Sample records for temperature hydrogen sensor

  1. Integrated Temperature and Hydrogen Sensors with MEMS Technology

    PubMed Central

    Jiang, Hongchuan; Huang, Min; Yu, Yibing; Tian, Xiaoyu; Zhang, Wanli; Zhang, Jianfeng; Huang, Yifan; Yu, Kun

    2017-01-01

    In this work, a PdNi thin film hydrogen gas sensor with integrated Pt thin film temperature sensor was designed and fabricated using the micro-electro-mechanical system (MEMS) process. The integrated sensors consist of two resistors: the former, based on Pt film, is used as a temperature sensor, while the latter had the function of hydrogen sensing and is based on PdNi alloy film. The temperature coefficient of resistance (TCR) in both devices was measured and the output response of the PdNi film hydrogen sensor was calibrated based on the temperature acquired by the Pt temperature sensor. The SiN layer was deposited on top of Pt film to inhibit the hydrogen diffusion and reduce consequent disturbance on temperature measurement. The TCR of the PdNi film and the Pt film was about 0.00122/K and 0.00217/K, respectively. The performances of the PdNi film hydrogen sensor were investigated with hydrogen concentrations from 0.3% to 3% on different temperatures from 294.7 to 302.2 K. With the measured temperature of the Pt resistor and the TCR of the PdNi film, the impact of the temperature on the performances of the PdNi film hydrogen sensor was reduced. The output response, response time and recovery time of the PdNi film hydrogen sensors under the hydrogen concentration of 0.5%, 1.0%, 1.5% and 2.0% were measured at 313 K. The output response of the PdNi thin film hydrogen sensors increased with increasing hydrogen concentration while the response time and recovery time decreased. A cycling test between pure nitrogen and 3% hydrogen concentration was performed at 313 K and PdNi thin film hydrogen sensor demonstrated great repeatability in the cycling test. PMID:29301220

  2. Fabrication method for a room temperature hydrogen sensor

    NASA Technical Reports Server (NTRS)

    Shukla, Satyajit V. (Inventor); Cho, Hyoung (Inventor); Seal, Sudipta (Inventor); Ludwig, Lawrence (Inventor)

    2011-01-01

    A sensor for selectively determining the presence and measuring the amount of hydrogen in the vicinity of the sensor. The sensor comprises a MEMS device coated with a nanostructured thin film of indium oxide doped tin oxide with an over layer of nanostructured barium cerate with platinum catalyst nanoparticles. Initial exposure to a UV light source, at room temperature, causes burning of organic residues present on the sensor surface and provides a clean surface for sensing hydrogen at room temperature. A giant room temperature hydrogen sensitivity is observed after making the UV source off. The hydrogen sensor of the invention can be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently used at room temperature.

  3. Silicon Carbide-Based Hydrogen Gas Sensors for High-Temperature Applications

    PubMed Central

    Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel

    2013-01-01

    We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures. PMID:24113685

  4. Silicon carbide-based hydrogen gas sensors for high-temperature applications.

    PubMed

    Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel

    2013-10-09

    We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  5. Integrated multi-channel nano-engineered optical hydrogen and temperature sensor detection systems for launch vehicles

    NASA Astrophysics Data System (ADS)

    Alam, M. Z.; Moreno, J.; Aitchison, J. S.; Mojahedi, M.; Kazemi, A. A.

    2008-08-01

    Launch vehicles and other satellite users need launch services that are highly reliable, less complex, easier to test, and cost effective. Being a very small molecule, hydrogen is prone to leakage through seals and micro-cracks. Hydrogen detection in space application is very challenging; public acceptance of hydrogen fuel would require the integration of a reliable hydrogen safety sensor. For detecting leakage of cryogenic fluids in spaceport facilities, launch vehicle industry and aerospace agencies are currently relying heavily on the bulky mass spectrometers, which fill one or more equipment racks, and weigh several hundred kilograms. Therefore, there is a critical need for miniaturized sensors and instruments suitable for use in space applications. This paper describes a novel multi-channel integrated nano-engineered optical sensor to detect hydrogen and monitor the temperature. The integrated optic sensor is made of multi-channel waveguide elements that measure hydrogen concentration in real Time. Our sensor is based on the use of a high index waveguide with a Ni/Pd overlay to detect hydrogen. When hydrogen is absorbed into the Ni/Pd alloy there is a change in the absorption of the material and the optical signal in the waveguide is increased. Our design uses a thin alloy (few nanometers thick) overlay which facilitates the absorption of the hydrogen and will result in a response time of approximately few seconds. Like other Pd/Pd-Ni based sensors the device response varies with temperature and hence the effects of temperature variations must be taken into account. One solution to this problem is simultaneous measurement of temperature in addition to hydrogen concentration at the same vicinity. Our approach here is to propose a temperature sensor that can easily be integrated on the same platform as the hydrogen sensor reported earlier by our group. One suitable choice of material system is silicon on insulator (SOI). Here, we propose a micro ring resonators (MRR) based temperature sensor designed on SOI that measures temperature by monitoring the output optical power.

  6. Thin-film fiber optic hydrogen and temperature sensor system

    DOEpatents

    Nave, Stanley E.

    1998-01-01

    The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiberoptic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences.

  7. Thin-film fiber optic hydrogen and temperature sensor system

    DOEpatents

    Nave, S.E.

    1998-07-21

    The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiber optic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences. 3 figs.

  8. Micro-structured femtosecond laser assisted FBG hydrogen sensor.

    PubMed

    Karanja, Joseph Muna; Dai, Yutang; Zhou, Xian; Liu, Bin; Yang, Minghong

    2015-11-30

    We discuss hydrogen sensors based on fiber Bragg gratings (FBGs) micro-machined by femtosecond laser to form microgrooves and sputtered with Pd/Ag composite film. The atomic ratio of the two metals is controlled at Pd:Ag = 3:1. At room temperature, the hydrogen sensitivity of the sensor probe micro-machined by 75 mW laser power and sputtered with 520 nm of Pd/Ag film is 16.5 pm/%H. Comparably, the standard FBG hydrogen sensitivity becomes 2.5 pm/%H towards the same 4% hydrogen concentration. At an ambient temperature of 35°C, the processed sensor head has a dramatic rise in hydrogen sensitivity. Besides, the sensor shows good response and repeatability during hydrogen concentration test.

  9. MEMS based highly sensitive dual FET gas sensor using graphene decorated Pd-Ag alloy nanoparticles for H2 detection.

    PubMed

    Sharma, Bharat; Kim, Jung-Sik

    2018-04-12

    A low power, dual-gate field-effect transistor (FET) hydrogen gas sensor with graphene decorated Pd-Ag for hydrogen sensing applications was developed. The FET hydrogen sensor was integrated with a graphene-Pd-Ag-gate FET (GPA-FET) as hydrogen sensor coupled with Pt-gate FET as a reference sensor on a single sensor platform. The sensing gate electrode was modified with graphene by an e-spray technique followed by Pd-Ag DC/MF sputtering. Morphological and structural properties were studied by FESEM and Raman spectroscopy. FEM simulations were performed to confirm the uniform temperature control at the sensing gate electrode. The GPA-FET showed a high sensing response to hydrogen gas at the temperature of 25~254.5 °C. The as-proposed FET H 2 sensor showed the fast response time and recovery time of 16 s, 14 s, respectively at the operating temperature of 245 °C. The variation in drain current was positively related with increased working temperature and hydrogen concentration. The proposed dual-gate FET gas sensor in this study has potential applications in various fields, such as electronic noses and automobiles, owing to its low-power consumption, easy integration, good thermal stability and enhanced hydrogen sensing properties.

  10. Process for manufacture of thick film hydrogen sensors

    DOEpatents

    Perdieu, Louisa H.

    2000-09-09

    A thick film process for producing hydrogen sensors capable of sensing down to a one percent concentration of hydrogen in carrier gasses such as argon, nitrogen, and air. The sensor is also suitable to detect hydrogen gas while immersed in transformer oil. The sensor includes a palladium resistance network thick film printed on a substrate, a portion of which network is coated with a protective hydrogen barrier. The process utilizes a sequence of printing of the requisite materials on a non-conductive substrate with firing temperatures at each step which are less than or equal to the temperature at the previous step.

  11. The Development of Silicon Carbide Based Hydrogen and Hydrocarbon Sensors

    NASA Technical Reports Server (NTRS)

    Liu, Chung-Chiun

    1994-01-01

    Silicon carbide is a high temperature electronic material. Its potential for development of chemical sensors in a high temperature environment has not been explored. The objective of this study is to use silicon carbide as the substrate material for the construction of chemical sensors for high temperature applications. Sensors for the detection of hydrogen and hydrocarbon are developed in this program under the auspices of Lewis Research Center, NASA. Metal-semiconductor or metal-insulator-semiconductor structures are used in this development. Specifically, using palladium-silicon carbide Schottky diodes as gas sensors in the temperature range of 100 to 400 C are designed, fabricated and assessed. The effect of heat treatment on the Pd-SiC Schottky diode is examined. Operation of the sensors at 400 C demonstrate sensitivity of the sensor to hydrogen and hydrocarbons. Substantial progress has been made in this study and we believe that the Pd-SiC Schottky diode has potential as a hydrogen and hydrocarbon sensor over a wide range of temperatures. However, the long term stability and operational life of the sensor need to be assessed. This aspect is an important part of our future continuing investigation.

  12. Hydrogen gas sensors using a thin Ta2O5 dielectric film

    NASA Astrophysics Data System (ADS)

    Kim, Seongjeen

    2014-12-01

    A capacitive-type hydrogen gas sensor with a MIS (metal-insulator-semiconductor) structure was investigated for high-temperature applications. In this work, a tantalum oxide (Ta2O5) layer of tens of nanometers in thickness formed by oxidizing tantalum film in rapid thermal processing (RTP) was exploited with the purpose of sensitivity improvement. Silicon carbide (SiC), which is good even at high temperatures over 500 °C, was used as the substrate. We fabricated sensors composed of Pd/Ta2O5/SiC, and the dependences of the capacitance response properties and the I-V characteristics on the hydrogen concentration were analyzed from the temperature range of room temperature to 500 °C. As a result, our hydrogen sensor showed promising performance with respect to the sensitivity and the adaptability at high temperature.

  13. Characterization and Modeling of Electrical Response of Electrode Catalyzed Reactions in AIGaN/GaN-Based Gas Sensors

    NASA Astrophysics Data System (ADS)

    Melby, Jacob H.

    AlGaN/GaN high electron mobility transistors (HEMT) and AlGaN/GaN diodes have promise for use as hydrogen and hydrocarbon sensors for a variety of industrial, military, and commercial applications. These semiconductor-based sensors have a number of advantages over other sensor technologies, such as the ability to operate at high temperatures, in corrosive environments, or under ionizing radiation. The high sensitivity of these devices to hydrogen-containing gases is associated with polarization differences within the AlGaN/GaN heterostructure that give rise to the formation of a two-dimensional electron gas (2DEG); exposure of the device to hydrogen changes the density of the 2DEG, which can be detected in a HEMT or diode structure. Although sensitivity to a range of gases has been reported, the factors that influence the behavior of the sensors are not well studied. The overarching goals of the research that follows were to determine how gas exposure conditions affect sensor behavior, to characterize and model the relationship between the electrical response of the sensors and the external gaseous environment, and to investigate the effects of using different metal catalysts on sensor behavior. The heterostructures used in this work were grown via metalorganic vapor phase epitaxy (MOVPE). Schottky diode and transistor devices employing platinum-group (Pd, Pt, Rh, Ir, Ru, and Os) catalysts were fabricated to allow electrical sensitivity in the presence of hydrogen and hydrogen containing gases. The generation of atomic hydrogen on the catalyst surface results in the rapid formation of hydrogen dipoles at the metal-semiconductor interface, which produces a measurable electronic response. The electrical response of Pt-gated HEMT-based sensors were measured in a flowing gaseous stream consisting of hydrogen in a pure nitrogen diluent at ambient and elevated temperatures. The transistors exhibited excellent transfer characteristics for temperatures ranging from 25°C to 125°C. The absolute current change was measured as a function of hydrogen concentration and compared with simulated curves based on the Langmuir isotherm and four other modified isotherms at a sensor temperature of 125°C. The sensor response was found to monotonically increase for a wide range of hydrogen concentrations (500 ppb to 5 vol%). It was found that the Langmuir isotherm, which treats all hydrogen binding sites as equivalent, was inadequate to describe the sensor response. A simple two-state model involving two distinct hydrogen binding states that have previously been observed in surface studies was found to adequately describe the response of these sensors from 500 ppb to 5 vol% hydrogen in nitrogen. Other modified Langmuir models were also analyzed and compared with the two-state model. While the models based on modified isotherms all yielded good fits to the data, the simpler two-state model (based upon a weakly bound and strongly bound hydrogen atom) and the Sips model (with distribution of states skewed towards higher binding energies) more closely match results from surface studies of dissociative desorption of hydrogen on Pt. Either of these models should therefore serve as a reasonable foundation for understanding and modeling the response of AlGaN/GaN-based hydrogen sensors with Pt catalysts. The electrical response of a Pt-gated HEMT-based sensor was also measured in a flowing gaseous stream consisting of hydrogen in air at elevated temperatures. The sensor response was found to monotonically increase for a narrow range of hydrogen pressures (1000 ppm to 4 vol%). Oxygen is found to decrease sensor response magnitude and increase the sensor response time. A modified Langmuir isotherm was found to adequately describe the influence of oxygen on a Pt-gated HEMT-based sensor under a narrow range of conditions. Additional sensor measurements were conducted on AlGaN/GaN diode sensors employing a variety of platinum-group catalysts. The influence of oxygen on the sensor response was found to be highly dependent upon the chemistry of hydrogen-oxygen interaction on the catalyst interface. A sensor diode array was fabricated using a ternary Pdx CuyAu1-x-y composition spread alloy catalyst and tested in a flowing gaseous stream consisting of pure hydrogen in nitrogen at room temperature. The resulting diode sensitivity was mapped as a function of composition and revealed intriguing hot spots of hydrogen sensitivity. Numerous technological challenges prevented further exploration of the ternary alloy spread; however, the preliminary results of this structure suggest that a reduction in hydrogen binding energy on the surface can result in a substantial increase in hydrogen dipoles at the metal semiconductor interface. Sensitivity to methane and ethylene was demonstrated using AlGaN/GaN-based sensors. Detection of methane and ethylene require elevated temperatures to break the C-H bond and produce atomic hydrogen. The sensor response is significantly more complicated than hydrogen and not always well-behaved with respect to temperature and time. XPS measurements conducted at CMU indicate a buildup of carbon on the platinum surface upon hydrocarbon exposure, trending toward a saturated carbon content. Lastly, operation of a diode sensor was examined in-situ under high hydrostatic pressure (2000psi) in both pure water and helium. Numerous stability issues were addressed in the course of these experiments. The steady-state influence of hydrostatic pressures on the diode sensor was found to be negligible in the absence of hydrogen. Hydrogen sensitivity was demonstrated in pure water with a hydrogen overpressure for devices employing an epoxy membrane. The same diode device failed to detect a large methane overpressure in water at room temperature and water at 80°C.

  14. Development of High Temperature SiC Based Hydrogen/Hydrocarbon Sensors with Bond Pads for Packaging

    NASA Technical Reports Server (NTRS)

    Xu, Jennifer C.; Hunter, Gary W.; Chen, Liangyu; Biagi-Labiosa, Azlin M.; Ward, Benjamin J.; Lukco, Dorothy; Gonzalez, Jose M., III; Lampard, Peter S.; Artale, Michael A.; Hampton, Christopher L.

    2011-01-01

    This paper describes efforts towards the transition of existing high temperature hydrogen and hydrocarbon Schottky diode sensor elements to packaged sensor structures that can be integrated into a testing system. Sensor modifications and the technical challenges involved are discussed. Testing of the sensors at 500 C or above is also presented along with plans for future development.

  15. Microfabricated Hydrogen Sensor Technology for Aerospace and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Bickford, R. L.; Jansa, E. D.; Makel, D. B.; Liu, C. C.; Wu, Q. H.; Powers, W. T.

    1994-01-01

    Leaks on the Space Shuttle while on the Launch Pad have generated interest in hydrogen leak monitoring technology. An effective leak monitoring system requires reliable hydrogen sensors, hardware, and software to monitor the sensors. The system should process the sensor outputs and provide real-time leak monitoring information to the operator. This paper discusses the progress in developing such a complete leak monitoring system. Advanced microfabricated hydrogen sensors are being fabricated at Case Western Reserve University (CWRU) and tested at NASA Lewis Research Center (LeRC) and Gencorp Aerojet (Aerojet). Changes in the hydrogen concentrations are detected using a PdAg on silicon Schottky diode structure. Sensor temperature control is achieved with a temperature sensor and heater fabricated onto the sensor chip. Results of the characterization of these sensors are presented. These sensors can detect low concentrations of hydrogen in inert environments with high sensitivity and quick response time. Aerojet is developing the hardware and software for a multipoint leak monitoring system designed to provide leak source and magnitude information in real time. The monitoring system processes data from the hydrogen sensors and presents the operator with a visual indication of the leak location and magnitude. Work has commenced on integrating the NASA LeRC-CWRU hydrogen sensors with the Aerojet designed monitoring system. Although the leak monitoring system was designed for hydrogen propulsion systems, the possible applications of this monitoring system are wide ranged. Possible commercialization of the system will also be discussed.

  16. Hydrogen gas sensor and method of manufacture

    DOEpatents

    McKee, John M.

    1991-01-01

    A sensor for measuring the pressure of hydrogen gas in a nuclear reactor, and method of manufacturing the same. The sensor comprises an elongated tube of hydrogen permeable material which is connected to a pressure transducer through a feedthrough tube which passes through a wall at the boundary of the region in which hydrogen is present. The tube is pressurized and flushed with hydrogen gas at an elevated temperature during the manufacture of the sensor in order to remove all gasses other than hydrogen from the device.

  17. Optical hydrogen sensors based on metal-hydrides

    NASA Astrophysics Data System (ADS)

    Slaman, M.; Westerwaal, R.; Schreuders, H.; Dam, B.

    2012-06-01

    For many hydrogen related applications it is preferred to use optical hydrogen sensors above electrical systems. Optical sensors reduce the risk of ignition by spark formation and are less sensitive to electrical interference. Currently palladium and palladium alloys are used for most hydrogen sensors since they are well known for their hydrogen dissociation and absorption properties at relatively low temperatures. The disadvantages of palladium in sensors are the low optical response upon hydrogen loading, the cross sensitivity for oxygen and carbon, the limited detection range and the formation of micro-cracks after some hydrogen absorption/desorption cycles. In contrast to Pd, we find that the use of magnesium or rear earth bases metal-hydrides in optical hydrogen sensors allow tuning of the detection levels over a broad pressure range, while maintaining a high optical response. We demonstrate a stable detection layer for detecting hydrogen below 10% of the lower explosion limit in an oxygen rich environment. This detection layer is deposited at the bare end of a glass fiber as a micro-mirror and is covered with a thin layer of palladium. The palladium layer promotes the hydrogen uptake at room temperature and acts as a hydrogen selective membrane. To protect the sensor for a long time in air a final layer of a hydrophobic fluorine based coating is applied. Such a sensor can be used for example as safety detector in automotive applications. We find that this type of fiber optic hydrogen sensor is also suitable for hydrogen detection in liquids. As example we demonstrate a sensor for detecting a broad range of concentrations in transformer oil. Such a sensor can signal a warning when sparks inside a high voltage power transformer decompose the transformer oil over a long period.

  18. Experimental study of temperature sensor for an ocean-going liquid hydrogen (LH2) carrier

    NASA Astrophysics Data System (ADS)

    Nakano, A.; Shimazaki, T.; Sekiya, M.; Shiozawa, H.; Aoyagi, A.; Ohtsuka, K.; Iwakiri, T.; Mikami, Z.; Sato, M.; Kinoshita, K.; Matsuoka, T.; Takayama, Y.; Yamamoto, K.

    2018-04-01

    The prototype temperature sensors for an ocean-going liquid hydrogen (LH2) carrier were manufactured by way of trial. All of the sensors adopted Platinum 1000 (PT-1000) resistance thermometer elements. Various configurations of preproduction temperature sensors were tested in AIST's LH2 test facility. In the experiments, a PT-1000 resistance thermometer, calibrated at the National Metrology Institute of Japan at AIST, was used as the standard thermometer. The temperatures measured by the preproduction sensors were compared with the temperatures measured by the standard thermometer, and the measurement accuracy of the temperature sensors in LH2 was investigated and discussed. It was confirmed that the measurement accuracies of the preproduction temperature sensors were within ±50 mK, which is the required measurement accuracy for a technical demonstration ocean-going LH2 carrier.

  19. Pd/Ag coated fiber Bragg grating sensor for hydrogen monitoring in power transformers.

    PubMed

    Ma, G M; Jiang, J; Li, C R; Song, H T; Luo, Y T; Wang, H B

    2015-04-01

    Compared with conventional DGA (dissolved gas analysis) method for on-line monitoring of power transformers, FBG (fiber Bragg grating) hydrogen sensor represents marked advantages over immunity to electromagnetic field, time-saving, and convenience to defect location. Thus, a novel FBG hydrogen sensor based on Pd/Ag (Palladium/Silver) along with polyimide composite film to measure dissolved hydrogen concentration in large power transformers is proposed in this article. With the help of Pd/Ag composite coating, the enhanced performance on mechanical strength and sensitivity is demonstrated, moreover, the response time and sensitivity influenced by oil temperature are solved by correction lines. Sensitivity measurement and temperature calibration of the specific hydrogen sensor have been done respectively in the lab. And experiment results show a high sensitivity of 0.055 pm/(μl/l) with instant response time about 0.4 h under the typical operating temperature of power transformers, which proves a potential utilization inside power transformers to monitor the health status by detecting the dissolved hydrogen concentration.

  20. Fast detection and low power hydrogen sensor using edge-oriented vertically aligned 3-D network of MoS2 flakes at room temperature

    NASA Astrophysics Data System (ADS)

    Agrawal, A. V.; Kumar, R.; Venkatesan, S.; Zakhidov, A.; Zhu, Z.; Bao, Jiming; Kumar, Mahesh; Kumar, Mukesh

    2017-08-01

    The increased usage of hydrogen as a next generation clean fuel strongly demands the parallel development of room temperature and low power hydrogen sensors for their safety operation. In this work, we report strong evidence for preferential hydrogen adsorption at edge-sites in an edge oriented vertically aligned 3-D network of MoS2 flakes at room temperature. The vertically aligned edge-oriented MoS2 flakes were synthesised by a modified CVD process on a SiO2/Si substrate and confirmed by Scanning Electron Microscopy. Raman spectroscopy and PL spectroscopy reveal the signature of few-layer MoS2 flakes in the sample. The sensor's performance was tested from room temperature to 150 °C for 1% hydrogen concentration. The device shows a fast response of 14.3 s even at room temperature. The sensitivity of the device strongly depends on temperature and increases from ˜1% to ˜11% as temperature increases. A detail hydrogen sensing mechanism was proposed based on the preferential hydrogen adsorption at MoS2 edge sites. The proposed gas sensing mechanism was verified by depositing ˜2-3 nm of ZnO on top of the MoS2 flakes that partially passivated the edge sites. We found a decrease in the relative response of MoS2-ZnO hybrid structures. This study provides a strong experimental evidence for the role of MoS2 edge-sites in the fast hydrogen sensing and a step closer towards room temperature, low power (0.3 mW), hydrogen sensor development.

  1. Application of Flexible Micro Temperature Sensor in Oxidative Steam Reforming by a Methanol Micro Reformer

    PubMed Central

    Lee, Chi-Yuan; Lee, Shuo-Jen; Shen, Chia-Chieh; Yeh, Chuin-Tih; Chang, Chi-Chung; Lo, Yi-Man

    2011-01-01

    Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS) technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM), with the relevant parameters optimized as well. PMID:22319407

  2. Slush hydrogen liquid level system

    NASA Technical Reports Server (NTRS)

    Hamlet, J. F.; Adams, R. G.

    1972-01-01

    A discrete capacitance liquid level system developed is specifically for slush hydrogen, but applicable to LOX, LN2, LH2, and RP1 without modification is described. The signal processing portion of the system is compatible with conventional liquid level sensors. Compatibility with slush hydrogen was achieved by designing the sensor with adequate spacing, while retaining the electrical characteristics of conventional sensors. Tests indicate excellent stability of the system over a temperature range of -20 C to 70 C for the circuit and to cryogenic temperatures of the sensor. The sensor was tested up to 40 g's rms random vibration with no damage to the sensor. Operation with 305 m of cable between the sensor and signal processor was demonstrated. It is concluded that this design is more than adequate for most flight and ground applications.

  3. High spatial resolution fiber optical sensors for simultaneous temperature and chemical sensing for energy industries

    NASA Astrophysics Data System (ADS)

    Yan, Aidong; Huang, Sheng; Li, Shuo; Zaghloul, Mohamed; Ohodnicki, Paul; Buric, Michael; Chen, Kevin P.

    2017-05-01

    This paper demonstrates optical fibers as high-temperature sensor platforms. Through engineering and onfiber integration of functional metal oxide sensory materials, we report the development of an integrated sensor solution to perform temperature and chemical measurements for high-temperature energy applications. Using the Rayleigh optical frequency domain reflectometry (OFDR) distributed sensing scheme, the temperature and hydrogen concentration were measured along the fiber. To overcome the weak Rayleighbackscattering intensity exhibited by conventional optical fibers, an ultrafast laser was used to enhance the Rayleigh scattering by a direct laser writing method. Using the Rayleigh-enhanced fiber as sensor platform, both temperature and hydrogen reaction were monitored at high temperature up to 750°C with 4-mm spatial resolution.

  4. Palladium Gate All Around - Hetero Dielectric -Tunnel FET based highly sensitive Hydrogen Gas Sensor

    NASA Astrophysics Data System (ADS)

    Madan, Jaya; Chaujar, Rishu

    2016-12-01

    The paper presents a novel highly sensitive Hetero-Dielectric-Gate All Around Tunneling FET (HD-GAA-TFET) based Hydrogen Gas Sensor, incorporating the advantages of band to band tunneling (BTBT) mechanism. Here, the Palladium supported silicon dioxide is used as a sensing media and sensing relies on the interaction of hydrogen with Palladium-SiO2-Si. The high surface to volume ratio in the case of cylindrical GAA structure enhances the fortuities for surface reactions between H2 gas and Pd, and thus improves the sensitivity and stability of the sensor. Behaviour of the sensor in presence of hydrogen and at elevated temperatures is discussed. The conduction path of the sensor which is dependent on sensors radius has also been varied for the optimized sensitivity and static performance analysis of the sensor where the proposed design exhibits a superior performance in terms of threshold voltage, subthreshold swing, and band to band tunneling rate. Stability of the sensor with respect to temperature affectability has also been studied, and it is found that the device is reasonably stable and highly sensitive over the bearable temperature range. The successful utilization of HD-GAA-TFET in gas sensors may open a new door for the development of novel nanostructure gas sensing devices.

  5. Efficient room temperature hydrogen sensor based on UV-activated ZnO nano-network

    NASA Astrophysics Data System (ADS)

    Kumar, Mohit; Kumar, Rahul; Rajamani, Saravanan; Ranwa, Sapana; Fanetti, Mattia; Valant, Matjaz; Kumar, Mahesh

    2017-09-01

    Room temperature hydrogen sensors were fabricated from Au embedded ZnO nano-networks using a 30 mW GaN ultraviolet LED. The Au-decorated ZnO nano-networks were deposited on a SiO2/Si substrate by a chemical vapour deposition process. X-ray diffraction (XRD) spectrum analysis revealed a hexagonal wurtzite structure of ZnO and presence of Au. The ZnO nanoparticles were interconnected, forming nano-network structures. Au nanoparticles were uniformly distributed on ZnO surfaces, as confirmed by FESEM imaging. Interdigitated electrodes (IDEs) were fabricated on the ZnO nano-networks using optical lithography. Sensor performances were measured with and without UV illumination, at room temperate, with concentrations of hydrogen varying from 5 ppm to 1%. The sensor response was found to be ˜21.5% under UV illumination and 0% without UV at room temperature for low hydrogen concentration of 5 ppm. The UV-photoactivated mode enhanced the adsorption of photo-induced O- and O2- ions, and the d-band electron transition from the Au nanoparticles to ZnO—which increased the chemisorbed reaction between hydrogen and oxygen. The sensor response was also measured at 150 °C (without UV illumination) and found to be ˜18% at 5 ppm. Energy efficient low cost hydrogen sensors can be designed and fabricated with the combination of GaN UV LEDs and ZnO nanostructures.

  6. In situ measurement of gas composition changes in radio frequency plasmas using a quartz sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Atsushi; Nonaka, Hidehiko

    2009-09-15

    A simple method using a quartz sensor (Q-sensor) was developed to observe gas composition changes in radio frequency (rf) plasmas. The output depends on the gases' absolute pressure, molecular weight, and viscosity. The pressure-normalized quartz sensor output depends only on the molecular weight and viscosity of the gas. Consequently, gas composition changes can be detected in the plasmas if a sensor can be used in the plasmas. Influences imparted by the plasmas on the sensor, such as those by reactive particles (e.g., radicals and ions), excited species, electrons, temperature, and electric potentials during measurements were investigated to test the applicabilitymore » of this quartz sensor measurement to plasma. The Q-sensor measurement results for rf plasmas with argon, hydrogen, and their mixtures are reproducible, demonstrating that the Q-sensor measurement is applicable for plasmas. In this work, pressure- and temperature-normalized Q-sensor output (NQO) were used to obtain the gas composition information of plasma. Temperature-normalization of the Q-sensor output enabled quartz sensor measurements near plasma electrodes, where the quartz sensor temperature increases. The changes in NQO agreed with results obtained by gas analysis using a quadrupole mass spectrometer. Results confirmed that the change in NQO is mainly attributable to changes in the densities and kinds of gas molecules in the plasma gas phase, not by other extrinsic influences of plasma. For argon, hydrogen, and argon-hydrogen plasmas, these changes correspond to reduction in nitrogen, production of carbon monoxide, and dissociation of hydrogen molecules, respectively. These changes in NQO qualitatively and somewhat quantitatively agreed with results obtained using gas analysis, indicting that the measurement has a potential application to obtain the gas composition in plasmas without disturbing industrial plasma processes.« less

  7. Ultraviolet Light-Assisted Copper Oxide Nanowires Hydrogen Gas Sensor

    NASA Astrophysics Data System (ADS)

    Sihar, Nabihah; Tiong, Teck Yaw; Dee, Chang Fu; Ooi, Poh Choon; Hamzah, Azrul Azlan; Mohamed, Mohd Ambri; Majlis, Burhanuddin Yeop

    2018-05-01

    We fabricated copper oxide nanowires (CuO NWs) ultraviolet (UV) light-assisted hydrogen gas sensor. The fabricated sensor shows promising sensor response behavior towards 100 ppm of H2 at room temperature and elevated temperature at 100 °C when exposed to UV light (3.0 mW/cm2). One hundred-cycle device stability test has been performed, and it is found that for sample elevated at 100 °C, the UV-activated sample achieved stability in the first cycle as compared to the sample without UV irradiation which needed about 10 cycles to achieve stability at the initial stage, whereas the sample tested at room temperature was able to stabilize with the aid of UV irradiation. This indicates that with the aid of UV light, after some "warming up" time, it is possible for the conventional CuO NW sensor which normally work at elevated temperature to function at room temperature because UV source is speculated to play a dominant role to increase the interaction of the surface of CuO NWs and hydrogen gas molecules absorbed after the light exposure.

  8. Ultraviolet Light-Assisted Copper Oxide Nanowires Hydrogen Gas Sensor.

    PubMed

    Sihar, Nabihah; Tiong, Teck Yaw; Dee, Chang Fu; Ooi, Poh Choon; Hamzah, Azrul Azlan; Mohamed, Mohd Ambri; Majlis, Burhanuddin Yeop

    2018-05-15

    We fabricated copper oxide nanowires (CuO NWs) ultraviolet (UV) light-assisted hydrogen gas sensor. The fabricated sensor shows promising sensor response behavior towards 100 ppm of H 2 at room temperature and elevated temperature at 100 °C when exposed to UV light (3.0 mW/cm 2 ). One hundred-cycle device stability test has been performed, and it is found that for sample elevated at 100 °C, the UV-activated sample achieved stability in the first cycle as compared to the sample without UV irradiation which needed about 10 cycles to achieve stability at the initial stage, whereas the sample tested at room temperature was able to stabilize with the aid of UV irradiation. This indicates that with the aid of UV light, after some "warming up" time, it is possible for the conventional CuO NW sensor which normally work at elevated temperature to function at room temperature because UV source is speculated to play a dominant role to increase the interaction of the surface of CuO NWs and hydrogen gas molecules absorbed after the light exposure.

  9. Fundamental Pathways for the Adsorption and Transport of Hydrogen on TiO2 Surfaces: Origin for Effective Sensing at about Room Temperature.

    PubMed

    Wang, Zhuo; Xia, Xiaohong; Guo, Meilan; Shao, Guosheng

    2016-12-28

    Effective detection of hydrogen at lowered temperature is highly desirable in promoting safety in using this abundant gas as a clean energy source. Through first-principle calculations in the framework of density functional theory, we find that the high-energy (002) surface for rutile TiO 2 is significantly more effective in adsorbing hydrogen atoms through dissociating hydrogen molecules. The pathways for the dissociation of hydrogen molecules and sequential migration of hydrogen atoms are identified through searching along various transitional states. Pathways of low potential barriers indicate promise for hydrogen sensing, even close to room temperature. This has been proven through sensors made of thin films of well-aligned rutile nanorods, wherein the high-energy (002) surface dictates the top surface of the active layer of the sensors.

  10. Optical cascaded Fabry-Perot interferometer hydrogen sensor based on vernier effect

    NASA Astrophysics Data System (ADS)

    Li, Yina; Zhao, Chunliu; Xu, Ben; Wang, Dongning; Yang, Minghong

    2018-05-01

    An optical cascaded Fabry-Perot interferometer hydrogen sensor based on vernier effect has been proposed and achieved. The proposed sensor, which total length is ∼594 μm, is composed of a segment of large mode area fiber (LMAF) and a segment of hollow-core fiber (HCF). The proposed sensor is coated with the Pt-loaded WO3/SiO2 powder which will result in the increase of local temperature of the sensor head when exposed to hydrogen atmosphere. Thus the hydrogen sensor can be achieved by monitoring the change of resonant envelope wavelength. The hydrogen sensitivity is -1.04 nm/% within the range of 0 % -2.4 % which is greatly improved because of the vernier effect. The response time is ∼80 s. Due to its compact configuration, the proposed sensor provides a feasible and miniature structure to achieve detection of hydrogen.

  11. Fluidic hydrogen detector production prototype development

    NASA Technical Reports Server (NTRS)

    Roe, G. W.; Wright, R. E.

    1976-01-01

    A hydrogen gas sensor that can replace catalytic combustion sensors used to detect leaks in the liquid hydrogen transfer systems at Kennedy Space Center was developed. A fluidic sensor concept, based on the principle that the frequency of a fluidic oscillator is proportional to the square root of the molecular weight of its operating fluid, was utilized. To minimize sensitivity to pressure and temperature fluctuations, and to make the sensor specific for hydrogen, two oscillators are used. One oscillator operates on sample gas containing hydrogen, while the other operates on sample gas with the hydrogen converted to steam. The conversion is accomplished with a small catalytic converter. The frequency difference is taken, and the hydrogen concentration computed with a simple digital processing circuit. The output from the sensor is an analog signal proportional to hydrogen content. The sensor is shown to be accurate and insensitive to severe environmental disturbances. It is also specific for hydrogen, even with large helium concentrations in the sample gas.

  12. Arrays of Regenerated Fiber Bragg Gratings in Non-Hydrogen-Loaded Photosensitive Fibers for High-Temperature Sensor Networks

    PubMed Central

    Lindner, Eric; Chojetztki, Christoph; Brueckner, Sven; Becker, Martin; Rothhardt, Manfred; Vlekken, Johan; Bartelt, Hartmut

    2009-01-01

    We report about the possibility of using regenerated fiber Bragg gratings generated in photosensitive fibers without applying hydrogen loading for high temperature sensor networks. We use a thermally induced regenerative process which leads to a secondary increase in grating reflectivity. This refractive index modification has shown to become more stable after the regeneration up to temperatures of 600 °C. With the use of an interferometric writing technique, it is possible also to generate arrays of regenerated fiber Bragg gratings for sensor networks. PMID:22408510

  13. High-performance flexible hydrogen sensor made of WS2 nanosheet-Pd nanoparticle composite film

    NASA Astrophysics Data System (ADS)

    Kuru, Cihan; Choi, Duyoung; Kargar, Alireza; Liu, Chin Hung; Yavuz, Serdar; Choi, Chulmin; Jin, Sungho; Bandaru, Prabhakar R.

    2016-05-01

    We report a flexible hydrogen sensor, composed of WS2 nanosheet-Pd nanoparticle composite film, fabricated on a flexible polyimide substrate. The sensor offers the advantages of light-weight, mechanical durability, room temperature operation, and high sensitivity. The WS2-Pd composite film exhibits sensitivity (R 1/R 2, the ratio of the initial resistance to final resistance of the sensor) of 7.8 to 50 000 ppm hydrogen. Moreover, the WS2-Pd composite film distinctly outperforms the graphene-Pd composite, whose sensitivity is only 1.14. Furthermore, the ease of fabrication holds great potential for scalable and low-cost manufacturing of hydrogen sensors.

  14. Numerical Simulation of Temperature Sensor Self-Heating Effects in Gaseous and Liquid Hydrogen Under Cryogenic Conditions

    NASA Astrophysics Data System (ADS)

    Langebach, R.; Haberstroh, Ch.

    2010-04-01

    In this paper a numerical investigation is presented that characterizes the free convective flow field and the resulting heat transfer mechanisms for a resistance temperature sensor in liquid and gaseous hydrogen at various cryogenic conditions. Motivation for this is the detection of stratification effects e.g. inside a liquid hydrogen storage vessel. In this case, the local temperature measurement in still resting fluid requires a very high standard of precision despite an extremely poor thermal anchoring of the sensor. Due to electrical power dissipation a certain amount of heat has to be transferred from sensor to fluid. This can cause relevant measurement errors due to a slightly elevated sensor temperature. A commercial CFD code was employed to calculate the heat and mass transfer around the typical sensor geometry. The results were compared with existing heat transfer correlations from the literature. As a result the magnitude of averaged heat transfer coefficients and sensor over-heating as a function of power dissipation are given in figures. From the gained numerical results a new correlation for the averaged Nusselt Number is presented that represents very low Rayleigh Number flows. The correlation can be used to estimate sensor self-heating effects in similar situations.

  15. SiC Sensors in Extreme Environments: Real-time Hydrogen Monitoring for Energy Plant Applications

    NASA Astrophysics Data System (ADS)

    Ghosh, Ruby

    2008-03-01

    Clean, efficient energy production, such as the gasification of coal (syngas), requires physical and chemical sensors for exhaust gas monitoring as well as real-time control of the combustion process. Wide-bandgap semiconducting materials systems can meet the sensing demands in these extreme environments consisting of chemically corrosive gases at high temperature and pressure. We have developed a SiC based micro-sensor for detection of hydrogen containing species with millisecond response at 600 C. The sensor is a Pt-SiO2-SiC device with a dense Pt catalytic sensing film, capable of withstanding months of continuous high temperature operation. The device was characterized in robust sensing module that is compatible with an industrial reactor. We report on the performance of the SiC sensor in a simulated syngas ambient at 370 C containing the common interferants CO2, CH4 and CO [1]. In addition we demonstrate that hours of exposure to >=1000 ppm H2S and 15% water vapor does not degrade the sensor performance. To elucidate the mechanisms responsible for the hydrogen response of the sensor we have modeled the hydrogen adsorptions kinetics at the internal Pt-SiO2 interface, using both the Tempkin and Langmuir isotherms. Under the conditions appropriate for energy plant applications, the response of our sensor is significantly larger than that obtained from ultra-high vacuum electrochemical sensor measurements at high temperatures. We will discuss the role of morphology, at the nano to micro scale, on the enhanced catalytic activity observed for our Pt sensing films in response to a heated hydrogen gas stream at atmospheric pressure. [1] R. Loloee, B. Chorpening, S. Beers & R. Ghosh, Hydrogen monitoring for power plant applications using SiC sensors, Sens. Actuators B:Chem. (2007), doi:10.1016/j.snb.2007.07.118

  16. Thin film hydrogen sensor

    DOEpatents

    Cheng, Yang-Tse; Poli, Andrea A.; Meltser, Mark Alexander

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  17. Characterization Test Report for the Mnemonics-UCS Wireless Surface Acoustic Wave Sensor System

    NASA Technical Reports Server (NTRS)

    Duncan, Joshua J.; Youngquist, Robert C.

    2013-01-01

    The scope of this testing includes the Surface Acoustic Wave Sensor System delivered to KSC: two interrogator (transceiver) systems, four temperature sensors, with wooden mounting blocks, two antennas, two power supplies, network cables, and analysis software. Also included are a number of additional temperature sensors and newly-developed hydrogen sensors

  18. Predictive sensor method and apparatus

    NASA Technical Reports Server (NTRS)

    Cambridge, Vivien J.; Koger, Thomas L.

    1993-01-01

    A microprocessor and electronics package employing predictive methodology was developed to accelerate the response time of slowly responding hydrogen sensors. The system developed improved sensor response time from approximately 90 seconds to 8.5 seconds. The microprocessor works in real-time providing accurate hydrogen concentration corrected for fluctuations in sensor output resulting from changes in atmospheric pressure and temperature. Following the successful development of the hydrogen sensor system, the system and predictive methodology was adapted to a commercial medical thermometer probe. Results of the experiment indicate that, with some customization of hardware and software, response time improvements are possible for medical thermometers as well as other slowly responding sensors.

  19. Fiber optic microsensor technology for detection of hydrogen in space applications

    NASA Astrophysics Data System (ADS)

    Kazemi, Alex A.

    2008-04-01

    Optical hydrogen sensors are intrinsically safe since they produce no arc or spark in an explosive environment caused by the leakage of hydrogen. Safety remains a top priority since leakage of hydrogen in air during production, storage, transfer and distribution creates an explosive atmosphere for concentrations between 4% (v/v) - the lower explosive limit (LEL) and 74.5% (v/v) - the upper explosive limit (UEL) at room temperature and pressure. Being a very small molecule, hydrogen is prone to leakage through seals and micro-cracks. Hydrogen detection in space application is very challenging; public acceptance of hydrogen fuel would require the integration of a reliable hydrogen safety sensor. For detecting leakage of cryogenic fluids in spaceport facilities, Launch vehicle industry and aerospace agencies are currently relying heavily on the bulky mass spectrometers, which fill one or more equipment racks, and weigh several hundred kilograms. This paper describes the successful development and test of a multi-point fiber optic hydrogen sensor system during the static firing of an Evolved Expandable Launch Vehicle at NASA's Stennis Space Center. The system consisted of microsensors (optrodes) using hydrogen gas sensitive indicator incorporated onto an optically transparent porous substrate. The modular optoelectronics and multiplexing network system was designed and assembled utilizing a multi-channel optoelectronic sensor readout unit that monitored the hydrogen and temperature response of the individual optrodes in real-time and communicated this information via a serial communication port to a remote laptop computer. The paper would discuss the sensor design and performance data under field deployment conditions.

  20. Thin film hydrogen sensor

    DOEpatents

    Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

    1999-03-23

    A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

  1. Freeze drying-assisted synthesis of Pt@reduced graphene oxide nanocomposites as excellent hydrogen sensor

    NASA Astrophysics Data System (ADS)

    Lu, Xiaojing; Song, Xinjie; Gu, Cuiping; Ren, Haibo; Sun, Yufeng; Huang, Jiarui

    2018-05-01

    Quick and efficient detection of low concentrations of hydrogen remains a challenge because of the stability of hydrogen. A sensor based on reduced oxide graphene functionalized with Pt nanoparticles is successfully fabricated using a freeze-drying method followed by heat treatment. The structure and morphology of the Pt@rGO nanocomposites are well analyzed by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The as-prepared Pt@rGO nanocomposites show excellent hydrogen gas sensing properties at a low working temperature of 50 °C. The sensitivity toward 0.5% hydrogen is 8%. The response and recovery times of the sensor exposed to 0.5% hydrogen are 63 and 104 s, respectively. The gas-sensing mechanism of Pt@rGO sensor is also discussed.

  2. Silicon Carbide-Based Hydrogen and Hydrocarbon Gas Detection

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Neudeck, Philip G.; Chen, Liang-Yu; Knight, D.; Liu, C. C.; Wu, Q. H.R

    1995-01-01

    Hydrogen and hydrocarbon detection in aeronautical applications is important for reasons of safety and emissions control. The use of silicon carbide as a semiconductor in a metal-semiconductor or metal-insulator-semiconductor structure opens opportunities to measure hydrogen and hydrocarbons in high temperature environments beyond the capabilities of silicon-based devices. The purpose of this paper is to explore the response and stability of Pd-SiC Schottky diodes as gas sensors in the temperature range from 100 to 400 C. The effect of heat treating on the diode properties as measured at 100 C is explored. Subsequent operation at 400 C demonstrates the diodes' sensitivity to hydrogen and hydrocarbons. It is concluded that the Pd-SiC Schottky diode has potential as a hydrogen and hydrocarbon sensor over a wide range of temperatures but further studies are necessary to determine the diodes' long term stability.

  3. Large Scale Production of Densified Hydrogen Using Integrated Refrigeration and Storage

    NASA Technical Reports Server (NTRS)

    Notardonato, William U.; Swanger, Adam Michael; Jumper, Kevin M.; Fesmire, James E.; Tomsik, Thomas M.; Johnson, Wesley L.

    2017-01-01

    Recent demonstration of advanced liquid hydrogen storage techniques using Integrated Refrigeration and Storage (IRAS) technology at NASA Kennedy Space Center led to the production of large quantities of solid densified liquid and slush hydrogen in a 125,000 L tank. Production of densified hydrogen was performed at three different liquid levels and LH2 temperatures were measured by twenty silicon diode temperature sensors. System energy balances and solid mass fractions are calculated. Experimental data reveal hydrogen temperatures dropped well below the triple point during testing (up to 1 K), and were continuing to trend downward prior to system shutdown. Sub-triple point temperatures were seen to evolve in a time dependent manner along the length of the horizontal, cylindrical vessel. Twenty silicon diode temperature sensors were recorded over approximately one month for testing at two different fill levels (33 67). The phenomenon, observed at both two fill levels, is described and presented detailed and explained herein., and The implications of using IRAS for energy storage, propellant densification, and future cryofuel systems are discussed.

  4. Temperature dependence of gas sensing behaviour of TiO2 doped PANI composite thin films

    NASA Astrophysics Data System (ADS)

    Srivastava, Subodh; Sharma, S. S.; Sharma, Preetam; Sharma, Vinay; Rajura, Rajveer Singh; Singh, M.; Vijay, Y. K.

    2014-04-01

    In the present work we have reported the effect of temperature on the gas sensing properties of TiO2 doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and TiO2 doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline at low temperature. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature TiO2 doped PANI composite sensor shows higher response value and showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement.

  5. A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations.

    PubMed

    Varghese, Oomman K; Mor, Gopal K; Grimes, Craig A; Paulose, Maggie; Mukherjee, Niloy

    2004-09-01

    A tremendous variation in electrical resistance, from the semiconductor to metallic range, has been observed in titania nanotube arrays at room temperature, approximately 25 degrees C, in the presence of < or = 1000 ppm hydrogen gas. The nanotube arrays are fabricated by anodizing titanium foil in an aqueous electrolyte solution containing hydrofluoric acid and acetic acid. Subsequently, the arrays are coated with a 10 nm layer of palladium by evaporation. Electrical contacts are made by sputtering a 2 mm diameter platinum disk atop the Pd-coated nanotube array. These sensors exhibit a resistance variation of the order of 10(4) in the presence of 100 ppm hydrogen at 25 degrees C. The sensors demonstrate complete reversibility, repeatability, high selectivity, negligible drift and wide dynamic range. The nanoscale geometry of the nanotubes, in particular the points of tube-to-tube contact, is believed to be responsible for the outstanding hydrogen gas sensitivities.

  6. Investigation of the sensitivity of MIS-sensor to thermal decomposition products of cables insulation

    NASA Astrophysics Data System (ADS)

    Filipchuk, D. V.; Litvinov, A. V.; Etrekova, M. O.; Nozdrya, D. A.

    2017-12-01

    Sensitivity of the MIS-sensor to products of thermal decomposition of insulation and jacket of the most common types of cables is investigated. It is shown that hydrogen is evolved under heating the insulation to temperatures not exceeding 250 °C. Registration of the evolved hydrogen by the MIS-sensor can be used for detection of fires at an early stage.

  7. An Improved Metal-Packaged Strain Sensor Based on A Regenerated Fiber Bragg Grating in Hydrogen-Loaded Boron–Germanium Co-Doped Photosensitive Fiber for High-Temperature Applications

    PubMed Central

    Tu, Yun; Ye, Lin; Zhou, Shao-Ping; Tu, Shan-Tung

    2017-01-01

    Local strain measurements are considered as an effective method for structural health monitoring of high-temperature components, which require accurate, reliable and durable sensors. To develop strain sensors that can be used in higher temperature environments, an improved metal-packaged strain sensor based on a regenerated fiber Bragg grating (RFBG) fabricated in hydrogen (H2)-loaded boron–germanium (B–Ge) co-doped photosensitive fiber is developed using the process of combining magnetron sputtering and electroplating, addressing the limitation of mechanical strength degradation of silica optical fibers after annealing at a high temperature for regeneration. The regeneration characteristics of the RFBGs and the strain characteristics of the sensor are evaluated. Numerical simulation of the sensor is conducted using a three-dimensional finite element model. Anomalous decay behavior of two regeneration regimes is observed for the FBGs written in H2-loaded B–Ge co-doped fiber. The strain sensor exhibits good linearity, stability and repeatability when exposed to constant high temperatures of up to 540 °C. A satisfactory agreement is obtained between the experimental and numerical results in strain sensitivity. The results demonstrate that the improved metal-packaged strain sensors based on RFBGs in H2-loaded B–Ge co-doped fiber provide great potential for high-temperature applications by addressing the issues of mechanical integrity and packaging. PMID:28241465

  8. An Improved Metal-Packaged Strain Sensor Based on A Regenerated Fiber Bragg Grating in Hydrogen-Loaded Boron-Germanium Co-Doped Photosensitive Fiber for High-Temperature Applications.

    PubMed

    Tu, Yun; Ye, Lin; Zhou, Shao-Ping; Tu, Shan-Tung

    2017-02-23

    Local strain measurements are considered as an effective method for structural health monitoring of high-temperature components, which require accurate, reliable and durable sensors. To develop strain sensors that can be used in higher temperature environments, an improved metal-packaged strain sensor based on a regenerated fiber Bragg grating (RFBG) fabricated in hydrogen (H₂)-loaded boron-germanium (B-Ge) co-doped photosensitive fiber is developed using the process of combining magnetron sputtering and electroplating, addressing the limitation of mechanical strength degradation of silica optical fibers after annealing at a high temperature for regeneration. The regeneration characteristics of the RFBGs and the strain characteristics of the sensor are evaluated. Numerical simulation of the sensor is conducted using a three-dimensional finite element model. Anomalous decay behavior of two regeneration regimes is observed for the FBGs written in H₂-loaded B-Ge co-doped fiber. The strain sensor exhibits good linearity, stability and repeatability when exposed to constant high temperatures of up to 540 °C. A satisfactory agreement is obtained between the experimental and numerical results in strain sensitivity. The results demonstrate that the improved metal-packaged strain sensors based on RFBGs in H₂-loaded B-Ge co-doped fiber provide great potential for high-temperature applications by addressing the issues of mechanical integrity and packaging.

  9. Cold weather hydrogen generation system and method of operation

    DOEpatents

    Dreier, Ken Wayne; Kowalski, Michael Thomas; Porter, Stephen Charles; Chow, Oscar Ken; Borland, Nicholas Paul; Goyette, Stephen Arthur

    2010-12-14

    A system for providing hydrogen gas is provided. The system includes a hydrogen generator that produces gas from water. One or more heat generation devices are arranged to provide heating of the enclosure during different modes of operation to prevent freezing of components. A plurality of temperature sensors are arranged and coupled to a controller to selectively activate a heat source if the temperature of the component is less than a predetermined temperature.

  10. A fast response hydrogen sensor with Pd metallic grating onto a fiber's end-face

    NASA Astrophysics Data System (ADS)

    Yan, Haitao; Zhao, Xiaoyan; Zhang, Chao; Li, Qiu-Ze; Cao, Jingxiao; Han, Dao-Fu; Hao, Hui; Wang, Ming

    2016-01-01

    We demonstrated an integrated hydrogen sensor with Pd metallic grating fabricated on a fiber end-face. The grating consists of three thin metal layers in stacks, Au, WO3 and Pd. The WO3 is used as a waveguide layer between the Pd and Au layer. The Pd layer is etched by using a focused ion beam (FIB) method, forming a Pd metallic grating with period of 450 nm. The sensor is experimentally exposed to hydrogen gas environment. Changing the concentration from 0% to 4% which is the low explosive limit (LEL), the resonant wavelength measured from the reflection experienced 28.10 nm spectral changes in the visible range. The results demonstrated that the sensor is sensitive for hydrogen detection and it has fast response and low temperature effect.

  11. Low temperature synthesis of hexagonal ZnO nanorods and their hydrogen sensing properties

    NASA Astrophysics Data System (ADS)

    Qurashi, Ahsanulhaq; Faiz, M.; Tabet, N.; Alam, Mir Waqas

    2011-08-01

    The growth of hexagonal ZnO nanorods was demonstrated by low temperature chemical synthesis approach. X-ray diffraction (XRD) analysis revealed a wurtzite hexagonal structure of the ZnO nanorods. The optical properties were measured by UV-vis spectrophotometer at room temperature. X-ray photoelectron spectroscopy (XPS) confirmed high purity of the ZnO nanorods. The hydrogen sensor made of the ZnO nanorods showed reversible response. The hydrogen gas tests were carried out in presence of ambient air and the influence of operation temperature on the hydrogen gas sensing property of ZnO nanorods was also investigated.

  12. Nanocrystalline mesoporous SMO thin films prepared by sol gel process for MEMS-based hydrogen sensor

    NASA Astrophysics Data System (ADS)

    Gong, Jianwei; Fei, Weifeng; Seal, Sudipta; Chen, Quanfang

    2004-01-01

    MEMS based SnO2 gas sensor with sol gel synthesized mesoporous nanocrystalline (<10 nm) semiconductor thin (100~150 nm) film has been recently developed. The SnO2 nano film is fabricated with the combination of polymeric sol gel chemistry with block copolymers used for structure directing agents. The novel hydrogen sensor has a fast response time (1s) and quick recovery time (3s), as well as good sensitivity (about 90%), comparing to other hydrogen sensors developed. The improved capabilities are credited to the large surface to volume ratio of gas sensing thin film with nano sized porous surface topology, which can greatly increase the sensitivity even at relatively low working temperature. The gas sensing film is deposited onto a thin dielectric membrane of low thermal conductivity, which provides good thermal isolation between substrate and the gas-sensitive heated area on the membrane. In this way the power consumption can be kept very low. Since the fabrication process is completely compatible with IC industry, it makes mass production possible and greatly reduces the cost. The working temperature of the new sensor can be reduced as low as 100°C. The low working temperature posse advantages such as lower power consumption, lower thermal induced signal shift as well as safe detection in certain environments where temperature is strictly limited.

  13. Low-cost fabrication of highly sensitive room temperature hydrogen sensor based on ordered mesoporous Co-doped TiO2 structure

    NASA Astrophysics Data System (ADS)

    Li, Zhong; Haidry, Azhar Ali; Wang, Tao; Yao, Zheng Jun

    2017-07-01

    The development of cost-effective gas sensors with improved sensing properties and minimum power consumption for room temperature hydrogen leakage monitoring is in increasing demand. In this context, this report focus on the facile fabrication of ordered mesoporous TiO2 via evaporation-induced self-assembly route. With the controlled doping threshold (3%Co-TiO2), the output resistance change to 1000 ppm H2 is ˜4.1 × 103 with the response time of 66 s. The sensor response exhibits power law dependence with an increase in the hydrogen concentration, where the power law coefficient was found not only specific to the kind of target gas but also related to temperature. Further, the effect of structure integrity with doping level and humidity on sensing characteristics is interpreted in terms of variation in surface potential eVS and depletion region w caused by the adsorption of molecular oxygen O2-.

  14. Hydrogen Sensors Boost Hybrids; Today's Models Losing Gas?

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Advanced chemical sensors are used in aeronautic and space applications to provide safety monitoring, emission monitoring, and fire detection. In order to fully do their jobs, these sensors must be able to operate in a range of environments. NASA has developed sensor technologies addressing these needs with the intent of improving safety, optimizing combustion efficiencies, and controlling emissions. On the ground, the chemical sensors were developed by NASA engineers to detect potential hydrogen leaks during Space Shuttle launch operations. The Space Shuttle uses a combination of hydrogen and oxygen as fuel for its main engines. Liquid hydrogen is pumped to the external tank from a storage tank located several hundred feet away. Any hydrogen leak could potentially result in a hydrogen fire, which is invisible to the naked eye. It is important to detect the presence of a hydrogen fire in order to prevent a major accident. In the air, the same hydrogen-leak dangers are present. Stress and temperature changes can cause tiny cracks or holes to form in the tubes that line the Space Shuttle s main engine nozzle. Such defects could allow the hydrogen that is pumped through the nozzle during firing to escape. Responding to the challenges associated with pinpointing hydrogen leaks, NASA endeavored to improve propellant leak-detection capabilities during assembly, pre-launch operations, and flight. The objective was to reduce the operational cost of assembling and maintaining hydrogen delivery systems with automated detection systems. In particular, efforts have been focused on developing an automated hydrogen leak-detection system using multiple, networked hydrogen sensors that are operable in harsh conditions.

  15. Investigation of a para-ortho hydrogen reactor for application to spacecraft sensor cooling

    NASA Technical Reports Server (NTRS)

    Nast, T. C.

    1983-01-01

    The utilization of solid hydrogen in space for sensor and instrument cooling is a very efficient technique for long term cooling or for cooling at high heat rates. The solid hydrogen can provide temperatures as low as 7 to 8 K to instruments. Vapor cooling is utilized to reduce parasitic heat inputs to the 7 to 8 K stage and is effective in providing intermediate cooling for instrument components operating at higher temperatures. The use of solid hydrogen in place of helium may lead to weight reductions as large as a factor of ten and an attendent reduction in system volume. The results of an investigation of a catalytic reactor for use with a solid hydrogen cooling system is presented. Trade studies were performed on several configurations of reactor to meet the requirements of high reactor efficiency with low pressure drop. Results for the selected reactor design are presented for both liquid hydrogen systems operating at near atmospheric pressure and the solid hydrogen cooler operating as low as 1 torr.

  16. Chemical Gas Sensors for Aeronautic and Space Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun

    1997-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Two areas of particular interest are safety monitoring and emission monitoring. In safety monitoring, detection of low concentrations of hydrogen at potentially low temperatures is important while for emission monitoring the detection of nitrogen oxides, hydrogen, hydrocarbons and oxygen is of interest. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: (1) Micromachining and microfabrication technology to fabricate miniaturized sensors. (2) The development of high temperature semiconductors, especially silicon carbide. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this general area of sensor development a field of significant interest.

  17. Shuttle propellant loading instrumenation development

    NASA Technical Reports Server (NTRS)

    Hamlet, J.

    1975-01-01

    A continuous capacitance sensor was developed and an analog signal conditioner was evaluated to demonstrate the acceptability of these items for use in the space shuttle propellant loading system. An existing basic sensor concept was redesigned to provide capability for cryogenic operation, to improve performance, and to minimize production costs. Sensor development verification consisted of evaluation of sensor linearity, cryogenic performance, and stability during vibration. The signal conditioner evaluation consisted mainly of establishing the effects of the variations in temperature and cable parameters and evaluating the stability. A sensor linearity of 0.04 in. was achieved over most of the sensor length. The sensor instability caused by vibration was 0.04 percent. The cryogenic performance data show a maximum instability of 0.19 percent at liquid hydrogen temperature; a theoretical calibration can be computed a within 1 percent. The signal conditioner evaluation showed that, with temperature compensation, all error sources typically contribute much less than 1 percent. An estimate of the accuracy achievable with the sensor and signal conditioner shows an rss estimate of 0.75 in. for liquid oxygen and 1.02 in. for liquid hydrogen. These are approximately four times better than the shuttle requirements. Comparison of continuous sensor and discrete sensor performance show the continuous sensor to be significantly better when there is surface activity due to sloshing, boiling, or other disturbances.

  18. Porous palladium coated conducting polymer nanoparticles for ultrasensitive hydrogen sensors

    NASA Astrophysics Data System (ADS)

    Lee, Jun Seop; Kim, Sung Gun; Cho, Sunghun; Jang, Jyongsik

    2015-12-01

    Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm) and stability toward hydrogen gas at room temperature due to the palladium sensing layer.Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm) and stability toward hydrogen gas at room temperature due to the palladium sensing layer. Electronic supplementary information (ESI) available: BET surface area and pore distribution of palladium architectures without CPPyNPs; Hydrogen sensing ability of palladium architectures without CPPyNPs; HR-TEM image of Pd@CPPy_C16 after 100 cycle exposure of H2. See DOI: 10.1039/c5nr06193h

  19. Heat flux microsensor measurements

    NASA Technical Reports Server (NTRS)

    Terrell, J. P.; Hager, J. M.; Onishi, S.; Diller, T. E.

    1992-01-01

    A thin-film heat flux sensor has been fabricated on a stainless steel substrate. The thermocouple elements of the heat flux sensor were nickel and nichrome, and the temperature resistance sensor was platinum. The completed heat flux microsensor was calibrated at the AEDC radiation facility. The gage output was linear with heat flux with no apparent temperature effect on sensitivity. The gage was used for heat flux measurements at the NASA Langley Vitiated Air Test Facility. Vitiated air was expanded to Mach 3.0 and hydrogen fuel was injected. Measurements were made on the wall of a diverging duct downstream of the injector during all stages of the hydrogen combustion tests. Because the wall and the gage were not actively cooled, the wall temperature reached over 1000 C (1900 F) during the most severe test.

  20. Perovskite-type oxide thin film integrated fiber optic sensor for high-temperature hydrogen measurement.

    PubMed

    Tang, Xiling; Remmel, Kurtis; Lan, Xinwei; Deng, Jiangdong; Xiao, Hai; Dong, Junhang

    2009-09-15

    Small size fiber optic devices integrated with chemically sensitive photonic materials are emerging as a new class of high-performance optical chemical sensor that have the potential to meet many analytical challenges in future clean energy systems and environmental management. Here, we report the integration of a proton conducting perovskite oxide thin film with a long-period fiber grating (LPFG) device for high-temperature in situ measurement of bulk hydrogen in fossil- and biomass-derived syngas. The perovskite-type Sr(Ce(0.8)Zr(0.1))Y(0.1)O(2.95) (SCZY) nanocrystalline thin film is coated on the 125 microm diameter LPFG by a facile polymeric precursor route. This fiber optic sensor (FOS) operates by monitoring the LPFG resonant wavelength (lambda(R)), which is a function of the refractive index of the perovskite oxide overcoat. At high temperature, the types and population of the ionic and electronic defects in the SCZY structure depend on the surrounding hydrogen partial pressure. Thus, varying the H(2) concentration changes the SCZY film refractive index and light absorbing characteristics that in turn shifts the lambda(R) of the LPFG. The SCZY-coated LPFG sensor has been demonstrated for bulk hydrogen measurement at 500 degrees C for its sensitivity, stability/reversibility, and H(2)-selectivity over other relevant small gases including CO, CH(4), CO(2), H(2)O, and H(2)S, etc.

  1. Reusable Cryogenic Tank VHM Using Fiber Optic Distributed Sensing Technology

    NASA Technical Reports Server (NTRS)

    Bodan-Sanders, Patricia; Bouvier, Carl

    1998-01-01

    The reusable oxygen and hydrogen tanks are key systems for both the X-33 (sub-scale, sub-orbital technology demonstrator) and the commercial Reusable Launch Vehicle (RLV). The backbone of the X-33 Reusable Cryogenic Tank Vehicle Health Management (VHM) system lies in the optical network of distributed strain temperature and hydrogen sensors. This network of fiber sensors will create a global strain and temperature map for monitoring the health of the tank structure, cryogenic insulation, and Thermal Protection System. Lockheed Martin (Sanders and LMMSS) and NASA Langley have developed this sensor technology for the X-33 and have addressed several technical issues such as fiber bonding and laser performance in this harsh environment.

  2. Metal oxide gas sensors on the nanoscale

    NASA Astrophysics Data System (ADS)

    Plecenik, A.; Haidry, A. A.; Plecenik, T.; Durina, P.; Truchly, M.; Mosko, M.; Grancic, B.; Gregor, M.; Roch, T.; Satrapinskyy, L.; Moskova, A.; Mikula, M.; Kus, P.

    2014-06-01

    Low cost, low power and highly sensitive gas sensors operating at room temperature are very important devices for controlled hydrogen gas production and storage. One of the disadvantages of chemosensors is their high operating temperature (usually 200 - 400 °C), which excludes such type of sensors from usage in explosive environment. In this report, a new concept of gas chemosensors operating at room temperature based on TiO2 thin films is discussed. Integration of such sensor is fully compatible with sub-100 nm semiconductor technology and could be transferred directly from labor to commercial sphere.

  3. Development of a detection sensor for lethal H2S gas.

    PubMed

    Park, Young-Ho; Kim, Yong-Jae; Lee, Chang-Seop

    2012-07-01

    The gas which may be lethal to human body with short-term exposure in common industrial fields or workplaces in LAB may paralyze the olfactory sense and impose severe damages to central nervous system and lung. This study is concerned with the gas sensor which allows individuals to avoid the toxic gas that may be generated in the space with residues of organic wastes under 50 degrees C or above. This study investigates response and selectivity of the sensor to hydrogen sulfide gas with operating temperatures and catalysts. The thick-film semiconductor sensor for hydrogen sulfide gas detection was fabricated WO3/SnO2 prepared by sol-gel and precipitation methods. The nanosized SnO2 powder mixed with the various metal oxides (WO3, TiO2, and ZnO) and doped with transition metals (Au, Ru, Pd Ag and In). Particle sizes, specific surface areas and phases of sensor materials were investigated by SEM, BET and XRD analyses. The metal-WO3/SnO2 thick films were prepared by screen-printing method. The measured response to hydrogen sulfide gas is defined as the ratio (Ra/R,) of the resistance of WO3ISnO2 film in air to the resistance of WO3/SnO2 film in a hydrogen sulfide gas. It was shown that the highest response and selectivity of the sensor for hydrogen sulfide by doping with 1 wt% Ru and 10 wt% WO3 to SnO2 at the optimum operating temperature of 200 degrees C.

