prudente Dos; Augusto, Pedro Esteves Duarte
2018-06-05
Arracacha (Arracacia xanthorrhiza Bancroft) is an underexplored Andean root with a high starch content. In this work, starches from two different varieties of Peruvian arracacha were evaluated and characterized in relation to their granule morphology, molecular structure and properties. The starches presented round or polygonal shapes, with a mean diameter of ~20 μm and B-type granules. They were rich in amylopectin molecules with long chain lengths (with the ability to complex iodine) and some with intermediate sizes (indicating a defective crystalline structure). The starches presented low gelatinization temperature, enthalpy of gelatinization and tendency to retrogradation and high peak apparent viscosity and swelling capacity, even at moderate temperatures (60 °C), characteristics of high interest for industrial purposes. Besides, the starches presented a smooth and elastic gel and a high paste clarity. Overall, the arracacha roots presented attractive properties and can be used as an alternative botanical source for starch extraction. Copyright © 2018 Elsevier B.V. All rights reserved.
Li, Wen-Wei; Wang, Yun-Kun; Sheng, Guo-Ping; Gui, Yong-Xin; Yu, Lei; Xie, Tong-Qing; Yu, Han-Qing
2012-10-01
Conventional MBR has been mostly based on floc sludge and the use of costly microfiltration membranes. Here, a novel aerobic granule (AG)-mesh filter MBR (MMBR) process was developed for cost-effective wastewater treatment. During 32-day continuous operation, a predominance of granules was maintained in the system, and good filtration performance was achieved at a low trans-membrane pressure (TMP) of below 0.025 m. The granules showed a lower fouling propensity than sludge flocs, attributed to the formation of more porous biocake layer at mesh surface. A low-flux and low-TMP filtration favored a stable system operation. In addition, the reactor had high pollutant removal efficiencies, with a 91.4% chemical oxygen demand removal, 95.7% NH(4)(+) removal, and a low effluent turbidity of 4.1 NTU at the stable stage. This AG-MMBR process offers a promising technology for low-cost and efficient treatment of wastewaters. Copyright © 2012 Elsevier Ltd. All rights reserved.
Suga, Yohei; Izawa, Shingo; Ohya, Yoshikazu
2013-01-01
Vanillin, generated by acid hydrolysis of lignocellulose, acts as a potent inhibitor of the growth of the yeast Saccharomyces cerevisiae. Here, we investigated the cellular processes affected by vanillin using high-content, image-based profiling. Among 4,718 non-essential yeast deletion mutants, the morphology of those defective in the large ribosomal subunit showed significant similarity to that of vanillin-treated cells. The defects in these mutants were clustered in three domains of the ribosome: the mRNA tunnel entrance, exit and backbone required for small subunit attachment. To confirm that vanillin inhibited ribosomal function, we assessed polysome and messenger ribonucleoprotein granule formation after treatment with vanillin. Analysis of polysome profiles showed disassembly of the polysomes in the presence of vanillin. Processing bodies and stress granules, which are composed of non-translating mRNAs and various proteins, were formed after treatment with vanillin. These results suggest that vanillin represses translation in yeast cells. PMID:23637899
Sugiura, Yuki; Tsuru, Kanji; Ishikawa, Kunio
2017-08-01
Carbonate apatite (CO 3 Ap) foam with an interconnected porous structure is highly attractive as a scaffold for bone replacement. In this study, arbitrarily shaped CO 3 Ap foam was formed from α-tricalcium phosphate (α-TCP) foam granules via a two-step process involving treatment with acidic calcium phosphate solution followed by hydrothermal treatment with NaHCO 3 . The treatment with acidic calcium phosphate solution, which is key to fabricating arbitrarily shaped CO 3 Ap foam, enables dicalcium hydrogen phosphate dihydrate (DCPD) crystals to form on the α-TCP foam granules. The generated DCPD crystals cause the α-TCP granules to interlock with each other, inducing an α-TCP/DCPD foam. The interlocking structure containing DCPD crystals can survive hydrothermal treatment with NaHCO 3 . The arbitrarily shaped CO 3 Ap foam was fabricated from the α-TCP/DCPD foam via hydrothermal treatment at 200 °C for 24 h in the presence of a large amount of NaHCO 3 .
Colangelo, Francesco; Cioffi, Raffaele
2013-07-25
In this work, three different samples of solid industrial wastes cement kiln dust (CKD), granulated blast furnace slag and marble sludge were employed in a cold bonding pelletization process for the sustainable production of artificial aggregates. The activating action of CKD components on the hydraulic behavior of the slag was explored by evaluating the neo-formed phases present in several hydrated pastes. Particularly, the influence of free CaO and sulfates amount in the two CKD samples on slag reactivity was evaluated. Cold bonded artificial aggregates were characterized by determining physical and mechanical properties of two selected size fractions of the granules for each studied mixture. Eighteen types of granules were employed in C28/35 concrete manufacture where coarser natural aggregate were substituted with the artificial ones. Finally, lightweight concretes were obtained, proving the suitability of the cold bonding pelletization process in artificial aggregate sustainable production.
Colangelo, Francesco; Cioffi, Raffaele
2013-01-01
In this work, three different samples of solid industrial wastes cement kiln dust (CKD), granulated blast furnace slag and marble sludge were employed in a cold bonding pelletization process for the sustainable production of artificial aggregates. The activating action of CKD components on the hydraulic behavior of the slag was explored by evaluating the neo-formed phases present in several hydrated pastes. Particularly, the influence of free CaO and sulfates amount in the two CKD samples on slag reactivity was evaluated. Cold bonded artificial aggregates were characterized by determining physical and mechanical properties of two selected size fractions of the granules for each studied mixture. Eighteen types of granules were employed in C28/35 concrete manufacture where coarser natural aggregate were substituted with the artificial ones. Finally, lightweight concretes were obtained, proving the suitability of the cold bonding pelletization process in artificial aggregate sustainable production. PMID:28811427
Melanogenesis in dermal melanocytes of Japanese Silky chicken embryos.
Ortolani-Machado, C F; Freitas, P F; Faraco, C D
2009-08-01
The Japanese Silky chicken (SK) shows dermal and visceral hyperpigmentation. This study characterizes ultrastructurally the melanin granules developing in dermal melanocytes of the dorsal skin of SK, in an attempt to better understand the processes of melanogenesis in these permanently ectopic cells. The steps of melanogenesis are similar to those described for epidermal melanocytes, with melanosomes going from stage I to IV but, in SK, the maturation occurs in the cell body, as well as in the cytoplasmic processes. At stage III, the deposition of melanin is cumulative and can aggregate in rounded structures, which combine to turn into the mature granule. The final destiny of mature melanosomes is still unclear, although it was observed that dermal macrophages can accumulate melanin granules in their phagosomes. Even with the close proximity between melanocytes and other dermal cells, the transference of melanosomes was not observed. Our findings indicate that melanogenesis in dermal melanocytes in SK has the same morphological characteristics found in epidermal melanocytes, but the functional aspect still remains to be elucidated.
Elliott, E; Dennison, C; Fortgens, P H; Travis, J
1995-10-01
Paraformaldehyde (PFA) fixation was optimized to facilitate the immobilization and labeling of multiple granule antigens, using short fixation regimens and cryoultramicrotomy of unembedded neutrophils (PMNs). In the optimal protocol, extraction of azurophil granule antigens (especially of the abundant elastase) was obviated by manipulating the polymeric state of PFA, and hence its rate of cross-linking, by altering its concentration and pH in a multistep process. Primary fixation conditions used (4% PFA, pH 8.0, 5 min) favor fixative penetration and rapid cross-linking. Stable cross-linking of the antigen was achieved in a secondary fixation step using conditions that favor larger, more cross-linking polymeric forms of PFA (8% PFA, pH 7.2, 15 min). Immobilization of granule antigens was enhanced by flotation of cut sections on fixative (8% PFA, pH 8.0) before labeling and by using post-labeling fixation with 1% glutaraldehyde. The optimized protocol facilitated immobilization and immunolabeling of elastase, myeloperoxidase, lactoferrin, and cathepsin D in highly hydrated, unembedded PMNs.
Delfino, Giovanni; Giachi, Filippo; Malentacchi, Cecilia; Nosi, Daniele
2015-09-01
Three types of serous products were detected in the syncytial cutaneous glands of the leptodactylid tungara frog, Engystomops pustulosus: type Ia, granules with wide halos and variable density cores; type Ib, high density granules without halos; and type II, vesicles containing a finely dispersed product. Ultrastructural evidence revealed that these products were manufactured by different serous gland types and excluded that they represented different steps in the secretory cycle of a single gland type. Indeed, secretory maturation affecting the products released by the Golgi apparatus proceeded through different mechanisms: confluence (vesicles), interactions between syncytium and secretory product (type Ib granules), and a combination of both processes (type Ia granules). In conclusion, this investigation of secretory maturation was shown to be a suitable approach for the identification of serous gland polymorphism and demonstrated that the tungara frog belongs to the minority of anuran species characterized by this peculiar morpho-functional trait. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji Shidong; Murakami, Setsuaki; Kamitakahara, Masanobu
The titania/hydroxyapatite composite granular photo-catalyst with novel microstructure was fabricated by the process based on the liquid immiscibility effect and followed by precalcination and hydrothermal treatment from commercially available powders of {alpha}-Tri-calcium phosphate and TiO{sub 2}. XRD, SEM, BET, optical microscopy and UV-vis spectrophotometer were applied to characterize the prepared photo-catalyst. Microstructure analysis indicated that the granule was weaved by rod-shaped hydroxyapatite crystals whose surface was covered by nano-sized TiO{sub 2}. In the composite granules, the active surface of anatase was retained effectively. With the hybridization of TiO{sub 2} and HAp, a 16-nm blue-shift of absorption edge could be observedmore » and the crystallinity of anatase could be enhanced by precalcination. The granules with the rod-shaped hydroxyapatite crystals performing as scaffold work as three-dimensional high porous, size-controllable small reactor. The phase and microstructure transformation of the granule before and after hydrothermal treatment was investigated and its decomposition ability was evaluated by using Methylene blue as a target pollutant compound.« less
Lean production of taste improved lipidic sodium benzoate formulations.