  4. Characteristics of Hydrogen Sensors Based on Thin Tin Dioxide Films Modified with Gold

    NASA Astrophysics Data System (ADS)

    Almaev, A. V.; Gaman, V. I.

    2017-11-01

    Effect of hydrogen in the concentration range from 10 to 2000 ppm on the characteristics of sensors based on thin films of tin dioxide modified with gold (Au/SnO2:Sb, Au) is studied in the thermo-cyclic mode at temperatures from 623 to 773 K and absolute humidity from 2.5 to 20 g/m3. Experimental data are discussed using expressions obtained within the framework of a model that takes into account the presence of three types of adsorbed particles (O¯, OH, and OH¯) on the surface of SnO2 nanocrystals. The characteristics of the sensors based on thin Pt/Pd/SnO2:Sb films (the first series) are compared with those of Au/SnO2:Sb, Au films (the second series). It is found that the degree of dissociation of molecular hydrogen into atoms during adsorption on the sensor under interaction with Au particles on the SnO2 surface is 4 times greater than that under interaction with Pt/Pd particles. The degree of dissociation of H2O molecules into hydrogen atoms and hydroxyl groups in pure moist air on the surface of the sensors of the second series is 1.6 times greater than that for the sensors of the first series. Thus, gold is a more effective stimulator of the dissociation of H2 and H2O molecules than platinum and palladium. A formula is obtained that describes more accurately the dependence of the response of the sensors of both series to the effect of hydrogen on the concentration of this gas and on the temperature of the measuring devices.

  5. Development of Fe-based superconducting wires for liquid-hydrogen level sensors

    NASA Astrophysics Data System (ADS)

    Ishida, S.; Tsuchiya, Y.; Mawatari, Y.; Eisaki, H.; Nakano, A.; Yoshida, Y.

    2017-07-01

    We developed liquid-hydrogen (LH2) level sensors with Ba(Fe1-x Co x )2As2 superconducting wires (Co-Ba122 wires) as their detection elements. We fabricated Co-Ba122 wires with different Co concentrations x by using the powder-in-tube method. The superconducting transition temperatures of the wires were successfully controlled in the range of 20-25 K by changing x from 0.06 to 0.10. The resistance-temperature curves of the wires exhibited sharp superconducting transitions with widths of 0.5-1.0 K. In addition, we performed an operation test of the Co-Ba122 level sensors with LH2. Close correspondence between the output resistance and the actual LH2 level was observed for a sensor equipped with x = 0.09 wire, demonstrating that this sensor can accurately measure LH2 levels.

  6. Study of robust thin film PT-1000 temperature sensors for cryogenic process control applications

    NASA Astrophysics Data System (ADS)

    Ramalingam, R.; Boguhn, D.; Fillinger, H.; Schlachter, S. I.; Süßer, M.

    2014-01-01

    In some cryogenic process measurement applications, for example, in hydrogen technology and in high temperature superconductor based generators, there is a need of robust temperature sensors. These sensors should be able to measure the large temperature range of 20 - 500 K with reasonable resolution and accuracy. Thin film PT 1000 sensors could be a choice to cover this large temperature range. Twenty one sensors selected from the same production batch were tested for their temperature sensitivity which was then compared with different batch sensors. Furthermore, the sensor's stability was studied by subjecting the sensors to repeated temperature cycles of 78-525 K. Deviations in the resistance were investigated using ice point calibration and water triple point calibration methods. Also the study of directional oriented intense static magnetic field effects up to 8 Oersted (Oe) were conducted to understand its magneto resistance behaviour in the cryogenic temperature range from 77 K - 15 K. This paper reports all investigation results in detail.

  7. Microstructured FBG hydrogen sensor based on Pt-loaded WO3.

    PubMed

    Zhou, Xian; Dai, Yutang; Karanja, Joseph Muna; Liu, Fufei; Yang, Minghong

    2017-04-17

    Hydrogen gas sensing properties of Pt-WO3 films on spiral microstructured fiber Bragg grating (FBG) has been demonstrated. Pt-WO3 film was prepared by hydrothermal method. The spiral microsturctured FBG was fabricated using femtosecond laser. Spiral microstructure FBG hydrogen sensor can detect hydrogen concentration from 0.02% H2 to 4% H2 at room temperature, and the response time is shortened from a few minutes to 10~30 s. Double spiral microstructure at pitch 60 μm and sputtered with 2 μm Pt-WO3 film recorded hydrogen sensitivity of 522 pm/%(v/v) H2 responding to hydrogen gas in air. This translated to approximately 2~4 times higher than the unprocessed standard FBG. The humidity has little effect on the sensing property. The sensor has fast response time, good stability, large detection range and has the good prospect of practical application for hydrogen leak detection.

  8. Highly Sensitive and Selective Hydrogen Gas Sensor Using the Mesoporous SnO₂ Modified Layers.

    PubMed

    Xue, Niuzi; Zhang, Qinyi; Zhang, Shunping; Zong, Pan; Yang, Feng

    2017-10-14

    It is important to improve the sensitivities and selectivities of metal oxide semiconductor (MOS) gas sensors when they are used to monitor the state of hydrogen in aerospace industry and electronic field. In this paper, the ordered mesoporous SnO₂ (m-SnO₂) powders were prepared by sol-gel method, and the morphology and structure were characterized by X-ray diffraction analysis (XRD), transmission electron microscope (TEM) and Brunauer-Emmett-Teller (BET). The gas sensors were fabricated using m-SnO₂ as the modified layers on the surface of commercial SnO₂ (c-SnO₂) by screen printing technology, and tested for gas sensing towards ethanol, benzene and hydrogen with operating temperatures ranging from 200 °C to 400 °C. Higher sensitivity was achieved by using the modified m-SnO₂ layers on the c-SnO₂ gas sensor, and it was found that the S(c/m2) sensor exhibited the highest response (Ra/Rg = 22.2) to 1000 ppm hydrogen at 400 °C. In this paper, the mechanism of the sensitivity and selectivity improvement of the gas sensors is also discussed.

  9. Metal-Coated Optical Fibers for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Zeakes, Jason; Murphy, Kent; Claus, Richard; Greene, Jonathan; Tran, Tuan

    1996-01-01

    This poster will highlight on-going research at the Virginia Tech Fiber & Electro-Optics Research Center (FEORC) in the area of thin films on optical fibers. Topics will include the sputter deposition of metals and metal; alloys onto optical fiber and fiber optic sensors for innovative applications. Specific information will be available on thin film fiber optic hydrogen sensors, corrosion sensors, and metal-coated optical fiber for high temperature aerospace applications.

  10. Properties of Hydrogen Sulfide Sensors Based on Thin Films of Tin Dioxide and Tungsten Trioxide

    NASA Astrophysics Data System (ADS)

    Sevastianov, E. Yu.; Maksimova, N. K.; Chernikov, E. V.; Sergeichenko, N. V.; Rudov, F. V.

    2016-12-01

    The effect of hydrogen sulfide in the concentration range of 0-100 ppm on the characteristics of thin films of tin dioxide and tungsten trioxide obtained by the methods of magnetron deposition and modified with gold in the bulk and on the surface is studied. The impurities of antimony and nickel have been additionally introduced into the SnO2 bulk. An optimal operating temperature of sensors 350°C was determined, at which there is a satisfactory correlation between the values of the response to H2S and the response time. Degradation of the sensor characteristics is investigated in the long-term ( 0.5-1.5 years) tests at operating temperature and periodic exposure to hydrogen sulfide, as well as after conservation of samples in the laboratory air. It is shown that for the fabrication of H2S sensors, the most promising are thin nanocrystalline Au/WO3:Au films characterized by a linear concentration dependence of the response and high stability of parameters during exploitation.

  11. Multiparameter fiber optic sensing system for monitoring enhanced geothermal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Challener, William A

    2014-12-04

    The goal of this project was to design, fabricate and test an optical fiber cable which supports multiple sensing modalities for measurements in the harsh environment of enhanced geothermal systems. To accomplish this task, optical fiber was tested at both high temperatures and strains for mechanical integrity, and in the presence of hydrogen for resistance to darkening. Both single mode (SM) and multimode (MM) commercially available optical fiber were identified and selected for the cable based on the results of these tests. The cable was designed and fabricated using a tube-within-tube construction containing two MM fibers and one SM fiber,more » and without supporting gel that is not suitable for high temperature environments. Commercial fiber optic sensing instruments using Raman DTS (distributed temperature sensing), Brillouin DTSS (distributed temperature and strain sensing), and Raleigh COTDR (coherent optical time domain reflectometry) were selected for field testing. A microelectromechanical systems (MEMS) pressure sensor was designed, fabricated, packaged, and calibrated for high pressure measurements at high temperatures and spliced to the cable. A fiber Bragg grating (FBG) temperature sensor was also spliced to the cable. A geothermal well was selected and its temperature and pressure were logged. The cable was then deployed in the well in two separate field tests and measurements were made on these different sensing modalities. Raman DTS measurements were found to be accurate to ±5°C, even with some residual hydrogen darkening. Brillouin DTSS measurements were in good agreement with the Raman results. The Rayleigh COTDR instrument was able to detect some acoustic signatures, but was generally disappointing. The FBG sensor was used to determine the effects of hydrogen darkening, but drift over time made it unreliable as a temperature or pressure sensor. The MEMS sensor was found to be highly stable and accurate to better than its 0.1% calibration.« less

  12. An effective temperature compensation approach for ultrasonic hydrogen sensors

    NASA Astrophysics Data System (ADS)

    Tan, Xiaolong; Li, Min; Arsad, Norhana; Wen, Xiaoyan; Lu, Haifei

    2018-03-01

    Hydrogen is a kind of promising clean energy resource with a wide application prospect, which will, however, cause a serious security issue upon the leakage of hydrogen gas. The measurement of its concentration is of great significance. In a traditional approach of ultrasonic hydrogen sensing, a temperature drift of 0.1 °C results in a concentration error of about 250 ppm, which is intolerable for trace amount of gas sensing. In order to eliminate the influence brought by temperature drift, we propose a feasible approach named as linear compensation algorithm, which utilizes the linear relationship between the pulse count and temperature to compensate for the pulse count error (ΔN) caused by temperature drift. Experimental results demonstrate that our proposed approach is capable of improving the measurement accuracy and can easily detect sub-100 ppm of hydrogen concentration under variable temperature conditions.

  13. Safety Sensor Testing Laboratory | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    collaborations, trainings and workshops, and academic research and development support. Work in the laboratory (temperature, pressure, and relative humidity) and gas parameters (flow and composition) Quantitative sensor services to assist end-users on sensor selection and use Assist developers in quantitative assessment of

  14. Polyaniline nanowires-gold nanoparticles hybrid network based chemiresistive hydrogen sulfide sensor

    NASA Astrophysics Data System (ADS)

    Shirsat, Mahendra D.; Bangar, Mangesh A.; Deshusses, Marc A.; Myung, Nosang V.; Mulchandani, Ashok

    2009-02-01

    We report a sensitive, selective, and fast responding room temperature chemiresistive sensor for hydrogen sulfide detection and quantification using polyaniline nanowires-gold nanoparticles hybrid network. The sensor was fabricated by facile electrochemical technique. Initially, polyaniline nanowires with a diameter of 250-320 nm bridging the gap between a pair of microfabricated gold electrodes were synthesized using templateless electrochemical polymerization using a two step galvanostatic technique. Polyaniline nanowires were then electrochemically functionalized with gold nanoparticles using cyclic voltammetry technique. These chemiresistive sensors show an excellent limit of detection (0.1 ppb), wide dynamic range (0.1-100 ppb), and very good selectivity and reproducibility.

  15. Hafnium—an optical hydrogen sensor spanning six orders in pressure

    PubMed Central

    Boelsma, C.; Bannenberg, L. J.; van Setten, M. J.; Steinke, N.-J.; van Well, A. A.; Dam, B.

    2017-01-01

    Hydrogen detection is essential for its implementation as an energy vector. So far, palladium is considered to be the most effective hydrogen sensing material. Here we show that palladium-capped hafnium thin films show a highly reproducible change in optical transmission in response to a hydrogen exposure ranging over six orders of magnitude in pressure. The optical signal is hysteresis-free within this range, which includes a transition between two structural phases. A temperature change results in a uniform shift of the optical signal. This, to our knowledge unique, feature facilitates the sensor calibration and suggests a constant hydrogenation enthalpy. In addition, it suggests an anomalously steep increase of the entropy with the hydrogen/metal ratio that cannot be explained on the basis of a classical solid solution model. The optical behaviour as a function of its hydrogen content makes hafnium well-suited for use as a hydrogen detection material. PMID:28580959

  16. Wearable sweat detector device design for health monitoring and clinical diagnosis

    NASA Astrophysics Data System (ADS)

    Wu, Qiuchen; Zhang, Xiaodong; Tian, Bihao; Zhang, Hongyan; Yu, Yang; Wang, Ming

    2017-06-01

    Miniaturized sensor is necessary part for wearable detector for biomedical applications. Wearable detector device is indispensable for online health care. This paper presents a concept of an wearable digital health monitoring device design for sweat analysis. The flexible sensor is developed to quantify the amount of hydrogen ions in sweat and skin temperature in real time. The detection system includes pH sensor, temperature sensor, signal processing module, power source, microprocessor, display module and so on. The sweat monitoring device is designed for sport monitoring or clinical diagnosis.

  17. Highly Sensitive and Selective Hydrogen Gas Sensor Using the Mesoporous SnO2 Modified Layers

    PubMed Central

    Xue, Niuzi; Zhang, Qinyi; Zhang, Shunping; Zong, Pan; Yang, Feng

    2017-01-01

    It is important to improve the sensitivities and selectivities of metal oxide semiconductor (MOS) gas sensors when they are used to monitor the state of hydrogen in aerospace industry and electronic field. In this paper, the ordered mesoporous SnO2 (m-SnO2) powders were prepared by sol-gel method, and the morphology and structure were characterized by X-ray diffraction analysis (XRD), transmission electron microscope (TEM) and Brunauer–Emmett–Teller (BET). The gas sensors were fabricated using m-SnO2 as the modified layers on the surface of commercial SnO2 (c-SnO2) by screen printing technology, and tested for gas sensing towards ethanol, benzene and hydrogen with operating temperatures ranging from 200 °C to 400 °C. Higher sensitivity was achieved by using the modified m-SnO2 layers on the c-SnO2 gas sensor, and it was found that the S(c/m2) sensor exhibited the highest response (Ra/Rg = 22.2) to 1000 ppm hydrogen at 400 °C. In this paper, the mechanism of the sensitivity and selectivity improvement of the gas sensors is also discussed. PMID:29036898

  18. Improved Sensitivity with Low Limit of Detection of a Hydrogen Gas Sensor Based on rGO-Loaded Ni-Doped ZnO Nanostructures.

    PubMed

    Bhati, Vijendra Singh; Ranwa, Sapana; Rajamani, Saravanan; Kumari, Kusum; Raliya, Ramesh; Biswas, Pratim; Kumar, Mahesh

    2018-04-04

    We report enhanced hydrogen-gas-sensing performance of a Ni-doped ZnO sensor decorated with the optimum concentration of reduced graphene oxide (rGO). Ni-doped ZnO nanoplates were grown by radio frequency sputtering, rGO was synthesized by Hummer's method and decorated by the drop cast method of various concentration of rGO (0-1.5 wt %). The current-voltage characteristics of the rGO-loaded sensor are highly influenced by the loading concentration of rGO, where current conduction decreases and sensor resistance increases as the rGO concentration is increased up to 0.75 wt % because of the formation of various Schottky heterojunctions at rGO/ZnO interfaces. With the combined effect of more active site availability and formation of various p-n heterojunctions due to the optimum loading concentration of rGO (0.75 wt %), the sensor shows the maximum sensing response of ∼63.8% for 100 ppm hydrogen at moderate operating temperature (150 °C). The rGO-loaded sensors were able to detect a minimum of 1 ppm hydrogen concentration and showed high selectivity. However, a further increase in the rGO concentration (1.5 wt %) leads to the reduction of the relative response of hydrogen gas, ascribed to the formation of interconnections of rGO between electrodes. Therefore, it reduces the total resistance of the sensor and minimizes the effect of p-n heterojunction on sensor response.

  19. Positron Spectroscopy of Nanodiamonds after Hydrogen Sorption

    PubMed Central

    Laptev, Roman; Abzaev, Yuri; Lider, Andrey; Ivashutenko, Alexander

    2018-01-01

    The structure and defects of nanodiamonds influence the hydrogen sorption capacity. Positronium can be used as a sensor for detecting places with the most efficient capture of hydrogen atoms. Hydrogenation of carbon materials was performed from gas atmosphere. The concentration of hydrogen absorbed by the sample depends on the temperature and pressure. The concentration 1.2 wt % is achieved at the temperature of 243 K and the pressure of 0.6 MPa. The hydrogen saturation of nanodiamonds changes the positron lifetime. Increase of sorption cycle numbers effects the positron lifetime, as well as the parameters of the Doppler broadening of annihilation line. The electron-positron annihilation being a sensitive method, it allows detecting the electron density fluctuation of the carbon material after hydrogen saturation. PMID:29324712

  20. Low-Dimensional Palladium Nanostructures for Fast and Reliable Hydrogen Gas Detection

    PubMed Central

    Noh, Jin-Seo; Lee, Jun Min; Lee, Wooyoung

    2011-01-01

    Palladium (Pd) has received attention as an ideal hydrogen sensor material due to its properties such as high sensitivity and selectivity to hydrogen gas, fast response, and operability at room temperature. Interestingly, various Pd nanostructures that have been realized by recent developments in nanotechnologies are known to show better performance than bulk Pd. This review highlights the characteristic properties, issues, and their possible solutions of hydrogen sensors based on the low-dimensional Pd nanostructures with more emphasis on Pd thin films and Pd nanowires. The finite size effects, relative strengths and weaknesses of the respective Pd nanostructures are discussed in terms of performance, manufacturability, and practical applicability. PMID:22346605

  1. Integrated Amorphous Silicon p-i-n Temperature Sensor for CMOS Photonics.

    PubMed

    Rao, Sandro; Pangallo, Giovanni; Della Corte, Francesco Giuseppe

    2016-01-06

    Hydrogenated amorphous silicon (a-Si:H) shows interesting optoelectronic and technological properties that make it suitable for the fabrication of passive and active micro-photonic devices, compatible moreover with standard microelectronic devices on a microchip. A temperature sensor based on a hydrogenated amorphous silicon p-i-n diode integrated in an optical waveguide for silicon photonics applications is presented here. The linear dependence of the voltage drop across the forward-biased diode on temperature, in a range from 30 °C up to 170 °C, has been used for thermal sensing. A high sensitivity of 11.9 mV/°C in the bias current range of 34-40 nA has been measured. The proposed device is particularly suitable for the continuous temperature monitoring of CMOS-compatible photonic integrated circuits, where the behavior of the on-chip active and passive devices are strongly dependent on their operating temperature.

  2. AOI [3] High-Temperature Nano-Derived Micro-H 2 and - H 2S Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabolsky, Edward M.

    2014-08-01

    The emissions from coal-fired power plants remain a significant concern for air quality. This environmental challenge must be overcome by controlling the emission of sulfur dioxide (SO 2) and hydrogen sulfide (H 2S) throughout the entire coal combustion process. One of the processes which could specifically benefit from robust, low cost, and high temperature compatible gas sensors is the coal gasification process which converts coal and/or biomass into syngas. Hydrogen (H 2), carbon monoxide (CO) and sulfur compounds make up 33%, 43% and 2% of syngas, respectively. Therefore, development of a high temperature (>500°C) chemical sensor for in-situ monitoring ofmore » H 2, H 2S and SO2 2 levels during coal gasification is strongly desired. The selective detection of SO 2/H 2S in the presence of H 2, is a formidable task for a sensor designer. In order to ensure effective operation of these chemical sensors, the sensor system must inexpensively function within harsh temperature and chemical environment. Currently available sensing approaches, which are based on gas chromatography, electrochemistry, and IR-spectroscopy, do not satisfy the required cost and performance targets. This work focused on the development microsensors that can be applied to this application. In order to develop the high- temperature compatible microsensor, this work addressed various issues related to sensor stability, selectivity, and miniaturization. In the research project entitled “High-Temperature Nano-Derived Micro-H 2 and -H 2S Sensors”, the team worked to develop micro-scale, chemical sensors and sensor arrays composed of nano-derived, metal-oxide composite materials to detect gases like H 2, SO 2, and H 2S within high-temperature environments (>500°C). The research was completed in collaboration with NexTech Materials, Ltd. (Lewis Center, Ohio). NexTech assisted in the testing of the sensors in syngas with contaminate levels of H 2S. The idea of including nanomaterials as the sensing material within resistive-type chemical sensor platforms was to increase the sensitivity (as shown for room temperature applications). Unfortunately, nanomaterials are not stable at high temperatures due to sintering and coarsening processes that are driven by their high surface to volume ratio. Therefore, new hydrogen and sulfur selective nanomaterial systems with high selectivity and stability properties in the proposed harsh environment were investigated. Different nano-morphologies of zirconate, molybdate, and tungstate compounds were investigated. The fabrication of the microsensors consisted of the deposition of the selective nanomaterial systems over metal based interconnects on an inert substrate. This work utilized the chemi-resistive (resistive- type) microsensor architecture where the chemically and structurally stable, high temperature compatible electrodes were sputtered onto a ceramic substrate. The nanomaterial sensing systems were deposited over the electrodes using a lost mold method patterned by conventional optical lithography. The microsensor configuration with optimized nanomaterial system was tested and compared to a millimeter-size sensor e outcomes of this research will contribute to the economical application of sensor arrays for simultaneous sensing of H 2, H 2S, and SO 2.« less

  3. Large scale production of densified hydrogen to the triple point and below

    NASA Astrophysics Data System (ADS)

    Swanger, A. M.; Notardonato, W. U.; E Fesmire, J.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.

    2017-12-01

    Recent demonstration of advanced liquid hydrogen storage techniques using Integrated Refrigeration and Storage technology at NASA Kennedy Space Center led to the production of large quantities of densified liquid and slush hydrogen in a 125,000 L tank. Production of densified hydrogen was performed at three different liquid levels and LH2 temperatures were measured by twenty silicon diode temperature sensors. Overall densification performance of the system is explored, and solid mass fractions are calculated. Experimental data reveal hydrogen temperatures dropped well below the triple point during testing, and were continuing to trend downward prior to system shutdown. Sub-triple point temperatures were seen to evolve in a time dependent manner along the length of the horizontal, cylindrical vessel. The phenomenon, observed at two fill levels, is detailed herein. The implications of using IRAS for energy storage, propellant densification, and future cryofuel systems are discussed.

  4. Large Scale Production of Densified Hydrogen to the Triple Point and Below

    NASA Technical Reports Server (NTRS)

    Swanger, A. M.; Notardonato, W. U.; Fesmire, J. E.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.

    2017-01-01

    Recent demonstration of advanced liquid hydrogen storage techniques using Integrated Refrigeration and Storage technology at NASA Kennedy Space Center led to the production of large quantities of densified liquid and slush hydrogen in a 125,000 L tank. Production of densified hydrogen was performed at three different liquid levels and LH2 temperatures were measured by twenty silicon diode temperature sensors. Overall densification performance of the system is explored, and solid mass fractions are calculated. Experimental data reveal hydrogen temperatures dropped well below the triple point during testing, and were continuing to trend downward prior to system shutdown. Sub-triple point temperatures were seen to evolve in a time dependent manner along the length of the horizontal, cylindrical vessel. The phenomenon, observed at two fill levels, is detailed herein. The implications of using IRAS for energy storage, propellant densification, and future cryofuel systems are discussed.

  5. Hydrogen gas sensing feature of polyaniline/titania (rutile) nanocomposite at environmental conditions

    NASA Astrophysics Data System (ADS)

    Milani Moghaddam, Hossain; Nasirian, Shahruz

    2014-10-01

    The resistance-based sensors of polyaniline/titania (rutile) nanocomposite (TPNC) were prepared by spin coating technique onto an epoxy glass substrate with Cu-interdigited electrodes to study their hydrogen (H2) gas sensing features. Our findings are that the change of the surface morphology, porosity and wt% of titania in TPNCs have a significant effect on H2 gas sensing of sensors. All of the sensors had a reproducibility response toward 0.8 vol% H2 gas at room temperature, air pressure and 50% relative humidity. A sensor with 40 wt% of titania nanoparticles had better response/recovery time and the response than other sensors. Moreover, H2 gas sensing mechanism of TPNC sensors based contact areas and the correlation of energy levels between PANI chains and the titania grains were studied.

  6. Joule heating a palladium nanowire sensor for accelerated response and recovery to hydrogen gas.

    PubMed

    Yang, Fan; Taggart, David K; Penner, Reginald M

    2010-07-05

    The properties of a single heated palladium (Pd) nanowire for the detection of hydrogen gas (H(2)) are explored. In these experiments, a Pd nanowire, 48-98 microm in length, performs three functions in parallel: 1) Joule self-heating is used to elevate the nanowire temperature by up to 128 K, 2) the 4-contact wire resistance in the absence of H(2) is used to measure its temperature, and 3) the nanowire resistance in the presence of H(2) is correlated with its concentration, allowing it to function as a H(2) sensor. Compared with the room-temperature response of a Pd nanowire, the response of the heated nanowire to hydrogen is altered in two ways: First, the resistance change (DeltaR/R(0)) induced by H(2) exposure at any concentration is reduced by a factor of up to 30 and second, the rate of the resistance change - observed at the beginning ("response") and at the end ("recovery") of a pulse of H(2) - is increased by more than a factor of 50 at some H(2) concentrations. Heating nearly eliminates the retardation of response and recovery seen from 1-2% H(2), caused by the alpha --> beta phase transition of PdH(x), a pronounced effect for nanowires at room temperature. The activation energies associated with sensor response and recovery are measured and interpreted.

  7. High-Sensitivity and Low-Power Flexible Schottky Hydrogen Sensor Based on Silicon Nanomembrane.

    PubMed

    Cho, Minkyu; Yun, Jeonghoon; Kwon, Donguk; Kim, Kyuyoung; Park, Inkyu

    2018-04-18

    High-performance and low-power flexible Schottky diode-based hydrogen sensor was developed. The sensor was fabricated by releasing Si nanomembrane (SiNM) and transferring onto a plastic substrate. After the transfer, palladium (Pd) and aluminum (Al) were selectively deposited as a sensing material and an electrode, respectively. The top-down fabrication process of flexible Pd/SiNM diode H 2 sensor is facile compared to other existing bottom-up fabricated flexible gas sensors while showing excellent H 2 sensitivity (Δ I/ I 0 > 700-0.5% H 2 concentrations) and fast response time (τ 10-90 = 22 s) at room temperature. In addition, selectivity, humidity, and mechanical tests verify that the sensor has excellent reliability and robustness under various environments. The operating power consumption of the sensor is only in the nanowatt range, which indicates its potential applications in low-power portable and wearable electronics.

  8. A portable gas sensor based on cataluminescence.

    PubMed

    Kang, C; Tang, F; Liu, Y; Wu, Y; Wang, X

    2013-01-01

    We describe a portable gas sensor based on cataluminescence. Miniaturization of the gas sensor was achieved by using a miniature photomultiplier tube, a miniature gas pump and a simple light seal. The signal to noise ratio (SNR) was considered as the evaluation criteria for the design and testing of the sensor. The main source of noise was from thermal background. Optimal working temperature and flow rate were determined experimentally from the viewpoint of improvement in SNR. A series of parameters related to analytical performance was estimated. The limitation of detection of the sensor was 7 ppm (SNR = 3) for ethanol and 10 ppm (SNR = 3) for hydrogen sulphide. Zirconia and barium carbonate were respectively selected as nano-sized catalysts for ethanol and hydrogen sulphide. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Fiber Bragg Grating Array as a Quasi Distributed Temperature Sensor for Furnace Boiler Applications

    NASA Astrophysics Data System (ADS)

    Reddy, P. Saidi; Prasad, R. L. N. Sai; Sengupta, D.; Shankar, M. Sai; Srimannarayana, K.; Kishore, P.; Rao, P. Vengal

    2011-10-01

    This paper presents the experimental work on distributed temperature sensing making use of Fiber Bragg grating (FBG) array sensor for possible applications in the monitoring of temperature profile in high temperature boilers. A special sensor has been designed for this purpose which consists of four FBGs (of wavelengths λB1 = 1547.28 nm, λB2 = 1555.72 nm, λB3 = 1550.84 nm, λB4 = 1545.92 nm) written in hydrogen loaded fiber in line with a spacing of 15 cm between them. All the FBGs are encapsulated inside a stainless steel tube for avoiding micro cracks using rigid probe technique. The spatial distribution of temperature profile inside a prototype boiler has been measured experimentally both in horizontal and vertical directions employing the above sensor and the results are presented.

  10. Potential to Detect Hydrogen Concentration Gradients with Palladium Infused Mesoporous-Titania on D-Shaped Optical Fiber.

    PubMed

    Poole, Zsolt L; Ohodnicki, Paul R; Yan, Aidong; Lin, Yuankun; Chen, Kevin P

    2017-01-27

    A distributed sensing capable high temperature D-shaped optical fiber modified with a palladium nanoparticle sensitized mesoporous (∼5 nm) TiO 2 film, is demonstrated. The refractive index of the TiO 2 film was reduced using block copolymer templating in order to realize a mesoporous matrix, accommodating integration with optical fiber. The constructed sensor was analyzed by performing direct transmission loss measurements, and by analyzing the behavior of an integrated fiber Bragg grating. The inscribed grating should reveal whether the refractive index of the composite film experiences changes upon exposure to hydrogen. In addition, with frequency domain reflectometry the distributed sensing potential of the developed sensor for hydrogen concentrations of up to 10% is examined. The results show the possibility of detecting chemical gradients with sub-cm resolution at temperatures greater than 500 °C.

  11. Miniaturized Metal (Metal Alloy)/PdO(x)/SiC Hydrogen and Hydrocarbon Gas Sensors

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor); Lukco, Dorothy (Inventor)

    2008-01-01

    A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO(x)). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600 C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sided sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.

  12. Methanol, ethanol and hydrogen sensing using metal oxide and metal (TiO(2)-Pt) composite nanoclusters on GaN nanowires: a new route towards tailoring the selectivity of nanowire/nanocluster chemical sensors.

    PubMed

    Aluri, Geetha S; Motayed, Abhishek; Davydov, Albert V; Oleshko, Vladimir P; Bertness, Kris A; Sanford, Norman A; Mulpuri, Rao V

    2012-05-04

    We demonstrate a new method for tailoring the selectivity of chemical sensors using semiconductor nanowires (NWs) decorated with metal and metal oxide multicomponent nanoclusters (NCs). Here we present the change of selectivity of titanium dioxide (TiO(2)) nanocluster-coated gallium nitride (GaN) nanowire sensor devices on the addition of platinum (Pt) nanoclusters. The hybrid sensor devices were developed by fabricating two-terminal devices using individual GaN NWs followed by the deposition of TiO(2) and/or Pt nanoclusters (NCs) using the sputtering technique. This paper present the sensing characteristics of GaN/(TiO(2)-Pt) nanowire-nanocluster (NWNC) hybrids and GaN/(Pt) NWNC hybrids, and compare their selectivity with that of the previously reported GaN/TiO(2) sensors. The GaN/TiO(2) NWNC hybrids showed remarkable selectivity to benzene and related aromatic compounds, with no measurable response for other analytes. Addition of Pt NCs to GaN/TiO(2) sensors dramatically altered their sensing behavior, making them sensitive only to methanol, ethanol and hydrogen, but not to any other chemicals we tested. The GaN/(TiO(2)-Pt) hybrids were able to detect ethanol and methanol concentrations as low as 100 nmol mol(-1) (ppb) in air in approximately 100 s, and hydrogen concentrations from 1 µmol mol(-1) (ppm) to 1% in nitrogen in less than 60 s. However, GaN/Pt NWNC hybrids showed limited sensitivity only towards hydrogen and not towards any alcohols. All these hybrid sensors worked at room temperature and are photomodulated, i.e. they responded to analytes only in the presence of ultraviolet (UV) light. We propose a qualitative explanation based on the heat of adsorption, ionization energy and solvent polarity to explain the observed selectivity of the different hybrids. These results are significant from the standpoint of applications requiring room-temperature hydrogen sensing and sensitive alcohol monitoring. These results demonstrate the tremendous potential for tailoring the selectivity of the hybrid nanosensors for a multitude of environmental and industrial sensing applications.

  13. Hydrogen sensor based on Sm-doped SnO{sub 2} nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Gurpreet; Hastir, Anita; Singh, Ravi Chand, E-mail: ravichand.singh@gmail.com

    2016-05-23

    In this paper the effect of samarium doping on the structural and hydrogen gas sensing properties of SnO{sub 2} nanoparticles has been reported. X-ray Diffraction (XRD) results revealed tetragonal rutile structure of both undoped and Sm-doped SnO{sub 2} nanoparticles. It has been observed that doping with samarium led to reduction in crystallite size of SnO{sub 2} nanoparticles which was confirmed from XRD analysis. Shifting and broadening of Raman peaks in case of doped nanoparticles has been explained by well-known phonon confinement model. The optimum operable temperature of both the sensors was found to 400 °C and the sensor response towardsmore » hydrogen gas has been improved after doping with samarium which was attributed to increase in sensing sites for the gas adsorption.« less

  14. Optical high temperature sensor based on fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Zhang, Bowei

    The aim of this thesis is to fabricate a fiber Bragg grating (FBG) temperature sensor that is capable to measure temperatures in excess of 1100°C. For this purpose, two topics have been studied and investigated during this project. One of them is the development of a high temperature resistant molecular-water induced FBGs; and the other is to investigate the effect of microwave-irradiation on the hydrogen-loaded FBG. The molecular-water induced FBGs are different from the other types of FBG. In these devices the refractive index is modulated by the periodic changes of molecular-water concentration within the grating. The device was developed using thermal annealing technology based on hydrogen-load FBG. Thermal stability of these devices was studied by measuring the grating reflectivity from room temperature to 1000°C. The stability of the device was tested by examining the FBG reflectivity for a period of time at certain temperatures. The results show that these devices are extremely stable at temperatures in excess of 1000°C. The hydroxyl concentration in the grating has been also investigated during this thesis. Based on the knowledge of hydroxyl groups inside FBG, a microwave treatment was designed to increase the hydroxyl concentration in the FBG area. The results show that the molecular-water induced grating, which was fabricated using microwave radiated hydrogen-loaded FBI, are stable at temperatures above 1100°C.

  15. Chemochromic detector for sensing gas leakage and process for producing the same

    NASA Technical Reports Server (NTRS)

    Roberson, Luke B. (Inventor); Williams, Martha K. (Inventor); Captain, Janine E. (Inventor); Smith, Trent M. (Inventor); Tate, LaNetra Clayton (Inventor)

    2012-01-01

    A chemochromic sensor for detecting a combustible gas, such as hydrogen, includes a chemochromic pigment mechanically mixed with a polymer and formed into a rigid or pliable material. In a preferred embodiment, the chemochromic detector includes aerogel material. The detector is robust and easily modifiable for a variety of applications and environmental conditions, such as atmospheres of inert gas, hydrogen gas, or mixtures of gases, or in environments that have variable temperature, including high temperatures such as above 100.degree. C. and low temperatures such as below -196.degree. C.

  16. Photonic crystal fiber modal interferometer with Pd/WO3 coating for real-time monitoring of dissolved hydrogen concentration in transformer oil

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-nan; Wu, Qilu; Peng, Huijie; Zhao, Yong

    2016-12-01

    A highly-sensitive and temperature-robust photonic crystal fiber (PCF) modal interferometer coated with Pd/WO3 film was fabricated and studied, aiming for real-time monitoring of dissolved hydrogen concentration in transformer oil. The sensor probe was fabricated by splicing two segments of a single mode fiber (SMF) with both ends of the PCF. Since the collapse of air holes in the PCF in the interfaces between SMF and PCF, a SMF-PCF-SMF interferometer structure was formed. The Pd/WO3 film was fabricated by sol-gel method and coated on the surface of the PCF by dip-coating method. When the Pd/WO3 film is exposed to hydrogen, both the length and cladding refractive index of the PCF would be changed, resulting in the resonant wavelength shift of the interferometer. Experimental results showed that the hydrogen measurement sensitivity of the proposed sensor can reach 0.109 pm/(μl/l) in the transformer oil, with the measurement range of 0-10 000 μl/l and response time less than 33 min. Besides, the proposed sensor was temperature-insensitive without any compensation process, easy to fabricate without any tapering, polishing, or etching process, low cost and quickly response without any oil-gas separation device. All these performances satisfy the actual need of real-time monitoring of dissolved hydrogen concentration in the transformer oil.

  17. Photonic crystal fiber modal interferometer with Pd/WO3 coating for real-time monitoring of dissolved hydrogen concentration in transformer oil.

    PubMed

    Zhang, Ya-Nan; Wu, Qilu; Peng, Huijie; Zhao, Yong

    2016-12-01

    A highly-sensitive and temperature-robust photonic crystal fiber (PCF) modal interferometer coated with Pd/WO 3 film was fabricated and studied, aiming for real-time monitoring of dissolved hydrogen concentration in transformer oil. The sensor probe was fabricated by splicing two segments of a single mode fiber (SMF) with both ends of the PCF. Since the collapse of air holes in the PCF in the interfaces between SMF and PCF, a SMF-PCF-SMF interferometer structure was formed. The Pd/WO 3 film was fabricated by sol-gel method and coated on the surface of the PCF by dip-coating method. When the Pd/WO 3 film is exposed to hydrogen, both the length and cladding refractive index of the PCF would be changed, resulting in the resonant wavelength shift of the interferometer. Experimental results showed that the hydrogen measurement sensitivity of the proposed sensor can reach 0.109 pm/(μl/l) in the transformer oil, with the measurement range of 0-10 000 μl/l and response time less than 33 min. Besides, the proposed sensor was temperature-insensitive without any compensation process, easy to fabricate without any tapering, polishing, or etching process, low cost and quickly response without any oil-gas separation device. All these performances satisfy the actual need of real-time monitoring of dissolved hydrogen concentration in the transformer oil.

  18. Miniaturized metal (metal alloy)/ PdO.sub.x/SiC hydrogen and hydrocarbon gas sensors

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor); Lukco, Dorothy (Inventor)

    2011-01-01

    A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO.sub.x ). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600.degree. C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sized sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.

  19. Miniaturized metal (metal alloy)/ PdO.sub.x/SiC hydrogen and hydrocarbon gas sensors

    NASA Technical Reports Server (NTRS)

    Xu, Jennifer C. (Inventor); Hunter, Gary W. (Inventor); Lukco, Dorothy (Inventor)

    2008-01-01

    A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO.sub.x). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600.degree. C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sized sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.

  20. A High-Temperature MEMS Surface Fence for Wall-Shear-Stress Measurement in Scramjet Flow

    PubMed Central

    Ma, Binghe; Deng, Jinjun; Yuan, Weizheng; Zhou, Zitong; Zhang, Han

    2017-01-01

    A new variant of MEMS surface fence is proposed for shear-stress estimation under high-speed, high-temperature flow conditions. Investigation of high-temperature resistance including heat-resistant mechanism and process, in conjunction with high-temperature packaging design, enable the sensor to be used in environment up to 400 °C. The packaged sensor is calibrated over a range of ~65 Pa and then used to examine the development of the transient flow of the scramjet ignition process (Mach 2 airflow, stagnation pressure, and a temperature of 0.8 MPa and 950 K, respectively). The results show that the sensor is able to detect the transient flow conditions of the scramjet ignition process including shock impact, flow correction, steady state, and hydrogen off. PMID:29065498

  1. A High-Temperature MEMS Surface Fence for Wall-Shear-Stress Measurement in Scramjet Flow.

    PubMed

    Ma, Chengyu; Ma, Binghe; Deng, Jinjun; Yuan, Weizheng; Zhou, Zitong; Zhang, Han

    2017-10-22

    A new variant of MEMS surface fence is proposed for shear-stress estimation under high-speed, high-temperature flow conditions. Investigation of high-temperature resistance including heat-resistant mechanism and process, in conjunction with high-temperature packaging design, enable the sensor to be used in environment up to 400 °C. The packaged sensor is calibrated over a range of ~65 Pa and then used to examine the development of the transient flow of the scramjet ignition process (Mach 2 airflow, stagnation pressure, and a temperature of 0.8 MPa and 950 K, respectively). The results show that the sensor is able to detect the transient flow conditions of the scramjet ignition process including shock impact, flow correction, steady state, and hydrogen off.

  2. Development of a Hydrogen Gas Sensor Using a Double Saw Resonator System at Room Temperature

    PubMed Central

    Yunusa, Zainab; Hamidon, Mohd Nizar; Ismail, Alyani; Isa, Maryam Mohd; Yaacob, Mohd Hanif; Rahmanian, Saeed; Ibrahim, Siti Azlida; Shabaneh, Arafat A.A

    2015-01-01

    A double SAW resonator system was developed as a novel method for gas sensing applications. The proposed system was investigated for hydrogen sensing. Commercial Surface Acoustic Wave (SAW) resonators with resonance frequencies of 433.92 MHz and 433.42 MHz were employed in the double SAW resonator system configuration. The advantages of using this configuration include its ability for remote measurements, and insensitivity to vibrations and other external disturbances. The sensitive layer is composed of functionalized multiwalled carbon nanotubes and polyaniline nanofibers which were deposited on pre-patterned platinum metal electrodes fabricated on a piezoelectric substrate. This was mounted into the DSAWR circuit and connected in parallel. The sensor response was measured as the difference between the resonance frequencies of the SAW resonators, which is a measure of the gas concentration. The sensor showed good response towards hydrogen with a minimum detection limit of 1%. PMID:25730480

  3. Color Changing Hydrogen Sensors

    NASA Technical Reports Server (NTRS)

    Roberson, Luke B.; Williams, Martha; Captain, Janine E.; Mohajeri, Nahid; Raissi, Ali

    2015-01-01

    During the Space Shuttle Program, one of the most hazardous operation that occurred was the loading of liquid hydrogen (LH2) during fueling operations of the spacecraft. Due to hydrogen's low explosive limit, any amount leaked could lead to catastrophic event. Hydrogen's chemical properties make it ideal as a rocket fuel; however, the fuel is deemed unsafe for most commercial use because of the inability to easily detect the gas leaking. The increased use of hydrogen over traditional fossil fuels would reduce greenhouse gases and America's dependency on foreign oil. Therefore a technology that would improve safety at NASA and in the commercial sector while creating a new economic sector would have a huge impact to NASA's mission. The Chemochromic Detector for sensing hydrogen gas leakage is a color-changing detector that is useful in any application where it is important to know not only the presence but also the location of the hydrogen gas leak. This technology utilizes a chemochromicpigment and polymer matrix that can be molded or spun into rigid or pliable shapes useable in variable temperature environments including atmospheres of inert gas, hydrogen gas, or mixtures of gases. A change in color of the detector material indicates where gaseous hydrogen leaks are occurring. The irreversible sensor has a dramatic color change from beige to dark grey and remains dark grey after exposure. A reversible pigment changes from white to blue in the presence of hydrogen and reverts back to white in the presence of oxygen. Both versions of the sensor's pigments were comprised of a mixture of a metal oxide substrate and a hydro-chromic compound (i.e., the compound that changed color in the presence of hydrogen) and immediately notified the operator of the presence of low levels of hydrogen. The detector can be used in a variety of formats including paint, tape, caulking, injection molded parts, textiles and fabrics, composites, and films. This technology brings numerous benefits over the traditional hydrogen sensors: The technology has excellent temperature stability (4K to 373 K), it can be used in cryogenic fluid applications, it is easy to apply and remove; it requires no power to operate; it has a quick response time; the leak points can be detected visually or electronically; it is nonhazardous, thus environmentally friendly; it can be reversible or irreversible; it does not require on-site monitoring; has a long shelf life; the detector is very durable; and the technology is inexpensive to manufacture.

  4. Room-temperature CO Thermoelectric Gas Sensor based on Au/Co3O4 Catalyst Tablet.

    PubMed

    Sun, L; Luan, W L; Wang, T C; Su, W X; Zhang, L X

    2017-02-17

    A carbon monoxide (CO) thermoelectric (TE) gas sensor was fabricated by affixing a Au/Co 3 O 4 catalyst tablet on a TE film layer. The Au/Co 3 O 4 catalyst tablet was prepared by a co-precipitation and tablet compression method and its possible catalytic mechanism was discussed by means of x-ray diffraction, field emission scanning electron microscopy, high resolution transmission electron microscopy, x-ray photoelectron spectroscopy, temperature-programmed reduction of hydrogen, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller analysis. The optimal catalyst, with a Au content of 10 wt%, was obtained at a calcination temperature between 200 and 300 °C. The small size of the Au nanoparticles, high specific surface, the existence of Co 3+ and water-derived species contributed to  high catalytic activity. Based on the optimal Au/Co 3 O 4 catalyst tablet, the CO TE gas sensor worked at room temperature and showed a response voltage signal (ΔV) of 23 mV, high selectivity among hydrogen and methane, high stability, and a fast response time of 106 s for 30 000 ppm CO/air. In addition, a CO concentration in the range of 5000-30 000 ppm could obviously be detected and exhibited a linear relationship with ΔV. The CO TE gas sensor provides a promising option for the detection of CO gas at room temperature.

  5. Highly sensitive hydrogen sulfide (H2 S) gas sensors from viral-templated nanocrystalline gold nanowires

    NASA Astrophysics Data System (ADS)

    Moon, Chung Hee; Zhang, Miluo; Myung, Nosang V.; Haberer, Elaine D.

    2014-04-01

    A facile, site-specific viral-templated assembly method was used to fabricate sensitive hydrogen sulfide (H2S) gas sensors at room temperature. A gold-binding M13 bacteriophage served to organize gold nanoparticles into linear arrays which were used as seeds for subsequent nanowire formation through electroless deposition. Nanowire widths and densities within the sensors were modified by electroless deposition time and phage concentration, respectively, to tune device resistance. Chemiresistive H2S gas sensors with superior room temperature sensing performance were produced with sensitivity of 654%/ppmv, theoretical lowest detection limit of 2 ppbv, and 70% recovery within 9 min for 0.025 ppmv. The role of the viral template and associated gold-binding peptide was elucidated by removing organics using a short O2 plasma treatment followed by an ethanol dip. The template and gold-binding peptide were crucial to electrical and sensor performance. Without surface organics, the resistance fell by several orders of magnitude, the sensitivity dropped by more than a factor of 100 to 6%/ppmv, the lower limit of detection increased, and no recovery was detected with dry air flow. Viral templates provide a novel, alternative fabrication route for highly sensitive, nanostructured H2S gas sensors.

  6. Toward hydrogen detection at room temperature with printed ZnO nanoceramics films activated with halogen lighting

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Son; Jubera, Véronique; Garcia, Alain; Debéda, Hélène

    2015-12-01

    Though semiconducting properties of ZnO have been extensively investigated under hazardous gases, research is still necessary for low-cost sensors working at room temperature. Study of printed ZnO nanopowders-based sensors has been undertaken for hydrogen detection. A ZnO paste made with commercial nanopowders is deposited onto interdigitated Pt electrodes and sintered at 400 °C. The ZnO layer structure and morphology are first examined by XRD, SEM, AFM and emission/excitation spectra prior to the study of the effect of UV-light on the electrical conduction of the semiconductor oxide. The response to hydrogen exposure is subsequently examined, showing that low UV-light provided by halogen lighting enhances the gas response and allows detection at room temperature with gas responses similar to those obtained in dark conditions at 150 °C. A gas response of 44% (relative change in current) under 300 ppm is obtained at room temperature. Moreover, it is demonstrated that very low UV-light power (15 μW/mm2) provided by the halogen lamp is sufficient to give sensitivities as high as those for much higher powers obtained with a UV LED (7.7 mW/mm2). These results are comparable to those obtained by others for 1D or 2D ZnO nanostructures working at room temperature or at temperatures up to 250 °C.

  7. Remarkably Enhanced Room-Temperature Hydrogen Sensing of SnO₂ Nanoflowers via Vacuum Annealing Treatment.

    PubMed

    Liu, Gao; Wang, Zhao; Chen, Zihui; Yang, Shulin; Fu, Xingxing; Huang, Rui; Li, Xiaokang; Xiong, Juan; Hu, Yongming; Gu, Haoshuang

    2018-03-23

    In this work, SnO₂ nanoflowers synthesized by a hydrothermal method were employed as hydrogen sensing materials. The as-synthesized SnO₂ nanoflowers consisted of cuboid-like SnO₂ nanorods with tetragonal structures. A great increase in the relative content of surface-adsorbed oxygen was observed after the vacuum annealing treatment, and this increase could have been due to the increase in surface oxygen vacancies serving as preferential adsorption sites for oxygen species. Annealing treatment resulted in an 8% increase in the specific surface area of the samples. Moreover, the conductivity of the sensors decreased after the annealing treatment, which should be attributed to the increase in electron scattering around the defects and the compensated donor behavior of the oxygen vacancies due to the surface oxygen adsorption. The hydrogen sensors of the annealed samples, compared to those of the unannealed samples, exhibited a much higher sensitivity and faster response rate. The sensor response factor and response rate increased from 27.1% to 80.2% and 0.34%/s to 1.15%/s, respectively. This remarkable enhancement in sensing performance induced by the annealing treatment could be attributed to the larger specific surface areas and higher amount of surface-adsorbed oxygen, which provides a greater reaction space for hydrogen. Moreover, the sensors with annealed SnO₂ nanoflowers also exhibited high selectivity towards hydrogen against CH₄, CO, and ethanol.

  8. Synthesis, Fabrication and Characterization of ZnO-Based Thin Films Prepared by Sol-Gel Process and H2 Gas Sensing Performance

    NASA Astrophysics Data System (ADS)

    Dey, Anup; Roy, Subhashis; Sarkar, Subir Kumar

    2018-03-01

    In this paper, an attempt is made to deposit ZnO thin films using sol-gel process followed by dip-coating method on p-silicon (100) substrates for intended application as a hydrogen gas sensor owing to the low toxic nature and thermal stability of ZnO. The thin films are annealed under annealing temperatures of 350, 450 and 550 °C for 25 min. The crystalline quality of the fabricated thin films is then analyzed by field-emission scanning electron microscopy and transmission electron microscope. The gas sensing performance analysis of ZnO thin films is demonstrated at different annealing temperatures and hydrogen gas concentrations ranging from 100 to 3000 ppm. Results obtained show that the sensitivity is significantly improved as annealing temperature increases with maximum sensitivity being achieved at 550 °C annealing temperature and operating temperature of 150 °C. Hence, the modified ZnO thin films can be applicable as H2 gas sensing device showing to the improved performance in comparison with unmodified thin-film sensor.

  9. High-Temperature Proton-Conducting Ceramics Developed

    NASA Technical Reports Server (NTRS)

    Sayir, Ali; Dynys, Frederick W.; Berger, M. H.

    2005-01-01

    High-temperature protonic conductors (HTPC) are needed for hydrogen separation, hydrogen sensors, fuel cells, and hydrogen production from fossil fuels. The HTPC materials for hydrogen separation at high temperatures are foreseen to be metal oxides with the perovskite structure A(sup 2+)B(sup 4+)C(sup 2-, sub 3) and with the trivalent cation (M(sup 3+)) substitution at the B(sup 4+)-site to introduce oxygen vacancies. The high affinity for hydrogen ions (H(sup +)) is advantageous for protonic transport, but it increases the reactivity toward water (H2O) and carbon dioxide (CO2), which can lead to premature membrane failure. In addition, there are considerable technological challenges related to the processing of HTPC materials. The high melting point and multi-cation chemistry of HTPC materials creates difficulties in in achieving high-density, single-phase membranes by solid-state sintering. The presence of secondary phases and grain-boundary interfaces are detrimental to the protonic conduction and environmental stability of polycrystalline HTPC materials.

  10. RETRACTED ARTICLE: Quasi-distributed fiber bragg grating array sensor for furnace applications

    NASA Astrophysics Data System (ADS)

    Reddy, P. Saidi; Sai Prasad, R. L. N.; Sen Gupta, D.; Sai Shankar, M.; Srimannarayana, K.; Ravinder Reddy, P.

    2012-05-01

    An experimental work on distributed temperature sensing making use of the fiber Bragg grating (FBG) array sensor for possible applications in the monitoring of the temperature profile in high temperature boilers is presented. A special sensor has been designed for this purpose which consists of four FBGs (of wavelengths λ B1 =1545.8 nm, λ B2 =1547 nm, λ B3 =1550.8 nm, λ B4 =1555.5 nm at 30 °C) written in the hydrogen-loaded fiber in line. All the FBGs are encapsulated inside a stainless steel tube using the rigid probe technique for avoiding micro cracks. The spatial distribution of the temperature profile inside a prototype boiler was measured experimentally both in horizontal and vertical directions employing the above sensor, and the results are presented. Further, the finite element simulation has been carried out by using ANSYS R11 software to predict temperature contours in the boiler, and the experimental and predicted results were found to be closely matching.

  11. Investigation of the applicability of using the triple redundant hydrogen sensor for methane sensing

    NASA Technical Reports Server (NTRS)

    Lantz, J. B.; Wynveen, R. A.

    1983-01-01

    Application specifications for the methane sensor were assembled and design guidelines, development goals and evaluation criteria were formulated. This was done to provide a framework to evaluate sensor performance and any design adjustments to the preprototype sensor that could be required to provide methane sensitivity. Good response to hydrogen was experimentally established for four hydrogen sensor elements to be later evaluated for methane response. Prior results were assembled and analyzed for other prototype hydrogen sensor performance parameters to form a comparison base. The four sensor elements previously shown to have good hydrogen response were experimentally evaluated for methane response in 2.5% methane-in-air. No response was obtained for any of the elements, despite the high methane concentration used (50% of the Lower Flammability Limit). It was concluded that the preprototype sensing elements were insensitive to methane and were hydrogen specific. Alternative sensor operating conditions and hardware design changes were considered to provide methane sensitivity to the preprototype sensor, including a variety of different methane sensing techniques. Minor changes to the existing sensor elements, sensor geometry and operating conditions will not make the preprototype hydrogen sensor respond to methane. New sensor elements that will provide methane and hydrogen sensitivity require replacement of the existing thermistor type elements. Some hydrogen sensing characteristics of the modified sensor will be compromised (larger in situ calibration gas volume and H2 nonspecificity). The preprototype hydrogen sensor should be retained for hydrogen monitoring and a separate methane sensor should be developed.

  12. Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Hai; Dong, Junhang; Lin, Jerry

    2012-03-01

    This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases. This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

  13. Microfabricated Chemical Sensors for Safety and Emission Control Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Chen, L.-Y.; Knight, D.; Liu, C. C.; Wu, Q. H.

    1998-01-01

    Chemical sensor technology is being developed for leak detection, emission monitoring, and fire safety applications. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication (MicroElectroMechanical Systems (MEMS)-based) technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Using these technologies, sensors to measure hydrogen, hydrocarbons, nitrogen oxides, carbon monoxide, oxygen, and carbon dioxide are being developed. A description is given of each sensor type and its present stage of development. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  14. A long lifetime chemical sensor: study on fluorescence property of fluorescein isothiocyanate and preparation of pH chemical sensor.

    PubMed

    Ma, Li Ying; Wang, Huai You; Xie, Hui; Xu, Li Xiao

    2004-07-01

    The fluorescence property of fluorescein isothiocyanate (FITC) in acid-alkaline medium was studied by spectrofluorimetry. The characteristic of FITC response to hydrogen ion has been examined in acid-alkaline solution. A novel pH chemical sensor was prepared based on the relationship between the relative fluorescence intensity of FITC and pH. The measurement of relative fluorescence intensity was carried out at 362 nm with excitation at 250 nm. The excellent linear relationship was obtained between relative fluorescence intensity and pH in the range of pH 1-5. The linear regression equation of the calibration graph is F = 66.871 + 6.605 pH (F is relative fluorescence intensity), with a correlation coefficient of linear regression of 0.9995. Effects of temperature, concentration of FITC on the response to hydrogen ion had been examined. It was important that this chemical sensor was long lifetime, and the property of response to hydrogen ion was stable for at least 70 days. This pH sensor can be used for measuring pH value in water solution. The accuracy is 0.01 pH unit. The results obtained by the pH sensor agreed with those by the pH meter. Obviously, this pH sensor is potential for determining pH change real time in biological system.

  15. A long lifetime chemical sensor: study on fluorescence property of fluorescein isothiocyanate and preparation of pH chemical sensor

    NASA Astrophysics Data System (ADS)

    Ma, Li Ying; Wang, Huai You; Xie, Hui; Xu, Li Xiao

    2004-07-01

    The fluorescence property of fluorescein isothiocyanate (FITC) in acid-alkaline medium was studied by spectrofluorimetry. The characteristic of FITC response to hydrogen ion has been examined in acid-alkaline solution. A novel pH chemical sensor was prepared based on the relationship between the relative fluorescence intensity of FITC and pH. The measurement of relative fluorescence intensity was carried out at 362 nm with excitation at 250 nm. The excellent linear relationship was obtained between relative fluorescence intensity and pH in the range of pH 1-5. The linear regression equation of the calibration graph is F=66.871+6.605 pH ( F is relative fluorescence intensity), with a correlation coefficient of linear regression of 0.9995. Effects of temperature, concentration of FITC on the response to hydrogen ion had been examined. It was important that this chemical sensor was long lifetime, and the property of response to hydrogen ion was stable for at least 70 days. This pH sensor can be used for measuring pH value in water solution. The accuracy is 0.01 pH unit. The results obtained by the pH sensor agreed with those by the pH meter. Obviously, this pH sensor is potential for determining pH change real time in biological system.

  16. Hydrogen Sensors Using Nitride-Based Semiconductor Diodes: The Role of Metal/Semiconductor Interfaces

    PubMed Central

    Irokawa, Yoshihiro

    2011-01-01

    In this paper, I review my recent results in investigating hydrogen sensors using nitride-based semiconductor diodes, focusing on the interaction mechanism of hydrogen with the devices. Firstly, effects of interfacial modification in the devices on hydrogen detection sensitivity are discussed. Surface defects of GaN under Schottky electrodes do not play a critical role in hydrogen sensing characteristics. However, dielectric layers inserted in metal/semiconductor interfaces are found to cause dramatic changes in hydrogen sensing performance, implying that chemical selectivity to hydrogen could be realized. The capacitance-voltage (C–V) characteristics reveal that the work function change in the Schottky metal is not responsible mechanism for hydrogen sensitivity. The interface between the metal and the semiconductor plays a critical role in the interaction of hydrogen with semiconductor devises. Secondly, low-frequency C–V characterization is employed to investigate the interaction mechanism of hydrogen with diodes. As a result, it is suggested that the formation of a metal/semiconductor interfacial polarization could be attributed to hydrogen-related dipoles. In addition, using low-frequency C–V characterization leads to clear detection of 100 ppm hydrogen even at room temperature where it is hard to detect hydrogen by using conventional current-voltage (I–V) characterization, suggesting that low-frequency C–V method would be effective in detecting very low hydrogen concentrations. PMID:22346597

  17. Advances in Hydrogen, Carbon Dioxide, and Hydrocarbon Gas Sensor Technology Using GaN and ZnO-Based Devices

    PubMed Central

    Anderson, Travis; Ren, Fan; Pearton, Stephen; Kang, Byoung Sam; Wang, Hung-Ta; Chang, Chih-Yang; Lin, Jenshan

    2009-01-01

    In this paper, we review our recent results in developing gas sensors for hydrogen using various device structures, including ZnO nanowires and GaN High Electron Mobility Transistors (HEMTs). ZnO nanowires are particularly interesting because they have a large surface area to volume ratio, which will improve sensitivity, and because they operate at low current levels, will have low power requirements in a sensor module. GaN-based devices offer the advantage of the HEMT structure, high temperature operation, and simple integration with existing fabrication technology and sensing systems. Improvements in sensitivity, recoverability, and reliability are presented. Also reported are demonstrations of detection of other gases, including CO2 and C2H4 using functionalized GaN HEMTs. This is critical for the development of lab-on-a-chip type systems and can provide a significant advance towards a market-ready sensor application. PMID:22408548

  18. Development of High Temperature Gas Sensor Technology

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun

    1997-01-01

    The measurement of engine emissions is important for their monitoring and control. However, the ability to measure these emissions in-situ is limited. We are developing a family of high temperature gas sensors which are intended to operate in harsh environments such as those in an engine. The development of these sensors is based on progress in two types of technology: (1) The development of SiC-based semiconductor technology; and (2) Improvements in micromachining and microfabrication technology. These technologies are being used to develop point-contact sensors to measure gases which are important in emission control especially hydrogen, hydrocarbons, nitrogen oxides, and oxygen. The purpose of this paper is to discuss the development of this point-contact sensor technology. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. Of particular importance is sensor sensitivity, selectivity, and stability in long-term, high temperature operation. An overview is presented of each sensor type with an evaluation of its stage of development. It is concluded that this technology has significant potential for use in engine applications but further development is necessary.

  19. Test Methodologies for Hydrogen Sensor Performance Assessment: Chamber vs. Flow Through Test Apparatus: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttner, William J; Hartmann, Kevin S; Schmidt, Kara

    Certification of hydrogen sensors to standards often prescribes using large-volume test chambers [1, 2]. However, feedback from stakeholders such as sensor manufacturers and end-users indicate that chamber test methods are often viewed as too slow and expensive for routine assessment. Flow through test methods potentially are an efficient, cost-effective alternative for sensor performance assessment. A large number of sensors can be simultaneously tested, in series or in parallel, with an appropriate flow through test fixture. The recent development of sensors with response times of less than 1s mandates improvements in equipment and methodology to properly capture the performance of thismore » new generation of fast sensors; flow methods are a viable approach for accurate response and recovery time determinations, but there are potential drawbacks. According to ISO 26142 [1], flow through test methods may not properly simulate ambient applications. In chamber test methods, gas transport to the sensor can be dominated by diffusion which is viewed by some users as mimicking deployment in rooms and other confined spaces. Alternatively, in flow through methods, forced flow transports the gas to the sensing element. The advective flow dynamics may induce changes in the sensor behaviour relative to the quasi-quiescent condition that may prevail in chamber test methods. One goal of the current activity in the JRC and NREL sensor laboratories [3, 4] is to develop a validated flow through apparatus and methods for hydrogen sensor performance testing. In addition to minimizing the impact on sensor behaviour induced by differences in flow dynamics, challenges associated with flow through methods include the ability to control environmental parameters (humidity, pressure and temperature) during the test and changes in the test gas composition induced by chemical reactions with upstream sensors. Guidelines on flow through test apparatus design and protocols for the evaluation of hydrogen sensor performance are being developed. Various commercial sensor platforms (e.g., thermal conductivity, catalytic and metal semiconductor) were used to demonstrate the advantages and issues with the flow through methodology.« less

  20. Chemochromic Detector for Sensing Gas Leakage and Process for Producing the Same

    NASA Technical Reports Server (NTRS)

    Williams, Martha K. (Inventor); Roberson, Luke B. (Inventor); Smith, Trent M. (Inventor); Tate, LaNetra Clayton (Inventor); Captain, Janine E. (Inventor)

    2014-01-01

    A chemochromic sensor for detecting a combustible gas, such as hydrogen, includes a chemochromic pigment mechanically mixed with a polymer and molded into a rigid or pliable shape. In a preferred embodiment, the chemochromic detector is within the material which is molded into a manufactured part, said part becoming the detector itself. The detector is robust and easily modifiable for a variety of applications and environmental conditions, such as atmospheres of inert gas, hydrogen gas, or mixtures of gases, or in environments that have variable temperature, including high temperatures such as above 100 C. and low temperatures such as below -196 C.

  1. Electronic and Interfacial Properties of PD/6H-SiC Schottky Diode Gas Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Bansal, Gaurav; Petit, Jeremy B.; Knight, Dak; Liu, Chung-Chiun; Wu, Qinghai

    1996-01-01

    Pd/SiC Schottky diodes detect hydrogen and hydrocarbons with high sensitivity. Variation of the diode temperature from 100 C to 200 C shows that the diode sensitivity to propylene is temperature dependent. Long-term heat treating at 425 C up to 140 hours is carried out to determine the effect of extended heat treating on the diode properties and gas sensitivity. The heat treating significantly affects the diode's capacitive characteristics, but the diode's current carrying characteristics are much more stable with a large response to hydrogen. Scanning Electron Microscopy and X-ray Spectrometry studies of the Pd surface after the heating show cluster formation and background regions with grain structure observed in both regions. The Pd and Si concentrations vary between grains. Auger Electron Spectroscopy depth profiles revealed that the heat treating promoted interdiffusion and reaction between the Pd and SiC dw broadened the interface region. This work shows that Pd/SiC Schottky diodes have significant potential as high temperature gas sensors, but stabilization of the structure is necessary to insure their repeatability in long-term, high temperature applications.

  2. Overview of the U.S. DOE Hydrogen Safety, Codes and Standards Program. Part 4: Hydrogen Sensors; Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttner, William J.; Rivkin, Carl; Burgess, Robert

    Hydrogen sensors are recognized as a critical element in the safety design for any hydrogen system. In this role, sensors can perform several important functions including indication of unintended hydrogen releases, activation of mitigation strategies to preclude the development of dangerous situations, activation of alarm systems and communication to first responders, and to initiate system shutdown. The functionality of hydrogen sensors in this capacity is decoupled from the system being monitored, thereby providing an independent safety component that is not affected by the system itself. The importance of hydrogen sensors has been recognized by DOE and by the Fuel Cellmore » Technologies Office's Safety and Codes Standards (SCS) program in particular, which has for several years supported hydrogen safety sensor research and development. The SCS hydrogen sensor programs are currently led by the National Renewable Energy Laboratory, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory. The current SCS sensor program encompasses the full range of issues related to safety sensors, including development of advance sensor platforms with exemplary performance, development of sensor-related code and standards, outreach to stakeholders on the role sensors play in facilitating deployment, technology evaluation, and support on the proper selection and use of sensors.« less

  3. Optimized hydrogen sensing characteristic of Pd/ZnO nanoparticles based Schottky diode on glass substrate

    NASA Astrophysics Data System (ADS)

    Chandra, Lalit; Sahu, Praveen Kumar; Dwivedi, R.; Mishra, V. N.

    2017-10-01

    The present work deals with the development of the Pd/ZnO naoparticles based sensor for detection of hydrogen (H2) gas at relatively low temperature (75-110 °C). Pd/ZnO Schottky diode was fabricated by ZnO nanoparticles based thin film on glass substrate using sol-gel spin coating technique. These ZnO nanoparticles have been characterized by x-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive x-ray spectroscope (EDS), and field emission scanning electron microscope (FE-SEM) which reveals the ZnO film having particles size in the range of ~25 to ~110 nm with ~52.73 nm surface roughness. Gas dependent diode parameters such as barrier height and ideality factor have been evaluated upon exposure of H2 gas concentration in the range from 200-2000 ppm over the temperature range from 75 to 110 °C. The sensitivity of the Pd/ZnO sensor has been studied in terms of change in diode forward current upon exposure to H2 gas. Experimental result shows the optimized sensitivity ~246.22% for H2 concentration of 2000 ppm at temperature 90 °C. The hydrogen sensing mechanism has been explained by surface and subsurface adsorption of H2 molecules on Pd surface; subsequently, dissociation of H2 molecules into H  +  H atoms and diffusion to trap sites (oxygen ions) available on ZnO surface, resulting in formation of dipole moments at Pd/ZnO interface. The variation in the sensitivity, response and recovery time with temperature of Pd/ZnO sensor has also been studied.