Eckert, C; Pein, M; Breitkreutz, J
2014-10-01
Sodium benzoate is a highly soluble orphan drug with unpleasant taste and high daily dose. The aim of this study was to develop a child appropriate, individually dosable, and taste masked dosage form utilizing lipids in melt granulation process and tableting. A saliva resistant coated lipid granule produced by extrusion served as reference product. Low melting hard fat was found to be appropriate as lipid binder in high-shear granulation. The resulting granules were compressed to minitablets without addition of other excipients. Compression to 2mm minitablets decreased the dissolved API amount within the first 2 min of dissolution from 33% to 23%. The Euclidean distances, calculated from electronic tongue measurements, were reduced, indicating an improved taste. The reference product showed a lag time in dissolution, which is desirable for taste masking. Although a lag time was not achieved for the lipidic minitablets, drug release in various food materials was reduced to 2%, assuming a suitable taste masking for oral sodium benzoate administration. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Caparanga, Alvin R.; Reyes, Rachael Anne L.; Rivas, Reiner L.; De Vera, Flordeliza C.; Retnasamy, Vithyacharan; Aris, Hasnizah
2017-11-01
This study utilized the 3k factorial design with k as the two varying factors namely, temperature and air velocity. The effects of temperature and air velocity on the drying rate curves and on the average particle diameter of the arrowroot starch were investigated. Extracted arrowroot starch samples were dried based on the designed parameters until constant weight was obtained. The resulting initial moisture content of the arrowroot starch was 49.4%. Higher temperatures correspond to higher drying rates and faster drying time while air velocity effects were approximately negligible or had little effect. Drying rate is a function of temperature and time. The constant rate period was not observed for the drying rate of arrowroot starch. The drying curves were fitted against five mathematical models: Lewis, Page, Henderson and Pabis, Logarithmic and Midili. The Midili Model was the best fit for the experimental data since it yielded the highest R2 and the lowest RSME values for all runs. Scanning electron microscopy (SEM) was used for qualitative analysis and for determination of average particle diameter of the starch granules. The starch granules average particle diameter had a range of 12.06 - 24.60 μm. The use of ANOVA proved that particle diameters for each run varied significantly with each other. And, the Taguchi Design proved that high temperatures yield lower average particle diameter, while high air velocities yield higher average particle diameter.
Utilization of heat from High Temperature Reactors (HTR) for dry reforming of methane
NASA Astrophysics Data System (ADS)
Jastrząb, Krzysztof
2018-01-01
One of the methods for utilization of waste carbon dioxide consists in reaction of methane with carbon dioxide, referred to as dry reforming of methane. It is an intensely endothermic catalytic process that takes place at the temperature above 700°C. Reaction of methane with carbon dioxide leads to formation of synthesis gas (syngas) that is a valuable chemical raw material. The energy that is necessary for the process to take place can be sourced from High Temperature Nuclear Reactors (HTR). The completed studies comprises a series of thermodynamic calculations and made it possible to establish optimum conditions for the process and demand for energy from HTR units. The dry reforming of methane needs also a catalytic agent with appropriate activity, therefore the hydrotalcite catalyser with admixture of cerium and nickel, developed at AGH University of Technology seems to be a promising solution. Thus, the researchers from the Institute for Chemical Processing of Coal (IChPW) in Zabrze have developed a methodology for production of the powdery hydrotalcite catalyser and investigated catalytic properties of the granulate obtained. The completed experiments confirmed that the new catalyser demonstrated high activity and is suitable for the process of methane dry reforming. In addition, optimum parameters of the were process (800°C, CO2:CH4 = 3:1) were established as well. Implementation of the technology in question into industrial practice, combined with utilization of HTR heat can be a promising method for management of waste carbon dioxide and may eventually lead to mitigation of the greenhouse effect.
Abioye, Amos Olusegun; Chi, George Tangyie; Simone, Elena; Nagy, Zoltan
2016-07-25
One step aqueous melt-crystallization and in situ granulation was utilized to produce ibuprofen-cationic dextran [diethylaminoethyl dextran (Ddex)] conjugate crystanules without the use of surfactants or organic solvents. This study investigates the mechanism of in situ granulation-induced crystanule formation using ibuprofen (Ibu) and Ddex. Laboratory scale batch aqueous crystallization system containing in situ monitoring probes for particle vision measurement (PVM), UV-vis measurement and focused beam reflectance measurements (FBRM) was adapted using pre-defined formulation and process parameters. Pure ibuprofen showed nucleation domain between 25 and 64°C, producing minicrystals with onset of melting at 76°C and enthalpy of fusion (ΔH) of 26.22kJ/mol. On the other hand Ibu-Ddex crystanules showed heterogeneous nucleation which produced spherical core-shell structure. PVM images suggest that internalization of ibuprofen in Ddex corona occurred during the melting phase (before nucleation) which inhibited crystal growth inside the Ddex corona. The remarkable decrease in ΔH of the crystanules from 26.22 to 11.96kJ/mol and the presence of broad overlapping DSC thermogram suggests formation of ibuprofen-Ddex complex and crystalline-amorphous transformation. However Raman and FTIR spectra did not show any significant chemical interaction between ibuprofen and Ddex. A significant increase in dissolution efficiency from 45 to 81% within 24h and reduced burst release provide evidence for potential application of crystanules in controlled drug delivery systems. It was evident that in situ granulation of ibuprofen inhibited the aqueous crystallization process. It was concluded that in situ granulation-aqueous crystallization technique is a novel unit operation with potential application in continuous pharmaceutical processing. Copyright © 2016 Elsevier B.V. All rights reserved.
Gu, Xiaotian; Huang, Tianqi; Ding, Mengqiu; Lu, Weiping; Lu, Dalei
2018-02-01
Waxy maize (Zea mays L. sinensis Kulesh) suffers short-term exposure to high temperature during grain filling in southern China. The effects of such exposure are poorly understood. Starch granule size was increased by 5 days' short-term heat stress (35.0 °C) and the increase was higher when the stress was introduced early. Heat stress increased the iodine binding capacity of starches and no difference was observed among the three stages. Starch relative crystallinity was increased and swelling power was decreased only when heat stress was introduced early. Heat stress also increased the pasting viscosity, and this effect became more pronounced with later applications of stress. Heat stress reduced starch gelatinization enthalpy, and the reduction gradually increased with later exposures. Heat stress increased the gelatinization temperature and retrogradation enthalpy and percentage of the samples, with the increases being largest with earlier introduction of high temperature. Heat stress increased the pasting viscosities and retrogradation percentage of starch by causing change in granule size, amylopectin chain length distribution and crystallinity, and the effects observed were more severe with earlier introduction of heat stress after pollination. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Macarie, Hervé; Esquivel, Maricela; Laguna, Acela; Baron, Olivier; El Mamouni, Rachid; Guiot, Serge R; Monroy, Oscar
2017-08-26
Granulation of biomass is at the basis of the operation of the most successful anaerobic systems (UASB, EGSB and IC reactors) applied worldwide for wastewater treatment. Despite of decades of studies of the biomass granulation process, it is still not fully understood and controlled. "Degranulation/lack of granulation" is a problem that occurs sometimes in anaerobic systems resulting often in heavy loss of biomass and poor treatment efficiencies or even complete reactor failure. Such a problem occurred in Mexico in two full-scale UASB reactors treating cheese wastewater. A close follow-up of the plant was performed to try to identify the factors responsible for the phenomenon. Basically, the list of possible causes to a granulation problem that were investigated can be classified amongst nutritional, i.e. related to wastewater composition (e.g. deficiency or excess of macronutrients or micronutrients, too high COD proportion due to proteins or volatile fatty acids, high ammonium, sulphate or fat concentrations), operational (excessive loading rate, sub- or over-optimal water upflow velocity) and structural (poor hydraulic design of the plant). Despite of an intensive search, the causes of the granulation problems could not be identified. The present case remains however an example of the strategy that must be followed to identify these causes and could be used as a guide for plant operators or consultants who are confronted with a similar situation independently of the type of wastewater. According to a large literature based on successful experiments at lab scale, an attempt to artificially granulate the industrial reactor biomass through the dosage of a cationic polymer was also tested but equally failed. Instead of promoting granulation, the dosage caused a heavy sludge flotation. This shows that the scaling of such a procedure from lab to real scale cannot be advised right away unless its operability at such a scale can be demonstrated.
MODster: Namespaces and Redirection for Earth Science Data
NASA Astrophysics Data System (ADS)
Frew, J.; Metzger, D.; Slaughter, P.
2005-12-01
MODster is a distributed, decentralized inventory server for Earth science data granules (standard units of data content and structure.) MODster connects data granule users (people who know which specific granule they want, but who don't know who has it or how to get it) with data granule providers (people or institutions that keep granules accessible online.) * If you're a provider, you can tell MODster which granules you have and where they live (i.e., their URLs.) * If you're a user, you can ask MODster for a granule, and it will transparently redirect your request to whomever has it. The key to making this work is a standard granule namespace. A granule namespace is a naming convention that associates particular names with particular granules, regardless of where those granules live. Different Earth science data products have their own granule namespaces. For example, in the MODIS granule namespace, the granule name "MOD43A2.A1998365.h5.v8.001.1999001090020.hdf" always refers to version 1 of the 5th horizontal and 8th vertical tile of the Level 3 16-day Bi-directional Reflectance Distribution Function product, acquired by the MODIS Terra sensor on 31 December 1998 and generated on 01 January 1999 at 9:00:20 AM. A MODster URL is simply a standard way of referring to a data product namespace and one of its granules. MODster URLs have the general form "http://server/namespace/granule" where "granule" is a granule name that conforms to a granule namespace, "namespace" is a MODster namespace, which is the name of a granule namespace whose conventions are known to MODster, and "server" is a MODster server, which is an HTTP server that can redirect namespace/granule requests to granule providers. A MODster URL with no granule component gets a description of the MODster namespace, its authority (the persons or institutions responsible for documenting and maintaining the naming convention), and also any services for that MODster namespace that the MODster server supports. Our current MODster implementation allows granule providers to explicitly register their granules, and can also crawl provider sites looking for granules whose names match specific rules or regular expressions.
Chromospheric impact of an exploding solar granule
NASA Astrophysics Data System (ADS)
Fischer, C. E.; Bello González, N.; Rezaei, R.
2017-06-01
Context. Observations of multi-wavelength and therefore height-dependent information following events throughout the solar atmosphere and unambiguously assigning a relation between these rapidly evolving layers are rare and difficult to obtain. Yet, they are crucial for our understanding of the physical processes that couple the different regimes in the solar atmosphere. Aims: We characterize the exploding granule event with simultaneous observations of Hinode spectroplarimetric data in the solar photosphere and Hinode broadband Ca II H images combined with Interface Region Imaging Spectrograph (IRIS) slit spectra. We follow the evolution of an exploding granule and its connectivity throughout the atmosphere and analyze the dynamics of a magnetic element that has been affected by the abnormal granule. Methods: In addition to magnetic flux maps we use a local correlation tracking method to infer the horizontal velocity flows in the photosphere and apply a wavelet analysis on several IRIS chromospheric emission features such as Mg II k2v and Mg II k3 to detect oscillatory phenomena indicating wave propagation. Results: During the vigorous expansion of the abnormal granule we detect radially outward horizontal flows, causing, together with the horizontal flows from the surrounding granules, the magnetic elements in the bordering intergranular lanes to be squeezed and elongated. In reaction to the squeezing, we detect a chromospheric intensity and velocity oscillation pulse which we identify as an upward traveling hot shock front propagating clearly through the IRIS spectral line diagnostics of Mg II h&k. Conclusions: Exploding granules can trigger upward-propagating shock fronts that dissipate in the chromosphere. Movies associated to Figs. A.1 and A.2 are available in electronic form at http://www.aanda.org
Liu, Na; He, Shan; Yu, Xiang
2012-01-01
The dentate gyrus is the primary afferent into the hippocampal formation, with important functions in learning and memory. Granule cells, the principle neuronal type in the dentate gyrus, are mostly formed postnatally, in a process that continues into adulthood. External stimuli, including environmental enrichment, voluntary exercise and learning, have been shown to significantly accelerate the generation and maturation of dentate granule cells in adult rodents. Whether, and to what extent, such environmental stimuli regulate the development and maturation of dentate granule cells during early postnatal development is largely unknown. Furthermore, whether natural stimuli affect the synaptic properties of granule cells had been investigated neither in newborn neurons of the adult nor during early development. To examine the effect of natural sensory stimulation on the dentate gyrus, we reared newborn mice in an enriched environment (EE). Using immunohistochemistry, we showed that dentate granule cells from EE-reared mice exhibited earlier morphological maturation, manifested as faster peaking of doublecortin expression and elevated expression of mature neuronal markers (including NeuN, calbindin and MAP2) at the end of the second postnatal week. Also at the end of the second postnatal week, we found increased density of dendritic spines across the entire dentate gyrus, together with elevated levels of postsynaptic scaffold (post-synaptic density 95) and receptor proteins (GluR2 and GABA(A)Rγ2) of excitatory and inhibitory synapses. Furthermore, dentate granule cells of P14 EE-reared mice had lower input resistances and increased glutamatergic and GABAergic synaptic inputs. Together, our results demonstrate that EE-rearing promotes morphological and electrophysiological maturation of dentate granule cells, underscoring the importance of natural environmental stimulation on development of the dentate gyrus.
Crivellato, Enrico; Nico, Beatrice; Travan, Luciana; Isola, Miriam; Ribatti, Domenico
2009-01-01
In the present investigation, we attempted to determine whether ultrastructural features indicative of a vesicle-mediated mode of cell secretion were detectable in chick chromaffin cells during embryo development. The adrenal anlagen of domestic fowls were examined at embryonic days (E) 12, 15, 19 and 21 by electron microscopy quantitative analysis. Morphometric evaluation revealed a series of granule and cytoplasmic changes highly specific for piecemeal degranulation (PMD), a secretory process based on vesicular transport of cargoes from within granules for extracellular release. At E19 and E21 we found a significant peak in the percentage of granules exhibiting changes indicative of progressive release of secretory materials, i.e. granules with lucent areas in their cores, reduced electron density, disassembled matrices, residual cores and membrane empty containers. A dramatic raise in the density of 30–80-nm-diameter, membrane-bound, electron-dense and electron-lucent vesicles – which were located either next to granules or close to the plasma membrane – was recognizable at E19, that is, during the prehatching phase. The cytoplasmic burst of dense and clear vesicles was paralleled by the appearance of chromaffin granules showing outpouches or protrusions of their profiles (‘budding features’). These ultrastructural data are indicative of an augmented vesicle-mediated transport of chromaffin granule products for extracellular release in chick embryo chromaffin cells during the prehatching stage. In conclusion, this study provides new data on the fine structure of chromaffin cell organelles during organ development and suggests that PMD may be part of an adrenomedullary secretory response that occurs towards the end of chicken embryogenesis. From an evolutionary point of view, this study lends support to the concept that PMD is a secretory mechanism highly conserved throughout vertebrate classes. PMID:19245498
Super-resolution microscopy as a potential approach to diagnosis of platelet granule disorders.
Westmoreland, D; Shaw, M; Grimes, W; Metcalf, D J; Burden, J J; Gomez, K; Knight, A E; Cutler, D F
2016-04-01
Many platelet functions are dependent on bioactive molecules released from their granules. Deficiencies of these granules in number, shape or content are associated with bleeding. The small size of these granules is such that imaging them for diagnosis has traditionally required electron microscopy. However, recently developed super-resolution microscopes provide sufficient spatial resolution to effectively image platelet granules. When combined with automated image analysis, these methods provide a quantitative, unbiased, rapidly acquired dataset that can readily and reliably reveal differences in platelet granules between individuals. To demonstrate the ability of structured illumination microscopy (SIM) to efficiently differentiate between healthy volunteers and three patients with Hermansky-Pudlak syndrome. Blood samples were taken from three patients with Hermansky-Pudlak syndrome and seven controls. Patients 1-3 have gene defects in HPS1, HPS6 and HPS5, respectively; all controls were healthy volunteers. Platelet-rich plasma was isolated from blood and the platelets fixed, stained for CD63 and processed for analysis by immunofluorescence microscopy, using a custom-built SIM microscope. SIM can successfully resolve CD63-positive structures in fixed platelets. A determination of the number of CD63-positive structures per platelet allowed us to conclude that each patient was significantly different from all of the controls with 99% confidence. A super-resolution imaging approach is effective and rapid in objectively differentiating between patients with a platelet bleeding disorder and healthy volunteers. CD63 is a useful marker for predicting Hermansky-Pudlak syndrome and could be used in the diagnosis of patients suspected of other platelet granule disorders. © 2016 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.
Barajas, Brook C; Tanaka, Motoko; Robinson, Bridget A; Phuong, Daryl J; Chutiraka, Kasana; Reed, Jonathan C; Lingappa, Jaisri R
2018-04-01
During immature capsid assembly, HIV-1 genome packaging is initiated when Gag first associates with unspliced HIV-1 RNA by a poorly understood process. Previously, we defined a pathway of sequential intracellular HIV-1 capsid assembly intermediates; here we sought to identify the intermediate in which HIV-1 Gag first associates with unspliced HIV-1 RNA. In provirus-expressing cells, unspliced HIV-1 RNA was not found in the soluble fraction of the cytosol, but instead was largely in complexes ≥30S. We did not detect unspliced HIV-1 RNA associated with Gag in the first assembly intermediate, which consists of soluble Gag. Instead, the earliest assembly intermediate in which we detected Gag associated with unspliced HIV-1 RNA was the second assembly intermediate (~80S intermediate), which is derived from a host RNA granule containing two cellular facilitators of assembly, ABCE1 and the RNA granule protein DDX6. At steady-state, this RNA-granule-derived ~80S complex was the smallest assembly intermediate that contained Gag associated with unspliced viral RNA, regardless of whether lysates contained intact or disrupted ribosomes, or expressed WT or assembly-defective Gag. A similar complex was identified in HIV-1-infected T cells. RNA-granule-derived assembly intermediates were detected in situ as sites of Gag colocalization with ABCE1 and DDX6; moreover these granules were far more numerous and smaller than well-studied RNA granules termed P bodies. Finally, we identified two steps that lead to association of assembling Gag with unspliced HIV-1 RNA. Independent of viral-RNA-binding, Gag associates with a broad class of RNA granules that largely lacks unspliced viral RNA (step 1). If a viral-RNA-binding domain is present, Gag further localizes to a subset of these granules that contains unspliced viral RNA (step 2). Thus, our data raise the possibility that HIV-1 packaging is initiated not by soluble Gag, but by Gag targeted to a subset of host RNA granules containing unspliced HIV-1 RNA.
Barajas, Brook C.; Tanaka, Motoko; Robinson, Bridget A.; Phuong, Daryl J.; Reed, Jonathan C.