  4. Development and Application of Microfabricated Chemical Gas Sensors For Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Fralick, G.; Thomas, V.; Liu, C. C.; Wu, Q. H.; Sawayda, M. S.; Jin, A.; Hammond, J.; Makel, D.; hide

    1990-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring and control, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. This paper discusses the needs of space applications and the point-contact sensor technology being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (Nox, carbon monoxide, oxygen, and carbon dioxide are being developed. A description is given of each sensor type and its present stage of development. Demonstration and application these sensor technologies will be described. The demonstrations range from use of a microsystem based hydrogen sensor on the Shuttle to engine demonstration of a nanocrystalline based sensor for NO, detection. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  5. A survey and analysis of commercially available hydrogen sensors

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    1992-01-01

    The performance requirements for hydrogen detection in aerospace applications often exceed those of more traditional applications. In order to ascertain the applicability of existing hydrogen sensors to aerospace applications, a survey was conducted of commercially available point-contact hydrogen sensors, and their operation was analyzed. The operation of the majority of commercial hydrogen sensors falls into four main categories: catalytic combustion, electrochemical, semiconducting oxide sensors, and thermal conductivity detectors. The physical mechanism involved in hydrogen detection for each main category is discussed in detail. From an understanding of the detection mechanism, each category of sensor is evaluated for use in a variety of space and propulsion environments. In order to meet the needs of aerospace applications, the development of point-contact hydrogen sensors that are based on concepts beyond those used in commercial sensors is necessary.

  6. Optical Fiber Grating Hydrogen Sensors: A Review

    PubMed Central

    Dai, Jixiang; Zhu, Li; Wang, Gaopeng; Xiang, Feng; Qin, Yuhuan; Wang, Min; Yang, Minghong

    2017-01-01

    In terms of hydrogen sensing and detection, optical fiber hydrogen sensors have been a research issue due to their intrinsic safety and good anti-electromagnetic interference. Among these sensors, hydrogen sensors consisting of fiber grating coated with sensitive materials have attracted intensive research interests due to their good reliability and distributed measurements. This review paper mainly focuses on optical fiber hydrogen sensors associated with fiber gratings and various materials. Their configurations and sensing performances proposed by different groups worldwide are reviewed, compared and discussed in this paper. Meanwhile, the challenges for fiber grating hydrogen sensors are also addressed. PMID:28287499

  7. Optical Fiber Grating Hydrogen Sensors: A Review.

    PubMed

    Dai, Jixiang; Zhu, Li; Wang, Gaopeng; Xiang, Feng; Qin, Yuhuan; Wang, Min; Yang, Minghong

    2017-03-12

    In terms of hydrogen sensing and detection, optical fiber hydrogen sensors have been a research issue due to their intrinsic safety and good anti-electromagnetic interference. Among these sensors, hydrogen sensors consisting of fiber grating coated with sensitive materials have attracted intensive research interests due to their good reliability and distributed measurements. This review paper mainly focuses on optical fiber hydrogen sensors associated with fiber gratings and various materials. Their configurations and sensing performances proposed by different groups worldwide are reviewed, compared and discussed in this paper. Meanwhile, the challenges for fiber grating hydrogen sensors are also addressed.

  8. In-situ formation of solidified hydrogen thin-membrane targets using a pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Astbury, S.; Bedacht, S.; Brummitt, P.; Carroll, D.; Clarke, R.; Crisp, S.; Hernandez-Gomez, C.; Holligan, P.; Hook, S.; Merchan, J. S.; Neely, D.; Ortner, A.; Rathbone, D.; Rice, P.; Schaumann, G.; Scott, G.; Spindloe, C.; Spurdle, S.; Tebartz, A.; Tomlinson, S.; Wagner, F.; Borghesi, M.; Roth, M.; Tolley, M. K.

    2016-04-01

    An account is given of the Central Laser Facility's work to produce a cryogenic hydrogen targetry system using a pulse tube cryocooler. Due to the increasing demand for low Z thin laser targets, CLF (in collaboration with TUD) have been developing a system which allows the production of solid hydrogen membranes by engineering a design which can achieve this remotely; enabling the gas injection, condensation and solidification of hydrogen without compromising the vacuum of the target chamber. A dynamic sealing mechanism was integrated which allows targets to be grown and then remotely exposed to open vacuum for laser interaction. Further research was conducted on the survivability of the cryogenic targets which concluded that a warm gas effect causes temperature spiking when exposing the solidified hydrogen to the outer vacuum. This effect was shown to be mitigated by improving the pumping capacity of the environment and reducing the minimum temperature obtainable on the target mount. This was achieved by developing a two-stage radiation shield encased with superinsulating blanketing; reducing the base temperature from 14 ± 0.5 K to 7.2 ± 0.2 K about the coldhead as well as improving temperature control stability following the installation of a high-performance temperature controller and sensor apparatus. The system was delivered experimentally and in July 2014 the first laser shots were taken upon hydrogen targets in the Vulcan TAP facility.

  9. Development of the HyStEP Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Terry A.; Ainscough, Christopher; Terlip, Danny

    2016-04-05

    With the introduction of more fuel cell electric vehicles (FCEVs) on U.S. roadways, especially in California, the need for available hydrogen refueling stations is growing. While funding from the California Energy Commission is helping to solve this problem, solutions need to be developed and implemented to help reduce the time to commission a hydrogen station. The current practice of hydrogen station acceptance can take months because each vehicle manufacturer conducts their own testing and evaluation. This process is not practical or sufficient to support the timely development of a hydrogen fueling station network. To address this issue, as part ofmore » the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project Sandia National Laboratories and the National Renewable Energy Laboratory along with a team of stakeholders and contractor Powertech Labs has developed the Hydrogen Station Equipment Performance (HyStEP) Device. The HyStEP Device is intended to be a surrogate for FCEVs that can be used to collect data on hydrogen station fueling performance. The device includes three Type IV 70 MPa tanks capable of storing a total of 9 kg H2 that are instrumented with pressure and temperature sensors. The tanks can be used individually or in parallel to simulate small, medium, and large fuel systems. The tanks are connected to a 70 MPa receptacle equipped with pressure and temperature sensor as well as infrared communications integrated with a data acquisition, analysis, and control system. The HyStEP Device is capable of performing tests defined in the test method standard CSA HGV 4.3 and providing the data needed to ensure that hydrogen stations meet the fueling protocol standard SAE J2601-2014. These include IrDA communication tests, fault detection tests, and communication and non-communication fueling.« less

  10. Annite stability revised. 1. Hydrogen-sensor data for the reaction annite = sanidine + magnetite + H2

    NASA Astrophysics Data System (ADS)

    Dachs, E.

    1994-08-01

    In P - T - log fO2 space, the stability of annite (ideally KFe{3/2+}(OH)2AlSi3O10) at high fO2 (low fH2) is limited by the reaction: annite = sanidine + magnetite + H2. Using the hydrogen-sensor technique, the equilibrium fH2 of this reaction was measured between 500 and 800° C at 2.8 kbar in 50° C intervals. Microbrobe analyses of the reacted annite+sanidine+magnetite mixtures show that tetrahedral positions of annite have a lower Si/Al ratio than the ideal value of 3/1. Silicon decreases from ˜2.9 per formula unit at low temperatures to ˜2.76 at high temperatures. As determined by Mössbauer spectroscopy in three experimental runs, the Fe3+ content of annite in the equilibrium assemblage is 11%±3. A least squares fit to the hydrogensensor data gives Δ H {R/0} = 50.269 ± 3.987 kJ and Δ S {R/0} = 83.01 ± 4.35 J/K for equilibrium (1). The hydrogene-sensor data are consistent with temperature half brackets determined in the classical way along the nickel-nickel oxide (NNO) and quartz-fayalite-magnetite (QFM) buffers with a mixture of annite+sanidine+magnetite for control. Compared to published oxygen buffer reversals, agreement is only found at high temperature and possible reasons for that discrepancy are discussed. The resulting slope of equilibrium (1) in log fO2 - T dimensions is considerably steeper than previously determined and between 400 and 800°C only intersects with the QFM buffer curve. Based on the hydrogen-sensor data and on the thermodynamic dataset of Berman (1988, and TWEEQ data base) for sanidine, magnetite and H2, the deduced standard-state properties of annite are: H {f/0}=-5127.376±5.279 kJ and S 0=422.84±5.29 J/(mol K). From the recently published unit cell refinements of annites and their Fe3+ contents, determined by Mössbauer spectroscopy (Redhammer et al. 1993), the molar volume of pure annite was constrained as 15.568±0.030 J/bar. A revised stability field for annite is presented, calculated between 400 and 800°C.

  11. Carbon monoxide sensor and method of use

    DOEpatents

    Dutta, Prabir K.; Swartz, Scott L.; Holt, Christopher T.; Revur, Ramachandra Rao

    2006-01-10

    A sensor and method of use for detection of low levels of carbon monoxide in gas mixtures. The approach is based on the change in an electrical property (for example: resistance) that occurs when carbon monoxide is selectively absorbed by a film of copper chloride (or other metal halides). The electrical property change occurs rapidly with both increasing and decreasing CO contents, varies with the amount of CO from the gas stream, and is insensitive to the presence of hydrogen. To make a sensor using this approach, the metal halide film will deposited onto an alumina substrate with electrodes. The sensor may be maintained at the optimum temperature with a thick film platinum heater deposited onto the opposite face of the substrate. When the sensor is operating at an appropriate (and constant) temperature, the magnitude of the electrical property measured between the interdigital electrodes will provide a measure of the carbon monoxide content of the gas.

  12. The development of a solid-state hydrogen sensor for rocket engine leakage detection

    NASA Technical Reports Server (NTRS)

    Liu, Chung-Chiun

    1994-01-01

    Hydrogen propellant leakage poses significant operational problems in the rocket propulsion industry as well as for space exploratory applications. Vigorous efforts have been devoted to minimizing hydrogen leakage in assembly, test, and launch operations related to hydrogen propellant. The objective has been to reduce the operational cost of assembling and maintaining hydrogen delivery systems. Specifically, efforts have been made to develop a hydrogen leak detection system for point-contact measurement. Under the auspices of Lewis Research Center, the Electronics Design Center at Case Western Reserve University, Cleveland, Ohio, has undertaken the development of a point-contact hydrogen gas sensor with potential applications to the hydrogen propellant industry. We envision a sensor array consisting of numbers of discrete hydrogen sensors that can be located in potential leak sites. Silicon-based microfabrication and micromachining techniques are used in the fabrication of these sensor prototypes. Evaluations of the sensor are carried out in-house at Case Western Reserve University as well as at Lewis Research Center and GenCorp Aerojet, Sacramento, California. The hydrogen gas sensor is not only applicable in a hydrogen propulsion system, but also usable in many other civilian and industrial settings. This includes vehicles or facility use, or in the production of hydrogen gas. Dual space and commercial uses of these point-contacted hydrogen sensors are feasible and will directly meet the needs and objectives of NASA as well as various industrial segments.

  13. The development of a solid-state hydrogen sensor for rocket engine leakage detection

    NASA Astrophysics Data System (ADS)

    Liu, Chung-Chiun

    Hydrogen propellant leakage poses significant operational problems in the rocket propulsion industry as well as for space exploratory applications. Vigorous efforts have been devoted to minimizing hydrogen leakage in assembly, test, and launch operations related to hydrogen propellant. The objective has been to reduce the operational cost of assembling and maintaining hydrogen delivery systems. Specifically, efforts have been made to develop a hydrogen leak detection system for point-contact measurement. Under the auspices of Lewis Research Center, the Electronics Design Center at Case Western Reserve University, Cleveland, Ohio, has undertaken the development of a point-contact hydrogen gas sensor with potential applications to the hydrogen propellant industry. We envision a sensor array consisting of numbers of discrete hydrogen sensors that can be located in potential leak sites. Silicon-based microfabrication and micromachining techniques are used in the fabrication of these sensor prototypes. Evaluations of the sensor are carried out in-house at Case Western Reserve University as well as at Lewis Research Center and GenCorp Aerojet, Sacramento, California. The hydrogen gas sensor is not only applicable in a hydrogen propulsion system, but also usable in many other civilian and industrial settings. This includes vehicles or facility use, or in the production of hydrogen gas. Dual space and commercial uses of these point-contacted hydrogen sensors are feasible and will directly meet the needs and objectives of NASA as well as various industrial segments.

  14. Micro-machined thin film hydrogen gas sensor, and method of making and using the same

    NASA Technical Reports Server (NTRS)

    DiMeo, Jr., Frank (Inventor); Bhandari, Gautam (Inventor)

    2001-01-01

    A hydrogen sensor including a thin film sensor element formed, e.g., by metalorganic chemical vapor deposition (MOCVD) or physical vapor deposition (PVD), on a microhotplate structure. The thin film sensor element includes a film of a hydrogen-interactive metal film that reversibly interacts with hydrogen to provide a correspondingly altered response characteristic, such as optical transmissivity, electrical conductance, electrical resistance, electrical capacitance, magnetoresistance, photoconductivity, etc., relative to the response characteristic of the film in the absence of hydrogen. The hydrogen-interactive metal film may be overcoated with a thin film hydrogen-permeable barrier layer to protect the hydrogen-interactive film from deleterious interaction with non-hydrogen species. The hydrogen sensor of the invention may be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently configured as a hand-held apparatus.

  15. Zr/ZrO2 sensors for in situ measurement of pH in high-temperature and -pressure aqueous solutions.

    PubMed

    Zhang, R H; Zhang, X T; Hu, S M

    2008-04-15

    The aim of this study is to develop new pH sensors that can be used to test and monitor hydrogen ion activity in hydrothermal conditions. A Zr/ZrO2 oxidation electrode is fabricated for in situ pH measurement of high-temperature aqueous solutions. This sensor responds rapidly and precisely to pH over a wide range of temperature and pressure. The Zr/ZrO2 electrode was made by oxidizing zirconium metal wire with Na2CO3 melt, which produced a thin film of ZrO2 on its surface. Thus, an oxidation-reduction electrode was produced. The Zr/ZrO2 electrode has a good electrochemical stability over a wide range of pH in high-temperature aqueous solutions when used with a Ag/AgCl reference electrode. Measurements of the Zr/ZrO2 sensor potential against a Ag/AgCl reference electrode is shown to vary linearly with pH between temperatures 20 and 200 degrees C. The slope of the potential versus pH at high temperature is slightly below the theoretical value indicated by the Nernst equation; such deviation is attributed to the fact that the sensor is not strictly at equilibrium with the solution to be tested in a short period of time. The Zr/ZrO2 sensor can be calibrated over the conditions that exist in the natural deep-seawater. Our studies showed that the Zr/ZrO2 electrode is a suitable pH sensor for the hydrothermal systems at midocean ridge or other geothermal systems with the high-temperature environment. Yttria-stabilized zirconia sensors have also been used to investigate the pH of hydrothermal fluids in hot springs vents at midocean ridge. These sensors, however, are not sensitive below 200 degrees C. Zr/ZrO2 sensors have wider temperature range and can be severed as good alternative sensors for measuring the pH of hydrothermal fluids.

  16. Comparison of gate and drain current detection of hydrogen at room temperature with AlGaN /GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Wang, Hung-Ta; Kang, B. S.; Ren, F.; Fitch, R. C.; Gillespie, J. K.; Moser, N.; Jessen, G.; Jenkins, T.; Dettmer, R.; Via, D.; Crespo, A.; Gila, B. P.; Abernathy, C. R.; Pearton, S. J.

    2005-10-01

    Pt-gated AlGaN /GaN high electron mobility transistors can be used as room-temperature hydrogen gas sensors at hydrogen concentrations as low as 100ppm. A comparison of the changes in drain and gate current-voltage (I-V) characteristics with the introduction of 500ppm H2 into the measurement ambient shows that monitoring the change in drain-source current provides a wider gate voltage operation range for maximum detection sensitivity and higher total current change than measuring the change in gate current. However, over a narrow gate voltage range, the relative sensitivity of detection by monitoring the gate current changes is up to an order of magnitude larger than that of drain-source current changes. In both cases, the changes are fully reversible in <2-3min at 25°C upon removal of the hydrogen from the ambient.

  17. Surface acoustic wave hydrogen sensor

    NASA Technical Reports Server (NTRS)

    Bhethanabotla, Venkat R. (Inventor); Bhansali, Shekhar (Inventor)

    2006-01-01

    The present invention provides a delay line SAW device fabricated on a lithium niobate substrate and coated with a bilayer of nanocrystalline or other nanomaterials such as nanoparticles or nanowires of palladiumn and metal free pthalocyanine which will respond to hydrogen gas in near real time, at low (room) temperature, without being affected by CO, O.sub.2, CH.sub.4 and other gases, in air ambient or controlled ambient, providing sensitivity to low ppm levels.

  18. Study Acoustic Emissions from Composites

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Workman, Gary L.

    1997-01-01

    The nondestructive evaluation (NDE) of future propulsion systems utilizing advanced composite structures for the storage of cryogenic fuels, such as liquid hydrogen or oxygen, presents many challenges. Economic justification for these structures requires, light weight, reusable components with an infrastructure allowing periodic evaluation of structural integrity after enduring demanding stresses during operation. A major focus has been placed on the use of acoustic emission NDE to detect propagating defects, in service, necessitating an extensive study into characterizing the nature of acoustic signal propagation at very low temperatures and developing the methodology of applying AE sensors to monitor cryogenic components. This work addresses the question of sensor performance in the cryogenic environment. Problems involving sensor mounting, spectral response and durability are addressed. The results of this work provides a common point of measure from which sensor selection can be made when testing composite components at cryogenic temperatures.

  19. Flight Hydrogen Sensor for use in the ISS Oxygen Generation Assembly

    NASA Technical Reports Server (NTRS)

    MSadoques, George, Jr.; Makel, Darby B.

    2005-01-01

    This paper provides a description of the hydrogen sensor Orbital Replacement Unit (ORU) used on the Oxygen Generation Assembly (OGA), to be operated on the International Space Station (ISS). The hydrogen sensor ORU is being provided by Makel Engineering, Inc. (MEI) to monitor the oxygen outlet for the presence of hydrogen. The hydrogen sensor ORU is a triple redundant design where each sensor converts raw measurements to actual hydrogen partial pressure that is reported to the OGA system controller. The signal outputs are utilized for system shutdown in the event that the hydrogen concentration in the oxygen outlet line exceeds the specified shutdown limit. Improvements have been made to the Micro-Electro-Mechanical Systems (MEMS) based sensing element, screening, and calibration process to meet OGA operating requirements. Two flight hydrogen sensor ORUs have successfully completed the acceptance test phase. This paper also describes the sensor s performance during acceptance testing, additional tests planned to extend the operational performance calibration cycle, and integration with the OGA system.

  20. Sensitive Capacitive-type Hydrogen Sensor Based on Ni Thin Film in Different Hydrogen Concentrations.

    PubMed

    Pour, Ghobad Behzadi; Aval, Leila Fekri; Eslami, Shahnaz

    2018-04-01

    Hydrogen sensors are micro/nano-structure that are used to locate hydrogen leaks. They are considered to have fast response/recovery time and long lifetime as compared to conventional gas sensors. In this paper, fabrication of sensitive capacitive-type hydrogen gas sensor based on Ni thin film has been investigated. The C-V curves of the sensor in different hydrogen concentrations have been reported. Dry oxidation was done in thermal chemical vapor deposition furnace (TCVD). For oxidation time of 5 min, the oxide thickness was 15 nm and for oxidation time 10 min, it was 20 nm. The Ni thin film as a catalytic metal was deposited on the oxide film using electron gun deposition. Two MOS sensors were compared with different oxide film thickness and different hydrogen concentrations. The highest response of the two MOS sensors with 15 nm and 20 nm oxide film thickness in 4% hydrogen concentration was 87.5% and 65.4% respectively. The fast response times for MOS sensors with 15 nm and 20 nm oxide film thickness in 4% hydrogen concentration was 8 s and 21 s, respectively. By increasing the hydrogen concentration from 1% to 4%, the response time for MOS sensor (20nm oxide thickness), was decreased from 28s to 21s. The recovery time was inversely increased from 237s to 360s. The experimental results showed that the MOS sensor based on Ni thin film had a quick response and a high sensitivity.

  1. Centrifugal Deposited Au-Pd Core-Shell Nanoparticle Film for Room-Temperature Optical Detection of Hydrogen Gas.

    PubMed

    Song, Han; Luo, Zhijie; Liu, Mingyao; Zhang, Gang; Peng, Wang; Wang, Boyi; Zhu, Yong

    2018-05-06

    In the present work, centrifugal deposited Au-Pd core-shell nanoparticle (NP) film was proposed for the room-temperature optical detection of hydrogen gas. The size dimension of 44, 48, 54, and 62 nm Au-Pd core-shell nanocubes with 40 nm Au core were synthesized following a solution-based seed-mediated growth method. Compared to a pure Pd NP, this core-shell structure with an inert Au core could decrease the H diffusion length in the Pd shell. Through a modified centrifugal deposition process, continues film samples with different core-shell NPs were deposited on 10 mm diameter quartz substrates. Under various hydrogen concentration conditions, the optical response properties of these samples were characterized by an intensity-based optical fiber bundle sensor. Experimental results show that the continues film that was composed of 62 nm Au-Pd core-shell NPs has achieved a stable and repeatable reflectance response with low zero drift in the range of 4 to 0.1% hydrogen after a stress relaxation mechanism at first few loading/unloading cycles. Because of the short H diffusion length due to the thinner Pd shell, the film sample composed of 44 nm Au-Pd NPs has achieved a dramatically decreased response/recovery time to 4 s/30 s. The experiments present the promising prospect of this simple method to fabricate optical hydrogen sensors with controllable high sensitivity and response rate at low cost.

  2. Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kevin P.

    2015-02-13

    This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers,more » rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100°C have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800°C. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700°C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest operation temperature up to 750°C, first distributed chemical measurements at the record high temperature up to 700°C, first distributed pressure measurement at the record high temperature up to 800°C, and the fiber laser sensors with the record high operation temperature up to 700°C. The research performed by this program dramatically expand the functionality, adaptability, and applicability of distributed fiber optical sensors with potential applications in a number of high-temperature energy systems such as fossil-fuel power generation, high-temperature fuel cell applications, and potential for nuclear energy systems.« less

  3. Hybrid SnO2/TiO2 Nanocomposites for Selective Detection of Ultra-Low Hydrogen Sulfide Concentrations in Complex Backgrounds

    PubMed Central

    Larin, Alexander; Womble, Phillip C.; Dobrokhotov, Vladimir

    2016-01-01

    In this paper, we present a chemiresistive metal oxide (MOX) sensor for detection of hydrogen sulfide. Compared to the previous reports, the overall sensor performance was improved in multiple characteristics, including: sensitivity, selectivity, stability, activation time, response time, recovery time, and activation temperature. The superior sensor performance was attributed to the utilization of hybrid SnO2/TiO2 oxides as interactive catalytic layers deposited using a magnetron radio frequency (RF) sputtering technique. The unique advantage of the RF sputtering for sensor fabrication is the ability to create ultra-thin films with precise control of geometry, morphology and chemical composition of the product of synthesis. Chemiresistive films down to several nanometers can be fabricated as sensing elements. The RF sputtering technique was found to be very robust for bilayer and multilayer oxide structure fabrication. The geometry, morphology, chemical composition and electronic structure of interactive layers were evaluated in relation to their gas sensing performance, using scanning electron microscopy (SEM), X-ray diffraction technique (XRD), atomic force microscopy (AFM), Energy Dispersive X-ray Spectroscopy (EDAX), UV visible spectroscopy, and Kelvin probe measurements. A sensor based on multilayer SnO2/TiO2 catalytic layer with 10% vol. content of TiO2 demonstrated the best gas sensing performance in all characteristics. Based on the pattern relating material’s characteristics to gas sensing performance, the optimization strategy for hydrogen sulfide sensor fabrication was suggested. PMID:27618900

  4. A selective ultrahigh responding high temperature ethanol sensor using TiO2 nanoparticles.

    PubMed

    Arafat, M M; Haseeb, A S M A; Akbar, Sheikh A

    2014-07-28

    In this research work, the sensitivity of TiO2 nanoparticles towards C2H5OH, H2 and CH4 gases was investigated. The morphology and phase content of the particles was preserved during sensing tests by prior heat treatment of the samples at temperatures as high as 750 °C and 1000 °C. Field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis were employed to characterize the size, morphology and phase content of the particles. For sensor fabrication, a film of TiO2 was printed on a Au interdigitated alumina substrate. The sensing temperature was varied from 450 °C to 650 °C with varying concentrations of target gases. Results show that the sensor has ultrahigh response towards ethanol (C2H5OH) compared to hydrogen (H2) and methane (CH4). The optimum sensing temperature was found to be 600 °C. The response and recovery times of the sensor are 3 min and 15 min, respectively, for 20 ppm C2H5OH at the optimum operating temperature of 600 °C. It is proposed that the catalytic action of TiO2 with C2H5OH is the reason for the ultrahigh response of the sensor.

  5. A Selective Ultrahigh Responding High Temperature Ethanol Sensor Using TiO2 Nanoparticles

    PubMed Central

    Arafat, M. M.; Haseeb, A. S. M. A.; Akbar, Sheikh A.

    2014-01-01

    In this research work, the sensitivity of TiO2 nanoparticles towards C2H5OH, H2 and CH4 gases was investigated. The morphology and phase content of the particles was preserved during sensing tests by prior heat treatment of the samples at temperatures as high as 750 °C and 1000 °C. Field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis were employed to characterize the size, morphology and phase content of the particles. For sensor fabrication, a film of TiO2 was printed on a Au interdigitated alumina substrate. The sensing temperature was varied from 450 °C to 650 °C with varying concentrations of target gases. Results show that the sensor has ultrahigh response towards ethanol (C2H5OH) compared to hydrogen (H2) and methane (CH4). The optimum sensing temperature was found to be 600 °C. The response and recovery times of the sensor are 3 min and 15 min, respectively, for 20 ppm C2H5OH at the optimum operating temperature of 600 °C. It is proposed that the catalytic action of TiO2 with C2H5OH is the reason for the ultrahigh response of the sensor. PMID:25072346

  6. Stretchable hydrogen sensors employing palladium nanosheets transferred onto an elastomeric substrate

    NASA Astrophysics Data System (ADS)

    Namgung, Gitae; Ta, Qui Thanh Hoai; Noh, Jin-Seo

    2018-07-01

    Stretchable hydrogen sensors were fabricated from Pd nanosheets that were transferred onto a PDMS substrate. To prepare the Pd nanosheets, a Pd thin film on PDMS was first biaxially stretched and then PDMS substrate was etched off. The size of Pd nanosheets decreased as the applied strain increased and the film thickness decreased. A transfer technique was utilized to implement the stretchable hydrogen sensors. The stretchable sensors exhibited negative response behaviors upon the exposure to hydrogen gas. Interestingly, the sensors worked even under large strains up to 30%, demonstrating a potential as a high-strain-tolerable hydrogen sensor for the first time.

  7. Calorimetric Thermoelectric Gas Sensor for the Detection of Hydrogen, Methane and Mixed Gases

    PubMed Central

    Park, Nam-Hee; Akamatsu, Takafumi; Itoh, Toshio; Izu, Noriya; Shin, Woosuck

    2014-01-01

    A novel miniaturized calorimeter-type sensor device with a dual-catalyst structure was fabricated by integrating different catalysts on the hot (Pd/θ-Al2O3) and cold (Pt/α-Al2O3) ends of the device. The device comprises a calorimeter with a thermoelectric gas sensor (calorimetric-TGS), combining catalytic combustion and thermoelectric technologies. Its response for a model fuel gas of hydrogen and methane was investigated with various combustor catalyst compositions. The calorimetric-TGS devices detected H2, CH4, and a mixture of the two with concentrations ranging between 200 and 2000 ppm at temperatures of 100–400 °C, in terms of the calorie content of the gases. It was necessary to reduce the much higher response voltage of the TGS to H2 compared to CH4. We enhanced the H2 combustion on the cold side so that the temperature differences and response voltages to H2 were reduced. The device response to H2 combustion was reduced by 50% by controlling the Pt concentration in the Pt/α-Al2O3 catalyst on the cold side to 3 wt%. PMID:24818660

  8. Temperature dependent selective detection of hydrogen and acetone using Pd doped WO3/reduced graphene oxide nanocomposite

    NASA Astrophysics Data System (ADS)

    Kaur, Jasmeet; Anand, Kanica; Kohli, Nipin; Kaur, Amanpreet; Singh, Ravi Chand

    2018-06-01

    Reduced graphene oxide (RGO) and Pd doped WO3 nanocomposites were fabricated by employing electrostatic interactions between poly (diallyldimethylammonium chloride) (PDDA) modified Pd doped WO3 nanostructures and graphite oxide (GO) and studied for their gas sensing application. XRD, Raman, FTIR, FESEM-EDX, TEM, TGA, XPS and Photoluminescence techniques were used for characterization of as-synthesized samples. Gas sensing studies revealed that the sensor with optimized doping of 1.5 mol% Pd and 1 wt% GO shows temperature dependent selectivity towards hydrogen and acetone. The role of WO3, Pd and RGO has been discussed in detail for enhanced sensing performance.

  9. Editors' Choice—Field Trials Testing of Mixed Potential Electrochemical Hydrogen Safety Sensors at Commercial California Hydrogen Filling Stations

    DOE PAGES

    Brosha, Eric Lanich; Romero, Christopher Jesse; Poppe, Daniel; ...

    2017-10-27

    Hydrogen safety sensors must meet specific performance requirements, mandated by the U.S. Department of Energy, for hydrogen fueling station monitoring. Here, we describe the long-term performance of two zirconia-based mixed potential electrochemical hydrogen gas sensors, developed specifically with a high sensitivity to hydrogen, low cross-sensitivity, and fast response time. Over a two-year period, sensors with tin-doped indium oxide and strontium doped lanthanum chromite electrodes were deployed at two stations in four field trials tests conducted in Los Angeles. The sensors documented the existence of hydrogen plumes ranging in concentration from 100 to as high as 2700 ppm in the areamore » surrounding the dispenser, consistent with depressurization from 700 bar following vehicle refueling. As expected, the hydrogen concentration reported by the mixed potential sensors was influenced by wind direction. Baseline stability testing at a Chino, CA station showed no measureable baseline drift throughout 206 days of uninterrupted data acquisition. The high baseline stability, excellent correlation with logged fueling/depressurization events, and absence of false alarms suggest that the zirconia-based mixed potential sensor platform is a good candidate for protecting hydrogen infrastructure where frequent calibrations or sensor replacement to reduce the false alarm frequency have been shown to be cost prohibitive.« less

  10. Editors' Choice—Field Trials Testing of Mixed Potential Electrochemical Hydrogen Safety Sensors at Commercial California Hydrogen Filling Stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brosha, Eric Lanich; Romero, Christopher Jesse; Poppe, Daniel

    Hydrogen safety sensors must meet specific performance requirements, mandated by the U.S. Department of Energy, for hydrogen fueling station monitoring. Here, we describe the long-term performance of two zirconia-based mixed potential electrochemical hydrogen gas sensors, developed specifically with a high sensitivity to hydrogen, low cross-sensitivity, and fast response time. Over a two-year period, sensors with tin-doped indium oxide and strontium doped lanthanum chromite electrodes were deployed at two stations in four field trials tests conducted in Los Angeles. The sensors documented the existence of hydrogen plumes ranging in concentration from 100 to as high as 2700 ppm in the areamore » surrounding the dispenser, consistent with depressurization from 700 bar following vehicle refueling. As expected, the hydrogen concentration reported by the mixed potential sensors was influenced by wind direction. Baseline stability testing at a Chino, CA station showed no measureable baseline drift throughout 206 days of uninterrupted data acquisition. The high baseline stability, excellent correlation with logged fueling/depressurization events, and absence of false alarms suggest that the zirconia-based mixed potential sensor platform is a good candidate for protecting hydrogen infrastructure where frequent calibrations or sensor replacement to reduce the false alarm frequency have been shown to be cost prohibitive.« less

  11. A survey and analysis of experimental hydrogen sensors

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    1992-01-01

    In order to ascertain the applicability of hydrogen sensors to aerospace applications, a survey was conducted of promising experimental point-contact hydrogen sensors and their operation was analyzed. The techniques discussed are metal-oxide-semiconductor or MOS based sensors, catalytic resistor sensors, acoustic wave detectors, and pyroelectric detectors. All of these sensors depend on the interaction of hydrogen with Pd or a Pd-alloy. It is concluded that no single technique will meet the needs of aerospace applications but a combination of approaches is necessary. The most promising combination is an MOS based sensor with a catalytic resistor.

  12. Pd/CeO2/SiC Chemical Sensors

    NASA Technical Reports Server (NTRS)

    Lu, Weijie; Collins, W. Eugene

    2005-01-01

    The incorporation of nanostructured interfacial layers of CeO2 has been proposed to enhance the performances of Pd/SiC Schottky diodes used to sense hydrogen and hydrocarbons at high temperatures. If successful, this development could prove beneficial in numerous applications in which there are requirements to sense hydrogen and hydrocarbons at high temperatures: examples include monitoring of exhaust gases from engines and detecting fires. Sensitivity and thermal stability are major considerations affecting the development of high-temperature chemical sensors. In the case of a metal/SiC Schottky diode for a number of metals, the SiC becomes more chemically active in the presence of the thin metal film on the SiC surface at high temperature. This increase in chemical reactivity causes changes in chemical composition and structure of the metal/SiC interface. The practical effect of the changes is to alter the electronic and other properties of the device in such a manner as to degrade its performance as a chemical sensor. To delay or prevent these changes, it is necessary to limit operation to a temperature <450 C for these sensor structures. The present proposal to incorporate interfacial CeO2 films is based partly on the observation that nanostructured materials in general have potentially useful electrical properties, including an ability to enhance the transfer of electrons. In particular, nanostructured CeO2, that is CeO2 with nanosized grains, has shown promise for incorporation into hightemperature electronic devices. Nanostructured CeO2 films can be formed on SiC and have been shown to exhibit high thermal stability on SiC, characterized by the ability to withstand temperatures somewhat greater than 700 C for limited times. The exchanges of oxygen between CeO2 and SiC prevent the formation of carbon and other chemical species that are unfavorable for operation of a SiC-based Schottky diode as a chemical sensor. Consequently, it is anticipated that in a Pd/CeO2/SiC Schottky diode, the nanostructured interfacial CeO2 layer would contribute to thermal stability and, by contributing to transfer of electrons, would also contribute to sensitivity.

  13. Hydrogen Safety Sensor Performance and Use Gap Analysis: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttner, William J; Burgess, Robert M; Schmidt, Kara

    Hydrogen sensors are recognized as an important technology for facilitating the safe implementation of hydrogen as an alternative fuel, and there are numerous reports of a sensor alarm successfully preventing a potentially serious event. However, gaps in sensor metrological specifications, as well as in their performance for some applications, exist.The U.S. Department of Energy (DOE) Fuel Cell Technology Office published a short list of critical gaps in the 2007 and 2012 multiyear project plans; more detailed gap analyses were independently performed by the JRC and NREL. There have been, however, some significant advances in sensor technologies since these assessments, includingmore » the commercial availability of hydrogen sensors with fast response times (t90 less than 1 s, which had been an elusive DOE target since 2007), improved robustness to chemical poisons, improved selectivity, and improved lifetime and stability. These improvements, however, have not been universal and typically pertain to select platforms or models. Moreover, as hydrogen markets grow and new applications are being explored, more demands will be imposed on sensor performance. The hydrogen sensor laboratories at NREL and JRC are currently updating the hydrogen safety sensor gap analysis through direct interaction with international stakeholders in the hydrogen community, especially end-users. NREL and the JRC are currently organizing a series of workshops (in Europe and the U.S.) with sensor developers, end-users, and other stakeholders in 2017 to identify technology gaps and to develop a path forward to address them. One workshop is scheduled for May 10 in Brussels, Belgium at the Headquarters of the Fuel Cell and Hydrogen Joint Undertaking. A second workshop is planned at the National Renewable Energy Laboratory in Golden, CO, USA. This presentation will review improvements in sensor technologies in the past 5 to 10 years, identify gaps in sensor performance and use requirements, and identify potential research strategies to address the gaps. The presentation will also summarize the outcomes of the Hydrogen Sensors Workshops.« less

  14. Hydrogen Research for Spaceport and Space-Based Applications: Hydrogen Sensors and Systems. Part 2

    NASA Technical Reports Server (NTRS)

    Anderson, Tim; Balaban, Canan

    2008-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Sensor systems research was focused on hydrogen leak detection and smart sensors with adaptive feedback control for fuel cells. The goal was to integrate multifunction smart sensors, low-power high-efficiency wireless circuits, energy harvesting devices, and power management circuits in one module. Activities were focused on testing and demonstrating sensors in a realistic environment while also bringing them closer to production and commercial viability for eventual use in the actual operating environment.

  15. Micro-Machined Thin Film Sensor Arrays For The Detection Of H2, Containing Gases, And Method Of Making And Using The Same.

    DOEpatents

    DiMeo, Jr., Frank; Baum, Thomas H.

    2003-07-22

    The present invention provides a hydrogen sensor including a thin film sensor element formed by metal organic chemical vapor deposition (MOCVD) or physical vapor deposition (PVD), on a micro-hotplate structure. The thin film sensor element includes a film of a hydrogen-interactive metal film that reversibly interacts with hydrogen to provide a correspondingly altered response characteristic, such as optical transmissivity, electrical conductance, electrical resistance, electrical capacitance, magneto resistance, photoconductivity, etc., relative to the response characteristic of the film in the absence of hydrogen. The hydrogen-interactive metal film may be overcoated with a thin film hydrogen-permeable barrier layer to protect the hydrogen-interactive film from deleterious interaction with non-hydrogen species. The hydrogen permeable barrier may comprise species to scavenge oxygen and other like species. The hydrogen sensor of the invention may be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently configured as a hand-held apparatus.

  16. Study of Acoustic Emissions from Composites

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Workman, Gary L.

    1997-01-01

    The nondestructive evaluation (NDE) of future propulsion systems utilizing advanced composite structures for the storage of cryogenic fuels, such as liquid hydrogen or oxygen, presents many challenges. Economic justification for these structures requires light weight, reusable components with an infrastructure allowing periodic evaluation of structural integrity after enduring demanding stresses during operation. A major focus has been placed on the use of acoustic emission NDE to detect propagating defects, in service, necessitating an extensive study into characterizing the nature of acoustic signal propagation at very low temperatures and developing the methodology of applying AE sensors to monitor cryogenic components. This work addresses the question of sensor performance in the cryogenic environment. Problems involving sensor mounting, spectral response and durability are addressed. The results of this work provides a common point of measure from which sensor selection can be made when testing composite components at cryogenic temperatures.

  17. Application of polymer-coated metal-insulator-semiconductor sensors for the detection of dissolved hydrogen

    NASA Astrophysics Data System (ADS)

    Li, Dongmei; Medlin, J. W.; Bastasz, R.

    2006-06-01

    The detection of dissolved hydrogen in liquids is crucial to many industrial applications, such as fault detection for oil-filled electrical equipment. To enhance the performance of metal-insulator-semiconductor (MIS) sensors for dissolved hydrogen detection, a palladium MIS sensor has been modified by depositing a polyimide (PI) layer above the palladium surface. Response measurements of the PI-coated sensors in mineral oil indicate that hydrogen is sensitively detected, while the effect of interfering gases on sensor response is minimized.

  18. Plasmonic hydrogen sensor based on integrated microring resonator

    NASA Astrophysics Data System (ADS)

    Yi, Ya Sha; Wu, Da Chuan

    2017-12-01

    We have proposed and demonstrated numerically an ultrasmall and highly sensitive plasmonic hydrogen sensor based on an integrated microring resonator, with a footprint size as small as 4×4 μm2. With a palladium (Pd) or platinum (Pt) hydrogen-sensitive layer coated on the inner surface of the microring resonator and the excitation of surface plasmon modes at the interface from the microring resonator waveguide, the device is highly sensitive to low hydrogen concentration variation, and the sensitivity is at least one order of magnitude larger than that of the optical fiber-based hydrogen sensor. We have also investigated the tradeoff between the portion coverage of the Pd/Pt layer and the sensitivity, as well as the width of the hydrogen-sensitive layer. This ultrasmall plasmonic hydrogen sensor holds promise for the realization of a highly compact sensor with integration capability for applications in hydrogen fuel economy.

  19. The development of hydrogen sensor technology at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Neudeck, Philip G.; Jefferson, G. D.; Madzsar, G. C.; Liu, C. C.; Wu, Q. H.

    1993-01-01

    The detection of hydrogen leaks in aerospace applications, especially those involving hydrogen fuel propulsion systems, is of extreme importance for reasons of reliability, safety, and economy. Motivated by leaks occurring in liquid hydrogen lines supplying the main engine of the Space Shuttle, NASA Lewis has initiated a program to develop point-contact hydrogen sensors which address the needs of aerospace applications. Several different approaches are being explored. They include the fabrication of PdAg Schottky diode structures, the characterization of PdCr as a hydrogen sensitive alloy, and the use of SiC as a semiconductor for hydrogen sensors. This paper discusses the motivation behind and present status of each of the major components of the NASA LeRC hydrogen sensor program.

  20. OGS Hydrogen Sensor ORU R&R

    NASA Image and Video Library

    2012-04-18

    ISS030-E-236919 (18 April 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, works with the Oxygen Generator System (OGS) rack in the Tranquility node of the International Space Station. Burbank unpowered the OGS, purged the hydrogen sensor Orbital Replacement Unit (ORU) with the Hydrogen Sensor ORU Purge Adapter (HOPA) for return to Earth, and replaced the hydrogen sensor with a new spare, then cleaned the rack Avionics Air Assembly (AAA).

  1. A finite element model of a MEMS-based surface acoustic wave hydrogen sensor.

    PubMed

    El Gowini, Mohamed M; Moussa, Walied A

    2010-01-01

    Hydrogen plays a significant role in various industrial applications, but careful handling and continuous monitoring are crucial since it is explosive when mixed with air. Surface Acoustic Wave (SAW) sensors provide desirable characteristics for hydrogen detection due to their small size, low fabrication cost, ease of integration and high sensitivity. In this paper a finite element model of a Surface Acoustic Wave sensor is developed using ANSYS12© and tested for hydrogen detection. The sensor consists of a YZ-lithium niobate substrate with interdigital electrodes (IDT) patterned on the surface. A thin palladium (Pd) film is added on the surface of the sensor due to its high affinity for hydrogen. With increased hydrogen absorption the palladium hydride structure undergoes a phase change due to the formation of the β-phase, which deteriorates the crystal structure. Therefore with increasing hydrogen concentration the stiffness and the density are significantly reduced. The values of the modulus of elasticity and the density at different hydrogen concentrations in palladium are utilized in the finite element model to determine the corresponding SAW sensor response. Results indicate that with increasing the hydrogen concentration the wave velocity decreases and the attenuation of the wave is reduced.

  2. Hydrogen Sensor Based on Pd/GeO{sub 2} Using a Low Cost Electrochemical Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jawad, M. J.; Hashim, M. R.; Ali, N. K.

    2011-05-25

    This work reports on a synthesis of sub micron germanium dioxide (GeO{sub 2}) on porous silicon (PS) by electrochemical deposition. n-type Si (100) wafer was used to fabricate (PS) using conventional method of electrochemical etching in HF based solution. A GeCl{sub 4} was directly hydrolyzed by hydrogen peroxide to produce pure GeO{sub 2}, and then electrochemically deposited on PS. Followed by palladium (Pd) contact on GeO{sub 2} /PS was achieved by using RF sputtering technique. The grown GeO{sub 2} crystals were characterized using SEM and EDX. I-V characteristics of Pd/ GeO{sub 2} were recorded before and after hydrogen gas exposuremore » as well as with different H{sub 2} concentrations and different applied temperatures. The sensitivity of Pd/ GeO{sub 2} also has been investigated it could be seen to increase significantly with increased hydrogen concentration while it decreased with increase temperature.« less

  3. Effects of annealing temperature on the H2-sensing properties of Pd-decorated WO3 nanorods

    NASA Astrophysics Data System (ADS)

    Lee, Sangmin; Lee, Woo Seok; Lee, Jae Kyung; Hyun, Soong Keun; Lee, Chongmu; Choi, Seungbok

    2018-03-01

    The temperature of the post-annealing treatment carried out after noble metal deposition onto semiconducting metal oxides (SMOs) must be carefully optimized to maximize the sensing performance of the metal-decorated SMO sensors. WO3 nanorods were synthesized by thermal evaporation of WO3 powders and decorated with Pd nanoparticles using a sol-gel method, followed by an annealing process. The effects of the annealing temperature on the hydrogen gas-sensing properties of the Pd-decorated WO3 nanorods were then examined; the optimal annealing temperature, leading to the highest response of the WO3 nanorod sensor to H2, was determined to be 600 °C. Post-annealing at 600 °C resulted in nanorods with the highest surface area-to-volume ratio, as well as in the optimal size and the largest number of deposited Pd nanoparticles, leading to the highest response and the shortest response/recovery times toward H2. The improved H2-sensing performance of the Pd-decorated WO3 nanorod sensor, compared to a sensor based on pristine WO3 nanorods, is attributed to the enhanced catalytic activity, increased surface area-to-volume ratio, and higher amounts of surface defects.

  4. Self-Pressurization of a Flightweight, Liquid Hydrogen Tank: Simulation and Comparison with Experiments

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E. M.; Moder, Jeffrey P.

    2016-01-01

    This paper presents ANSYS Fluent simulation results and analysis for self-pressurization of a flightweight, cryogenic, liquid hydrogen tank in 1-g. These results are compared with experimental data, in particular, pressure evolution and temperature measurements at a set of sensors. The simulations can be analyzed to identify and quantify heat flows in the tank. Heat flows change over time and influence the self-pressurization process. The initial rate of self-pressurization is sensitive to the initial temperature profile near the interface. Uncertainty in saturation pressure data and the accuracy of experimental measurements complicate simulation of self-pressurization. Numerical issues encountered, and their resolution, are also explained.

  5. Downhole geothermal well sensors comprising a hydrogen-resistant optical fiber

    DOEpatents

    Weiss, Jonathan D.

    2005-02-08

    A new class of optical fiber based thermal sensors has been invented. The new sensors comprise hydrogen-resistant optical fibers which are able to withstand a hot, hydrogen-containing environment as is often found in the downhole well environment.

  6. Wireless Hydrogen Smart Sensor Based on Pt/Graphene-Immobilized Radio-Frequency Identification Tag.

    PubMed

    Lee, Jun Seop; Oh, Jungkyun; Jun, Jaemoon; Jang, Jyongsik

    2015-08-25

    Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus, appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen-gas leak detection and surveillance systems are needed; additionally, the ability to monitor large areas (e.g., cities) via wireless networks is becoming increasingly important. In this report, we introduce a radio frequency identification (RFID)-based wireless smart-sensor system, composed of a Pt-decorated reduced graphene oxide (Pt_rGO)-immobilized RFID sensor tag and an RFID-reader antenna-connected network analyzer to detect hydrogen gas. The Pt_rGOs, produced using a simple chemical reduction process, were immobilized on an antenna pattern in the sensor tag through spin coating. The resulting Pt_rGO-based RFID sensor tag exhibited a high sensitivity to hydrogen gas at unprecedentedly low concentrations (1 ppm), with wireless communication between the sensor tag and RFID-reader antenna. The wireless sensor tag demonstrated flexibility and a long lifetime due to the strong immobilization of Pt_rGOs on the substrate and battery-independent operation during hydrogen sensing, respectively.

  7. Evidence for the Sequestration of Hydrogen-Bearing Volatiles Towards the Moons Southern Pole-Facing Slopes

    NASA Technical Reports Server (NTRS)

    McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Bodnarik, J.; Droege, G.; Evans, L. G.; Golovin, D.; Hamara, D.; Harshman, K.; hide

    2015-01-01

    The Lunar Exploration Neutron Detector (LEND) onboard the Lunar Reconnaissance Orbiter (LRO) detects a widespread suppression of the epithermal neutron leakage flux that is coincident with the pole-facing slopes (PFS) of the Moon's southern hemisphere. Suppression of the epithermal neutron flux is consistent with an interpretation of enhanced concentrations of hydrogen-bearing volatiles within the upper meter of the regolith. Localized flux suppression in PFS suggests that the reduced solar irradiation and lowered temperature on PFS constrains volatility to a greater extent than in surrounding regions. Epithermal neutron flux mapped with LEND's Collimated Sensor for Epithermal Neutrons (CSETN) was analyzed as a function of slope geomorphology derived from the Lunar Orbiting Laser Altimeter (LOLA) and the results compared to co-registered maps of diurnally averaged temperature from the Diviner Lunar Radiometer Experiment and an averaged illumination map derived from LOLA. The suppression in the average south polar epithermal neutron flux on equator-facing slopes (EFS) and PFS (85-90 deg S) is 3.3 +/- 0.04% and 4.3 +/- 0.05% respectively (one-sigma-uncertainties), relative to the average count-rate in the latitude band 45-90 deg S. The discrepancy of 1.0 +/- 0.06% between EFS and PFS neutron flux corresponds to an average of approximately 23 parts-per-million-by-weight (ppmw) more hydrogen on PFS than on EFS. Results show that the detection of hydrogen concentrations on PFS is dependent on their spatial scale. Epithermal flux suppression on large scale PFS was found to be enhanced to 5.2 +/- 0.13%, a discrepancy of approximately 45 ppmw hydrogen relative to equivalent EFS. Enhanced poleward hydration of PFS begins between 50 deg S and 60 deg S latitude. Polar regolith temperature contrasts do not explain the suppression of epithermal neutrons on pole-facing slopes. The Supplemental on-line materials include supporting results derived from the uncollimated Lunar Prospector Neutron Spectrometer and the LEND Sensor for Epithermal Neutrons.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, D.K.; Tracy, C.E.

    The real and perceived risks of hydrogen fuel use, particularly in passenger vehicles, will require extensive safety precautions including hydrogen leak detection. Conventional hydrogen gas sensors require electrical wiring and may be too expensive for deployment in multiple locations within a vehicle. In this recently initiated project, we are attempting to develop a reversible, thin-film, chemochromic sensor that can be applied to the end of a polymer optical fiber. The presence of hydrogen gas causes the film to become darker. A light beam transmitted from a central instrument in the vehicle along the sensor fibers will be reflected from themore » ends of the fiber back to individual light detectors. A decrease in the reflected light signal will indicate the presence and concentration of hydrogen in the vicinity of the fiber sensor. The typical thin film sensor consists of a layer of transparent, amorphous tungsten oxide covered by a very thin reflective layer of palladium. When the sensor is exposed to hydrogen, a portion of the hydrogen is dissociated, diffuses through the palladium and reacts with the tungsten oxide to form a blue insertion compound, H{sub X}WO{sub 3}- When the hydrogen gas is no longer present, the hydrogen will diffuse out of the H{sub X}WO{sub 3} and oxidize at the palladium/air interface, restoring the tungsten oxide film and the light signal to normal. The principle of this detection scheme has already been demonstrated by scientists in Japan. However, the design of the sensor has not been optimized for speed of response nor tested for its hydrogen selectivity in the presence of hydrocarbon gases. The challenge of this project is to modify the basic sensor design to achieve the required rapid response and assure sufficient selectivity to avoid false readings.« less

  9. Recent Developments in Chemically Reactive Sensors for Propellants

    NASA Technical Reports Server (NTRS)

    Davis, Dennis D.; Mast, Dion J.; Baker, David L.; Fries, Joseph (Technical Monitor)

    1999-01-01

    Propellant system leaks can pose a significant hazard in aerospace operations. For example, a leak in the hydrazine supply system of the shuttle auxiliary power unit (APU) has resulted in hydrazine ignition and fire in the aft compartment of the shuttle. Sensors indicating the location of a leak could provide valuable information required for operational decisions. WSTF has developed a small, single-use sensor for detection of propellant leaks. The sensor is composed of a thermistor bead coated with a substance which is chemically reactive with the propellant. The reactive thermistor is one of a pair of closely located thermistors, the other being a reference. On exposure to the propellant, the reactive coating responds exothermically to it and increases the temperature of the coated-thermistor by several degrees. The temperature rise is sensed by a resistive bridge circuit, and an alarm is registered by data acquisition software. The concept is general and has been applied to sensors for hydrazine, monomethylhydrazine, unsym-dimethylhydrazine, ammonia, hydrogen peroxide, ethanol, and dinitrogen tetroxide. Responses of these sensors to humidity, propellant concentration, distance from the liquid leak, and ambient pressure levels arc presented. A multi-use sensor has also been developed for hydrazine based on its catalytic reactivity with noble metals.

  10. Planar Zeolite Film-Based Potentiometric Gas Sensors Manufactured by a Combined Thick-Film and Electroplating Technique

    PubMed Central

    Marr, Isabella; Reiß, Sebastian; Hagen, Gunter; Moos, Ralf

    2011-01-01

    Zeolites are promising materials in the field of gas sensors. In this technology-oriented paper, a planar setup for potentiometric hydrocarbon and hydrogen gas sensors using zeolites as ionic sodium conductors is presented, in which the Pt-loaded Na-ZSM-5 zeolite is applied using a thick-film technique between two interdigitated gold electrodes and one of them is selectively covered for the first time by an electroplated chromium oxide film. The influence of the sensor temperature, the type of hydrocarbons, the zeolite film thickness, and the chromium oxide film thickness is investigated. The influence of the zeolite on the sensor response is briefly discussed in the light of studies dealing with zeolites as selectivity-enhancing cover layers. PMID:22164042

  11. Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations.

    PubMed

    Yan, Aidong; Huang, Sheng; Li, Shuo; Chen, Rongzhang; Ohodnicki, Paul; Buric, Michael; Lee, Shiwoo; Li, Ming-Jun; Chen, Kevin P

    2017-08-24

    This paper reports a technique to enhance the magnitude and high-temperature stability of Rayleigh back-scattering signals in silica fibers for distributed sensing applications. With femtosecond laser radiation, more than 40-dB enhancement of Rayleigh backscattering signal was generated in silica fibers using 300-nJ laser pulses at 250 kHz repetition rate. The laser-induced Rayleigh scattering defects were found to be stable from the room temperature to 800 °C in hydrogen gas. The Rayleigh scatter at high temperatures was correlated to the formation and modification of nanogratings in the fiber core. Using optical fibers with enhanced Rayleigh backscattering profiles as distributed temperature sensors, we demonstrated real-time monitoring of solid oxide fuel cell (SOFC) operations with 5-mm spatial resolution at 800 °C. Information gathered by these fiber sensor tools can be used to verify simulation results or operated in a process-control system to improve the operational efficiency and longevity of SOFC-based energy generation systems.

  12. Noncontact Measurement Of Shaft Speed, Torque, And Power

    NASA Technical Reports Server (NTRS)

    Madzsar, George C.

    1993-01-01

    Noncontact fiber-optic sensor and associated electronic equipment measure twist and speed of rotation of shaft. Measurements determine torque and power. Response of sensor remains linear even at cryogenic temperatures. Reflective strips on rotating shaft reflect two series of light pulses back into optical system. Bidirectional coupler in each of two optical fiber paths separates reflected light from incident light, sending it to photodiode for output to analog-to-digital converter and computer. Sensor requires no slip rings or telemetry to transfer signals from shaft. Well suited for providing data on performances of turbopumps for such cryogenic fluids as liquid oxygen and liquid hydrogen.

  13. Acoustic composition sensor for cryogenic gas mixtures

    NASA Technical Reports Server (NTRS)

    Shakkottai, P.; Kwack, E. Y.; Luchik, T. S.; Back, L. H.

    1991-01-01

    An acoustic sensor useful for the determination of the composition of a gaseous binary mixture in cryogenic liquid spills has been characterized. One version of the instrument traps a known mixture of helium and nitrogen at ambient temperature in a tube which is interrogated by sonic pulses to determine the speed of sound and hence the composition. Experimental data shows that this sensor is quite accurate. The second version uses two unconfined microphones which sense sound pulses. Experimental data acquired during mixing when liquid nitrogen is poured into a vessel of gaseous helium is presented. Data during transient cooling of the tubular sensor containing nitrogen when the sensor is dipped into liquid nitrogen and during transient warm-up when the sensor is withdrawn are also presented. This sensor is being developed for use in the mixing of liquid cryogens with gas evolution in the simulation of liquid hydrogen/liquid oxygen explosion hazards.

  14. Acoustic composition sensor for cryogenic gas mixtures

    NASA Astrophysics Data System (ADS)

    Shakkottai, P.; Kwack, E. Y.; Luchik, T. S.; Back, L. H.

    An acoustic sensor useful for the determination of the composition of a gaseous binary mixture in cryogenic liquid spills has been characterized. One version of the instrument traps a known mixture of helium and nitrogen at ambient temperature in a tube which is interrogated by sonic pulses to determine the speed of sound and hence the composition. Experimental data shows that this sensor is quite accurate. The second version uses two unconfined microphones which sense sound pulses. Experimental data acquired during mixing when liquid nitrogen is poured into a vessel of gaseous helium is presented. Data during transient cooling of the tubular sensor containing nitrogen when the sensor is dipped into liquid nitrogen and during transient warm-up when the sensor is withdrawn are also presented. This sensor is being developed for use in the mixing of liquid cryogens with gas evolution in the simulation of liquid hydrogen/liquid oxygen explosion hazards.

  15. Selective detection of vapor phase hydrogen peroxide with phthalocyanine chemiresistors.

    PubMed

    Bohrer, Forest I; Colesniuc, Corneliu N; Park, Jeongwon; Schuller, Ivan K; Kummel, Andrew C; Trogler, William C

    2008-03-26

    The use of hydrogen peroxide as a precursor to improvised explosives has made its detection a topic of critical importance. Chemiresistor arrays comprised of 50 nm thick films of metallophthalocyanines (MPcs) are redox selective vapor sensors of hydrogen peroxide. Hydrogen peroxide is shown to decrease currents in cobalt phthalocyanine sensors while it increases currents in nickel, copper, and metal-free phthalocyanine sensors; oxidation and reduction of hydrogen peroxide via catalysis at the phthalocyanine surface are consistent with the pattern of sensor responses. This represents the first example of MPc vapor sensors being oxidized and reduced by the same analyte by varying the metal center. Consequently, differential analysis by redox contrast with catalytic amplification using a small array of sensors may be used to uniquely identify peroxide vapors. Metallophthalocyanine chemiresistors represent an improvement over existing peroxide vapor detection technologies in durability and selectivity in a greatly decreased package size.

  16. The pH sensing characteristics of the extended-gate field-effect transistors of multi-walled carbon-nanotube thin film using low-temperature ultrasonic spray method.

    PubMed

    Chien, Yun-Shan; Yang, Po-Yu; Tsai, Wan-Lin; Li, Yu-Ren; Chou, Chia-Hsin; Chou, Jung-Chuan; Cheng, Huang-Chung

    2012-07-01

    A novel, simple and low-temperature ultrasonic spray method was developed to fabricate the multi-walled carbon-nanotubes (MWCNTs) based extended-gate field-effect transistors (EGFETs) as the pH sensor. With an acid-treated process, the chemically functionalized two-dimensional MWCNT network could provide plenty of functional groups which exhibit hydrophilic property and serve as hydrogen sensing sites. For the first time, the EGFET using a MWCNT structure could achieve a wide sensing rage from pH = 1 to pH = 13. Furthermore, the pH sensitivity and linearity values of the CNT pH-EGFET devices were enhanced to 51.74 mV/pH and 0.9948 from pH = 1 to pH = 13 while the sprayed deposition reached 50 times. The sensing properties of hydrogen and hydroxyl ions show significantly dependent on the sprayed deposition times, morphologies, crystalline and chemical bonding of acid-treated MWCNT. These results demonstrate that the MWCNT-EGFETs are very promising for the applications in the pH and biomedical sensors.

  17. Alcohol vapor sensing by cadmium-doped zinc oxide thick films based chemical sensor

    NASA Astrophysics Data System (ADS)

    Zargar, R. A.; Arora, M.; Chackrabarti, S.; Ahmad, S.; Kumar, J.; Hafiz, A. K.

    2016-04-01

    Cadmium-doped zinc oxide nanoparticles were derived by simple chemical co-precipitation route using zinc acetate dihydrate and cadmium acetate dihydrate as precursor materials. The thick films were casted from chemical co-precipitation route prepared nanoparticles by economic facile screen printing method. The structural, morphological, optical and electrical properties of the film were characterized relevant to alcohol vapor sensing application by powder XRD, SEM, UV-VIS and DC conductivity techniques. The response and sensitivity of alcohol (ethanol) vapor sensor are obtained from the recovery curves at optimum working temperature range from 20∘C to 50∘C. The result shows that maximum sensitivity of the sensor is observed at 25∘C operating temperature. On varying alcohol vapor concentration, minor variation in resistance has been observed. The sensing mechanism of sensor has been described in terms of physical adsorption and chemical absorption of alcohol vapors on cadmium-doped zinc oxide film surface and inside film lattice network through weak hydrogen bonding, respectively.

  18. Facile fabrication of CNT-based chemical sensor operating at room temperature

    NASA Astrophysics Data System (ADS)

    Sheng, Jiadong; Zeng, Xian; Zhu, Qi; Yang, Zhaohui; Zhang, Xiaohua

    2017-12-01

    This paper describes a simple, low cost and effective route to fabricate CNT-based chemical sensors, which operate at room temperature. Firstly, the incorporation of silk fibroin in vertically aligned CNT arrays (CNTA) obtained through a thermal chemical vapor deposition (CVD) method makes the direct removal of CNT arrays from substrates without any rigorous acid or sonication treatment feasible. Through a simple one-step in situ polymerization of anilines, the functionalization of CNT arrays with polyaniline (PANI) significantly improves the sensing performance of CNT-based chemical sensors in detecting ammonia (NH3) and hydrogen chloride (HCl) vapors. Chemically modified CNT arrays also show responses to organic vapors like menthol, ethyl acetate and acetone. Although the detection limits of chemically modified CNT-based chemical sensors are of the same orders of magnitudes reported in previous studies, these CNT-based chemical sensors show advantages of simplicity, low cost and energy efficiency in preparation and fabrication of devices. Additionally, a linear relationship between the relative sensitivity and concentration of analyte makes precise estimations on the concentrations of trace chemical vapors possible.

  19. Sensors and devices containing ultra-small nanowire arrays

    DOEpatents

    Xiao, Zhili

    2014-09-23

    A network of nanowires may be used for a sensor. The nanowires are metallic, each nanowire has a thickness of at most 20 nm, and each nanowire has a width of at most 20 nm. The sensor may include nanowires comprising Pd, and the sensor may sense a change in hydrogen concentration from 0 to 100%. A device may include the hydrogen sensor, such as a vehicle, a fuel cell, a hydrogen storage tank, a facility for manufacturing steel, or a facility for refining petroleum products.

  20. Sensors and devices containing ultra-small nanowire arrays

    DOEpatents

    Xiao, Zhili

    2017-04-11

    A network of nanowires may be used for a sensor. The nanowires are metallic, each nanowire has a thickness of at most 20 nm, and each nanowire has a width of at most 20 nm. The sensor may include nanowires comprising Pd, and the sensor may sense a change in hydrogen concentration from 0 to 100%. A device may include the hydrogen sensor, such as a vehicle, a fuel cell, a hydrogen storage tank, a facility for manufacturing steel, or a facility for refining petroleum products.

  1. Energy Systems Sensor Laboratory | Energy Systems Integration Facility |

    Science.gov Websites

    NREL Sensor Laboratory Energy Systems Sensor Laboratory The Energy Systems Integration Facility's Energy Systems Sensor Laboratory is designed to support research, development, testing, and evaluation of advanced hydrogen sensor technologies to support the needs of the emerging hydrogen

  2. Hydrogen sensor

    DOEpatents

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  3. "Un-annealed and Annealed Pd Ultra-Thin Film on SiC Characterized by Scanning Probe Microscopy and X-ray Photoelectron Spectroscopy"

    NASA Technical Reports Server (NTRS)

    Lu, W. J.; Shi, D. T.; Elshot, K.; Bryant, E.; Lafate, K.; Chen, H.; Burger, A.; Collins, W. E.

    1998-01-01

    Pd/SiC has been used as a hydrogen and a hydrocarbon gas sensor operated at high temperature. UHV (Ultra High Vacuum)-Scanning Tunneling Microscopy (STM), Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS) techniques were applied to study the relationship between the morphology and chemical compositions for Pd ultra-thin films on SiC (less than 30 angstroms) at different annealing temperatures. Pd ultra-thin film on 6H-SiC was prepared by the RF sputtering method. The morphology from UHV-STM and AFM shows that the Pd thin film was well deposited on SiC substrate, and the Pd was partially aggregated to round shaped participates at an annealing temperature of 300 C. At 400 C, the amount of surface participates decreases, and some strap shape participates appear. From XPS, Pd2Si was formed on the surface after annealing at 300 C, and all Pd reacted with SiC to form Pd2Si after annealing at 400 C. The intensity of the XPS Pd peak decreases enormously at 400 C. The Pd film diffused into SiC, and the Schottky barrier height has almost no changes. The work shows the Pd sicilides/SiC have the same electronic properties with Pd/SiC, and explains why the Pd/SiC sensor still responds to hydrogen at high operating temperatures.

  4. Facile one-step electrochemical deposition of copper nanoparticles and reduced graphene oxide as nonenzymatic hydrogen peroxide sensor

    NASA Astrophysics Data System (ADS)

    Moozarm Nia, Pooria; Woi, Pei Meng; Alias, Yatimah

    2017-08-01

    For several decades, hydrogen peroxide has exhibited to be an extremely significant analyte as an intermediate in several biological devices as well as in many industrial systems. A straightforward and novel one-step technique was employed to develop a sensitive non-enzymatic hydrogen peroxide (H2O2) sensor by simultaneous electrodeposition of copper nanoparticles (CuNPs) and reduced graphene oxide (rGO). The electroreduction performance of the CuNPs-rGO for hydrogen peroxide detection was studied by cyclic voltammetry (CV) and chronoamperometry (AMP) methods The CuNPs-rGO showed a synergistic effect of reduced graphene oxide and copper nanoparticles towards the electroreduction of hydrogen peroxide, indicating high reduction current. At detection potential of -0.2 V, the CuNPs-rGO sensor demonstrated a wide linear range up to 18 mM with a detection limit of 0.601 mM (S/N = 3). Furthermore, with addition of hydrogen peroxide, the sensor responded very quickly (<3 s). The CuNPs-rGO presents high selectivity, sensitivity, stability and fast amperometric sensing towards hydrogen peroxide which makes it favorable for the development of non-enzymatic hydrogen peroxide sensor.