2018-01-01
During immature capsid assembly, HIV-1 genome packaging is initiated when Gag first associates with unspliced HIV-1 RNA by a poorly understood process. Previously, we defined a pathway of sequential intracellular HIV-1 capsid assembly intermediates; here we sought to identify the intermediate in which HIV-1 Gag first associates with unspliced HIV-1 RNA. In provirus-expressing cells, unspliced HIV-1 RNA was not found in the soluble fraction of the cytosol, but instead was largely in complexes ≥30S. We did not detect unspliced HIV-1 RNA associated with Gag in the first assembly intermediate, which consists of soluble Gag. Instead, the earliest assembly intermediate in which we detected Gag associated with unspliced HIV-1 RNA was the second assembly intermediate (~80S intermediate), which is derived from a host RNA granule containing two cellular facilitators of assembly, ABCE1 and the RNA granule protein DDX6. At steady-state, this RNA-granule-derived ~80S complex was the smallest assembly intermediate that contained Gag associated with unspliced viral RNA, regardless of whether lysates contained intact or disrupted ribosomes, or expressed WT or assembly-defective Gag. A similar complex was identified in HIV-1-infected T cells. RNA-granule-derived assembly intermediates were detected in situ as sites of Gag colocalization with ABCE1 and DDX6; moreover these granules were far more numerous and smaller than well-studied RNA granules termed P bodies. Finally, we identified two steps that lead to association of assembling Gag with unspliced HIV-1 RNA. Independent of viral-RNA-binding, Gag associates with a broad class of RNA granules that largely lacks unspliced viral RNA (step 1). If a viral-RNA-binding domain is present, Gag further localizes to a subset of these granules that contains unspliced viral RNA (step 2). Thus, our data raise the possibility that HIV-1 packaging is initiated not by soluble Gag, but by Gag targeted to a subset of host RNA granules containing unspliced HIV-1 RNA. PMID:29664940
Improving Powder Tableting Performance through Materials Engineering
NASA Astrophysics Data System (ADS)
Osei-Yeboah, Frederick
Adequate mechanical strength is a critical requirement to the successful development of a tablet product. Before tablet compression, powders are often engineered by various processes including wet granulation and surface coating, which may improve or adversely affect the powder tableting performance. Such effects, commonly, result from a change in either particle mechanical properties or particulate (size, shape) properties. In this work, tableting performance is interpreted based on the qualitative bonding-area and bonding-strength (BABS) model. The tabletability of the microcrystalline cellulose (MCC) granules deteriorates rapidly with increasing amount of granulating water and eventually leads to over-granulation at high water level. Granule surface smoothing, size enlargement, granule densification and shape rounding are the dominant factors leading to the tabletability reduction of plastic MCC. Incorporation of increasing amounts of brittle excipients, such as lactose or dibasic calcium phosphate reduces the rate of tabletability reduction by promoting more granule fragmentation, introducing more surface area available for bonding. When a sufficient amount of brittle excipients is used, the over-granulation phenomenon can be eliminated. Surface coating of incompressible MCC pellets with highly bonding polymer leads to sufficient surface deformation and adhesion to enable direct compression of the pellets into tablets of adequate mechanical strength. This improvement is enhanced by the presence of moisture, which plasticizes the polymer to allow the development of a larger bonding area between coated pellets. The relationship between mechanical properties and tableting behavior is systematically investigated in polymeric composites using celecoxib-polyvinylpyrrolidone vinyl acetate solid dispersions. Mechanical properties such as indentation hardness of the solid dispersions were measured using nanoindentation. Incorporation of celecoxib up to 60% by weight hardens the polymers, which reduces bonding area but increases bonding strength. On the other hand, moisture softens the solid dispersions and facilitates deformation under pressure to improve tablet mechanical strength. In summary, insights into the deteriorated tabletability of wet granulated powders have been developed and strategies for improving tabletability have been demonstrated. Also, the relationship between particle mechanical properties and tableting performance has been examined using solid dispersions. The BABS model has been further developed to enable its widespread application in interpreting complex tableting behavior.
USDA-ARS?s Scientific Manuscript database
Corn starch was modified with cyclodextrin glycosyltransferase (CGTase) below the gelatinization temperature. The porous, partially hydrolyzed, granules with or without CGTase hydrolysis products, cyclodextrins (CDs) and short chain maltodextrins, may be used as an alternative to modified corn starc...
Li, Jingsong; Luo, Ruihua; Hooi, Shing Chuan; Ruga, Pilar; Zhang, Jiping; Meda, Paolo; Li, GuoDong
2005-03-22
Syncollin was first demonstrated to be a protein capable of affecting granule fusion in a cell-free system, but later studies revealed its luminal localization in zymogen granules. To determine its possible role in exocytosis in the intact cell, syncollin and a truncated form of the protein (lacking the N-terminal hydrophobic domain) were stably transfected in insulin-secreting INS-1 cells since these well-studied exocytotic cells appear not to express the protein per se. Studies by subcellular fractionation analysis, double immunofluorescence staining, and electron microscopy examination revealed that transfection of syncollin produced strong signals in the insulin secretory granules, whereas the product from transfecting the truncated syncollin was predominantly associated with the Golgi apparatus and to a lesser degree with the endoplasmic reticulum. The expressed products were associated with membranes and not the soluble fractions in either cytoplasm or the lumens of organelles. Importantly, insulin release stimulated by various secretagogues was severely impaired in cells expressing syncollin, but not affected by expressing truncated syncollin. Transfection of syncollin appeared not to impede insulin biosynthesis and processing, since cellular contents of proinsulin and insulin and the number of secretory granules were not altered. In addition, the early signals (membrane depolarization and Ca(2+) responses) for regulated insulin secretion were unaffected. These findings indicate that syncollin may be targeted to insulin secretory granules specifically and impair regulated secretion at a distal stage.
Small-scale Magnetic Flux Emergence in the Quiet Sun
NASA Astrophysics Data System (ADS)
Moreno-Insertis, F.; Martinez-Sykora, J.; Hansteen, V. H.; Muñoz, D.
2018-06-01
Small bipolar magnetic features are observed to appear in the interior of individual granules in the quiet Sun, signaling the emergence of tiny magnetic loops from the solar interior. We study the origin of those features as part of the magnetoconvection process in the top layers of the convection zone. Two quiet-Sun magnetoconvection models, calculated with the radiation-magnetohydrodynamic (MHD) Bifrost code and with domain stretching from the top layers of the convection zone to the corona, are analyzed. Using 3D visualization as well as a posteriori spectral synthesis of Stokes parameters, we detect the repeated emergence of small magnetic elements in the interior of granules, as in the observations. Additionally, we identify the formation of organized horizontal magnetic sheets covering whole granules. Our approach is twofold, calculating statistical properties of the system, like joint probability density functions (JPDFs), and pursuing individual events via visualization tools. We conclude that the small magnetic loops surfacing within individual granules in the observations may originate from sites at or near the downflows in the granular and mesogranular levels, probably in the first 1 or 1.5 Mm below the surface. We also document the creation of granule-covering magnetic sheet-like structures through the sideways expansion of a small subphotospheric magnetic concentration picked up and pulled out of the interior by a nascent granule. The sheet-like structures that we found in the models may match the recent observations of Centeno et al.
Distillation of granulated scrap tires in a pilot plant.
López, Félix A; Centeno, Teresa A; Alguacil, Francisco José; Lobato, Belén
2011-06-15
This paper reports the pyrolytic treatment of granulated scrap tires (GST) in a pilot distillation unit at moderate temperature (550°C) and atmospheric pressure, to produce oil, char and gas products. Tire-derived oil is a complex mixture of organic C(5)-C(24) compounds, including a very large proportion of aromatic compounds. This oil has a high gross calorific value (∼ 43 MJ kg(-1)) and N and S contents of 0.4% and 0.6%, respectively, falling within the specifications of certain heating fuels. The distillation gas is composed of hydrocarbons; methane and n-butane are the most abundant, investing the distillation gas with a very high gross calorific value (∼ 68 MJ Nm(-3)). This gas is transformed into electric power by a co-generation turbine. The distillation char is mostly made of carbon but with significant inorganic impurities (∼ 12 wt%). The quality of the solid residue of the process is comparable to that of some commercial chars. The quantity of residual solids, and the qualities of the gas, liquid and solid fractions, are similar to those obtained by conventional pyrolytic treatments of waste tires. However, the simplicity of the proposed technology and its low investment costs make it a very attractive alternative. Copyright © 2011 Elsevier B.V. All rights reserved.
Study of sintering temperature on the structure of silicon carbide membrane
NASA Astrophysics Data System (ADS)
Sadighzadeh, A.; Mashayekhan, Sh.; Nedaie, B.; Ghorashi, A. H.
2014-09-01
Study of the microstructure of silicon carbide (SiC) membrane as a function of sintering temperature and the percentage amount of additive kaolin is the outcome of the experimental fabrications presented in this paper. The SEM micrographs are used to investigate the impact of above parameters on the porosity of membrane. The experimental results show that the rise in the temperature causes more sintering of powder particles, growing granules, augmentation of the number of pores and consequently increasing the total porosity of membrane. Using XRD analyses, it is found that SiC amorphous phase is highly sensitive to the temperature and its crystallization physically grows with temperature increase.
PHYSICAL PROPERTIES OF LARGE AND SMALL GRANULES IN SOLAR QUIET REGIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu Daren; Xie Zongxia; Hu Qinghua
The normal mode observations of seven quiet regions obtained by the Hinode spacecraft are analyzed to study the physical properties of granules. An artificial intelligence technique is introduced to automatically find the spatial distribution of granules in feature spaces. In this work, we investigate the dependence of granular continuum intensity, mean Doppler velocity, and magnetic fields on granular diameter. We recognized 71,538 granules by an automatic segmentation technique and then extracted five properties: diameter, continuum intensity, Doppler velocity, and longitudinal and transverse magnetic flux density to describe the granules. To automatically explore the intrinsic structures of the granules in themore » five-dimensional parameter space, the X-means clustering algorithm and one-rule classifier are introduced to define the rules for classifying the granules. It is found that diameter is a dominating parameter in classifying the granules and two families of granules are derived: small granules with diameters smaller than 1.''44, and large granules with diameters larger than 1.''44. Based on statistical analysis of the detected granules, the following results are derived: (1) the averages of diameter, continuum intensity, and Doppler velocity in the upward direction of large granules are larger than those of small granules; (2) the averages of absolute longitudinal, transverse, and unsigned flux density of large granules are smaller than those of small granules; (3) for small granules, the average of continuum intensity increases with their diameters, while the averages of Doppler velocity, transverse, absolute longitudinal, and unsigned magnetic flux density decrease with their diameters. However, the mean properties of large granules are stable; (4) the intensity distributions of all granules and small granules do not satisfy Gaussian distribution, while that of large granules almost agrees with normal distribution with a peak at 1.04 I{sub 0}.« less
On the origins of the universal dynamics of endogenous granules in mammalian cells.
Vanapalli, Siva A; Li, Yixuan; Mugele, Frieder; Duits, Michel H G
2009-12-01
Endogenous granules (EGs) that consist of lipid droplets and mitochondria have been commonly used to assess intracellular mechanical properties via multiple particle tracking microrheology (MPTM). Despite their widespread use, the nature of interaction of EGs with the cytoskeletal network and the type of forces driving their dynamics--both of which are crucial for the interpretation of the results from MPTM technique--are yet to be resolved. In this report, we study the dynamics of endogenous granules in mammalian cells using particle tracking methods. We find that the ensemble dynamics of EGs is diffusive in three types of mammalian cells (endothelial cells, smooth muscle cells and fibroblasts), thereby suggesting an apparent universality in their dynamical behavior. Moreover, in a given cell, the amplitude of the mean-squared displacement for EGs is an order of magnitude larger than that of injected particles. This observation along with results from ATP depletion and temperature intervention studies suggests that cytoskeletal active forces drive the dynamics of EGs. To elucidate the dynamical origin of the diffusive-like nonthermal motion, we consider three active force generation mechanisms--molecular motor transport, actomyosin contractility and microtubule polymerization forces. We test these mechanisms using pharmacological interventions. Experimental evidence and model calculations suggest that EGs are intimately linked to microtubules and that microtubule polymerization forces drive their dynamics. Thus, endogenous granules could serve as non-invasive probes for microtubule network dynamics in mammalian cells.
THE TWO REGIMES OF PHOTOSPHERIC MOTIONS IN {alpha} HYDRA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, David F., E-mail: dfgray@uwo.ca
2013-02-10
High-resolution spectroscopic observations of {alpha} Hya were acquired between 2003 and 2010. Analysis of line shifts, differential shifts, line widths, and line bisectors points to two regimes of velocity fields in the photosphere of {alpha} Hya: (1) normal granulation embedded in (2) large convection cells. Variations occur on a wide range of timescales, from several years on down. Radial velocity variations, which are irregular and span 786 m s{sup -1}, have a distribution consistent with a true mean rise velocity of the large cells of {approx}725 m s{sup -1} and a dispersion of {approx}220 m s{sup -1}. The distribution ofmore » granulation velocities, as measured from the widths of spectral lines, shows only small variations, consistent with the two regime concepts. On the multi-year timescale, radial velocity changes, small temperature variations ({approx}10 K), and small line-width variations ({approx}<0.8%) track each other, possibly with phase shifts. The granulation velocity gradient for {alpha} Hya is about half as large as the Sun's and no variation with time was seen, implying that any variation in velocity gradient from one large cell to the next must be less than a few percent. The asymmetry in the granulation velocity distribution, as specified in the flux deficit, is smaller than expected for {alpha} Hya's position in the HR diagram and appears to be variable.« less
Khan, A R; Al-Awadi, L; Al-Rashidi, M S
2016-06-01
Petrochemical Industries Company (PIC) in Kuwait has mitigated the pollution problem of ammonia and urea dust by replacing the melting and prilling units of finished-product urea prills with an environmentally friendly granulation process. PIC has financed a research project conducted by the Coastal and Air Pollution Program's research staff at the Kuwait Institute for Scientific Research to assess the impact of pollution control strategies implemented to maintain a healthy productive environment in and around the manufacturing premises. The project was completed in three phases: the first phase included the pollution monitoring of the melting and prilling units in full operation, the second phase covered the complete shutdown period where production was halted completely and granulation units were installed, and the last phase encompassed the current modified status with granulation units in full operation. There was substantial decrease in ammonia emissions, about 72%, and a 52.7% decrease in urea emissions with the present upgrading of old melting and prilling units to a state-of-the-art technology "granulation process" for a final finished product. The other pollutants, sulfur dioxide (SO2), nitrogen oxides (NOx), and volatile organic compounds (VOCs), have not shown any significant change, as the present modification has not affected the sources of these pollutants. Petrochemical Industries Company (PIC) in Kuwait has ammonia urea industries, and there were complaints about ammonia and urea dust pollution. PIC has resolved this problem by replacing "melting and prilling unit" of final product urea prills by more environmentally friendly "granulation unit." Environmental Pollution and Climate Program has been assigned the duty of assessing the outcome of this change and how that influenced ammonia and urea dust emissions from the urea manufacturing plant.
Mechanisms of Drying of Skin Forming Materials
NASA Astrophysics Data System (ADS)
Hassan, Haydar Mahmood
Available from UMI in association with The British Library. The literature relating to evaporation from single droplets of pure liquids, and to the drying of droplets containing solids and of droplet sprays has been reviewed. The heat and mass transfer rates for a single droplet suspended from a nozzle were studied within a 42mm I.D. horizontal wind tunnel designed to supply hot dry air, to simulate conditions encountered in practical spray dryer. A novel rotating glass nozzle was developed to facilitate direct measurements of droplet weight and core temperature. This design minimised heat conduction through the nozzle. Revised correlations were obtained for heat and mass transfer coefficients, for evaporation from pure water droplets suspended from a rotating nozzle. (UNFORMATTED TABLE OR EQUATION FOLLOWS)eqalign {rm Nu&= rm 2.0 + 0.27 ({1over B})^{0.18}Re^{0.5}Pr ^{0.33}crrm Sh&= rm 2.0 + 0.575({Ta-Ts over Tamb})^{ -0.04}Re^{0.5}Sc^{0.33 }cr}(TABLE/EQUATION ENDS)Experimental drying studies were carried out on single droplets of different types of skin-forming materials, namely, custard, starch, gelatin, skim milk and fructose at air temperatures ranging from 19^circC to 198 ^circC. Dried crusts were recovered and examined by Scanning Electron Microscopy. Skin-forming materials were classified into three types according to the mechanisms of skin formation. In the first type (typified by droplets of custard and starch) skin formed due to gelatinisation at high temperatures. Increasing the drying temperature resulted in increased crust resistance to mass transfer due to increased granule swelling and the crust resistance was completely transferred to a skin resistance at drying temperatures >150 ^circC. In the second type e.g. gelatin droplets the skin formed immediately drying had taken place at any drying temperature. At drying temperature >60^circC a more resistant skin was formed. In the third type (typified by droplets of skim milk and fructose) the skin appeared on the droplet at a certain stage of the drying process under any drying conditions. As the drying temperature was increased the resistance of the skin to mass transfer increased. The drying rate history of any material depended upon the nature of the skin formed which, in turn, depended upon the drying conditions. A mathematical model was proposed for the drying of the first type of skin-forming material. This was based on the assumption that, once all the granules gelatinised at the gelatinisation temperature, a skin appeared instantaneously on the droplet surface. The experimentally-observed times at which the skin appeared on the droplets surfaces were in excellent agreement with those predicted from the model. The work should assist in understanding the fundamentals of particulate drying processes, particularly when skin -formation occurs and may be a crucial factor in volatiles retention.
Removal of PPCPs from the sludge supernatant in a one stage nitritation/anammox process.
Alvarino, T; Suarez, S; Katsou, E; Vazquez-Padin, J; Lema, J M; Omil, F
2015-01-01
Pharmaceutical and personal care products (PPCPs) are extensively used and can therefore find their way into surface, groundwater and municipal and industrial effluents. In this work, the occurrence, fate and removal mechanisms of 19 selected PPCPs was investigated in an 'ELiminación Autótrofa de Nitrógeno' (ELAN) reactor of 200 L. In this configuration, ammonium oxidation to nitrite and the anoxic ammonium oxidation (anammox)processes occur simultaneously in a single-stage reactor under oxygen limited conditions. The ELAN process achieved high removal (>80%) of the studied hormones, naproxen, ibuprofen, bisphenol A and celestolide, while it was not effective in the removal of carbamazepine (<7%), diazepam (<7%) and fluoxetine (<30%). Biodegradation was the dominant removal mechanism, while sorption was only observed for musk fragrances, fluoxetine and triclosan. The sorption was strongly dependent on the granule size, with smaller granules facilitating the sorption of the target compounds. Increased hydraulic retention time enhanced the intramolecular diffusion of the PPCPs into the granules, and thus increased the solid phase concentration. The increase of nitritation rate favored the removal of ibuprofen, bisphenol A and triclosan, while the removal of erythromycin was strongly correlated to the anammox reaction rate.