  5. Parylene MEMS patency sensor for assessment of hydrocephalus shunt obstruction.

    PubMed

    Kim, Brian J; Jin, Willa; Baldwin, Alexander; Yu, Lawrence; Christian, Eisha; Krieger, Mark D; McComb, J Gordon; Meng, Ellis

    2016-10-01

    Neurosurgical ventricular shunts inserted to treat hydrocephalus experience a cumulative failure rate of 80 % over 12 years; obstruction is responsible for most failures with a majority occurring at the proximal catheter. Current diagnosis of shunt malfunction is imprecise and involves neuroimaging studies and shunt tapping, an invasive measurement of intracranial pressure and shunt patency. These patients often present emergently and a delay in care has dire consequences. A microelectromechanical systems (MEMS) patency sensor was developed to enable direct and quantitative tracking of shunt patency in order to detect proximal shunt occlusion prior to the development of clinical symptoms thereby avoiding delays in treatment. The sensor was fabricated on a flexible polymer substrate to eventually allow integration into a shunt. In this study, the sensor was packaged for use with external ventricular drainage systems for clinical validation. Insights into the transduction mechanism of the sensor were obtained. The impact of electrode size, clinically relevant temperatures and flows, and hydrogen peroxide (H2O2) plasma sterilization on sensor function were evaluated. Sensor performance in the presence of static and dynamic obstruction was demonstrated using 3 different models of obstruction. Electrode size was found to have a minimal effect on sensor performance and increased temperature and flow resulted in a slight decrease in the baseline impedance due to an increase in ionic mobility. However, sensor response did not vary within clinically relevant temperature and flow ranges. H2O2 plasma sterilization also had no effect on sensor performance. This low power and simple format sensor was developed with the intention of future integration into shunts for wireless monitoring of shunt state and more importantly, a more accurate and timely diagnosis of shunt failure.

  6. Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures

    PubMed Central

    Gu, Haoshuang; Wang, Zhao; Hu, Yongming

    2012-01-01

    Recently, the hydrogen gas sensing properties of semiconductor oxide (SMO) nanostructures have been widely investigated. In this article, we provide a comprehensive review of the research progress in the last five years concerning hydrogen gas sensors based on SMO thin film and one-dimensional (1D) nanostructures. The hydrogen sensing mechanism of SMO nanostructures and some critical issues are discussed. Doping, noble metal-decoration, heterojunctions and size reduction have been investigated and proved to be effective methods for improving the sensing performance of SMO thin films and 1D nanostructures. The effect on the hydrogen response of SMO thin films and 1D nanostructures of grain boundary and crystal orientation, as well as the sensor architecture, including electrode size and nanojunctions have also been studied. Finally, we also discuss some challenges for the future applications of SMO nanostructured hydrogen sensors. PMID:22778599

  7. Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2005-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors; 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity; 3) The development of high temperature semiconductors, especially silicon carbide. This presentation discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  8. A laboratory model of a hydrogen/oxygen engine for combustion and nozzle studies

    NASA Technical Reports Server (NTRS)

    Morren, Sybil H.; Myers, Roger M.; Benko, Stephen E.; Arrington, Lynn A.; Reed, Brian D.

    1993-01-01

    A small laboratory diagnostic thruster was developed in order to evaluate approaches for the use of temperature and pressure sensors for the investigation of low thrust rocket flowfields. Tests were performed at chamber pressures of about 255 kPa, 370 kPa, and 500 kPa with oxidizer/fuel mixture ratios between 4.0 and 8.0. Two gaseous hydrogen/gaseous oxygen injector designs were tested with 60 and 75 fuel film cooling. The results of hot-wire tests showed the thruster and instrumentation designs to be effective. Azimuthal temperature distributions were found to be a function of operating conditions and hardware configuration. Results indicated that small differences in injector design can result in dramatically different thruster performance and wall temperature behavior. However, the importance of these injector effects may be decreased by operating at a high fuel film cooling rate.

  9. Linear Aerospike SR-71 Experiment (LASRE): Aerospace Propulsion Hazard Mitigation Systems

    NASA Technical Reports Server (NTRS)

    Mizukami, Masashi; Corpening, Griffin P.; Ray, Ronald J.; Hass, Neal; Ennix, Kimberly A.; Lazaroff, Scott M.

    1998-01-01

    A major hazard posed by the propulsion system of hypersonic and space vehicles is the possibility of fire or explosion in the vehicle environment. The hazard is mitigated by minimizing or detecting, in the vehicle environment, the three ingredients essential to producing fire: fuel, oxidizer, and an ignition source. The Linear Aerospike SR-71 Experiment (LASRE) consisted of a linear aerospike rocket engine integrated into one-half of an X-33-like lifting body shape, carried on top of an SR-71 aircraft. Gaseous hydrogen and liquid oxygen were used as propellants. Although LASRE is a one-of-a-kind experimental system, it must be rated for piloted flight, so this test presented a unique challenge. To help meet safety requirements, the following propulsion hazard mitigation systems were incorporated into the experiment: pod inert purge, oxygen sensors, a hydrogen leak detection algorithm, hydrogen sensors, fire detection and pod temperature thermocouples, water misting, and control room displays. These systems are described, and their development discussed. Analyses, ground test, and flight test results are presented, as are findings and lessons learned.

  10. The Application of Metal Oxide Nanomaterials for Chemical Sensor Development

    NASA Technical Reports Server (NTRS)

    Xu, Jennifer C.; Hunter, Gary W.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.

    2007-01-01

    NASA Glenn Research Center (GRC) has been developing miniature chemical sensors for a variety of applications including fire detection, emissions monitoring, fuel leak detection, and environmental monitoring. Smart Lick and Stick sensor technology which integrates a sensor array, electronics, telemetry, and power into one microsystem are being developed. These microsystems require low power consumption for long-term aerospace applications. One approach to decreasing power consumption is the use of nanotechnology. Nanocrystalline tin oxide (SnO2) carbon monoxide (CO) sensors developed previously by this group have been successfully used for fire detection and emissions monitoring. This presentation will briefly review the overall NASA GRC chemical sensor program and discuss our further effort in nanotechnology applications. New carbon dioxide (CO2) sensing material using doped nanocrystalline SnO2 will be discussed. Nanocrystalline SnO2 coated solid electrolyte CO2 sensors and SnO2 nanorod and nanofiber hydrogen (H2) sensors operated at reduced or room temperatures will also be discussed.

  11. Application of fiber Bragg grating sensors to real-time strain measurement of cryogenic tanks

    NASA Astrophysics Data System (ADS)

    Takeda, Nobuo; Mizutani, Tadahito; Hayashi, Kentaro; Okabe, Yoji

    2003-08-01

    Although many researches of strain measurement using fiber Bragg grating (FBG) sensors were conducted, there were few applications of FBG sensors to spacecraft in operation. It is very significant to develop an onboard system for the real-time strain measurement during the flight operation. In the present research, the real-time strain measurement of a composite liquid hydrogen (LH2) tank, which consisted of CFRP and aluminum liner, was attempted. Adhesive property of the FBG sensors was investigated first of all. As a result, UV coated FBG sensors and polyurethane adhesive were adopted. Then, reflection spectra from FBG sensors were measured through the tensile test at liquid helium (LHe) temperature. Since the center wavelength shifted in proportion to the applied strain, the FBG sensor was suitable as a precise strain sensor even at LHe temperature. Next, the development of an onboard FBG demodulator was discussed. This onboard demodulator was designed for weight saving to be mounted on a reusable rocket vehicle test (RVT) operated by the Institute of Space and Astronautical Science (ISAS). FBG sensors were bonded on the surface of the composite LH2 tank for the RVT. Then, strain measurement using the onboard demodulator was conducted through the cryogenic pressure test of the tank and compared with the result measured using the optical spectrum analyzer (OSA).

  12. A mechanistic study of hydrogen gas sensing by PdO nanoflake thin films at temperatures below 250 °C.

    PubMed

    Chiang, Yu-Ju; Li, Kuang-Chung; Lin, Yi-Chieh; Pan, Fu-Ming

    2015-02-07

    We prepared PdO nanoflake thin films on the SiO2 substrate by reactive sputter deposition, and studied their sensing response to H2 at temperatures between 25 and 250 °C. In addition to the oxygen ionosorption model, which is used to describe the early H2 sensing response over the temperature range studied, the H2 sensing kinetics of the PdO thin films can be separated into three temperature regimes: temperatures below 100 °C, around 150 °C and above 200 °C. At temperatures below 100 °C, PdO reduction is the dominant reaction affecting the H2 sensing behavior. At temperatures around 150 °C, Pd reoxidation kinetically competes with PdO reduction leading to a complicated sensing characteristic. Active PdO reduction by H2 promotes the continuing growth of Pd nanoislands, facilitating dissociative oxygen adsorption and thus the subsequent Pd reoxidation in the H2-dry air gas mixture. The kinetic competition between the PdO reduction and reoxidation at 150 °C leads to the observation of an inverse of the increase in the sensor conductivity. At temperatures above 200 °C, the PdO sensor exhibits a sensor signal monotonically increasing with the H2 concentration, and the H2 sensing behavior is consistent with the Mars-van-Krevelen redox mechanism.

  13. Capacitive density measurement for supercritical hydrogen

    NASA Astrophysics Data System (ADS)

    Funke, Th; Haberstroh, Ch; Szoucsek, K.; Schott, S.; Kunze, K.

    2017-12-01

    A new approach for automotive hydrogen storage systems is the so-called cryo-compressed hydrogen storage (CcH2). It has a potential for increased energy densities and thus bigger hydrogen amounts onboard, which is the main attractiveness for car manufacturers such as BMW. This system has further advantages in terms of safety, refueling and cooling potential. The current filling level measurement by means of pressure and temperature measurement and subsequent density calculation faces challenges especially in terms of precision. A promising alternative is the capacitive gauge. This measuring principle can determine the filling level of the CcH2 tank with significantly smaller tolerances. The measuring principle is based on different dielectric constants of gaseous and liquid hydrogen. These differences are successfully leveraged in liquid hydrogen storage systems (LH2). The present theoretical analysis shows that the dielectric values of CcH2 in the relevant operating range are comparable to LH2, thus achieving similarly good accuracy. The present work discusses embodiments and implementations for such a sensor in the CcH2 tank.

  14. Development of an Inexpensive RGB Color Sensor for the Detection of Hydrogen Cyanide Gas.

    PubMed

    Greenawald, Lee A; Boss, Gerry R; Snyder, Jay L; Reeder, Aaron; Bell, Suzanne

    2017-10-27

    An inexpensive red, green, blue (RGB) color sensor was developed for detecting low ppm concentrations of hydrogen cyanide gas. A piece of glass fiber filter paper containing monocyanocobinamide [CN(H 2 O)Cbi] was placed directly above the RGB color sensor and an on chip LED. Light reflected from the paper was monitored for RGB color change upon exposure to hydrogen cyanide at concentrations of 1.0-10.0 ppm as a function of 25%, 50%, and 85% relative humidity. A rapid color change occurred within 10 s of exposure to 5.0 ppm hydrogen cyanide gas (near the NIOSH recommended exposure limit). A more rapid color change occurred at higher humidity, suggesting a more effective reaction between hydrogen cyanide and CN(H 2 O)Cbi. The sensor could provide the first real time respirator end-of-service-life alert for hydrogen cyanide gas.

  15. Safe Detection System for Hydrogen Leaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieberman, Robert A.; Beshay, Manal

    2012-02-29

    Hydrogen is an "environmentally friendly" fuel for future transportation and other applications, since it produces only pure ("distilled") water when it is consumed. Thus, hydrogen-powered vehicles are beginning to proliferate, with the total number of such vehicles expected to rise to nearly 100,000 within the next few years. However, hydrogen is also an odorless, colorless, highly flammable gas. Because of this, there is an important need for hydrogen safety monitors that can warn of hazardous conditions in vehicles, storage facilities, and hydrogen production plants. To address this need, IOS has developed a unique intrinsically safe optical hydrogen sensing technology, andmore » has embodied it in detector systems specifically developed for safety applications. The challenge of using light to detect a colorless substance was met by creating chemically-sensitized optical materials whose color changes in the presence of hydrogen. This reversible reaction provides a sensitive, reliable, way of detecting hydrogen and measuring its concentration using light from low-cost LEDs. Hydrogen sensors based on this material were developed in three completely different optical formats: point sensors ("optrodes"), integrated optic sensors ("optical chips"), and optical fibers ("distributed sensors") whose entire length responds to hydrogen. After comparing performance, cost, time-to-market, and relative market need for these sensor types, the project focused on designing a compact optrode-based single-point hydrogen safety monitor. The project ended with the fabrication of fifteen prototype units, and the selection of two specific markets: fuel cell enclosure monitoring, and refueling/storage safety. Final testing and development of control software for these markets await future support.« less

  16. MIS-based sensors with hydrogen selectivity

    DOEpatents

    Li,; Dongmei, [Boulder, CO; Medlin, J William [Boulder, CO; McDaniel, Anthony H [Livermore, CA; Bastasz, Robert J [Livermore, CA

    2008-03-11

    The invention provides hydrogen selective metal-insulator-semiconductor sensors which include a layer of hydrogen selective material. The hydrogen selective material can be polyimide layer having a thickness between 200 and 800 nm. Suitable polyimide materials include reaction products of benzophenone tetracarboxylic dianhydride 4,4-oxydianiline m-phenylene diamine and other structurally similar materials.

  17. Hydrogen peroxide and glucose concentration measurement using optical fiber grating sensors with corrodible plasmonic nanocoatings

    PubMed Central

    Zhang, Xuejun; Wu, Ze; Liu, Fu; Fu, Qiangqiang; Chen, Xiaoyong; Xu, Jian; Zhang, Zhaochuan; Huang, Yunyun; Tang, Yong; Guo, Tuan; Albert, Jacques

    2018-01-01

    We propose and demonstrate hydrogen peroxide (H2O2) and glucose concentration measurements using a plasmonic optical fiber sensor. The sensor utilizes a tilted fiber Bragg grating (TFBG) written in standard single mode communication fiber. The fiber is over coated with an nm-scale film of silver that supports surface plasmon resonances (SPRs). Such a tilted grating SPR structure provides a high density of narrow spectral resonances (Q-factor about 105) that overlap with the broader absorption band of the surface plasmon waves in the silver film, thereby providing an accurate tool to measure small shifts of the plasmon resonance frequencies. The H2O2 to be detected acts as an oxidant to etch the silver film, which has the effect of gradually decreasing the SPR attenuation. The etching rate of the silver film shows a clear relationship with the H2O2 concentration so that monitoring the progressively increasing attenuation of a selected surface plasmon resonance over a few minutes enables us to measure the H2O2 concentration with a limit of detection of 0.2 μM. Furthermore, the proposed method can be applied to the determination of glucose in human serum for a concentration range from 0 to 12 mM (within the physiological range of 3-8 mM) by monitoring the H2O2 produced by an enzymatic oxidation process. The sensor does not require accurate temperature control because of the inherent temperature insensitivity of TFBG devices referenced to the core mode resonance. A gold mirror coated on the fiber allows the sensor to work in reflection, which will facilitate the integration of the sensor with a hypodermic needle for in vitro measurements. The present study shows that Ag-coated TFBG-SPR can be applied as a promising type of sensing probe for optical detection of H2O2 and glucose detection in human serum. PMID:29675315

  18. Hydrogen peroxide and glucose concentration measurement using optical fiber grating sensors with corrodible plasmonic nanocoatings.

    PubMed

    Zhang, Xuejun; Wu, Ze; Liu, Fu; Fu, Qiangqiang; Chen, Xiaoyong; Xu, Jian; Zhang, Zhaochuan; Huang, Yunyun; Tang, Yong; Guo, Tuan; Albert, Jacques

    2018-04-01

    We propose and demonstrate hydrogen peroxide (H 2 O 2 ) and glucose concentration measurements using a plasmonic optical fiber sensor. The sensor utilizes a tilted fiber Bragg grating (TFBG) written in standard single mode communication fiber. The fiber is over coated with an nm-scale film of silver that supports surface plasmon resonances (SPRs). Such a tilted grating SPR structure provides a high density of narrow spectral resonances (Q-factor about 10 5 ) that overlap with the broader absorption band of the surface plasmon waves in the silver film, thereby providing an accurate tool to measure small shifts of the plasmon resonance frequencies. The H 2 O 2 to be detected acts as an oxidant to etch the silver film, which has the effect of gradually decreasing the SPR attenuation. The etching rate of the silver film shows a clear relationship with the H 2 O 2 concentration so that monitoring the progressively increasing attenuation of a selected surface plasmon resonance over a few minutes enables us to measure the H 2 O 2 concentration with a limit of detection of 0.2 μM. Furthermore, the proposed method can be applied to the determination of glucose in human serum for a concentration range from 0 to 12 mM (within the physiological range of 3-8 mM) by monitoring the H 2 O 2 produced by an enzymatic oxidation process. The sensor does not require accurate temperature control because of the inherent temperature insensitivity of TFBG devices referenced to the core mode resonance. A gold mirror coated on the fiber allows the sensor to work in reflection, which will facilitate the integration of the sensor with a hypodermic needle for in vitro measurements. The present study shows that Ag-coated TFBG-SPR can be applied as a promising type of sensing probe for optical detection of H 2 O 2 and glucose detection in human serum.

  19. Optical Gauging of Liquid and Solid Hydrogen in Zero-g Environments for Space Applications

    NASA Astrophysics Data System (ADS)

    Caimi, F. M.; Kocak, D. M.; Justak, J. F.

    2006-04-01

    Knowledge of fuel reserve levels is required for propellant management systems and power considerations in many space applications. Although methods are known for gauging fuel amounts in gravitational environments, no simple passive method is known for quantifying fuel reserves in a zero-g environment. Current ground-based methods for cryogenic liquid quantification use wire resistance measurements or point sensors, combined with pressure and temperature measurements to arrive at the desired accuracy. This paper presents an optical sensor design based on existing radiometric and integrating sphere techniques that have the potential to provide quantification in both zero-g and ground based applications. The general approach relies upon optical absorption of liquid or solid hydrogen in a vibrational overtone spectral region. The cryogen storage tank is configured as an "Integrating Sphere." Inside the tank, in a zero-g environment, the liquid and/or gaseous fuel will be free-floating and/or attached to the walls. Incident light irradiates even the smallest portion of the sphere due to the integration. The amount of light absorbed in the tank will be proportional to the amount of fuel present. Therefore, regardless of scatter, all light passed through the medium in the sphere is contained and can be quantified. This paper presents simulations for various liquid hydrogen volumetric configurations and confirms utility of the method. Initial experimental results for a liquid hydrogen analyte in non-zero-g environments are provided. Using this sensor, it is possible to achieve a 10× increase in fuel measurement accuracy which can provide an increased orbit or payload capability.

  20. H2 S Sensors: Fumarate-Based fcu-MOF Thin Film Grown on a Capacitive Interdigitated Electrode.

    PubMed

    Yassine, Omar; Shekhah, Osama; Assen, Ayalew H; Belmabkhout, Youssef; Salama, Khaled N; Eddaoudi, Mohamed

    2016-12-19

    Herein we report the fabrication of an advanced sensor for the detection of hydrogen sulfide (H 2 S) at room temperature, using thin films of rare-earth metal (RE)-based metal-organic framework (MOF) with underlying fcu topology. This unique MOF-based sensor is made via the in situ growth of fumarate-based fcu-MOF (fum-fcu-MOF) thin film on a capacitive interdigitated electrode. The sensor showed a remarkable detection sensitivity for H 2 S at concentrations down to 100 ppb, with the lower detection limit around 5 ppb. The fum-fcu-MOF sensor exhibits a highly desirable detection selectivity towards H 2 S vs. CH 4 , NO 2 , H 2 , and C 7 H 8 as well as an outstanding H 2 S sensing stability as compared to other reported MOFs. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Emission Measurements of Ultracell XX25 Reformed Methanol Fuel Cell System

    DTIC Science & Technology

    2008-06-01

    combination of electrochemical devices such as fuel cell and battery. Polymer electrolyte membrane fuel cells ( PEMFC ) using hydrogen or liquid...communications and computers, sensors and night vision capabilities. High temperature PEMFC offers some advantages such as enhanced electrode kinetics and better...tolerance of carbon monoxide that will poison the conventional PEMFC . Ultracell Corporation, Livermore, California has developed a first

  2. France's State of the Art Distributed Optical Fibre Sensors Qualified for the Monitoring of the French Underground Repository for High Level and Intermediate Level Long Lived Radioactive Wastes.

    PubMed

    Delepine-Lesoille, Sylvie; Girard, Sylvain; Landolt, Marcel; Bertrand, Johan; Planes, Isabelle; Boukenter, Aziz; Marin, Emmanuel; Humbert, Georges; Leparmentier, Stéphanie; Auguste, Jean-Louis; Ouerdane, Youcef

    2017-06-13

    This paper presents the state of the art distributed sensing systems, based on optical fibres, developed and qualified for the French Cigéo project, the underground repository for high level and intermediate level long-lived radioactive wastes. Four main parameters, namely strain, temperature, radiation and hydrogen concentration are currently investigated by optical fibre sensors, as well as the tolerances of selected technologies to the unique constraints of the Cigéo's severe environment. Using fluorine-doped silica optical fibre surrounded by a carbon layer and polyimide coating, it is possible to exploit its Raman, Brillouin and Rayleigh scattering signatures to achieve the distributed sensing of the temperature and the strain inside the repository cells of radioactive wastes. Regarding the dose measurement, promising solutions are proposed based on Radiation Induced Attenuation (RIA) responses of sensitive fibres such as the P-doped ones. While for hydrogen measurements, the potential of specialty optical fibres with Pd particles embedded in their silica matrix is currently studied for this gas monitoring through its impact on the fibre Brillouin signature evolution.

  3. Physics Simulation Software for Autonomous Propellant Loading and Gas House Autonomous System Monitoring

    NASA Technical Reports Server (NTRS)

    Regalado Reyes, Bjorn Constant

    2015-01-01

    1. Kennedy Space Center (KSC) is developing a mobile launching system with autonomous propellant loading capabilities for liquid-fueled rockets. An autonomous system will be responsible for monitoring and controlling the storage, loading and transferring of cryogenic propellants. The Physics Simulation Software will reproduce the sensor data seen during the delivery of cryogenic fluids including valve positions, pressures, temperatures and flow rates. The simulator will provide insight into the functionality of the propellant systems and demonstrate the effects of potential faults. This will provide verification of the communications protocols and the autonomous system control. 2. The High Pressure Gas Facility (HPGF) stores and distributes hydrogen, nitrogen, helium and high pressure air. The hydrogen and nitrogen are stored in cryogenic liquid state. The cryogenic fluids pose several hazards to operators and the storage and transfer equipment. Constant monitoring of pressures, temperatures and flow rates are required in order to maintain the safety of personnel and equipment during the handling and storage of these commodities. The Gas House Autonomous System Monitoring software will be responsible for constantly observing and recording sensor data, identifying and predicting faults and relaying hazard and operational information to the operators.

  4. Qualitative and quantitative differentiation of gases using ZnO thin film gas sensors and pattern recognition analysis.

    PubMed

    Pati, Sumati; Maity, A; Banerji, P; Majumder, S B

    2014-04-07

    In the present work we have grown highly textured, ultra-thin, nano-crystalline zinc oxide thin films using a metal organic chemical vapor deposition technique and addressed their selectivity towards hydrogen, carbon dioxide and methane gas sensing. Structural and microstructural characteristics of the synthesized films were investigated utilizing X-ray diffraction and electron microscopy techniques respectively. Using a dynamic flow gas sensing measurement set up, the sensing characteristics of these films were investigated as a function of gas concentration (10-1660 ppm) and operating temperature (250-380 °C). ZnO thin film sensing elements were found to be sensitive to all of these gases. Thus at a sensor operating temperature of ~300 °C, the response% of the ZnO thin films were ~68, 59, and 52% for hydrogen, carbon monoxide and methane gases respectively. The data matrices extracted from first Fourier transform analyses (FFT) of the conductance transients were used as input parameters in a linear unsupervised principal component analysis (PCA) pattern recognition technique. We have demonstrated that FFT combined with PCA is an excellent tool for the differentiation of these reducing gases.

  5. France’s State of the Art Distributed Optical Fibre Sensors Qualified for the Monitoring of the French Underground Repository for High Level and Intermediate Level Long Lived Radioactive Wastes

    PubMed Central

    Delepine-Lesoille, Sylvie; Girard, Sylvain; Landolt, Marcel; Bertrand, Johan; Planes, Isabelle; Boukenter, Aziz; Marin, Emmanuel; Humbert, Georges; Leparmentier, Stéphanie; Auguste, Jean-Louis; Ouerdane, Youcef

    2017-01-01

    This paper presents the state of the art distributed sensing systems, based on optical fibres, developed and qualified for the French Cigéo project, the underground repository for high level and intermediate level long-lived radioactive wastes. Four main parameters, namely strain, temperature, radiation and hydrogen concentration are currently investigated by optical fibre sensors, as well as the tolerances of selected technologies to the unique constraints of the Cigéo’s severe environment. Using fluorine-doped silica optical fibre surrounded by a carbon layer and polyimide coating, it is possible to exploit its Raman, Brillouin and Rayleigh scattering signatures to achieve the distributed sensing of the temperature and the strain inside the repository cells of radioactive wastes. Regarding the dose measurement, promising solutions are proposed based on Radiation Induced Attenuation (RIA) responses of sensitive fibres such as the P-doped ones. While for hydrogen measurements, the potential of specialty optical fibres with Pd particles embedded in their silica matrix is currently studied for this gas monitoring through its impact on the fibre Brillouin signature evolution. PMID:28608831

  6. Thin film hydrogen sensor

    DOEpatents

    Lauf, Robert J.; Hoffheins, Barbara S.; Fleming, Pamela H.

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  7. Thin film hydrogen sensor

    DOEpatents

    Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

    1994-11-22

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

  8. Safety, Codes, and Standards | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    to develop and test hydrogen sensor technologies. In addition to partnering with organizations in the and Validation of Prototype Hydrogen Sensors, P.K. Sekhar, J. Zhou, M.B. Post, L. Woo, W.J. Buttner , M.B. Post, C. Rivkin, R. Burgess, and W.J. Buttner, International Journal of Hydrogen Energy (March

  9. Highly sensitive hydrogen detection of catalyst-free ZnO nanorod networks suspended by lithography-assisted growth.

    PubMed

    Huh, Junghwan; Park, Jonghyurk; Kim, Gyu Tae; Park, Jeong Young

    2011-02-25

    We have successfully demonstrated a ZnO nanorod-based 3D nanostructure to show a high sensitivity and very fast response/recovery to hydrogen gas. ZnO nanorods have been synthesized selectively over the pre-defined area at relatively low temperature using a simple self-catalytic solution process assisted by a lithographic method. The conductance of the ZnO nanorod device varies significantly as the concentration of the hydrogen is changed without any additive metal catalyst, revealing a high sensitivity to hydrogen gas. Its superior performance can be explained by the porous structure of its three-dimensional network and the enhanced surface reaction of the hydrogen molecules with the oxygen defects resulting from a high surface-to-volume ratio. It was found that the change of conductance follows a power law depending on the hydrogen concentration. A Langmuir isotherm following an ideal power law and a cross-over behavior of the activation energy with respect to hydrogen concentration were observed. This is a very novel and intriguing phenomenon on nanostructured materials, which suggests competitive surface reactions in ZnO nanorod gas sensors.

  10. Hydrogen peroxide biosensor based on a myoglobin/hydrophilic room temperature ionic liquid film.

    PubMed

    Safavi, Afsaneh; Farjami, Fatemeh

    2010-07-01

    The composite film based on Nafion and hydrophilic room temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium chloride ([bmim]Cl) was used as an immobilization matrix to entrap myoglobin (Mb). The study of ionic liquid (IL)-Mb interaction by ultraviolet-visible (UV-vis) spectroscopy showed that Mb retains its native conformation in the presence of IL. The immobilized Mb displayed a pair of well-defined cyclic voltammetric peaks with a formal potential (E(o)(')) of -0.35 V in a 0.1 M phosphate buffer solution (PBS) of pH 7.0. The immobilized Mb exhibited excellent electrocatalytic response to the reduction of hydrogen peroxide, based on which a mediator-free amperometric biosensor for hydrogen peroxide was designed. The linear range for the determination of hydrogen peroxide was from 1.0 to 180 microM with a detection limit of 0.14 microM at a signal/noise ratio of 3. The apparent Michaelis constant (K(m)(app)) for the electrocatalytic reaction was 22.6 microM. The stability, repeatability, and selectivity of the sensor were evaluated. The proposed biosensor has a lower detection limit than many other IL-heme protein-based biosensors and is free from common interference in hydrogen peroxide biosensors. 2010 Elsevier Inc. All rights reserved.

  11. Monitoring corrosion and chemistry phenomena in supercritical aqueous systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macdonald, D.D.; Pang, J.; Liu, C.

    1994-12-31

    The in situ monitoring of the chemistry and electrochemistry of aqueous heat transport fluids in thermal (nuclear and fossil) power plants is now considered essential if adequate assessment and close control of corrosion and mass transfer phenomena are to be achieved. Because of the elevated temperatures and pressures involved. new sensor technologies are required that are able to measure key parameters under plant operating conditions for extended periods of time. In this paper, the authors outline a research and development program that is designed to develop practical sensors for use in thermal power plants. The current emphasis is on sensorsmore » for measuring corrosion potential, pH, the concentrations of oxygen and hydrogen, and the electrochemical noise generated by corrosion processes at temperatures ranging from {approximately}250 C to 500 C. The program is currently at the laboratory stage, but testing of prototype sensors in a coal-fired supercritical power plant in Spain will begin shortly.« less

  12. CuO-Decorated ZnO Hierarchical Nanostructures as Efficient and Established Sensing Materials for H2S Gas Sensors

    PubMed Central

    Vuong, Nguyen Minh; Chinh, Nguyen Duc; Huy, Bui The; Lee, Yong-Ill

    2016-01-01

    Highly sensitive hydrogen sulfide (H2S) gas sensors were developed from CuO-decorated ZnO semiconducting hierarchical nanostructures. The ZnO hierarchical nanostructure was fabricated by an electrospinning method following hydrothermal and heat treatment. CuO decoration of ZnO hierarchical structures was carried out by a wet method. The H2S gas-sensing properties were examined at different working temperatures using various quantities of CuO as the variable. CuO decoration of the ZnO hierarchical structure was observed to promote sensitivity for H2S gas higher than 30 times at low working temperature (200 °C) compared with that in the nondecorated hierarchical structure. The sensing mechanism of the hybrid sensor structure is also discussed. The morphology and characteristics of the samples were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis absorption, photoluminescence (PL), and electrical measurements. PMID:27231026

  13. Chemochromic Hydrogen Sensors

    NASA Technical Reports Server (NTRS)

    Wiggins, Bryan C.

    2007-01-01

    As fossil fuel supplies decline, hydrogen is quickly becoming an increasingly important fuel source. Currently hydrogen is the prime fuel of today's space vehicles (e.g., Space Shuttle) and featured as a fuel for some prototype vehicles such as the BMW seven series model. Hydrogen is a colorless, odorless gas with a 4% lower explosive limit which makes leak detection a priority. In an effort to support the use of hydrogen, a chemochromic (color changing) sensor was developed that is robust, simple to use, and does not require active operation. It can be made into a thin tape which can be conveniently used for leak detection at flanges, valves, or outlets. Chemochromic sensors can be either reversible or irreversible; however, irreversible chemochromic sensors will be analyzed in this report. The irreversible sensor is useful during hazardous operations when personnel cannot be present. To actively monitor leaks, testing of the irreversible sensor against environmental effects was completed and results indicated this material is suitable for outdoor use in the harsh beachside environment of Kennedy Space Center. The experiments in this report will give additional results to the environmental testing by adding solid rocket booster residue as a variable. The primary motivation for these experiments is to prepare the sensors for the launch pad environment at the Kennedy Space Center. In an effort to simulate the atmosphere at the pads before and after launch, the chemochromic sensors are exposed to solid rocket residue under various conditions.

  14. Fabrication of highly sensitive and selective H₂ gas sensor based on SnO₂ thin film sensitized with microsized Pd islands.

    PubMed

    Nguyen, Van Toan; Nguyen, Viet Chien; Nguyen, Van Duy; Hoang, Si Hong; Hugo, Nguyen; Nguyen, Duc Hoa; Nguyen, Van Hieu

    2016-01-15

    Ultrasensitive and selective hydrogen gas sensor is vital component in safe use of hydrogen that requires a detection and alarm of leakage. Herein, we fabricated a H2 sensing devices by adopting a simple design of planar-type structure sensor in which the heater, electrode, and sensing layer were patterned on the front side of a silicon wafer. The SnO2 thin film-based sensors that were sensitized with microsized Pd islands were fabricated at a wafer-scale by using a sputtering system combined with micro-electronic techniques. The thicknesses of SnO2 thin film and microsized Pd islands were optimized to maximize the sensing performance of the devices. The optimized sensor could be used for monitoring hydrogen gas at low concentrations of 25-250 ppm, with a linear dependence to H2 concentration and a fast response and recovery time. The sensor also showed excellent selectivity for monitoring H2 among other gases, such as CO, NH3, and LPG, and satisfactory characteristics for ensuring safety in handling hydrogen. The hydrogen sensing characteristics of the sensors sensitized with Pt and Au islands were also studied to clarify the sensing mechanisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Ion-/proton-conducting apparatus and method

    DOEpatents

    Yates, Matthew [Penfield, NY; Liu, Dongxia [Rochester, NY

    2011-05-17

    A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors.

  16. A Hydrogen Leak Detection System for Aerospace and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Makel, D. B.; Jansa, E. D.; Patterson, G.; Cova, P. J.; Liu, C. C.; Wu, Q. H.; Powers, W. T.

    1995-01-01

    Leaks on the space shuttle while on the launch pad have generated interest in hydrogen leak monitoring technology. Microfabricated hydrogen sensors are being fabricated at Case Western Reserve University (CWRU) and tested at NASA Lewis Research Center (LeRC). These sensors have been integrated into hardware and software designed by Aerojet. This complete system allows for multipoint leak monitoring designed to provide leak source and magnitude information in real time. The monitoring system processes data from the hydrogen sensors and presents the operator with a visual indication of the leak location and magnitude. Although the leak monitoring system was designed for hydrogen propulsion systems, the possible applications of this monitoring system are wide ranged. This system is in operation in an automotive application which requires high sensitivity to hydrogen.

  17. Development of a Prototype Optical Hydrogen Gas Sensor Using a Getter-Doped Polymer Transducer for Monitoring Cumulative Exposure: Preliminary Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Small IV, W; Maitland, D J; Wilson, T S

    2008-06-05

    A novel prototype optical sensor for monitoring cumulative hydrogen gas exposure was fabricated and evaluated. Chemical-to-optical transduction was accomplished by detecting the intensity of 670 nm laser light transmitted through a hydrogen getter-doped polymer film mounted at the end of an optical fiber; the transmittance of the composite film increased with uptake of hydrogen by the embedded getter. The composite film consisted of the hydrogen getter 1,4-bis(phenylethynyl)benzene, also known as DEB, with carbon-supported palladium catalyst embedded in silicone elastomer. Because the change in transmittance was irreversible and occurred continuously as the getter captured hydrogen, the sensor behaved like a dosimeter,more » providing a unique indication of the cumulative gas exposure.« less

  18. Application of a catalytic combustion sensor (Pellistor) for the monitoring of the explosiveness of a hydrogen-air mixture in the upper explosive limit range

    PubMed Central

    Krawczyk, M.; Namiesnik, J.

    2003-01-01

    A new technique is presented for continuous measurements of hydrogen contamination by air in the upper explosive limit range. It is based on the application of a catalytic combustion sensor placed in a cell through which the tested sample passes. The air content is the function of the quantity of formed heat during catalytic combustion of hydrogen inside the sensor. There is the possibility of using the method in industrial installations by using hydrogen for cooling electric current generators. PMID:18924620

  19. Hydrogen Field Test Standard: Laboratory and Field Performance

    PubMed Central

    Pope, Jodie G.; Wright, John D.

    2015-01-01

    The National Institute of Standards and Technology (NIST) developed a prototype field test standard (FTS) that incorporates three test methods that could be used by state weights and measures inspectors to periodically verify the accuracy of retail hydrogen dispensers, much as gasoline dispensers are tested today. The three field test methods are: 1) gravimetric, 2) Pressure, Volume, Temperature (PVT), and 3) master meter. The FTS was tested in NIST's Transient Flow Facility with helium gas and in the field at a hydrogen dispenser location. All three methods agree within 0.57 % and 1.53 % for all test drafts of helium gas in the laboratory setting and of hydrogen gas in the field, respectively. The time required to perform six test drafts is similar for all three methods, ranging from 6 h for the gravimetric and master meter methods to 8 h for the PVT method. The laboratory tests show that 1) it is critical to wait for thermal equilibrium to achieve density measurements in the FTS that meet the desired uncertainty requirements for the PVT and master meter methods; in general, we found a wait time of 20 minutes introduces errors < 0.1 % and < 0.04 % in the PVT and master meter methods, respectively and 2) buoyancy corrections are important for the lowest uncertainty gravimetric measurements. The field tests show that sensor drift can become a largest component of uncertainty that is not present in the laboratory setting. The scale was calibrated after it was set up at the field location. Checks of the calibration throughout testing showed drift of 0.031 %. Calibration of the master meter and the pressure sensors prior to travel to the field location and upon return showed significant drifts in their calibrations; 0.14 % and up to 1.7 %, respectively. This highlights the need for better sensor selection and/or more robust sensor testing prior to putting into field service. All three test methods are capable of being successfully performed in the field and give equivalent answers if proper sensors without drift are used. PMID:26722192

  20. Method of maintaining activity of hydrogen-sensing platinum electrode

    NASA Technical Reports Server (NTRS)

    Harman, J. N., III

    1968-01-01

    Three-electrode hydrogen sensor containing a platinum electrode maintained in a highly catalytic state, operates with a minimal response time and maximal sensitivity to the hydrogen gas being sensed. Electronic control and readout circuitry reactivates the working electrode of the sensor to a state of maximal catalytic activity.

  1. Chemochromic Hydrogen Leak Detectors

    NASA Technical Reports Server (NTRS)

    Roberson, Luke; Captain, Janine; Williams, Martha; Smith, Trent; Tate, LaNetra; Raissi, Ali; Mohajeri, Nahid; Muradov, Nazim; Bokerman, Gary

    2009-01-01

    At NASA, hydrogen safety is a key concern for space shuttle processing. Leaks of any level must be quickly recognized and addressed due to hydrogen s lower explosion limit. Chemo - chromic devices have been developed to detect hydrogen gas in several embodiments. Because hydrogen is odorless and colorless and poses an explosion hazard, there is an emerging need for sensors to quickly and accurately detect low levels of leaking hydrogen in fuel cells and other advanced energy- generating systems in which hydrogen is used as fuel. The device incorporates a chemo - chromic pigment into a base polymer. The article can reversibly or irreversibly change color upon exposure to hydrogen. The irreversible pigment changes color from a light beige to a dark gray. The sensitivity of the pigment can be tailored to its application by altering its exposure to gas through the incorporation of one or more additives or polymer matrix. Furthermore, through the incorporation of insulating additives, the chemochromic sensor can operate at cryogenic temperatures as low as 78 K. A chemochromic detector of this type can be manufactured into any feasible polymer part including injection molded plastic parts, fiber-spun textiles, or extruded tapes. The detectors are simple, inexpensive, portable, and do not require an external power source. The chemochromic detectors were installed and removed easily at the KSC launch pad without need for special expertise. These detectors may require an external monitor such as the human eye, camera, or electronic detector; however, they could be left in place, unmonitored, and examined later for color change to determine whether there had been exposure to hydrogen. In one type of envisioned application, chemochromic detectors would be fabricated as outer layers (e.g., casings or coatings) on high-pressure hydrogen storage tanks and other components of hydrogen-handling systems to provide visible indications of hydrogen leaks caused by fatigue failures or other failures in those systems. In another type of envisioned application, chemochromic detectors of this type could be optoelectronically instrumented for monitoring to provide measured digital indications of color changes indicative of the presence of hydrogen.

  2. Predictive sensor method and apparatus

    NASA Technical Reports Server (NTRS)

    Nail, William L. (Inventor); Koger, Thomas L. (Inventor); Cambridge, Vivien (Inventor)

    1990-01-01

    A predictive algorithm is used to determine, in near real time, the steady state response of a slow responding sensor such as hydrogen gas sensor of the type which produces an output current proportional to the partial pressure of the hydrogen present. A microprocessor connected to the sensor samples the sensor output at small regular time intervals and predicts the steady state response of the sensor in response to a perturbation in the parameter being sensed, based on the beginning and end samples of the sensor output for the current sample time interval.

  3. A modified cross-correlation method for white-light optical fiber extrinsic Fabry-Perot interferometric hydrogen sensors

    NASA Astrophysics Data System (ADS)

    Yang, Zhen; Zhang, Min; Liao, Yanbiao; Lai, Shurong; Tian, Qian; Li, Qisheng; Zhang, Yi; Zhuang, Zhi

    2009-11-01

    An extrinsic Fabry-Perot interferometric (EFPI) optical fiber hydrogen sensor based on palladium silver (Pd-Ag) film is designed for hydrogen leakage detection. A modified cross correlation signal processing method for an optical fiber EFPI hydrogen sensor is presented. As the applying of a special correlating factor which advises the effect on the fringe visibility of the gap length and wavelength, the cross correlation method has a high accuracy which is insensitive to light source power drift or changes in attenuation in the fiber, and the segment search method is employed to reduce computation and demodulating speed is fast. The Fabry-Perot gap length resolution of better than 0.2nm is achieved in a certain concentration of hydrogen.

  4. Note: Dissolved hydrogen detection in power transformer oil based on chemically etched fiber Bragg grating.

    PubMed

    Jiang, Jun; Ma, Guo-ming; Song, Hong-tu; Zhou, Hong-yang; Li, Cheng-rong; Luo, Ying-ting; Wang, Hong-bin

    2015-10-01

    A fiber Bragg grating (FBG) sensor based on chemically etched cladding to detect dissolved hydrogen is proposed and studied in this paper. Low hydrogen concentration tests have been carried out in mixed gases and transformer oil to investigate the repeatability and sensitivity. Moreover, to estimate the influence of etched cladding thickness, a physical model of FBG-based hydrogen sensor is analyzed. Experimental results prove that thin cladding chemically etched by HF acid solution improves the response to hydrogen detection in oil effectively. At last, the sensitivity of FBG sensor chemically etched 16 μm could be as high as 0.060 pm/(μl/l), increased by more than 30% in comparison to un-etched FBG.

  5. Dielectric and Excess Properties of Glycols with Formamide Binary Mixtures at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Navarkhele, V. V.

    2018-07-01

    Dielectric constant measurements of glycol-formamide binary solutions with various concentrations have been carried out at different temperatures. The dielectric measurement has been achieved at 100 MHz frequency using a sensor which is based on frequency domain reflectomery technique. The excess dielectric constant, Kirkwood correlation factor and Bruggeman factor has also been reported for the binary mixtures. The results show that the dielectric constant of the mixtures increases with increase in the volume fraction of formamide and decreases with increase in temperature. The study also confirms the presence of intermolecular interaction, hydrogen bonding and orientation of the dipoles in the binary mixtures.

  6. Empirical Profiling of Cold Hydrogen Plumes Formed from Venting Of LH2 Storage Vessels: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttner, William J; Rivkin, Carl H; Schmidt, Kara

    Liquid hydrogen (LH2) storage is a viable approach to assuring sufficient hydrogen capacity at commercial fuelling stations. Presently, LH2 is produced at remote facilities and then transported to the end-use site by road vehicles (i.e., LH2 tanker trucks). Venting of hydrogen to depressurize the transport storage tank is a routine part of the LH2 delivery process. The behaviour of cold hydrogen plumes has not been well-characterized because empirical field data is essentially non-existent. The NFPA 2 Hydrogen Storage Safety Task Group, which consists of hydrogen producers, safety experts, and CFD modellers, has identified the lack of understanding of hydrogen dispersionmore » during LH2 venting of storage vessel as a critical gap for establishing safety distances at LH2 facilities, especially commercial hydrogen fuelling stations. To address this need, the NREL sensor laboratory, in collaboration with the NFPA 2 Safety Task Group developed the Cold Hydrogen Plume Analyzer to empirically characterize the hydrogen plume formed during LH2 storage tank venting. A prototype Analyzer was developed and field-deployed at an actual LH2 venting operation with critical findings that included: - H2 being detected as much as 2 m lower than the release point, which is not predicted by existing models - A small and inconsistent correlation between oxygen depletion and the hydrogen concentration - A negligible to non-existent correlation between in-situ temperature and the hydrogen concentration The Analyzer is currently being upgraded for enhanced metrological capabilities including improved real-time spatial and temporal profiling of the plume and tracking of prevailing weather conditions. Additional deployments are planned to monitor plume behaviour under different wind, humidity, and temperatures. This data will be shared with the NFPA 2 Safety Task Group and ultimately will be used support theoretical models and code requirements prescribed in NFPA 2.« less

  7. Thick film hydrogen sensor

    DOEpatents

    Hoffheins, Barbara S.; Lauf, Robert J.

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  8. Thick film hydrogen sensor

    DOEpatents

    Hoffheins, B.S.; Lauf, R.J.

    1995-09-19

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors. 8 figs.

  9. New experience in atmospheric monitoring in Moscow city on the base of WSN technology

    NASA Astrophysics Data System (ADS)

    Asavin, Alex; Litvinov, Artur; Baskakov, Sergey; Chesalova, Elena

    2016-04-01

    The aim of this report is to present the gas emission of H2 in the general composition of atmospheric pollution of Moscow city. We start the project at the beginning of 2015 year in two Moscow academicals organization -Vernadsky Institute of Geochemistry and Analytical Chemistry and Moscow Geological State Museum. One place is in the center of Moscow, near the Kremlin and other one is in the most clear zone of Moscow - Moscow State University place, Vorobyevy Mountains (high point of Moscow). We plan to compare these regions by the concentration of H2 and other gases (CH4, SO2) for green gas pollution. Application network of monitoring is composed of gas sensors (H2, CH4), complex autonomous equipment for measurement temperature, pressure, humidity and network of telecommunications (used ZigBee protocol). Our project offer the technical solutions for monitoring network on the base of WSN (wireless sensor network) technology and the high-sensitive sensors of hydrogen and methane, software and electronic equipment with a transmitter network. This work is the first project in Russia. Gas sensors for monitoring system were developed on the base of MIS-structures (metal-insulator-semiconductor). MIS-sensors are suitable for measuring the concentrations of the following gases: hydrogen, hydrogen sulphide, nitrogen dioxide, ethylmercaptan, chlorine and ammonia. The basis of the sensor is MIS - structure Pd-Ta2O5-SiO2-Si,), which capacitance changes when reaction with gases occurs. The sensor fabrication technology is based on the microelectronics device fabrication technologies and the thin film laser deposition technique. Sensor can be used for measuring the concentration of any gas among noted before, in ambient temperature range -30..+40°C and RH 30-90% (30°C).Three gas sensors with analog interface were made for our experimental monitoring system. Original calibration was made using calibration by special standard mixture of H2 and atmosphere. There are 10-15 points on the each calibration graphics with different H2 concentration in standard gas mixtures. The graphics represent the power functions. The accuracy of the approximating functions is 3-18 %. At low concentrations (H2 <3 ppm) - error is rather high (about 20%).So we think that 2 ppm is the low limit of measurement. The essential factor is a temperature drift. We estimate this drift as 20mV per 1 degree and make corrections, because measurements were made in wide temperature range (+29 - -20 C). To take this factor we added our network by meteorological sensors. Each sensor network node has a radio transceiver with an internal antenna or connection to an external antenna, a microcontroller, an electronic circuit for interfacing with the sensors and an energy source, usually a battery or an embedded form of energy harvesting. All nodes are equal and serve as routers, so there is no need to plan nodes placement in advance Mesh Network protocol. Every node maintains a local routing table with information about one or several neighbors. The signal transmission between nodes and router used radio channel 2.6 GHz. Communication between router and IT server used two methods: cable RS486 and GPRS modem. GPRS connection is unstable and influence on operating stability. There are some problems in using of directional antenna because of the high level of city's radio noises and radio interferences. Nevertheless, a number of experiments with use of different technical solutions allowed us to perform continuous monitoring during 2 months. As a result about 3 million data records were obtained during experimental works. This information provided an opportunity to develop the structure of database management systems to store data and the technology of online data collection from remote sensors. Using the abilities of program software a periodical (12h) automatic export/import was realized. Access to file on remote computers is opened using FTP protocol. Database forms derived tables for each sensors. We use triggers to modify data, for example, to modify signal from gas sensors to gas concentration, in depend of unique sensor name. Additional table gives geographical coordinates of each node. We use GIS project for visualization and data analysis. Experiences revealed the inverse relationship between H2 concentration and temperature and pressure. Also we revealed periodicity of gas concentration with different harmonics. We could not find in literatures the similar works of H2 monitoring in cites. Exclusion is the work of (Necki et al., 2014) to organize continue monitoring in Krakow and it neighborhood. Authors also note periodicity in gas concentration affected by the seasons (increase in wintertime), day time (auto traffic). The received data we consider as first experiments in organization of long time monitoring of cites atmosphere, using new technologies (WSN). This results we consider to be the first methodological experiments in the field of monitoring the atmosphere of the city by WSN technic. It is planned to update the correctness of the analysis based on a comparison with other gas analysis methods. Acknowledgements This study was supported by the program 44 presidium RAS "Search basic research for the development of the Russian Arctic" Reference Necki, Jaroslaw M.; Chmura, Lukasz; Bielewski, Jaroslaw; et al. Variability of Molecular Hydrogen in the Urban Atmosphere Based on Continuous Measurements in Krakow //Polish Journal of Environmental Studies 2014, V.23, Iss. 2, P. 427-434.

  10. Metal Oxides and Ion-Exchanging Surfaces as pH Sensors in Liquids: State-of-the-Art and Outlook

    PubMed Central

    Kurzweil, Peter

    2009-01-01

    Novel applications of online pH determinations at temperatures from -35 °C to 130 °C in technical and biological media, which are all but ideal aqueous solutions, require new approaches to pH monitoring. The glass electrode, introduced nearly hundred years ago, and chemical sensors based on field effect transistors (ISFET) show specific drawbacks with respect to handling and long-time stability. Proton sensitive metal oxides seem to be a promising and alternative to the state-of-the-art measuring methods, and might overcome some problems of classical hydrogen electrodes and reference electrodes. PMID:22408563

  11. Ultrasensitive hydrogen sensor based on Pt-decorated WO₃ nanorods prepared by glancing-angle dc magnetron sputtering.

    PubMed

    Horprathum, M; Srichaiyaperk, T; Samransuksamer, B; Wisitsoraat, A; Eiamchai, P; Limwichean, S; Chananonnawathorn, C; Aiempanakit, K; Nuntawong, N; Patthanasettakul, V; Oros, C; Porntheeraphat, S; Songsiriritthigul, P; Nakajima, H; Tuantranont, A; Chindaudom, P

    2014-12-24

    In this work, we report an ultrasensitive hydrogen (H2) sensor based on tungsten trioxide (WO3) nanorods decorated with platinum (Pt) nanoparticles. WO3 nanorods were fabricated by dc magnetron sputtering with a glancing angle deposition (GLAD) technique, and decorations of Pt nanoparticles were performed by normal dc sputtering on WO3 nanorods with varying deposition time from 2.5 to 15 s. Crystal structures, morphologies, and chemical information on Pt-decorated WO3 nanorods were characterized by grazing-incident X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and photoelectron spectroscopy, respectively. The effect of the Pt nanoparticles on the H2-sensing performance of WO3 nanorods was investigated over a low concentration range of 150-3000 ppm of H2 at 150-350 °C working temperatures. The results showed that the H2 response greatly increased with increasing Pt-deposition time up to 10 s but then substantially deteriorated as the deposition time increased further. The optimally decorated Pt-WO3 nanorod sensor exhibited an ultrahigh H2 response from 1530 and 214,000 to 150 and 3000 ppm of H2, respectively, at 200 °C. The outstanding gas-sensing properties may be attributed to the excellent dispersion of fine Pt nanoparticles on WO3 nanorods having a very large effective surface area, leading to highly effective spillover of molecular hydrogen through Pt nanoparticles onto the WO3 nanorod surface.

  12. Materials Combustion Testing and Combustion Product Sensor Evaluations in FY12

    NASA Technical Reports Server (NTRS)

    Meyer, Marit Elisabeth; Mudgett, Paul D.; Hornung, Steven D.; McClure, Mark B.; Pilgrim, Jeffrey S.; Bryg, Victoria; Makel, Darby; Ruff, Gary A.; Hunter, Gary

    2013-01-01

    NASA Centers continue to collaborate to characterize the chemical species and smoke particles generated by the combustion of current space-rated non-metallic materials including fluoropolymers. This paper describes the results of tests conducted February through September 2012 to identify optimal chemical markers both for augmenting particle-based fire detection methods and for monitoring the post-fire cleanup phase in human spacecraft. These studies follow up on testing conducted in August 2010 and reported at ICES 2011. The tests were conducted at the NASA White Sands Test Facility in a custom glove box designed for burning fractional gram quantities of materials under varying heating profiles. The 623 L chamber was heavily instrumented to quantify organics (gas chromatography/mass spectrometry), inorganics by water extraction followed by ion chromatography, and select species by various individual commercially-available sensors. Evaluating new technologies for measuring carbon monoxide, hydrogen cyanide, hydrogen fluoride, hydrogen chloride and other species of interest was a key objective of the test. Some of these sensors were located inside the glovebox near the fire source to avoid losses through the sampling lines; the rest were located just outside the glovebox. Instruments for smoke particle characterization included a Tapered Element Oscillating Microbalance Personal Dust Monitor (TEOM PDM) and a TSI Dust Trak DRX to measure particle mass concentration, a TSI PTrak for number concentration and a thermal precipitator for collection of particles for microscopic analysis. Materials studied included Nomex®, M22759 wire insulation, granulated circuit board, polyvinyl chloride (PVC), Polytetrafluoroethylene (PTFE), Kapton®, and mixtures of PTFE and Kapton®. Furnace temperatures ranged from 340o to 640o C, focusing on the smoldering regime. Of particular interest in these tests was confirming burn repeatability and production of acid gases with different fuel mixture compositions, as well as the dependence of aerosol concentrations on temperature.

  13. Materials Combustion Testing and Combustion Product Sensor Evaluations in FY12

    NASA Technical Reports Server (NTRS)

    Meyer, Marit E.; Hunter, Gary; Ruff, Gary; Mudgett, Paul D.; Hornung, Steven D.; McClure, Mark B.; Pilgrim, Jeffrey S.; Bryg, Victoria; Makel, Darby

    2013-01-01

    NASA Centers continue to collaborate to characterize the chemical species and smoke particles generated by the combustion of current space-rated non-metallic materials including fluoropolymers. This paper describes the results of tests conducted February through September 2012 to identify optimal chemical markers both for augmenting particle-based fire detection methods and for monitoring the post-fire cleanup phase in human spacecraft. These studies follow up on testing conducted in August 2010 and reported at ICES 2011. The tests were conducted at the NASA White Sands Test Facility in a custom glove box designed for burning fractional gram quantities of materials under varying heating profiles. The 623 L chamber was heavily instrumented to quantify organics (gas chromatography/mass spectrometry), inorganics by water extraction followed by ion chromatography, and select species by various individual commercially-available sensors. Evaluating new technologies for measuring carbon monoxide, hydrogen cyanide, hydrogen fluoride, hydrogen chloride and other species of interest was a key objective of the test. Some of these sensors were located inside the glovebox near the fire source to avoid losses through the sampling lines; the rest were located just outside the glovebox. Instruments for smoke particle characterization included a Tapered Element Oscillating Microbalance Personal Dust Monitor (TEOM PDM) and a TSI Dust Trak DRX to measure particle mass concentration, a TSI PTrak for number concentration and a thermal precipitator for collection of particles for microscopic analysis. Materials studied included Nomex(R), M22759 wire insulation, granulated circuit board, polyvinyl chloride (PVC), Polytetrafluoroethylene (PTFE), Kapton(R), and mixtures of PTFE and Kapton(R). Furnace temperatures ranged from 340 to 640 C, focusing on the smoldering regime. Of particular interest in these tests was confirming burn repeatability and production of acid gases with different fuel mixture compositions, as well as the dependence of aerosol concentrations on temperature.

  14. Electrochemical sensor for monitoring electrochemical potentials of fuel cell components

    DOEpatents

    Kunz, Harold R.; Breault, Richard D.

    1993-01-01

    An electrochemical sensor comprised of wires, a sheath, and a conduit can be utilized to monitor fuel cell component electric potentials during fuel cell shut down or steady state. The electrochemical sensor contacts an electrolyte reservoir plate such that the conduit wicks electrolyte through capillary action to the wires to provide water necessary for the electrolysis reaction which occurs thereon. A voltage is applied across the wires of the electrochemical sensor until hydrogen evolution occurs at the surface of one of the wires, thereby forming a hydrogen reference electrode. The voltage of the fuel cell component is then determined with relation to the hydrogen reference electrode.

  15. Superconducting characteristics of short MgB2 wires of long level sensor for liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Takeda, M.; Inoue, Y.; Maekawa, K.; Matsuno, Y.; Fujikawa, S.; Kumakura, H.

    2015-12-01

    To establish the worldwide storage and marine transport of hydrogen, it is important to develop a high-precision and long level sensor, such as a superconducting magnesium diboride (MgB2) level sensor for large liquid hydrogen (LH2) tanks on board ships. Three 1.7- m-long MgB2 wires were fabricated by an in situ method, and the superconducting characteristics of twenty-four 20-mm-long MgB2 wires on the 1.7-m-long wires were studied. In addition, the static level-detecting characteristics of five 500-mm-long MgB2 level sensors were evaluated under atmospheric pressure.

  16. Hydrogen FBG sensor using Pd/Ag film with application in propulsion system fuel tank model of aerospace vehicle

    NASA Astrophysics Data System (ADS)

    Saad, Said; Hassine, Lotfi; Elfahem, Wassim

    2014-09-01

    The high efficiency hydrogen fiber Bragg grating (FBG) sensor is presented. The sensitive film was a new alliance of palladium-silver (Pd-Ag). In addition, the titanium (Ti) layer was used as the adhesive layer. The presented sensor showed the resolution of more than 60 pm/1% H2, and a fast response time of 4 s-5 s was guaranteed in the 0.1% H2-4% H2 range. Moreover, the life time of the sensor was investigated. The obtained results showed that the sensor had an enhanced life time. Furthermore, the sensor was applied in the propulsion system fuel tank model of the aerospace vehicle. The obtained results indicated that it is a prevention system against the disaster aerospace due to hydrogen leakage.

  17. Performance demonstration of hydrogen advanced loop heat pipe for 20-30K cryocooling of far infrared sensors

    NASA Astrophysics Data System (ADS)

    Hoang, Triem T.; O'Connell, Tamara A.; Ku, Jentung; Butler, C. D.; Swanson, Theodore D.

    2005-08-01

    The James Webb Space Telescope (JWST) program have identified the need for cryogenic cooling transport devices that (i) provide robust/reliable thermal management for Infrared (IR) sensors/detectors in the temperature range of 20-30K, (ii) minimize vibration effects of mechanical cryocoolers on the instruments, (iii) reduce spatial temperature gradients in cryogenic components, and (iv) afford long continuous service life of the telescope. Passive two-phase capillary cooling technologies such as heat pipes, Loop Heat Pipes (LHPs), and Capillary pumped Loops (CPLs) have proven themselves capable of performing necessary thermal control functions for room temperature applications. They have no mechanical moving part to wear out or to introduce unwanted vibration to the instruments and, hence, are reliable and maintenancefree. However, utilizing these capillary devices for cryogenic cooling still remains a challenge because of difficulties involving the system start-up and operation in a warm environment. An advanced concept of LHP using Hydrogen as the working fluid was recently developed to demonstrate the cryocooling transport capabilities in the temperature range of 20-30K. A full-size demonstration test loop - appropriately called H2-ALHP_2 - was constructed and performance tested extensively in a thermal vacuum chamber. It was designed specifically to manage "heat parasitics" from a warm surrounding, enabling it to start up from an initially supercritical state and operate without requiring a rigid heat shield. Like room temperature LHPs, the H2-ALHP transport lines were made of small-diameter stainless steel tubing that are flexible enough to isolate the cryocooler-induced vibration from the IR instruments. In addition, focus of the H2-ALHP research and development effort was also placed on the system weight saving for space-based applications.

  18. Fully-reversible optical sensor for hydrogen peroxide with fast response.

    PubMed

    Ding, Longjiang; Chen, Siyu; Zhang, Wei; Zhang, Yinglu; Wang, Xu-Dong

    2018-05-09

    A fully reversible optical sensor for hydrogen peroxide with fast response is presented. The sensor was fabricated by in-situ growing ultra-small platinum nanoparticles (PtNPs) inside the pores of fibrous silica particles (KCC-1). The nanocomposite was then embedded into a hydrogel matrix and form a sensor layer, the immobilized PtNPs can catalytically convert hydrogen peroxide into molecular oxygen, which is measured via luminescent quenching based oxygen sensor underneath. Owing to the high porosity and permeability of KCC-1 and high local concentration of PtNPs, the sensor exhibits fast response (less than 1 min) and full reversibility. The measurement range of the sensor covers 1.0 μM to 10.0 mM, and very small amount of sample is required during measurement (200 μL). Because of its high stability, excellent reversibility and selectivity, and extremely fast response, the sensor could fulfill all industry requirements for real-time measurement, and fill market vacancy.

  19. Ion-conducting ceramic apparatus, method, fabrication, and applications

    DOEpatents

    Yates, Matthew [Penfield, NY; Liu, Dongxia [Rochester, NY

    2012-03-06

    A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors.

  20. Selectivity and resistance to poisons of commercial hydrogen sensors

    DOE PAGES

    Palmisano, V.; Weidner, E.; Boon-Brett, L.; ...

    2015-03-20

    The resistance of several models of catalytic, workfunction-based metal-oxide-semiconductor and electrochemical hydrogen sensors to chemical contaminants such as SO 2, H 2S, NO 2 and hexamethyldisiloxane (HMDS) has been investigated. These sensor platforms are among the most commonly used for the detection of hydrogen. The evaluation protocols were based on the methods recommended in the ISO 26142:2010 standard. Permanent alteration of the sensor response to the target analyte (H 2) following exposure to potential poisons at the concentrations specified in ISO 26142 was rarely observed. Although a shift in the baseline response was often observed during exposure to the potentialmore » poisons, only in a few cases did this shift persist after removal of the contaminants. Overall, the resistance of the sensors to poisoning was good. However, a change in sensitivity to hydrogen was observed in the electrochemical platform after exposure to NO 2 and for a catalytic sensor during exposure to SO 2. The siloxane resistance test prescribed in ISO 26142, based on exposure to 10 ppm HMDS, may possibly not properly reflect sensor robustness to siloxanes. In conclusion, further evaluation of the resistance of sensors to other Si-based contaminants and other exposure profiles (e.g., concentration, exposure times) is needed.« less

  1. Nanoplasmonic hydrogen sensing

    NASA Astrophysics Data System (ADS)

    Wadell, Carl; Syrenova, Svetlana; Langhammer, Christoph

    2014-09-01

    In this review we discuss the evolution of surface plasmon resonance and localized surface plasmon resonance based hydrogen sensors. We put particular focus on how they are used to study metal-hydrogen interactions at the nanoscale, both at the ensemble and the single nanoparticle level. Such efforts are motivated by a fundamental interest in understanding the role of nanosizing on metal hydride formation processes. However, nanoplasmonic hydrogen sensors are not only of academic interest but may also find more practical use as all-optical gas detectors in industrial and medical applications, as well in a future hydrogen economy, where hydrogen is used as a carbon free energy carrier.

  2. Fiber optic hydrogen sensors: a review

    NASA Astrophysics Data System (ADS)

    Yang, Minghong; Dai, Jixiang

    2014-12-01

    Hydrogen is one of the next generation energies in the future, which shows promising applications in aerospace and chemical industries. Hydrogen leakage monitoring is very dangerous and important because of its low ignition energy, high combustion efficiency, and smallest molecule. This paper reviews the state-of-art development of the fiber optic hydrogen sensing technology. The main developing trends of fiber optic hydrogen sensors are based on two kinds of hydrogen sensitive materials, i.e. palladium-alloy thin films and Pt-doped WO3 coatings. In this review work, the advantages and disadvantages of these two kinds of sensing technologies will be evaluated.

  3. Hydrogen sensors based on catalytic metals

    NASA Astrophysics Data System (ADS)

    Beklemyshev, V. I.; Berezine, V.; Bykov, Victor A.; Kiselev, L.; Makhonin, I.; Pevgov, V.; Pustovoy, V.; Semynov, A.; Sencov, Y.; Shkuropat, I.; Shokin, A.

    1999-11-01

    On the base of microelectronical and micromechanical technology were designed and developed converters of hydrogen concentration to electrical signals. The devices of controlling concentration of hydrogen in the air were developed. These devices were applied for ensuring fire and explosion security of complex technological teste of missile oxygen-hydrogen engine, developed for cryogenic accelerations block. The sensor block of such device was installed directly on the armor-plate, to which was attached tested engine.

  4. InGaP/InGaAs field-effect transistor typed hydrogen sensor

    NASA Astrophysics Data System (ADS)

    Tsai, Jung-Hui; Liou, Syuan-Hao; Lin, Pao-Sheng; Chen, Yu-Chi

    2018-02-01

    In this article, the Pd-based mixture comprising silicon dioxide (SiO2) is applied as sensing material for the InGaP/InGaAs field-effect transistor typed hydrogen sensor. After wet selectively etching the SiO2, the mixture is turned into Pd nanoparticles on an interlayer. Experimental results depict that hydrogen atoms trapped inside the mixture could effectively decrease the gate barrier height and increase the drain current due to the improved sensing properties when Pd nanoparticles were formed by wet etching method. The sensitivity of the gate forward current from air (the reference) to 9800 ppm hydrogen/air environment approaches the high value of 1674. Thus, the studied device shows a good potential for hydrogen sensor and integrated circuit applications.

  5. Research on High Sensitive D-Shaped FBG Hydrogen Sensors in Power Transformer Oil

    PubMed Central

    Luo, Ying-Ting; Wang, Hong-Bin; Ma, Guo-Ming; Song, Hong-Tu; Li, Chengrong; Jiang, Jun

    2016-01-01

    Dissolved hydrogen is a symbol gas decomposed by power transformer oil for electrical faults such as overheat or partial discharges. A novel D-shaped fiber Bragg grating (D-FBG) sensor is herein proposed and was fabricated with magnetron sputtering to measure the dissolved hydrogen concentration in power transformer oil in this paper. Different from the RI (refractive index)-based effect, D-FBG in this case is sensitive to curvature caused by stress from sensing coating, leading to Bragg wavelength shifts accordingly. The relationship between the D-FBG wavelength shift and dissolved hydrogen concentration in oil was measured experimentally in the laboratory. The detected sensitivity could be as high as 1.96 μL/L at every 1-pm wavelength shift. The results proved that a simple, polished FBG-based hydrogen sensor provides a linear measuring characteristic in the range of low hydrogen concentrations in transformer oil. Moreover, the stable hydrogen sensing performance was investigated by X-ray diffraction analysis. PMID:27782034

  6. Research on High Sensitive D-Shaped FBG Hydrogen Sensors in Power Transformer Oil.

    PubMed

    Luo, Ying-Ting; Wang, Hong-Bin; Ma, Guo-Ming; Song, Hong-Tu; Li, Chengrong; Jiang, Jun

    2016-10-04

    Dissolved hydrogen is a symbol gas decomposed by power transformer oil for electrical faults such as overheat or partial discharges. A novel D-shaped fiber Bragg grating (D-FBG) sensor is herein proposed and was fabricated with magnetron sputtering to measure the dissolved hydrogen concentration in power transformer oil in this paper. Different from the RI (refractive index)-based effect, D-FBG in this case is sensitive to curvature caused by stress from sensing coating, leading to Bragg wavelength shifts accordingly. The relationship between the D-FBG wavelength shift and dissolved hydrogen concentration in oil was measured experimentally in the laboratory. The detected sensitivity could be as high as 1.96 μL/L at every 1-pm wavelength shift. The results proved that a simple, polished FBG-based hydrogen sensor provides a linear measuring characteristic in the range of low hydrogen concentrations in transformer oil. Moreover, the stable hydrogen sensing performance was investigated by X-ray diffraction analysis.

  7. Modification of a liquid hydrogen tank for integrated refrigeration and storage

    NASA Astrophysics Data System (ADS)

    Swanger, A. M.; Jumper, K. M.; Fesmire, J. E.; Notardonato, W. U.

    2015-12-01

    The modification and outfitting of a 125,000-liter liquid hydrogen tank was performed to provide integrated refrigeration and storage capability. These functions include zero boil-off, liquefaction, and densification and therefore require provisions for sub-atmospheric tank pressures within the vacuum-jacketed, multilayer insulated tank. The primary structural modification was to add stiffening rings inside the inner vessel. The internal stiffening rings were designed, built, and installed per the ASME Boiler and Pressure Vessel Code, Section VIII, to prevent collapse in the case of vacuum jacket failure in combination with sub-atmospheric pressure within the tank. For the integrated refrigeration loop, a modular, skeleton-type heat exchanger, with refrigerant temperature instrumentation, was constructed using the stiffening rings as supports. To support the system thermal performance testing, three custom temperature rakes were designed and installed along the 21-meter length of the tank, once again using rings as supports. The temperature rakes included a total of 20 silicon diode temperature sensors mounted both vertically and radially to map the bulk liquid temperature within the tank. The tank modifications were successful and the system is now operational for the research and development of integrated refrigeration technology.

  8. Batch Fabrication of Ultrasensitive Carbon Nanotube Hydrogen Sensors with Sub-ppm Detection Limit.

    PubMed

    Xiao, Mengmeng; Liang, Shibo; Han, Jie; Zhong, Donglai; Liu, Jingxia; Zhang, Zhiyong; Peng, Lianmao

    2018-04-27

    Carbon nanotube (CNT) has been considered as an ideal channel material for building highly sensitive gas sensors. However, the reported H 2 sensors based on CNT always suffered from the low sensitivity or low production. We developed the technology to massively fabricate ultra-highly sensitive H 2 sensors based on solution derived CNT network through comprehensive optimization of the CNT material, device structure, and fabrication process. In the H 2 sensors, high semiconducting purity solution-derived CNT film sorted by poly[9-(1-octylonoyl)-9 H-carbazole-2,7-diyl](PCz) is used as the main channel, which is decorated with Pd nanoparticles as functionalization for capturing H 2 . Meanwhile, Ti contacts are used to form a Schottky barrier for enhancing transferred charge-induced resistance change, and then a response of resistance change by 3 orders of magnitude is achieved at room temperature under the concentration of ∼311 ppm with a very fast response time of approximately 7 s and a detection limit of 890 ppb, which is the highest response to date for CNT H 2 sensors and the very first time to show the sub-ppm detection for H 2 at room temperature. Furthermore, the detection limit concentration can be improved to 89 ppb at 100 °C. The batch fabrication of CNT film H 2 sensors with ultra-high sensitivity and high uniformity is ready to promote CNT devices to application for the first time in some specialized field.

  9. Hot Jet Ignition Delay Characterization of Methane and Hydrogen at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Tarraf Kojok, Ali

    This study contributes to a better understanding of ignition by hot combustion gases which finds application in internal combustion chambers with pre-chamber ignition as well as in wave rotor engine applications. The experimental apparatus consists of two combustion chambers: a pre chamber that generates the transient hot jet of gas and a main chamber which contains the main fuel air blend under study. Variables considered are three fuel mixtures (Hydrogen, Methane, 50% Hydrogen-Methane), initial pressure in the pre-chamber ranging from 1 to 2 atm, equivalence ratio of the fuel air mixture in the main combustion chamber ranging from 0.4 to 1.5, and initial temperature of the main combustion chamber mixture ranging from 297 K to 500 K. Experimental data makes use of 4 pressure sensors with a recorded sampling rate up to 300 kHz, as well as high speed Schlieren imaging with a recorded frame rate up to 20,833 frame per seconds. Results shows an overall increase in ignition delay with increasing equivalence ratio. High temperature of the main chamber blend was found not to affect hot jet ignition delay considerably. Physical mixing effects, and density of the main chamber mixture have a greater effect on hot jet ignition delay.

  10. Development and Performance of the Oxygen Sensor in the CSA-CP Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Limero, Thomas; Beck, Steve; James, John T.

    2004-01-01

    A combustion products analyzer (CPA) was built for use on Shuttle in response to several thermodegradation incidents that had occurred during early flights. The CPA contained sensors that measured carbon monoxide, hydrogen chloride, hydrogen cyanide, and hydrogen fluoride. These marker compounds, monitored by the CPA, were selected based upon the likely products to be released in a spacecraft fire. When the Toxicology Laboratory group at Johnson Space Center (JSC) began to assess the air quality monitoring needs for the International Space Station (ISS), the CPA was the starting point for design of an instrument to monitor the atmosphere following a thermodegradation event. The final product was significantly different from the CPA and was named the compound specific analyzer-combustion products (CSA-CP). The major change from the CPA that will be the focus of this paper was the replacement of an unreliable hydrogen fluoride (HF) sensor with an oxygen sensor. A reliable HF sensor was not commercially available, but as the toxicology group reviewed the overall monitoring strategy for ISS, it appeared that a portable oxygen sensor to backup the major constituent analyzer was needed. Therefore, an oxygen sensor replaced the HF sensor in the new instrument. This paper will describe the development, deployment, and performance of the CSA-CP oxygen sensor on both Shuttle and ISS. Also, data for CSA-CP oxygen sensor accuracy at nominal and reduced pressures will be presented.

  11. Understanding the low temperature electrical properties of nanocrystalline tin oxide for gas sensor applications

    NASA Astrophysics Data System (ADS)

    Drake, Christina Hartsell

    Nanocrystalline metal/metal oxide is an important class of transparent and electronic materials due to its potential use in many applications, including gas sensors. At the nanoscale, many of the phenomena observed that give nanocrystalline semiconducting oxide enhanced performance as a gas sensor material over other conventional engineering materials is still poorly understood. This study is aimed at understanding the low temperature electrical and chemical properties of nanocrystalline SnO2 that makes it suitable for room temperature gas detectors. Studies were carried out in order to understand how various synthesis methods affect the surfaces on the nano-oxides, interactions of a target gas (in this study hydrogen) with different surface species, and changes in the electrical properties as a function of dopants and grain size. A correlation between the surface reactions and the electrical response of doped nanocrystalline metal-oxide-semiconductors exposed to a reducing gas is established using Fourier Transform Infrared (FTIR) Spectroscopy attached to a specially built custom designed catalytic cell. First principle calculations of oxygen vacancy concentrations from absorbance spectra are presented. FTIR is used for effectively screening of these nanostructures for gas sensing applications. The effect of processing temperature on the microstructural evolution and on the electronic properties of nanocrystalline trivalent doped-SnO 2 is also presented. This study includes the effect of dopants (In and Ce) on the growth of nano-SnO2, as well as their effects on the electronic properties and gas sensor behavior of the nanomaterial at room temperature. Band bending affects are also investigated for this system and are related to enhanced low temperature gas sensing. The role and importance of oxygen vacancies in the electronic and chemical behavior of surface modified nanocrystalline SnO2 are explored in this study. A generalized explanation for the low temperature gas sensor behavior of nanocrystalline oxide is presented that can be generalized to other nano-oxide systems and be useful in specific engineering of other nanomaterials. Deeper understanding of how nano-oxides react chemically and electronically would be extremely beneficial to issues present in current low cost, low temperature sensor technology. Ability to exactly monitor and then engineer the chemistry of nanostructures in the space charge region as well as the surface is also of great significance. Knowledge of the mechanisms responsible for enhanced sensor response in this material system could viably be applied to other material systems for sensor applications.

  12. Demonstration of a high-capacity turboalternator for a 20 K, 20 W space-borne Brayton cryocooler

    NASA Astrophysics Data System (ADS)

    Zagarola, M.; Cragin, K.; Deserranno, D.

    2014-01-01

    NASA is considering multiple missions involving long-term cryogenic propellant storage in space. Liquid hydrogen and oxygen are the typical cryogens as they provide the highest specific impulse of practical chemical propellants. Storage temperatures are nominally 20 K for liquid hydrogen and 90 K for liquid oxygen. Heat loads greater than 10 W at 20 K are predicted for hydrogen storage. Current space cryocoolers have been developed for sensor cooling with refrigeration capacities less than 1 W at 20 K. In 2011, Creare Inc. demonstrated an ultra-low-capacity turboalternator for use in a turbo-Brayton cryocooler. The turboalternator produced up to 5 W of turbine refrigeration at 20 K; equivalent to approximately 3 W of net cryocooler refrigeration. This turboalternator obtained unprecedented operating speeds and efficiencies at low temperatures benefitting from new rotor design and fabrication techniques, and new bearing fabrication techniques. More recently, Creare applied these design and fabrication techniques to a larger and higher capacity 20 K turboalternator. The turboalternator was tested in a high-capacity, low temperature test facility at Creare and demonstrated up to 42 W of turbine refrigeration at 20 K; equivalent to approximately 30 W of net cryocooler refrigeration. The net turbine efficiency was the highest achieved to date at Creare for a space-borne turboalternator. This demonstration was the first step in the development of a high-capacity turbo-Brayton cryocooler for liquid hydrogen storage. In this paper, we will review the design, development and testing of the turboalternator.

  13. Fabrication of Titania Nanotubes for Gas Sensing Applications

    NASA Astrophysics Data System (ADS)

    Dzilal, A. A.; Muti, M. N.; John, O. D.

    2010-03-01

    Detection of hydrogen is needed for industrial process control and medical applications where presence of hydrogen indicates different type of health problems. Titanium dioxide nanotube structure is chosen as an active component in the gas sensor because of its highly sensitive electrical resistance to hydrogen over a wide range of concentrations. The objective of the work is to fabricate good quality titania nanotubes suitable for hydrogen sensing applications. The fabrication method used is anodizing method. The anodizing parameters namely the voltage, time duration, concentration of hydrofluoric acid in water, separation between the electrodes and the ambient temperature are varied accordingly to find the optimum anodizing conditions for production of good quality titania nanotubes. The highly ordered porous titania nanotubes produced by this method are in tabular shape and have good uniformity and alignment over large areas. From the investigation done, certain set of anodizing parameters have been found to produce good quality titania nanotubes with diameter ranges from 47 nm to 94 nm.

  14. A reflective hydrogen sensor based on fiber ring laser with PCF modal interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-Nan; Zhang, Aozhuo; Han, Bo; E, Siyu

    2018-06-01

    A new hydrogen sensor based on a fiber ring laser with a photonic crystal fiber (PCF) modal interferometer is proposed. The reflective PCF modal interferometer, which is fabricated by forming two collapse regions on the two ends of PCF with a fusion discharge technique, is utilized as the sensing head and filter. Particularly, the Pd/WO3 hydrogen-sensitive thin film is coated on the PCF for hydrogen sensing. The combination of the fiber ring laser and PCF modal interferometer gives the sensor a high signal-to-noise ratio and an improved detection limit. Experimental results show that the sensing system can achieve a hydrogen sensitivity of 1.28 nm/%, a high signal-to-noise ratio (∼30 dB), a narrow full width at half maximum (∼0.05 nm), and low detection limit of 0.0133%.

  15. KSC-05PD-1584

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Monica Hagley, an avionic test engineer, places a refurbished, spare orbiter point sensor chassis on the table. Faulty readings in the liquid hydrogen tank low-level fuel cut-off sensor are being investigated because one of the four sensors failed a routine prelaunch check during the launch countdown July 13, causing mission managers to scrub Discovery's first launch attempt. The sensor protects the Shuttle's main engines by triggering their shutdown in the event fuel runs unexpectedly low. The sensor is one of four inside the liquid hydrogen section of the External Tank (ET).

  16. The Different Sensitive Behaviors of a Hydrogen-Bond Acidic Polymer-Coated SAW Sensor for Chemical Warfare Agents and Their Simulants

    PubMed Central

    Long, Yin; Wang, Yang; Du, Xiaosong; Cheng, Luhua; Wu, Penglin; Jiang, Yadong

    2015-01-01

    A linear hydrogen-bond acidic (HBA) linear functionalized polymer (PLF), was deposited onto a bare surface acoustic wave (SAW) device to fabricate a chemical sensor. Real-time responses of the sensor to a series of compounds including sarin (GB), dimethyl methylphosphonate (DMMP), mustard gas (HD), chloroethyl ethyl sulphide (2-CEES), 1,5-dichloropentane (DCP) and some organic solvents were studied. The results show that the sensor is highly sensitive to GB and DMMP, and has low sensitivity to HD and DCP, as expected. However, the sensor possesses an unexpected high sensitivity toward 2-CEES. This good sensing performance can’t be solely or mainly attributed to the dipole-dipole interaction since the sensor is not sensitive to some high polarity solvents. We believe the lone pair electrons around the sulphur atom of 2-CEES provide an electron-rich site, which facilitates the formation of hydrogen bonding between PLF and 2-CEES. On the contrary, the electron cloud on the sulphur atom of the HD molecule is offset or depleted by its two neighbouring strong electron-withdrawing groups, hence, hydrogen bonding can hardly be formed. PMID:26225975

  17. Development of Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Fralick, G.; Thomas, V.; Liu, C. C.; Wu, W. H.; Ward, B.; Makel, D.

    2002-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, fire detection, and environmental monitoring. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. However, due to issues of selectivity and cross-sensitivity, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. This paper discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, hydrazine, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  18. Highly Sensitive Bulk Silicon Chemical Sensors with Sub-5 nm Thin Charge Inversion Layers.

    PubMed

    Fahad, Hossain M; Gupta, Niharika; Han, Rui; Desai, Sujay B; Javey, Ali

    2018-03-27

    There is an increasing demand for mass-producible, low-power gas sensors in a wide variety of industrial and consumer applications. Here, we report chemical-sensitive field-effect-transistors (CS-FETs) based on bulk silicon wafers, wherein an electrostatically confined sub-5 nm thin charge inversion layer is modulated by chemical exposure to achieve a high-sensitivity gas-sensing platform. Using hydrogen sensing as a "litmus" test, we demonstrate large sensor responses (>1000%) to 0.5% H 2 gas, with fast response (<60 s) and recovery times (<120 s) at room temperature and low power (<50 μW). On the basis of these performance metrics as well as standardized benchmarking, we show that bulk silicon CS-FETs offer similar or better sensing performance compared to emerging nanostructures semiconductors while providing a highly scalable and manufacturable platform.

  19. Development of a Hydrogen Peroxide Sensor Based on Screen-Printed Electrodes Modified with Inkjet-Printed Prussian Blue Nanoparticles

    PubMed Central

    Cinti, Stefano; Arduini, Fabiana; Moscone, Danila; Palleschi, Giuseppe; Killard, Anthony J.

    2014-01-01

    A sensor for the simple and sensitive measurement of hydrogen peroxide has been developed which is based on screen printed electrodes (SPEs) modified with Prussian blue nanoparticles (PBNPs) deposited using piezoelectric inkjet printing. PBNP-modified SPEs were characterized using physical and electrochemical techniques to optimize the PBNP layer thickness and electroanalytical conditions for optimum measurement of hydrogen peroxide. Sensor optimization resulted in a limit of detection of 2 × 10−7 M, a linear range from 0 to 4.5 mM and a sensitivity of 762 μA·mM−1·cm−2 which was achieved using 20 layers of printed PBNPs. Sensors also demonstrated excellent reproducibility (<5% rsd). PMID:25093348

  20. Valve health monitoring system utilizing smart instrumentation

    NASA Astrophysics Data System (ADS)

    Jensen, Scott L.; Drouant, George J.

    2006-05-01

    The valve monitoring system is a stand alone unit with network capabilities for integration into a higher level health management system. The system is designed for aiding in failure predictions of high-geared ball valves and linearly actuated valves. It performs data tracking and archiving for identifying degraded performance. The data collection types are: cryogenic cycles, total cycles, inlet temperature, outlet temperature, body temperature, torsional strain, linear bonnet strain, preload position, total travel, and total directional changes. Events are recorded and time stamped in accordance with the IRIG B True Time. The monitoring system is designed for use in a Class 1 Division II explosive environment. The basic configuration consists of several instrumentation sensor units and a base station. The sensor units are self contained microprocessor controlled and remotely mountable in three by three by two inches. Each unit is potted in a fire retardant substance without any cavities and limited to low operating power for maintaining safe operation in a hydrogen environment. The units are temperature monitored to safeguard against operation outside temperature limitations. Each contains 902-928 MHz band digital transmitters which meet Federal Communication Commissions requirements and are limited to a 35 foot transmission radius for preserving data security. The base-station controller correlates related data from the sensor units and generates data event logs on a compact flash memory module for database uploading. The entries are also broadcast over an Ethernet network. Nitrogen purged National Electrical Manufactures Association (NEMA) Class 4 Enclosures are used to house the base-station.

  1. Development of chemiresponsive sensors for detection of common homemade explosives.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brotherton, Christopher M.; Wheeler, David Roger

    2012-05-01

    Field-structured chemiresistors (FSCRs) are polymer based sensors that exhibit a resistance change when exposed to an analyte of interest. The amount of resistance change depends on the polymer-analyte affinity. The affinity can be manipulated by modifying the polymer within the FSCRs. In this paper, we investigate the ability of chemically modified FSCRs to sense hydrogen peroxide vapor. Five chemical species were chosen based on their hydrophobicity or reactivity with hydrogen peroxide. Of the five investigated, FSCRs modified with allyl methyl sulfide exhibited a significant response to hydrogen peroxide vapor. Additionally, these same FSCRs were evaluated against a common interferrant inmore » hydrogen peroxide detection, water vapor. For the conditions investigated, the FSCRs modified with allyl methyl sulfide were able to successfully distinguish between water vapor and hydrogen peroxide vapor. A portion of the results presented here will be submitted to the Sensors and Actuators journal.« less

  2. Hydrogen Leak Detection Sensor Database

    NASA Technical Reports Server (NTRS)

    Baker, Barton D.

    2010-01-01

    This slide presentation reviews the characteristics of the Hydrogen Sensor database. The database is the result of NASA's continuing interest in and improvement of its ability to detect and assess gas leaks in space applications. The database specifics and a snapshot of an entry in the database are reviewed. Attempts were made to determine the applicability of each of the 65 sensors for ground and/or vehicle use.

  3. Atomically layer-by-layer diffusion of oxygen/hydrogen in highly epitaxial PrBaCo2O5.5+δ thin films

    NASA Astrophysics Data System (ADS)

    Bao, Shanyong; Xu, Xing; Enriquez, Erik; Mace, Brennan E.; Chen, Garry; Kelliher, Sean P.; Chen, Chonglin; Zhang, Yamei; Whangbo, Myung-Hwan; Dong, Chuang; Zhang, Qinyu

    2015-12-01

    Single-crystalline epitaxial thin films of PrBaCo2O5.5+δ (PrBCO) were prepared, and their resistance R(t) under a switching flow of oxidizing and reducing gases were measured as a function of the gas flow time t in the temperature range of 200-800 °C. During the oxidation cycle under O2, the PrBCO films exhibit fast oscillations in their dR(t)/dt vs. t plots, which reflect the oxidation processes, Co2+/Co3+ → Co3+ and Co3+ → Co3+/Co4+, that the Co atoms of PrBCO undergo. Each oscillation consists of two peaks, with larger and smaller peaks representing the oxygen/hydrogen diffusion through the (BaO)(CoO2)(PrO)(CoO2) layers of PrBCO via the oxygen-vacancy-exchange mechanism. This finding paves a significant avenue for cathode materials operating in low-temperature solid-oxide-fuel-cell devices and for chemical sensors with wide range of operating temperature.

  4. Towards an Electrochemical Immunosensor System with Temperature Control for Cytokine Detection.

    PubMed

    Metzner, Julia; Luckert, Katrin; Lemuth, Karin; Hämmerle, Martin; Moos, Ralf

    2018-04-24

    The cytokine interleukin-13 (IL-13) plays a major role in airway inflammation and is a target of new anti-asthmatic drugs. Hence, IL-13 determination could be interesting in assessing therapy success. Thus, in this work an electrochemical immunosensor for IL-13 was developed and integrated into a fluidic system with temperature control for read-out. Therefore, two sets of results are presented. First, the sensor was set up in sandwich format on single-walled carbon nanotube electrodes and was read out by applying the hydrogen peroxide⁻hydroquinone⁻horseradish peroxidase (HRP) system. Second, a fluidic system was built up with an integrated heating function realized by Peltier elements that allowed a temperature-controlled read-out of the immunosensor in order to study the influence of temperature on the amperometric read-out. The sensor was characterized at the temperature optimum of HRP at 30 °C and at 12 °C as a reference for lower performance. These results were compared to a measurement without temperature control. At the optimum operation temperature of 30 °C, the highest sensitivity (slope) was obtained compared to lower temperatures and a limit of detection of 5.4 ng/mL of IL-13 was calculated. Taken together, this approach is a first step towards an automated electrochemical immunosensor platform and shows the potential of a temperature-controlled read-out.

  5. Flashback Detection Sensor for Hydrogen Augmented Natural Gas Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, J.D.; Chorpening, B.T.; Sidwell, T.

    2007-05-01

    The use of hydrogen augmented fuel is being investigated by various researchers as a method to extend the lean operating limit, and potentially reduce thermal NOx formation in natural gas fired lean premixed (LPM) combustion systems. The resulting increase in flame speed during hydrogen augmentation, however, increases the propensity for flashback in LPM systems. Real-time in-situ monitoring of flashback is important for the development of control strategies for use of hydrogen augmented fuel in state-of-the-art combustion systems, and for the development of advanced hydrogen combustion systems. The National Energy Technology Laboratory (NETL) and Woodward Industrial Controls are developing a combustionmore » control and diagnostics sensor (CCADS), which has already been demonstrated as a useful sensor for in-situ monitoring of natural gas combustion, including detection of important combustion events such as flashback and lean blowoff. Since CCADS is a flame ionization sensor technique, the low ion concentration produced in pure hydrogen combustion raises concerns of whether CCADS can be used to monitor flashback in hydrogen augmented combustion. This paper discusses CCADS tests conducted at 0.2-0.6 MPa (2-6 atm), demonstrating flashback detection with fuel compositions up to 80% hydrogen (by volume) mixed with natural gas. NETL’s Simulation Validation (SimVal) combustor offers full optical access to pressurized combustion during these tests. The CCADS data and high-speed video show the reaction zone moves upstream into the nozzle as the hydrogen fuel concentration increases, as is expected with the increased flame speed of the mixture. The CCADS data and video also demonstrate the opportunity for using CCADS to provide the necessary in-situ monitor to control flashback and lean blowoff in hydrogen augmented combustion applications.« less

  6. High Concentrations of Hydrogen-bearing Volatiles at the Base of Poleward-facing slopes in the Moon's Large Southern Permanently Shadowed Regions.

    NASA Astrophysics Data System (ADS)

    McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Livengood, T. A.; Litvak, M. L.; Sanin, A. B.; Starr, R. D.

    2016-12-01

    In this paper we review evidence that indicates that high concentrations of hydrogen-bearing volatiles are biased towards the base of poleward-facing slopes (PFS) in the Moon's large southern permanently shadowed regions (PSR). Results are derived from a correlated study of Lunar Reconnaissance Orbiter instrument maps of: epithermal neutron leakage flux observed by the Lunar Exploration Neutron Detector (LEND), topography derived from the Lunar Observing Laser Altimeter (LOLA) and surface thermal maps derived from the Diviner radiometer. Maximum concentrations of hydrogen-volatiles, likely as water ice, are observed in the Cabeus crater's PSR, 0.62 wght% water-equivalent-hydrogen. Detailed studies show that the occurrence of hydrogen-volatiles at the base of the (PFS) are correlated with the locations of low PSR temperatures of Cabeus, Haworth, Shoemaker and Faustini. LEND observations show no consistent correlation to smaller impact craters and the lowest temperatures within the PSR's. It is not presently known if the high volatile concentrations are due to downslope migration or thermal stability in the PFS breaks in slope. 15-km Full-width at Half-Maximum (FWHM) is shown to be an upper-bounds condition for the LEND collimated sensor's spatial resolution, derived from a cross-sectional profile, through the permanently shadowed region at Cabeus'. LEND's high-resolution spatial response is further illustrated in a 220-km long profile cut through the co-aligned permanently shadowed regions and partially-illuminated ridges of Haworth, Shoemaker, Faustini and Amundsen craters.

  7. Evaluation of Technologies to Complement/Replace Mass Spectrometers in the Tritium Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tovo, L. L.; Lascola, R. J.; Spencer, W. A.

    2005-08-30

    The primary goal of this work is to determine the suitability of the Infraran sensor for use in the Palladium Membrane Reactor. This application presents a challenge for the sensor, since the process temperature exceeds its designed operating range. We have demonstrated that large baseline offsets, comparable to the sensor response to the analyte, are obtained if cool air is blown across the sensor. We have also shown that there is a strong environmental component to the noise. However, the current arrangement does not utilize a reference detector. The strong correlation between the CO and H{sub 2}O sensor responses tomore » environmental changes indicate that a reference detector can greatly reduce the environmental sensitivity. In fact, incorporation of a reference detector is essential for the sensor to work in this application. We have also shown that the two sensor responses are adequately independent. Still, there are several small corrections which must to be made to the sensor response to accommodate chemical and physical effects. Interactions between the two analytes will alter the relationship between number density and pressure. Temperature and pressure broadening will alter the relationship between absorbance and number density. The individual effects are small--on the order of a few percent or less--but cumulatively significant. Still, corrections may be made if temperature and total pressure are independently measured and incorporated into a post-analysis routine. Such corrections are easily programmed and automated and do not represent a significant burden for installation. The measurements and simulations described above indicate that with appropriate corrections, the Infraran sensor can approach the 1-1.5% measurement accuracy required for effective PMR process control. It is also worth noting that the Infraran may be suitable for other gas sensing applications, especially those that do not need to be made in a high-temperature environment. Any gas with an infrared absorption (methane, ammonia, etc.) may be detected so long as an appropriate bandpass filter can be manufactured. Note that homonuclear diatomic molecules (hydrogen and its isotopes, nitrogen, oxygen) do not have infrared absorptions. We have shown that the sensor response may be adequately predicted using commercially available software. Measurement of trace concentrations is limited by the broad spectral bandpass, since the total signal includes non-absorbed frequencies. However, cells with longer pathlengths can be designed to address this problem.« less

  8. A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor.

    PubMed

    Zhong, Nianbing; Liao, Qiang; Zhu, Xun; Chen, Rong

    2014-04-15

    A new simple fiber-optic evanescent wave sensor was created to accurately monitor the growth and hydrogen production performance of biofilms. The proposed sensor consists of two probes (i.e., a sensor and reference probe), using the etched fibers with an appropriate surface roughness to improve its sensitivity. The sensor probe measures the biofilm growth and change of liquid-phase concentration inside the biofilm. The reference probe is coated with a hydrophilic polytetrafluoroethylene membrane to separate the liquids from photosynthetic bacteria Rhodopseudomonas palustris CQK 01 and to measure the liquid concentration. We also developed a model to demonstrate the accuracy of the measurement. The biofilm measurement was calibrated using an Olympus microscope. A linear relationship was obtained for the biofilm thickness range from 0 to 120 μm with a synthetic medium under continuous supply to the bioreactor. The highest level of hydrogen production rate occurred at a thickness of 115 μm.

  9. KSC-05PD-1585

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. On the table is a mother board with electronic components that could be used in a spare orbiter point sensor chassis. Faulty readings in the liquid hydrogen tank low- level fuel cut-off sensor are being investigated because one of the four sensors failed a routine prelaunch check during the launch countdown July 13, causing mission managers to scrub Discovery's first launch attempt. The sensor protects the Shuttle's main engines by triggering their shutdown in the event fuel runs unexpectedly low. The sensor is one of four inside the liquid hydrogen section of the External Tank (ET).

  10. Nanocrystalline Pd:NiFe2O4 thin films: A selective ethanol gas sensor

    NASA Astrophysics Data System (ADS)

    Rao, Pratibha; Godbole, R. V.; Bhagwat, Sunita

    2016-10-01

    In this work, Pd:NiFe2O4 thin films were investigated for the detection of reducing gases. These films were fabricated using spray pyrolysis technique and characterized using X-ray diffraction (XRD) to confirm the crystal structure. The surface morphology was studied using scanning electron microscopy (SEM). Magnetization measurements were carried out using SQUID VSM, which shows ferrimagnetic behavior of the samples. These thin film sensors were tested against methanol, ethanol, hydrogen sulfide and liquid petroleum gas, where they were found to be more selective to ethanol. The fabricated thin film sensors exhibited linear response signal for all the gases with concentrations up to 5 w/o Pd. Reduction in optimum operating temperature and enhancement in response was also observed. Pd:NiFe2O4 thin films exhibited faster response and recovery characteristic. These sensors have potential for industrial applications because of their long-term stability, low power requirement and low production cost.

  11. An amperometric new methylene blue N-mediating sensor for hydrogen peroxide based on regenerated silk fibroin as an immobilization matrix for peroxidase.

    PubMed

    Qian, J; Liu, Y; Liu, H; Yu, T; Deng, J

    1996-05-01

    A simple and effective procedure was described for the immobilization of peroxidase in regenerated silk fibroin membrane prepared from waste silk. The membranes of regenerated silk fibroin with or without peroxidase, before or after the ethanol treatment, were characterized by ir spectra. An amperometric H202 sensor, based on the immobilized peroxidase in regenerated silk fibroin membrane, in the use of new methylene blue N as an electron transfer mediator, was fabricated. The characteristics of the sensor with respect to linearity, response time, effect of pH and temperature, stability, and reproducibility were investigated. Dependences of Michaelis-Menten constant KMapp on the concentration of the mediator, and the applied potential were also studied and the results were presented. The sensor was highly sensitive to H2O2 with a detection limit of 1.0 x 10(-7)M and with response time of less than 40 s.

  12. From Extended Nanofluidics to an Autonomous Solar-Light-Driven Micro Fuel-Cell Device.

    PubMed

    Pihosh, Yuriy; Uemura, Jin; Turkevych, Ivan; Mawatari, Kazuma; Kazoe, Yutaka; Smirnova, Adelina; Kitamori, Takehiko

    2017-07-03

    Autonomous micro/nano mechanical, chemical, and biomedical sensors require persistent power sources scaled to their size. Realization of autonomous micro-power sources is a challenging task, as it requires combination of wireless energy supply, conversion, storage, and delivery to the sensor. Herein, we realized a solar-light-driven power source that consists of a micro fuel cell (μFC) and a photocatalytic micro fuel generator (μFG) integrated on a single microfluidic chip. The μFG produces hydrogen by photocatalytic water splitting under solar light. The hydrogen fuel is then consumed by the μFC to generate electricity. Importantly, the by-product water returns back to the photocatalytic μFG via recirculation loop without losses. Both devices rely on novel phenomena in extended-nano-fluidic channels that ensure ultra-fast proton transport. As a proof of concept, we demonstrate that μFG/μFC source achieves remarkable energy density of ca. 17.2 mWh cm -2 at room temperature. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. EDITORIAL: Sensors based on interfaces

    NASA Astrophysics Data System (ADS)

    Camassel, Jean; Soukiassian, Patrick G.

    2007-12-01

    Sensors are specific analog devices that convert a physical quantity, like the temperature or external pressure or concentration of carbon monoxide in a confined atmosphere, into an electrical signal. Considered in this way, every sensor is then a part of the artificial interface, which connects the human world to the world of machines. The other side of the interface is represented by actuators. Most often, after processing the data they are used to convert the out-coming electrical power into counteracting physical action. In the last few years, thanks to inexpensive silicon technology, enormous capability for data processing has been developed and the world of machines has become increasingly invasive. The world of sensors has become increasingly complex too. Applications range from classical measurements of the temperature, vibrations, shocks and acceleration to more recent chemical and bio-sensing technologies. Chemical sensors are used to detect the presence of specific, generally toxic, chemical species. To measure their concentration, one uses some specific property, generally a physical one, like the intensity of infrared absorption bands. Bio-sensors are new, more complex, devices that combine a bio-receptor with a physical transducer. The bio-receptor is a molecule (for instance, an enzyme like glucose oxidase) that can recognize a specific target (glucose molecules in the case of glucose oxidase). The enzyme must be fixed on the transducer and, as a consequence of recognition, the transducer must convert the event into a measurable analytical signal. A common feature of many chemical and bio-sensors is that they require a large surface of interaction with the outside world. For that reason and in order to increase efficiency, either nanoparticles or pores or a combination of both, made from various materials including (but not limited to) porous silicon, are often used as the functional transducer interface. The reviews in this Cluster Issue of Journal of Physics D: Applied Physics describe some recent advances in this field and the very different approaches and/or techniques that can be used for the sensors' implementation. They include the use of molecularly modified metal nanoparticles in or as chemical sensors, especially for high sensitivity hydrogen sensors. Hydrogen sensing can also be achieved by performing galvanic measurements on a thin layer of perovskite oxide covered with platinum. In this case, one mixes an ionic (proton) transport in the oxide with an electronic one in the metal. Another focus is on optical and electrical read-out techniques, like surface-plasmon resonance (SPR), such as for immuno-sensor applications or piezo-electrical and electro-chemical detection. Toward this end, the preparation, structure and application of functional interfacial surfaces are described and discussed. A totally different approach based on the use of Hall effect measurements performed on a granular metal-oxide-semiconductor layer and different experimental solutions is also presented. Finally, optical sensors are addressed through the photonic modulation of surface properties or transmission interferometric absorption sensors. Mixed electrical and optical chemical sensors are also examined.

  14. A Combustion Products Analyzer for contingency use during thermodegradation events on spacecraft

    NASA Technical Reports Server (NTRS)

    Limero, Thomas; James, John T.; Beck, Steven; Cromer, Raymond

    1991-01-01

    This paper will describe the Combustion Products Analyzer (CPA), which is being developed under the direction of the Toxicology Laboratory at Johnson Space Center to provide necessary data on air quality in the Shuttle following a thermodegradation incident. Using separate electrochemical sensors, the CPA monitors four gases (hydrogen fluoride/carbonyl fluoride, hydrogen chloride, hydrogen cyanide, and carbon monoxide), which were selected as the most hazardous compounds likely to be released during thermodegradation of synthetic materials. Electrochemical sensors have been available for several years; the CPA sensors, which are unique because of their small size and zero-gravity compatibility, will be described in detail.

  15. Gas Sensor Evaluations in Polymer Combustion Product Atmospheres

    NASA Technical Reports Server (NTRS)

    Delgado, Rafael H.; Davis, Dennis D.; Beeson, Harold D.

    1999-01-01

    Toxic gases produced by the combustion or thermo-oxidative degradation of materials such as wire insulation, foam, plastics, or electronic circuit boards in space shuttle or space station crew cabins may pose a significant hazard to the flight crew. Toxic gas sensors are routinely evaluated in pure gas standard mixtures, but the possible interferences from polymer combustion products are not routinely evaluated. The NASA White Sands Test Facility (WSTF) has developed a test system that provides atmospheres containing predetermined quantities of target gases combined with the coincidental combustion products of common spacecraft materials. The target gases are quantitated in real time by infrared (IR) spectroscopy and verified by grab samples. The sensor responses are recorded in real time and are compared to the IR and validation analyses. Target gases such as carbon monoxide, hydrogen cyanide, hydrogen chloride, and hydrogen fluoride can be generated by the combustion of poly(vinyl chloride), polyimide-fluoropolymer wire insulation, polyurethane foam, or electronic circuit board materials. The kinetics and product identifications for the combustion of the various materials were determined by thermogravimetric-IR spectroscopic studies. These data were then scaled to provide the required levels of target gases in the sensor evaluation system. Multisensor toxic gas monitors from two manufacturers were evaluated using this system. In general, the sensor responses satisfactorily tracked the real-time concentrations of toxic gases in a dynamic mixture. Interferences from a number of organic combustion products including acetaldehyde and bisphenol-A were minimal. Hydrogen bromide in the products of circuit board combustion registered as hydrogen chloride. The use of actual polymer combustion atmospheres for the evaluation of sensors can provide additional confidence in the reliability of the sensor response.

  16. Color Changing Material for Hydrogen Leak Detection

    NASA Technical Reports Server (NTRS)

    Victor, Megan E.

    2014-01-01

    Kennedy Space Center scientists developed a hydrogen leak sensor utilizing a combination of chemochromic pigment and polymer that can be molded or fiber spun into rigid or flexible shapes such as tape. The sensor turns a dark color when exposed to hydrogen gas. This sensor has proven to be very effective for pinpointing the exact location of leaks in hydrogen gas lines and fittings at launch pads. Kennedy Space Center exclusively licensed this technology to the University of Central Florida (UCF), who also holds patents that are complimentary to KSC's. UCF has bundled the patents and exclusively licensed the portfolio to HySense Technology LLC, a startup company founded by a UCF professor who supports the UCF Florida Solar Energy Center (FSEC). HySense has fully developed its product (known as Intellipigment"TM"), and currently has five commercial customers. The company recently won the $100,000 first-place award at the CAT5 innovation competition at the Innovation Concourse of the Southeast: Safety & Manufacturing event in Orlando, FL. Commercial production and sales of this technology by HySense Technology will make this leak sensor widely available for use by NASA, DoD, and industries that utilize hydrogen gas.

  17. Erbium-doped fiber ring laser with SMS modal interferometer for hydrogen sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-nan; Zhang, Lebin; Han, Bo; Peng, Huijie; Zhou, Tianmin; Lv, Ri-qing

    2018-06-01

    A hydrogen sensor based on erbium-doped fiber ring laser with modal interferometer is proposed. A single mode-multimode-single mode (SMS) modal interferometer structure coated with Pd/WO3 film is used as the sensing head, due to that it is easy to be fabricated and low cost. The sensing structure is inserted into an erbium-doped fiber ring laser in order to solve the problem of spectral confusion and improve the detection limit of the hydrogen sensor based on the SMS modal interferometer. The SMS sensing structure is acted as a fiber band-pass filter. When hydrogen concentration around the sensor is changed, it will induce the refractive index and strain variations of the Pd/WO3 film, and then shift the resonant spectrum of the SMS modal interferometer as well as the laser wavelength of the fiber ring laser. Therefore, the hydrogen concentration can be measured by monitoring the wavelength shift of the laser, which has high intensity and narrow full width half maximum. Experimental results demonstrate that the sensor has high sensitivity of 1.23 nm/%, low detection limit of 0.017%, good stability and excellent repeatability.

  18. A hydrogen transient nuclear magnetic resonance sensor for industrial drying applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholls, C.

    1990-01-01

    It has been estimated that industrial non-paper drying processes consume {approximately}0.8 quad (i.e. 8 {times} 10{sup 14} BTU) of energy per year in the United States, representing {approximately}5% of total industrial consumption. If improved technologies could be used to increase the efficiencies of the drying process and hence produce a 2% reduction in energy consumption, the energy savings would be 0.016 quad per year, or {approximately}2.5 million bbl of crude oil. DOE studies indicated that the most attractive R D target to aid in achieving these savings was an advanced moisture sensor, capable of application to a wide variety ofmore » drying processes. To meet these objectives the sensor should accurately monitor product moisture content over the range 2--35 % wt moisture (wb) and be usable at temperatures up to 350{degree}F. 22 refs., 11 figs., 1 tab.« less

  19. Simulations of the thermodynamics and kinetics of NH3 at the RuO2 (110) surface

    NASA Astrophysics Data System (ADS)

    Erdtman, Edvin; Andersson, Mike; Lloyd Spetz, Anita; Ojamäe, Lars

    2017-02-01

    Ruthenium(IV)oxide (RuO2) is a material used for various purposes. It acts as a catalytic agent in several reactions, for example oxidation of carbon monoxide. Furthermore, it is used as gate material in gas sensors. In this work theoretical and computational studies were made on adsorbed molecules on RuO2 (110) surface, in order to follow the chemistry on the molecular level. Density functional theory calculations of the reactions on the surface have been performed. The calculated reaction and activation energies have been used as input for thermodynamic and kinetics calculations. A surface phase diagram was calculated, presenting the equilibrium composition of the surface at different temperature and gas compositions. The kinetics results are in line with the experimental studies of gas sensors, where water has been produced on the surface, and hydrogen is found at the surface which is responsible for the sensor response.

  20. Low-Pressure and Low-Temperature Hydriding-Pulverization-Dehydriding Method for Producing Shape Memory Alloy Powders

    NASA Astrophysics Data System (ADS)

    Murguia, Silvia Briseño; Clauser, Arielle; Dunn, Heather; Fisher, Wendy; Snir, Yoav; Brennan, Raymond E.; Young, Marcus L.

    2018-04-01

    Shape memory alloys (SMAs) are of high interest as active, adaptive "smart" materials for applications such as sensors and actuators due to their unique properties, including the shape memory effect and pseudoelasticity. Binary NiTi SMAs have shown the most desirable properties, and consequently have generated the most commercial success. A major challenge for SMAs, in particular, is their well-known compositional sensitivity. Therefore, it is critical to control the powder composition and morphology. In this study, a low-pressure, low-temperature hydriding-pulverization-dehydriding method for preparing well-controlled compositions, size, and size distributions of SMA powders from wires is presented. Starting with three different diameters of as-drawn martensitic NiTi SMA wires, pre-alloyed NiTi powders of various well-controlled sizes are produced by hydrogen charging the wires in a heated H3PO4 solution. After hydrogen charging for different charging times, the wires are pulverized and subsequently dehydrided. The wires and the resulting powders are characterized using scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction. The relationship between the wire diameter and powder size is investigated as a function of hydrogen charging time. The rate of diameter reduction after hydrogen charging of wire is also examined. Finally, the recovery behavior due to the shape memory effect is investigated after dehydriding.

  1. KSC-05PD-1586

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. On the table is a refurbished, spare orbiter point sensor chassis and a motherboard. Components are being tested to determine why one of the four liquid hydrogen tank low-level fuel cut-off sensors failed in a routine prelaunch check during the launch countdown July 13. The failure caused mission managers to scrub Discovery's first launch attempt. The sensor protects the Shuttle's main engines by triggering their shutdown in the event fuel runs unexpectedly low. The sensor is one of four inside the liquid hydrogen section of the External Tank (ET).

  2. First experiment on liquid hydrogen transportation by ship inside Osaka bay

    NASA Astrophysics Data System (ADS)

    Maekawa, K.; Takeda, M.; Hamaura, T.; Suzuki, K.; Miyake, Y.; Matsuno, Y.; Fujikawa, S.; Kumakura, H.

    2017-12-01

    A project to import a large amount of liquid hydrogen (LH2) from Australia by a cargo carrier, which is equipped with two 1250 m3 tanks, is underway in Japan. It is important to understand sloshing and boil-off characteristics inside the LH2 tank during marine transportation. However, the LH2 sloshing and boil-off characteristics on the sea have not yet been clarified. First experiment on the LH2 transportation of 20 liter with magnesium diboride (MgB2) level sensors by the training ship “Fukae-maru”, which has 50 m long and 449 ton gross weight, was carried out successfully inside Osaka bay on February 2, 2017. In the experiment, synchronous measurements of liquid level, temperature, pressure, ship motions, and accelerations as well as the rapid depressurization test were done. The increase rate of the temperature and the pressure inside the LH2 tank were discussed under the rolling and the pitching conditions.

  3. Suspended sub-50 nm vanadium dioxide membrane transistors: fabrication and ionic liquid gating studies

    NASA Astrophysics Data System (ADS)

    Sim, Jai S.; Zhou, You; Ramanathan, Shriram

    2012-10-01

    We demonstrate a robust lithographic patterning method to fabricate self-supported sub-50 nm VO2 membranes that undergo a phase transition. Utilizing such self-supported membranes, we directly observed a shift in the metal-insulator transition temperature arising from stress relaxation and consistent opening of the hysteresis. Electric double layer transistors were then fabricated with the membranes and compared to thin film devices. The ionic liquid allowed reversible modulation of channel resistance and distinguishing bulk processes from the surface effects. From the shift in the metal-insulator transition temperature, the carrier density doped through electrolyte gating is estimated to be 1 × 1020 cm-3. Hydrogen annealing studies showed little difference in resistivity between the film and the membrane indicating rapid diffusion of hydrogen in the vanadium oxide rutile lattice consistent with previous observations. The ability to fabricate electrically-wired, suspended VO2 ultra-thin membranes creates new opportunities to study mesoscopic size effects on phase transitions and may also be of interest in sensor devices.

  4. The role of boron nitride nanotube as a new chemical sensor and potential reservoir for hydrogen halides environmental pollutants

    NASA Astrophysics Data System (ADS)

    Yoosefian, Mehdi; Etminan, Nazanin; Moghani, Maryam Zeraati; Mirzaei, Samaneh; Abbasi, Shima

    2016-10-01

    Density functional theory (DFT) studies on the interaction of hydrogen halides (HX) environmental pollutants and the boron nitride nanotubes (BNNTs) have been reported. To exploit the possibility of BNNTs as gas sensors, the adsorption of hydrogen fluoride (HF), hydrogen chloride (HCl) and hydrogen bromide (HBr) on the side wall of armchair (5,5) boron nitride nanotubes have been investigated. B3LYP/6-31G (d) level were used to analyze the structural and electronic properties of investigate sensor. The adsorption process were interpreted by highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO), quantum theory of atoms in molecules (QTAIM), natural bond orbital (NBO) and molecular electrostatic potential (MEP) analysis. Topological parameters of bond critical points have been used to calculate as measure of hydrogen bond (HB) strength. Stronger binding energy, larger charge transfer and charge density illustrate that HF gas possesses chemisorbed adsorption process. The obtained results also show the strongest HB in HF/BNNT complex. We expect that results could provide helpful information for the design of new BNNTs based sensing devices.

  5. Tapered Optical Fiber Functionalized with Palladium Nanoparticles by Drop Casting and Laser Radiation for H2 and Volatile Organic Compounds Sensing Purposes

    PubMed Central

    González-Sierra, Nancy Elizabeth; Gómez-Pavón, Luz del Carmen; Pérez-Sánchez, Gerardo Francisco; Luis-Ramos, Arnulfo; Zaca-Morán, Plácido; Chávez-Ramírez, Fernando

    2017-01-01

    A comparative study on the sensing properties of a tapered optical fiber pristine and functionalized with the palladium nanoparticles to hydrogen and volatile organic compounds (VOCs), is presented. The sensor response and, response/recovery times were extracted from the measurements of the transient response of the device. The tapered optical fiber sensor was fabricated using a single-mode optical fiber by the flame-brushing technique. Functionalization of the optical fiber was performed using an aqueous solution of palladium chloride by drop-casting technique assisted for laser radiation. The detection principle of the sensor is based on the changes in the optical properties of palladium nanoparticles when exposed to reducing gases, which causes a variation in the absorption of evanescent waves. A continuous wave laser diode operating at 1550 nm is used for the sensor characterization. The sensor functionalized with palladium nanoparticles by this technique is viable for the sensing of hydrogen and VOCs, since it shows an enhancement in sensor response and response time compared to the sensor based on the pristine optical microfiber. The results show that the fabricated sensor is competitive with other fiber optic sensors functionalized with palladium nanoparticles to the hydrogen. PMID:28878161

  6. Tapered Optical Fiber Functionalized with Palladium Nanoparticles by Drop Casting and Laser Radiation for H₂ and Volatile Organic Compounds Sensing Purposes.

    PubMed

    González-Sierra, Nancy Elizabeth; Gómez-Pavón, Luz Del Carmen; Pérez-Sánchez, Gerardo Francisco; Luis-Ramos, Arnulfo; Zaca-Morán, Plácido; Muñoz-Pacheco, Jesús Manuel; Chávez-Ramírez, Francisco

    2017-09-06

    A comparative study on the sensing properties of a tapered optical fiber pristine and functionalized with the palladium nanoparticles to hydrogen and volatile organic compounds (VOCs), is presented. The sensor response and, response/recovery times were extracted from the measurements of the transient response of the device. The tapered optical fiber sensor was fabricated using a single-mode optical fiber by the flame-brushing technique. Functionalization of the optical fiber was performed using an aqueous solution of palladium chloride by drop-casting technique assisted for laser radiation. The detection principle of the sensor is based on the changes in the optical properties of palladium nanoparticles when exposed to reducing gases, which causes a variation in the absorption of evanescent waves. A continuous wave laser diode operating at 1550 nm is used for the sensor characterization. The sensor functionalized with palladium nanoparticles by this technique is viable for the sensing of hydrogen and VOCs, since it shows an enhancement in sensor response and response time compared to the sensor based on the pristine optical microfiber. The results show that the fabricated sensor is competitive with other fiber optic sensors functionalized with palladium nanoparticles to the hydrogen.

  7. Improved fuel-cell-type hydrogen sensor

    NASA Technical Reports Server (NTRS)

    Rudek, F. P.; Rutkowski, M. D.

    1968-01-01

    Modified hydrogen sensor replaces oxygen cathode with a cathode consisting of a sealed paste of gold hydroxide and a pure gold current collector. The net reaction which occurs during cell operation is the reduction of the gold hydroxide to gold and water, with a half-cell potential of 1.4 volts.

  8. Sensitive hydrogen leak detector

    DOEpatents

    Myneni, Ganapati Rao

    1999-01-01

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  9. Development of a sterilizing in-place application for a production machine using Vaporized Hydrogen Peroxide.

    PubMed

    Mau, T; Hartmann, V; Burmeister, J; Langguth, P; Häusler, H

    2004-01-01

    The use of steam in sterilization processes is limited by the implementation of heat-sensitive components inside the machines to be sterilized. Alternative low-temperature sterilization methods need to be found and their suitability evaluated. Vaporized Hydrogen Peroxide (VHP) technology was adapted for a production machine consisting of highly sensitive pressure sensors and thermo-labile air tube systems. This new kind of "cold" surface sterilization, known from the Barrier Isolator Technology, is based on the controlled release of hydrogen peroxide vapour into sealed enclosures. A mobile VHP generator was used to generate the hydrogen peroxide vapour. The unit was combined with the air conduction system of the production machine. Terminal vacuum pumps were installed to distribute the gas within the production machine and for its elimination. In order to control the sterilization process, different physical process monitors were incorporated. The validation of the process was based on biological indicators (Geobacillus stearothermophilus). The Limited Spearman Karber Method (LSKM) was used to statistically evaluate the sterilization process. The results show that it is possible to sterilize surfaces in a complex tube system with the use of gaseous hydrogen peroxide. A total microbial reduction of 6 log units was reached.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Malley, Kathleen; Lopez, Hugo; Cairns, Julie

    An overview of the main North American codes and standards associated with hydrogen safety sensors is provided. The distinction between a code and a standard is defined, and the relationship between standards and codes is clarified, especially for those circumstances where a standard or a certification requirement is explicitly referenced within a code. The report identifies three main types of standards commonly applied to hydrogen sensors (interface and controls standards, shock and hazard standards, and performance-based standards). The certification process and a list and description of the main standards and model codes associated with the use of hydrogen safety sensorsmore » in hydrogen infrastructure are presented.« less

  11. Study of a solid hydrogen cooler for spacecraft instruments and sensors

    NASA Astrophysics Data System (ADS)

    Sherman, A.

    1980-08-01

    The results of tests and studies to investigate the utilization of solid hydrogen for cooling of spacecraft instruments and sensors are presented. The results are presented in two sections; the first describing the tests in which an existing single stage solid cooler was filled and tested with solid hydrogen and the second which describes the analysis and design of a catalytic converter which will be tested in the vent line of the cooler.

  12. Study of a solid hydrogen cooler for spacecraft instruments and sensors

    NASA Technical Reports Server (NTRS)

    Sherman, A.

    1980-01-01

    The results of tests and studies to investigate the utilization of solid hydrogen for cooling of spacecraft instruments and sensors are presented. The results are presented in two sections; the first describing the tests in which an existing single stage solid cooler was filled and tested with solid hydrogen and the second which describes the analysis and design of a catalytic converter which will be tested in the vent line of the cooler.

  13. Accelerating Palladium Nanowire H2 Sensors Using Engineered Nanofiltration.

    PubMed

    Koo, Won-Tae; Qiao, Shaopeng; Ogata, Alana F; Jha, Gaurav; Jang, Ji-Soo; Chen, Vivian T; Kim, Il-Doo; Penner, Reginald M

    2017-09-26

    The oxygen, O 2 , in air interferes with the detection of H 2 by palladium (Pd)-based H 2 sensors, including Pd nanowires (NWs), depressing the sensitivity and retarding the response/recovery speed in air-relative to N 2 or Ar. Here, we describe the preparation of H 2 sensors in which a nanofiltration layer consisting of a Zn metal-organic framework (MOF) is assembled onto Pd NWs. Polyhedron particles of Zn-based zeolite imidazole framework (ZIF-8) were synthesized on lithographically patterned Pd NWs, leading to the creation of ZIF-8/Pd NW bilayered H 2 sensors. The ZIF-8 filter has many micropores (0.34 nm for gas diffusion) which allows for the predominant penetration of hydrogen molecules with a kinetic diameter of 0.289 nm, whereas relatively larger gas molecules including oxygen (0.345 nm) and nitrogen (0.364 nm) in air are effectively screened, resulting in superior hydrogen sensing properties. Very importantly, the Pd NWs filtered by ZIF-8 membrane (Pd NWs@ZIF-8) reduced the H 2 response amplitude slightly (ΔR/R 0 = 3.5% to 1% of H 2 versus 5.9% for Pd NWs) and showed 20-fold faster recovery (7 s to 1% of H 2 ) and response (10 s to 1% of H 2 ) speed compared to that of pristine Pd NWs (164 s for response and 229 s for recovery to 1% of H 2 ). These outstanding results, which are mainly attributed to the molecular sieving and acceleration effect of ZIF-8 covered on Pd NWs, rank highest in H 2 sensing speed among room-temperature Pd-based H 2 sensors.

  14. Room-temperature bonding of epitaxial layer to carbon-cluster ion-implanted silicon wafers for CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Koga, Yoshihiro; Kadono, Takeshi; Shigematsu, Satoshi; Hirose, Ryo; Onaka-Masada, Ayumi; Okuyama, Ryousuke; Okuda, Hidehiko; Kurita, Kazunari

    2018-06-01

    We propose a fabrication process for silicon wafers by combining carbon-cluster ion implantation and room-temperature bonding for advanced CMOS image sensors. These carbon-cluster ions are made of carbon and hydrogen, which can passivate process-induced defects. We demonstrated that this combination process can be used to form an epitaxial layer on a carbon-cluster ion-implanted Czochralski (CZ)-grown silicon substrate with a high dose of 1 × 1016 atoms/cm2. This implantation condition transforms the top-surface region of the CZ-grown silicon substrate into a thin amorphous layer. Thus, an epitaxial layer cannot be grown on this implanted CZ-grown silicon substrate. However, this combination process can be used to form an epitaxial layer on the amorphous layer of this implanted CZ-grown silicon substrate surface. This bonding wafer has strong gettering capability in both the wafer-bonding region and the carbon-cluster ion-implanted projection range. Furthermore, this wafer inhibits oxygen out-diffusion to the epitaxial layer from the CZ-grown silicon substrate after device fabrication. Therefore, we believe that this bonding wafer is effective in decreasing the dark current and white-spot defect density for advanced CMOS image sensors.

  15. Valve Health Monitoring System Utilizing Smart Instrumentation

    NASA Technical Reports Server (NTRS)

    Jensen, Scott L.; Drouant, George J.

    2006-01-01

    The valve monitoring system is a stand alone unit with network capabilities for integration into a higher level health management system. The system is designed for aiding in failure predictions of high-geared ball valves and linearly actuated valves. It performs data tracking and archiving for identifying degraded performance. The data collection types are cryogenic cycles, total cycles, inlet temperature, body temperature torsional strain, linear bonnet strain, preload position, total travel and total directional changes. Events are recorded and time stamped in accordance with the IRIG B True Time. The monitoring system is designed for use in a Class 1 Division II explosive environment. The basic configuration consists of several instrumentation sensor units and a base station. The sensor units are self contained microprocessor controlled and remotely mountable in three by three by two inches. Each unit is potted in a fire retardant substance without any cavities and limited to low operating power for maintaining safe operation in a hydrogen environment. The units are temperature monitored to safeguard against operation outside temperature limitations. Each contains 902-928 MHz band digital transmitters which meet Federal Communication Commission's requirements and are limited to a 35 foot transmission radius for preserving data security. The base-station controller correlates data from the sensor units and generates data event logs on a compact flash memory module for database uploading. The entries are also broadcast over an Ethernet network. Nitrogen purged National Electrical Manufactures Association (NEMA) Class 4 enclosures are used to house the base-station

  16. Inkjet-compatible single-component polydiacetylene precursors for thermochromic paper sensors.

    PubMed

    Yoon, Bora; Shin, Hyora; Kang, Eun-Mi; Cho, Dae Won; Shin, Kayeong; Chung, Hoeil; Lee, Chan Woo; Kim, Jong-Man

    2013-06-12

    Inkjet-printable diacetylene (DA) supramolecules, which can be dispersed in water without using additional surfactants, have been developed. The supramolecules are generated from DA monomers that contain bisurea groups, which are capable of forming hydrogen-bonding networks, and hydrophilic oligoethylene oxide moieties. Because of suitable size distribution and stability characteristics, the single DA component ink can be readily transferred to paper substrates by utilizing a common office inkjet printer. UV irradiation of the DA-printed paper results in generation of blue-colored polydiacetylene (PDA) images, which show reversible thermochromic transitions in specific temperature ranges. Inkjet-printed PDAs, in the format of a two-dimensional (2D) quick response (QR) code on a real parking ticket, serve as a dual anticounterfeiting system that combines easy decoding of the QR code and colorimetric PDA reversibility for validating the authenticity of the tickets. This single-component ink system has great potential for use in paper-based devices, temperature sensors, and anticounterfeiting barcodes.

  17. Probing the Hydrogen Enhanced Near-Field Emission of ITO without a Vacuum-Gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poole, Jacob L.; Yu, Yang; Ohodnicki, Paul R.

    In-situ monitoring of the multi-component gas streams in high temperature energy conversion devices offer the promises to higher efficiency via improved understanding of the chemical environments during device operation. While conventional resistive based metal oxide semiconductor gas sensors suffer from strong cross-sensitivity, optical sensing approaches offer intrinsic advantages to achieve gas selectivity based on wavelength specific interactions. This manuscript describes a novel method to achieve multicomponent gas sensing during gas exposure of H2, CO2, CH4and CO in humid high temperature environments. A single sensor element comprised of a perovskite La0.3Sr0.7TiO3(LSTO) oxide thin film layer coated on silica optical fiber wasmore » used. The sensing responses consisted of two wavelength-specific near infrared (NIR) mechanisms, namely broadband absorption associated with the metal oxide layer, and wavelength localized thermal emission responses associated with the hydroxyl defects within the silica fiber. Principal component analysis (PCA) was applied to couple the two mechanisms to achieve selective gas identification. Successful discrimination of H2and CO2on a single fiber sensor was achieved, where the results are both stable and reversible. This design demonstrates that by coupling multiple optical mechanisms on a single oxide coated fiber sensor, simple platforms can also achieve multi-component sensing functionality without the added complexity of a sensor array. Thus, it suggests a new approach to construct simple, robust and functional sensor designs capable of gas discrimination and quantification in multi-component gas streams.« less

  18. First fluorescent sensor for fluoride based on 2-ureido-4[1H]-pyrimidinone quadruple hydrogen-bonded AADD supramolecular assembly.

    PubMed

    Zhao, Yao-Peng; Zhao, Chun-Chang; Wu, Li-Zhu; Zhang, Li-Ping; Tung, Chen-Ho; Pan, Yuan-Jiang

    2006-03-03

    A simple, highly selective, neutral, fluorescent sensor for fluoride anions is reported. It is based on 2-ureido-4[1H]-pyrimidinone quadruple hydrogen-bonded AADD supramolecular assembly, and its assembling and disassembling processes are also able to respond to external stimuli reversibly.

  19. KSC-05PD-1587

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Patricia Slinger (left), a test engineer, and Monica Hagley, an avionics test engineer, look at a replacement orbiter point sensor chassis. Components are being tested to determine why one of the four liquid hydrogen tank low- level fuel cut-off sensors failed in a routine prelaunch check during the launch countdown July 13. The failure caused mission managers to scrub Discovery's first launch attempt. The sensor protects the Shuttle's main engines by triggering their shutdown in the event fuel runs unexpectedly low. The sensor is one of four inside the liquid hydrogen section of the External Tank (ET).

  20. Room-temperature solution synthesis of Ag nanoparticle functionalized molybdenum oxide nanowires and their catalytic applications.

    PubMed

    Dong, Wenjun; Huang, Huandi; Zhu, Yanjun; Li, Xiaoyun; Wang, Xuebin; Li, Chaorong; Chen, Benyong; Wang, Ge; Shi, Zhan

    2012-10-26

    A simple chemical solution route for the synthesis of large-scale high-quality Ag nanoparticle functionalized molybdenum oxide nanowire at room temperature has been developed. In the synthesis, the protonated amine was intercalated into the molybdenum bronze layers to reduce the electrostatic force of the lamellar structures, and then the Ag nanoparticle functionalized long nanowires could be easily induced by a redox reaction between a molybdenum oxide-amine intermediate and Ag(+) at room temperature. The intercalation lamellar structures improved the nucleation and growth of the Ag nanoparticles, with the result that uniform Ag nanoparticles occurred on the surface of the MoO(3) nanowire. In this way Ag nanoparticles with average sizes of around 6 nm, and high-purity nanowires with mean diameter of around 50 nm and with typical lengths of several tens to hundreds of micrometers were produced. The heteronanostructured nanowires were intricately and inseparably connected to each other with hydrogen bonds and/or bridge oxygen atoms and packed together, forming a paper-like porous network film. The Ag-MoO(3) nanowire film performs a promoted catalytic property for the epoxidation of cis-cyclooctene, and the heteronanostructured nanowire film sensor shows excellent sensing performance to hydrogen and oxygen at room temperature.

  1. Investigation of hydrogen sulfide gas using Pd/Pt material based fiber Bragg grating sensor

    NASA Astrophysics Data System (ADS)

    Bedi, Amna; Rao, Dusari Nageswara; Kumar, Santosh

    2018-02-01

    In this work, Pd/Pt material based fiber Bragg grating (FBG) sensors has been proposed for detection of hydrogen sulfide gas. Here, characteristics of FBG parameters were numerically calculated and simulated. The variation in reflectivity based on refractive index has been shown. The reflectivity of FBG can be varied when refractive index is changed. The proposed sensor works on very low concentration i.e., 0% to 1%, which has the capability to detect in the early stage.

  2. Sensitive hydrogen leak detector

    DOEpatents

    Myneni, G.R.

    1999-08-03

    A sensitive hydrogen leak detector system is described which uses passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor. 1 fig.

  3. Research | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    a laboratory apparatus to measure thermal conductivity Hydrogen Storage Characterizing hydrogen and fuel cell technology commercialization Photo of a researcher working with sensor testing equipment hydrogen station equipment Technology Validation Collecting and analyzing real-world data to show the

  4. Palladium and platinum-based nanoparticle functional sensor layers for selective H2 sensing

    DOEpatents

    Ohodnicki, Jr., Paul R.; Baltrus, John P.; Brown, Thomas D.

    2017-07-04

    The disclosure relates to a plasmon resonance-based method for H.sub.2 sensing in a gas stream utilizing a hydrogen sensing material. The hydrogen sensing material is comprises Pd-based or Pt-based nanoparticles having an average nanoparticle diameter of less than about 100 nanometers dispersed in an inert matrix having a bandgap greater than or equal to 5 eV, and an oxygen ion conductivity less than approximately 10.sup.-7 S/cm at a temperature of 700.degree. C. Exemplary inert matrix materials include SiO.sub.2, Al.sub.2O.sub.3, and Si.sub.3N.sub.4 as well as modifications to modify the effective refractive indices through combinations and/or doping of such materials. The hydrogen sensing material utilized in the method of this disclosure may be prepared using means known in the art for the production of nanoparticles dispersed within a supporting matrix including sol-gel based wet chemistry techniques, impregnation techniques, implantation techniques, sputtering techniques, and others.

  5. Positron depth profiling of the structural and electronic structure transformations of hydrogenated Mg-based thin films

    NASA Astrophysics Data System (ADS)

    Eijt, S. W. H.; Kind, R.; Singh, S.; Schut, H.; Legerstee, W. J.; Hendrikx, R. W. A.; Svetchnikov, V. L.; Westerwaal, R. J.; Dam, B.

    2009-02-01

    We report positron depth-profiling studies on the hydrogen sorption behavior and phase evolution of Mg-based thin films. We show that the main changes in the depth profiles resulting from the hydrogenation to the respective metal hydrides are related to a clear broadening in the observed electron momentum densities in both Mg and Mg2Ni films. This shows that positron annihilation methods are capable of monitoring these metal-to-insulator transitions, which form the basis for important applications of these types of films in switchable mirror devices and hydrogen sensors in a depth-sensitive manner. Besides, some of the positrons trap at the boundaries of columnar grains in the otherwise nearly vacancy-free Mg films. The combination of positron annihilation and x-ray diffraction further shows that hydrogen loading at elevated temperatures, in the range of 480-600 K, leads to a clear Pd-Mg alloy formation of the Pd catalyst cap layer. At the highest temperatures, the hydrogenation induces a partial delamination of the ˜5 nm thin capping layer, as sensitively monitored by positron depth profiling of the fraction of ortho-positronium formed at interface with the cap layer. The delamination effectively blocks the hydrogen cycling. In Mg-Si bilayers, we investigated the reactivity upon hydrogen loading and heat treatments near 480 K, which shows that Mg2Si formation is fast relative to MgH2. The combination of positron depth profiling and transmission electron microscopy shows that hydrogenation promotes a complete conversion to Mg2Si for this destabilized metal hydride system, while a partially unreacted, Mg-rich amorphous prelayer remains on top of Mg2Si after a single heat treatment in an inert gas environment. Thin film studies indicate that the difficulty of rehydrogenation of Mg2Si is not primarily the result from slow hydrogen dissociation at surfaces, but is likely hindered by the presence of a barrier for removal of Mg from the readily formed Mg2Si.

  6. UV-IR Hydrogen Fire Detector

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J.; Steinrock, T. (Technical Monitor)

    2001-01-01

    The objective of this project is to design a sensor than can accurately determine the presence of a hydrogen fire within its field of view and to eliminate the main cause of false alarms: reflections from the flare stack. Details are given in viewgraph presentation form on the technical approach, initial testing, sensor testing, intellectual property, patented technology, and licensing.

  7. Fabry-Perot microcavity sensor for H2-breath-test analysis

    NASA Astrophysics Data System (ADS)

    Vincenti, Maria Antonietta; De Sario, Marco; Petruzzelli, V.; D'Orazio, Antonella; Prudenzano, Francesco; de Ceglia, Domenico; Scalora, Michael

    2007-10-01

    Leak detection of hydrogen for medical purposes, based on the monitoring of the optical response of a simple Fabry-Perot microcavity, is proposed to investigate either the occurrence of lactose intolerance, or lactose malabsorption condition. Both pathologic conditions result in bacterial overgrowth in the intestine, which causes increased spontaneous emission of H2 in the human breath. Two sensitivity figures of merit are introduced to inspect changes in the sensor response, and to relate the microcavity response to a pathologic condition, which is strictly related to a different level of exhaled hydrogen. Different sensor configurations using a metal-dielectric microcavity are reported and discussed in order to make the most of the well-known ability of palladium to spontaneously absorb hydrogen.

  8. New generation of α-MnO2 nanowires @PDMS composite as a hydrogen gas sensor

    NASA Astrophysics Data System (ADS)

    Hamidi, Seyedeh Mehri; Mosivand, Alireza; Mahboubi, Mina; Arabi, Hadi; Azad, Narin; Jamal, Murtada Riyadh

    2018-03-01

    New hydrogen gas sensor has been prepared by α-MnO2 nanowires in polydimethylsiloxane matrix. For this purpose, the high aspect ratio α-MnO2 nanowires has been prepared by the aid of hydrothermal method and then dispersed into poly-dimethyl siloxane polymer media. For gas sensing, the samples have been exposed under different gas concentrations from 0 to 5%. The sensor responses have been examined by normalized ellipsometric parameter with respect to the chamber filled with N2 Gas. Our results indicate linear behavior of resonance wavelength in ellipsometric parameter as a function of gas concentrations which can open a new insight for the sample's capability to hydrogen gas sensing applications.

  9. Sniffer used as portable hydrogen leak detector

    NASA Technical Reports Server (NTRS)

    Dayan, V. H.; Rommel, M. A.

    1966-01-01

    Sniffer type portable monitor detects hydrogen in air, oxygen, nitrogen, or helium. It indicates the presence of hydrogen in contact with activated palladium black by a change in color of a thermochromic paint, and indicates the quantity of hydrogen by a sensor probe and continuous readout.

  10. A Laboratory Model of a Hydrogen/Oxygen Engine for Combustion and Nozzle Studies

    NASA Technical Reports Server (NTRS)

    Morren, Sybil Huang; Myers, Roger M.; Benko, Stephen E.; Arrington, Lynn A.; Reed, Brian D.

    1993-01-01

    A small laboratory diagnostic thruster was developed to augment present low thrust chemical rocket optical and heat flux diagnostics at the NASA Lewis Research Center. The objective of this work was to evaluate approaches for the use of temperature and pressure sensors for the investigation of low thrust rocket flow fields. The nominal engine thrust was 110 N. Tests were performed at chamber pressures of about 255 kPa, 370 kPa, and 500 kPa with oxidizer to fuel mixture ratios between 4.0 and 8.0. Two gaseous hydrogen/gaseous oxygen injector designs were tested with 60 percent and 75 percent fuel film cooling. The thruster and instrumentation designs were proven to be effective via hot fire testing. The thruster diagnostics provided inner wall temperature and static pressure measurements which were compared to the thruster global performance data. For several operating conditions, the performance data exhibited unexpected trends which were correlated with changes in the axial wall temperature distribution. Azimuthal temperature distributions were found to be a function of operating conditions and hardware configuration. The static pressure profiles showed that no severe pressure gradients were present in the rocket. The results indicated that small differences in injector design can result in dramatically different thruster performance and wall temperature behavior, but that these injector effects may be overshadowed by operating at a high fuel film cooling rate.

  11. KSC-07pd3643

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, Time Domain Reflectometry, or TDR, instrumentation is being exposed to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett

  12. KSC-07pd3639

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, Time Domain Reflectometry, or TDR, instrumentation is being exposed to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett

  13. KSC-07pd3640

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, Time Domain Reflectometry, or TDR, instrumentation is being exposed to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett

  14. KSC-07pd3641

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, Time Domain Reflectometry, or TDR, instrumentation is being exposed to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett

  15. A new amperometric nanostructured sensor for the analytical determination of hydrogen peroxide.

    PubMed

    Guascito, M R; Filippo, E; Malitesta, C; Manno, D; Serra, A; Turco, A

    2008-12-01

    A new amperometric, nanostructured sensor for the analytical determination of hydrogen peroxide is proposed. This sensor was constructed by immobilizing silver nanoparticles in a polyvinyl alcohol (PVA) film on a platinum electrode, which was performed by direct drop-casting silver nanoparticles that were capped in a PVA colloidal suspension. UV-vis spectroscopy, X-ray diffraction and transmission electron microscopy were used to give a complete characterization of the nanostructured film. Cyclic voltammetry experiments yielded evidence that silver nanoparticles facilitate hydrogen peroxide reduction, showing excellent catalytic activity. Moreover, the cronoamperometric response of modified sensors was dependent on nanoparticle lifetime. Experiments were performed, using freshly prepared solutions, after 4 and 8 days. Results concerning the quantitative analysis of hydrogen peroxide, in terms of detection limit, linear range, sensitivity and standard deviation (STD), are discussed for each tested sensor type. Utilization of two different linear ranges (40 microM to 6mM and 1.25 microM to 1.0mM) enabled the assessment of concentration intervals having up to three orders of magnitude. Moreover, the electrode made using a 4-day-old solution showed the maximal sensitivity of 128 nA microM(-1)(4090 nA microM(-1)cm(-2)), yielding a limit of detection of 1 microuM and STD of 2.5 microAmM(-1). All of these analytical parameters make the constructed sensors suitable for peroxide determination in aqueous solution.

  16. Nanofiber-net-binary structured membranes for highly sensitive detection of trace HCl gas

    NASA Astrophysics Data System (ADS)

    Wang, Xianfeng; Wang, Jialin; Si, Yang; Ding, Bin; Yu, Jianyong; Sun, Gang; Luo, Wenjing; Zheng, Gang

    2012-11-01

    This work describes the detection of trace hydrogen chloride (HCl) gas through analyses of the resonance frequency signal from quartz crystal microbalance (QCM) sensors coated with polyaniline (PANI) functionalized polyamide 6 (PA 6) (PANI-PA 6) nanofiber-net-binary (NNB) structured membranes. The PA 6 NNB substrate comprising nanofibers and spider-web-like nano-nets fabricated by a versatile electro-spinning/netting (ESN) process offered an ideal interface for the uniform PANI functionalization and enhanced sensing performance. Benefiting from the large specific surface area, high porosity, and strong adhesive force to the QCM electrode of the PANI-PA 6 NNB membranes, the developed HCl-selective sensors exhibited a rapid response, good reproducibility and stability, and low detection limit (7 ppb) at room temperature. Additionally, the PANI-PA 6 NNB sensing membranes presented visible color changes upon cycled exposure to HCl and ammonia, suggesting their potential application in the development of colorimetric sensors. The PANI-PA 6 NNB coated QCM sensors are considered to be a promising candidate for trace HCl gas detection in practical applications.

  17. Growth and characterization of GaN nanostructures under various ammoniating time with fabricated Schottky gas sensor based on Si substrate

    NASA Astrophysics Data System (ADS)

    Abdullah, Q. N.; Ahmed, A. R.; Ali, A. M.; Yam, F. K.; Hassan, Z.; Bououdina, M.; Almessiere, M. A.

    2018-05-01

    This paper presents the investigation of the influence of the ammoniating time of GaN nanowires (NWs) on the crystalline structure, surface morphology, and optical characteristics. Morphological analysis indicates the growth of good quality and high density of NWs with diameters around 50 nm and lengths up to tens of microns after ammoniating for 30 min. Structural analysis shows that GaN NWs have a typical hexagonal wurtzite crystal structure. Raman spectroscopy confirms the formation of GaN compound with the presence of compressive stress. Photoluminescence (PL) measurements revealed two band emissions, an UV and a broad visible emission. Hydrogen sensor was subsequently fabricated by depositing Pt Schottky contact onto GaN NWs film. The sensor response was measured at various H2 concentrations ranged from 200 up to 1200 ppm at room temperature. It was found that the response increases significantly for low H2 concentration (200-300 ppm) to reach about 50% then increases smoothly to reach 60% at 1200 ppm. The as-fabricated sensor possesses higher performances as compared to similar devices reported in the literature.

  18. Fiber-Amplifier-Enhanced QEPAS Sensor for Simultaneous Trace Gas Detection of NH3 and H2S

    PubMed Central

    Wu, Hongpeng; Dong, Lei; Liu, Xiaoli; Zheng, Huadan; Yin, Xukun; Ma, Weiguang; Zhang, Lei; Yin, Wangbao; Jia, Suotang

    2015-01-01

    A selective and sensitive quartz enhanced photoacoustic spectroscopy (QEPAS) sensor, employing an erbium-doped fiber amplifier (EDFA), and a distributed feedback (DFB) laser operating at 1582 nm was demonstrated for simultaneous detection of ammonia (NH3) and hydrogen sulfide (H2S). Two interference-free absorption lines located at 6322.45 cm−1 and 6328.88 cm−1 for NH3 and H2S detection, respectively, were identified. The sensor was optimized in terms of current modulation depth for both of the two target gases. An electrical modulation cancellation unit was equipped to suppress the background noise caused by the stray light. An Allan-Werle variance analysis was performed to investigate the long-term performance of the fiber-amplifier-enhanced QEPAS sensor. Benefitting from the high power boosted by the EDFA, a detection sensitivity (1σ) of 52 parts per billion by volume (ppbv) and 17 ppbv for NH3 and H2S, respectively, were achieved with a 132 s data acquisition time at atmospheric pressure and room temperature. PMID:26506351

  19. Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastouret, Alan; Gooijer, Frans; Overton, Bob

    High Temperature insulated wire and optical fiber cable is a key enabling technology for the Geothermal Technologies Program (GTP). Without insulated electrical wires and optical fiber, downhole temperature and pressure sensors, flow meters and gauges cannot communicate with the surface. Unfortunately, there are currently no insulated electrical wire or fiber cable constructions capable of surviving for extended periods of deployment in a geothermal well (240-325°C) or supercritical (374°C) reservoir. This has severely hindered engineered reservoir creation, management and utilization, as hot zones and cool water intrusions cannot be understood over time. The lack of a insulated electrical wire and fibermore » cable solution is a fundamental limitation to the viability of this energy source. The High Temperature Downhole Tools target specification is development of tools and sensors for logging and monitoring wellbore conditions at depths of up to 10,000 meters and temperatures up to 374oC. It well recognized in the industry that no current electronic or fiber cable can be successfully deployed in a well and function successfully for more a few days at temperatures over 240oC. The goal of this project was to raise this performance level significantly. Prysmian Group’s objective in this project was to develop a complete, multi-purpose cable solution for long-term deployment in geothermal wells/reservoirs that can be used with the widest variety of sensors. In particular, the overall project objective was to produce a manufacturable cable design that can perform without serious degradation: • At temperatures up to 374°C; • At pressures up to 220 bar; • In a hydrogen-rich environment; and • For the life of the well (> 5 years). This cable incorporates: • Specialty optical fibers, with specific glass chemistry and high temperature and pressure protective coatings for data communication and distributed temperature and pressure sensing, and • High-temperature insulated wire conductors Prysmian Group has developed a geothermal fiber optic cable (GFOC) solution which incorporates novel glass chemistry for optical fibers to operate at the required bandwidths in high temperature/high pressure hydrogen rich environments with fiber protection, high temperature insulated conductors and protective cladding for cable components. The cable solution has been tested in a geothermal installation for 10 months. The electrical insulation and optical fibers have been validated through laboratory testing to ensure successful operation for greater than 5 years at 300°C, with the possibility of higher temperatures depending on the particular well environment. With the 300°C optical fiber and electrical insulation developments completed and validated in laboratory tests the greatest challenge to a complete 300°C cable solution was protecting the optical fibers in the cable. Optical fibers are typically incased in a protective tube where the tube is filled with a gel. The gel serves as mechanical protection, prevent moisture ingress, and can include hydrogen scavenging materials. A suitable gel for use at 300°C could not be identified and an industrialized alternative was not fully attained. Despite the problems encountered and the lower long-term operating temperature of the cable solution, the project showed success in developing a complete cable solution for a large portion of the geothermal wells in operation today. Further work to obtain the higher long-term temperature goal of the project can be achieved based on the knowledge gained in the current project. This project is significant for many reasons including the new materials science, manufacturing technology, energy independence, and jobs created and will create.« less

  20. Wireless and chip-less passive radiation sensors for high dose monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debourg, E.; Aubert, H.; Pons, P.

    The safety of nuclear infrastructures may involve the monitoring of many parameters in harsh environments (high radiation level, high temperature, high pressure,..). If technological solutions exist for transducers part in such environments, the electronic part used in reader is not appropriate and still a challenging task. Well-known solutions to remove the electronic part from the harsh environment consist of connecting the transducer and the reader by long electrical wires or performing ex situ remote sensing. However wires may practically be difficult to implement while ex situ measurements are not compatible with on line monitoring. Wireless and passive sensors working inmore » harsh environments could be an appropriate solution for the remote sensing of critical parameters. Passive sensors without electronics in the sensing unit are available (e.g., SAW sensors) but they suffer from short reading range (typically lower than 10 meters). In order to overcome this range limitation a new class of electromagnetic transducers was developed in the mid-2000's. The operating principle is based on the modification of the properties of high-frequency (>> 1 GHz) passive electromagnetic devices by the quantity to be measured. Based on this principle a wide range of sensing properties can be addressed and a large number of materials can be chosen. Moreover the use of high frequency allows reducing the size of the sensor elements (antenna, transducer) and enhancing the immunity to multi-path. Several principles of RF transducers have been already validated by LAAS-CNRS (e;g; pressure, temperature, stress) as well as radar-based solution for the wireless long-range sensors interrogation. The sensor dosimeter exploit here the known property of Hydrogen-Pressure Dosimeters (HPD) for which the polymer material dehydrogenates under nuclear irradiation. The transducer principle is described. The irradiation will generate the out-gazing (hydrogen) of the polymer inside a micro-chamber. The resulting overpressure leads to the deflection of a silicon membrane which modifies the resonant frequency of the RF resonator. Tests structures have been designed in order to quantify the HDPE out-gazing inside a micro-cavity by measuring the deflection of a boss silicon membrane with a mechanical profiler. A specific set up using interferometry method has been also developed to evaluate the pressure generated inside the micro-cavity. The procedure consists in applying a pressure that pushes the membrane to recover a flat membrane. This condition is monitored thanks to the extinction of the Newton rings. Irradiations have been performed up to 30 kGy using 6 MeV focused e-beam providing by electron accelerator. Membrane deflection and generated pressure around 0.2 μm/mg{sub HDPE}/kGy and 70 mbar/mg{sub HDPE}/kGy has been obtained for a 70 μm thick membrane. In order to characterize the hermetic sealing of the micro-chamber under hydrogen over-pressure, membrane deflection after irradiation has been recorded during 50 days. The variations of membrane deflection are randomly distributed and generally lower than ±5%, showing a good hermeticity during this period. (authors)« less

  1. Devices and methods to measure H2 and CO2 concentrations in gases released from soils and low temperature fumaroles in volcanic areas

    NASA Astrophysics Data System (ADS)

    di Martino, R. M. R.; Camarda, M.; Gurrieri, S.; Valenza, M.

    2009-04-01

    Hydrogen solubility and diffusion have a great relevance to change the redox state of magmas, usually expressed by oxygen fugacity. This influences many chemical and physical properties, such as oxidation state of multivalent elements, kind and abundance of minerals and gas species. These processes change the phase ratios into the volcanic system and so the magma movement capability toward the earth surface and the eruptive dynamics. In past studies several authors (Carapezza et al., 1980; Sato et al., 1982; Sato and McGee, 1985; Wakita et al., 1980) proposed the application of the fuel cells in order to measure reducing capacity of volcanic gases. Their found some clear correlations between variation peaks and volcanic activity but a few reducing capacity changes showed no correlation with it. In this study we characterize a fuel cell device designed to measure hydrogen concentration in a gas mixture. We present test results obtained in laboratory and in field trip, carried out to verify the major interferences of others reducing gas species, commonly present in volcanic emissions, in the measurement carried out with a hydrogen fuel cell sensor. Tests were performed at controlled temperature ad pressure conditions and at air saturated pressure vapour in the cell cathode. A new device to measure simultaneously hydrogen (H2) and carbon dioxide (CO2) concentrations in soil and in low temperature fumaroles in volcanic areas was proposed. The H2-detector is a hydrogen fuel cell, whereas CO2 is measured using an I.R. spectrometer. To build a continuous monitoring station of volcanic activity both sensors were put in a case together with a data logger. Our device has 0.2 mV ppm-1 sensitivity, accuracy of ± 5 ppm and about 10 ppm resolution whit respect to the hydrogen concentration. These instrumental characteristics were obtained applying a 500 ohm resistor to the external circuit that represents the best compromise between sensitivity, resolution, instrumental response time, and linearity of signal. We determine the CO2 concentration in the gas mixture with an I.R. spectrometer that has a measuring range of 0-100% with accuracy of ± 2% of the range and response time of 10 seconds. The laboratory results confirm our hypothesis of interference between H2, H2S and CO in the full concentration range of contaminant species. Therefore, according to our studies, the assignment of the fuel cell signal output variations only to H2 variation of concentration as in past studies, without physical separation of different reducing species may be misleading. Continuous measurements and periodical measurement field trip were performed at Torre Del Filosofo site on the upper part of the Etna volcano from the end of July to the middle October 2008. In field applications, H2S was removed with a Pb(COOH)2 trap whereas CO interference was neglected because H2/CO ratios in volcanic gases are typically high. Field time-series measurements of H2 and CO2 in gases emitted by low temperature fumaroles at Torre del Filosofo site showed a close positive correlation between explosion activity and the major peaks in the hydrogen concentration.

  2. Highly sensitive H2 gas sensor of Co doped ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Bhati, Vijendra Singh; Ranwa, Sapana; Kumar, Mahesh

    2018-04-01

    In this report, the hydrogen gas sensing properties based on Co doped ZnO nanostructures are explored. The undoped and Co doped nanostructures were grown by RF magnetron sputtering system, and its structural, morphological, and hydrogen sensing behavior are investigated. The maximum relative response was occurred by the 2.5% Co doped ZnO nanostructures among undoped and other doped sensors. The enhancement of relative response might be due to large chemisorbed sites formation on the ZnO surface for the reaction to hydrogen gas.

  3. Numerical Modeling of the Transient Chilldown Process of a Cryogenic Propellant Transfer Line

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason; Vera, Jerry

    2015-01-01

    Before cryogenic fuel depots can be fully realized, efficient methods with which to chill down the spacecraft transfer line and receiver tank are required. This paper presents numerical modeling of the chilldown of a liquid hydrogen tank-to-tank propellant transfer line using the Generalized Fluid System Simulation Program (GFSSP). To compare with data from recently concluded turbulent LH2 chill down experiments, seven different cases were run across a range of inlet liquid temperatures and mass flow rates. Both trickle and pulse chill down methods were simulated. The GFSSP model qualitatively matches external skin mounted temperature readings, but large differences are shown between measured and predicted internal stream temperatures. Discrepancies are attributed to the simplified model correlation used to compute two-phase flow boiling heat transfer. Flow visualization from testing shows that the initial bottoming out of skin mounted sensors corresponds to annular flow, but that considerable time is required for the stream sensor to achieve steady state as the system moves through annular, churn, and bubbly flow. The GFSSP model does adequately well in tracking trends in the data but further work is needed to refine the two-phase flow modeling to better match observed test data.

  4. Performance of Orbital Neutron Instruments for Spatially Resolved Hydrogen Measurements of Airless Planetary Bodies

    PubMed Central

    Elphic, Richard C.; Feldman, William C.; Funsten, Herbert O.; Prettyman, Thomas H.

    2010-01-01

    Abstract Orbital neutron spectroscopy has become a standard technique for measuring planetary surface compositions from orbit. While this technique has led to important discoveries, such as the deposits of hydrogen at the Moon and Mars, a limitation is its poor spatial resolution. For omni-directional neutron sensors, spatial resolutions are 1–1.5 times the spacecraft's altitude above the planetary surface (or 40–600 km for typical orbital altitudes). Neutron sensors with enhanced spatial resolution have been proposed, and one with a collimated field of view is scheduled to fly on a mission to measure lunar polar hydrogen. No quantitative studies or analyses have been published that evaluate in detail the detection and sensitivity limits of spatially resolved neutron measurements. Here, we describe two complementary techniques for evaluating the hydrogen sensitivity of spatially resolved neutron sensors: an analytic, closed-form expression that has been validated with Lunar Prospector neutron data, and a three-dimensional modeling technique. The analytic technique, called the Spatially resolved Neutron Analytic Sensitivity Approximation (SNASA), provides a straightforward method to evaluate spatially resolved neutron data from existing instruments as well as to plan for future mission scenarios. We conclude that the existing detector—the Lunar Exploration Neutron Detector (LEND)—scheduled to launch on the Lunar Reconnaissance Orbiter will have hydrogen sensitivities that are over an order of magnitude poorer than previously estimated. We further conclude that a sensor with a geometric factor of ∼ 100 cm2 Sr (compared to the LEND geometric factor of ∼ 10.9 cm2 Sr) could make substantially improved measurements of the lunar polar hydrogen spatial distribution. Key Words: Planetary instrumentation—Planetary science—Moon—Spacecraft experiments—Hydrogen. Astrobiology 10, 183–200. PMID:20298147

  5. Combustion Products Monitor: Trade Study Testing

    NASA Technical Reports Server (NTRS)

    Wallace, William T.; Trowbridge, John B.

    2011-01-01

    Current combustion products monitoring on the International Space Station (ISS) uses a handheld device (Compound Specific Analyzer-Combustion Products, CSA-CP) containing electrochemical sensors used to measure the concentration of carbon monoxide (CO), hydrogen chloride (HCl), hydrogen cyanide (HCN), and oxygen (O2). The CO sensor in this device accounts for a well-known cross-sensitivity with hydrogen (H2), which is important, as ISS air can contain up to 100 ppm H2. Unfortunately, this current device is being discontinued, and due to space constraints, the new model cannot accommodate the size of the current CO sensor. Therefore, a trade study was conducted in order to determine which CO sensors on the market were available with compensation for H2, and which instruments used these sensors, while also measuring HCN, O2, and carbon dioxide (CO2). The addition of CO2 to the device is helpful, as current monitoring of this gas requires a second hand-held monitor. By providing a device that will monitor both combustion products and CO2, volume and up-mass can be reduced as these monitors are delivered to ISS.

  6. Design and Applications of a Climatic Chamber for in-situ Neutron Imaging Experiments

    NASA Astrophysics Data System (ADS)

    Mannes, David; Schmid, Florian; Wehmann, Timon; Lehmann, Eberhard

    Due to the high sensitivity for hydrogen, the detection and quantification of moisture and moisture transport processes are some of the key topics in neutron imaging. Especially when dealing with hygroscopic material, such as wood and other porous media, it is crucial for quantitative analyses to know and control the ambient conditions of the sample precisely. In this work, a neutron transparent climatic chamber is presented, which was designed and built for the imaging facilities at the Paul Scherrer Institut (PSI), Villigen (CH). The air-conditioned measuring system consists of the actual sample chamber and a moisture generator providing air with adjustable temperature and relative humidity (%RH) (up to a dew point temperature of 70 °C). The two components are connected with a flexible tube, which features insulation, a heating system and temperature sensors to prevent condensation within the tube. The sample chamber itself is equipped with neutron transparent windows, insulating double walls with three feed-through openings for the rotation stage, sensors for humidity and temperature. Thermoelectric modules allow to control the chamber temperature in the range of -20 °C to 100 °C. The chamber allows to control the climatic conditions either in a static mode (stable temperature and %RH) or in dynamic mode (humidity or temperature cycles). The envisaged areas of application are neutron radiography and tomography investigations of dynamic processes in building materials (e.g. wood, concrete), food science and any other application necessitating the control of the climatic conditions.

  7. Low temperature preparation of Ag-doped ZnO nanowire arrays for sensor and light-emitting diode applications

    NASA Astrophysics Data System (ADS)

    Lupan, O.; Viana, B.; Cretu, V.; Postica, V.; Adelung, R.; Pauporté, T.

    2016-02-01

    Transition metal doped-oxide semiconductor nanostructures are important to achieve enhanced and new properties for advanced applications. We describe the low temperature preparation of ZnO:Ag nanowire/nanorod (NW/NR) arrays by electrodeposition at 90 °C. The NWs have been characterized by SEM, EDX, transmittance and photoluminescence (PL) measurements. The integration of Ag in the crystal is shown. Single nanowire/nanorod of ZnO:Ag was integrated in a nanosensor structure leading to new and enhanced properties. The ultraviolet (UV) response of the nanosensor was investigated at room temperature. Experimental results indicate that ZnO:Ag (0.75 μM) nanosensor possesses faster response/recovery time and better response to UV light than those reported in literature. The sensor structure has been also shown to give a fast response for the hydrogen detection with improved performances compared to pristine ZnO NWs. ZnO:Ag nanowire/nanorod arrays electrochemically grown on p-type GaN single crystal layer is also shown to act as light emitter in LED structures. The emission wavelength is red-shifted compared to pristine ZnO NW array. At low Ag concentration a single UV-blue emission is found whereas at higher concentration of dopant the emission is broadened and extends up to the red wavelength range. Our study indicates that high quality ZnO:Ag NW/NR prepared at low temperature by electrodeposition can serve as building nanomaterials for new sensors and light emitting diodes (LEDs) structures with low-power consumption.

  8. The thermal stability of the carbon-palladium films for hydrogen sensor applications

    NASA Astrophysics Data System (ADS)

    Rymarczyk, Joanna; Czerwosz, ElŻbieta; Diduszko, Ryszard; Kozłowski, Mirosław

    2017-08-01

    The thermal stability of two types of C-Pd films prepared in PVD process were studied. These films are composed of Pd nanograins embedded in a multiphase carbonaceous matrix. These films were distinguished by Pd content. These films were annealed in a range of temperatures 50÷1000°C. The structural, topographical and molecular changes were studied by scanning electron microscopy (SEM), infrared spectroscopy (FTIR) and X-ray diffraction (XRD) methods. The results show that investigated films are thermally stable up to 200°C.

  9. Combustibles sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pebler, A.R.

    1980-02-26

    A gaseous mixture of oxygen and fuel (Combustibles) is supplied to first and second electrodes disposed on opposite surfaces of an oxygen ion conductive solid electrolyte member wherein the electrodes are composed of different materials each exhibiting a different catalytic action on the gaseous mixture at a given temperature. The difference in oxygen potentials established at the respective electrodes as a result of the dissimilar catalytic action produces oxygen ion conductivity in the solid electrolyte cell which produces an electrical signal the magnitude of which is indicative of the combustible present in the mixture, I.E., methane, hydrogen, carbon monoxide, etc.

  10. Radio-frequency-modulated Rydberg states in a vapor cell

    NASA Astrophysics Data System (ADS)

    Miller, S. A.; Anderson, D. A.; Raithel, G.

    2016-05-01

    We measure strong radio-frequency (RF) electric fields using rubidium Rydberg atoms prepared in a room-temperature vapor cell as field sensors. Electromagnetically induced transparency is employed as an optical readout. We RF-modulate the 60{{{S}}}1/2 and 58{{{D}}}5/2 Rydberg states with 50 and 100 MHz fields, respectively. For weak to moderate RF fields, the Rydberg levels become Stark-shifted, and sidebands appear at even multiples of the driving frequency. In high fields, the adjacent hydrogenic manifold begins to intersect the shifted levels, providing rich spectroscopic structure suitable for precision field measurements. A quantitative description of strong-field level modulation and mixing of S and D states with hydrogenic states is provided by Floquet theory. Additionally, we estimate the shielding of DC electric fields in the interior of the glass vapor cell.

  11. Highly sensitive hydrogen sensor based on graphite-InP or graphite-GaN Schottky barrier with electrophoretically deposited Pd nanoparticles

    PubMed Central

    2011-01-01

    Depositions on surfaces of semiconductor wafers of InP and GaN were performed from isooctane colloid solutions of palladium (Pd) nanoparticles (NPs) in AOT reverse micelles. Pd NPs in evaporated colloid and in layers deposited electrophoretically were monitored by SEM. Diodes were prepared by making Schottky contacts with colloidal graphite on semiconductor surfaces previously deposited with Pd NPs and ohmic contacts on blank surfaces. Forward and reverse current-voltage characteristics of the diodes showed high rectification ratio and high Schottky barrier heights, giving evidence of very small Fermi level pinning. A large increase of current was observed after exposing diodes to flow of gas blend hydrogen in nitrogen. Current change ratio about 700,000 with 0.1% hydrogen blend was achieved, which is more than two orders-of-magnitude improvement over the best result reported previously. Hydrogen detection limit of the diodes was estimated at 1 ppm H2/N2. The diodes, besides this extremely high sensitivity, have been temporally stable and of inexpensive production. Relatively more expensive GaN diodes have potential for functionality at high temperatures. PMID:21831273

  12. KSC-05PD-1577

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Members of the engineering team are meeting in the Launch Control Center to review data and possible troubleshooting plans for the liquid hydrogen tank low-level fuel cut-off sensor. At left is John Muratore, manager of Systems Engineering and Integration for the Space Shuttle Program; Ed Mango, JSC deputy manager of the orbiter project office; and Carol Scott, KSC Integration Manager. The sensor failed a routine prelaunch check during the launch countdown July 13, causing mission managers to scrub Discovery's first launch attempt. The sensor protects the Shuttle's main engines by triggering their shutdown in the event fuel runs unexpectedly low. The sensor is one of four inside the liquid hydrogen section of the External Tank (ET).

  13. Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiquan Tao

    2006-12-31

    The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fibermore » optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of fiber optic sensors uses sol-gel derived porous silica materials doped with nanometer particles of noble metals in the form of fiber or coating for sensing trace H{sub 2}, NH{sub 3} and HCl in gas samples at for applications ambient temperature. The third classes of fiber optic sensors use sol-gel derived semiconductor metal oxide coating on the surface of silica optical fiber as transducers for selectively sensing H{sub 2}, CH{sub 4} and CO at high temperature. In addition, optical fiber temperature sensors use the fluorescence signal of rare-earth metal ions doped porous silica optical fiber or the optical absorption signal of thermochromic metal oxide materials coated on the surface of silica optical fibers have also been developed for monitoring gas temperature of corrosive gas. Based on the results obtained from this project, the principle of fiber optic sensor techniques for monitoring matrix gas components as well as trace components of coal gasification derived syngas has been established. Prototype sensors for sensing trace ammonia and hydrogen sulfide in gasification derived syngas have been built up in our laboratory and have been tested using gas samples with matrix gas composition similar to that of gasification derived fuel gas. Test results illustrated the feasibility of these sensors for applications in IGCC processes.« less

  14. Advanced Photon Source Activity Report 2003: Report of Work Conducted at the APS, January 2003-December 2003, Synchrotron x-ray diffraction at the APS, Sector 16 (HPCAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goncharov, A F; Zaug, J M; Crowhurst, J C

    2005-01-27

    We present here the summary of the results of our studies using the APS synchrotron beamline IDB Sector 16 (HPCAT). Optical calibration of pressure sensors for high pressures and temperatures: The high-pressure ruby scale for static measurements is well established to at least 100 GPa (about 5% accuracy), however common use of this and other pressure scales at high temperature is clearly based upon unconfirmed assumptions. Namely that high temperature does not affect observed room temperature pressure derivatives. The establishment of a rigorous pressure scale along with the identification of appropriate pressure gauges (i.e. stable in the high P-T environmentmore » and easy to use) is important for securing the absolute accuracy of fundamental experimental science where results guide the development of our understanding of planetary sciences, geophysics, chemistry at extreme conditions, etc. X-ray diffraction in formic acid under high pressure: Formic acid (HCOOH) is common in the solar system; it is a potential component of the Galilean satellites. Despite this, formic acid has not been well-studied at high temperatures and pressures. A phase diagram of formic acid at planetary interior pressures and temperatures will add to the understanding of planetary formation and the potential for life on Europa. Formic acid (unlike most simple organic acids) forms low-temperature crystal structures characterized by infinite hydrogen-bonded chains of molecules. The behavior of these hydrogen bonds at high pressure is of great interest. Our current research fills this need.« less

  15. Device for self-verifying temperature measurement and control

    DOEpatents

    Watkins, Arthur D.; Cannon, Collins P.; Tolle, Charles R.

    2004-08-03

    A measuring instrument includes a first temperature sensor, a second temperature sensor and circuitry. The first and second temperature sensors each generate a signal indicative of the temperature of a medium being detected. The circuitry is configured to activate verification of temperature being sensed with the first sensor. According to one construction, the first temperature sensor comprises at least one thermocouple temperature sensor and the second temperature sensor comprises an optical temperature sensor, each sensor measuring temperature over the same range of temperature, but using a different physical phenomena. Also according to one construction, the circuitry comprises a computer configured to detect failure of one of the thermocouples by comparing temperature of the optical temperature sensor with each of the thermocouple temperature sensors. Even further, an output control signal is generated via a fuzzy inference machine and control apparatus.

  16. Device and method for self-verifying temperature measurement and control

    DOEpatents

    Watkins, Arthur D.; Cannon, Collins P.; Tolle, Charles R.

    2002-10-29

    A measuring instrument includes a first temperature sensor, a second temperature sensor and circuitry. The first and second temperature sensors each generate a signal indicative of the temperature of a medium being detected. The circuitry is configured to activate verification of temperature being sensed with the first sensor. According to one construction, the first temperature sensor comprises at least one thermocouple temperature sensor and the second temperature sensor comprises an optical temperature sensor, each sensor measuring temperature over the same range of temperature, but using a different physical phenomena. Also according to one construction, the circuitry comprises a computer configured to detect failure of one of the thermocouples by comparing temperature of the optical temperature sensor with each of the thermocouple temperature sensors. Even further, an output control signal is generated via a fuzzy inference machine and control apparatus.

  17. Method and Pd/V2 O5 device for H2 detection

    DOEpatents

    Liu, Ping [San Diego, CA; Tracy, C Edwin [Golden, CO; Pitts, J Roland [Lakewood, CO; Smith, II, R. Davis; Lee, Se-Hee [Lakewood, CO

    2011-12-27

    Methods and Pd/V.sub.2O.sub.5 devices for hydrogen detection are disclosed. An exemplary method of preparing an improved sensor for chemochromic detection of hydrogen gas over a wide response range exhibits stability during repeated coloring/bleaching cycles upon exposure and removal of hydrogen gas. The method may include providing a substrate. The method may also include depositing a V.sub.20.sub.5 layer that functions as a H.sub.2 insertion host in a Pd/V.sub.20.sub.5 hydrogen sensor to be formed on said substrate. The method may also include depositing a Pd layer onto said V.sub.20.sub.5 layer; said Pd layer functioning as an optical modulator.

  18. Catalytic hydrogen sensing using microheated platinum nanoparticle-loaded graphene aerogel

    DOE PAGES

    Harley-Trochimczyk, Anna; Chang, Jiyoung; Zhou, Qin; ...

    2014-10-02

    We present that low power catalytic hydrogen sensors are fabricated by functionalizing low power polysilicon microheaters with platinum nanoparticle catalyst loaded in a high surface area graphene aerogel support. Fabrication and characterization of the polysilicon microheaters are described. The platinum nanoparticle-loaded graphene aerogel is characterized by transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. Finally, the catalytic hydrogen sensors consume as little as 2.2 mW of power, have sensitivity of 1.6%/10,000 ppm hydrogen, a t90 response and recovery time of 0.97 s and 0.72 s, respectively, a lower detection limit of approximately 65 ppm, and negligible crossmore » sensitivity to methane, n-pentane, and diethylether.« less

  19. Composition and method for hydrogen storage

    NASA Technical Reports Server (NTRS)

    Mao, Wendy L. (Inventor); Mao, Ho-Kwang (Inventor)

    2004-01-01

    A method for hydrogen storage includes providing water and hydrogen gas to a containment volume, reducing the temperature of the water and hydrogen gas to form a hydrogen clathrate at a first cryogenic temperature and a first pressure and maintaining the hydrogen clathrate at second cryogenic temperature within a temperature range of up to 250 K to effect hydrogen storage. The low-pressure hydrogen hydrate includes H.sub.2 O molecules, H.sub.2 molecules and a unit cell including polyhedron cages of hydrogen-bonded frameworks of the H.sub.2 O molecules built around the H.sub.2 molecules.

  20. KSC-07pd3642

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, technicians monitor readings during a test exposing Time Domain Reflectometry, or TDR, instrumentation to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett

  1. Anion-selective interaction and colorimeter by an optical metalloreceptor based on ruthenium(II) 2,2'-biimidazole: hydrogen bonding and proton transfer.

    PubMed

    Cui, Ying; Mo, Hao-Jun; Chen, Jin-Can; Niu, Yan-Li; Zhong, Yong-Rui; Zheng, Kang-Cheng; Ye, Bao-Hui

    2007-08-06

    A new anion sensor [Ru(bpy)2(H2biim)](PF6)2 (1) (bpy = 2,2'-bipyridine and H2biim = 2,2'-biimidazole) has been developed, in which the Ru(II)-bpy moiety acts as a chromophore and the H2biim ligand as an anion receptor via hydrogen bonding. A systematic investigation shows that 1 is an eligible sensor for various anions. It donates protons for hydrogen bonding to Cl-, Br-, I-, NO3-, HSO4-, H2PO4-, and OAc- anions and further actualizes monoproton transfer to the OAc- anion, changing color from yellow to orange brown. The fluoride ion has a high affinity toward the N-H group of the H2biim ligand for proton transfer, rather than hydrogen bonding, because of the formation of the highly stable HF2- anion, resulting in stepwise deprotonation of the two N-H fragments. These processes are signaled by vivid color changes from yellow to orange brown and then to violet because of second-sphere donor-acceptor interactions between Ru(II)-H2biim and the anions. The significant color changes can be distinguished visually. The processes are not only determined by the basicity of anion but also by the strength of hydrogen bonding and the stability of the anion-receptor complexes. The design strategy and remarkable photophysical properties of sensor 1 help to extend the development of anion sensors.

  2. KSC-05PD-1575

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. The gate is open to Launch Pad 39B where Space Shuttle Discovery remains on the pad after scrub of Return to Flight mission STS-114. The July 13 mission was scrubbed when a low-level fuel cut-off sensor for the liquid hydrogen tank inside the External Tank failed a routine prelaunch check during the countdown July 13, causing mission managers to scrub Discovery's first launch attempt. The sensor protects the Shuttle's main engines by triggering their shutdown in the event fuel runs unexpectedly low. The sensor is one of four inside the liquid hydrogen section of the External Tank (ET).

  3. Flow line sampler

    DOEpatents

    Nicholls, Colin I.

    1992-07-14

    An on-line product sampling apparatus and method for measuring product samples from a product stream (12) in a flow line (14) having a sampling aperture (11), includes a sampling tube (18) for containing product samples removed from flow line (14). A piston (22) removes product samples from the product stream (12) through the sampling aperture (11) and returns samples to product stream (12). A sensor (20) communicates with sample tube (18), and senses physical properties of samples while the samples are within sample tube (18). In one embodiment, sensor (20) comprises a hydrogen transient nuclear magnetic resonance sensor for measuring physical properties of hydrogen molecules.

  4. Bis-ureidoquinoline as a selective fluoride anion sensor through hydrogen-bond interactions.

    PubMed

    Jo, Yunhee; Chidalla, Nagesh; Cho, Dong-Gyu

    2014-10-03

    Bis-ureidoquinoline shows a characteristic UV-vis absorbance and turn-on fluorescence changes in the presence of the fluoride anion. Such selective changes probably originate from the hydrogen-bond interactions, as shown by the (1)H NMR titration and DFT calculations. Bis-ureidoquinoline can be used as a fluoride-selective sensor for the detection of fluoride anions under illumination from a laboratory hand-held UV lamp.

  5. Automated Hydrogen Gas Leak Detection System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Gencorp Aerojet Automated Hydrogen Gas Leak Detection System was developed through the cooperation of industry, academia, and the Government. Although the original purpose of the system was to detect leaks in the main engine of the space shuttle while on the launch pad, it also has significant commercial potential in applications for which there are no existing commercial systems. With high sensitivity, the system can detect hydrogen leaks at low concentrations in inert environments. The sensors are integrated with hardware and software to form a complete system. Several of these systems have already been purchased for use on the Ford Motor Company assembly line for natural gas vehicles. This system to detect trace hydrogen gas leaks from pressurized systems consists of a microprocessor-based control unit that operates a network of sensors. The sensors can be deployed around pipes, connectors, flanges, and tanks of pressurized systems where leaks may occur. The control unit monitors the sensors and provides the operator with a visual representation of the magnitude and locations of the leak as a function of time. The system can be customized to fit the user's needs; for example, it can monitor and display the condition of the flanges and fittings associated with the tank of a natural gas vehicle.

  6. Instrumentation Performance During the TMI-2 Accident

    NASA Astrophysics Data System (ADS)

    Rempe, Joy L.; Knudson, Darrell L.

    2014-08-01

    The accident at the Three Mile Island Unit 2 (TMI-2) reactor provided a unique opportunity to evaluate sensors exposed to severe accident conditions. The loss of coolant and the hydrogen combustion that occurred during this accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. As part of a program initiated by the Department of Energy Office of Nuclear Energy (DOE-NE), a review was completed to gain insights from prior TMI-2 sensor survivability and data qualification efforts. This new effort focused upon a set of sensors that provided critical data to TMI-2 operators for assessing the condition of the plant and the effects of mitigating actions taken by these operators. In addition, the effort considered sensors providing data required for subsequent accident simulations. Over 100 references related to instrumentation performance and post-accident evaluations of TMI-2 sensors and measurements were reviewed. Insights gained from this review are summarized within this paper. As noted within this paper, several techniques were invoked in the TMI-2 post-accident program to evaluate sensor survivability status and data qualification, including comparisons with data from other sensors, analytical calculations, laboratory testing, and comparisons with sensors subjected to similar conditions in large-scale integral tests and with sensors that were similar in design but more easily removed from the TMI-2 plant for evaluations. Conclusions from this review provide important insights related to sensor survivability and enhancement options for improving sensor performance. In addition, this paper provides recommendations related to sensor survivability and the data evaluation process that could be implemented in upcoming Fukushima Daiichi recovery efforts.

  7. Hydrogen Production from Nuclear Energy via High Temperature Electrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. O'Brien; Carl M. Stoots; J. Stephen Herring

    2006-04-01

    This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production.

  8. Low temperature fluid blender

    NASA Technical Reports Server (NTRS)

    Repas, G. A.

    1971-01-01

    Blender supplies hydrogen at temperatures from 289 deg K to 367 deg K. Hydrogen temperature is controlled by using blender to combine flow from liquid hydrogen tank /276 deg K/ and gaseous hydrogen cylinder /550 deg K/. Blenders are applicable where flow of controlled low-temperature fluid is desired.

  9. Survey of hydrogen monitoring devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, W.

    Presented are results of a survey of commercially available monitoring devices suitable for hydrogen detection in the secondary containment vessel of a nuclear power plant during the post postulated accident period. Available detectors were grouped into the following five classes: combustion, solid state, electrochemical, thermal conductivity, and absorption. The performance of most available sensors is likely to deteriorate when exposed to the postulated conditions which include moisture, which could be at high temperature, and radioactive noncondensibles. Of the commercial devices, those using metallic filament thermal conductivity detectors seem least susceptible to performance change. Absorption detectors are best suited for thismore » monitoring task but the only available device is designed for pipeline corrosion assessment. Initiation of experimental study to assess apparent deficiencies of commercial detectors is recommended. Also recommended is an analytical/experimental effort to determine the optimum detector array for monitoring in the secondary containment vessels.« less

  10. Optical fiber sensors based on nanostructured coatings fabricated by means of the layer-by-layer electrostatic self-assembly method

    NASA Astrophysics Data System (ADS)

    Arregui, Francisco J.; Matías, Ignacio R.; Claus, Richard O.

    2007-07-01

    The Layer-by-Layer Electrostatic Self-Assembly (ESA) method has been successfully used for the design and fabrication of nanostructured materials. More specifically, this technique has been applied for the deposition of thin films on optical fibers with the purpose of fabricating different types of optical fiber sensors. In fact, optical fiber sensors for measuring humidity, temperature, pH, hydrogen peroxide, glucose, volatile organic compounds or even gluten have been already experimentally demonstrated. The versatility of this technique allows the deposition of these sensing coatings on flat substrates and complex geometries as well. For instance, nanoFabry-Perots and microgratings have been formed on cleaved ends of optical fibers (flat surfaces) and also sensing coatings have been built onto long period gratings (cylindrical shape), tapered fiber ends (conical shape), biconically tapered fibers or even the internal side of hollow core fibers. Among the different materials used for the construction of these sensing nanostructured coatings, diverse types such as polymers, inorganic semiconductors, colorimetric indicators, fluorescent dyes, quantum dots or even biological elements as enzymes can be found. This technique opens the door to the fabrication of new types of optical fiber sensors.

  11. The study of hydrogen peroxide level under cisplatin action using genetically encoded sensor hyper

    NASA Astrophysics Data System (ADS)

    Belova, A. S.; Orlova, A. G.; Maslennikova, A. V.; Brilkina, A. A.; Balalaeva, I. V.; Antonova, N. O.; Mishina, N. M.; Shakhova, N. M.; Belousov, V. V.

    2014-03-01

    The aim of the work was to study the participation of hydrogen peroxide in reaction of cervical cancer cell line HeLa Kyoto on cisplatin action. Determination of hydrogen peroxide level was performed using genetically encoded fluorescent sensor HyPer2. The dependence of cell viability on cisplatin concentration was determined using MTT assay. Mechanisms of cell death as well as HyPer2 reaction was revealed by flow cytometry after 6-hours of incubation with cisplatin in different concentrations. Cisplatin used in low concentrations had no effect on hydrogen peroxide level in HeLa Kyoto cells. Increase of HyPer2 fluorescence was detected only after exposure with cisplatin in high concentration. The reaction was not the consequence of cell death.

  12. Note: Durability analysis of optical fiber hydrogen sensor based on Pd-Y alloy film.

    PubMed

    Huang, Peng-cheng; Chen, You-ping; Zhang, Gang; Song, Han; Liu, Yi

    2016-02-01

    The Pd-Y alloy sensing film has an excellent property for hydrogen detection, but just for one month, the sensing film's property decreases seriously. To study the failure of the sensing film, the XPS spectra analysis was used to explore the chemical content of the Pd-Y alloy film, and analysis results demonstrate that the yttrium was oxidized. The paper presented that such an oxidized process was the potential reason of the failure of the sensing film. By understanding the reason of the failure of the sensing film better, we could improve the manufacturing process to enhance the property of hydrogen sensor.

  13. A Leak Monitor for Industry

    NASA Technical Reports Server (NTRS)

    1996-01-01

    GenCorp Aerojet Industrial Products, Lewis Research Center, Marshall Space Flight Center, and Case Western Reserve University developed a gas leak detection system, originally for use with the Space Shuttle propulsion system and reusable launch vehicles. The Model HG200 Automated Gas Leak Detection System has miniaturized sensors that can identify extremely low concentrations of hydrogen without requiring oxygen. A microprocessor-based hardware/software system monitors the sensors and displays the source and magnitude of hydrogen leaks in real time. The system detects trace hydrogen around pipes, connectors, flanges and pressure tanks, and has been used by Ford Motor Company in the production of a natural gas-powered car.

  14. Influence of high pressure hydrogen environment on creep deformation of Mo-Re, Haynes 188, and NARloy-Z alloys

    NASA Technical Reports Server (NTRS)

    Sastry, S. M. L.; Yang, Charles C.; Ouyang, Shewang; Jerina, K. L.; Schwartz, D. S.

    1994-01-01

    The present study focuses on the investigation of the influence of hydrogen on the mechanical properties of three types of alloys at elevated temperatures. The reasons for the consideration of hydrogen effects are the potential use of hydrogen as a coolant in gas-cooled reactors and fuel in advanced hypersonic vehicles. The materials used in hydrogen atmosphere must not be embrittled by hydrogen at ambient temperature and should have good strength in hydrogen atmosphere at elevated temperature. The paucity of information concerning the mechanical performance in hydrogen atmosphere at elevated temperature has been a limiting factor in the selection and design of structural components for operation in hydrogen environment.

  15. Genetically encoded proton sensors reveal activity-dependent pH changes in neurons.

    PubMed

    Raimondo, Joseph V; Irkle, Agnese; Wefelmeyer, Winnie; Newey, Sarah E; Akerman, Colin J

    2012-01-01

    The regulation of hydrogen ion concentration (pH) is fundamental to cell viability, metabolism, and enzymatic function. Within the nervous system, the control of pH is also involved in diverse and dynamic processes including development, synaptic transmission, and the control of network excitability. As pH affects neuronal activity, and can also itself be altered by neuronal activity, the existence of tools to accurately measure hydrogen ion fluctuations is important for understanding the role pH plays under physiological and pathological conditions. Outside of their use as a marker of synaptic release, genetically encoded pH sensors have not been utilized to study hydrogen ion fluxes associated with network activity. By combining whole-cell patch clamp with simultaneous two-photon or confocal imaging, we quantified the amplitude and time course of neuronal, intracellular, acidic transients evoked by epileptiform activity in two separate in vitro models of temporal lobe epilepsy. In doing so, we demonstrate the suitability of three genetically encoded pH sensors: deGFP4, E(2)GFP, and Cl-sensor for investigating activity-dependent pH changes at the level of single neurons.

  16. Hydrogen and oxygen sensor development

    NASA Technical Reports Server (NTRS)

    Farber, E. A.; Mahig, J.; Schaeper, H. R. A.

    1972-01-01

    A reliable and low cost gas sensor was investigated for instantaneously detecting H2 in N2, H2 in air, and O2 in N2. The major portion of the research was spent in developing a sensor which would instantaneously detect H2 to + or - 50 ppm even in the presence of trace amounts of other gases. The experimental procedures used to provide the performance characteristics for the various oscillators are discussed describing the equipment with help of schematics and photographs where applicable. The resulting performance is given in graphical form. In some cases both hydrogen and helium may be present and since both of them effect gas sensors similarly, a method was found to determine the concentration of each. The methods developed are grouped into the following four broad categories: pure metal response, variation in heat conductivity, reduction methods, and exotic processes. From the above it was decided for the present to use a copper oxide reduction process as this process was demonstrated to be capable of determining the concentrations of hydrogen and helium respectively in a gas mixture with air or nitrogen.

  17. An Advanced Loop Heat Pipe for Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Hoang, Triem

    2017-01-01

    A loop heat pipe (LHP) is a very versatile heat transfer device that can transport a large heat load over a long distance with a small temperature difference. All LHPs currently servicing orbiting spacecraft are designed to operate in the room temperature range. Future space telescopes and space-based Earth resource imaging satellites require passive cryogenic heat transport devices that can thermally couple remote cryocoolers to sensor or instrument of interest while providing the capability of payload vibration jitter isolation, implementation of redundant coolers, and coupling of multiple sensors to a common heat sink. All of these requirements can be satisfied by using a cryogenic LHP (CLHP). Although the development of CLHPs faces several technical challenges, NASA Goddard Space Flight Center has devoted extensive efforts in developing CLHP technology over the past decade and has made significant progress. In particular, the combination of the innovative ideas of using a secondary capillary pump to manage the parasitic heat gain and using a hot reservoir to reduce the system pressure under the ambient condition has led to the successful development of the CLHP. Several CLHPs charged with nitrogen and hydrogen were built and tested in thermal vacuum chambers. These CLHPs demonstrated reliable start-up and robust operation during power cycle and sink temperature cycle tests.

  18. An Advanced Loop Heat Pipe for Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Hoang, Triem

    2016-01-01

    A loop heat pipe (LHP) is a very versatile heat transfer device which can transport a large heat load over a long distance with a small temperature difference. All LHPs currently servicing orbiting spacecraft are designed to operate in the room temperature range. Future space telescopes and space-based Earth resource imaging satellites require passive cryogenic heat transport devices that can thermally couple remote cryocoolers to sensor or instrument of interest while providing the capability of payload vibration/jitter isolation, implementation of redundant coolers, and coupling of multiple sensors to a common heat sink. All of these requirements can be satisfied by using a cryogenic LHP (CLHP). Although the development of CLHPs faces several technical challenges, NASA Goddard Space Flight Center has devoted extensive efforts in developing CLHP technology over the past decade and has made significant progress. In particular, the combination of the innovative ideas of using a secondary capillary pump to manage the parasitic heat gain and using a hot reservoir to reduce the system pressure under the ambient condition has led to the successful development of the CLHP. Several CLHPs charged with nitrogen and hydrogen were built and tested in thermal vacuum chambers. These CLHPs demonstrated reliable start-up and robust operation during power cycle and sink temperature cycle tests.

  19. A novel enzymatic method for determination of homocysteine using electrochemical hydrogen sulfide sensor.

    PubMed

    Zhao, Dong; Liu, Tsan-Zon; Chan, Err-Cheng; Fein, Harry; Zhang, Xueji

    2007-05-01

    Homocysteine is a sulfur-containing compound produced during metabolism process of methionine. Its uptake in human plasma is believed to be the cause of cardiovascular diseases and many other diseases. An electrochemical method was proposed for selective and quantitative measurement of homocysteine by employing hydrogen sulfide sensor coupled with methionine a, g-lyase. The principle of this method is to measure the evolved hydrogen sulfide from the enzymatic reaction between homocysteine and methionine a, g-lyase. The sensitivities of the measurements at different pH values of the tris buffer solutions and at room temperature peaked to 275 pA/mM at pH 6.5 with detection limit of 150 nM (based on 3 s cutoff). The linearity measurements at pH 6.5 were performed for the homocysteine concentrations range from 0.5 to 200 mM, which is wider than the human blood plasma total homocysteine level of 5 to 100 mM, and the regressive analysis of the experiments gave R2=0.9987. The enzyme also showed the fastest response to homocysteine in the tris buffer solution of pH 7.5 with the current approaching its maximum at 134 seconds. The interference tests against several common agents were carried out, and found that cysteine and methionine were the major two species to introduce measurement problem. The solution to this interference problem was explored and discussed thoroughly based on the preliminary tests. The sensitivities of the experiments against several enzyme concentrations were also performed.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Kuan-Chung; Chu, Chia-Ho; Hsu, Chen-Pin

    In this study, a cost-effective and highly sensitive cholesterol microsensor, which is consisted of cholesterol oxidase (ChOx), horseradish peroxidase (HRP), and polyaniline (PANI), was developed based on the enzyme-induced conductivity change of PANI with fast response. Hydrogen peroxide is produced via the reaction between cholesterol and ChOx, which was immobilized in a dialysis membrane. The produced hydrogen peroxide can oxidize HRP, which can be reduced by oxidizing PANI, thus resulting in decreased conductivity of the polyaniline thin film. The reduced HRP can be oxidized again by hydrogen peroxide and the cycle of the oxidation/reduction continues until all hydrogen peroxide aremore » reacted, leading to the high sensitivity of the sensor due to the signal contributed from all hydrogen peroxide molecules. Cholesterol was detected near the physiological concentrations ranging from 100 mg/dl to 400 mg/dl with the cholesterol microsensors. The results show linear relation between cholesterol concentration and the conductivity change of the PANI. The microsensor showed no response to cholesterol when the PANI was standalone without cholesterol oxidase immobilized, indicating that the enzymatic reaction is required for cholesterol detection. The simple process of the sensor fabrication allows the sensor to be cost-effective and disposable usage. This electronic cholesterol microsensor is promising for point-of-care health monitoring in cholesterol level with low cost and fast response.« less

  1. Predicted thermal response of a cryogenic fuel tank exposed to simulated aerodynamic heating profiles with different cryogens and fill levels

    NASA Technical Reports Server (NTRS)

    Hanna, Gregory J.; Stephens, Craig A.

    1991-01-01

    A two dimensional finite difference thermal model was developed to predict the effects of heating profile, fill level, and cryogen type prior to experimental testing the Generic Research Cryogenic Tank (GRCT). These numerical predictions will assist in defining test scenarios, sensor locations, and venting requirements for the GRCT experimental tests. Boiloff rates, tank-wall and fluid temperatures, and wall heat fluxes were determined for 20 computational test cases. The test cases spanned three discrete fill levels and three heating profiles for hydrogen and nitrogen.

  2. Uniform manganese hexacyanoferrate hydrate nanocubes featuring superior performance for low-cost supercapacitors and nonenzymatic electrochemical sensors.

    PubMed

    Pang, Huan; Zhang, Yizhou; Cheng, Tao; Lai, Wen-Yong; Huang, Wei

    2015-10-14

    Uniform manganese hexacyanoferrate hydrate nanocubes are prepared via a simple chemical precipitation method at room temperature. Due to both micro/mesopores of the Prussian blue analogue and nanocubic structures, the manganese hexacyanoferrate hydrate nanocubes allow the efficient charge transfer and mass transport for electrolyte solution and chemical species. Thus, the manganese hexacyanoferrate hydrate nanocube electrode shows a good rate capability and cycling stability for electrochemical capacitors. Furthermore, electrodes modified with manganese hexacyanoferrate hydrate nanocubes demonstrate a sensitive electrochemical response to hydrogen peroxide (H2O2) in buffer solutions with a high selectivity.

  3. Nonlinear observer designs for fuel cell power systems

    NASA Astrophysics Data System (ADS)

    Gorgun, Haluk

    A fuel cell is an electrochemical device that combines hydrogen and oxygen, with the aid of electro-catalysts, to produce electricity. A fuel cell consists of a negatively charged anode, a positively charged cathode and an electrolyte, which transports protons or ions. A low temperature fuel cell has an electrical potential of about 0.7 Volt when generating a current density of 300--500 mA/cm2. Practical fuel cell power systems will require a combination of several cells in series (a stack) to satisfy the voltage requirements of specific applications. Fuel cells are suitable for a potentially wide variety of applications, from stationary power generation in the range of hundreds of megawatts to portable electronics in the range of a couple of watts. Efficient operation of a fuel cell system requires advanced feedback control designs. Reliable measurements from the system are necessary to implement such designs. However, most of the commercially available sensors do not operate properly in the reformate and humidified gas streams in fuel cell systems. Sensors working varying degrees of success are too big and costly, and sensors that are potentially low cost are not reliable or do not have the required life time [28]. Observer designs would eliminate sensor needs for measurements, and make feedback control implementable. Since the fuel cell system dynamics are highly nonlinear, observer design is not an easy task. In this study we aim to develop nonlinear observer design methods applicable to fuel cell systems. In part I of the thesis we design an observer to estimate the hydrogen partial pressure in the anode channel. We treat inlet partial pressure as an unknown slowly varying parameter and develop an adaptive observer that employs a nonlinear voltage injection term. However in this design Fuel Processing System (FPS) dynamics are not modelled, and their effect on the anode dynamics are treated as plant uncertainty. In part II of the thesis we study the FPS dynamics, and estimate not only hydrogen but also all other species in its reactors. We design nonlinear observers for the Catalytic Partial Oxidation (CPO), Water Gas Shift (WGS), and Preferential Oxidation (PROX), reactors in the FPS. The observers make use of temperature measurements (and possibly one more variable, such as pressure) to estimate the mole fractions of each species in the reactors. An advantage of these designs is that they are based on reaction invariants and do not rely on knowledge of reaction rate expressions. Finally, in part III, we illustrate how the designs of parts I and II can be incorporated in fault detection and estimation algorithms for common failures encountered in fuel cells, such as the cathode blower failure and the anode valve failure. For this task, we combine geometric tools with our observers.

  4. A Dual Sensor for pH and Hydrogen Peroxide Using Polymer-Coated Optical Fibre Tips.

    PubMed

    Purdey, Malcolm S; Thompson, Jeremy G; Monro, Tanya M; Abell, Andrew D; Schartner, Erik P

    2015-12-17

    This paper demonstrates the first single optical fibre tip probe for concurrent detection of both hydrogen peroxide (H₂O₂) concentration and pH of a solution. The sensor is constructed by embedding two fluorophores: carboxyperoxyfluor-1 (CPF1) and seminaphtharhodafluor-2 (SNARF2) within a polymer matrix located on the tip of the optical fibre. The functionalised fibre probe reproducibly measures pH, and is able to accurately detect H₂O₂ over a biologically relevant concentration range. This sensor offers potential for non-invasive detection of pH and H₂O₂ in biological environments using a single optical fibre.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Hanchung; Liu, Yung Y.; Shuler, James

    The ability to monitor critical environment parameters of nuclear plants at all times, particularly during and after a disruptive accident, is vital for the safety of plant personnel, rescue and recovery crews, and the surrounding communities. Conventional hard-wired assets that depend on supplied power may be decimated as a result of such events, as witnessed in the Japanese Fukushima nuclear power plant in March 2011. Self-powered monitoring devices operating on a wireless platform, on the other hand, may survive such calamity and remain functional. The devices would be pre-positioned at strategic locations, particularly where the dangerous build-up of contamination andmore » radiation may preclude subsequent manned entrance and surveillance. Equipped with sensors for β-γ radiation, neutrons, hydrogen gas, temperature, humidity, pressure, and water level, as well as with criticality alarms and imaging equipment for heat, video, and other capabilities, these devices can provide vital surveillance information for assessing the extent of plant damage, mandating responses (e.g., evacuation before impending hydrogen explosion), and enabling overall safe and efficient recovery in a disaster. A radio frequency identification (RFID)-based system - called ARG-US - may be modified and adapted for this task. Developed by Argonne for DOE, ARG-US (meaning 'watchful guardian') has been used successfully to monitor and track sensitive nuclear materials packages at DOE sites. It utilizes sensors in the tags to continuously monitor the state of health of the packaging and promptly disseminates alarms to authorized users when any of the preset sensor thresholds is violated. By adding plant-specific monitoring sensors to the already strong sensor suite and adopting modular hardware, firmware, and software subsystems that are tailored for specific subsystems of a plant, a Remote Area Modular Monitoring (RAMM) system, built on a wireless sensor network (WSN) platform, is being developed by Argonne National Laboratory. ARG-US RAMM, powered by on-board battery, can sustain extended autonomous surveillance operation during and following an incident. The benefits could be invaluable to such critical facilities as nuclear power plants, research and test reactors, fuel cycle manufacturing centers, spent-fuel dry-cask storage facilities, and other nuclear installations. (authors)« less

  6. KSC-05PD-1592

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Media gather in the television studio at the NASA News Center to hear members of the Mission Management Team reveal aspects of the troubleshooting and testing being done on the liquid hydrogen tank low-level fuel cut-off sensor. On the stage at right are (from left) Wayne Hale, Space Shuttle deputy program manager; John Muratore, manager of Systems Engineering and Integration for the Space Shuttle Program; and Mike Wetmore, director of Space Shuttle Processing. The sensor failed a routine prelaunch check during the launch countdown July 13, causing mission managers to scrub Discovery's first launch attempt. The sensor protects the Shuttle's main engines by triggering their shutdown in the event fuel runs unexpectedly low. The sensor is one of four inside the liquid hydrogen section of the External Tank (ET).

  7. Novel fluorescent pH sensor based on coumarin with piperazine and imidazole substituents.

    PubMed

    Saleh, Na'il; Al-Soud, Yaseen A; Nau, Werner M

    2008-12-01

    A new coumarin derivative containing piperazine and imidazole moieties is reported as a fluorophore for hydrogen ions sensing. The fluorescence enhancement of the studied sensor with an increase in hydrogen ions concentration is based on the hindering of photoinduced electron transfer from the piperazinyl amine and the imidazolyl amine to the coumarin fluorophore by protonation. The presented sensor has a novel design of fluorophore-spacer-receptor(1)-receptor(2) format, which is proposed to sense two ranges of pH (from 2.5 to 5.5) and (from 10 to 12) instead of sensing one pH range. A model compound, in which the piperazinyl ring is absent, was synthesized as well to confirm the novel pH sensing of the proposed sensor.

  8. A widely tunable, near-infrared laser-based trace gas sensor for hydrogen cyanide (HCN) detection in exhaled breath

    NASA Astrophysics Data System (ADS)

    Azhar, M.; Mandon, J.; Neerincx, A. H.; Liu, Z.; Mink, J.; Merkus, P. J. F. M.; Cristescu, S. M.; Harren, F. J. M.

    2017-11-01

    A compact, cost-effective sensor is developed for detection of hydrogen cyanide (HCN) in exhaled breath within seconds. For this, an off-axis integrated cavity output spectroscopy setup is combined with a widely tunable compact near-infrared laser (tunability 1527-1564 nm). For HCN a detection sensitivity has been obtained of 8 ppbv in nitrogen (within 1 s), equal to a noise equivalent absorption sensitivity of 1.9 × 10-9 cm-1 Hz-1/2. With this sensor we demonstrated the presence of HCN in exhaled breath; its detection could be a good indicator for bacterial lung infection. Due to its compact, cost-effective and user-friendly design, this laser-based sensor has the potential to be implemented in future clinical applications.

  9. Intelligent Chemical Sensor Systems for In-space Safety Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Xu, J. C.; Neudeck, P. G.; Makel, D. B.; Ward, B.; Liu, C. C.

    2006-01-01

    Future in-space and lunar operations will require significantly improved monitoring and Integrated System Health Management (ISHM) throughout the mission. In particular, the monitoring of chemical species is an important component of an overall monitoring system for space vehicles and operations. For example, in leak monitoring of propulsion systems during launch, inspace, and on lunar surfaces, detection of low concentrations of hydrogen and other fuels is important to avoid explosive conditions that could harm personnel and damage the vehicle. Dependable vehicle operation also depends on the timely and accurate measurement of these leaks. Thus, the development of a sensor array to determine the concentration of fuels such as hydrogen, hydrocarbons, or hydrazine as well as oxygen is necessary. Work has been on-going to develop an integrated smart leak detection system based on miniaturized sensors to detect hydrogen, hydrocarbons, or hydrazine, and oxygen. The approach is to implement Microelectromechanical Systems (MEMS) based sensors incorporated with signal conditioning electronics, power, data storage, and telemetry enabling intelligent systems. The final sensor system will be self-contained with a surface area comparable to a postage stamp. This paper discusses the development of this "Lick and Stick" leak detection system and it s application to In-Space Transportation and other Exploration applications.

  10. Automatic development of normal zone in composite MgB2/CuNi wires with different diameters

    NASA Astrophysics Data System (ADS)

    Jokinen, A.; Kajikawa, K.; Takahashi, M.; Okada, M.

    2010-06-01

    One of the promising applications with superconducting technology for hydrogen utilization is a sensor with a magnesium-diboride (MgB2) superconductor to detect the position of boundary between the liquid hydrogen and the evaporated gas stored in a Dewar vessel. In our previous experiment for the level sensor, the normal zone has been automatically developed and therefore any energy input with the heater has not been required for normal operation. Although the physical mechanism for such a property of the MgB2 wire has not been clarified yet, the deliberate application might lead to the realization of a simpler superconducting level sensor without heater system. In the present study, the automatic development of normal zone with increasing a transport current is evaluated for samples consisting of three kinds of MgB2 wires with CuNi sheath and different diameters immersed in liquid helium. The influences of the repeats of current excitation and heat cycle on the normal zone development are discussed experimentally. The aim of this paper is to confirm the suitability of MgB2 wire in a heater free level sensor application. This could lead to even more optimized design of the liquid hydrogen level sensor and the removal of extra heater input.

  11. Ice Sheet Temperature Records - Satellite and In Situ Data from Antarctica and Greenland

    NASA Astrophysics Data System (ADS)

    Shuman, C. A.; Comiso, J. C.

    2001-12-01

    Recently completed decadal-length surface temperature records from Antarctica and Greenland are providing insights into the challenge of detecting climate change. Ice and snow cover at high latitudes influence the global climate system by reflecting much of the incoming solar energy back to space. An expected consequence of global warming is a decrease in area covered by snow and ice and an increase in Earth's absorption of solar radiation. Models have predicted that the effects of climate warming may be amplified at high latitudes; thinning of the Greenland ice sheet margins and the breakup of Antarctic Peninsula ice shelves suggest this process may have begun. Satellite data provide an excellent means of observing climate parameters across both long temporal and remote spatial domains but calibration and validation of their data remains a challenge. Infrared sensors can provide excellent temperature information but cloud cover and calibration remain as problems. Passive-microwave sensors can obtain data during the long polar night and through clouds but have calibration issues and a much lower spatial resolution. Automatic weather stations are generally spatially- and temporally-restricted and may have long gaps due to equipment failure. Stable isotopes of oxygen and hydrogen from ice sheet locations provide another means of determining temperature variations with time but are challenging to calibrate to observed temperatures and also represent restricted areas. This presentation will discuss these issues and elaborate on the development and limitations of composite satellite, automatic weather station, and proxy temperature data from selected sites in Antarctica and Greenland.

  12. Carbon nanotube TiO2 hybrid films for detecting traces of O2

    NASA Astrophysics Data System (ADS)

    Llobet, E.; Espinosa, E. H.; Sotter, E.; Ionescu, R.; Vilanova, X.; Torres, J.; Felten, A.; Pireaux, J. J.; Ke, X.; Van Tendeloo, G.; Renaux, F.; Paint, Y.; Hecq, M.; Bittencourt, C.

    2008-09-01

    Hybrid titania films have been prepared using an adapted sol-gel method for obtaining well-dispersed hydrogen plasma-treated multiwall carbon nanotubes in either pure titania or Nb-doped titania. The drop-coating method has been used to fabricate resistive oxygen sensors based on titania or on titania and carbon nanotube hybrids. Morphology and composition studies have revealed that the dispersion of low amounts of carbon nanotubes within the titania matrix does not significantly alter its crystallization behaviour. The gas sensitivity studies performed on the different samples have shown that the hybrid layers based on titania and carbon nanotubes possess an unprecedented responsiveness towards oxygen (i.e. more than four times higher than that shown by optimized Nb-doped TiO2 films). Furthermore, hybrid sensors containing carbon nanotubes respond at significantly lower operating temperatures than their non-hybrid counterparts. These new hybrid sensors show a strong potential for monitoring traces of oxygen (i.e. <=10 ppm) in a flow of CO2, which is of interest for the beverage industry.

  13. Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants.

    PubMed

    Sayago, Isabel; Matatagui, Daniel; Fernández, María Jesús; Fontecha, José Luis; Jurewicz, Izabela; Garriga, Rosa; Muñoz, Edgar

    2016-02-01

    A Love-wave device with graphene oxide (GO) as sensitive layer has been developed for the detection of chemical warfare agent (CWA) simulants. Sensitive films were fabricated by airbrushing GO dispersions onto Love-wave devices. The resulting Love-wave sensors detected very low CWA simulant concentrations in synthetic air at room temperature (as low as 0.2 ppm for dimethyl-methylphosphonate, DMMP, a simulant of sarin nerve gas, and 0.75 ppm for dipropylene glycol monomethyl ether, DPGME, a simulant of nitrogen mustard). High responses to DMMP and DPGME were obtained with sensitivities of 3087 and 760 Hz/ppm respectively. Very low limit of detection (LOD) values (9 and 40 ppb for DMMP and DPGME, respectively) were calculated from the achieved experimental data. The sensor exhibited outstanding sensitivity, good linearity and repeatability to all simulants tested. The detection mechanism is here explained in terms of hydrogen bonding formation between the tested CWA simulants and GO. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Hydrogen absorption and its effect on magnetic properties of Nd2Fe14B

    NASA Astrophysics Data System (ADS)

    Bezdushnyi, R.; Damianova, R.; Tereshina, I. S.; Pankratov, N. Yu.; Nikitin, S. A.

    2018-05-01

    Magnetic properties of hydrides of the intermetallic compound Nd2Fe14BHx are investigated in the temperature range covering the Curie temperatures (TC) of the compounds (up to 670 K). The temperature dependencies of magnetization are measured under continuous control of hydrogen content in the investigated samples. The dependencies of Curie and spin-reorientation transition (TSR) temperatures on the hydrogen concentration are studied in detail. The dependence of hydrogen concentration on pressure at a constant temperature (near TC) and on the temperature at various pressures are obtained. We attempted to estimate the contributions of the unit cell volume increase upon hydrogenation and the electronic structure change in the variation of TC of the hydrogenated Nd2Fe14 B .

  15. Electrochemical hydrogen sulfide biosensors.

    PubMed

    Xu, Tailin; Scafa, Nikki; Xu, Li-Ping; Zhou, Shufeng; Abdullah Al-Ghanem, Khalid; Mahboob, Shahid; Fugetsu, Bunshi; Zhang, Xueji

    2016-02-21

    The measurement of sulfide, especially hydrogen sulfide, has held the attention of the analytical community due to its unique physiological and pathophysiological roles in biological systems. Electrochemical detection offers a rapid, highly sensitive, affordable, simple, and real-time technique to measure hydrogen sulfide concentration, which has been a well-documented and reliable method. This review details up-to-date research on the electrochemical detection of hydrogen sulfide (ion selective electrodes, polarographic hydrogen sulfide sensors, etc.) in biological samples for potential therapeutic use.

  16. Influence of calcium on glucose biosensor response and on hydrogen peroxide detection.

    PubMed

    Labat-Allietta, N; Thévenot, D R

    1998-01-01

    Of small species capable of reaching a platinum working electrode from biological samples, calcium cations have been found to inhibit significantly glucose biosensor responses. The sensitivities to glucose of sensors immersed in carbonate buffer saline solutions decreased when 0.5 mM calcium chloride was added. The degree of inhibition was proportional to the glucose response in the absence of calcium (0-17% of the normalized current). Likewise, sensor sensitivities to hydrogen peroxide decreased, in the 5-90% range, in the presence of 0.5 mM calcium. Bare Pt-lr wires show a reversible inhibition of hydrogen peroxide sensitivity. This reversible inhibition is directly related to the decrease of hydrogen peroxide oxidation rate at the platinum anode: this has been evidenced, using rotating disk electrodes, by plotting Koutecky-Levich plots. Such inhibition has been found both for free and chelated calcium cations at levels below 1 mM. Several hypotheses for possible reactions between platinum, hydrogen peroxide and calcium are discussed.

  17. 40 CFR 63.2269 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... temperature sensor in a position that provides a representative temperature. (2) Use a temperature sensor with... owners manual. Following the electronic calibration, you must conduct a temperature sensor validation check in which a second or redundant temperature sensor placed nearby the process temperature sensor...

  18. 40 CFR 63.2269 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... temperature sensor in a position that provides a representative temperature. (2) Use a temperature sensor with... owners manual. Following the electronic calibration, you must conduct a temperature sensor validation check in which a second or redundant temperature sensor placed nearby the process temperature sensor...

  19. Fabrication and characterization of zinc oxide and gallium nitride based sensors

    NASA Astrophysics Data System (ADS)

    Wang, Hung-Ta

    Pt-coated ZnO nanorods show a decrease of 8% resistance upon exposure to 500 ppm hydrogen in room temperature. This is a factor of two larger than that obtained with Pd; approximately 95% of the initial ZnO conductance was recovered within 20 s by exposing the nanorods to O2. This rapid and easy recoverability makes the ZnO nanorods suitable for ppm-level sensing at room temperature with low power consumption. Pt-gated AlGaN/GaN based high electron mobility transistors (HEMTs) showed that Schottky diode operation provides large relative sensitivity over a narrow range around turn-on voltage; the differential designed Schottky diodes with AlGaN/GaN hetero-structure was shown to provide robust detection of 1% H 2 in air at 25°C, which remove false alarms from ambient temperature variations; moreover, the use of TiB2-based Ohmic contacts on Pt-Schottky contacted AlGaN/GaN based hydrogen sensing diodes was shown to provide more stable operation. Thioglycolic acid functionalized Au-gated AlGaN/GaN based HEMTs were used to detect mercury (II) ions. A fast detection (>5 seconds) was achieved. This is the shortest response ever reported. The sensors were able to detect mercury (II) ion concentration as low as 10-7 M. The sensors showed an excellent sensing selectivity of more than 100 of detecting mercury ions over sodium, magnesium, and lead ions, but not copper. AlGaN/GaN based HEMTs were used to detect kidney injury molecule-1 (KIM-1), an important biomarker for early kidney injury detection. The HEMT gate region was coated with KIM-1 antibodies and the HEMT source-drain current showed a clear dependence on the KIM-1 concentration in phosphate-buffered saline (PBS) solution. The limit of detection (LOD) was 1ng/ml using a 20 mum x50 mum gate sensing area. This approach shows a potential for both preclinical and clinical disease diagnosis with accurate, rapid, noninvasive, and high throughput capabilities. The rest of this dissertation includes ZnO band edge electroluminescence from N+-implanted ZnO bulk, and the investigation of cryogenic gold Schottky contact on GaAs for enhancing device thermal stability.

  20. On-line monitoring of H2 generation and the HTF degradation in parabolic trough solar thermal power plants: Development of an optical sensor based on an innovative approach

    NASA Astrophysics Data System (ADS)

    Pagola, Iñigo; Funcia, Ibai; Sánchez, Marcelino; Gil, Javier; González-Vallejo, Victoria; Bedoya, Maxi; Orellana, Guillermo

    2017-06-01

    The work presented in this paper offers a robust, effective and economically competitive method for online detection and monitoring of the presence of molecular hydrogen in the heat transfer fluids of parabolic trough collector plants. The novel method is based on a specific fluorescent sensor according to the ES2425002 patent ("Method for the detection and quantification of hydrogen in a heat transfer fluid").

  1. Free standing graphene oxide film for hydrogen peroxide sensing

    NASA Astrophysics Data System (ADS)

    Ranjan, Pranay; Balakrishnan, Jayakumar; Thakur, Ajay D.

    2018-05-01

    We report hydrogen peroxide (H2O2)sensing using free standing graphene oxide thin films prepared using a cost effective scalable approach. Such sensors may find application in pharmaceutical and food processing industries.

  2. Fiber optic microsensor hydrogen leak detection system on Delta IV launch vehicle

    NASA Astrophysics Data System (ADS)

    Kazemi, Alex A.; Goepp, John W.; Larson, David B.; Wuestling, Mark E.

    2008-04-01

    This paper describes the successful development and test of a multipoint fiber optic hydrogen microsensors system during the static firing of an Evolved Expandable Launch Vehicle (EELV)/Delta's common booster core (CBC) rocket engine at NASA's Stennis Space Center. The hydrogen sensitive chemistry is fully reversible and has demonstrated a response to hydrogen gas in the range of 0% to 10% with a resolution of 0.1% and a response time of <=5 seconds measured at a gas flow rate of 1 cc/min. The system consisted of a reversible chemical interaction causing a change in reflective of a thin film of coated Palladium. The sensor using a passive element consisting of chemically reactive microcoatings deposited on the surface of a glass microlens, which is then bonded to an optical fiber. The system uses a multiplexing technique with a fiber optic driver-receiver consisting of a modulated LED source that is launched into the sensor, and photodiode detector that synchronously measures the reflected signal. The system incorporates a microprocessor to perform the data analysis and storage, as well as trending and set alarm function. The paper illustrates the sensor design and performance data under field deployment conditions.

  3. Carbon monoxide sensor and method of use thereof

    DOEpatents

    McDaniel; Anthony H. , Medlin; J. Will , Bastasz; Robert J.

    2007-09-04

    Carbon monoxide sensors suitable for use in hydrogen feed streams and methods of use thereof are disclosed. The sensors are palladium metal/insulator/semiconductor (Pd-MIS) sensors which may possess a gate metal layer having uniform, Type 1, or non-uniform, Type 2, film morphology. Type 1 sensors display an increased sensor response in the presence of carbon monoxide while Type 2 sensors display a decreased response to carbon monoxide. The methods and sensors disclosed herein are particularly suitable for use in proton exchange membrane fuel cells (PEMFCs).

  4. Ultra-low power hydrogen sensing based on a palladium-coated nanomechanical beam resonator

    NASA Astrophysics Data System (ADS)

    Henriksson, Jonas; Villanueva, Luis Guillermo; Brugger, Juergen

    2012-07-01

    Hydrogen sensing is essential to ensure safety in near-future zero-emission fuel cell powered vehicles. Here, we present a novel hydrogen sensor based on the resonant frequency change of a nanoelectromechanical clamped-clamped beam. The beam is coated with a Pd layer, which expands in the presence of H2, therefore generating a stress build-up that causes the frequency of the device to drop. The devices are able to detect H2 concentrations below 0.5% within 1 s of the onset of the exposure using only a few hundreds of pW of power, matching the industry requirements for H2 safety sensors. In addition, we investigate the strongly detrimental effect that relative humidity (RH) has on the Pd responsivity to H2, showing that the response is almost nullified at about 70% RH. As a remedy for this intrinsic limitation, we applied a mild heating current through the beam, generating a few μW of power, whereby the responsivity of the sensors is fully restored and the chemo-mechanical process is accelerated, significantly decreasing response times. The sensors are fabricated using standard processes, facilitating their eventual mass-production.Hydrogen sensing is essential to ensure safety in near-future zero-emission fuel cell powered vehicles. Here, we present a novel hydrogen sensor based on the resonant frequency change of a nanoelectromechanical clamped-clamped beam. The beam is coated with a Pd layer, which expands in the presence of H2, therefore generating a stress build-up that causes the frequency of the device to drop. The devices are able to detect H2 concentrations below 0.5% within 1 s of the onset of the exposure using only a few hundreds of pW of power, matching the industry requirements for H2 safety sensors. In addition, we investigate the strongly detrimental effect that relative humidity (RH) has on the Pd responsivity to H2, showing that the response is almost nullified at about 70% RH. As a remedy for this intrinsic limitation, we applied a mild heating current through the beam, generating a few μW of power, whereby the responsivity of the sensors is fully restored and the chemo-mechanical process is accelerated, significantly decreasing response times. The sensors are fabricated using standard processes, facilitating their eventual mass-production. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30639e

  5. Theory after experiment on sensing mechanism of a newly developed sensor molecule: Converging or diverging?

    NASA Astrophysics Data System (ADS)

    Paul, Suvendu; Karar, Monaj; Das, Biswajit; Mallick, Arabinda; Majumdar, Tapas

    2017-12-01

    Fluoride ion sensing mechanism of 3,3‧-bis(indolyl)-4-chlorophenylmethane has been analyzed with density functional and time-dependent density functional theories. Extensive theoretical calculations on molecular geometry & energy, charge distribution, orbital energies & electronic distribution, minima on potential energy surface confirmed strong hydrogen bonded sensor-anion complex with incomplete proton transfer in S0. In S1, strong hydrogen bonding extended towards complete ESDPT. The distinct and single minima on the PES of the sensor-anion complex for both ground and first singlet excited states confirmed the concerted proton transfer mechanism. Present study well reproduced the experimental spectroscopic data and provided ESDPT as probable fluoride sensing mechanism.

  6. The Validation of Vapor Phase Hydrogen Peroxide Microbial Reduction for Planetary Protection and a Proposed Vacuum Process Specification

    NASA Technical Reports Server (NTRS)

    Chung, Shirley; Barengoltz, Jack; Kern, Roger; Koukol, Robert; Cash, Howard

    2006-01-01

    The Jet Propulsion Laboratory, in conjunction with the NASA Planetary Protection Officer, has selected the vapor phase hydrogen peroxide sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal is to include this technique, with an appropriate specification, in NPR 8020.12C as a low temperature complementary technique to the dry heat sterilization process.To meet microbial reduction requirements for all Mars in-situ life detection and sample return missions, various planetary spacecraft subsystems will have to be exposed to a qualified sterilization process. This process could be the elevated temperature dry heat sterilization process (115 C for 40 hours) which was used to sterilize the Viking lander spacecraft. However, with utilization of such elements as highly sophisticated electronics and sensors in modern spacecraft, this process presents significant materials challenges and is thus an undesirable bioburden reduction method to design engineers. The objective of this work is to introduce vapor hydrogen peroxide (VHP) as an alternative to dry heat microbial reduction to meet planetary protection requirements.The VHP process is widely used by the medical industry to sterilize surgical instruments and biomedical devices, but high doses of VHP may degrade the performance of flight hardware, or compromise material properties. Our goal for this study was to determine the minimum VHP process conditions to achieve microbial reduction levels acceptable for planetary protection.

  7. KSC-05PD-1590

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Media gather in the television studio at the NASA News Center to hear members of the Mission Management Team reveal aspects of the troubleshooting and testing being done on the liquid hydrogen tank low-level fuel cut-off sensor. On the stage at right are (from left) Bruce Buckingham, NASA news chief; Wayne Hale, Space Shuttle deputy program manager; John Muratore, manager of Systems Engineering and Integration for the Space Shuttle Program; and Mike Wetmore, director of Space Shuttle Processing. The sensor failed a routine prelaunch check during the launch countdown July 13, causing mission managers to scrub Discovery's first launch attempt. The sensor protects the Shuttle's main engines by triggering their shutdown in the event fuel runs unexpectedly low. The sensor is one of four inside the liquid hydrogen section of the External Tank (ET).

  8. Synthesis of Ni/Graphene Nanocomposite for Hydrogen Storage.

    PubMed

    Zhou, Chunyu; Szpunar, Jerzy A; Cui, Xiaoyu

    2016-06-22

    We have designed a Ni-graphene composite for hydrogen storage with Ni nanoparticles of 10 nm in size, uniformly dispersed over a graphene substrate. This system exhibits attractive features like high gravimetric density, ambient conditions, and low activation temperature for hydrogen release. When charged at room temperature and an atmospheric hydrogen pressure of 1 bar, it could yield a hydrogen capacity of 0.14 wt %. When hydrogen pressure increased to 60 bar, the sorbent had a hydrogen gravimetric density of 1.18 wt %. The hydrogen release could occur at an operating temperature below 150 °C and completes at 250 °C.

  9. Purification of Hydrogen

    DOEpatents

    Newton, A S

    1950-12-05

    Disclosed is a process for purifying hydrogen containing various gaseous impurities by passing the hydrogen over a large surface of uranium metal at a temperature above the decomposition temperature of uranium hydride, and below the decomposition temperature of the compounds formed by the combination of the uranium with the impurities in the hydrogen.

  10. Ultra-low power hydrogen sensing based on a palladium-coated nanomechanical beam resonator.

    PubMed

    Henriksson, Jonas; Villanueva, Luis Guillermo; Brugger, Juergen

    2012-08-21

    Hydrogen sensing is essential to ensure safety in near-future zero-emission fuel cell powered vehicles. Here, we present a novel hydrogen sensor based on the resonant frequency change of a nanoelectromechanical clamped-clamped beam. The beam is coated with a Pd layer, which expands in the presence of H(2), therefore generating a stress build-up that causes the frequency of the device to drop. The devices are able to detect H(2) concentrations below 0.5% within 1 s of the onset of the exposure using only a few hundreds of pW of power, matching the industry requirements for H(2) safety sensors. In addition, we investigate the strongly detrimental effect that relative humidity (RH) has on the Pd responsivity to H(2), showing that the response is almost nullified at about 70% RH. As a remedy for this intrinsic limitation, we applied a mild heating current through the beam, generating a few μW of power, whereby the responsivity of the sensors is fully restored and the chemo-mechanical process is accelerated, significantly decreasing response times. The sensors are fabricated using standard processes, facilitating their eventual mass-production.

  11. Using a Floating-Gate MOS Transistor as a Transducer in a MEMS Gas Sensing System

    PubMed Central

    Barranca, Mario Alfredo Reyes; Mendoza-Acevedo, Salvador; Flores-Nava, Luis M.; Avila-García, Alejandro; Vazquez-Acosta, E. N.; Moreno-Cadenas, José Antonio; Casados-Cruz, Gaspar

    2010-01-01

    Floating-gate MOS transistors have been widely used in diverse analog and digital applications. One of these is as a charge sensitive device in sensors for pH measurement in solutions or using gates with metals like Pd or Pt for hydrogen sensing. Efforts are being made to monolithically integrate sensors together with controlling and signal processing electronics using standard technologies. This can be achieved with the demonstrated compatibility between available CMOS technology and MEMS technology. In this paper an in-depth analysis is done regarding the reliability of floating-gate MOS transistors when charge produced by a chemical reaction between metallic oxide thin films with either reducing or oxidizing gases is present. These chemical reactions need temperatures around 200 °C or higher to take place, so thermal insulation of the sensing area must be assured for appropriate operation of the electronics at room temperature. The operation principle of the proposal here presented is confirmed by connecting the gate of a conventional MOS transistor in series with a Fe2O3 layer. It is shown that an electrochemical potential is present on the ferrite layer when reacting with propane. PMID:22163478

  12. High-temperature optical fiber sensors for characterization of advanced composite aerospace materials

    NASA Astrophysics Data System (ADS)

    Wavering, Thomas A.; Greene, Jonathan A.; Meller, Scott A.; Bailey, Timothy A.; Kozikowski, Carrie L.; Lenahan, Shannon M.; Murphy, Kent A.; Camden, Michael P.; Simmons, Larry W.

    1999-01-01

    Optical fiber sensors have numerous advantages over conventional sensing technologies. One such advantage is that optical fiber sensors can operate in high temperature environments. While most conventional electrical-based sensors do not operate reliably over 300 degrees C, fused silica based optical fiber sensors can survive up to 900 degrees C, and sapphire based optical fiber sensors can survive up to 2000 degrees C. Using both fused silica and sapphire technologies, we present result for high temperature strain, pressure, and temperature sensors using Extrinsic Fabry-Perot INterferometric-based and Bragg grating sensors. High temperature strain and temperature sensors were used to conduct fatigue testing of composite coupons at 600 degrees C. The results from these specific high temperature applications are presented along with future applications and directions for these sensors.

  13. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. O'Brien

    2010-08-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demandmore » for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a “hydrogen economy.” The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.« less

  14. An numerical analysis of high-temperature helium reactor power plant for co-production of hydrogen and electricity

    NASA Astrophysics Data System (ADS)

    Dudek, M.; Podsadna, J.; Jaszczur, M.

    2016-09-01

    In the present work, the feasibility of using a high temperature gas cooled nuclear reactor (HTR) for electricity generation and hydrogen production are analysed. The HTR is combined with a steam and a gas turbine, as well as with the system for heat delivery for medium temperature hydrogen production. Industrial-scale hydrogen production using copper-chlorine (Cu-Cl) thermochemical cycle is considered and compared with high temperature electrolysis. Presented cycle shows a very promising route for continuous, efficient, large-scale and environmentally benign hydrogen production without CO2 emissions. The results show that the integration of a high temperature helium reactor, with a combined cycle for electric power generation and hydrogen production, may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs.

  15. Effects of Internal and External Hydrogen on Inconel 718

    NASA Technical Reports Server (NTRS)

    Walter, R. J.; Frandsen, J. D.

    1999-01-01

    Internal hydrogen embrittlement (IHE) and hydrogen environment embrittlement (HEE) tensile and bend crack growth tests were performed on Inconel 718. For the IHE tests, the specimens were precharged to approximately 90 ppm hydrogen by exposure to 34.5 MPa H2 at 650 C. The HEE tests were performed in 34.5 MPa H2. Parameters evaluated were test temperature, strain rate for smooth and notch specimen geometries. The strain rate effect was very significant at ambient temperature for both IHE and HEE and decreased with increasing temperatures. For IHE, the strain rate effect was neglible at 260'C, and for HEE the strain rate effect was neglible at 400 C. At low temperatures, IHE was more severe than HEE, and at high temperatures HEE was more severe than IHE with a cross over temperature about 350 C. At 350 C, the equilibrium hydrogen concentration in Inconel 718 is about 50% lower than the hydrogen content of the precharged IHE specimens. Dislocation hydrogen sweeping of surface absorbed hydrogen was the likely transport mechanism for increasing the hydrogen concentration in the HEE tests sufficiently to produce the same degree of embrittlement as that of the more highly hydrogen charged IHE specimens. The main IHE fracture characteristic was formation of large, brittle flat facets, which decreased with increasing test temperature. The IHE fracture matrix surrounding the large facets ranged between brittle fine faceted to microvoid ductility depending upon strain rate, specimen geometry as well as temperature. The HEE fractures were characteristically fine featured, transgranular and brittle with a significant portion forming a "saw tooth" crystallographic pattern. Both IHE and HEE fractures were predominantly along the {1 1 1) slip and twin boundaries. With respect to embrittlement mechanism, it was postulated that dislocation hydrogen sweeping and hydrogen enhanced localized plasticity were active in HEE and IHE for concentrating hydrogen along (1 1 1) slip and twin planes. Final brittle failure occurred by hydrogen induced planer decohesion.

  16. Aryl C—H···Cl– Hydrogen Bonding in a Fluorescent Anion Sensor

    PubMed Central

    Tresca, Blakely W.; Zakharov, Lev N.; Carroll, Calden N.; Johnson, Darren W.; Haley, Michael M.

    2014-01-01

    A new phenyl-acetylene receptor containing a carbonaceous hydrogen bond donor activates anion binding in conjunction with two stabilizing ureas. The unusual CH···Cl– hydrogen bond is apparent in solution by large 1H NMR chemical shifts and by a short, linear contact in the solid state. PMID:23843050

  17. Properties of Resistive Hydrogen Sensors as a Function of Additives of 3 D-Metals Introduced in the Volume of Thin Nanocrystalline SnO2 Films

    NASA Astrophysics Data System (ADS)

    Sevast'yanov, E. Yu.; Maksimova, N. K.; Potekaev, A. I.; Sergeichenko, N. V.; Chernikov, E. V.; Almaev, A. V.; Kushnarev, B. O.

    2017-11-01

    Analysis of the results of studying electrical and gas sensitive characteristics of the molecular hydrogen sensors based on thin nanocrystalline SnO2 films coated with dispersed Au layers and containing Au+Ni and Au+Co impurities in the bulk showed that the characteristics of these sensors are more stable under the prolonged exposure to hydrogen in comparison with Au/SnO2:Sb, Au films modified only with gold. It has been found that introduction of the nickel and cobalt additives increases the band bending at the grain boundaries of tin dioxide already in freshly prepared samples, which indicates an increase in the density Ni of the chemisorbed oxygen. It is important that during testing, the band bending eφs at the grain boundaries of tin dioxide additionally slightly increases. It can be assumed that during crystallization of films under thermal annealing, the 3d-metal atoms in the SnO2 volume partially segregate on the surface of microcrystals and form bonds with lattice oxygen, the superstoichiometric tin atoms are formed, and the density Ni increases. If the bonds of oxygen with nickel and cobalt are stronger than those with tin, then, under the prolonged tests, atomic hydrogen will be oxidized not by lattice oxygen, but mainly by the chemisorbed one. In this case, stability of the sensors' characteristics increases.

  18. Modelling of adsorption and intercalation of hydrogen on/into tungsten disulphide multilayers and multiwall nanotubes.

    PubMed

    Martínez, José I; Laikhtman, Alex; Moon, Hoi Ri; Zak, Alla; Alonso, Julio A

    2018-05-07

    Understanding the interaction of hydrogen with layered materials is crucial in the fields of sensors, catalysis, fuel cells and hydrogen storage, among others. Density functional theory, improved by the introduction of van der Waals dispersion forces, provides an efficient and practical workbench to investigate the interaction of molecular and atomic hydrogen with WS 2 multilayers and nanotubes. We find that H 2 physisorbs on the surface of those materials on top of W atoms, while atomic H chemisorbs on top of S atoms. In the case of nanotubes, the chemisorption strength is sensitive to the nanotube diameter. Diffusion of H 2 on the surface of WS 2 encounters quite small activation barriers whose magnitude helps to explain previous and new experimental results for the observed dependence of the hydrogen concentration with temperature. Intercalation of H 2 between adjacent planar WS 2 layers reveals an endothermic character. Intercalating H atoms is energetically favorable, but the intercalation energy does not compensate for the cost of dissociating the molecules. When H 2 molecules are intercalated between the walls of a double wall nanotube, the rigid confinement induces the dissociation of the confined molecules. A remarkable result is that the presence of a full H 2 monolayer adsorbed on top of the first WS 2 layer of a WS 2 multilayer system strongly facilitates the intercalation of H 2 between WS 2 layers underneath. This opens up an additional gate to intercalation processes.

  19. Behavior of hydrogen in alpha-iron at lower temperatures

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.

    1973-01-01

    Evidence is presented that the low temperature anomalies in the hydrogen occlusive behavior of alpha iron can be explained by means of a molecular occlusion theory. This theory proposes that the stable state of the absorbed hydrogen changes from atomic at high temperatures to molecular as the temperature is lowered below a critical value. Theories proposing to explain the anomalous behavior as being due to the capture, at lower temperatures, of hydrogen in traps are shown to be unacceptable.

  20. Computational investigation of single-wall carbon nanotube functionalized with palladium nanoclusters as hydrogen sulfide gas sensor

    NASA Astrophysics Data System (ADS)

    Bagherzadeh-Nobari, S.; Hosseini-Istadeh, K.; Kalantarinejad, R.; Elahi, S. M.; Shokri, A. A.

    2018-03-01

    Our aim is to study theoretically, the sensitivity of a hydrogen sulfide gas sensor, with regard to electrical conductance behavior. Our senor consists of a semiconductor single-wall carbon nanotube (SWCNT), functionalized with palladium nanoclusters, sandwiched between two gold electrodes. Initially, we have computed the optimized structure of the sensor, via molecular dynamic simulations. Then by using non-equilibrium Green's function method, combined with density functional theory, the electronic and transport properties of the sensor were calculated, and compared before and after adsorption of H2S gas, at different bias voltages. The highest sensitivity is achieved at 40 mV bias voltage. In this bias voltage, H2S gas adsorption causes a significant decrease of current, because as a result of charge transfer from the CNT and palladium nanoclusters, to H2S gas, majority carriers (electrons) decrease. The results show that CNT decorated with palladium nanoclusters can be a promising candidate in gas-sensorics.

  1. Multifunctional System-on-Glass for Lab-on-Chip applications.

    PubMed

    Petrucci, G; Caputo, D; Lovecchio, N; Costantini, F; Legnini, I; Bozzoni, I; Nascetti, A; de Cesare, G

    2017-07-15

    Lab-on-Chip are miniaturized systems able to perform biomolecular analysis in shorter time and with lower reagent consumption than a standard laboratory. Their miniaturization interferes with the multiple functions that the biochemical procedures require. In order to address this issue, our paper presents, for the first time, the integration on a single glass substrate of different thin film technologies in order to develop a multifunctional platform suitable for on-chip thermal treatments and on-chip detection of biomolecules. The proposed System on-Glass hosts thin metal films acting as heating sources; hydrogenated amorphous silicon diodes acting both as temperature sensors to monitor the temperature distribution and photosensors for the on-chip detection and a ground plane ensuring that the heater operation does not affect the photodiode currents. The sequence of the technological steps, the deposition temperatures of the thin films and the parameters of the photolithographic processes have been optimized in order to overcome all the issues of the technological integration. The device has been designed, fabricated and tested for the implementation of DNA amplification through the Polymerase Chain Reaction (PCR) with thermal cycling among three different temperatures on a single site. The glass has been connected to an electronic system that drives the heaters and controls the temperature and light sensors. It has been optically and thermally coupled with another glass hosting a microfluidic network made in polydimethylsiloxane that includes thermally actuated microvalves and a PCR process chamber. The successful DNA amplification has been verified off-chip by using a standard fluorometer. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Method for charging a hydrogen getter

    DOEpatents

    Tracy, C. Edwin; Keyser, Matthew A.; Benson, David K.

    1998-01-01

    A method for charging a sample of either a permanent or reversible getter material with a high concentration of hydrogen while maintaining a base pressure below 10.sup.-4 torr at room temperature involves placing the sample of hydrogen getter material in a chamber, activating the sample of hydrogen getter material, overcharging the sample of getter material through conventional charging techniques to a high concentration of hydrogen, and then subjecting the sample of getter material to a low temperature vacuum bake-out process. Application of the method results in a reversible hydrogen getter which is highly charged to maximum capacities of hydrogen and which concurrently exhibits minimum hydrogen vapor pressures at room temperatures.

  3. Liquid Hydrogen Sensor Considerations for Space Exploration

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2006-01-01

    The on-orbit management of liquid hydrogen planned for the return to the moon will introduce new considerations not encountered in previous missions. This paper identifies critical liquid hydrogen sensing needs from the perspective of reliable on-orbit cryogenic fluid management, and contrasts the fundamental differences in fluid and thermodynamic behavior for ground-based versus on-orbit conditions. Opportunities for advanced sensor development and implementation are explored in the context of critical Exploration Architecture operations such as on-orbit storage, docking, and trans-lunar injection burn. Key sensing needs relative to these operations are also examined, including: liquid/vapor detection, thermodynamic condition monitoring, mass gauging, and leak detection. Finally, operational aspects of an integrated system health management approach are discussed to highlight the potential impact on mission success.

  4. Artificial Nacre from Supramolecular Assembly of Graphene Oxide.

    PubMed

    Wang, Yang; Li, Ting; Ma, Piming; Zhang, Shengwen; Zhang, Hongji; Du, Mingliang; Xie, Yi; Chen, Mingqing; Dong, Weifu; Ming, Weihua

    2018-06-14

    Inspired by the "brick-and-mortar" structure and remarkable mechanical performance of nacre, many efforts have been devoted to fabricating nacre-mimicking materials. Herein, a class of graphene oxide (GO) based artificial nacre material with quadruple hydrogen-bonding interactions was fabricated by functionalization of polydopamine-capped graphene oxide (PDG) with 2-ureido-4[1 H]-pyrimidinone (UPy) self-complementary quadruple hydrogen-bonding units followed by supramolecular assembly process. The artificial nacre displays a strict "brick-and-mortar" structure, with PDG nanosheets as the brick and UPy units as the mortar. The resultant nanocomposite shows an excellent balance of strength and toughness. Because of the strong strengthening via quadruple hydrogen bonding, the tensile strength and toughness can reach 325.6 ± 17.8 MPa and 11.1 ± 1.3 MJ m -3 , respectively, thus exceeding natural nacre, and reaching 3.6 and 10 times that of a pure GO artificial nacre. Furthermore, after further H 2 O treatment, the resulting H 2 O-treated PDG-UPy actuator displays significant bending actuations when driven by heat. This work provides a pathway for the development of artificial nacre for their potential applications in energy conversion, temperature sensor, and thermo-driven actuator.

  5. Low resistivity of graphene nanoribbons with zigzag-dominated edge fabricated by hydrogen plasma etching combined with Zn/HCl pretreatment

    NASA Astrophysics Data System (ADS)

    Liu, Fengkui; Li, Qi; Wang, Rubing; Xu, Jianbao; Hu, Junxiong; Li, Weiwei; Guo, Yufen; Qian, Yuting; Deng, Wei; Ullah, Zaka; Zeng, Zhongming; Sun, Mengtao; Liu, Liwei

    2017-11-01

    Graphene nanoribbons (GNRs) have attracted intensive research interest owing to their potential applications in high performance graphene-based electronics. However, the deterioration of electrical performance caused by edge disorder is still an important obstacle to the applications. Here, we report the fabrication of low resistivity GNRs with a zigzag-dominated edge through hydrogen plasma etching combined with the Zn/HCl pretreatment method. This method is based on the anisotropic etching properties of hydrogen plasma in the vicinity of defects created by sputtering zinc (Zn) onto planar graphene. The polarized Raman spectra measurement of GNRs exhibits highly polarization dependence, which reveals the appearance of the zigzag-dominated edge. The as-prepared GNRs exhibit high carrier mobility (˜1332.4 cm2 v-1 s-1) and low resistivity (˜0.7 kΩ) at room temperature. Particularly, the GNRs can carry large current density (5.02 × 108 A cm-2) at high voltage (20.0 V) in the air atmosphere. Our study develops a controllable method to fabricate zigzag edge dominated GNRs for promising applications in transistors, sensors, nanoelectronics, and interconnects.

  6. Reliability of an infrared forehead skin thermometer for core temperature measurements.

    PubMed

    Kistemaker, J A; Den Hartog, E A; Daanen, H A M

    2006-01-01

    The SensorTouch thermometer performs an infrared measurement of the skin temperature above the Superficial Temporal Artery (STA). This study evaluates the validity and the accuracy of the SensorTouch thermometer. Two experiments were performed in which the body temperature was measured with a rectal sensor, with an oesophageal sensor and with the SensorTouch. After entering a warm chamber the SensorTouch underestimated the core temperature during the first 10 minutes. After that, the SensorTouch was not significantly different from the core temperature, with an average difference of 0.5 degrees C (SD 0.5 degrees C) in the first study and 0.3 degrees C (SD 0.2 degrees C) in the second study. The largest differences between the SensorTouch and the core temperature existed 15 minutes after the start of the exercise. During this period the SensorTouch was significantly higher than the core temperature. The SensorTouch did not provide reliable values of the body temperature during periods of increasing body temperature, but the SensorTouch might work under stable conditions.

  7. Optical Cryogenic Tank Level Sensor

    NASA Technical Reports Server (NTRS)

    Duffell, Amanda

    2005-01-01

    Cryogenic fluids play an important role in space transportation. Liquid oxygen and hydrogen are vital fuel components for liquid rocket engines. It is also difficult to accurately measure the liquid level in the cryogenic tanks containing the liquids. The current methods use thermocouple rakes, floats, or sonic meters to measure tank level. Thermocouples have problems examining the boundary between the boiling liquid and the gas inside the tanks. They are also slow to respond to temperature changes. Sonic meters need to be mounted inside the tank, but still above the liquid level. This causes problems for full tanks, or tanks that are being rotated to lie on their side.

  8. Orbital transfer vehicle oxygen turbopump technology. Volume 1: Design, fabrication, and hydrostatic bearing testing

    NASA Technical Reports Server (NTRS)

    Buckmann, P. S.; Hayden, W. R.; Lorenc, S. A.; Sabiers, R. L.; Shimp, N. R.

    1990-01-01

    The design, fabrication, and initial testing of a rocket engine turbopump (TPA) for the delivery of high pressure liquid oxygen using hot oxygen for the turbine drive fluid are described. This TPA is basic to the dual expander engine which uses both oxygen and hydrogen as working fluids. Separate tasks addressed the key issue of materials for this TPA. All materials selections emphasized compatibility with hot oxygen. The OX TPA design uses a two-stage centrifugal pump driven by a single-stage axial turbine on a common shaft. The design includes ports for three shaft displacement/speed sensors, various temperature measurements, and accelerometers.

  9. Amorphous silicon and organic thin film transistors for electronic applications

    NASA Astrophysics Data System (ADS)

    Zhou, Lisong

    Recently, flexible thin film electronics has attracted huge research interest, and as now, many prototypes are being developed and demonstrated by companies around the world, including displays, logic circuit, and solar cells. Flexible electronics offers many potential advantages: it can not only generate new functions like flexible displays or solar cells, also allow very low cost manufacturing through the use of cheap polymeric substrates and roll-to-roll fabrication. a-Si:H TFT fabrications are compatible with flexible polyimide substrate materials. With the interests in the space environment, for the first time, we tested the performance changes of flexible a-Si:H TFTs, on polyimide substrates, due to irradiation and mechanical stress. Significant changes were found on TFTs after irradiation with fast electrons, which, however, was essentially removed by post-irradiation thermal annealing. On the other hand, few changes were found in TFTs by mechanical stress. These preliminary results indicate that it can be readily engineered for space applications. Furthermore, for the first time, we designed and fabricated ungated n+ muC-Si and gated a-Si:H strain sensors on flexible polyimide substrates. Compared with commercial metallic foil strain sensors, ungated muC-Si sensors and gated a-Si:H sensors are two orders of magnitude smaller in area and consume two orders or magnitude less power. Integration with a-Si:H TFTs can also allow large arrays of strain sensors to be fabricated. To take advantage of lower glass-transition-temperature polymeric substrate materials, reduced processing temperature is desired. The 150°C low-temperature deposition process is achieved by using hydrogen dilution in the PECVD process. The TFT performance and bias stability property are tested similar to that of a 250°C process. These results suggest its viability for practical applications. For even lower process temperature, we have considered organic TFTs. As a practical demonstration, we integrated pentacene TFTs with OLEDs in a simple display. Pentacene TFT passivation techniques were researched, and a PVA and parylene bilayer structure was used. We designed and demonstrated 48 x 48-pixel active matrix OTFTOLED displays, and to our best knowledge, they are the largest on glass substrates and the first on flexible PET substrates. Device performance, uniformity and stability are also compared. These results demonstrate that pentacene TFTs are viable candidates for active-matrix OLED displays and other flexible electronics applications.

  10. Comparison of neonatal skin sensor temperatures with axillary temperature: does skin sensor placement really matter?

    PubMed

    Schafer, Dorothea; Boogaart, Sheri; Johnson, Lynette; Keezel, Catherine; Ruperts, Liga; Vander Laan, Karen J

    2014-02-01

    Appropriate thermoregulation affects both morbidity and mortality in the neonatal setting. Nurses rely on information from temperature sensors and radiant warmers or incubators to appropriately maintain a neonate's body temperature. Skin temperature sensors must be repositioned to prevent skin irritation and breakdown. This study addresses whether there is a significant difference between skin sensor temperature readings from 3 locations on the neonate and whether there is a significant difference between skin sensor temperatures compared with digital axillary temperatures. The study participants included 36 hemodynamically stable neonates, with birth weight of 750 g or more and postnatal age of 15 days or more, in a neonatal intensive care unit. Gestational age ranged from 29.6 to 36.1 weeks at the time of data collection. A method-comparison design was used to evaluate the level of agreement between skin sensor temperatures and digital axillary thermometer measurements. When the neonate's skin sensor was scheduled for routine site change, 3 new skin sensors were placed-1 each on the right upper abdomen, left flank, and right axilla. The neonate was placed in a supine position and redressed or rewrapped if previously dressed or wrapped. Subjects served as their own controls, with temperatures measured at all 3 skin sensor sites and followed by a digital thermometer measurement in the left axilla. The order of skin sensor temperature measurements was randomly assigned by a computer-generated number sequence. An analysis of variance for repeated measures was used to test for statistical differences between the skin sensor temperatures. The difference in axillary and skin sensor temperatures was calculated by subtracting the reference standard temperature (digital axillary) from the test temperatures (skin temperatures at 3 different locations), using the Bland-Altman method. The level of significance was set at P < .05. No statistically significant differences were found between skin temperature readings obtained from the 3 sites (F2,70 = 2.993, P = .57). Differences between skin temperature readings and digital axillary temperature were also not significant when Bland-Altman graphs were plotted. For hemodynamically stable neonates in a supine position, there were no significant differences between skin sensor temperatures on abdomen, flank, or axilla or between skin sensor temperatures and a digital axillary temperature. This may increase nurses' confidence that various sites will produce accurate temperature readings.

  11. A Passive Radio-Frequency Identification (RFID) Gas Sensor With Self-Correction Against Fluctuations of Ambient Temperature

    PubMed Central

    Potyrailo, Radislav A.; Surman, Cheryl

    2013-01-01

    Uncontrolled fluctuations of ambient temperature in the field typically greatly reduce accuracy of gas sensors. In this study, we developed an approach for the self-correction against fluctuations of ambient temperature of individual gas and vapor sensors. The main innovation of our work is in the temperature correction which is accomplished without the need for a separate uncoated reference sensor or a separate temperature sensor. Our sensors are resonant inductor-capacitor-resistor (LCR) transducers coated with sensing materials and operated as multivariable passive (battery-free) radio-frequency identification (RFID) sensors. Using our developed approach, we performed quantitation of an exemplary vapor over the temperature range from 25 to 40 °C. This technical solution will be attractive in numerous applications where temperature stabilization of a gas sensor or addition of auxiliary temperature or uncoated reference sensors is prohibitive. PMID:23956496

  12. Finite-Temperature Hydrogen Adsorption/Desorption Thermodynamics Driven by Soft Vibration Modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Sung-Jae; Lee, Eui-Sup; Yoon, Mina

    2013-01-01

    It is widely accepted that room-temperature hydrogen storage on nanostructured or porous materials requires enhanced dihydrogen adsorption. In this work we reveal that room-temperature hydrogen storage is possible not only by the enhanced adsorption, but also by making use of the vibrational free energy from soft vibration modes. These modes exist for example in the case of metallo-porphyrin-incorporated graphenes (M-PIGs) with out-of-plane ( buckled ) metal centers. There, the in-plane potential surfaces are flat because of multiple-orbital-coupling between hydrogen molecules and the buckled-metal centers. This study investigates the finite-temperature adsorption/desorption thermodynamics of hydrogen molecules adsorbed on M-PIGs by employing first-principlesmore » total energy and vibrational spectrum calculations. Our results suggest that the current design strategy for room-temperature hydrogen storage materials should be modified by explicitly taking finite-temperature vibration thermodynamics into account.« less

  13. Influence of hydrogen effusion from hydrogenated silicon nitride layers on the regeneration of boron-oxygen related defects in crystalline silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilking, S., E-mail: Svenja.Wilking@uni-konstanz.de; Ebert, S.; Herguth, A.

    The degradation effect boron doped and oxygen-rich crystalline silicon materials suffer from under illumination can be neutralized in hydrogenated silicon by the application of a regeneration process consisting of a combination of slightly elevated temperature and carrier injection. In this paper, the influence of variations in short high temperature steps on the kinetics of the regeneration process is investigated. It is found that hotter and longer firing steps allowing an effective hydrogenation from a hydrogen-rich silicon nitride passivation layer result in an acceleration of the regeneration process. Additionally, a fast cool down from high temperature to around 550 °C seems tomore » be crucial for a fast regeneration process. It is suggested that high cooling rates suppress hydrogen effusion from the silicon bulk in a temperature range where the hydrogenated passivation layer cannot release hydrogen in considerable amounts. Thus, the hydrogen content of the silicon bulk after the complete high temperature step can be increased resulting in a faster regeneration process. Hence, the data presented here back up the theory that the regeneration process might be a hydrogen passivation of boron-oxygen related defects.« less

  14. Study on the hydrogenation of Zircaloy-4

    NASA Astrophysics Data System (ADS)

    da Silva Dupim, Ivaldete; Moreira, João M. L.; Silva, Selma Luiza; Silva, Cecilia Chaves Guedes e.; Nunes, Oswaldo; Gomide, Ricardo Gonçalves

    2012-08-01

    In this article we investigate producing Zirconium powder from discarded Zircaloy-4 material through the hydride-dehydride method. We restrict our study to the first part of the method, namely the hydrogenation process. Differential thermal analyses of the hydrogenation process of the Zircaloy-4 show that no hydrogen absorption occurs at temperatures below 573 K and hydrogen gas pressure of 25 kPa. When the system temperature is raised to around 770 K, with the same gas pressure, the protecting oxide layer of the specimens can be overcome and they are quickly hydrogenated. The bulk of the reaction occurs in about 5 min with the precipitation of Zirconium hydrides in the Zr-δ and Zr-ɛ phases. Once the temperature passes 573 K, the incubation time to initiate the reaction is short (about 5 min). Tests in a tube furnace system with larger samples, hydrogen pressure varying from 30 to 180 kPa, and temperature from 700 to 833.15 K, show that the specimens are fully hydrogenated and can be easily pulverized. The results indicate that the hydrogenation of the Zircaloy-4 chips can be successfully undertaken at temperatures around 770 K and hydrogen gas pressure as low as 30 kPa.

  15. TMI-2 - A Case Study for PWR Instrumentation Performance during a Severe Accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joy L. Rempe; Darrell L. Knudson

    2013-03-01

    The accident at the Three Mile Island Unit 2 (TMI-2) reactor provided a unique opportunity to evaluate sensors exposed to severe accident conditions. Conditions associated with the release of coolant and the hydrogen burn that occurred during this accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. As part of a program initiated in 2012 by the Department of Energy Office of Nuclear Energy (DOE-NE), a review was completed to gain insights from prior TMI-2 sensor survivability and data qualification efforts. This new effort focussed upon a set of sensorsmore » that provided critical data to TMI-2 operators for assessing the condition of the plant and the effects of mitigating actions taken by these operators. In addition, the effort considered sensors providing data required for subsequent accident simulations. Over 100 references related to instrumentation performance and post-accident evaluations of TMI-2 sensors and measurements were reviewed. Insights gained from this review are summarized within this report. For each sensor, a description is provided with the measured data and conclusions related to the sensor’s survivability, and the basis for conclusions about its survivability. As noted within this document, several techniques were invoked in the TMI-2 post-accident evaluation program to assess sensor status, including comparisons with data from other sensors, analytical calculations, laboratory testing, and comparisons with sensors subjected to similar conditions in large-scale integral tests and with sensors that were similar in design but more easily removed from the TMI-2 plant for evaluations. Conclusions from this review provide important insights related to sensor survivability and enhancement options for improving sensor performance. In addition, this document provides recommendations related to the sensor survivability and data evaluation process that could be implemented in upcoming Fukushima Daiichi recovery efforts.« less

  16. TMI-2 - A Case Study for PWR Instrumentation Performance during a Severe Accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joy L. Rempe; Darrell L. Knudson

    2014-05-01

    The accident at the Three Mile Island Unit 2 (TMI-2) reactor provided a unique opportunity to evaluate sensors exposed to severe accident conditions. Conditions associated with the release of coolant and the hydrogen burn that occurred during this accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. As part of a program initiated in 2012 by the Department of Energy Office of Nuclear Energy (DOE-NE), a review was completed to gain insights from prior TMI-2 sensor survivability and data qualification efforts. This new effort focussed upon a set of sensorsmore » that provided critical data to TMI-2 operators for assessing the condition of the plant and the effects of mitigating actions taken by these operators. In addition, the effort considered sensors providing data required for subsequent accident simulations. Over 100 references related to instrumentation performance and post-accident evaluations of TMI-2 sensors and measurements were reviewed. Insights gained from this review are summarized within this report. For each sensor, a description is provided with the measured data and conclusions related to the sensor’s survivability, and the basis for conclusions about its survivability. As noted within this document, several techniques were invoked in the TMI-2 post-accident evaluation program to assess sensor status, including comparisons with data from other sensors, analytical calculations, laboratory testing, and comparisons with sensors subjected to similar conditions in large-scale integral tests and with sensors that were similar in design but more easily removed from the TMI-2 plant for evaluations. Conclusions from this review provide important insights related to sensor survivability and enhancement options for improving sensor performance. In addition, this document provides recommendations related to the sensor survivability and data evaluation process that could be implemented in upcoming Fukushima Daiichi recovery efforts.« less

  17. Fundamental Study of Tank with MgB2 Level Sensor for Transportation of Liquid Hydrogen

    NASA Astrophysics Data System (ADS)

    Maekawa, Kazuma; Takeda, Minoru; Matsuno, Yu; Fujikawa, Shizuichi; Kuroda, Tsuneo; Kumakura, Hiroaki

    We are currently developing an external-heating-type superconducting magnesium diboride (MgB2) level sensor for a liquid hydrogen (LH2) tank. The aim of this study is to investigate the measuring current dependence of the level-detecting characteristics of the MgB2 level sensor for LH2 under a static condition which has not yet been clarified. It was found that the linear correlation coefficient was 0.99 or more, indicating high linearity, regardless of the measuring current at heater inputs of 3 W and 6 W. Moreover, there was no effect of self-heating by the measuring current and it was found that a current of up to 100 mA can be used.

  18. Method of detecting defects in ion exchange membranes of electrochemical cells by chemochromic sensors

    DOEpatents

    Brooker, Robert Paul; Mohajeri, Nahid

    2016-01-05

    A method of detecting defects in membranes such as ion exchange membranes of electrochemical cells. The electrochemical cell includes an assembly having an anode side and a cathode side with the ion exchange membrane in between. In a configuration step a chemochromic sensor is placed above the cathode and flow isolation hardware lateral to the ion exchange membrane which prevents a flow of hydrogen (H.sub.2) between the cathode and anode side. The anode side is exposed to a first reactant fluid including hydrogen. The chemochromic sensor is examined after the exposing for a color change. A color change evidences the ion exchange membrane has at least one defect that permits H.sub.2 transmission therethrough.

  19. NASA Hydrogen Research for Spaceport and Space Based Applications

    NASA Technical Reports Server (NTRS)

    Anderson, Tim

    2006-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as hydrogen production, distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results form 15 research projects, education, and outreach activities, system and trade studies, and project management. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics, and aerospace applications.

  20. Nanocomposite polymer structures for optical sensors of hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Sergeev, A. A.; Mironenko, A. Yu.; Nazirov, A. E.; Leonov, A. A.; Voznesenskii, S. S.

    2017-08-01

    Composite coatings based on gold and silver nanoparticles reduced in situ in the film of chitosan polysaccharide are studied. In the presence of hydrogen sulfide, the maximum of plasmon resonance of the nanoparticles that is proportional to the analyte concentration decreases. The detection limits for hydrogen sulfide are 0.1 and 5 ppm for the chitosan/silver and chitosan/gold nanocomposites, respectively.

  1. System for rapid biohydrogen phenotypic screening of microorganisms using a chemochromic sensor

    DOEpatents

    Seibert, Michael; Benson, David K.; Flynn, Timothy Michael

    2002-01-01

    Provided is a system for identifying a hydrogen gas producing organism. The system includes a sensor film having a first layer comprising a transition metal oxide or oxysalt and a second layer comprising a hydrogen-dissociative catalyst metal, the first and second layers having an inner and an outer surface wherein the inner surface of the second layer is deposited on the outer surface of the first layer, and a substrate adjacent to the outer surface of the second layer, the organism isolated on the substrate.

  2. Method and apparatus for rapid biohydrogen phenotypic screening of microorganisms using a chemochromic sensor

    DOEpatents

    Seibert, Michael; Benson, David K.; Flynn, Timothy Michael

    2001-01-01

    The invention provides an assay system for identifying a hydrogen-gas-producing organism, including a sensor film having a first layer comprising a transition metal oxide or oxysalt and a second layer comprising hydrogen-dissociative catalyst metal, the first and second layers having an inner and an outer surface wherein the inner surface of the second layer is deposited on the outer surface of the first layer, and a substrate disposed proximally to the outer surface of the second layer, the organism being isolated on the substrate.

  3. Proton conduction in electrolyte made of manganese dioxide for hydrogen gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyanaka, Hideki; Ueda, Yoshikatsu; Takeuchi, K

    2012-01-01

    We propose a network model of oxygen-pairs to store and conduct protons on the surface of manganese dioxide with a weak covalent bond like protons stored in pressured ice. The atomic distances of oxygen-pairs were estimated between 2.57 and 2.60 angstroms in crystal structures of ramsdellite-type and lambda-type manganese dioxides by using protonated samples and inelastic neutron scattering measurements. Good properties for a hydrogen gas sensor using electrolytes made of manganese dioxides that contain such oxygen-pairs were confirmed experimentally.

  4. Safe and simple detection of sparse hydrogen by Pd-Au alloy/air based 1D photonic crystal sensor

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Biswas, T.; Chattopadhyay, R.; Ghosh, J.; Bysakh, S.; Bhadra, S. K.

    2016-11-01

    A simple integrated hydrogen sensor using Pd-Au alloy/air based one dimensional photonic crystal with an air defect layer is theoretically modeled. Structural parameters of the photonic crystal are delicately scaled to generate photonic band gap frequencies in a visible spectral regime. An optimized defect thickness permits a localized defect mode operating at a frequency within the photonic band gap region. Hydrogen absorption causes modification in the band gap characteristics due to variation of refractive index and lattice parameters of the alloy. As a result, the transmission peak appeared due to the resonant defect state gets shifted. This peak shifting is utilized to detect sparse amount of hydrogen present in the surrounding environment. A theoretical framework is built to calculate the refractive index profile of hydrogen loaded alloy using density functional theory and Bruggeman's effective medium approximation. The calculated refractive index variation of Pd3Au alloy film due to hydrogen loading is verified experimentally by measuring the reflectance characteristics. Lattice expansion properties of the alloy are studied through X-ray diffraction analyses. The proposed structure shows about 3 nm red shift of the transmission peak for a rise of 1% atomic hydrogen concentration in the alloy.

  5. Slush hydrogen quantity gaging and mixing for the National Aerospace Plane

    NASA Astrophysics Data System (ADS)

    Rudland, R. S.; Kroenke, I. M.; Urbach, A. R.

    The National Aerospace Plane (NASP) design team has selected slush hydrogen as the fuel needed to power the high-speed ramjet-scramjet engines. Use of slush hydrogen rather than normal hydrogen provides significant improvements in density and cooling capacity for the aircraft. The loading of slush hydrogen in the NASP tank must be determined accurately to allow the vehicle size and weight to be kept to a minimum. A unique sensor developed at Ball to measure the slush density will be used in each region of the hydrogen tank to accurately determine the total mass of fuel loaded in the vehicle. The design, analysis, and test configuration for the mixing system is described in this paper. The mixing system is used to eliminate large-scale disturbances in the fluid produced by the large heat flux through the wall. The mixer also provides off-bottom suspension of the solids to create a more uniform slush mixture. The mixer design uses a pump to supply flow to an array of jets that produce mixing throughout the tank. Density sensors will be used in the test configuration to evaluate the mixing effectiveness.

  6. Experimental study of catalytic hydrogenation by using an in-situ hydrogen measuring technique. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, S.H.; Klinzing, G.E.; Cheng, Y.S.

    1984-12-01

    An in-situ technique for measuring hydrogen concentration (partial pressure) had been previously used to measure static properties (hydrogen solubilities, vapor pressures of hydrocarbons, etc.). Because of its good precision (2% relative error) and relatively short respond time (9.7 to 2.0 seconds at 589 to 728K), the technique was successfully applied to a dynamic study of hydrogenation reactions in this work. Furthermore, the technique is to be tested for industrial uses. Hydrogen/1-methylnaphthalene system was experimentally investigated in a one-liter autoclave equipped with a magnetically driven stirrer and temperature controlling devices. Catalytic hydrogenation of 1-methylnaphthalene was studied in the presence of sulfidedmore » Co-Mo-Al2O3 catalyst. In addition, the vapor/liquid equilibrium relationship was determined by using this technique. Hydrogenation reaction runs were performed at temperatures of 644.1, 658.0 and 672.0K and pressures up to 9.0 MPa. The ring hydrogenation, resulting in 1- and 5-methyltetralin, was found to be the dominant reaction. This is in agreement with cited literature. Effects of hydrogen partial pressure, operating temperature, as well as presulfided catalyst are also investigated and discussed in this work. The vapor pressure of 1-methylnaphthalene was measured over a temperature range of 555.2 to 672.0K. The results are in good agreement with literature data. Measurements for hydrogen solubility in 1-methylnaphthalene were conducted over temperature and pressure range of 598 to 670K and 5.2 to 8.8 MPa, respectively. Similar to previously reported results, the hydrogen solubility increases with increasing temperature when total pressure is held constant. A linear relation is found between the hydrogen solubility and hydrogen partial pressure. 21 refs., 13 figs., 10 tabs.« less

  7. Two-step gasification of cattle manure for hydrogen-rich gas production: Effect of biochar preparation temperature and gasification temperature.

    PubMed

    Xin, Ya; Cao, Hongliang; Yuan, Qiaoxia; Wang, Dianlong

    2017-10-01

    Two-step gasification process was proposed to dispose cattle manure for hydrogen rich gas production. The effect of temperature on product distribution and biochar properties were first studied in the pyrolysis-carbonization process. The steam gasification of biochar derived from different pyrolysis-carbonization temperatures was then performed at 750°C and 850°C. The biochar from the pyrolysis-carbonization temperatures of 500°C had high carbon content and low volatiles content. According to the results of gasification stage, the pyrolysis-carbonization temperature of 500°C and the gasification temperature of 850°C were identified as the suitable conditions for hydrogen production. We obtained 1.61m 3 /kg of syngas production, 0.93m 3 /kg of hydrogen yield and 57.58% of hydrogen concentration. This study shows that two-step gasification is an efficient waste-to-hydrogen energy process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Hydrogenation apparatus

    DOEpatents

    Friedman, Joseph [Encino, CA; Oberg, Carl L [Canoga Park, CA; Russell, Larry H [Agoura, CA

    1981-01-01

    Hydrogenation reaction apparatus comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1100.degree. to 1900.degree. C., while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products.

  9. Hydrogenation apparatus

    DOEpatents

    Friedman, J.; Oberg, C. L.; Russell, L. H.

    1981-06-23

    Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

  10. Determination of Glucose Concentration in Yeast Culture Medium

    NASA Astrophysics Data System (ADS)

    Hara, Seiichi; Kishimoto, Tomokazu; Muraji, Masafumi; Tsujimoto, Hiroaki; Azuma, Masayuki; Ooshima, Hiroshi

    The present paper describes a sensor for measuring the glucose concentration of yeast culture medium. The sensor determines glucose concentration by measuring the yield of hydrogen peroxide produced by glucose oxidase, which is monitored as luminescence using photomultiplier. The present sensor is able to measure low glucose concentration in media in which yeast cells keep respiration state. We herein describe the system and the characteristics of the glucose sensor.

  11. Highly stretchable strain sensor based on polyurethane substrate using hydrogen bond-assisted laminated structure for monitoring of tiny human motions

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Zhao, Yunong; Wang, Yang; Guo, Xiaohui; Zhang, Yangyang; Liu, Ping; Liu, Caixia; Zhang, Yugang

    2018-03-01

    Strain sensors used as flexible and wearable electronic devices have improved prospects in the fields of artificial skin, robotics, human-machine interfaces, and healthcare. This work introduces a highly stretchable fiber-based strain sensor with a laminated structure made up of a graphene nanoplatelet layer and a carbon black/single-walled carbon nanotube synergetic conductive network layer. An ultrathin, flexible, and elastic two-layer polyurethane (PU) yarn substrate was successively deposited by a novel chemical bonding-based layered dip-coating process. These strain sensors demonstrated high stretchability (˜350%), little hysteresis, and long-term durability (over 2400 cycles) due to the favorable tensile properties of the PU substrate. The linearity of the strain sensor could reach an adjusted R-squared of 0.990 at 100% strain, which is better than most of the recently reported strain sensors. Meanwhile, the strain sensor exhibited good sensibility, rapid response, and a lower detection limit. The lower detection limit benefited from the hydrogen bond-assisted laminated structure and continuous conductive path. Finally, a series of experiments were carried out based on the special features of the PU strain sensor to show its capacity of detecting and monitoring tiny human motions.

  12. Method for charging a hydrogen getter

    DOEpatents

    Tracy, C.E.; Keyser, M.A.; Benson, D.K.

    1998-09-15

    A method for charging a sample of either a permanent or reversible getter material with a high concentration of hydrogen while maintaining a base pressure below 10{sup {minus}4} torr at room temperature involves placing the sample of hydrogen getter material in a chamber, activating the sample of hydrogen getter material, overcharging the sample of getter material through conventional charging techniques to a high concentration of hydrogen, and then subjecting the sample of getter material to a low temperature vacuum bake-out process. Application of the method results in a reversible hydrogen getter which is highly charged to maximum capacities of hydrogen and which concurrently exhibits minimum hydrogen vapor pressures at room temperatures. 9 figs.

  13. Thermodynamics and vibrational study of hydrogenated carbon nanotubes: A DFT study

    NASA Astrophysics Data System (ADS)

    Khalil, Rana M. Arif; Hussain, Fayyaz; Rana, Anwar Manzoor; Imran, Muhammad

    2018-02-01

    Thermodynamic stability of the hydrogenated carbon nanotubes has been explored in the chemisorption limit. Statistical physics and density functional theory calculations have been used to predict hydrogen release temperatures at standard pressure in zigzag and armchair carbon nanotubes. It is found that hydrogen release temperatures decrease with increase in diameters of hydrogenated zigzag carbon nanotubes (CNTs) but opposite trend is noted in armchair CNTs at standard pressure of 1 bar. The smaller diameter hydrogenated zigzag CNTs have large values of hydrogen release temperature due to the stability of Csbnd H bonds. The vibrational density of states for hydrogenated carbon nanotubes have been calculated to confirm the Csbnd H stretching mode caused by sp3 hybridization.

  14. The effect of noble metal additives on the optimum operating temperature of SnO2 gas sensors

    NASA Astrophysics Data System (ADS)

    Mohammad-Yousefi, S.; Rahbarpour, S.; Ghafoorifard, H.

    2017-12-01

    The effect of Pd and Au additives on gas sensing properties of SnO2 was investigated. SnO2 pallets were fabricated and sintered at 900 °C for 90 minutes. Several nanometer layers of Pd and Au were deposited on separate SnO2 pallets and were intentionally dispersed into the SnO2 pallets by long heat treatment (400 °C for 1 Day). All metal loaded samples showed significant enhancement in response level and optimum operating temperature compare to pure SnO2 gas sensors. The amount of enhancement was strongly dependent on the material and the thickness of deposited metal layer. Studying butanol response showed that increasing the thickness of metal causes the response level to increase. Further thickness increase caused contrary effect and decreased the performance of sensors. Best results were achieved at 10 nm-thick Au and 7 nm-thick Pd. Generally, Pd-SnO2 samples demonstrated better performance than Au-SnO2 ones, however, Au-SnO2 samples were proved to be good candidate to sense reducing gases with lower hydrogen atoms in their formula. Given experimental results were also good evidence of chemical activity of gold and simply confirms the relation between chemical activity and gold particle size. Results were qualitatively described by gas diffusion theory and surface reactions take place on metal particles.The first section in your paper

  15. Analysis, design, fabrication and testing of an optical tip clearance sensor. [turbocompressor blade tips

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Marple, D. T. F.; Kingsley, J. D.

    1981-01-01

    Analyses and the design, fabrication, and testing of an optical tip clearance sensor with intended application in aircraft propulsion control systems are reported. The design of a sensor test rig, evaluation of optical sensor components at elevated temperatures, sensor design principles, sensor test results at room temperature, and estimations of sensor accuracy at temperatures of an aircraft engine environment are discussed. Room temperature testing indicated possible measurement accuracies of less than 12.7 microns (0.5 mils). Ways to improve performance at engine operating temperatures are recommended. The potential of this tip clearance sensor is assessed.

  16. Active thermal isolation for temperature responsive sensors

    NASA Technical Reports Server (NTRS)

    Martinson, Scott D. (Inventor); Gray, David L. (Inventor); Carraway, Debra L. (Inventor); Reda, Daniel C. (Inventor)

    1994-01-01

    The detection of flow transition between laminar and turbulent flow and of shear stress or skin friction of airfoils is important in basic research for validation of airfoil theory and design. These values are conventionally measured using hot film nickel sensors deposited on a polyimide substrate. The substrate electrically insulates the sensor and underlying airfoil but is prevented from thermally isolating the sensor by thickness constraints necessary to avoid flow contamination. Proposed heating of the model surface is difficult to control, requires significant energy expenditures, and may alter the basic flow state of the airfoil. A temperature responsive sensor is located in the airflow over the specified surface of a body and is maintained at a constant temperature. An active thermal isolator is located between this temperature responsive sensor and the specific surface of the body. The total thickness of the isolator and sensor avoid any contamination of the flow. The temperature of this isolator is controlled to reduce conductive heat flow from the temperature responsive sensor to the body. This temperature control includes (1) operating the isolator at the same temperature as the constant temperature of the sensor; and (2) establishing a fixed boundary temperature which is either less than or equal to, or slightly greater than the sensor constant temperature. The present invention accordingly thermally isolates a temperature responsive sensor in an energy efficient, controllable manner while avoiding any contamination of the flow.

  17. Ultrafast and ultrasensitive hydrogen sensors based on self-assembly monolayer promoted 2-dimensional palladium nanoclusters

    DOEpatents

    Xu, Tao; Zach, Michael P.; Xiao, Zhili

    2007-02-06

    A device and method of making same. The device or hydrogen detector has a non-conducting substrate with a metal film capable of absorbing hydrogen to form a stable metal hydride. The metal film is being on the threshold of percolation and is connected to mechanism for sensing a change in electrical resistance in response to the presence of hydrogen in contact with the metal film which causes an increase in conductivity.

  18. Ultrafast and ultrasensitive hydrogen sensors based on self-assembly monolayer promoted 2-dimensional palladium nanoclusters

    DOEpatents

    Xu, Tao [Darien, IL; Zach, Michael P [Darien, IL; Xiao, Zhili [Naperville, IL

    2008-06-24

    A device and method of making same. The device or hydrogen detector has a non-conducting substrate with a metal film capable of absorbing hydrogen to form a stable metal hydride. The metal film is on the threshold of percolation and is connected to mechanism for sensing a change in electrical resistance in response to the presence of hydrogen in contact with the metal film which causes an increase in conductivity.

  19. Surface plasmon resonance-based fiber-optic hydrogen gas sensor utilizing palladium supported zinc oxide multilayers and their nanocomposite.

    PubMed

    Tabassum, Rana; Gupta, Banshi D

    2015-02-10

    We analyze surface plasmon resonance-based fiber-optic sensor for sensing of small concentrations of hydrogen gas in the visible region of the electromagnetic spectrum. One of the two probes considered has multilayers of zinc oxide (ZnO) and palladium (Pd) while the other has layer of their composite over a silver coated unclad core of the fiber. The analysis is carried out for different volume fractions of palladium nanoparticles dispersed in zinc oxide host material in the nanocomposite layer. For the analysis, a Maxwell-Garnett model is adopted for calculating the dielectric function of a ZnO:Pd nanocomposite having nanoparticles of dimensions smaller than the wavelength of radiation used. The effects of the volume fraction of the nanoparticles in the nanocomposite and the thickness of the nanocomposite layer on the figure of merit of the sensor have been studied. The film thickness of the layer and the volume fraction of nanoparticles in the ZnO:Pd nanocomposite layer have been optimized to achieve the maximum value of the figure of merit of the sensor. It has been found that the figure of merit of the sensing probe coated with ZnO:Pd nanocomposite is more than twofold of the sensing probe coated with multilayers of Pd and ZnO over a silver coated unclad core of the fiber; hence, the sensor with a nanocomposite layer works better than that with multilayers of zinc oxide and palladium. The sensor can be used for online monitoring and remote sensing of hydrogen gas.

  20. Activation energy for diamond growth from the carbon-hydrogen gas system at low substrate temperatures

    NASA Astrophysics Data System (ADS)

    Stiegler, J.; Lang, T.; von Kaenel, Y.; Michler, J.; Blank, E.

    1997-01-01

    The growth kinetics of diamond films deposited at low substrate temperatures (600-400 °C) from the carbon-hydrogen gas system have been studied. When the substrate temperature alone was varied, independently of all other process parameters in the microwave plasma reactor, an activation energy in the order of 7 kcal/mol was observed. This value did not change with different carbon concentrations in hydrogen. It is supposed that growth kinetics in this temperature range are controlled by a single chemical reaction, probably the abstraction of surface bonded hydrogen by gas phase atomic hydrogen.

  1. Sensing Characteristics of Flame-Spray-Made Pt/ZnO Thick Films as H2 Gas Sensor

    PubMed Central

    Tamaekong, Nittaya; Liewhiran, Chaikarn; Wisitsoraat, Anurat; Phanichphant, Sukon

    2009-01-01

    Hydrogen sensing of thick films of nanoparticles of pristine, 0.2, 1.0 and 2.0 atomic percentage of Pt concentration doped ZnO were investigated. ZnO nanoparticles doped with 0.2–2.0 at.% Pt were successfully produced in a single step by flame spray pyrolysis (FSP) technique using zinc naphthenate and platinum(II) acetylacetonate as precursors dissolved in xylene. The particle properties were analyzed by XRD, BET, SEM and TEM. Under the 5/5 (precursor/oxygen) flame condition, ZnO nanoparticles and nanorods were observed. The crystallite sizes of ZnO spheroidal and hexagonal particles were found to be ranging from 5 to 20 nm while ZnO nanorods were seen to be 5–20 nm wide and 20–40 nm long. ZnO nanoparticles paste composed of ethyl cellulose and terpineol as binder and solvent respectively was coated on Al2O3 substrate interdigitated with gold electrodes to form thin films by spin coating technique. The thin film morphology was analyzed by SEM technique. The gas sensing properties toward hydrogen (H2) was found that the 0.2 at.% Pt/ZnO sensing film showed an optimum H2 sensitivity of ∼164 at hydrogen concentration in air of 1 volume% at 300 °C and a low hydrogen detection limit of 50 ppm at 300 °C operating temperature. PMID:22399971

  2. KSC-05PD-1055

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Space Shuttle launch director Michael Leinbach (right) and assistant launch director Doug Lyons support an External Tank (ET) tanking test at Launch Pad 39B from the Launch Control Center. The tanking test is designed to evaluate how the tank, orbiter, solid rocket boosters and ground systems perform under 'cryo-load,' when the tank is filled with the two ultra-low-temperature propellants. The tank filling and draining portion of the test takes about 11 hours. The test also includes a simulated countdown through the hold at T-31 seconds. The test is being conducted to troubleshoot two issues identified by a tanking test held on April 14. Data is being collected to analyze the liquid hydrogen sensors that gave intermittent readings and the liquid hydrogen pressurization relief valve that cycled more times than standard. The tanking tests are part of preparations for Space Shuttle Discovery's Return to Flight mission, STS-114, to the International Space Station. The launch window extends from July 13 through July 31.

  3. KSC-05PD-1062

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Bill Parsons (foreground), manager of the Space Shuttle Program, supports an External Tank (ET) tanking test at Launch Pad 39B from the Launch Control Center. The tanking test is designed to evaluate how the tank, orbiter, solid rocket boosters and ground systems perform under 'cryo-load,' when the tank is filled with the two ultra-low-temperature propellants. The tank filling and draining portion of the test takes about 11 hours. The test also includes a simulated countdown through the hold at T-31 seconds. The test is being conducted to troubleshoot two issues identified by a tanking test held on April 14. Data is being collected to analyze the liquid hydrogen sensors that gave intermittent readings and the liquid hydrogen pressurization relief valve that cycled more times than standard. The tanking tests are part of preparations for Space Shuttle Discovery's Return to Flight mission, STS-114, to the International Space Station. The launch window extends from July 13 through July 31.

  4. KSC-2010-5867

    NASA Image and Video Library

    2010-12-17

    CAPE CANAVERAL, Fla. -- Space shuttle Discovery's external fuel tank is being filled with more than 535,000 gallons of super-cold liquid hydrogen and liquid oxygen during a tanking test on Launch Pad 39A at NASA's Kennedy Space Center in Florida. Engineers are closely monitoring what happens to 21-foot long, U-shaped aluminum brackets, called stringers, located at the tank's intertank region, as well as the newly replaced ground umbilical carrier plate (GUCP). Data from 89 sensors will be evaluated after the tank returns to ambient temperature. In order to perform additional analysis on the tank, Discovery will be rolled back to the Vehicle Assembly Building, a move that is planned for next week. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux

  5. KSC-2010-5866

    NASA Image and Video Library

    2010-12-17

    CAPE CANAVERAL, Fla. -- Space shuttle Discovery's external fuel tank is being filled with more than 535,000 gallons of super-cold liquid hydrogen and liquid oxygen during a tanking test on Launch Pad 39A at NASA's Kennedy Space Center in Florida. Engineers are closely monitoring what happens to 21-foot long, U-shaped aluminum brackets, called stringers, located at the tank's intertank region, as well as the newly replaced ground umbilical carrier plate (GUCP). Data from 89 sensors will be evaluated after the tank returns to ambient temperature. In order to perform additional analysis on the tank, Discovery will be rolled back to the Vehicle Assembly Building, a move that is planned for next week. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux

  6. KSC-2010-5865

    NASA Image and Video Library

    2010-12-17

    CAPE CANAVERAL, Fla. -- Space shuttle Discovery's external fuel tank is being filled with more than 535,000 gallons of super-cold liquid hydrogen and liquid oxygen during a tanking test on Launch Pad 39A at NASA's Kennedy Space Center in Florida. Engineers are closely monitoring what happens to 21-foot long, U-shaped aluminum brackets, called stringers, located at the tank's intertank region, as well as the newly replaced ground umbilical carrier plate (GUCP). Data from 89 sensors will be evaluated after the tank returns to ambient temperature. In order to perform additional analysis on the tank, Discovery will be rolled back to the Vehicle Assembly Building, a move that is planned for next week. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux

  7. Extended range chemical sensing apparatus

    DOEpatents

    Hughes, Robert C.; Schubert, W. Kent

    1994-01-01

    An apparatus for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy.

  8. Evaluation of Fiber Bragg Grating and Distributed Optical Fiber Temperature Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCary, Kelly Marie

    Fiber optic temperature sensors were evaluated in the High Temperature Test Lab (HTTL) to determine the accuracy of the measurements at various temperatures. A distributed temperature sensor was evaluated up to 550C and a fiber Bragg grating sensor was evaluated up to 750C. HTTL measurements indicate that there is a drift in fiber Bragg sensor over time of approximately -10C with higher accuracy at temperatures above 300C. The distributed sensor produced some bad data points at and above 500C but produced measurements with less than 2% error at increasing temperatures up to 400C

  9. Data center thermal management

    DOEpatents

    Hamann, Hendrik F.; Li, Hongfei

    2016-02-09

    Historical high-spatial-resolution temperature data and dynamic temperature sensor measurement data may be used to predict temperature. A first formulation may be derived based on the historical high-spatial-resolution temperature data for determining a temperature at any point in 3-dimensional space. The dynamic temperature sensor measurement data may be calibrated based on the historical high-spatial-resolution temperature data at a corresponding historical time. Sensor temperature data at a plurality of sensor locations may be predicted for a future time based on the calibrated dynamic temperature sensor measurement data. A three-dimensional temperature spatial distribution associated with the future time may be generated based on the forecasted sensor temperature data and the first formulation. The three-dimensional temperature spatial distribution associated with the future time may be projected to a two-dimensional temperature distribution, and temperature in the future time for a selected space location may be forecasted dynamically based on said two-dimensional temperature distribution.

  10. Fiber-optic sensor demonstrator (FSD) preliminary test results on PROBA-2

    NASA Astrophysics Data System (ADS)

    Kruzelecky, Roman V.; Zou, Jing; Haddad, Emile; Jamroz, Wes; Ricci, Francesco; Edwards, Eric; McKenzie, Iain; Vuilleumier, Pierrik

    2017-11-01

    Fiber Sensor Demonstrator (FSD) developed by MPB Communications (MPBC) is the first demonstration of a full fiber-optic sensor network in the space environment on a satellite. FSD has been launched on ESA's Proba-2 satellite in November 2009. FSD contains twelve temperature sensors to measure the temperature at different locations in the satellite, and one High-Temperature sensor to measure the transient high temperature in the thruster, as well as one pressure sensor to measure the xenon tank pressure. First set of on-orbit test data were obtained in January 2010. The FSD unit successfully established the communication with Proba-2. The temperature of FSD unit was also acquired through a AD590 sensor inside the unit. The measurements of all the optical fiber sensor lines will be evaluated after the testing results obtained. The FSD contains twelve specially-packaged FBG temperature sensors to measure the temperature at different locations in the propulsion system and the spacecraft over the range of -60°C to +120°C. A high-temperature sensor is provided to measure the transient temperature response of the thruster to beyond 350°C. There is also an innovative P/T sensor that provides both temperature and pressure measurements of the Xe propellant tank. The preliminary data of on-orbit functional testing and temperature measurements are provided mainly in Section 6.

  11. Temperature- and composition-dependent hydrogen diffusivity in palladium from statistically-averaged molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiaowang; Heo, Tae Wook; Wood, Brandon C.

    Solid-state hydrogen storage materials undergo complex phase transformations whose kinetics is often limited by hydrogen diffusion. Among metal hydrides, palladium hydride undergoes a diffusional phase transformation upon hydrogen uptake, during which the hydrogen diffusivity varies with hydrogen composition and temperature. Here we perform robust statistically-averaged molecular dynamics simulations to obtain a well-converged analytical expression for hydrogen diffusivity in bulk palladium that is valid throughout all stages of the reaction. Our studies confirm significant dependence of the diffusivity on composition and temperature that elucidate key trends in the available experimental measurements. Whereas at low hydrogen compositions, a single process dominates, atmore » high hydrogen compositions, diffusion is found to exhibit behavior consistent with multiple hopping barriers. Further analysis, supported by nudged elastic band computations, suggests that the multi-barrier diffusion can be interpreted as two distinct mechanisms corresponding to hydrogen-rich and hydrogen-poor local environments.« less

  12. Temperature- and composition-dependent hydrogen diffusivity in palladium from statistically-averaged molecular dynamics

    DOE PAGES

    Zhou, Xiaowang; Heo, Tae Wook; Wood, Brandon C.; ...

    2018-03-09

    Solid-state hydrogen storage materials undergo complex phase transformations whose kinetics is often limited by hydrogen diffusion. Among metal hydrides, palladium hydride undergoes a diffusional phase transformation upon hydrogen uptake, during which the hydrogen diffusivity varies with hydrogen composition and temperature. Here we perform robust statistically-averaged molecular dynamics simulations to obtain a well-converged analytical expression for hydrogen diffusivity in bulk palladium that is valid throughout all stages of the reaction. Our studies confirm significant dependence of the diffusivity on composition and temperature that elucidate key trends in the available experimental measurements. Whereas at low hydrogen compositions, a single process dominates, atmore » high hydrogen compositions, diffusion is found to exhibit behavior consistent with multiple hopping barriers. Further analysis, supported by nudged elastic band computations, suggests that the multi-barrier diffusion can be interpreted as two distinct mechanisms corresponding to hydrogen-rich and hydrogen-poor local environments.« less

  13. SSH2S: Hydrogen storage in complex hydrides for an auxiliary power unit based on high temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Baricco, Marcello; Bang, Mads; Fichtner, Maximilian; Hauback, Bjorn; Linder, Marc; Luetto, Carlo; Moretto, Pietro; Sgroi, Mauro

    2017-02-01

    The main objective of the SSH2S (Fuel Cell Coupled Solid State Hydrogen Storage Tank) project was to develop a solid state hydrogen storage tank based on complex hydrides and to fully integrate it with a High Temperature Proton Exchange Membrane (HT-PEM) fuel cell stack. A mixed lithium amide/magnesium hydride system was used as the main storage material for the tank, due to its high gravimetric storage capacity and relatively low hydrogen desorption temperature. The mixed lithium amide/magnesium hydride system was coupled with a standard intermetallic compound to take advantage of its capability to release hydrogen at ambient temperature and to ensure a fast start-up of the system. The hydrogen storage tank was designed to feed a 1 kW HT-PEM stack for 2 h to be used for an Auxiliary Power Unit (APU). A full thermal integration was possible thanks to the high operation temperature of the fuel cell and to the relative low temperature (170 °C) for hydrogen release from the mixed lithium amide/magnesium hydride system.

  14. New Gas Polarographic Hydrogen Sensor

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Barile, Ron

    2004-01-01

    Polarography is the measurement of the current that flows in solution as a function of an applied voltage. The actual form of the observed polarographic current depends upon the manner in which the voltage is applied and on the characteristics of the working electrode. The new gas polarographic H2 sensor shows a current level increment with concentration of the gaseous H2 similar to those relating to metal ions in liquid electrolytes in well-known polarography. This phenomenon is caused by the fact that the diffusion of the gaseous H2 through a gas diffusion hole built in the sensor is a rate-determining step in the gaseous-hydrogen sensing mechanism. The diffusion hole artificially limits the diffusion of the gaseous H2 toward the electrode located at the sensor cavity. This gas polarographic H2 sensor. is actually an electrochemical-pumping cell since the gaseous H2 is in fact pumped via the electrochemical driving force generated between the electrodes. Gaseous H2 enters the diffusion hole and reaches the first electrode (anode) located in the sensor cavity to be transformed into an H+ ions or protons; H+ ions pass through the electrolyte and reach the second electrode (cathode) to be reformed to gaseous H2. Gas polarographic 02 sensors are commercially available; a gas polarographic 02 sensor was used to prove the feasibility of building a new gas polarographic H2 sensor.

  15. High pressure and temperature optical flow cell for near-infra-red spectroscopic analysis of gas mixtures.

    PubMed

    Norton, C G; Suedmeyer, J; Oderkerk, B; Fieback, T M

    2014-05-01

    A new optical flow cell with a new optical arrangement adapted for high pressures and temperatures using glass fibres to connect light source, cell, and spectrometer has been developed, as part of a larger project comprising new methods for in situ analysis of bio and hydrogen gas mixtures in high pressure and temperature applications. The analysis is based on measurements of optical, thermo-physical, and electromagnetic properties in gas mixtures with newly developed high pressure property sensors, which are mounted in a new apparatus which can generate gas mixtures with up to six components with an uncertainty of composition of as little as 0.1 mol. %. Measurements of several pure components of natural gases and biogases to a pressure of 20 MPa were performed on two isotherms, and with binary mixtures of the same pure gases at pressures to 17.5 MPa. Thereby a new method of analyzing the obtained spectra based on the partial density of methane was investigated.

  16. Temperature Dependence of Diffusion and Reaction at a Pd/SiC Contact

    NASA Technical Reports Server (NTRS)

    Shi, D.T.; Lu, W. J.; Bryant, E.; Elshot, K.; Lafate, K.; Chen, H.; Burger, A.; Collins, W. E.

    1998-01-01

    Schottky diodes of Palladium/SiC are good candidates for hydrogen and hydrocarbon gas sensors at elevated temperature. The detection sensibility of the diodes has been found heavily temperature dependent. In this work, emphasis has been put on the understanding of changes of physical and chemical properties of the Schottky diodes with variation of temperature. Schottky diodes were made by depositing ultra-thin palladium films onto silicon carbide substrates. The electrical and chemical properties of Pd/SiC Schottky contacts were studied by XPS and AES at different annealing temperatures. No significant change in the Schottky barrier height of the Pd/SiC contact was found in the temperature range of RT-400 C. However, both palladium diffused into SiC and silicon migrated into palladium thin film as well as onto surface were observed at room temperature. The formation of palladium compounds at the Pd/SiC interface was also observed. Both diffusion and reaction at the Pd/SiC interface became significant at 300 C and higher temperature. In addition, silicon oxide was found also at the interface of the Pd/SiC contact at high temperature. In this report, the mechanism of diffusion and reaction at the Pd/SiC interface will be discussed along with experimental approaches.

  17. An FPGA Noise Resistant Digital Temperature Sensor with Auto Calibration

    DTIC Science & Technology

    2012-03-01

    temperature sensor [6] . . . . . . . . . . . . . . 14 9 Two different digital temperature sensor placement algorithms: (a) Grid placement (b) Optimal...create a grid over the FPGA. While this method works reasonably well, it requires many sensors, some of which are unnecessary. The optimal placement, on...temperature sensor placement algorithms: (a) Grid placement (b) Optimal Placement [7] 16 2.4 Summary Integrated circuits’ sensitivity to temperatures has

  18. Micromachined lab-on-a-tube sensors for simultaneous brain temperature and cerebral blood flow measurements.

    PubMed

    Li, Chunyan; Wu, Pei-Ming; Hartings, Jed A; Wu, Zhizhen; Cheyuo, Cletus; Wang, Ping; LeDoux, David; Shutter, Lori A; Ramaswamy, Bharat Ram; Ahn, Chong H; Narayan, Raj K

    2012-08-01

    This work describes the development of a micromachined lab-on-a-tube device for simultaneous measurement of brain temperature and regional cerebral blood flow. The device consists of two micromachined gold resistance temperature detectors with a 4-wire configuration. One is used as a temperature sensor and the other as a flow sensor. The temperature sensor operates with AC excitation current of 500 μA and updates its outputs at a rate of 5 Hz. The flow sensor employs a periodic heating and cooling technique under constant-temperature mode and updates its outputs at a rate of 0.1 Hz. The temperature sensor is also used to compensate for temperature changes during the heating period of the flow sensor to improve the accuracy of flow measurements. To prevent thermal and electronic crosstalk between the sensors, the temperature sensor is located outside the "thermal influence" region of the flow sensor and the sensors are separated into two different layers with a thin-film Copper shield. We evaluated the sensors for accuracy, crosstalk and long-term drift in human blood-stained cerebrospinal fluid. These in vitro experiments showed that simultaneous temperature and flow measurements with a single lab-on-a-tube device are accurate and reliable over the course of 5 days. It has a resolution of 0.013 °C and 0.18 ml/100 g/min; and achieves an accuracy of 0.1 °C and 5 ml/100 g/min for temperature and flow sensors respectively. The prototype device and techniques developed here establish a foundation for a multi-sensor lab-on-a-tube, enabling versatile multimodality monitoring applications.

  19. Strain monitoring of bismaleimide composites using embedded microcavity sensor

    NASA Astrophysics Data System (ADS)

    Kaur, Amardeep; Anandan, Sudharshan; Yuan, Lei; Watkins, Steve E.; Chandrashekhara, K.; Xiao, Hai; Phan, Nam

    2016-03-01

    A type of extrinsic Fabry-Perot interferometer (EFPI) fiber optic sensor, i.e., the microcavity strain sensor, is demonstrated for embedded, high-temperature applications. The sensor is fabricated using a femtosecond (fs) laser. The fs-laser-based fabrication makes the sensor thermally stable to sustain operating temperatures as high as 800°C. The sensor has low sensitivity toward the temperature as compared to its response toward the applied strain. The performance of the EFPI sensor is tested in an embedded application. The host material is carbon fiber/bismaleimide (BMI) composite laminate that offer thermally stable characteristics at high ambient temperatures. The sensor exhibits highly linear response toward the temperature and strain. Analytical work done with embedded optical-fiber sensors using the out-of-autoclave BMI laminate was limited until now. The work presented in this paper offers an insight into the strain and temperature interactions of the embedded sensors with the BMI composites.

  20. Development of a nanowire based titanium needle probe sensor for glucose monitoring

    NASA Astrophysics Data System (ADS)

    Deshpande, Devesh C.

    The need for continuous monitoring of various physiological functions such as blood glucose levels, neural functions and cholesterol levels has fostered the research and development of various schemes of biosensors to sense and help control the respective function. The needs of patients for sensors with minimal discomfort, longer life and better performance have necessitated the development towards smaller and more efficient sensors. In addition, the need for higher functionality from smaller sensors has led to the development of sensors with multiple electrodes, each electrode capable of sensing a different body function. Such multi-electrode sensors need to be fabricated using micro-fabrication processes in order to achieve precise control over the size, shape and placement of the electrodes. Multielectrode sensors fabricated using silicon and polymers have been demonstrated. One physiological function that attracts widespread interest is continuous glucose monitoring in our blood, since Diabetes affects millions of people all over the world. Significant deviations of blood glucose levels from the normal levels of 4-8 mM can cause fainting, coma and damage to the eyes, kidneys, nerves and blood vessels. For chronic patients, continuous monitoring of glucose levels is essential for accurate and timely treatment. A few continuous monitoring sensors are available in the market, but they have problems and cannot replace the strip type one-time glucose monitoring systems as yet. To address this need, large scale research efforts have been targeted towards continuous monitoring. The demand for higher accuracy and sensitivity has motivated researchers to evaluate the use of nanostructures in sensing. The large surface area-to-volume ratio of such structures could enable further miniaturization and push the detection limits, potentially enabling even single molecule detection. This research involved the development of a biocompatible titanium needle probe sensor for glucose monitoring. The working electrode of the sensor comprised of vertically aligned, free standing Au nanowires to utilize the advantages of nanostructures. The sensor was fabricated on biocompatible titanium substrate using Micro/Nano fabrication processes such as Plasma Enhanced Chemical Vapor Deposition (PECVD), Electron Beam Evaporation, Lithography, aligned nanowire growth and wet and plasma etching. Arrays of free-standing nanowires were grown at room temperature and pressure using a novel template based growth process. After fabrication of the sensor, immobilization of an enzyme was carried out on the sensing electrode to ensure selectivity of the sensor to glucose. This was achieved by using self-assembled thiol monolayers and entrapment in a conducting polymer matrix. Glucose oxidase was used for this purpose, which catalyzed the conversion of glucose to gluconic acid, producing hydrogen peroxide in the process. Amperometry was used for glucose detection, in which a constant voltage was applied to the sensor. This potential oxidized the hydrogen peroxide and produced changes in the current which were correlated to the glucose concentration. This dissertation will address the importance of continuous glucose monitoring, current technology and problems faced, the design and fabrication of the sensor and electrochemical sensing to detect glucose levels in solution. Finally, the problems encountered during the process will be discussed and the future work will be detailed.

  1. Impedance spectroscopy of reduced monoclinic zirconia.

    PubMed

    Eder, Dominik; Kramer, Reinhard

    2006-10-14

    Zirconia doped with low-valent cations (e.g. Y3+ or Ca2+) exhibits an exceptionally high ionic conductivity, making them ideal candidates for various electrochemical applications including solid oxide fuel cells (SOFC) and oxygen sensors. It is nevertheless important to study the undoped, monoclinic ZrO2 as a model system to construct a comprehensive picture of the electrical behaviour. In pure zirconia a residual number of anion vacancies remains because of contaminants in the material as well as the thermodynamic disorder equilibrium, but electronic conduction may also contribute to the observed conductivity. Reduction of zirconia in hydrogen leads to the adsorption of hydrogen and to the formation of oxygen vacancies, with their concentration affected by various parameters (e.g. reduction temperature and time, surface area, and water vapour pressure). However, there is still little known about the reactivities of defect species and their effect on the ionic and electronic conduction. Thus, we applied electrochemical impedance spectroscopy to investigate the electric performance of pure monoclinic zirconia with different surface areas in both oxidizing and reducing atmospheres. A novel equivalent circuit model including parallel ionic and electronic conduction has previously been developed for titania and is used herein to decouple the conduction processes. The concentration of defects and their formation energies were measured using volumetric oxygen titration and temperature programmed oxidation/desorption.

  2. Uniform manganese hexacyanoferrate hydrate nanocubes featuring superior performance for low-cost supercapacitors and nonenzymatic electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Pang, Huan; Zhang, Yizhou; Cheng, Tao; Lai, Wen-Yong; Huang, Wei

    2015-09-01

    Uniform manganese hexacyanoferrate hydrate nanocubes are prepared via a simple chemical precipitation method at room temperature. Due to both micro/mesopores of the Prussian blue analogue and nanocubic structures, the manganese hexacyanoferrate hydrate nanocubes allow the efficient charge transfer and mass transport for electrolyte solution and chemical species. Thus, the manganese hexacyanoferrate hydrate nanocube electrode shows a good rate capability and cycling stability for electrochemical capacitors. Furthermore, electrodes modified with manganese hexacyanoferrate hydrate nanocubes demonstrate a sensitive electrochemical response to hydrogen peroxide (H2O2) in buffer solutions with a high selectivity.Uniform manganese hexacyanoferrate hydrate nanocubes are prepared via a simple chemical precipitation method at room temperature. Due to both micro/mesopores of the Prussian blue analogue and nanocubic structures, the manganese hexacyanoferrate hydrate nanocubes allow the efficient charge transfer and mass transport for electrolyte solution and chemical species. Thus, the manganese hexacyanoferrate hydrate nanocube electrode shows a good rate capability and cycling stability for electrochemical capacitors. Furthermore, electrodes modified with manganese hexacyanoferrate hydrate nanocubes demonstrate a sensitive electrochemical response to hydrogen peroxide (H2O2) in buffer solutions with a high selectivity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04322k

  3. A facile and green approach for the controlled synthesis of porous SnO₂ nanospheres: application as an efficient photocatalyst and an excellent gas sensing material.

    PubMed

    Manjula, P; Boppella, Ramireddy; Manorama, Sunkara V

    2012-11-01

    A facile and elegant methodology invoking the principles of Green Chemistry for the synthesis of porous tin dioxide nanospheres has been described. The low-temperature (∼50 °C) synthesis of SnO₂ nanoparticles and their self-assembly into organized, uniform, and monodispersed porous nanospheres with high surface area is facilitated by controlling the concentration of glucose, which acts as a stabilizing as well as structure-directing agent. A systematic control on the stannate to glucose molar concentration ratio determines the exact conditions to obtain monodispersed nanospheres, preferentially over random aggregation. Detailed characterization of the structure, morphology, and chemical composition reveals that the synthesized material, 50 nm SnO₂ porous nanospheres possess BET surface area of about 160 m²/g. Each porous nanosphere consists of a few hundred nanoparticles ∼2-3 nm in diameter with tetragonal cassiterite crystal structure. The SnO₂ nanospheres exhibit elevated photocatalytic activity toward methyl orange with good recyclability. Because of the high activity and stability of this photocatalyst, the material is ideal for applications in environmental remediation. Moreover, SnO₂ nanospheres display excellent gas sensing capabilities toward hydrogen. Surface modification of the nanospheres with Pd transforms this sensing material into a highly sensitive and selective room-temperature hydrogen sensor.

  4. High-Temperature Piezoelectric Sensing

    PubMed Central

    Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni

    2014-01-01

    Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented. PMID:24361928

  5. Complex hydrides for hydrogen storage

    DOEpatents

    Zidan, Ragaiy

    2006-08-22

    A hydrogen storage material and process of forming the material is provided in which complex hydrides are combined under conditions of elevated temperatures and/or elevated temperature and pressure with a titanium metal such as titanium butoxide. The resulting fused product exhibits hydrogen desorption kinetics having a first hydrogen release point which occurs at normal atmospheres and at a temperature between 50.degree. C. and 90.degree. C.

  6. Electrocatalytic Hydrogenation of Phenol over Platinum and Rhodium: Unexpected Temperature Effects Resolved

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Nirala; Song, Yang; Gutiérrez, Oliver Y.

    2016-11-04

    Both electrocatalytic hydrogenation (ECH) and thermal hydrogenation (TH) of phenol by Pt and Rh show a roll-over in rate with increasing temperature without changing the principal reaction pathways. The negative effect of temperature for aqueous-phase phenol H2 and electrocatalytic hydrogenation on Pt and Rh is deduced to be due to the unexpected buildup of dehydrogenated phenol adsorbates, which block active sites. Rates of ECH and TH increase similarly with increasing hydrogen chemical potential whether induced by applied potential or H2 pressure, both via increasing H coverage, and indirectly by removing site blockers, a very strong effect at high temperature. Thismore » enables unprecedented rates in the TH of phenol at these temperatures.« less

  7. Disposable, Paper-Based, Inkjet-Printed Humidity and H2S Gas Sensor for Passive Sensing Applications

    PubMed Central

    Quddious, Abdul; Yang, Shuai; Khan, Munawar M.; Tahir, Farooq A.; Shamim, Atif; Salama, Khaled N.; Cheema, Hammad M.

    2016-01-01

    An inkjet-printed, fully passive sensor capable of either humidity or gas sensing is presented herein. The sensor is composed of an interdigitated electrode, a customized printable gas sensitive ink and a specialized dipole antenna for wireless sensing. The interdigitated electrode printed on a paper substrate provides the base conductivity that varies during the sensing process. Aided by the porous nature of the substrate, a change in relative humidity from 18% to 88% decreases the electrode resistance from a few Mega-ohms to the kilo-ohm range. For gas sensing, an additional copper acetate-based customized ink is printed on top of the electrode, which, upon reaction with hydrogen sulphide gas (H2S) changes, both the optical and the electrical properties of the electrode. A fast response time of 3 min is achieved at room temperature for a H2S concentration of 10 ppm at a relative humidity (RH) of 45%. The passive wireless sensing is enabled through an antenna in which the inner loop takes care of conductivity changes in the 4–5 GHz band, whereas the outer-dipole arm is used for chipless identification in the 2–3 GHz band. PMID:27929450

  8. A combustion products analyzer for contingency use during thermodegradation events on spacecraft

    NASA Technical Reports Server (NTRS)

    Wilson, Steve; Limero, Thomas F.; Beck, Steve W.; James, John T.

    1993-01-01

    The Toxicology Laboratory at JSC and Exidyne Instrumentation Technologies (EIT) have developed a prototype Combustion Products Analyzer (CPA) to monitor, in real time, combustion products from a thermodegradation event on board spacecraft. The CPA monitors the four gases that are the most hazardous compounds (based on the toxicity potential and quantity produced) likely to be released during thermodegradation of synthetic materials: hydrogen fluoride (HF), hydrogen chloride (HCl), hydrogen cyanide (HCN), and carbon monoxide (CO). The levels of these compounds serve as markers to assist toxicologists in determining when the cabin atmosphere is safe for the crew to breathe following the contingency event. The CPA is a hand-held, battery-operated instrument containing four electrochemical sensors, one for each target gas, and a pump for drawing air across the sensors. The sensors are unique in their small size and zero-g compatibility. The immobilized electrolytes in each sensor permit the instrument to function in space and eliminate the possibility of electrolye leaks. The sample inlet system is equipped with a particulate filter that prevents clogging from airborne particulate matter. The CPA has a large digital display for gas concentrations and warming signals for low flow and low battery conditions. The CPA has flown on 13 missions beginning with STS 41 in Oct. 1990. Current efforts include the development of a microprocessor, an improved carbon monoxide sensor, and a ground-based test program to evaluate the CPA during actual thermodegradation of selected materials.

  9. Effect of hydrogen on the integrity of aluminium–oxide interface at elevated temperatures

    PubMed Central

    Li, Meng; Xie, De-Gang; Ma, Evan; Li, Ju; Zhang, Xi-Xiang; Shan, Zhi-Wei

    2017-01-01

    Hydrogen can facilitate the detachment of protective oxide layer off metals and alloys. The degradation is usually exacerbated at elevated temperatures in many industrial applications; however, its origin remains poorly understood. Here by heating hydrogenated aluminium inside an environmental transmission electron microscope, we show that hydrogen exposure of just a few minutes can greatly degrade the high temperature integrity of metal–oxide interface. Moreover, there exists a critical temperature of ∼150 °C, above which the growth of cavities at the metal–oxide interface reverses to shrinkage, followed by the formation of a few giant cavities. Vacancy supersaturation, activation of a long-range diffusion pathway along the detached interface and the dissociation of hydrogen-vacancy complexes are critical factors affecting this behaviour. These results enrich the understanding of hydrogen-induced interfacial failure at elevated temperatures. PMID:28218260

  10. Inverse Temperature Dependence of Nuclear Quantum Effects in DNA Base Pairs

    PubMed Central

    2016-01-01

    Despite the inherently quantum mechanical nature of hydrogen bonding, it is unclear how nuclear quantum effects (NQEs) alter the strengths of hydrogen bonds. With this in mind, we use ab initio path integral molecular dynamics to determine the absolute contribution of NQEs to the binding in DNA base pair complexes, arguably the most important hydrogen-bonded systems of all. We find that depending on the temperature, NQEs can either strengthen or weaken the binding within the hydrogen-bonded complexes. As a somewhat counterintuitive consequence, NQEs can have a smaller impact on hydrogen bond strengths at cryogenic temperatures than at room temperature. We rationalize this in terms of a competition of NQEs between low-frequency and high-frequency vibrational modes. Extending this idea, we also propose a simple model to predict the temperature dependence of NQEs on hydrogen bond strengths in general. PMID:27195654

  11. Catalytic-Metal/PdO(sub x)/SiC Schottky-Diode Gas Sensors

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Lukco, Dorothy

    2006-01-01

    Miniaturized hydrogen- and hydrocarbon-gas sensors, heretofore often consisting of Schottky diodes based on catalytic metal in contact with SiC, can be improved by incorporating palladium oxide (PdOx, where 0 less than or equal to x less than or equal to 1) between the catalytic metal and the SiC. In prior such sensors in which the catalytic metal was the alloy PdCr, diffusion and the consequent formation of oxides and silicides of Pd and Cr during operation at high temperature were observed to cause loss of sensitivity. However, it was also observed that any PdOx layers that formed and remained at PdCr/SiC interfaces acted as barriers to diffusion, preventing further deterioration by preventing the subsequent formation of metal silicides. In the present improvement, the lesson learned from these observations is applied by placing PdOx at the catalytic metal/SiC interfaces in a controlled and uniform manner to form stable diffusion barriers that prevent formation of metal silicides. A major advantage of PdOx over other candidate diffusion-barrier materials is that PdOx is a highly stable oxide that can be incorporated into gas sensor structures by use of deposition techniques that are standard in the semiconductor industry. The PdOx layer can be used in a gas sensor structure for improved sensor stability, while maintaining sensitivity. For example, in proof-of-concept experiments, Pt/PdOx/SiC Schottky-diode gas sensors were fabricated and tested. The fabrication process included controlled sputter deposition of PdOx to a thickness of 50 Angstroms on a 400-m-thick SiC substrate, followed by deposition of Pt to a thickness of 450 Angstroms on the PdOx. The SiC substrate (400 microns in thickness) was patterned with photoresist and a Schottky-diode photomask. A lift-off process completed the definition of the Schottky-diode pattern. The sensors were tested by measuring changes in forward currents at a bias potential of 1 V during exposure to H2 in N2 at temperatures ranging from 450 to 600 C for more than 750 hours. The sensors were found to be stable after a break-in time of nearly 200 hours. The sensors exhibited high sensitivity: sensor currents changed by factors ranging from 300 to 800 when the gas was changed from pure N2 to 0.5 percent H2 in N2.

  12. Advanced Sensor Arrays and Packaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryter, John Wesley; Romero, Christopher J.; Ramaiyan, Kannan

    2016-08-11

    Novel sensor packaging elements were designed, fabricated, and tested in order to facilitate the transition of electrochemical mixed-potential sensors toward commercialization. Of the two designs completed, the first is currently undergoing field trials, taking direct measurements within vehicle exhaust streams, while the second is undergoing preliminary laboratory testing. The sensors’ optimal operating conditions, sensitivity to hydrogen, and long-­term baseline stability were also investigated. The sensing capabilities of lanthanum chromite (La 0.8Sr 0.2CrO 3) and indium-­doped tin oxide (ITO) working electrodes were compared, and the ITO devices were selected for pre-­commercial field trials testing at a hydrogen fuel cell vehicle fuelingmore » station in California. Previous data from that fueling station were also analyzed, and the causes of anomalous baseline drift were identified.« less

  13. Cryogenic fiber optic temperature sensor and method of manufacturing the same

    NASA Technical Reports Server (NTRS)

    Kochergin, Vladimir (Inventor)

    2012-01-01

    This invention teaches the fiber optic sensors temperature sensors for cryogenic temperature range with improved sensitivity and resolution, and method of making said sensors. In more detail, the present invention is related to enhancement of temperature sensitivity of fiber optic temperature sensors at cryogenic temperatures by utilizing nanomaterials with a thermal expansion coefficient that is smaller than the thermal expansion coefficient of the optical fiber but larger in absolute value than the thermal expansion coefficient of the optical fiber at least over a range of temperatures.

  14. Internal hydrogen-induced subcritical crack growth in austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Huang, J. H.; Altstetter, C. J.

    1991-11-01

    The effects of small amounts of dissolved hydrogen on crack propagation were determined for two austenitic stainless steel alloys, AISI 301 and 310S. In order to have a uniform distribution of hydrogen in the alloys, they were cathodically charged at high temperature in a molten salt electrolyte. Sustained load tests were performed on fatigue precracked specimens in air at 0 ‡C, 25 ‡C, and 50 ‡C with hydrogen contents up to 41 wt ppm. The electrical potential drop method with optical calibration was used to continuously monitor the crack position. Log crack velocity vs stress intensity curves had definite thresholds for subcritical crack growth (SCG), but stage II was not always clearly delineated. In the unstable austenitic steel, AISI 301, the threshold stress intensity decreased with increasing hydrogen content or increasing temperature, but beyond about 10 wt ppm, it became insensitive to hydrogen concentration. At higher concentrations, stage II became less distinct. In the stable stainless steel, subcritical crack growth was observed only for a specimen containing 41 wt ppm hydrogen. Fractographic features were correlated with stress intensity, hydrogen content, and temperature. The fracture mode changed with temperature and hydrogen content. For unstable austenitic steel, low temperature and high hydrogen content favored intergranular fracture while microvoid coalescence dominated at a low hydrogen content. The interpretation of these phenomena is based on the tendency for stress-induced phase transformation, the different hydrogen diffusivity and solubility in ferrite and austenite, and outgassing from the crack tip. After comparing the embrittlement due to internal hydrogen with that in external hydrogen, it is concluded that the critical hydrogen distribution for the onset of subcritical crack growth is reached at a location that is very near the crack tip.

  15. Sorption of hydrogen by silica aerogel at low-temperatures

    NASA Astrophysics Data System (ADS)

    Dolbin, A. V.; Khlistyuck, M. V.; Esel'son, V. B.; Gavrilko, V. G.; Vinnikov, N. A.; Basnukaeva, R. M.; Martsenuk, V. E.; Veselova, N. V.; Kaliuzhnyi, I. A.; Storozhko, A. V.

    2018-02-01

    The programmed thermal desorption method is used at temperatures of 7-95 K to study the sorption and subsequent desorption of hydrogen by a sample of silica aerogel. Physical sorption of hydrogen owing to the weak van-der-Waals interaction of hydrogen molecules with the silicon dioxide walls of the pores of the sample was observed over the entire temperature range. The total capacity of the aerogel sample for hydrogen was ˜1.5 mass %. It was found that when the sample temperature was lowered from 95 to 60 K, the characteristic sorption times for hydrogen by the silica aerogel increase; this is typical of thermally activated diffusion (Ea ≈ 408 K). For temperatures of 15-45 K the characteristic H2 sorption times depended weakly on temperature, presumably because of the predominance of a tunnel mechanism for diffusion over thermally activated diffusion. Below 15 K the characteristic sorption times increase somewhat as the temperature is lowered; this may be explained by the formation of a monolayer of H2 molecules on the surface of the aerogel grains.

  16. Heteroatom-enriched and renewable banana-stem-derived porous carbon for the electrochemical determination of nitrite in various water samples.

    PubMed

    Madhu, Rajesh; Veeramani, Vediyappan; Chen, Shen-Ming

    2014-04-23

    For the first time, high-surface-area (approximately 1465 m(2) g(-1)), highly porous and heteroatom-enriched activated carbon (HAC) was prepared from banana stems (Musa paradisiaca, Family: Musaceae) at different carbonization temperatures of 700, 800 and 900 °C (HAC) using a simple and eco-friendly method. The amounts of carbon, hydrogen, nitrogen and sulfur in the HAC are 61.12, 2.567, 0.4315, and 0.349%, respectively. Using X-ray diffraction (XRD), CHNS elemental analysis, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, the prepared activated carbon appears amorphous and disordered in nature. Here, we used HAC for an electrochemical application of nitrite (NO2(-)) sensor to control the environmental pollution. In addition, HAC exhibits noteworthy performance for the highly sensitive determination of nitrite. The limit of detection (LODs) of the nitrite sensor at HAC-modified GCE is 0.07 μM. In addition, the proposed method was applied to determine nitrite in various water samples with acceptable results.

  17. Heteroatom-enriched and renewable banana-stem-derived porous carbon for the electrochemical determination of nitrite in various water samples

    NASA Astrophysics Data System (ADS)

    Madhu, Rajesh; Veeramani, Vediyappan; Chen, Shen-Ming

    2014-04-01

    For the first time, high-surface-area (approximately 1465 m2 g-1), highly porous and heteroatom-enriched activated carbon (HAC) was prepared from banana stems (Musa paradisiaca, Family: Musaceae) at different carbonization temperatures of 700, 800 and 900°C (HAC) using a simple and eco-friendly method. The amounts of carbon, hydrogen, nitrogen and sulfur in the HAC are 61.12, 2.567, 0.4315, and 0.349%, respectively. Using X-ray diffraction (XRD), CHNS elemental analysis, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, the prepared activated carbon appears amorphous and disordered in nature. Here, we used HAC for an electrochemical application of nitrite (NO2-) sensor to control the environmental pollution. In addition, HAC exhibits noteworthy performance for the highly sensitive determination of nitrite. The limit of detection (LODs) of the nitrite sensor at HAC-modified GCE is 0.07 μM. In addition, the proposed method was applied to determine nitrite in various water samples with acceptable results.

  18. NASA Tech Briefs, July 2005

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Thin-Film Resistance Heat-Flux Sensors Circuit Indicates that Voice-Recording Disks are Nearly Full Optical Sensing of Combustion Instabilities in Gas Turbines Topics include: Crane-Load Contact Sensor; Hexagonal and Pentagonal Fractal Multiband Antennas; Multifunctional Logic Gate Controlled by Temperature; Multifunctional Logic Gate Controlled by Supply Voltage; Power Divider for Waveforms Rich in Harmonics; SCB Quantum Computers Using iSWAP and 1-Qubit Rotations; CSAM Metrology Software Tool; Update on Rover Sequencing and Visualization Program; Selecting Data from a Star Catalog; Rotating Desk for Collaboration by Two Computer Programmers; Variable-Pressure Washer; Magnetically Attached Multifunction Maintenance Rover; Improvements in Fabrication of Sand/Binder Cores for Casting; Solid Freeform Fabrication of Composite-Material Objects; Efficient Computational Model of Hysteresis; Gauges for Highly Precise Metrology of a Compound Mirror; Improved Electrolytic Hydrogen Peroxide Generator; High-Power Fiber Lasers Using Photonic Band Gap Materials; Ontology-Driven Information Integration; Quantifying Traversability of Terrain for a Mobile Robot; More About Arc-Welding Process for Making Carbon Nanotubes; Controlling Laser Spot Size in Outer Space; or Software-Reconfigurable Processors for Spacecraft.

  19. Fuel Cell Balance-of-Plant Reliability Testbed Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sproat, Vern; LaHurd, Debbie

    Reliability of the fuel cell system balance-of-plant (BoP) components is a critical factor that needs to be addressed prior to fuel cells becoming fully commercialized. Failure or performance degradation of BoP components has been identified as a life-limiting factor in fuel cell systems.1 The goal of this project is to develop a series of test beds that will test system components such as pumps, valves, sensors, fittings, etc., under operating conditions anticipated in real Polymer Electrolyte Membrane (PEM) fuel cell systems. Results will be made generally available to begin removing reliability as a roadblock to the growth of the PEMmore » fuel cell industry. Stark State College students participating in the project, in conjunction with their coursework, have been exposed to technical knowledge and training in the handling and maintenance of hydrogen, fuel cells and system components as well as component failure modes and mechanisms. Three test beds were constructed. Testing was completed on gas flow pumps, tubing, and pressure and temperature sensors and valves.« less

  20. Extended range chemical sensing apparatus

    DOEpatents

    Hughes, R.C.; Schubert, W.K.

    1994-01-18

    An apparatus is described for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy. 6 figures.

  1. Integrated control and health management. Orbit transfer rocket engine technology program

    NASA Technical Reports Server (NTRS)

    Holzmann, Wilfried A.; Hayden, Warren R.

    1988-01-01

    To insure controllability of the baseline design for a 7500 pound thrust, 10:1 throttleable, dual expanded cycle, Hydrogen-Oxygen, orbit transfer rocket engine, an Integrated Controls and Health Monitoring concept was developed. This included: (1) Dynamic engine simulations using a TUTSIM derived computer code; (2) analysis of various control methods; (3) Failure Modes Analysis to identify critical sensors; (4) Survey of applicable sensors technology; and, (5) Study of Health Monitoring philosophies. The engine design was found to be controllable over the full throttling range by using 13 valves, including an oxygen turbine bypass valve to control mixture ratio, and a hydrogen turbine bypass valve, used in conjunction with the oxygen bypass to control thrust. Classic feedback control methods are proposed along with specific requirements for valves, sensors, and the controller. Expanding on the control system, a Health Monitoring system is proposed including suggested computing methods and the following recommended sensors: (1) Fiber optic and silicon bearing deflectometers; (2) Capacitive shaft displacement sensors; and (3) Hot spot thermocouple arrays. Further work is needed to refine and verify the dynamic simulations and control algorithms, to advance sensor capabilities, and to develop the Health Monitoring computational methods.

  2. Wireless sensor network

    NASA Astrophysics Data System (ADS)

    Perotti, Jose M.; Lucena, Angel R.; Mullenix, Pamela A.; Mata, Carlos T.

    2006-05-01

    Current and future requirements of aerospace sensors and transducers demand the design and development of a new family of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors and transducers will possess a certain degree of intelligence in order to provide the end user with critical data in a more efficient manner. Communication between networks of traditional or next-generation sensors can be accomplished by a Wireless Sensor Network (WSN) developed by NASA's Instrumentation Branch and ASRC Aerospace Corporation at Kennedy Space Center (KSC), consisting of at least one central station and several remote stations and their associated software. The central station is application-dependent and can be implemented on different computer hardware, including industrial, handheld, or PC-104 single-board computers, on a variety of operating systems: embedded Windows, Linux, VxWorks, etc. The central stations and remote stations share a similar radio frequency (RF) core module hardware that is modular in design. The main components of the remote stations are an RF core module, a sensor interface module, batteries, and a power management module. These modules are stackable, and a common bus provides the flexibility to stack other modules for additional memory, increased processing, etc. WSN can automatically reconfigure to an alternate frequency if interference is encountered during operation. In addition, the base station will autonomously search for a remote station that was perceived to be lost, using relay stations and alternate frequencies. Several wireless remote-station types were developed and tested in the laboratory to support different sensing technologies, such as resistive temperature devices, silicon diodes, strain gauges, pressure transducers, and hydrogen leak detectors.

  3. Polyaniline assisted by TiO2:SnO2 nanoparticles as a hydrogen gas sensor at environmental conditions

    NASA Astrophysics Data System (ADS)

    Nasirian, Shahruz; Milani Moghaddam, Hossain

    2015-02-01

    In the present research, polyaniline assisted by TiO2:SnO2 nanoparticles was synthesized and deposited onto an epoxy glass substrate with Cu-interdigited electrodes for gas sensing application. To examine the efficiency of the polyaniline/TiO2:SnO2 nanocomposite (PTS) as a hydrogen (H2) gas sensor, its nature, stability, response, recovery/response time have been studied with a special focus on its ability to work at environmental conditions. H2 gas sensing results demonstrated that a PTS sensor with 20 and 10 wt% of anatase-TiO2 and SnO2 nanoparticles, respectively, has the best response time (75 s) with a recovery time of 117 s at environmental conditions. The highest (lowest) response (recovery time) was 6.18 (46 s) in PTS sensor with 30 and 15 wt% of anatase- (rutile-)TiO2 and SnO2 nanoparticles, respectively, at 0.8 vol.% H2 gas. Further, the H2 gas sensing mechanism of PTS sensor has also been studied.

  4. Novel colorimetric sensor for oral malodour.

    PubMed

    Alagirisamy, Nethaji; Hardas, Sarita S; Jayaraman, Sujatha

    2010-02-19

    Volatile sulphur compounds are the primary constituents of oral malodour. Quantitative tools for the detection of oral malodour are beneficial to evaluate the intensity of malodour, analyse its causes and monitor the effectiveness of customized treatments. We have developed an objective, cost effective, do-it-yourself colorimetric sensor for oral malodour quantification. The sensor consisted of a sensing solution, a gas sampling unit for collecting a known volume of mouth air and a photometric detector. The sensing solution was iodine and the depletion of iodine on reaction with hydrogen sulphide was detected colorimetrically using starch. The detection limit of the sensor is 0.05 microg L(-1) of hydrogen sulphide, which is fit-for-purpose for oral malodour detection in healthy subjects as well as halitosis patients. Volatile sulphur compounds in mouth air were quantified in healthy human volunteers using this portable sensor and the detected levels were in the range of 0.2-0.4 microg L(-1). There was a good correlation between the VSC levels detected by the colorimetric sensor and halimeter (R(2)=0.934). The developed sensor can be easily fabricated in the laboratory, and it shows high potential to be used as a clinical evaluation tool for oral malodour assessments. Copyright 2009 Elsevier B.V. All rights reserved.

  5. Liquid metal hydrogen barriers

    DOEpatents

    Grover, George M.; Frank, Thurman G.; Keddy, Edward S.

    1976-01-01

    Hydrogen barriers which comprise liquid metals in which the solubility of hydrogen is low and which have good thermal conductivities at operating temperatures of interest. Such barriers are useful in nuclear fuel elements containing a metal hydride moderator which has a substantial hydrogen dissociation pressure at reactor operating temperatures.

  6. Method of generating hydrogen-storing hydride complexes

    DOEpatents

    None, None

    2013-05-14

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  7. Hydrogen-storing hydride complexes

    DOEpatents

    Srinivasan, Sesha S [Tampa, FL; Niemann, Michael U [Venice, FL; Goswami, D Yogi [Tampa, FL; Stefanakos, Elias K [Tampa, FL

    2012-04-10

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  8. Inactivation of possible micromycete food contaminants using the low-temperature plasma and hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Čeřovský, M.; Khun, J.; Rusová, K.; Scholtz, V.; Soušková, H.

    2013-09-01

    The inhibition effect of hydrogen peroxide aerosol, low-temperature plasma and their combinations has been studied on several micromycetes spores. The low-temperature plasma was generated in corona discharges in the open air apparatus with hydrogen peroxide aerosol. Micromycete spores were inoculated on the surface of agar plates, exposed solely to the hydrogen peroxide aerosol, corona discharge or their combination. After incubation the diameter of inhibition zone was measured. The solely positive corona discharge exhibits no inactivation effect, the solely negative corona discharge and solely hydrogen peroxide aerosol exhibit the inactivation effect, however their combinations exhibit to be much more effective. Low-temperature plasma and hydrogen peroxide aerosol present a possible alternative method of microbial decontamination of food, food packages or other thermolabile materials.

  9. Isolating Gas Sensor From Pressure And Temperature Effects

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Chen, Tony T. D.; Chaturvedi, Sushi K.

    1994-01-01

    Two-stage flow system enables oxygen sensor in system to measure oxygen content of low-pressure, possibly-high-temperature atmosphere in test environment while protecting sensor against possibly high temperature and fluctuations in pressure of atmosphere. Sensor for which flow system designed is zirconium oxide oxygen sensor sampling atmospheres in high-temperature wind tunnels. Also adapted to other gas-analysis instruments that must be isolated from pressure and temperature effects of test environments.

  10. Active Temperature Compensation Using a High-Temperature, Fiber Optic, Hybrid Pressure and Temperature Sensor

    NASA Astrophysics Data System (ADS)

    Fielder, Robert S.; Palmer, Matthew E.; Davis, Matthew A.; Engelbrecht, Gordon P.

    2006-01-01

    Luna Innovations has developed a novel, fiber optic, hybrid pressure-temperature sensor system for extremely high-temperature environments that is capable of reliable operation up to 1050 °C. This system is based on the extremely high-temperature fiber optic sensors already demonstrated during previous work. The novelty of the sensors presented here lies in the fact that pressure and temperature are measured simultaneously with a single fiber and a single transducer. This hybrid approach will enable highly accurate active temperature compensation and sensor self-diagnostics not possible with other platforms. Hybrid pressure and temperature sensors were calibrated by varying both pressure and temperature. Implementing active temperature compensation resulted in a ten-fold reduction in the temperature-dependence of the pressure measurement. Sensors were tested for operability in a relatively high neutron dose environment up to 6.9×1017 n/cm2. In addition to harsh environment survivability, fiber optic sensors offer a number of intrinsic advantages for space nuclear power applications including extremely low mass, immunity to electromagnetic interference, self diagnostics / prognostics, and smart sensor capability. Deploying fiber optic sensors on future space exploration missions would provide a substantial improvement in spacecraft instrumentation. Additional development is needed, however, before these advantages can be realized. This paper will highlight recent demonstrations of fiber optic sensors in environments relevant to space nuclear applications. Successes and lessons learned will be highlighted. Additionally, development needs will be covered which will suggest a framework for a coherent plan to continue work in this area.

  11. NMR imaging of cell phone radiation absorption in brain tissue

    PubMed Central

    Gultekin, David H.; Moeller, Lothar

    2013-01-01

    A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance frequency shift of hydrogen protons in brain tissue. This proposed application of NMR thermometry offers sufficient spatial and temporal resolution to characterize the hot spots from absorbed cell phone radiation in aqueous media and biological tissues. Specific absorption rate measurements averaged over 1 mg and 10 s in the brain tissue cover the total absorption volume. Reference measurements with fiber optic temperature sensors confirm the accuracy of the NMR thermometry. PMID:23248293

  12. NMR imaging of cell phone radiation absorption in brain tissue.

    PubMed

    Gultekin, David H; Moeller, Lothar

    2013-01-02

    A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance frequency shift of hydrogen protons in brain tissue. This proposed application of NMR thermometry offers sufficient spatial and temporal resolution to characterize the hot spots from absorbed cell phone radiation in aqueous media and biological tissues. Specific absorption rate measurements averaged over 1 mg and 10 s in the brain tissue cover the total absorption volume. Reference measurements with fiber optic temperature sensors confirm the accuracy of the NMR thermometry.

  13. CFD Modeling of Helium Pressurant Effects on Cryogenic Tank Pressure Rise Rates in Normal Gravity

    NASA Technical Reports Server (NTRS)

    Grayson, Gary; Lopez, Alfredo; Chandler, Frank; Hastings, Leon; Hedayat, Ali; Brethour, James

    2007-01-01

    A recently developed computational fluid dynamics modeling capability for cryogenic tanks is used to simulate both self-pressurization from external heating and also depressurization from thermodynamic vent operation. Axisymmetric models using a modified version of the commercially available FLOW-3D software are used to simulate actual physical tests. The models assume an incompressible liquid phase with density that is a function of temperature only. A fully compressible formulation is used for the ullage gas mixture that contains both condensable vapor and a noncondensable gas component. The tests, conducted at the NASA Marshall Space Flight Center, include both liquid hydrogen and nitrogen in tanks with ullage gas mixtures of each liquid's vapor and helium. Pressure and temperature predictions from the model are compared to sensor measurements from the tests and a good agreement is achieved. This further establishes the accuracy of the developed FLOW-3D based modeling approach for cryogenic systems.

  14. Palladium configuration dependence of hydrogen detection sensitivity based on graphene FET for breath analysis

    NASA Astrophysics Data System (ADS)

    Sakamoto, Yuri; Uemura, Kohei; Ikuta, Takashi; Maehashi, Kenzo

    2018-04-01

    We have succeeded in fabricating a hydrogen gas sensor based on palladium-modified graphene field-effect transistors (FETs). The negative-voltage shift in the transfer characteristics was observed with exposure to hydrogen gas, which was explained by the change in work function. The hydrogen concentration dependence of the voltage shift was investigated using graphene FETs with palladium deposited by three different evaporation processes. The results indicate that the hydrogen detection sensitivity of the palladium-modified graphene FETs is strongly dependent on the palladium configuration. Therefore, the palladium-modified graphene FET is a candidate for breath analysis.

  15. In situ measurement of the junction temperature of light emitting diodes using a flexible micro temperature sensor.

    PubMed

    Lee, Chi-Yuan; Su, Ay; Liu, Yin-Chieh; Fan, Wei-Yuan; Hsieh, Wei-Jung

    2009-01-01

    This investigation aimed to fabricate a flexible micro resistive temperature sensor to measure the junction temperature of a light emitting diode (LED). The junction temperature is typically measured using a thermal resistance measurement approach. This approach is limited in that no standard regulates the timing of data capture. This work presents a micro temperature sensor that can measure temperature stably and continuously, and has the advantages of being lightweight and able to monitor junction temperatures in real time. Micro-electro-mechanical-systems (MEMS) technologies are employed to minimize the size of a temperature sensor that is constructed on a stainless steel foil substrate (SS-304 with 30 μm thickness). A flexible micro resistive temperature sensor can be fixed between the LED chip and the frame. The junction temperature of the LED can be measured from the linear relationship between the temperature and the resistance. The sensitivity of the micro temperature sensor is 0.059 ± 0.004 Ω/°C. The temperature of the commercial CREE(®) EZ1000 chip is 119.97 °C when it is thermally stable, as measured using the micro temperature sensor; however, it was 126.9 °C, when measured by thermal resistance measurement. The micro temperature sensor can be used to replace thermal resistance measurement and performs reliably.

  16. Absolute pressure transducers for space shuttle and orbiter propulsion and control systems

    NASA Technical Reports Server (NTRS)

    Bolta, J. J.

    1974-01-01

    A preliminary design was completed, reviewing of such subjects as: the trade studies for media isolation and one sensor vs. two sensors for two bridges; compensation resistors; unit design; hydrogen embrittlement; sealing techniques and test station design. A design substantiation phase was finished, consisting of testing of a prototype unit and fabrication technique studies. A cryogenic test station was implemented and prototype sensor cells were fabricated, sensors assembled, and cryogenic tests performed.

  17. The influence of hard-baking temperature applied for SU8 sensor layer on the sensitivity of capacitive chemical sensor

    NASA Astrophysics Data System (ADS)

    Klanjšek Gunde, Marta; Hauptman, Nina; Maček, Marijan; Kunaver, Matjaž

    2009-06-01

    SU8, the near-UV photosensitive epoxy-based polymer was used as a sensor layer in the capacitive chemical sensor, ready for integration with a generic double-metal CMOS technology. It was observed that the response of the sensor slowly increases with the temperature applied in hard-baking process as long as it remains below 300°C. At this temperature the response of the sensor abruptly increases and becomes almost threefold. It was shown that fully crosslinked structure of the sensor layer becomes opened and disordered when the sensor is hard-baked at temperatures between 300°C and 320°C, that is, still well below the degradation temperature of the polymer. These changes in chemical structure were analyzed by Fourier-transform infrared spectroscopy. The temperature-dependent changes of the sensor layer structure enable one to prepare a combination of capacitive chemical sensors with good discrimination between some volatile organic compounds.

  18. State of the art in high-temperature fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Fielder, Robert S.; Stinson-Bagby, Kelly L.; Palmer, Matthew E.

    2004-12-01

    The objective of the work presented was to develop a suite of sensors for use in high-temperature aerospace environments, including turbine engine monitoring, hypersonic vehicle skin friction measurements, and support ground and flight test operations. A fiber optic sensor platform was used to construct the sensor suite. Successful laboratory demonstrations include calibration of pressure sensors to 500psi at a gas temperature of 800°C. Additionally, pressure sensors were demonstrated at 800°C in combination with a high-speed (1.0MHz) fiber optic readout system enabling previously unobtainable dynamic measurements at high-temperatures. Temperature sensors have been field tested up to 1400°C and as low as -195°C. The key advancement that enabled the operation of these novel harsh environment sensors was a fiber optic packaging methodology that allowed the coupling of alumina and sapphire transducer components, optical fiber, and high-temperature alloy housing materials. The basic operation of the sensors and early experimental results are presented. Each of the sensors described here represent a quantifiable advancement in the state of the art in high-temperature physical sensors and will have a significant impact on the aerospace propulsion instrumentation industry.

  19. Hydrogen Research for Spaceport and Space-Based Applications: Fuel Cell Projects

    NASA Technical Reports Server (NTRS)

    Anderson, Tim; Balaban, Canan

    2008-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Fuel cell research focused on proton exchange membranes (PEM), solid oxide fuel cells (SOFC). Specific technologies included aircraft fuel cell reformers, new and improved electrodes, electrolytes, interconnect, and seals, modeling of fuel cells including CFD coupled with impedance spectroscopy. Research was conducted on new materials and designs for fuel cells, along with using embedded sensors with power management electronics to improve the power density delivered by fuel cells. Fuel cell applications considered were in-space operations, aviation, and ground-based fuel cells such as; powering auxiliary power units (APUs) in aircraft; high power density, long duration power supplies for interplanetary missions (space science probes and planetary rovers); regenerative capabilities for high altitude aircraft; and power supplies for reusable launch vehicles.

  20. 40 CFR 63.11563 - What are my monitoring requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and the following requirements: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum... procedures in the manufacturer's documentation; or (ii) By comparing the sensor output to redundant sensor...

Top