Kim, Yohan; Bae, Jiyeol; Park, Hosik; Suh, Jeong-Kwon; You, Young-Woo; Choi, Heechul
2016-09-15
A new and facile one-step synthesis method for preparing granulated mesoporous carbon (GMC) with three-dimensional spherical mesoporous symmetry is prepared to remove large molecular weight organic compounds in aqueous phase. GMC is synthesized in a single step using as-synthesized mesoporous carbon particles and organic binders through a simple and economical synthesis approach involving a simultaneous calcination and carbonization process. Characterization results obtained from SEM, XRD, as well as surface and porosity analysis indicate that the synthesized GMC has similar physical properties to those of the powdered mesoporous carbon and maintains the Brunauer-Emmett-Teller (BET) surface area and pore volume because the new synthesis method prevents the collapse of the pores during the granulation process. Batch adsorption experiments revealed GMC showed a substantial adsorption capacity (202.8 mg/g) for the removal of methyl violet as a target large molecular contaminant in aqueous phase. The mechanisms and dynamics modeling of GMC adsorption were also fully examined, which revealed that surface diffusion was rate limiting step on adsorption process of GMC. Adsorption kinetics of GMC enables 3 times faster than that of granular activated carbon in terms of surface diffusion coefficient. This is the first study, to the best of our knowledge, to synthesize GMC as an adsorbent for water purification by using facile granulation method and to investigate the adsorption kinetics and characteristics of GMC. This study introduces a new and simple method for the synthesis of GMC and reveals its adsorption characteristics for large molecular compounds in a water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lim, Young-Il; Han, Janghee; Woo, Young-Ah; Kim, Jaejin; Kang, Myung Joo
2018-07-05
The purpose of this study was to determine the atorvastatin (ATV) content in process pharmaceutical powder sample using Raman spectroscopy. To establish the analysis method, the influence of the type of Raman measurements (back-scattering or transmission mode), preparation of calibration sample (simple admixing or granulation), sample pre-treatment (pelletization), and spectral pretreatment on the Raman spectra was investigated. The characteristic peak of the active compound was more distinctively detected in transmission Raman mode with a laser spot size of 4mm than in the back-scattering method. Preparation of calibration samples by wet granulation, identical to the actual manufacturing process, provided unchanged spectral patterns for the in process sample, with no changes and/or shifts in the spectrum. Pelletization before Raman analysis remarkably improved spectral reproducibility by decreasing the difference in density between the samples. Probabilistic quotient normalization led to accurate and consistent quantification of the ATV content in the calibration samples (standard error of cross validation: 1.21%). Moreover, the drug content in the granules obtained from five commercial batches were reliably quantified, with no statistical difference (p=0.09) with that obtained by HPLC assay. From these findings, we suggest that transmission Raman analysis may be a fast and non-invasive method for the quantification of ATV in actual manufacturing processes. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lim, Young-Il; Han, Janghee; Woo, Young-Ah; Kim, Jaejin; Kang, Myung Joo
2018-07-01
The purpose of this study was to determine the atorvastatin (ATV) content in process pharmaceutical powder sample using Raman spectroscopy. To establish the analysis method, the influence of the type of Raman measurements (back-scattering or transmission mode), preparation of calibration sample (simple admixing or granulation), sample pre-treatment (pelletization), and spectral pretreatment on the Raman spectra was investigated. The characteristic peak of the active compound was more distinctively detected in transmission Raman mode with a laser spot size of 4 mm than in the back-scattering method. Preparation of calibration samples by wet granulation, identical to the actual manufacturing process, provided unchanged spectral patterns for the in process sample, with no changes and/or shifts in the spectrum. Pelletization before Raman analysis remarkably improved spectral reproducibility by decreasing the difference in density between the samples. Probabilistic quotient normalization led to accurate and consistent quantification of the ATV content in the calibration samples (standard error of cross validation: 1.21%). Moreover, the drug content in the granules obtained from five commercial batches were reliably quantified, with no statistical difference (p = 0.09) with that obtained by HPLC assay. From these findings, we suggest that transmission Raman analysis may be a fast and non-invasive method for the quantification of ATV in actual manufacturing processes.
Kulinowski, Piotr; Woyna-Orlewicz, Krzysztof; Obrał, Jadwiga; Rappen, Gerd-Martin; Haznar-Garbacz, Dorota; Węglarz, Władysław P; Jachowicz, Renata; Wyszogrodzka, Gabriela; Klaja, Jolanta; Dorożyński, Przemysław P
2016-02-29
The purpose of the research was to investigate the effect of the manufacturing process of the controlled release hydrophilic matrix tablets on their hydration behavior, internal structure and drug release. Direct compression (DC) quetiapine hemifumarate matrices and matrices made of powders obtained by dry granulation (DG) and high shear wet granulation (HS) were prepared. They had the same quantitative composition and they were evaluated using X-ray microtomography, magnetic resonance imaging and biorelevant stress test dissolution. Principal results concerned matrices after 2 h of hydration: (i) layered structure of the DC and DG hydrated tablets with magnetic resonance image intensity decreasing towards the center of the matrix was observed, while in HS matrices layer of lower intensity appeared in the middle of hydrated part; (ii) the DC and DG tablets retained their core and consequently exhibited higher resistance to the physiological stresses during simulation of small intestinal passage than HS formulation. Comparing to DC, HS granulation changed properties of the matrix in terms of hydration pattern and resistance to stress in biorelevant dissolution apparatus. Dry granulation did not change these properties-similar hydration pattern and dissolution in biorelevant conditions were observed for DC and DG matrices. Copyright © 2015 Elsevier B.V. All rights reserved.
Toxicosis associated with ingestion of quick-dissolve granulated chlorine in a dog.
Hofmeister, Aaron S; Heseltine, Johanna C; Sharp, Claire R
2006-10-15
A dog was referred for treatment after ingestion of quick-dissolve chlorine granules intended for use in a swimming pool. At evaluation 18 hours after ingestion of the granules, the dog had tachypnea, signs of depression, approximately 5% dehydration, oral mucositis, and a productive cough. Increased respiratory tract sounds and wheezes were ausculted in all lung fields. Complete blood count revealed erythrocytosis and lymphopenia. Serum biochemical analyses revealed mildly high activities of hepatic enzymes and creatine kinase. Arterial blood gas concentrations were consistent with hypoxemia and hyperventilation. Thoracic radiography revealed widespread pulmonary alveolar infiltrates predominantly affecting the ventral portions of both lungs, consistent with noncardiogenic pulmonary edema secondary to aspiration of the granulated chlorine. Initial treatment included IV administration of an electrolyte solution with supplemental KCl, ranitidine, furosemide, cefotaxime, buprenorphine, and supplemental oxygen. Subsequent treatment included administration of meloxicam and an endoscopically placed percutaneous gastrostomy tube. Endoscopic examination revealed esophagitis and mild gastritis; therefore, metoclopramide and sucralfate were also administered. Fifteen days later, the gastrostomy tube was removed prior to discharge; endoscopic examination revealed grossly normal esophageal and gastric mucosa, and thoracic radiography revealed complete resolution of the lung lesions. Although ingestion of granulated chlorine is rare in veterinary patients, the resulting disease processes are common and can be treated successfully.
Staufen recruitment into stress granules does not affect early mRNA transport in oligodendrocytes.
Thomas, María G; Martinez Tosar, Leandro J; Loschi, Mariela; Pasquini, Juana M; Correale, Jorge; Kindler, Stefan; Boccaccio, Graciela L
2005-01-01
Staufen is a conserved double-stranded RNA-binding protein required for mRNA localization in Drosophila oocytes and embryos. The mammalian homologues Staufen 1 and Staufen 2 have been implicated in dendritic RNA targeting in neurons. Here we show that in rodent oligodendrocytes, these two proteins are present in two independent sets of RNA granules located at the distal myelinating processes. A third kind of RNA granules lacks Staufen and contains major myelin mRNAs. Myelin Staufen granules associate with microfilaments and microtubules, and their subcellular distribution is affected by polysome-disrupting drugs. Under oxidative stress, both Staufen 1 and Staufen 2 are recruited into stress granules (SGs), which are stress-induced organelles containing transiently silenced messengers. Staufen SGs contain the poly(A)-binding protein (PABP), the RNA-binding proteins HuR and TIAR, and small but not large ribosomal subunits. Staufen recruitment into perinuclear SGs is paralleled by a similar change in the overall localization of polyadenylated RNA. Under the same conditions, the distribution of recently transcribed and exported mRNAs is not affected. Our results indicate that Staufen 1 and Staufen 2 are novel and ubiquitous SG components and suggest that Staufen RNPs are involved in repositioning of most polysomal mRNAs, but not of recently synthesized transcripts, during the stress response.
Weerawatanakorn, Monthana; Asikin, Yonathan; Takahashi, Makoto; Tamaki, Hajime; Wada, Koji; Ho, Chi-Tang; Chuekittisak, Raweewan
2016-11-01
Non-centrifugal cane sugar (NCS) is globally consumed and has various health benefits. It is mostly produced in hardened block form, which is less convenient than in granulated form for food applications. In terms of the traditional processing of NCS, preparation of granulated products is difficult due to the impurities found in the cane juice extracted from the whole stalk. Therefore, the aim of this study was to characterize and determine the physico-chemical properties, wax composition (policosanols and long-chain aldehydes), volatile aroma profiles, and antioxidant activity of traditional NCS in granular form made from four different cane cultivars of Thailand. The total soluble solid, pH, color, and mineral content varied among the sugarcane cultivars, whereas there was no significant difference in the total sugar, phenolic and flavonoid content. The total policosanol, a cholesterol-lowering nutraceutical wax component, and long-chain aldehyde contents were similar in the NCS products amongst three cultivars, and ranged from 2.63 to 3.69 mg/100 g. The granulated NCS products, in which acetaldehyde and dimethyl sulfide were the main volatile compounds, gave less aroma components than traditional NCS. The use of different sugarcane cultivars thus influenced the quality attributes of granulated non-centrifugal sugar products.
RhoG protein regulates platelet granule secretion and thrombus formation in mice.
Goggs, Robert; Harper, Matthew T; Pope, Robert J; Savage, Joshua S; Williams, Christopher M; Mundell, Stuart J; Heesom, Kate J; Bass, Mark; Mellor, Harry; Poole, Alastair W
2013-11-22
Rho GTPases such as Rac, RhoA, and Cdc42 are vital for normal platelet function, but the role of RhoG in platelets has not been studied. In other cells, RhoG orchestrates processes integral to platelet function, including actin cytoskeletal rearrangement and membrane trafficking. We therefore hypothesized that RhoG would play a critical role in platelets. Here, we show that RhoG is expressed in human and mouse platelets and is activated by both collagen-related peptide (CRP) and thrombin stimulation. We used RhoG(-/-) mice to study the function of RhoG in platelets. Integrin activation and aggregation were reduced in RhoG(-/-) platelets stimulated by CRP, but responses to thrombin were normal. The central defect in RhoG(-/-) platelets was reduced secretion from α-granules, dense granules, and lysosomes following CRP stimulation. The integrin activation and aggregation defects could be rescued by ADP co-stimulation, indicating that they are a consequence of diminished dense granule secretion. Defective dense granule secretion in RhoG(-/-) platelets limited recruitment of additional platelets to growing thrombi in flowing blood in vitro and translated into reduced thrombus formation in vivo. Interestingly, tail bleeding times were normal in RhoG(-/-) mice, suggesting that the functions of RhoG in platelets are particularly relevant to thrombotic disorders.
NASA Astrophysics Data System (ADS)
Huang, De-Yin; Zhou, Shun-Gui; Hong, Wei; Feng, Wei-Feng; Tao, Liang
2013-06-01
With the aim to investigate the main pollution characteristics of exhaust gases emitted from plastic waste recycling granulation plants, mainly volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and phthalate esters (PAEs) were analyzed in Xingtan Town, the largest distribution center of plastic waste recycling in China. Both inside and outside the plants, the total concentrations of volatile monocyclic aromatic hydrocarbons (MAHs), PAHs and PAEs ranged from 2000 to 3000 μg m-3, 450 to 1200 ng m-3, and 200 to 1200 ng m-3, respectively. Their concentration levels inside the plants were higher than those outside the plants, and PAHs and PAEs were mainly distributed in the gas-phase. Notably, highly toxic benzo[a]pyrene (BaP) could be detected inside the plants, and harmful PAEs could be detected not only inside but also outside the plants, although PAEs are non-volatile. The exhaust gas composition and concentration were related to the plastic feedstock and granulation temperature.
Yang, De-Bin; Tong, Yan; Ma, Zhen-Shan; Wang, Lin; Dong, Mei-Hong; Li, Yan-Ling; Wang, Jin-Yu
2013-03-01
To establish an HPLC method for the determination of ephedrine hydrochloride, D-pseudo-ephedrine and amygdalin in Xiao'er Pingchuan Qutan granule. Pheny ether chromatographic column (4.6 mm x 250 mm, 5 microm) was adopted, with acetonitrile-0.1% phosphoric acid (containing 0.1% three ethylamine) (3:97) as the mobile phase. The UV detection wavelength was at 210 nm, with the flow rate of 1 mL x min(-1), and column temperature was at 35 degrees C. The linearity of ephedrine hydrochloride, D-pseudo-ephedrine and amygdalin ranged between 0.078 60-3.144 microg (r = 1.000 0), 0.103 4-2.068 microg (r = 0.999 7) and 0.430 5-3.157 microg (r = 0.999 8), respectively. Their average recoveries were 98.46% (RSD 1.1%), 103.0% (RSD 1.5%) and 97.15% (RSD 2.1%), respectively. The method is simple, stable and reliable that it can be used to determine the content of ephedrine hydrochloride, D-pseudo-ephedrine and amygdalin in Xiao'er Pingchuan Qutan granule.
NASA Astrophysics Data System (ADS)
Khoirun Nisaa', Aldila; Wardhani, Sri; Purwonugroho, Danar; Darjito
2018-01-01
Tempe waste water stew has high ammonia concentration which causes odor due to polluting by anaerobic decay. Free ammonia in the waste has exceeded the limit, thus endangering the aquatic environment. This research aims to determine the activity of photocatalyst granule TiO2-N/bentonite-alginate as decomposers of compounds in the photodegradation process. Photodegradation is the decomposition process of compounds by semiconductors with light. Results expected includes the photocatalyst activity of TiO2-N/bentonite-alginate granule produced by ultraviolet rays is known based on the effect of dopant N concentration on the catalyst and the effect of photocatalytic ratio toward tempe waste water. Methods proposed in this research are activation of bentonite using H2SO4 0.8 M, TiO2-N synthesize by sonication method with urea as the source of N, then TiO2-N impregnation into bentonite. Photocatalyst in granule form synthesized with alginate was then dripped with syringe pump into 3% (w/v) CaCl2. The photocatalyst characterization will be performed using XRD. The optimum tempe waste water degradation at the concentration of TiO2-N 0.4 (g/g) bentonite is 53.66%. The ratio of photocatalyst and tempe waste water, optimum at 150 mg of photocatalyst with 25 mL of waste equal to 53.66%.
NASA Astrophysics Data System (ADS)
Othman, M. H.; Rosli, M. S.; Hasan, S.; Amin, A. M.; Hashim, M. Y.; Marwah, O. M. F.; Amin, S. Y. M.
2018-03-01
The fundamental knowledge of flow behaviour is essential in producing various plastic parts injection moulding process. Moreover, the adaptation of advanced polymer-nanocomposites such as polypropylene-nanoclay with natural fibres, for instance Gigantochloa Scortechinii may boost up the mechanical properties of the parts. Therefore, this project was proposed with the objective to optimise the processing condition of injected mould polypropylene-nanoclay-Gigantochloa Scortechini fibres based on the flow behaviour, which was melt flow index. At first, Gigantochloa Scortechinii fibres have to be preheated at temperature 120°C and then mixed with polypropylene, maleic anhydride modified polypropylene oligomers (PPgMA) and nanoclay by using Brabender Plastograph machine. Next, forms of pellets were produced from the samples by using Granulator machine for use in the injection moulding process. The design of experiments that was used in the injection moulding process was Taguchi Method Orthogonal Array -L934. Melt Flow Index (MF) was selected as the response. Based on the results, the value of MFI increased when the fiber content increase from 0% to 3%, which was 17.78 g/10min to 22.07 g/10min and decreased from 3% to 6%, which was 22.07 g/10min to 20.05 g/10min and 3%, which gives the highest value of MFI. Based on the signal to ratio analysis, the most influential parameter that affects the value of MFI was the melt temperature. The optimum parameter for 3% were 170°C melt temperature, 35% packing pressure, 30% screw speed and 3 second filling time.
The life cycle of platelet granules.
Sharda, Anish; Flaumenhaft, Robert
2018-01-01
Platelet granules are unique among secretory vesicles in both their content and their life cycle. Platelets contain three major granule types-dense granules, α-granules, and lysosomes-although other granule types have been reported. Dense granules and α-granules are the most well-studied and the most physiologically important. Platelet granules are formed in large, multilobulated cells, termed megakaryocytes, prior to transport into platelets. The biogenesis of dense granules and α-granules involves common but also distinct pathways. Both are formed from the trans -Golgi network and early endosomes and mature in multivesicular bodies, but the formation of dense granules requires trafficking machinery different from that of α-granules. Following formation in the megakaryocyte body, both granule types are transported through and mature in long proplatelet extensions prior to the release of nascent platelets into the bloodstream. Granules remain stored in circulating platelets until platelet activation triggers the exocytosis of their contents. Soluble N -ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, located on both the granules and target membranes, provide the mechanical energy that enables membrane fusion during both granulogenesis and exocytosis. The function of these core fusion engines is controlled by SNARE regulators, which direct the site, timing, and extent to which these SNAREs interact and consequently the resulting membrane fusion. In this review, we assess new developments in the study of platelet granules, from their generation to their exocytosis.
Mechanism of the formation of hollow spherical granules using a high shear granulator.
Asada, Takumi; Nishikawa, Mitsunori; Ochiai, Yasushi; Noguchi, Shuji; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru
2018-05-30
Recently, we have developed a novel granulation technology to manufacture hollow spherical granules (HSGs) for controlled-release formulations; however, the mechanism of the granulation is still unclear. The aim of this study is to determine the mechanism of the formation of the HSGs using a high shear granulator. Samples of granulated material were collected at various times during granulation and were investigated using scanning electron microscope and X-ray computed tomography. It was observed that the granulation proceeded by drug layering to the polymer, followed by formation of a hollow in the granule. In addition, it was also found that generation of a crack in the adhered drug layer and air flow into the granules might be involved in forming the hollow in the structure. Observation of the granulation of formulations with different types of drugs and polymers indicated that negative pressure in the granules occurred and the granules caved in when the hollow was formed. The hollow-forming speed and the shell density of the hollow granules depended on the particular drug and polymer. Taken together, the granulation mechanism of HSGs was determined and this information will be valuable for HSGs technology development. Copyright © 2018 Elsevier B.V. All rights reserved.
Influence of snow temperature on avalanche impact pressure
NASA Astrophysics Data System (ADS)
Sovilla, Betty; Koehler, Anselm; Steinkogler, Walter; Fischer, Jan-Thomas
2015-04-01
The properties of the snow entrained by an avalanche during its motion (density, temperature) significantly affect flow dynamics and can determine whether the flowing material forms granules or maintains its original fine-grained structure. In general, a cold and light snow cover typically fluidizes, while warmer and more cohesive snow may form a granular denser layer in a flowing avalanche. This structural difference has a fundamental influence not only in the mobility of the flow but also on the impact pressure of avalanches. Using measurements of impact pressure, velocity, density and snow temperature performed at the Swiss Vallée de la Sionne full-scale test site, we show that, impact pressure fundamentally changes with snow temperature. A transition threshold of about -2°C is determined, the same temperature at which snow granulation starts. On the one hand warm avalanches, characterized by temperatures larger than -2°C, move as a plug and exert impact pressures linearly proportional to the avalanche depth. For Froude numbers larger than 1, an additional square-velocity dependent contribution cannot be neglected. On the other hand cold avalanches, characterized by a temperature smaller than -2°C, move as dense sheared flows, or completely dilute powder clouds and exert impact pressures, which are mainly proportional to the square of the flow velocity. For these avalanches the impact pressures strongly depend on density variations within the flow. We suggest that the proposed temperature threshold can be used as a criterion to define the transition between the impact pressures exerted by warm and cold avalanches, thus offering a new way to elude the notorious difficulties in defining the differences between wet and dry flow, respectively.
Mise, Ryohei; Iwao, Yasunori; Kimura, Shin-Ichiro; Osugi, Yukiko; Noguchi, Shuji; Itai, Shigeru
2015-01-01
The effect of some drug properties (wettability and particle size distribution) on granule properties (mean particle size, particle size distribution, sphericity, and granule strength) were investigated in a high (>97%) drug-loading formulation using fluidized bed rotor granulation. Three drugs: acetaminophen (APAP); ibuprofen (IBU); and ethenzamide (ETZ) were used as model drugs based on their differences in wettability and particle size distribution. Granules with mean particle sizes of 100-200 µm and a narrow particle size distribution (PSD) could be prepared regardless of the drug used. IBU and ETZ granules showed a higher sphericity than APAP granules, while APAP and ETZ granules exhibited higher granule strength than IBU. The relationship between drug and granule properties suggested that the wettability and the PSD of the drugs were critical parameters affecting sphericity and granule strength, respectively. Furthermore, the dissolution profiles of granules prepared with poorly water-soluble drugs (IBU and ETZ) showed a rapid release (80% release in 20 min) because of the improved wettability with granulation. The present study demonstrated for the first time that fluidized bed rotor granulation can prepare high drug-loaded (>97%) globular granules with a mean particle size of less than 200 µm and the relationship between physicochemical drug properties and the properties of the granules obtained could be readily determined, indicating the potential for further application of this methodology to various drugs.
Walsh, P J; Walker, G M; Maggs, C A; Buchanan, F J
2011-06-01
Bone void fillers that can enhance biological function to augment skeletal repair have significant therapeutic potential in bone replacement surgery. This work focuses on the development of a unique microporous (0.5-10 microm) marine-derived calcium phosphate bioceramic granule. It was prepared from Corallina officinalis, a mineralized red alga, using a novel manufacturing process. This involved thermal processing, followed by a low pressure-temperature chemical synthesis reaction. The study found that the ability to maintain the unique algal morphology was dependent on the thermal processing conditions. This study investigates the effect of thermal heat treatment on the physiochemical properties of the alga. Thermogravimetric analysis was used to monitor its thermal decomposition. The resultant thermograms indicated the presence of a residual organic phase at temperatures below 500 degrees C and an irreversible solid-state phase transition from mg-rich-calcite to calcium oxide at temperatures over 850 degrees C. Algae and synthetic calcite were evaluated following heat treatment in an air-circulating furnace at temperatures ranging from 400 to 800 degrees C. The highest levels of mass loss occurred between 400-500 degrees C and 700-800 degrees C, which were attributed to the organic and carbonate decomposition respectively. The changes in mechanical strength were quantified using a simple mechanical test, which measured the bulk compressive strength of the algae. The mechanical test used may provide a useful evaluation of the compressive properties of similar bone void fillers that are in granular form. The study concluded that soak temperatures in the range of 600 to 700 degrees C provided the optimum physiochemical properties as a precursor to conversion to hydroxyapatite (HA). At these temperatures, a partial phase transition to calcium oxide occurred and the original skeletal morphology of the alga remained intact.
Díaz, Emiliano E; Stams, Alfons J M; Amils, Ricardo; Sanz, José L
2006-07-01
Methanogenic granules from an anaerobic bioreactor that treated wastewater of a beer brewery consisted of different morphological types of granules. In this study, the microbial compositions of the different granules were analyzed by molecular microbiological techniques: cloning, denaturing gradient gel electrophoresis and fluorescent in situ hybridization (FISH), and scanning and transmission electron microscopy. We propose here that the different types of granules reflect the different stages in the life cycle of granules. Young granules were small, black, and compact and harbored active cells. Gray granules were the most abundant granules. These granules have a multilayer structure with channels and void areas. The core was composed of dead or starving cells with low activity. The brown granules, which were the largest granules, showed a loose and amorphous structure with big channels that resulted in fractured zones and corresponded to the older granules. Firmicutes (as determined by FISH) and Nitrospira and Deferribacteres (as determined by cloning and sequencing) were the predominant Bacteria. Remarkably, Firmicutes could not be detected in the brown granules. The methanogenic Archaea identified were Methanosaeta concilii (70 to 90% by FISH and cloning), Methanosarcina mazei, and Methanospirillum spp. The phenotypic appearance of the granules reflected the physiological condition of the granules. This may be valuable to easily select appropriate seed sludges to start up other reactors.
Resistant Starch Contents of Native and Heat-Moisture Treated Jackfruit Seed Starch
Kittipongpatana, Ornanong S.
2015-01-01
Native jackfruit seed starch (JFS) contains 30% w/w type II resistant starch (RS2) and can potentially be developed as a new commercial source of RS for food and pharmaceutical application. Heat-moisture treatment (HMT) was explored as a mean to increase RS content of native JFS. The effect of the conditions was tested at varied moisture contents (MC), temperatures, and times. Moisture levels of 20–25%, together with temperatures 80–110°C, generally resulted in increases of RS amount. The highest amount of RS (52.2%) was achieved under treatment conditions of 25% MC and 80°C, for 16 h (JF-25-80-16). FT-IR peak ratio at 1047/1022 cm−1 suggested increases in ordered structure in several HMT-JFS samples with increased RS. SEM showed no significant change in the granule appearance, except at high moisture/temperature treatment. XRD revealed no significant change in peaks intensities, suggesting the crystallinity within the granule was mostly retained. DSC showed increases in T g and, in most cases, ΔT, as the MC was increased in the samples. Slight but significant decreases in ΔH were observed in samples with low RS, indicating that a combination of high moisture and temperature might cause partial gelatinization. HMT-JFS with higher RS exhibited less swelling, while the solubility remained mostly unchanged. PMID:25642454
Zakhartsev, Maksim; Reuss, Matthias
2018-04-26
Cell volume is an important parameter for modelling cellular processes. Temperature-induced variability of cellular size, volume, intracellular granularity, a fraction of budding cells of yeast Saccharomyces cerevisiae CEN.PK 113-7D (in anaerobic glucose unlimited batch cultures) were measured by flow cytometry and matched with the performance of the biomass growth (maximal specific growth rate (μ_max), specific rate of glucose consumption, the rate of maintenance, biomass yield on glucose). The critical diameter of single cells was 7.94 μm and it is invariant at growth temperatures above 18.5°C. Below 18.5°C, it exponentially increases up to 10.2 μm. The size of the bud linearly depends on μ_max, and it is between 50% at 5°C and 90% at 31°C of the averaged single cell. The intracellular granularity (SSC-index) negatively depends on μ_max. There are two temperature regions (5-31°C vs. 33-40°C) where the relationship between SSC-index and various cellular parameters differ significantly. In supraoptimal temperature range (33-40°C), cells are less granulated perhaps due to a higher rate of the maintenance. There is temperature dependent passage through the checkpoints in the cell cycle which influences the μ_max. The results point to the existence of two different morphological states of yeasts in these different temperature regions.
Zhou, Yun; Winkworth-Smith, Charles G; Wang, Yu; Liang, Jianfen; Foster, Tim J; Cheng, Yongqiang
2014-12-19
The effects of konjac glucomannan (KGM) on thermal behavior of wheat starch have been studied in the presence of low concentrations of Na2CO3 (0.1-0.2 wt% of starch). Confocal laser scanning microscopy (CLSM) allows the visualization of the starch gelatinization process and granule remnants in starch pastes. Heating the starch dispersion in KGM-Na2CO3 solution significantly delays granule swelling and inhibits amylose leaching, whereas Na2CO3 alone, at the same concentration, has little effect. Na2CO3 assists KGM in producing the extremely high viscosity of starch paste, attributing to a less remarkable breakdown of viscosity in subsequent heating, and protecting starch granules against crystallite melting. The distinct partially networked film around the surface of starch granules is evident in the CLSM images. We propose that Na2CO3 could trigger the formation of complexes between KGM and starch polymers, which exerts a protective effect on granular structure and modifying gelatinization characteristics of the mixtures. Copyright © 2014 Elsevier Ltd. All rights reserved.
Convergent evolution of germ granule nucleators: A hypothesis.
Kulkarni, Arpita; Extavour, Cassandra G
2017-10-01
Germ cells have been considered "the ultimate stem cell" because they alone, during normal development of sexually reproducing organisms, are able to give rise to all organismal cell types. Morphological descriptions of a specialized cytoplasm termed 'germ plasm' and associated electron dense ribonucleoprotein (RNP) structures called 'germ granules' within germ cells date back as early as the 1800s. Both germ plasm and germ granules are implicated in germ line specification across metazoans. However, at a molecular level, little is currently understood about the molecular mechanisms that assemble these entities in germ cells. The discovery that in some animals, the gene products of a small number of lineage-specific genes initiate the assembly (also termed nucleation) of germ granules and/or germ plasm is the first step towards facilitating a better understanding of these complex biological processes. Here, we draw on research spanning over 100years that supports the hypothesis that these nucleator genes may have evolved convergently, allowing them to perform analogous roles across animal lineages. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Wiwattanapatapee, Ruedeekorn; Sae-Yun, Attawadee; Petcharat, Jiraporn; Ovatlarnporn, Chitchamai; Itharat, Arunporn
2009-12-09
Derris elliptica Benth. extracts containing rotenone have long been used as natural insecticides, but time-consuming preparation processes and the short shelf life of the extract limit their use in pest control. In this study, stable water-dispersible granules and emulsifiable concentrate liquids containing Derris extract (equivalent to 5% w/w of rotenone) were developed with simple techniques. Accelerated degradation kinetics of rotenone in the Derris extract, and in both formulations, indicated that its degradation followed first-order kinetics. The predicted half-life (t(1/2)) and shelf life (t(90%)) at 30 degrees C of rotenone in Derris extract were 520 and 79 days, respectively. Derris granules and emulsifiable concentrate clearly prolong the stability of rotenone 8-fold (t(90%) = 633 days) and 1.4-fold (t(90%) = 110 days), respectively. The study of rotenone degradation after application onto plants indicated that both formulations would be effective for up to 3 days after spraying. Preliminary efficacy testing indicated that the Derris emulsifiable concentrate was clearly more effective than Derris water-dispersible granules in controlling Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae).