Lewis, Aaron; George Hilley,; Lewicki, Jennifer L.
2015-01-01
This work presents a method to create high-resolution (cm-scale) orthorectified and georeferenced maps of apparent surface temperature and radiant hydrothermal heat flux and estimate the radiant hydrothermal heat emission rate from a study area. A ground-based thermal infrared (TIR) camera was used to collect (1) a set of overlapping and offset visible imagery around the study area during the daytime and (2) time series of co-located visible and TIR imagery at one or more sites within the study area from pre-dawn to daytime. Daytime visible imagery was processed using the Structure-from-Motion photogrammetric method to create a digital elevation model onto which pre-dawn TIR imagery was orthorectified and georeferenced. Three-dimensional maps of apparent surface temperature and radiant hydrothermal heat flux were then visualized and analyzed from various computer platforms (e.g., Google Earth, ArcGIS). We demonstrate this method at the Mammoth Mountain fumarole area on Mammoth Mountain, CA. Time-averaged apparent surface temperatures and radiant hydrothermal heat fluxes were observed up to 73.7 oC and 450 W m-2, respectively, while the estimated radiant hydrothermal heat emission rate from the area was 1.54 kW. Results should provide a basis for monitoring potential volcanic unrest and mitigating hydrothermal heat-related hazards on the volcano.
Yin, Jun; Wang, Kun; Yang, Yuqiang; Shen, Dongsheng; Wang, Meizhen; Mo, Han
2014-11-01
Food waste (FW) was pretreated by a hydrothermal method and then fermented for volatile fatty acid (VFAs) production. The soluble substance in FW increased after hydrothermal pretreatment (⩽200 °C). Higher hydrothermal temperature would lead to mineralization of the organic compounds. The optimal temperature for organic dissolution was 180 °C, at which FW dissolved 42.5% more soluble chemical oxygen demand than the control. VFA production from pretreated FW fermentation was significantly enhanced compared with the control. The optimal hydrothermal temperature was 160 °C with a VFA yield of 0.908 g/g VSremoval. Butyrate and acetate were the prevalent VFAs followed by propionate and valerate. FW fermentation was inhibited after 200 °C pretreatment. The VFAs were extracted from the fermentation broth by liquid-liquid extraction. The VFA recovery was 50-70%. Thus, 0.294-0.411 g VFAs could be obtained per gram of hydrothermally pretreated FW (in dry weight) by this method. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, Liping; Li, Aimin; Chang, Yuzhi
2017-04-01
Hydrothermal treatment is an effective method to enhance the deep dewaterability of excess sludge with low energy consumption. In this study, an insight into the relationship between enhanced dewaterability and structural properties of the produced hydrothermal sludge was presented, aiming at better understanding the effect of hydrothermal process on excess sludge dewatering performance. The results indicated that hydrothermal effect induced the transformation of surface water to interstitial and free water by lowering the binding strength between adjacent water and solid particles and that free water became the main form for moisture existence in hydrothermal sludge as temperature was higher than 180 °C. Increase in temperature of hydrothermal treatment generated a significant size reduction of sludge flocs but treated sludge with a higher rigidity, which not only strengthened the network of hydrothermal sludge but also destroyed the binding of EPS with water. Hydrothermal process caused crevice and pore structures of excess sludge to disappear gradually, which was a main driving force of water removal as temperature was below 150 °C. With the temperature of hydrothermal treatment exceeding 180 °C, the morphology of hydrothermal sludge became rough which linked closely to the solid precipitation of condensation polymerization, and further became smooth at higher temperature (210 °C) due to the coal-like structures with higher aromaticities, indicating that hydrothermal reaction pathways began to play a main role in enhanced dewaterability. Hydrothermal treatment led to more alkyl and aromatic carbon, but lower O-alkyl, carboxyl and carbonyl carbon. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Yunling; College of Science, Civil Aviation University of China, Tianjin 300300; Tan, Xin
Highlights: • Flower-like brookite TiO{sub 2} structures were prepared by hydrothermal method. • PVP not only acted as a dispersant but also stabilized the layered structure. • The resulted brookite TiO{sub 2} showed high photocatalytic activity under UV irradiation. - Abstract: Flower-like brookite TiO{sub 2} nanostructures were controllable prepared by a one-step hydrothermal method by changing experimental conditions, such as hydrothermal temperature, reaction time and the amount of polyvinylpyrrolidone. The photocatalytic activities of the samples were investigated by degradation of methylene blue (MB) in aqueous solution under UV light irradiation. It was found that the formation of brookite TiO{sub 2}more » nanostructures with various morphologies could be well controlled by the adjustment of hydrothermal temperature, reaction time and the amount of surfactant, and the morphology of the products changed from spindle-like structures to flower-like structures with the increase of hydrothermal temperature, reaction time and the amount of surfactant. The photocatalytic tests indicate that the flower-like brookite TiO{sub 2} nanostructures shows high photocatalytic activity in degradation of methylene blue (MB) under UV light irradiation. The formation mechanism of flower-like brookite TiO{sub 2} nanostructures was also discussed in detail based on the above investigations.« less
Exploration Method Development for hydrothermal plume hunting by XCTD
NASA Astrophysics Data System (ADS)
Kitagawa, Y.; Ikeda, M.; Kadoshima, K.; Koizumi, Y.; Nakano, J.; Asakawa, E.; Sumi, T.
2017-12-01
J-MARES (Research and Development Partnership for Next Generation Technology of Marine Resources Survey, JAPAN) has been designing a low-cost and high-efficiency exploration system for seafloor hydrothermal massive sulfide deposits in "Cross-ministerial Strategic Innovation Promotion Program (SIP)" granted by the Cabinet Office, Government of Japan since 2014. We proposed hydrothermal plume hunting by XCTD (eXpendables Conductivity, Temperature and Depth). We applied this method to an area of interest more than 100km x 100km over Okinawa Trough, including some known seafloor massive sulfide deposits. Generally, hydrothermal plume exploration has been by ship mounted with MBES (Multi Beam Echo Sounder) or AUV with sound anomaly observation. However, these methods have to charter the sophisticated ship costly. On the other hand, throw-in type water quality meters (eg. XCTD and XBT) can be low-cost and easily operable. Moreover, that can make a quick look at seawater temperature and conductivity even in rough waters.Firstly, we confirmed XCTD probes position on the seafloor by ROV mounted deep-sea high vision camera. As a result of the test, probes swept downstream about 40 m in horizontal distance from throwing positions with about 1,600m in water depth. Following the previous test results, we had performed to the next test that confirmed detection range of hydrothermal plume at the chimney of North Mound in Izena Cauldron, so we had caught anomaly of seawater temperature and conductivity successfully which could be possibly derived from hydrothermal activities. Although averaged seawater temperature at a depth of 1500 m or more was about 3.95 degrees C, near the chimney was about 4.93 degrees C. The temperature anomalies originated from the hydrothermal plumes could be distributed at most 30m in horizontal distance and became smaller away from the chimney. Moreover, temperature anomaly mass of sea water tended to move upward in depth with distance away from the chimney.
NASA Astrophysics Data System (ADS)
Dhafina, Wan Almaz; Salleh, Hasiah; Daud, Mohd Zalani; Ghazali, Mohd Sabri Mohd; Ghazali, Salmah Mohd
2017-09-01
ZnO is an wide direct band gap semiconductor and possess rich family of nanostructures which turned to be a key role in the nanotechnology field of applications. Hydrothermal method was proven to be simple, robust and low cost among the reported methods to synthesize ZnO nanostructures. In this work, the properties of ZnO nanostructures were altered by varying temperatures of hydrothermal process. The changes in term of morphological, crystal structures, optical properties and electrical conductivity were investigated. A drastic change of ZnO nanostructures morphology and decreases of 002 diffraction peak were observed as the hydrothermal temperature increased. The band gap of samples decreased as the size of ZnO nanostructure increased, whereas the electrical conductivity had no influence on the band gap value but more on the morphology of ZnO nanostructures instead.
Hydrothermal synthesis and shape-reactivity correlation study of automotive three-way nanocatalysts.
DOT National Transportation Integrated Search
2014-02-01
In this project, we have shown that the hydrothermal method can be used to tune : the shape/size of CeO2 nanocrystals. CeO2 nanorods and nanocubes have been successfully : prepared at low and high hydrothermal reaction temperature, respectively. The ...
Methods to enhance the characteristics of hydrothermally prepared slurry fuels
Anderson, Chris M.; Musich, Mark A.; Mann, Michael D.; DeWall, Raymond A.; Richter, John J.; Potas, Todd A.; Willson, Warrack G.
2000-01-01
Methods for enhancing the flow behavior and stability of hydrothermally treated slurry fuels. A mechanical high-shear dispersion and homogenization device is used to shear the slurry fuel. Other improvements include blending the carbonaceous material with a form of coal to reduce or eliminate the flocculation of the slurry, and maintaining the temperature of the hydrothermal treatment between approximately 300.degree. to 350.degree. C.
NASA Astrophysics Data System (ADS)
Chen, Zhixin; Li, Danzhen; Xiao, Guangcan; He, Yunhui; Xu, Yi-Jun
2012-02-01
Marigold-like ZnIn2S4 microspheres were synthesized by a microwave-assisted hydrothermal method with the temperature ranging from 80 to 195 °C. X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen sorption analysis, UV-visible spectroscopy, scanning electron microscopy and transmission electron microscopy were used to characterize the products. It was found that the crystallographic structure and optical property of the products synthesized at different temperatures were almost the same. The degradation of methyl orange (MO) under the visible light irradiation has been used as a probe reaction to investigate the photocatalytic activity of as-prepared ZnIn2S4, which shows that the ZnIn2S4 sample synthesized at 195 °C shows the best photocatalytic activity for MO degradation. In addition, the photocatalytic activities of all the samples prepared by the microwave-assisted hydrothermal method are better than those prepared by a normal hydrothermal method, which could be attributed to the formation of more defect sites during the microwave-assisted hydrothermal treatment.
Rare Earth Oxide Fluoride Nanoparticles And Hydrothermal Method For Forming Nanoparticles
Fulton, John L.; Hoffmann, Markus M.
2003-12-23
A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.
Rare earth oxide fluoride nanoparticles and hydrothermal method for forming nanoparticles
Fulton, John L [Richland, WA; Hoffmann, Markus M [Richland, WA
2001-11-13
A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Zhixin, E-mail: czx@fzu.edu.cn; Analysis and Test Center, Fuzhou University, Fuzhou 350002; Li Danzhen
Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a microwave-assisted hydrothermal method with the temperature ranging from 80 to 195 Degree-Sign C. X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen sorption analysis, UV-visible spectroscopy, scanning electron microscopy and transmission electron microscopy were used to characterize the products. It was found that the crystallographic structure and optical property of the products synthesized at different temperatures were almost the same. The degradation of methyl orange (MO) under the visible light irradiation has been used as a probe reaction to investigate the photocatalytic activity of as-prepared ZnIn{sub 2}S{sub 4}, which shows that the ZnIn{sub 2}S{submore » 4} sample synthesized at 195 Degree-Sign C shows the best photocatalytic activity for MO degradation. In addition, the photocatalytic activities of all the samples prepared by the microwave-assisted hydrothermal method are better than those prepared by a normal hydrothermal method, which could be attributed to the formation of more defect sites during the microwave-assisted hydrothermal treatment. - Graphical abstract: Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a fast microwave-assisted hydrothermal method at 80-195 Degree-Sign C with a very short reaction time of 10 min. The as-prepared ZnIn{sub 2}S{sub 4} sample can be used as visible light photocatalyst for degradation of organic dyes. Highlights: Black-Right-Pointing-Pointer ZnIn{sub 2}S{sub 4} microspheres were synthesized by microwave-assisted hydrothermal method. Black-Right-Pointing-Pointer The crystal structure and optical property of the products were almost the same. Black-Right-Pointing-Pointer Increment of the temperature renders high surface area due to the bubbling effect. Black-Right-Pointing-Pointer The ZnIn{sub 2}S{sub 4} synthesized at 195 Degree-Sign C shows the best visible catalytic activity for MO.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Zhen-Hua; Wei, Kaya; Lewis, Hutton
A hydrothermal approach was employed to efficiently synthesize SnSe nanorods. The nanorods were consolidated into polycrystalline SnSe by spark plasma sintering for low temperature electrical and thermal properties characterization. The low temperature transport properties indicate semiconducting behavior with a typical dielectric temperature dependence of the thermal conductivity. The transport properties are discussed in light of the recent interest in this material for thermoelectric applications. The nanorod growth mechanism is also discussed in detail. - Graphical abstract: SnSe nanorods were synthesized by a simple hydrothermal method through a bottom-up approach. Micron sized flower-like crystals changed to nanorods with increasing hydrothermal temperature.more » Low temperature transport properties of polycrystalline SnSe, after SPS densification, were reported for the first time. This bottom-up synthetic approach can be used to produce phase-pure dense polycrystalline materials for thermoelectrics applications. - Highlights: • SnSe nanorods were synthesized by a simple and efficient hydrothermal approach. • The role of temperature, time and NaOH content was investigated. • SPS densification allowed for low temperature transport properties measurements. • Transport measurements indicate semiconducting behavior.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Xin-Yu; Zhu, Ying-Jie, E-mail: y.j.zhu@mail.sic.ac.cn; Lu, Bing-Qiang
Graphical abstract: Hydroxyapatite nanorods are synthesized using biocompatible biomolecule pyridoxal-5′-phosphate as a new organic phosphorus source by the hydrothermal method. - Highlights: • Hydrothermal synthesis of hydroxyapatite nanorods is reported. • Biocompatible pyridoxal-5′-phosphate is used as an organic phosphorus source. • This method is simple, surfactant-free and environmentally friendly. - Abstract: Hydroxyapatite nanorods are synthesized by the hydrothermal method using biocompatible biomolecule pyridoxal-5′-phosphate (PLP) as a new organic phosphorus source. In this method, PLP biomolecules are hydrolyzed to produce phosphate ions under hydrothermal conditions, and these phosphate ions react with pre-existing calcium ions to form hydroxyapatite nanorods. The effects ofmore » experimental conditions including hydrothermal temperature and time on the morphology and crystal phase of the products are investigated. This method is simple, surfactant-free and environmentally friendly. The products are characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric (TG) analysis.« less
Preparation of meta-stable phases of barium titanate by Sol-hydrothermal method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selvaraj, Mahalakshmi; Department of Material Science, School of Chemistry, Madurai Kamaraj University, Tamilnadu Madurai-625 021; Venkatachalapathy, V.
2015-11-15
Two low-cost chemical methods of sol–gel and the hydrothermal process have been strategically combined to fabricate barium titanate (BaTiO{sub 3}) nanopowders. This method was tested for various synthesis temperatures (100 °C to 250 °C) employing barium dichloride (BaCl{sub 2}) and titanium tetrachloride (TiCl{sub 4}) as precursors and sodium hydroxide (NaOH) as mineralizer for synthesis of BaTiO{sub 3} nanopowders. The as-prepared BaTiO{sub 3} powders were investigated for structural characteristics using x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The overall analysis indicates that the hydrothermal conditions create a gentle environment to promote the formation of crystalline phasemore » directly from amorphous phase at the very low processing temperatures investigated. XRD analysis showed phase transitions from cubic - tetragonal - orthorhombic - rhombohedral with increasing synthesis temperature and calculated grain sizes were 34 – 38 nm (using the Scherrer formula). SEM and TEM analysis verified that the BaTiO{sub 3} nanopowders synthesized by this method were spherical in shape and about 114 - 170 nm in size. The particle distribution in both SEM and TEM shows that as the reaction temperature increases from 100 °C to 250 °C, the particles agglomerate. Selective area electron diffraction (SAED) shows that the particles are crystalline in nature. The study shows that choosing suitable precursor and optimizing pressure and temperature; different meta-stable (ferroelectric) phases of undoped BaTiO{sub 3} nanopowders can be stabilized by the sol-hydrothermal method.« less
NASA Astrophysics Data System (ADS)
Purwaningsih, Hariyati; Pratiwi, Vania Mitha; Purwana, Siti Annisa Bani; Nurdiansyah, Haniffudin; Rahmawati, Yenny; Susanti, Diah
2018-04-01
Rice husk is an agricultural waste that is potentially used as natural silica resources. Natural silica claimed to be safe in handling, cheap and can be generate from cheap resource. In this study mesoporous silica was synthesized using sodium silicate extracted from rice husk ash. This research's aim are to study the optimization of silica extraction from rice husk, characterizing mesoporous silica from sol-gel method and surfactant templating from rice husk and the effect of hydrothermal temperature on mesoporous silica nanoparticle (MSNp) formation. In this research, rice husk was extracted with sol-gel method and was followed by hydrothermal treatment; several of hydrothermal temperatures were 85°C, 100°C, 115°C, 130°C and 145° for 24 hours. X-ray diffraction analysis was identified of α-SiO2 phase and NaCl compound impurities. Scherer's analysis method for crystallite size have resulted 6.27-40.3 nm. FTIR results of silica from extraction and MSNp indicated Si-O-Si bonds on the sample. SEM result showed the morphology of the sample that has spherical shape and smooth surface. TEM result showed particle size ranged between 69,69-84,42 nm. BET showed that the pore size classified as mesoporous with pore diameter size is 19,29 nm.
Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents
NASA Astrophysics Data System (ADS)
Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua
2017-12-01
Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H2 and CO2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.
Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents.
Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua
2017-12-01
Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H 2 and CO 2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.
NASA Astrophysics Data System (ADS)
Malligavathy, M.; Iyyapushpam, S.; Nishanthi, S. T.; Padiyan, D. Pathinettam
2018-04-01
TiO2 nanoparticles were synthesised by hydrothermal method. The degree of crystallinity and phase purity were confirmed from the Raman spectra and X-ray diffraction. By increasing the hydrothermal temperature, crystallinity and AC conductivity of the TiO2 nanoparticles increase. Nitrogen adsorption-desorption measurements confirmed that the samples were mesoporous with an average pore diameter of 4.4-7.45 nm. Photocatalytic activity of TiO2 nanoparticles was evaluated and the sample hydrothermally treated at 160°C has the highest photocatalytic activity. In gas sensing measurements, sensitivity increases as a function of concentration and the response to ethanol vapour was better compared to other gases for the sample synthesised at 160°C.
Hydrothermal Synthesis and Electrochemical Properties of Spherical α-MnO2 for Supercapacitors.
Chen, Ya; Qin, Wenqing; Fan, Ruijuan; Wang, Jiawei; Chen, Baizhen
2015-12-01
In the present work, spherical α-MnO2 with a high specific capacitance was synthesized by a two-step hydrothermal route. MnCO3 precursors were first prepared by a common hydrothermal method, and then converted to α-MnO2 via a hydrothermal reaction between the precursors and KMnO4 solutions. The effects of hydrothermal temperature on the morphology, crystal structure and specific area of the MnO2 were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and BET measurements. The electrochemical capacitive properties of the manganese dioxides with different morphologies and structures were evaluated by cyclic voltammetry and galvonostatic charge-discharge tests. The results showed that the temperature in the second hydrothermal step had prominent impact on the capacitive properties of a-MnO2. The MnO2 synthesized at 150 *C exhibited a highest specific capacitance of 328.4 Fx g(-1) at a charge-discharge current density of 100 mA x g(-1).
Ohta, Kanako; Isobe, Gaku; Bornmann, Peter; Hemsel, Tobias; Morita, Takeshi
2013-04-01
The hydrothermal method utilizes a solution-based chemical reaction to synthesize piezoelectric thin films and powders. This method has a number of advantages, such as low-temperature synthesis, and high purity and high quality of the product. In order to promote hydrothermal reactions, we developed an ultrasonic assisted hydrothermal method and confirmed that it produces dense and thick lead-zirconate-titanate (PZT) films. In the hydrothermal method, a crystal growth process follows the nucleation process. In this study, we verified that ultrasonic irradiation is effective for the nucleation process, and there is an optimum irradiation period to obtain thicker PZT films. With this optimization, a 9.2-μm-thick PZT polycrystalline film was obtained in a single deposition process. For this film, ultrasonic irradiation was carried out from the beginning of the reaction for 18 h, followed by a 6 h deposition without ultrasonic irradiation. These results indicate that the ultrasonic irradiation mainly promotes the nucleation process. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chung, Youngmin
Transition metal phosphate materials have been researched as candidates for lithium-ion battery cathodes for about two decades. Among them, vanadium phosphate compounds are attractive due to their higher free energy of reaction than the corresponding iron compounds, and the greater possible change of oxidation state from V5+ to V3+. This thesis work firstly focuses on the chemical and electrochemical lithiation of epsilon--VOPO4 investigating the possibility of multi-electron intercalation. The second focus is on hydrothermal synthesis and characterization of epsilon--LiVOPO4. The hydrothermal synthesis method developed in this work produces pure epsilon-LiVOPO 4 at high temperature hydrothermal reaction and pure LiVOPO4˙2H 2O at low temperature. The first charge capacity of hydrothermal epsilon-LiVOPO 4 is around 308 mAh/g, which is almost 97% of the theoretical capacity. It also shows good reversibility in the first five cycles after which capacity fading occurs. For more detailed structural analysis of hydrothermal epsilon-LiVOPO 4, we used in-situ synchrotron XRD and EXAFS upon heating combined with TGA-MS. These techniques have revealed intercalated protons that are removed at about 350 °C, and a reversible symmetry change from triclinic to monoclinic at high temperature. Furthermore, we have used chemical lithiation with BuLi to produce and characterize epsilon-Li2VOPO 4 phase. Finally, we have modified the hydrothermal method to produce Cr-substituted epsilon--LiVOPO4 by changing the amount LiOH and adding Cr precursor. Cr substitution is found to modify the stoichiometry of the compound and to improve its cyclability at both high and low current densities.
Simple mass production of zinc oxide nanostructures via low-temperature hydrothermal synthesis
NASA Astrophysics Data System (ADS)
Ghasaban, Samaneh; Atai, Mohammad; Imani, Mohammad
2017-03-01
The specific properties of zinc oxide (ZnO) nanoparticles have attracted much attention within the scientific community as a useful material for biomedical applications. Hydrothermal synthesis is known as a useful method to produce nanostructures with certain particle size and morphology however, scaling up the reaction is still a challenging task. In this research, large scale hydrothermal synthesis of ZnO nanostructures (60 g) was performed in a 5 l stainless steel autoclave by reaction between anionic (ammonia or sodium hydroxide) and cationic (zinc acetate dehydrate) precursors in low temperature. Hydrothermal reaction temperature and time were decreased to 115 °C and 2 or 6 h. In batch repetitions, the same morphologies (plate- and needle-like) with reproducible particle size were obtained. The nanostructures formed were analyzed by powder x-ray diffraction, Fourier-transform infrared spectroscopy, energy dispersive x-ray analysis, scanning electron microscopy and BET analysis. The nanostructures formed were antibacterially active against Staphylococcus aureus.
Lead recovery from scrap cathode ray tube funnel glass by hydrothermal sulphidisation.
Yuan, Wenyi; Meng, Wen; Li, Jinhui; Zhang, Chenglong; Song, Qingbin; Bai, Jianfeng; Wang, Jingwei; Li, Yingshun
2015-10-01
This research focused on the application of the hydrothermal sulphidisation method to separate lead from scrap cathode ray tube funnel glass. Prior to hydrothermal treatment, the cathode ray tube funnel glass was pretreated by mechanical activation. Under hydrothermal conditions, hydroxyl ions (OH(-)) were generated through an ion exchange reaction between metal ions in mechanically activated funnel glass and water, to accelerate sulphur disproportionation; no additional alkaline compound was needed. Lead contained in funnel glass was converted to lead sulphide with high efficiency. Temperature had a significant effect on the sulphidisation rate of lead in funnel glass, which increased from 25% to 90% as the temperature increased from 100 °C to 300 °C. A sulphidisation rate of 100% was achieved at a duration of 8 h at 300 °C. This process of mechanical activation and hydrothermal sulphidisation is efficient and promising for the treatment of leaded glass. © The Author(s) 2015.
Huang, Hua-Jun; Yuan, Xing-Zhong
2016-01-01
Various hydrothermal treatment methods, including hydrothermal carbonization, liquefaction and sub/super-critical water gasification, have been applied to the disposal of sewage sludge for producing bio-materials or bio-fuels. It has become a research hotspot whether the heavy metals contained in sewage sludge can be well treated/stabilized after the hydrothermal treatments. This review firstly summarized the methods of assessing heavy metals' contamination level/risk and then discussed the migration and transformation behaviors of heavy metals from the following aspects: the effect of reaction temperature, the effect of additives (catalysts and other biomass), the effect of the type of solvent and the effect of reaction time. This review can provide an important reference for the further study of the migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ion/proton-conducting apparatus and method
Yates, Matthew; Xue, Wei
2014-12-23
A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors. Additional high-density and gas-tight HAP film compositions may be deposited using a two-step deposition method that includes an electrochemical deposition method followed by a hydrothermal deposition method. The two-step method uses a single hydrothermal deposition solution composition. The method may be used to deposit HAP films including but not limited to at least doped HAP films, and more particularly including carbonated HAP films. In addition, the high-density and gas-tight HAP films may be used in proton exchange membrane fuel cells.
NASA Astrophysics Data System (ADS)
Biswas, Sayari; Kar, Asit Kumar
2018-02-01
Titanium dioxide (TiO2) thin films were synthesized by hydrothermal assisted sol-gel dip coating method on quartz substrate. The sol was prepared by hydrothermal method at 90 °C. Dip coating method was used to deposit the thin films. Later films were annealed at four different temperatures -600 °C, 800 °C, 1000 °C and 1200 °C. XRD study showed samples annealed at 600 °C are almost amorphous. At 800 °C, film turns into anatase phase and with further increment of annealing temperature they turn into rutile phase. Transmission spectra of thin films show sharp rise in the violet-ultraviolet transition region and a maximum transmittance of ˜60% was observed in the visible region for the sample annealed at the lowest temperature. Band gap of the prepared films varies from 2.9 eV to 3.5 eV.
Advantage of low-temperature hydrothermal synthesis to grow stoichiometric crednerite crystals
NASA Astrophysics Data System (ADS)
Poienar, Maria; Martin, Christine; Lebedev, Oleg I.; Maignan, Antoine
2018-06-01
This work reports a new approach for the growth of stoichiometric crednerite CuMnO2 crystals. The hydrothermal reaction, starting from soluble metal sulphates as precursors, is assisted by ethylene glycol and the formation of crednerite is found to depend strongly on pH and temperature. This method allows obtaining small hexagonal platelets with the larger dimension about 1.0-1.5 μm and with a composition characterized by a Cu/Mn ratio of 1. Thus, these crystals differ from the needle-like millimetric ones obtained by the flux technique for which the composition departs from the expected one and is close to Cu1.04Mn0.96. This monitoring of the cationic composition in crednerite, using hydrothermal synthesis, is important as the Cu/Mn ratio controls the low temperature antiferromagnetic ground-state.
VO2 nanorods for efficient performance in thermal fluids and sensors
NASA Astrophysics Data System (ADS)
Dey, Kajal Kumar; Bhatnagar, Divyanshu; Srivastava, Avanish Kumar; Wan, Meher; Singh, Satyendra; Yadav, Raja Ram; Yadav, Bal Chandra; Deepa, Melepurath
2015-03-01
VO2 (B) nanorods with average width ranging between 50-100 nm are synthesized via a hydrothermal method and the post hydrothermal treatment drying temperature is found to be influential in their overall phase and growth morphology evolution. The nanorods with unusually high optical bandgap for a VO2 material are effective in enhancing the thermal performance of ethylene glycol nanofluids over a wide temperature range as is indicated by the temperature dependent thermal conductivity measurements. Humidity and LPG sensors fabricated using the VO2 (B) nanorods bear testament to their efficient sensing performance, which can be partially attributed to the mesoporous nature of the nanorods.VO2 (B) nanorods with average width ranging between 50-100 nm are synthesized via a hydrothermal method and the post hydrothermal treatment drying temperature is found to be influential in their overall phase and growth morphology evolution. The nanorods with unusually high optical bandgap for a VO2 material are effective in enhancing the thermal performance of ethylene glycol nanofluids over a wide temperature range as is indicated by the temperature dependent thermal conductivity measurements. Humidity and LPG sensors fabricated using the VO2 (B) nanorods bear testament to their efficient sensing performance, which can be partially attributed to the mesoporous nature of the nanorods. Electronic supplementary information (ESI) available: Plots representing the actual ratio Knf/KEG (Knf is the thermal conductivity of the nanofluid and KEG being thermal conductivity of the base fluid) across the entire experimental temperature range of 20 to 80 °C, table representing a comparison of performance of the VO2 sensor towards different gases. See DOI: 10.1039/c4nr06032f
NASA Astrophysics Data System (ADS)
Wang, Dandan; Li, Xiuyan; Liu, Zuohua; Shi, Xue; Zhou, Guowei
2017-01-01
Hollow silica nanospheres with wrinkled or smooth surfaces were successfully fabricated through a hydrothermal method. In this method, oil-in-water microemulsion (composed of cyclohexane, water, ethanol, and cetyltrimethylammonium bromide), and polyvinylpyrrolidone were utilized as template and capping agent, respectively. In such a facile synthesis, we can well realize the morphological transformation of spheres with radially oriented mesochannels to hollow structures of silica nanoparticle only by regulating the hydrothermal temperature from 100 °C to 200 °C. Synthesized samples with different mesostructures were then used as supports to immobilize Candida rugosa lipase (CRL). The immobilized CRL was employed as a new biocatalyst for biodiesel production through the esterification of heptanoic acid with ethanol. The conversion ratio of heptanoic acid with ethanol catalyzed by the immobilized CRL was also evaluated. Results of this study suggest that the prepared samples have potential applications in biocatalysis.
NASA Astrophysics Data System (ADS)
Braddock, Mathilde; Biggs, Juliet; Watson, Iain M.; Hutchison, William; Pyle, David M.; Mather, Tamsin A.
2017-07-01
Fumaroles are the surface manifestation of hydrothermal circulation and can be influenced by magmatic, hydrothermal, hydrological and tectonic processes. This study investigates the temporal changes in fumarole temperatures and spatial extent on Aluto, a restless volcano in the Main Ethiopian Rift (MER), in order to better understand the controls on fluid circulation and the interaction between the magmatic and hydrothermal systems. Thermal infrared (TIR) satellite images, acquired by the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) over the period of 2004 to 2016, are used to generate time series of the fumarole temperatures and areas. The thermal anomalies identified in the ASTER images coincide with known fumaroles with temperatures > 80 °C and are located on or close to fault structures, which provide a pathway for the rising fluids. Most of the fumaroles, including those along the major zone of hydrothermal upwelling, the Artu Jawe Fault Zone, have pixel-integrated temperature variations of only 2 ± 1.5 °C. The exception are the Bobesa fumaroles located on a hypothesised caldera ring fault which show pixel-integrated temperature changes of up to 9 °C consistent with a delayed response of the hydrothermal system to precipitation. We conclude that fumaroles along major faults are strongly coupled to the magmatic-hydrothermal system and are relatively stable with time, whereas those along shallower structures close to the rift flank are more strongly influenced by seasonal variations in groundwater flow. The use of remote sensing data to monitor the thermal activity of Aluto provides an important contribution towards understanding the behaviour of this actively deforming volcano. This method could be used at other volcanoes around the world for monitoring and geothermal exploration.
Hydrothermal pretreatment of palm oil empty fruit bunch
NASA Astrophysics Data System (ADS)
Simanungkalit, Sabar Pangihutan; Mansur, Dieni; Nurhakim, Boby; Agustin, Astrid; Rinaldi, Nino; Muryanto, Fitriady, Muhammad Ariffudin
2017-01-01
Hydrothermal pretreatment methods in 2nd generation bioethanol production more profitable to be developed, since the conventional pretreatment, by using acids or alkalis, is associated with the serious economic and environmental constraints. The current studies investigate hydrothermal pretreatment of palm oil empty fruit bunch (EFB) in a batch tube reactor system with temperature and time range from 160 to 240 C and 15 to 30 min, respectively. The EFB were grinded and separated into 3 different particles sizes i.e. 10 mesh, 18 mesh and 40 mesh, prior to hydrothermal pretreatment. Solid yield and pH of the treated EFB slurries changed over treatment severities. The chemical composition of EFB was greatly affected by the hydrothermal pretreatment especially hemicellulose which decreased at higher severity factor as determined by HPLC. Both partial removal of hemicellulose and migration of lignin during hydrothermal pretreatment caused negatively affect for enzymatic hydrolysis. This studies provided important factors for maximizing hydrothermal pretreatment of EFB.
Defects in ZnO nanorods prepared by a hydrothermal method.
Tam, K H; Cheung, C K; Leung, Y H; Djurisić, A B; Ling, C C; Beling, C D; Fung, S; Kwok, W M; Chan, W K; Phillips, D L; Ding, L; Ge, W K
2006-10-26
ZnO nanorod arrays were fabricated using a hydrothermal method. The nanorods were studied by scanning electron microscopy, photoluminescence (PL), time-resolved PL, X-ray photoelectron spectroscopy, and positron annihilation spectroscopy before and after annealing in different environments and at different temperatures. Annealing atmosphere and temperature had significant effects on the PL spectrum, while in all cases the positron diffusion length and PL decay times were increased. We found that, while the defect emission can be significantly reduced by annealing at 200 degrees C, the rods still have large defect concentrations as confirmed by their low positron diffusion length and short PL decay time constants.
Hydrothermal modification and recycling of nonmetallic particles from waste print circuit boards.
Gao, Xuehua; Li, Qisheng; Qiu, Jun
2018-04-01
Nonmetallic particles recycled from waste print circuit boards (NPRPs) were modified by a hydrothermal treatment method and the catalysts, solvents, temperature and time were investigated, which affected the modification effect of NPRPs. The mild hydrothermal treatment method does not need high temperature, and would not cause secondary pollution. Further, the modified NPRPs were used as the raw materials for the epoxy resin and glass fibers/epoxy resin composites, which were prepared by pouring and hot-pressing method. The mechanical properties and morphology of the composites were discussed. The results showed that relative intensity of the hydroxyl bonds on the surface of NPRPs increased 58.9% after modification. The mechanical tests revealed that both flexural and impact properties of the composites can be significantly improved by adding the modified NPRPs. Particularly, the maximum increment of flexural strength, flexural modulus and impact strength of the epoxy matrix composites with 30% modified NPRPs is 40.1%, 80.0% and 79.0%, respectively. Hydrothermal treatment can modify surface of NPRPs successfully and modified NPRPs can not only improve the properties of the composites, but also reduce the production cost of the composites and environmental pollution. Thus, we develop a new way to recycle nonmetallic materials of waste print circuit boards and the highest level of waste material recycling with the raw materials-products-raw materials closed cycle can be realized through the hydrothermal modification and reuse of NPRPs. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tavakoli Banizi, Zoha; Seifi, Majid
2017-10-01
TGA-capped CdS nanoparticles were obtained in the presence of thioglycolic acid (TGA) as capping agent via a facile hydrothermal method at relatively low temperature and over a short duration. As-synthesized TGA-capped CdS nanoparticles were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, photoluminescence spectroscopy, Ultraviolet-visible spectroscopy and energy-dispersive x-ray spectroscopy. The products had spherical shapes, although their crystalline size and phase was dependent on temperature and time of the reaction. Photoluminescence spectra showed that the fluorescence intensity decreased when increasing the reaction time and temperature.
Sun, Shaoni; Cao, Xuefei; Sun, Shaolong; Xu, Feng; Song, Xianliang; Sun, Run-Cang; Jones, Gwynn Lloyd
2014-01-01
The recalcitrance of lignocellulosic biomass is a major limitation for its conversion into biofuels by enzymatic hydrolysis. The use of a pretreatment technology is an essential step to diminish biomass recalcitrance for bioethanol production. In this study, a two-step pretreatment using hydrothermal pretreatment at various temperatures and alkali fractionation was performed on eucalyptus fiber. The detailed chemical composition, physicochemical characteristics, and morphology of the pretreated fibers in each of the fractions were evaluated to advance the performance of eucalyptus fiber in enzymatic digestibility. The hydrothermal pretreatment (100 to 220°C) significantly degraded hemicelluloses, resulting in an increased crystallinity of the pretreated fibers. However, as the pretreatment temperature reached 240°C, partial cellulose was degraded, resulting in a reduced crystallinity of cellulose. As compared to the hydrothermal pretreatment alone, a combination of hydrothermal and alkali treatments significantly removed hemicelluloses and lignin, resulting in an improved enzymatic hydrolysis of the cellulose-rich fractions. As compared with the raw fiber, the enzymatic hydrolysis rate increased 1.1 to 8.5 times as the hydrothermal pretreatment temperature increased from 100 to 240°C. Interestingly, after a combination of hydrothermal pretreatment and alkali fractionation, the enzymatic hydrolysis rate increased 3.7 to 9.2 times. Taking into consideration the consumption of energy and the production of xylo-oligosaccharides and lignin, an optimum pretreatment condition was found to be hydrothermal pretreatment at 180°C for 30 min and alkali fractionation with 2% NaOH at 90°C for 2.5 h, in which 66.3% cellulose was converted into glucose by enzymatic hydrolysis. The combination of hydrothermal pretreatment and alkali fractionation was a promising method to remove hemicelluloses and lignin as well as overcome the biomass recalcitrance for enzymatic hydrolysis from eucalyptus fiber. In addition, the various techniques applied in this work constituted an efficient approach to understand the underlying chemical and morphological changes of the cellulose-rich fractions.
Manganese Oxidizing Bacteria in Guaymas Basin Hydrothermal Fluids, Sediments, and Plumes
NASA Astrophysics Data System (ADS)
Dick, G. J.; Tebo, B. M.
2002-12-01
The active seafloor hydrothermal system at Guaymas Basin in the Gulf of California is unique in that spreading centers are covered with thick sediments, and hydrothermal fluids are injected into a semi-enclosed basin. This hydrothermal activity is the source of a large input of dissolved manganese [Mn(II)] into Guaymas Basin, and the presence of a large standing stock of particulate manganese in this basin has been taken as evidence for a short residence time of dissolved Mn(II) with respect to oxidation, suggestive of bacterial catalysis. During a recent Atlantis/Alvin expedition (R/V Atlantis Cruise #7, Leg 11, Jim Cowen Chief Scientist), large amounts of particulate manganese oxides were again observed in Guaymas Basin hydrothermal plumes. The goal of the work presented here was to identify bacteria involved in the oxidation of Mn(II) in Guaymas Basin, and to determine what molecular mechanisms drive this process. Culture-based methods were employed to isolate Mn(II)-oxidizing bacteria from Guaymas Basin hydrothermal fluids, sediments, and plumes, and numerous Mn(II)-oxidizing bacteria were identified based on the formation of orange, brown, or black manganese oxides on bacterial colonies on agar plates. The Mn(II)-oxidizing bacteria were able to grow at temperatures from 12 to 50°C, and a selection of the isolates were chosen for phylogenetic (16S rRNA genes) and microscopic characterization. Endospore-forming Bacillus species accounted for many of the Mn(II)-oxidizing isolates obtained from both hydrothermal sediments and plumes, while members of the alpha- and gamma-proteobacteria were also found. Mn(II)-oxidizing enzymes from previously characterized Bacillus spores are known to be active at temperatures greater than 50°C. The presence of Mn(II)-oxidizing spores - some of which are capable of growing at elevated temperatures - in hydrothermal fluids and sediments at Guaymas Basin suggests that Mn(II) oxidation may be occurring immediately or very soon after hydrothermal fluids emerge from the seafloor.
Hydrothermal synthesis of porous triphasic hydroxyapatite/(alpha and beta) tricalcium phosphate.
Vani, R; Girija, E K; Elayaraja, K; Prakash Parthiban, S; Kesavamoorthy, R; Narayana Kalkura, S
2009-12-01
A novel, porous triphasic calcium phosphate composed of nonresorbable hydroxyapatite (HAp) and resorbable tricalcium phosphate (alpha- and beta-TCP) has been synthesized hydrothermally at a relatively low temperature. The calcium phosphate precursor for hydrothermal treatment was prepared by gel method in the presence of ascorbic acid. XRD, FT-IR, Raman analyses confirmed the presence of HAp/TCP. The surface area and average pore size of the samples were found to be 28 m2/g and 20 nm, respectively. The samples were found to be bioactive in simulated body fluid (SBF).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edalati, Khatereh, E-mail: kh_ed834@stu.um.ac.ir; Shakiba, Atefeh; Vahdati-Khaki, Jalil
2016-02-15
Highlights: • We synthesized ZnO nanorods by a simple hydrothermal process at 60 °C. • Effects of zinc salt concentration, solvent and alkaline mineralizer was studied. • Increasing concentration of zinc salt changed ZnO nucleation system. • NaOH yielded better results in the production of nanorods in both solvents. • Methanol performed better in the formation of nanorods using the two mineralizers. - Abstract: ZnO has been produced using various methods in the solid, gaseous, and liquid states, and the hydrothermal synthesis at low temperatures has been shown to be an environmentally-friendly one. The current work utilizes a low reactionmore » temperature (60 °C) for the simple hydrothermal synthesis of ZnO nanorod morphologies. Furthermore, the effects of zinc salt concentration, solvent type and alkaline mineralizer type on ZnO nanorods synthesis at a low reaction temperature by hydrothermal processing was studied. Obtained samples were analyzed using X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Increasing the concentration of the starting zinc salt from 0.02 to 0.2 M changed ZnO nucleation system from the homogeneous to the heterogeneous state. The XRD results confirmed the production hexagonal ZnO nanostructures of with a crystallite size of 40.4 nm. Varying the experimental parameters (mineralizer and solvent) yielded ZnO nanorods with diameters ranging from 90–250 nm and lengths of 1–2 μm.« less
Al-Shiekh Khalil, Wael; Shanableh, Abdullah; Rigby, Portia; Kokot, Serge
2005-04-01
The effectiveness of hydrothermal treatment for the destruction of the organic content of sludge waste was investigated. The sludge sampled in this study contained approximately 2% solids. The experimental program consisted of hydrothermal treatment experiments conducted in a batch reactor at temperatures between 100 and 250 degrees C, with the addition of an oxidant (hydrogen peroxide) in the range of 0-150% with reference to TCOD, and reaction times of up to 60 min. The results suggested that the availability of oxidant, reaction temperature and reaction time were the determining factors for COD removal. A significant fraction of the COD remaining after treatment consisted of the dissolved COD. The results confirmed that hydrothermal treatment proceeds through hydrolysis resulting in the production of dissolved organic products followed by COD removal through oxidation. Two MCDM chemometrics methods, PROMETHEE and GAIA, were applied to process the large data matrix so as to facilitate the selection of the most suitable hydrothermal conditions for sludge destruction. Two possible scenarios were produced from this analysis-one depended on the use of high temperatures and no oxidant, while the second offered a choice of compromise solutions at lower temperatures but with the use of at least some oxidant. Thus, for the final choice of operating conditions, the decision maker needs local knowledge of the costs and available infrastructure. In principle, such information could be added as further criteria to the data matrix and new rankings obtained.
Metal Catalyst for Low-Temperature Growth of Controlled Zinc Oxide Nanowires on Arbitrary Substrates
Kim, Baek Hyun; Kwon, Jae W.
2014-01-01
Zinc oxide nanowires generated by hydrothermal method present superior physical and chemical characteristics. Quality control of the growth has been very challenging and controlled growth is only achievable under very limited conditions using homogeneous seed layers with high temperature processes. Here we show the controlled ZnO nanowire growth on various organic and inorganic materials without the requirement of a homogeneous seed layer and a high temperature process. We also report the discovery of an important role of the electronegativity in the nanowire growth on arbitrary substrates. Using heterogeneous metal oxide interlayers with low-temperature hydrothermal methods, we demonstrate well-controlled ZnO nanowire arrays and single nanowires on flat or curved surfaces. A metal catalyst and heterogeneous metal oxide interlayers are found to determine lattice-match with ZnO and to largely influence the controlled alignment. These findings will contribute to the development of novel nanodevices using controlled nanowires. PMID:24625584
NASA Astrophysics Data System (ADS)
Ram Kumar, J.; Ananthakumar, S.; Moorthy Babu, S.
2017-01-01
A facile route to synthesize copper indium diselenide (CuInSe2) nanoparticles in aqueous medium was developed using mercaptoacetic acid (MAA) as capping agent. Two different mole ratios (5 and 10) of MAA were used to synthesize CuInSe2 nanoparticles at room temperature, as well as hydrothermal (high temperature) method. Powder x-ray diffraction analysis reveals that the nanoparticles exhibit chalcopyrite phase and the crystallinity increases with increasing the capping ratio. Raman analysis shows a strong band at 233 cm-1 due to the combination of B2 (E) modes. Broad absorption spectra were observed for the synthesized CuInSe2 nanoparticles. The effective surface capping by MAA on the nanoparticles surface was confirmed through attenuated total reflection-Fourier transform infrared spectral analysis. The thermal stability of the synthesized samples was analyzed through thermogravimetric analysis-differential scanning calorimetry. The change in morphology of the synthesized samples was analyzed through scanning electron microscope and it shows that the samples prepared at room temperature are spherical in shape, whereas hydrothermally synthesized samples were found to have nanorod- and nanoflake-like structures. Transmission electron microscope analysis further indicates larger grains for the hydrothermally prepared samples with 10 mol ratio of MAA. Comparative analyses were made for synthesizing CuInSe2 nanoparticles by two different methods to explore the role of ligand and influence of temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulton, John L.; Darab, John G.; Hoffmann, Markus M.
2001-04-01
Hydrothermal synthesis is an important route to novel materials. Hydrothermal chemistry is also an important aspect of geochemistry and a variety of waste remediation technologies. There is a significant lack of information about the speciation of inorganic compounds under hydrothermal conditions. For these reasons we describe a high-temperature, high-pressure cell that allows one to acquire both x-ray absorption fine structure (XAFS) spectra and x-ray transmission and absorption images of heterogeneous hydrothermal mixtures. We demonstrate the utility of the method by measuring the Cu(I) speciation in a solution containing both solid and dissolved Cu phases at temperatures up to 325{sup o}C.more » X-ray imaging of the various hydrothermal phases allows micro-XAFS to be collected from different phases within the heterogeneous mixture. The complete structural characterization of a soluble bichloro-cuprous species was determined. In situ XAFS measurements were used to define the oxidation state and the first-shell coordination structure. The Cu--Cl distance was determined to be 2.12 Aa for the CuCl{sub 2}{sup -} species and the complete loss of tightly bound waters of hydration in the first shell was observed. The microreactor cell described here can be used to test thermodynamic models of solubility and redox chemistry of a variety of different hydrothermal mixtures.« less
Transient ElectroMagnetic and Electric Self-Potential survey in the TAG hydrothermal field in MAR
NASA Astrophysics Data System (ADS)
Tao, C.; Deng, X.; Wu, G.; Xi, Z.; Zhou, D.; Zuo, L.
2012-12-01
The TAG hydrothermal field is one of the most studied hydrothermal fields. This field covers an area of 5km×5km, which includes low-temperature Mn- and Fe-oxides and nontronites zone, relict massive sulfide mounds as well as active hydrothermal mound(TAG mound) [Thompson, 1985, Rona, 1993]. Drilling program was performed in the ODP (Ocean Drilling Program) Leg 158 in the TAG mound [Humphris, 1996]. In 1996, electrical resistivity survey in the TAG mound was conducted using innovative transient electric dipole-dipole instruments which was carried by DSV 'Alvin' [Cairns et al., 1996, Von Herzen et al., 1996]. In June 2012, the 2nd Leg of the Chinese 26th cruise was carried out in the TAG hydrothermal field at Mid Atlantic Ridge by R/V DAYANGYIHAO. Six TEM (Transient ElectroMagnetic) survey lines were deployed, with four of which across the ODP Leg 158 drilling area. Besides, two SP (Electric Self-Potential) survey lines were across the ODP drilling area. The survey results of TEM preliminary revealed the vertical structure of the TAG hydrothermal field. The survey results of both TEM and SP are consistent with the ODP drilling result, and also agree well with the temperature and water-column anomalies obtained in this leg. Preliminary results show that the TEM and SP methods are capable of revealing the horizontal and vertical distribution of the hydrothermal sulfide fields.
Liu, Zhiguo; Zu, Yuangang; Fu, Yujie; Meng, Ronghua; Guo, Songling; Xing, Zhimin; Tan, Shengnan
2010-03-01
L-Histidine capped single-crystalline gold nanoparticles have been synthesized by a hydrothermal process under a basic condition at temperature between 65 and 150 degrees C. The produced gold nanoparticles were spherical with average diameter of 11.5+/-2.9nm. The synthesized gold colloidal solution was very stable and can be stored at room temperature for more than 6 months. The color of the colloidal solution can change from wine red to mauve, purple and blue during the acidifying process. This color changing phenomenon is attributed to the aggregation of gold nanoparticles resulted from hydrogen bond formation between the histidines adsorbed on the gold nanoparticles surfaces. This hydrothermal synthetic method is expected to be used for synthesizing some other amino acid functionalized gold nanomaterials.
Magnetic exploration of a low-temperature ultramafic-hosted hydrothermal site (Lost City, 30°N, MAR)
NASA Astrophysics Data System (ADS)
Szitkar, Florent; Tivey, Maurice A.; Kelley, Deborah S.; Karson, Jeffrey A.; Früh-Green, Gretchen L.; Denny, Alden R.
2017-03-01
A 2003 high-resolution magnetic survey conducted by the Autonomous Underwater Vehicle ABE over the low-temperature, ultramafic-hosted hydrothermal field Lost City reveals a weak positive magnetic anomaly. This observation is in direct contrast to recent observations of strong positive magnetic anomalies documented over the high-temperature ultramafic-hosted hydrothermal vents fields Rainbow and Ashadze, which indicates that temperature may control the production of magnetization at these sites. The Lost City survey provides a unique opportunity to study a field that is, to date, one of a kind, and is an end member of ultramafic-hosted hydrothermal systems. Our results highlight the key contribution of temperature on magnetite production resulting from serpentinization reactions. Whereas high temperature promotes significant production and partitioning of iron into magnetite, low temperature favors iron partitioning into various alteration phases, resulting in a magnetite-poor rock. Moreover, the distribution of magnetic anomalies confirms results of a previous geological survey indicating the progressive migration of hydrothermal activity upslope. These discoveries contribute to the results of 25 yrs of magnetic exploration of a wide range of hydrothermal sites, from low- to high-temperature and from basalt- to ultramafic-hosted, and thereby validate using high-resolution magnetics as a crucial parameter for locating and characterizing hydrothermal sites hosting unique chemosynthetic-based ecosystems and potentially mineral-rich deposits.
NASA Astrophysics Data System (ADS)
Pál, Edit; Hornok, Viktória; Kun, Robert; Chernyshev, Vladimir; Seemann, Torben; Dékány, Imre; Busse, Matthias
2012-08-01
Zinc oxide particles with different morphologies were prepared by hydrothermal method at 60-90 °C. The structure formation was controlled by the addition rate and temperature of hydrolyzing agent, while the particles size (10 nm-2.5 μm) was influenced by the preparation (hydrothermal) temperature. Scanning electron microscopy studies showed that raspberry-, prism- and flower-like ZnO particles were prepared, whose average size decreased with increasing reaction temperature. X-ray diffraction investigations confirmed that ZnO particles with hexagonal crystal structure formed in all syntheses. The raspberry-, prism- and flower-like ZnO particles showed a weak UV-emission in the range of 390-395 nm and strong visible emission with a maximum at 586, 593 and 598 nm, respectively. Morphology effect on electrical and water vapour sensing properties of ZnO samples was investigated by impedance spectroscopy and quartz crystal microbalance, respectively. The absolute impedance of raspberry-, prism- and flower-like ZnO particles was found to be strong dependent on the morphology. Space-charge-limited conductivity transport mechanism was proved by the oscillatory behaviour of impedance. Humidity sensor tests also revealed morphology and specific surface area dependency on the sensitivity and water vapour adsorption property.
NASA Astrophysics Data System (ADS)
Zulkifli, Zulfa Aiza; Razak, Khairunisak Abdul; Rahman, Wan Nordiana Wan Abdul
2018-05-01
Bismuth oxide (Bi2O3) nanoparticles have been synthesized at different temperatures from 70 to 120˚C without any subsequent heat treatment using hydrothermal method. The particle size, and crystal structure of as-synthesized particles were investigated by X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), Energy-dispersive X-ray spectroscopy (EDX) and Fourier transform Infra-Red (FTIR). The nanoparticles are of a pure moniclinic Bi2O3 phase with rods shape. The average size of nanoparticles increases with the increase of reaction temperature. It was clear that longer reaction temperature allows precipitation completely occured and form larger nanoparticles (NPs). The crystallinity of Bi2O3 also are of high purity even at lower reaction temperature. The FTIR spectrum showed the absorption band at 845 cm-1 which is attributed to Bi-O-Bi bond, and the strong absorption band recorded at 424 cm-1 that is due to the stretching mode of Bi-O.
Characterization of Magma-Driven Hydrothermal Systems at Oceanic Spreading Centers
NASA Astrophysics Data System (ADS)
Farough, A.; Lowell, R. P.; Corrigan, R.
2012-12-01
Fluid circulation in high-temperature hydrothermal systems involves complex water-rock chemical reactions and phase separation. Numerical modeling of reactive transport in multi-component, multiphase systems is required to obtain a full understanding of the characteristics and evolution of hydrothermal vent systems. We use a single-pass parameterized model of high-temperature hydrothermal circulation at oceanic spreading centers constrained by observational parameters such as vent temperature, heat output, and vent field area, together with surface area and depth of the sub-axial magma chamber, to deduce fundamental hydrothermal parameters such as mass flow rate, bulk permeability, conductive boundary layer thickness at the base of the system, magma replenishment rate, and residence time in the discharge zone. All of these key subsurface characteristics are known for fewer than 10 sites out of 300 known hydrothermal systems. The principal limitations of this approach stem from the uncertainty in heat output and vent field area. For systems where data are available on partitioning of heat and chemical output between focused and diffuse flow, we determined the fraction of high-temperature vent fluid incorporated into diffuse flow using a two-limb single pass model. For EPR 9°50` N and ASHES, the diffuse flow temperatures calculated assuming conservative mixing are nearly equal to the observed temperatures indicating that approximately 80%-90% of the hydrothermal heat output occurs as high-temperature flow derived from magmatic heat even though most of the heat output appears as low-temperature diffuse discharge. For the Main Endeavour Field and Lucky Strike, diffuse flow fluids show significant conductive cooling and heating respectively. Finally, we calculate the transport of various geochemical constituents in focused and diffuse flow at the vent field scale and compare the results with estimates of geochemical transports from the Rainbow hydrothermal field where diffuse flow is absent.
NASA Astrophysics Data System (ADS)
Tanaka, Ryo; Hashimoto, Takeshi; Matsushima, Nobuo; Ishido, Tsuneo
2018-05-01
We investigate a volcanic hydrothermal system using numerical simulations, focusing on change in crater temperature. Both increases and decreases in crater temperature have been observed before phreatic eruptions. We follow the system's response for up to a decade after hydrothermal fluid flux from the deep part of the system is increased and permeability is reduced at a certain depth in a conduit. Our numerical simulations demonstrate that: (1) changes in crater temperature are controlled by the magnitude of the increase in hydrothermal fluid flux and the degree of permeability reduction; (2) significant increases in hydrothermal flux with decreases in permeability induce substantial pressure changes in shallow depths in the edifice and decreases in crater temperature; (3) the location of maximum pressure change differs between the mechanisms. The results of this study imply that it is difficult to predict eruptions by crater temperature change alone. One should be as wary of large eruptions when crater temperature decreases as when crater temperature increases. It is possible to clarify the implications of changes in crater temperature with simultaneous observation of ground deformation.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Lahfid, A.; Delchini, S.; Lacroix, B.
2015-12-01
The occurrence of deposits hosted by carbonaceous materials-rich metasediments is widespread. Therefore, we aims in this study to investigate the potential of the Raman Spectroscopy of Carbonaceous Material (RSCM) geothermometry to detect thermal anomalies in hydrothermal ore deposits environment and to demonstrate the ability of warm fluids, migrating through the sedimentary sequence to locally disturb the thermal gradient and associated peak temperatures. For this purpose, we have chosen the Lucia subterrane in the Franciscan Complex (California, USA), which includes gold-bearing quartz veins that witness a hydrothermal overprint (Underwood et al., 1995).The sediments in this zone essentially comprise greywacke and shale-matrix mélange (e.g. Frey and Robinson, 1999), which have undergone high-pressure, low-temperature metamorphism. The thermal history of the Lucia subterrane has been previously proposed by Underwood et al. (1995), essentially using vitrinite reflectance method (Rm). Rm values increase from the south to the north; they vary between 0.9 and 3.7 % (~150-280°C). All these results suggest that the Lucia subterrane underwent a regional increase of thermal gradient toward the north. Anomalous Rm values from 4.5% to 4.9% (~305-315°C) are recorded near Cape San Martin. These highest temperatures estimated are likely, associated with a late hydrothermal event (Underwood et al., 1995). Estimated Raman temperatures 1) confirmed the increase in the metamorphic grade towards the north already shown by Underwood et al. (1995), using classical methods like mineralogy and vitrinite reflectance and 2) exhibit anomalous values (temperatures reach 350°C). These anomalies are probably due to the later hydrothermal event. This result suggests that RSCM could be used as a reliable tool to determine thermal anomalies caused by hot fluid-flow.
Du, Yi; Cheng, Zhenxiang; Dou, Shixue; Wang, Xiaolin
2011-03-01
Bi2Fe4O9 nano and micron powders have been synthesized by a hydrothermal method. The as-obtained samples are pure phase and crystallize in the orthorhombic structure. Diverse particle morphologies, including nanoplates, nanospheres, microcubes, and microcylinders, are obtained under different synthesis conditions. The solvent N,N-Dimethylformamide (DMF), together with the mineralisers NaOH and NH4OH, are found to be the key factors for the formation of the particles with their diverse morphologies and sizes. The magnetization dependence of temperature (M-T), observed in a field of 1000 Oe from 10 to 340 K, and M-H loops measured at 10 K indicate that the Bi2Fe4O9 particles are paramagnetic at room temperature and undergo an antiferromagnetic transition at a Néel temperature (T(N)) of 250 K.
NASA Astrophysics Data System (ADS)
Wasly, H. S.; El-Sadek, M. S. Abd; Henini, Mohamed
2018-01-01
Influence of synthesis temperature and reaction time on the structural and optical properties of ZnO nanoparticles synthesized by the hydrothermal method was investigated using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray, Fourier transform infra-red spectroscopy, and UV-visible and fluorescence spectroscopy. The XRD pattern and HR-TEM images confirmed the presence of crystalline hexagonal wurtzite ZnO nanoparticles with average crystallite size in the range 30-40 nm. Their energy gap determined by fluorescence was found to depend on the synthesis temperature and reaction time with values in the range 2.90-3.78 eV. Thermal analysis, thermogravimetric and the differential scanning calorimetry were used to study the thermal reactions and weight loss with heat of the prepared ZnO nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tejabhiram, Y., E-mail: tejabhiram@gmail.com; Pradeep, R.; Helen, A.T.
2014-12-15
Highlights: • Novel low temperature synthesis of nickel ferrite nanoparticles. • Comparison with two conventional synthesis techniques including hydrothermal method. • XRD results confirm the formation of crystalline nickel ferrites at 110 °C. • Superparamagnetic particles with applications in drug delivery and hyperthermia. • Magnetic properties superior to conventional methods found in new process. - Abstract: We report a simple, low temperature and surfactant free co-precipitation method for the preparation of nickel ferrite nanostructures using ferrous sulfate as the iron precursor. The products obtained from this method were compared for their physical properties with nickel ferrites produced through conventional co-precipitationmore » and hydrothermal methods which used ferric nitrate as the iron precursor. X-ray diffraction analysis confirmed the synthesis of single phase inverse spinel nanocrystalline nickel ferrites at temperature as low as 110 °C in the low temperature method. Electron microscopy analysis on the samples revealed the formation of nearly spherical nanostructures in the size range of 20–30 nm which are comparable to other conventional methods. Vibrating sample magnetometer measurements showed the formation of superparamagnetic particles with high magnetic saturation 41.3 emu/g which corresponds well with conventional synthesis methods. The spontaneous synthesis of the nickel ferrite nanoparticles by the low temperature synthesis method was attributed to the presence of 0.808 kJ mol{sup −1} of excess Gibbs free energy due to ferrous sulfate precursor.« less
Posmanik, Roy; Labatut, Rodrigo A; Kim, Andrew H; Usack, Joseph G; Tester, Jefferson W; Angenent, Largus T
2017-06-01
Hydrothermal liquefaction converts food waste into oil and a carbon-rich hydrothermal aqueous phase. The hydrothermal aqueous phase may be converted to biomethane via anaerobic digestion. Here, the feasibility of coupling hydrothermal liquefaction and anaerobic digestion for the conversion of food waste into energy products was examined. A mixture of polysaccharides, proteins, and lipids, representing food waste, underwent hydrothermal processing at temperatures ranging from 200 to 350°C. The anaerobic biodegradability of the hydrothermal aqueous phase was examined through conducting biochemical methane potential assays. The results demonstrate that the anaerobic biodegradability of the hydrothermal aqueous phase was lower when the temperature of hydrothermal processing increased. The chemical composition of the hydrothermal aqueous phase affected the anaerobic biodegradability. However, no inhibition of biodegradation was observed for most samples. Combining hydrothermal and anaerobic digestion may, therefore, yield a higher energetic return by converting the feedstock into oil and biomethane. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hydrothermal processes in the Edmond deposits, slow- to intermediate-spreading Central Indian Ridge
NASA Astrophysics Data System (ADS)
Cao, Hong; Sun, Zhilei; Zhai, Shikui; Cao, Zhimin; Jiang, Xuejun; Huang, Wei; Wang, Libo; Zhang, Xilin; He, Yongjun
2018-04-01
The Edmond hydrothermal field, located on the Central Indian Ridge (CIR), has a distinct mineralization history owing to its unique magmatic, tectonic, and alteration processes. Here, we report the detailed mineralogical and geochemical characteristics of hydrothermal metal sulfides recovered from this area. Based on the mineralogical investigations, the Edmond hydrothermal deposits comprise of high-temperature Fe-rich massive sulfides, medium-temperature Zn-rich sulfide chimney and low-temperature Ca-rich sulfate mineral assemblages. According to these compositions, three distinctive mineralization stages have been identified: (1) low-temperature consisting largely of anhydrite and pyrite/marcasite; (2) medium-high temperature distinguished by the mineral assemblage of pyrite, sphalerite and chalcopyrite; and (3) low-temperature stage characterized by the mineral assemblage of colloidal pyrite/marcasite, barite, quartz, anglesite. Several lines of evidence suggest that the sulfides were influenced by pervasive low-temperature diffuse flows in this area. The hydrothermal deposits are relatively enriched in Fe (5.99-18.93 wt%), Zn (2.10-10.00 wt%) and Ca (0.02-19.15 wt%), but display low Cu (0.28-0.81 wt%). The mineralogical varieties and low metal content of sulfides in the Edmond hydrothermal field both indicate that extensive water circulation is prevalent below the Edmond hydrothermal field. With regard to trace elements, the contents of Pb, Ba, Sr, As, Au, Ag, and Cd are significantly higher than those in other sediment-starved mid-ocean ridges, which is indicative of contribution from felsic rock sources. Furthermore, the multiphase hydrothermal activity and the pervasive water circulation underneath are speculated to play important roles in element remobilization and enrichment. Our findings deepen our understanding about the complex mineralization process in slow- to intermediate-spreading ridges globally.
NASA Astrophysics Data System (ADS)
Bolós, X.; Cifuentes-Nava, G.; Macias, J. L.; Sosa-Ceballos, G.; García-Tenorio, F.; Albor, M., III; Juarez, M.; Gamez, V.
2017-12-01
Hydrothermal activity in volcanic calderas is the consequence of energy transfer between deep magmatic chambers and subsurface layers saturated in water. This hydrothermal system is generated by convection of the groundwater supplied by meteoric water recharged and the ascent of hot volcanic gasses exsolved from deep magma reservoirs. Calderas are heterogeneous geological structures that due to their formation and evolution produced a complex stratigraphy. All of these heterogeneities can be affected by deformation and also by the presence of fractures and faults which constitute the main pathways whereby hydrothermal fluids can move easily through the surface as spring discharges and fumarolic activity. Geophysical methods have been used in the last decades to investigate the relationship between structural geology and hydrothermal systems in different volcanic areas around the world. In this work, we have focused on the role of subsurface structures to understand and localize the pathways of fluids related to the hydrothermal system of the Cerritos Colorados geothermal field. We focused in the central area of the caldera (P12 well and Cerritos Colorados graben), where active hydrothermal activity is evidenced by fumaroles, thermal anomalies, CO2 diffuse emission, and sulfur precipitation. We have applied a self-potential method (SP) that combined with temperature measurements that allowed to identify the main infiltration and ascending fluid zones in the area, and their specific surface temperature coinciding with fumarolic activity. From this data we an applied Electrical Resistivity Tomography (ERT) survey in two selected places. One ERT profile (1.2 km in length) was located in the P12 well area. A 3D resistivity model used with the equatorial method was carried out on the Cerritos Colorados graben area. Combining the results of the SP, TºC, and ERT data with a detailed structural map we identified the main degassing zones (i.e. fumaroles) that correspond to higher permeability zones located along normal and strike-slip faults. In conclusion, a strong structural control of the surface manifestation of these hydrothermal systems is deduced from our new data. Then, our results emphasize the importance of old structural boundaries that are controlled by intra-caldera tectonic structures.
Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process
NASA Astrophysics Data System (ADS)
Wang, Libo; Zhang, Heng; Wang, Bo; Shen, Changjie; Zhang, Chuanxiang; Hu, Qianku; Zhou, Aiguo; Liu, Baozhong
2016-09-01
In this study, a simple hydrothermal method has been developed to prepare Ti3C2Tx from Ti3AlC2 as a high-performance electrode material for supercapacitors. This method is environmentally friendly and has a low level of danger. The morphology and structure of the Ti3C2Tx can be controlled by hydrothermal reaction time, temperature and NH4F amounts. The prepared Ti3C2Tx was characterized by X-ray diffraction, field emission scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and Brunauer-Emmet-Teller. The results show that the prepared Ti3C2Tx is terminated by O, OH, and F groups. The electrochemical properties of the Ti3C2Tx sample exhibit specific capacitance up to 141 Fcm-3 in 3 M KOH aqueous electrolyte, and even after 1000 cycles, no significant degradation of the volumetric capacitance was observed. These results indicate that the Ti3C2Tx material prepared by this hydrothermal method can be used in high performance supercapacitors.
Converting sugars to sugar alcohols by aqueous phase catalytic hydrogenation
Elliott, Douglas C [Richland, WA; Werpy, Todd A [West Richland, WA; Wang, Yong [Richland, WA; Frye, Jr., John G.
2003-05-27
The present invention provides a method of converting sugars to their corresponding sugar alcohols by catalytic hydrogenation in the aqueous phase. It has been found that surprisingly superior results can be obtained by utilizing a relatively low temperature (less than 120.degree. C.), selected hydrogenation conditions, and a hydrothermally stable catalyst. These results include excellent sugar conversion to the desired sugar alcohol, in combination with long life under hydrothermal conditions.
USDA-ARS?s Scientific Manuscript database
Hydrothermal models used to predict germination response in the field are usually parameterized with data from laboratory experiments that examine the full range of germination response to temperature and water potential. Inclusion of low water potential and high and low-temperature treatments, how...
NASA Astrophysics Data System (ADS)
Wang, Wei; Ding, Zui; Zhao, Xiruo; Wu, Sizhu; Li, Feng; Yue, Ming; Liu, J. Ping
2015-05-01
Three kinds of spinel ferrite nanocrystals, MFe2O4 (M = Co, Ni, and Mn), are synthesized using colloid mill and hydrothermal method. During the synthesis process, a rapid mixing and reduction of cations with sodium borohydride (NaBH4) take place in a colloid mill then through a hydrothermal reaction, a slow oxidation and structural transformation of the spinel ferrite nanocrystals occur. The phase purity and crystal lattice parameters are estimated by X-ray diffraction studies. Scanning electron microscopy and transmission electron microscopy images show the morphology and particle size of the as-synthesized ferrite nanocrystals. Raman spectrum reveals active phonon modes at room temperature, and a shifting of the modes implies cation redistribution in the tetrahedral and octahedral sites. Magnetic measurements show that all the obtained samples exhibit higher saturation magnetization (Ms). Meanwhile, experiments demonstrate that the hydrothermal reaction time has significant effects on microstructure, morphologies, and magnetic properties of the as-synthesized ferrite nanocrystals.
Characteristics of Hydrothermal Mineralization in Ultraslow Spreading Ridges
NASA Astrophysics Data System (ADS)
Zhou, H.; Yang, Q.; Ji, F.; Dick, H. J.
2014-12-01
Hydrothermal activity is a major component of the processes that shape the composition and structure of the ocean crust, providing a major pathway for the exchange of heat and elements between the Earth's crust and oceans, and a locus for intense biological activity on the seafloor and underlying crust. In other hand, the structure and composition of hydrothermal systems are the result of complex interactions between heat sources, fluids, wall rocks, tectonic controls and even biological processes. Ultraslow spreading ridges, including the Southwest Indian Ridge, the Gakkel Ridge, are most remarkable end member in plate-boundary structures (Dick et al., 2003), featured with extensive tectonic amagmatic spreading and frequent exposure of peridotite and gabbro. With intensive surveys in last decades, it is suggested that ultraslow ridges are several times more effective than faster-spreading ridges in sustaining hydrothermal activities. This increased efficiency could attributed to deep mining of heat and even exothermic serpentinisation (Baker et al., 2004). Distinct from in faster spreading ridges, one characteristics of hydrothermal mineralization on seafloor in ultraslow spreading ridges, including the active Dragon Flag hydrothermal field at 49.6 degree of the Southwest Indian Ridge, is abundant and pervasive distribution of lower temperature precipitated minerals ( such as Fe-silica or silica, Mn (Fe) oxides, sepiolite, pyrite, marcasite etc. ) in hydrothermal fields. Structures formed by lower temperature activities in active and dead hydrothermal fields are also obviously. High temperature precipitated minerals such as chalcopyrite etc. are rare or very limited in hydrothermal chimneys. Distribution of diverse low temperature hydrothermal activities is consistence with the deep heating mechanisms and hydrothermal circulations in the complex background of ultraslow spreading tectonics. Meanwhile, deeper and larger mineralization at certain locations along the ultraslow spreading ridges is also presumable.
Frabicating hydroxyapatite nanorods using a biomacromolecule template
NASA Astrophysics Data System (ADS)
Zhu, Aiping; Lu, Yan; Si, Yunfeng; Dai, Sheng
2011-02-01
Rod-like hydroxyapatite (HAp) nanoparticles with various aspect ratios are synthesized by means of low-temperature hydrothermal method in the presence of a N-[(2-hydroxy-3-trimethylammonium) propyl]chitosan chloride (HTCC) template. The synthesized HAps were examined by X-ray diffraction (XRD), Fourier transform infrared spectrophotometer (FTIR) and transmission electron microscopy (TEM) techniques. The results reveal that HAps are rod-like monocrystals, where the size and morphology can be tailored by varying synthesis conditions, such as pH, hydrothermal synthesis temperature and the ratio of PO43- to the quaternary ammonium in HTCC. The mechanism of HTCC template on HAp nanorod preparation is analyzed.
NASA Astrophysics Data System (ADS)
Johannessen, Karen C.; Vander Roost, Jan; Dahle, Håkon; Dundas, Siv H.; Pedersen, Rolf B.; Thorseth, Ingunn H.
2017-04-01
Diffuse low-temperature hydrothermal vents on the seafloor host neutrophilic microaerophilic Fe-oxidizing bacteria that utilize the Fe(II) supplied by hydrothermal fluids and produce intricate twisted and branching extracellular stalks. The growth behavior of Fe-oxidizing bacteria in strongly opposing gradients of Fe(II) and O2 have been thoroughly investigated in laboratory settings to assess whether extracellular stalks and aligned biomineralized fabrics may serve as biosignatures of Fe-oxidizing bacteria and indications of palaeo-redox conditions in the rock record. However, the processes controlling the growth of biogenic Fe-oxyhydroxide deposits in natural, modern hydrothermal systems are still not well constrained. In this study, we aimed to establish how variations in the texture of stratified hydrothermal Fe-oxyhydroxide deposits are linked to the physicochemical conditions of the hydrothermal environment. We conducted 16S rRNA gene analyses, microscopy and geochemical analyses of laminated siliceous Fe-mounds from the Jan Mayen Vent Fields at the Arctic Mid-Ocean Ridge. Chemical analyses of low- and high-temperature hydrothermal fluids were performed to characterize the hydrothermal system in which the Fe-deposits form. Our results reveal synchronous inter-laminar variations in texture and major and trace element geochemistry. The Fe-deposits are composed of alternating porous laminae of mineralized twisted stalks and branching tubes, Mn-rich horizons with abundant detrital sediment, domal internal cavities and thin P- and REE-enriched lamina characterized by networks of ≪1 μm wide fibers. Zetaproteobacteria constitute one third of the microbial community in the surface layer of actively forming mounds, indicating that microbial Fe-oxidation is contributing to mound accretion. We suggest that Mn-oxide precipitation and detrital sediment accumulation take place during periodically low hydrothermal fluid discharge conditions. The elevated concentrations of P and REE in distinct laminae suggest Fe-cycling and accumulation of diagenetic species at depth in the deposits during hydrothermal quiescence and co-precipitation of these species with Fe-oxyhydroxides at the mound surface with reinitiated hydrothermal discharge. The origin of the low-temperature hydrothermal source fluid and the Fe-deposits are evident by low LREE/HREE ratios and negative Eu-anomalies, which clearly differ from the LREE and Eu enrichment of nearby high-temperature white smoker venting fluids. Our study demonstrates that hydrothermal fluctuations exert the primary control on the formation of laminae and the activity of Fe-oxidizing bacteria in marine hydrothermal Fe-deposits and indicates that REE-patterns may be used to distinguish high-temperature plume fallout and biomineralized low-temperature Fe-deposits in the rock record.
The hydrothermal exploration system on the 'Qianlong2' AUV
NASA Astrophysics Data System (ADS)
Tao, W.; Tao, C.; Jinhui, Z.; Cai, L.; Guoyin, Z.
2016-12-01
ABSTRACT: Qianlong2, is a fully Autonomous Underwater Vehicle (AUV) designed for submarine resources research, especially for polymetallic sulphides, and the survey depths of is up to 4500 m. Qianlong2 had successfully explored hydrothermal vent field on the Southwest Indian Ridge (SWIR), and collected conductance, temperature and depth (CTD), turbidity, and Oxidation-Reduction Potential (ORP) data. It also had mapped precise topography by high resolution side scan sonar (HRBSSS) during every dive; and obtained photographs of sulfide deposits during some dives. Here, we detailedly described the implementation of investigation, data administration, and fast mapping of hydrothermal exploration system by Qianlong2. Giving a description of how to remove the platform magnetic interference by using magnetic data during Qianlong2 spin. Based on comprehensive hydrochemical anomalies, we get a rapid method for finding the localization of hydrothermal vents. Taking one dive as an example, we systemically showed the process about how to analyse hydrothermal survey data and acquire the location results of hydrothermal vents. Considering that this method is effective and can be used in other deep-submergence assets such as human occupied vehicles (HOVs) and remotely operated vehicles (ROVs) during further studies. Finally, we discussed how to promote and optimize the installation and application of those sensors and how to improve Qianlong2's autonomy of investigation.
2016-01-01
Sediments within the Okinawa back-arc basin overlay a subsurface hydrothermal network, creating intense temperature gradients with sediment depth and potential limits for microbial diversity. We investigated taxonomic changes across 45 m of recovered core with a temperature gradient of 3°C/m from the dynamic Iheya North Hydrothermal System. The interval transitions sharply from low-temperature marine mud to hydrothermally altered clay at 10 meters below seafloor (mbsf). Here, we present taxonomic results from an analysis of the 16S rRNA gene that support a conceptual model in which common marine subsurface taxa persist into the subsurface, while high temperature adapted archaeal taxa show localized peaks in abundances in the hydrothermal clay horizons. Specifically, the bacterial phylum Chloroflexi accounts for a major proportion of the total microbial community within the upper 10 mbsf, whereas high temperature archaea (Terrestrial Hot Spring Crenarchaeotic Group and methanotrophic archaea) appear in varying local abundances in deeper, hydrothermal clay horizons with higher in situ temperatures (up to 55°C, 15 mbsf). In addition, geochemical evidence suggests that methanotrophy may be occurring in various horizons. There is also relict DNA (i.e., DNA preserved after cell death) that persists in horizons where the conditions suitable for microbial communities have ceased. PMID:28096736
Infrared study of OH(-) defects in KTiOPO4 crystals
NASA Astrophysics Data System (ADS)
Morris, P. A.; Crawford, M. K.; Jones, B.
1992-12-01
Variations in the concentrations and distributions of the OH(-) defects present in flux and hydrothermal KTiOPO4 (KTP) crystals, measured by infrared spectroscopy of single crystals, are attributed to differences in the growth environments and other nonhydrogenic defects present in the crystals. The concentrations of OH(-) have been estimated from the infrared data to be approximately 400 ppma (parts per million atomic) (3.0 x 10 exp 19/cu cm) in the flux crystals, 1100-1500 ppma (0.74-1.1 x 10 exp 20/cu cm) in the high-temperature hydrothermal and 600 ppma (4.3 x 10 exp 19/cu cm) in the low-temperature hydrothermal crystals. A 3566/cm peak and a 3575/cm band are observed in all crystals. The integrated intensity of the OH(-) absorption band at 3566/cm increases at the expense of the 3575/cm band at higher temperatures in the high-temperature hydrothermal crystals. Several OH(-) peaks (3490, 3455, 3428, 3420, and 3333/cm), which have strongly temperature-dependent linewidths, are present in the hydrothermally grown KTP crystals. The temperature dependencies of their peak frequencies and widths are consistent with the presence of mobile protons in the lattice. The protons located in the 3490 and 3428/cm sites are believed to contribute to the ionic conductivity of the high-conductivity high-temperature hydrothermal crystals.
Holm, Nils G; Andersson, Eva
2005-08-01
The potential of life's origin in submarine hydrothermal systems has been evaluated by a number of investigators by conducting high temperature-high pressure experiments involving organic compounds. In the majority of these experiments little attention has been paid to the importance of constraining important parameters, such as the pH and the redox state of the system. This is particularly revealed in the apparent difficulties in interpreting experimental data from hydrothermal organic synthesis and stability studies. However, in those cases where common mineral assemblages have been used in an attempt to buffer the pH and redox conditions to geologically and geochemically realistic values, theoretical and experimental data seem to converge. The use of mineral buffer assemblages provides a convenient way by which to constrain the experimental conditions. Studies at high temperatures and pressure in the laboratory have revealed a number of reactions that proceed rapidly in hydrothermal fluids, including the Strecker synthesis of amino acids. In other cases, the verification of postulated abiotic reaction mechanisms has not been possible, at least for large molecules such as large fatty acids and hydrocarbons. This includes the Fischer-Tropsch synthesis reaction. High temperature-high pressure experimental methods have been developed and used successfully for a long time in, for example, mineral solubility studies under hydrothermal conditions. By taking advantage of this experimental experience new and, at times, unexpected directions can be taken in bioorganic geochemistry, one being, for instance, primitive two-dimensional information coding. This article critically reviews some of the organic synthesis and stability experiments that have been conducted under simulated submarine hydrothermal conditions. We also discuss some of the theoretical and practical considerations that apply to hydrothermal laboratory studies of organic molecules related to the origin of life on Earth and probably also to the other terrestrial planets.
Morishige, Kunimitsu; Tateishi, Masayoshi; Hirose, Fumi; Aramaki, Kenji
2006-10-24
To verify pore blocking controlled desorption in ink-bottle pores, we measured the temperature dependence of the adsorption-desorption isotherms of nitrogen on four kinds of KIT-5 samples with expanded cavities hydrothermally treated for different periods of time at 393 K. In the samples, almost spherical cavities are arranged in a face-centered cubic array and the cavities are connected through small channels. The pore size of the channels increased with an increase in the hydrothermal treatment time. At lower temperatures a steep desorption branch changed to a gradual one as the hydrothermal treatment was prolonged. For the sample hydrothermally treated only for 1 day, the rectangular hysteresis loop shrank gradually with increasing temperature while keeping its shape. The temperature dependence of the evaporation pressure observed was identical with that expected for cavitation-controlled desorption. On the other hand, for the samples hydrothermally treated for long times, the gradual desorption branch became a sharp one with increasing temperature. This strongly suggests that the desorption mechanism is altered from pore blocking to cavitation with temperature. Application of percolation theory to the pore blocking controlled desorption observed here is discussed.
Mechano-hydrothermal preparation of Li-Al-OH layered double hydroxides
NASA Astrophysics Data System (ADS)
Zhang, Fengrong; Hou, Wanguo
2018-05-01
A mechano-hydrothermal (MHT) method was used to synthesize Li-Al-OH layered double hydroxides (LDHs) from LiOH·H2O, Al(OH)3 and H2O as starting materials. A two-step synthesis was conducted, that is, Al(OH)3 was milled for 1 h, followed by hydrothermal treatment with LiOH·H2O solution. Effects of the LiOH/Al(OH)3 molar ratio (RLi/Al) and hydrothermal temperature (Tht) on the crystallinity, morphology, and composition of the product were examined. The resulting LDHs were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared, and elemental analyses. The results showed that pre-milling plays a key role in the LDH formation during subsequent hydrothermal treatment. The Li/Al molar ratio of the obtained LDHs keeps constant at 0.5, independent from theRLi/Al (0.5-5.0) in the starting materials. An increase in the Tht (20-80 °C) can enhance the crystallinity and morphology regularity of the products. The so-obtained Li-Al-OH LDHs exhibit high crystallinity and well-dispersity, which may have wider applications than the aggregate ones obtained using conventional mechanochemical and Li+-imbibition methods.
Part II. Hydrothermal steel slag valorization: hydrogen and nano-magnetite production
NASA Astrophysics Data System (ADS)
Crouzet, Camille; Brunet, Fabrice; Recham, Nadir; Auzende, Anne-Line; Findling, Nathaniel; Magnin, Valérie; Ferrasse, Jean-Henry; Goffé, Bruno
2017-10-01
The effect of acidic conditions (in a pH range of 3 to 6) and temperature on the kinetics of the hydrothermal oxidation of ferrous iron contained in BOF steel slag has been tested in the 150 – 350°C range for acid acetic concentrations from 0 to 4M. Reaction progress was monitored with the amount of produced H2. Higher temperature and lower pH are found to enhance the hydrothermal oxidation kinetics of the slag. These two parameters are believed to increase iron dissolution rate which has already been identified as the rate limiting step of the hydrothermal oxidation of pure FeO. An activation energy of 28 × 4 kJ/mole is found for the hydrothermal oxidation of the steel slag which compares very well with that of pure FeO under similar conditions. In the case of the slag run in water at 300°C for 70.5 hours, magnetite product has been separated magnetically and characterized. Particles were found to fall in three size ranges: 10 – 30 nm, 100 – 300 nm and 1 – 10 µm. The smallest fraction (10 – 30 nm) is comparable to the 10 – 20 nm size range that is achieved when nanomagnetite are synthesized by co-precipitation methods. Obviously, the production of nanomagnetite enhances the economic interest of the hydrothermal processing of steel slags, which has already proven its capacity to produce high-purity H2.
Gas-sensing enhancement methods for hydrothermal synthesized SnO2-based sensors
NASA Astrophysics Data System (ADS)
Zhao, Yalei; Zhang, Wenlong; Yang, Bin; Liu, Jingquan; Chen, Xiang; Wang, Xiaolin; Yang, Chunsheng
2017-11-01
Gas sensing for hydrothermal synthesized SnO2-based gas sensors can be enhanced in three ways: structural improvement, composition optimization, and processing improvement. There have been zero-dimensional, one-dimensional, and three-dimensional structures reported in the literature. Controllable synthesis of different structures has been deployed to increase specific surface area. Change of composition would intensively tailor the SnO2 structure, which affected the gas-sensing performance. Furthermore, doping and compounding methods have been adopted to promote gas-sensing performance by adjusting surface conditions of SnO2 crystals and constructing heterojunctions. As for processing area, it is very important to find the optimal reaction time and temperature. In this paper, a gas-solid reaction rate constant was proposed to evaluate gas-sensing properties and find an excellent hydrothermal synthesized SnO2-based gas sensor.
Elucidation of reaction mechanism involved in the formation of LaNiO3 from XRD and TG analysis
NASA Astrophysics Data System (ADS)
Dharmadhikari, Dipti V.; Athawale, Anjali A.
2013-06-01
The present work is focused on the synthesis and elucidation of reaction mechanism involved in the formation of LaNiO3 with the help of X-ray diffraction (XRD) and thermogravimetric (TG) analysis. LaNiO3 was synthesized by hydrothermal method by heating at 160°C under autogenous pressure for 6h. Pure phase product was obtained after calcining the hydrothermally activated product for 6h at 700°C. The various phases of the product obtained after hydrothermal treatment and calcination followed by the formation of pure phase nanocrystalline lanthanum nickel oxide could be determined from XRD analysis of the samples. The reaction mechanism and phase formation temperature has been interpreted by thermogravimetric analysis of the hydrothermally synthesized product and XRD analysis.
NASA Astrophysics Data System (ADS)
Takasaki, Rikiya; Yuan, Lee Chang; Kamahara, Hirotsugu; Atsuta, Youichi; Daimon, Hiroyuki
2017-10-01
Hydrothermal treatment is one of the pre-treatment method for anaerobic digestion. The application of hydrothermal treatment to sewage sludge of wastewater treatment plant has been succeeded to enhance the biogas production. The purpose of this study is to quantitatively clarify the effect of hydrothermal treatment on anaerobic digestion process focusing on acid detergent fiber (ADF) in sewage sludge, which is low biodegradability. The hydrothermal treatment experiment was carried out for 15 minutes between 160 °C and 200 °C respectively. The ADF content was decreased after hydrothermal treatment compared with untreated sludge. However, ADF content was increased when raising the treatment temperature from 160 °C to 200 °C. During batch anaerobic digestion experiment, untreated and treated sludge were examined for 10 days under 38 °C, and all samples were fed once based on volatile solids of samples. From batch anaerobic digestion experiment, as ADF content in sewage sludge increased, the total biogas production decreased. It was found that ADF content in sewage sludge influence on anaerobic digestion. Therefore, ADF could be one of the indicator to evaluate the effect of hydrothermal treatment to sewage sludge on anaerobic digestion.
Hydrothermal systems on Mars: an assessment of present evidence
NASA Technical Reports Server (NTRS)
Farmer, J. D.
1996-01-01
Hydrothermal processes have been suggested to explain a number of observations for Mars, including D/H ratios of water extracted from Martian meteorites, as a means for removing CO2 from the Martian atmosphere and sequestering it in the crust as carbonates, and as a possible origin for iron oxide-rich spectral units on the floors of some rifted basins (chasmata). There are numerous examples of Martian channels formed by discharges of subsurface water near potential magmatic heat sources, and hydrothermal processes have also been proposed as a mechanism for aquifer recharge needed to sustain long term erosion of sapping channels. The following geological settings have been identified as targets for ancient hydrothermal systems on Mars: channels located along the margins of impact crater melt sheets and on the slopes of ancient volcanoes; chaotic and fretted terranes where shallow subsurface heat sources are thought to have interacted with ground ice; and the floors of calderas and rifted basins (e.g. chasmata). On Earth, such geological environments are often a locus for hydrothermal mineralization. But we presently lack the mineralogical information needed for a definitive evaluation of hypotheses. A preferred tool for identifying minerals by remote sensing methods on Earth is high spatial resolution, hyperspectral, near-infrared spectroscopy, a technique that has been extensively developed by mineral explorationists. Future efforts to explore Mars for ancient hydrothermal systems would benefit from the application of methods developed by the mining industry to look for similar deposits on Earth. But Earth-based exploration models must be adapted to account for the large differences in the climatic and geological history of Mars. For example, it is likely that the early surface environment of Mars was cool, perhaps consistently below freezing, with the shallow portions of hydrothermal systems being dominated by magma-cryosphere interactions. Given the smaller gravitational field, declining atmospheric pressure, and widespread, permeable megaregolith on Mars, volatile outgassing and magmatic cooling would have been more effective than on Earth. Thus, hydrothermal systems are likely to have had much lower average surface temperatures than comparable geological settings on Earth. The likely predominance of basaltic crust on Mars suggests that hydrothermal fluids and associated deposits should be enriched in Fe, Mg, Si and Ca, with surficial deposits being dominated by lower temperature, mixed iron oxide and carbonate mineralogies.
Hydrothermal systems on Mars: an assessment of present evidence.
Farmer, J D
1996-01-01
Hydrothermal processes have been suggested to explain a number of observations for Mars, including D/H ratios of water extracted from Martian meteorites, as a means for removing CO2 from the Martian atmosphere and sequestering it in the crust as carbonates, and as a possible origin for iron oxide-rich spectral units on the floors of some rifted basins (chasmata). There are numerous examples of Martian channels formed by discharges of subsurface water near potential magmatic heat sources, and hydrothermal processes have also been proposed as a mechanism for aquifer recharge needed to sustain long term erosion of sapping channels. The following geological settings have been identified as targets for ancient hydrothermal systems on Mars: channels located along the margins of impact crater melt sheets and on the slopes of ancient volcanoes; chaotic and fretted terranes where shallow subsurface heat sources are thought to have interacted with ground ice; and the floors of calderas and rifted basins (e.g. chasmata). On Earth, such geological environments are often a locus for hydrothermal mineralization. But we presently lack the mineralogical information needed for a definitive evaluation of hypotheses. A preferred tool for identifying minerals by remote sensing methods on Earth is high spatial resolution, hyperspectral, near-infrared spectroscopy, a technique that has been extensively developed by mineral explorationists. Future efforts to explore Mars for ancient hydrothermal systems would benefit from the application of methods developed by the mining industry to look for similar deposits on Earth. But Earth-based exploration models must be adapted to account for the large differences in the climatic and geological history of Mars. For example, it is likely that the early surface environment of Mars was cool, perhaps consistently below freezing, with the shallow portions of hydrothermal systems being dominated by magma-cryosphere interactions. Given the smaller gravitational field, declining atmospheric pressure, and widespread, permeable megaregolith on Mars, volatile outgassing and magmatic cooling would have been more effective than on Earth. Thus, hydrothermal systems are likely to have had much lower average surface temperatures than comparable geological settings on Earth. The likely predominance of basaltic crust on Mars suggests that hydrothermal fluids and associated deposits should be enriched in Fe, Mg, Si and Ca, with surficial deposits being dominated by lower temperature, mixed iron oxide and carbonate mineralogies.
NASA Astrophysics Data System (ADS)
Xu, G.; Bemis, K. G.
2014-12-01
Seafloor hydrothermal systems feature intricate interconnections among oceanic, geological, hydrothermal, and biological processes. The advent of the NEPTUNE observatory operated by Ocean Networks Canada at the Endeavour Segment, Juan de Fuca Ridge enables scientists to study these interconnections through multidisciplinary, continuous, real-time observations. The multidisciplinary observatory instruments deployed at the Grotto Mound, a major study site of the NEPTUNE observatory, makes it a perfect place to study the response of a seafloor hydrothermal system to geological and oceanic processes. In this study, we use the multidisciplinary datasets recorded by the NEPTUNE Observatory instruments as observational tools to demonstrate two different aspects of the response of hydrothermal activity at the Grotto Mound to geological and oceanic processes. First, we investigate a recent increase in venting temperature and heat flux at Grotto observed by the Benthic and Resistivity Sensors (BARS) and the Cabled Observatory Vent Imaging Sonar (COVIS) respectively. This event started in Mar 2014 and is still evolving by the time of writing this abstract. An initial interpretation in light of the seismic data recorded by a neighboring ocean bottom seismometer on the NEPTUNE observatory suggests the temperature and heat flux increase is probably triggered by local seismic activities. Comparison of the observations with the results of a 1-D mathematical model simulation of hydrothermal sub-seafloor circulation elucidates the potential mechanisms underlying hydrothermal response to local earthquakes. Second, we observe significant tidal oscillations in the venting temperature time series recorded by BARS and the acoustic imaging of hydrothermal plumes by COVIS, which is evidence for hydrothermal response to ocean tides and currents. We interpret the tidal oscillations of venting temperature as a result of tidal loading on a poroelastic medium. We then invoke poroelastic theories to estimate the crustal permeability, a fundamental property of subsurface hydrothermal circulation, from the phase shift of the tidal oscillations of venting temperature relative to ambient ocean tides. These results together shed light on the influences of seismic and oceanic processes on a seafloor hydrothermal system.
NASA Astrophysics Data System (ADS)
Malisa, Elias Pausen
1998-02-01
Upper Precambrian pelitic and psammitic gneisses in the Mozambique Belt are usually graphite rich. The determination of crystallisation temperatures around and in the hydrothermally altered rocks of the Merelani-Lelatema mining areas, northeastern Tanzania, were made by studying the lattice parameter C of graphite. In this way, the migration of the chromophore elements giving colour to the gemstones, e.g. tanzanite, green garnet and green tourmaline in the area, can be studied. Within the hydrothermally altered zone graphite gives temperatures that range from 523°C to 880°C. These temperatures are much higher than the 390-440°C obtained through fluid inclusion studies of tanzanite, which indicates that the graphite was not hydrothermally introduced. Furthermore the hydrothermal solutions are post-metamorphic.
Two steps hydrothermal growth and characterisations of BaTiO3 films composed of nanowires
NASA Astrophysics Data System (ADS)
Zawawi, Che Zaheerah Najeehah Che Mohd; Salleh, Shahril; Oon Jew, Lee; Tufail Chaudhary, Kashif; Helmi, Mohamad; Safwan Aziz, Muhammad; Haider, Zuhaib; Ali, Jalil
2018-05-01
Barium titanate (BaTiO3) films composed of nanowires have gained considerable research interest due to their lead-free composition and strong energy conversion efficiency. BaTiO3 films can be developed with a simple two steps hydrothermal reactions, which are low cost effective. In this research, BaTiO3 films were fabricated on titanium foil through two steps hydrothermal method namely, the growth of TiO2 and followed by BaTiO3 films. The structural evolutions and the dielectric properties of the films were investigated as well. The structural evolutions of titanium dioxide (TiO2) and BaTiO3 nanowires were characterized using X-ray diffraction and scanning electron microscopy. First step of hydrothermal reaction, TiO2 nanowires were prepared in varied temperatures of 160 °C, 200 °C and 250 °C respectively. Second step of hydrothermal reaction was performed to produce a layer of BaTiO3 films.
Solution-phase synthesis of nanomaterials at low temperature
NASA Astrophysics Data System (ADS)
Zhu, Yongchun; Qian, Yitai
2009-01-01
This paper reviews the solution-phase synthesis of nanoparticles via some routes at low temperatures, such as room temperature route, wave-assisted synthesis (γ-irradiation route and sonochemical route), directly heating at low temperatures, and hydrothermal/solvothermal methods. A number of strategies were developed to control the shape, the size, as well as the dispersion of nanostructures. Using diethylamine or n-butylamine as solvent, semiconductor nanorods were yielded. By the hydrothermal treatment of amorphous colloids, Bi2S3 nanorods and Se nanowires were obtained. CdS nanowires were prepared in the presence of polyacrylamide. ZnS nanowires were obtained using liquid crystal. The polymer poly (vinyl acetate) tubule acted as both nanoreactor and template for the CdSe nanowire growth. Assisted by the surfactant of sodium dodecyl benzenesulfonate (SDBS), nickel nanobelts were synthesized. In addition, Ag nanowires, Te nanotubes and ZnO nanorod arrays could be prepared without adding any additives or templates.
Yim, Kwang Gug; Kim, Min Su; Leem, Jae-Young
2013-05-01
ZnO nanostructures were grown on Si (111) substrates by a hydrothermal method. Prior to growing the ZnO nanostructures, ZnO seed layers with different post-heat temperatures were prepared by a spin-coating process. Then, the ZnO nanostructures were annealed at 500 degrees C for 20 min under an Ar atmosphere. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) were carried out at room temperature (RT) to investigate the structural and optical properties of the as-grown and annealed ZnO nanostructures. The surface morphologies of the seed layers changed from a smooth surface to a mountain chain-like structure as the post-heating temperatures increased. The as-grown and annealed ZnO nanostructures exhibited a strong (002) diffraction peak. Compared to the as-grown ZnO nanostructures, the annealed ZnO nanostructures exhibited significantly strong enhancement in the PL intensity ratio by almost a factor of 2.
Diez-Garcia, Marta; Gaitero, Juan J; Dolado, Jorge S; Aymonier, Cyril
2017-03-13
Tobermorite is a fibrillar mineral of the family of calcium silicates. In spite of not being abundant in nature, its structure and properties are reasonably well known because of its interest in the construction industry. Currently, tobermorite is synthesized by hydrothermal methods at mild temperatures. The problem is that such processes are very slow (>5 h) and temperature cannot be increased to speed them up because tobermorite is metastable over 130 °C. Furthermore the product obtained is generally foil-like and not very crystalline. Herein we propose an alternative synthesis method based on the use of a continuous flow reactor and supercritical water. In spite of the high temperature, the transformation of tobermorite to more stable phases can be prevented by accurately controlling the reaction time. As a result, highly crystalline fibrillar tobermorite can be obtained in just a few seconds under thermodynamically metastable conditions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Antibacterial studies of novel Cu2WS4 ternary chalcogenide synthesized by hydrothermal process
NASA Astrophysics Data System (ADS)
Kannan, Selvaraj; Vinitha, Perumal; Mohanraj, Kannusamy; Sivakumar, Ganesan
2018-02-01
This is the first report for the synthesis of L-cysteine mediated Cu2WS4 nanoparticles for different temperatures by an inexpensive and less pollutive hydrothermal method. The as-synthesized particles were characterized by XRD, FTIR, FESEM, UV-vis diffuse reflectance and PL spectra technique respectively. The phase purity and structural confirmation were studied by X-ray powder diffraction technique. It is observed that the synthesis temperature affecting the crystalline size. The optical analysis of the Cu2WS4 nanoparticles showed direct band gap in the range of 2.1-2.3 eV. The intensity of the PL emission spectra decreases with increase of reaction temperature. The antibacterial performance of Cu2WS4 nanoparticles were investigated by agar well diffusion method and the results confirm that the antibacterial activity of Cu2WS4 against Gram-positive (B. subtilis, M. luteus) and Gram-negative (E. coli, P. aeruginosa and K. pneumoniae) bacteria.
NASA Astrophysics Data System (ADS)
Chen, S.; Tao, C.; Li, H.; Zhou, J.; Deng, X.; Tao, W.; Zhang, G.; Liu, W.; He, Y.
2014-12-01
The Precious Stone Mountain hydrothermal field (PSMHF) is located on the southern rim of the Galapagos Microplate. It was found at the 3rd leg of the 2009 Chinese DY115-21 expedition on board R/V Dayangyihao. It is efficient to learn the distribution of hydrothermal plumes and locate the hydrothermal vents by detecting the anomalies of turbidity and temperature. Detecting seawater turbidity by MAPR based on deep-tow technology is established and improved during our cruises. We collected data recorded by MAPR and information from geological sampling, yielding the following results: (1)Strong hydrothermal turbidity and temperature anomalies were recorded at 1.23°N, southeast and northwest of PSMHF. According to the CTD data on the mooring system, significant temperature anomalies were observed over PSMHF at the depth of 1,470 m, with anomalies range from 0.2℃ to 0.4℃, which gave another evidence of the existence of hydrothermal plume. (2)At 1.23°N (101.4802°W/1.2305°N), the nose-shaped particle plume was concentrated at a depth interval of 1,400-1,600 m, with 200 m thickness and an east-west diffusion range of 500 m. The maximum turbidity anomaly (0.045 △NTU) was recorded at the depth of 1,500 m, while the background anomaly was about 0.01△NTU. A distinct temperature anomaly was also detected at the seafloor near 1.23°N. Deep-tow camera showed the area was piled up by hydrothermal sulfide sediments. (3) In the southeast (101.49°W/1.21°N), the thickness of hydrothermal plume was 300 m and it was spreading laterally at a depth of 1,500-1,800 m, for a distance about 800 m. The maximum turbidity anomaly of nose-shaped plume is about 0.04 △NTU at the depth of 1,600 m. Distinct temperature anomaly was also detected in the northwest (101.515°W/1.235°N). (4) Terrain and bottom current were the main factors controlling the distribution of hydrothermal plume. Different from the distribution of hydrothermal plumes on the mid-ocean ridges, which was mostly effected by seafloor topography, the terrain of the PSMHF was relatively flat, so the impact was negligible. Southwest direction bottom current at the speed of 0.05 m/s in PSMHF had a great influence on the distribution and spreading direction of hydrothermal plume. Keyword: hydrothermal plume, Precious Stone Mountain hydrothermal field, turbidity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preda, Silviu, E-mail: predas01@yahoo.co.uk; Rutar, Melita; Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana
2015-11-15
Highlights: • The microwave-assisted hydrothermal route was used for titanate nanotubes synthesis. • Conversion to single-phase nanotube morphology completes after 8 h reaction time. • The nanotube morphology is stable up to 600 °C, as determined by in-situ XRD and SEM. • Sodium ions migrate to the surface due to thermal motion and structure condensation. - Abstract: Sodium titanate nanotubes (NaTiNTs) were synthesized by microwave-assisted hydrothermal treatment of commercial TiO{sub 2}, at constant temperature (135 °C) and different irradiation times (15 min, 1, 4, 8 and 16 h). The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electronmore » microscopy, differential scanning calorimetry and specific surface area measurements. The irradiation time turned out to be the key parameter for morphological control of the material. Nanotubes were observed already after 15 min of microwave irradiation. The analyses of the products irradiated for 8 and 16 h confirm the complete transformation of the starting TiO{sub 2} powder to NaTiNTs. The nanotubes are open ended with multi-wall structures, with the average outer diameter of 8 nm and specific surface area up to 210 m{sup 2}/g. The morphology, surface area and crystal structure of the sodium titanate nanotubes synthesized by microwave-assisted hydrothermal method were similar to those obtained by conventional hydrothermal method.« less
Anhydrite precipitation in seafloor hydrothermal systems
NASA Astrophysics Data System (ADS)
Theissen-Krah, Sonja; Rüpke, Lars H.
2016-04-01
The composition and metal concentration of hydrothermal fluids venting at the seafloor is strongly temperature-dependent and fluids above 300°C are required to transport metals to the seafloor (Hannington et al. 2010). Ore-forming hydrothermal systems and high temperature vents in general are often associated with faults and fracture zones, i.e. zones of enhanced permeabilities that act as channels for the uprising hydrothermal fluid (Heinrich & Candela, 2014). Previous numerical models (Jupp and Schultz, 2000; Andersen et al. 2015) however have shown that high permeabilities tend to decrease fluid flow temperatures due to mixing with cold seawater and the resulting high fluid fluxes that lead to short residence times of the fluid near the heat source. A possible mechanism to reduce the permeability and thereby to focus high temperature fluid flow are mineral precipitation reactions that clog the pore space. Anhydrite for example precipitates from seawater if it is heated to temperatures above ~150°C or due to mixing of seawater with hydrothermal fluids that usually have high Calcium concentrations. We have implemented anhydrite reactions (precipitation and dissolution) in our finite element numerical models of hydrothermal circulation. The initial results show that the precipitation of anhydrite efficiently alters the permeability field, which affects the hydrothermal flow field as well as the resulting vent temperatures. C. Andersen et al. (2015), Fault geometry and permeability contrast control vent temperatures at the Logatchev 1 hydrothermal field, Mid-Atlantic Ridge, Geology, 43(1), 51-54. M. D. Hannington et al. (2010), Modern Sea-Floor Massive Sulfides and Base Metal Resources: Toward an Estimate of Global Sea-Floor Massive Sulfide Potential, in The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries, edited by R. J. Goldfarb, E. E. Marsh and T. Monecke, pp. 317-338, Society of Economic Geologists. Heinrich, C. A., and P. A. Candela (2014), 13.1 - Fluids and Ore Formation in the Earth's Crust, in Treatise on Geochemistry (Second Edition), edited by H. D. Holland and K. K. Turekian, pp. 1-28, Elsevier, Oxford. Jupp, T., and A. Schultz (2000), A thermodynamic explanation for black smoker temperatures, Nature, 403(6772), 880-883.
Interpretation of Ground Temperature Anomalies in Hydrothermal Discharge Areas
NASA Astrophysics Data System (ADS)
Price, A. N.; Lindsey, C.; Fairley, J. P., Jr.
2017-12-01
Researchers have long noted the potential for shallow hydrothermal fluids to perturb near-surface temperatures. Several investigators have made qualitative or semi-quantitative use of elevated surface temperatures; for example, in snowfall calorimetry, or for tracing subsurface flow paths. However, little effort has been expended to develop a quantitative framework connecting surface temperature observations with conditions in the subsurface. Here, we examine an area of shallow subsurface flow at Burgdorf Hot Springs, in the Payette National Forest, north of McCall, Idaho USA. We present a simple analytical model that uses easily-measured surface data to infer the temperatures of laterally-migrating shallow hydrothermal fluids. The model is calibrated using shallow ground temperature measurements and overburden thickness estimates from seismic refraction studies. The model predicts conditions in the shallow subsurface, and suggests that the Biot number may place a more important control on the expression of near-surface thermal perturbations than previously thought. In addition, our model may have application in inferring difficult-to-measure parameters, such as shallow subsurface discharge from hydrothermal springs.
NASA Astrophysics Data System (ADS)
Lacroix, B.; Hughes, J.; Lahfid, A.; Delchini, S.
2017-12-01
The thermal history of the Nacimiento block located within the Franciscan Complex (California, USA) has been previously proposed based on both vitrinite reflectance (Rm) and illite cristallinity methods (Underwood et al., 1995). These authors suggest that the Nacimiento block is locally perturbed by a thermal anomaly (up to 300ºC), probably caused by post-metamorphic hydrothermal activity linked to the emplacement of an Au-deposit: the Los Burros Gold deposit. Although both thermal anomaly and deposit seem spatially correlated, their relationship is still poorly constrained. Detailed geological and structural mapping within the Los Burros Mining District (LBMD) coupled with a thermal study was conducted to better understand processes responsible for the anomalous temperatures recorded near the deposit. The regional maximum temperature reached by metasediments from the Nacimiento block have been first investigated using the Raman Spectroscopy of Carbonaceous Materials (RSCM) method. In addition, through careful fluid-inclusion and stable isotopes (O and C) studies on the deposit, the temperature and the potential source of the fluid responsible for the Los Burros Au-deposit emplacement were investigated. RSCM technique confirms the presence of a thermal anomaly in the range 260-320ºC near LBMD. However, our structural and petrographic results suggest that the thermal anomaly is not correlated to a post-metamorphic hydrothermal overprint but rather to a late, transpressive deformation uplifting buried metamorphic rocks.
Hydrothermal treatment of hazardous energetic materials waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brill, T.B.; Schoppelrei, J.W.; Maiella, P.G.
1995-12-31
Destruction of energetic materials by hydrothermal methods presents a potential for strongly exothermic oxidation-reduction reactions, which, if localized at a site in the reactor, create {open_quotes}hot spots{close_quotes}. To investigate highly exothermic hydrothermal reactions, real-time spectroscopic measurements in the stream by infrared and Raman spectroscopy offer opportunities. Flow reactor-spectroscopy cells were developed for such studies, focusing on approximately oxygen-balanced nitrate salts for which highly exothermic reactions can occur. In addition, the kinetics of formation of later stage products were studied because these products are likely to be released to the environment and to be regulated. An experiment was designed to simulatemore » the occurence of a phase separation in a reactor followed by rapid exothermic reaction. By varying the pressure, water content, and hydrogen content in the reaction volume of the cell, the freeze out temperatures required to set the carbon monoxide/carbon dioxide ratio were determined to be 1300 to 1470 K. Such high temperatures suggest that localized hot spots can exist which greatly exceed the overall set temperature of the reactor. This scenario can occur if a phase separation occurs to isolate ethylenediammonium dinitrate in quantities as small as tenths of milligrams. Studies of the oxidation-reduction reactions of nitrate ion with the counter ion show that the oxidizing power of the nitrate ion is realized provided a readily oxidizable cation such as hydroxylammonium is present. When the cation has a low reactivity, such as quanidinium, a much higher reaction temperature is required before the nitrate ion reacts. At this temperature, the cation may have already begun to decompose by a hydrothermal route.« less
Detecting deep sea hydrothermal vents with a split-beam echosounder
NASA Astrophysics Data System (ADS)
Gray, L. M.; Jerram, K.
2016-12-01
In May 2016, the NOAA Office of Exploration and Research exploration vessel, Okeanos Explorer, conducted a remotely operated vehicle (ROV) dive on a series of active `black smoker' hydrothermal vents at 3,300 m depth in the western Pacific Ocean near the Mariana Trench. The ROV system traversed 800 m along the seafloor and detected three distinct vent sites. The vent chimneys ranged in heights from 5 m to 30 m above the seafloor and vent fluid temperatures were measured as high as 337 °C. Immediately following the ROV dive, the Okeanos Explorer mapped the vent field with an 18 kHz split-beam echosounder traditionally used for fishery research and a 30 kHz multibeam echosounder with midwater capability. Six passes were made over the field, transiting at 4-5 knots on various headings. There was a clear and repeatable signal in the split-beam echogram from the venting but less obvious indication in the multibeam data. `Black smokers' have traditionally been detected using repeat conductivity-temperature-depth (CTD) `tow-yo' casts. Our field observations suggest an alternative, and potentially more efficient, method of detecting hydrothermal vent plumes within the beamwidth of the split-beam echosounder to inform ROV dive plans. Methods previously applied for locating marine gas seeps on the seafloor with split-beam echosounders can be applied to estimate the hydrothermal vent positions in this dataset and compared to the recorded ROV positions at each site. Additionally, assuming relatively stable venting and ambient conditions, the ROV position and CTD data recorded from the vehicles can be used to better understand the observed midwater acoustic backscatter signatures of the hydrothermal vent plumes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei, E-mail: wangwei@mail.buct.edu.cn; Ding, Zui; Zhao, Xiruo
2015-05-07
Three kinds of spinel ferrite nanocrystals, MFe{sub 2}O{sub 4} (M = Co, Ni, and Mn), are synthesized using colloid mill and hydrothermal method. During the synthesis process, a rapid mixing and reduction of cations with sodium borohydride (NaBH{sub 4}) take place in a colloid mill then through a hydrothermal reaction, a slow oxidation and structural transformation of the spinel ferrite nanocrystals occur. The phase purity and crystal lattice parameters are estimated by X-ray diffraction studies. Scanning electron microscopy and transmission electron microscopy images show the morphology and particle size of the as-synthesized ferrite nanocrystals. Raman spectrum reveals active phonon modesmore » at room temperature, and a shifting of the modes implies cation redistribution in the tetrahedral and octahedral sites. Magnetic measurements show that all the obtained samples exhibit higher saturation magnetization (M{sub s}). Meanwhile, experiments demonstrate that the hydrothermal reaction time has significant effects on microstructure, morphologies, and magnetic properties of the as-synthesized ferrite nanocrystals.« less
Chen, Ru; Miao, Lei; Liu, Chengyan; Zhou, Jianhua; Cheng, Haoliang; Asaka, Toru; Iwamoto, Yuji; Tanemura, Sakae
2015-01-01
Monoclinic VO2(M) in nanostructure is a prototype material for interpreting correlation effects in solids with fully reversible phase transition and for the advanced applications to smart devices. Here, we report a facile one-step hydrothermal method for the controlled growth of single crystalline VO2(M/R) nanorods. Through tuning the hydrothermal temperature, duration of the hydrothermal time and W-doped level, single crystalline VO2(M/R) nanorods with controlled aspect ratio can be synthesized in large quantities, and the crucial parameter for the shape-controlled synthesis is the W-doped content. The dopant greatly promotes the preferential growth of (110) to form pure phase VO2(R) nanorods with high aspect ratio for the W-doped level = 2.0 at% sample. The shape-controlled process of VO2(M/R) nanorods upon W-doping are systematically studied. Moreover, the phase transition temperature (Tc) of VO2 depending on oxygen nonstoichiometry is investigated in detail. PMID:26373612
NASA Astrophysics Data System (ADS)
Liu, Qing; Wen, Dafen; Yang, Yanran; Fei, Zhaoyang; Zhang, Zhuxiu; Chen, Xian; Tang, Jihai; Cui, Mifen; Qiao, Xu
2018-03-01
Hierarchical porous ZSM-5 (HP-ZSM-5) zeolites were synthesized by hydrothermal crystallization method adding triethoxyvinylsilane as the growth-inhibitor at different hydrothermal crystallized temperatures. The properties of the obtained samples were characterized by XRD, SEM, N2-sorption, uptake of ethylene, 27Al MAS NMR, NH3-TPD, and Py-IR. It was found that the mesopore was introduced and the acidity was adjusted over HP-ZSM-5 samples successfully. The hydrothermal crystallized temperature had an important influence on the porous structure and surface properties. The catalytic performance for chloromethane to light-olefins (CMTO) were also investigated. Compared with ZSM-5 samples, HP-ZSM-5 samples exhibited enhanced stability and increased selectivity of light-olefins for CMTO reaction because of the introduction of the abundant mesopore and appropriate acidity. The lifetime (the duration of chloromethane conversion >98%) and selectivity of light-olefins reached 115 h and 69.3%, respectively.
de Wit, Maarten J.; Furnes, Harald
2016-01-01
Estimates of ocean temperatures on Earth 3.5 billion years ago (Ga) range between 26° and 85°C. We present new data from 3.47- to 3.43-Ga volcanic rocks and cherts in South Africa suggesting that these temperatures reflect mixing of hot hydrothermal fluids with cold marine and terrestrial waters. We describe fossil hydrothermal pipes that formed at ~200°C on the sea floor >2 km below sea level. This ocean floor was uplifted tectonically to sea level where a subaerial hydrothermal system was active at 30° to 270°C. We also describe shallow-water glacial diamictites and diagenetic sulfate mineral growth in abyssal muds. These new observations reveal that both hydrothermal systems operated in relatively cold environments and that Earth’s surface temperatures in the early Archean were similar to those in more recent times. PMID:26933677
NASA Astrophysics Data System (ADS)
Araoka, Daisuke; Nishio, Yoshiro; Gamo, Toshitaka; Yamaoka, Kyoko; Kawahata, Hodaka
2016-10-01
The Li concentration and isotopic composition (δ7Li) in submarine vent fluids are important for oceanic Li budget and potentially useful for investigating hydrothermal systems deep under the seafloor because hydrothermal vent fluids are highly enriched in Li relative to seawater. Although Li isotopic geochemistry has been studied at mid-ocean-ridge (MOR) hydrothermal sites, in arc and back-arc settings Li isotopic composition has not been systematically investigated. Here we determined the δ7Li and 87Sr/86Sr values of 11 end-member fluids from 5 arc and back-arc hydrothermal systems in the western Pacific and examined Li behavior during high-temperature water-rock interactions in different geological settings. In sediment-starved hydrothermal systems (Manus Basin, Izu-Bonin Arc, Mariana Trough, and North Fiji Basin), the Li concentrations (0.23-1.30 mmol/kg) and δ7Li values (+4.3‰ to +7.2‰) of the end-member fluids are explained mainly by dissolution-precipitation model during high-temperature seawater-rock interactions at steady state. Low Li concentrations are attributable to temperature-related apportioning of Li in rock into the fluid phase and phase separation process. Small variation in Li among MOR sites is probably caused by low-temperature alteration process by diffusive hydrothermal fluids under the seafloor. In contrast, the highest Li concentrations (3.40-5.98 mmol/kg) and lowest δ7Li values (+1.6‰ to +2.4‰) of end-member fluids from the Okinawa Trough demonstrate that the Li is predominantly derived from marine sediments. The variation of Li in sediment-hosted sites can be explained by the differences in degree of hydrothermal fluid-sediment interactions associated with the thickness of the marine sediment overlying these hydrothermal sites.
Subramanian, Vaidyanathan; Murugesan, Sankaran
2014-04-29
The present invention relates to formation of nanocubes of sillenite type compounds, such as bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, via a hydrothermal synthesis process, with the resulting compound(s) having multifunctional properties such as being useful in solar energy conversion, environmental remediation, and/or energy storage, for example. In one embodiment, a hydrothermal method is disclosed that transforms nanoparticles of TiO.sub.2 to bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, optionally loaded with palladium nanoparticles. The method includes reacting titanium dioxide nanotubes with a bismuth salt in an acidic bath at a temperature sufficient and for a time sufficient to form bismuth titanate crystals, which are subsequently annealed to form bismuth titanate nanocubes. After annealing, the bismuth titanate nanocubes may be optionally loaded with nano-sized metal particles, e.g., nanosized palladium particles.
Process characteristics for microwave assisted hydrothermal carbonization of cellulose.
Zhang, Junting; An, Ying; Borrion, Aiduan; He, Wenzhi; Wang, Nan; Chen, Yirong; Li, Guangming
2018-07-01
The process characteristics of microwave assisted hydrothermal carbonization of cellulose was investigated and a first order kinetics model based on carbon concentration was developed. Chemical properties analysis showed that comparing to conventional hydrothermal carbonization, hydrochar with comparable energy properties can be obtained with 5-10 times decrease in reaction time with assistance of microwave heating. Results from kinetics study was in great agreement with experimental analysis, that they both illustrated the predominant mechanism of the reaction depend on variations in the reaction rates of two co-existent pathways. Particularly, the pyrolysis-like intramolecular dehydration reaction was proved to be the predominant mechanism for hydrochar generation under high temperatures. Finally, the enhancement effects of microwave heating were reflected under both soluble and solid pathways in this research, suggesting microwave-assisted hydrothermal carbonization as a more attracting method for carbon-enriched hydrochar recovery. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Patten, C. G. C.; Pitcairn, I. K.; Teagle, D. A. H.; Harris, M.
2016-11-01
Fluxes of metals during the hydrothermal alteration of the oceanic crust have far reaching effects including buffering of the compositions of the ocean and lithosphere, supporting microbial life and the formation of sulphide ore deposits. The mechanisms responsible for metal mobilisation during the evolution of the oceanic crust are complex and are neither fully constrained nor quantified. Investigations into the mineral reactions that release metals, such as sulphide leaching, would generate better understanding of the controls on metal mobility in the oceanic crust. We investigate the sulphide and oxide mineral paragenesis and the extent to which these minerals control the metal budget in samples from Ocean Drilling Program (ODP) Hole 1256D. The ODP Hole 1256D drill core provides a unique sample suite representative of a complete section of a fast-spreading oceanic crust from the volcanic section down to the plutonic complex. The sulphide population at Hole 1256D is divided into five groups based on mineralogical assemblage, lithological location and texture: the magmatic, metasomatised, high temperature hydrothermal, low temperature and patchy sulphides. The initiation of hydrothermal alteration by downward flow of moderate temperature (250-350 °C) hydrothermal fluids under oxidising conditions leads to metasomatism of the magmatic sulphides in the sheeted dyke and plutonic complexes. Subsequent increase in the degree of hydrothermal alteration at temperatures >350 °C under reducing conditions then leads to the leaching of the metasomatised sulphides by rising hydrothermal fluids. Mass balance calculations show that the mobility of Cu, Se and Au occurs through sulphide leaching during high temperature hydrothermal alteration and that the mobility of Zn, As, Sb and Pb is controlled by silicate rather than sulphide alteration. Sulphide leaching is not complete at Hole 1256D and more advanced alteration would mobilise greater masses of metals. Alteration of oxide minerals does not release significant quantities of metal into the hydrothermal fluid at Hole 1256D. Mixing of rising high temperature fluids with low temperature fluids, either in the upper sheeted dyke section or in the transitional zone, triggers local high temperature hydrothermal sulphide precipitation and trapping of Co, Ni, Cu, Zn, As, Ag, Sb, Se, Te, Au, Hg and Pb. In the volcanic section, low temperature fluid circulation (<150 °C) leads to low temperature sulphide precipitation in the form of pyrite fronts that have high As concentrations due to uptake from the circulating fluids. Deep late low temperature circulation in the sheeted dyke and the plutonic complexes results in local precipitation of patchy sulphides and local metal remobilisation. Control of sulphides over Au, Se and Cu throughout fast-spreading mid-oceanic crust history implies that the generation of hydrothermal fluids enriched in these metals, which can eventually form VMS deposits, is strongly controlled by sulphide leaching.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malik, Ritu; Kumar, Ashok; Rana, Pawan S., E-mail: drpawansrana.phy@dcrustm.org
2015-08-28
This work deals with the synthesis of TiO{sub 2} nanostructures using sol-gel and hydrothermal method for evaluating their photodegradation performance towards decolorization of Rose Bengal (RB). A combination of characterization techniques including X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and UV–Vis spectroscopy were utilized to evaluate the structural, morphological and optical properties of the obtained nanostructures. It was observed that the TiO{sub 2} nanoparticles prepared using hydrothermal method were highly crystalline and possess higher band gap value, even when same conditions of temperature, pressure, precursor ratios and solvent amount was kept constant while synthesizing TiO{sub 2} nanostructures viamore » sol-gel method. The obvious effect of porous morphology exhibited by TiO{sub 2} nanoparticles prepared using hydrothermal route is reflected in its decolorization performance whereby 92.5% of the RB dye solution was degraded in 70 min of irradiation time.« less
NASA Astrophysics Data System (ADS)
Noblitt, Jennifer Lenkner
2011-12-01
Increasing energy demands are fueling research in the area of renewable energy and energy storage. In particular, Li-ion batteries and superconducting wires are attractive choices for energy storage. Improving safety, simplifying manufacturing processes, and advancing technology to increase energy storage capacity is necessary to compete with current marketed energy storage devices. These advancements are accomplished through the study of new materials and new morphologies. Increasing dependence on and rising demand for portable electronic devices has continued to drive research in the area of Li-ion batteries. In order to compete with existing batteries and be applicable to future energy needs such as powering hybrid vehicles, the drawbacks of Li-ion batteries must be addressed including (i) low power density, (ii) safety, and (iii) high manufacturing costs. These drawbacks can be addressed through new materials and morphologies for the anode, cathode, and electrolyte. New intermetallic anode materials such as ZnSb, MnSb, and Mn2Sb are attractive candidates to replace graphite, the current industry standard anode material, because they are safer while maintaining comparable theoretical capacity. Electrodeposition is an inexpensive method that could be used for the synthesis of these electrode materials. Direct electrodeposition allows for excellent electrical contact to the current collector without the use of a binder. To successfully electrodeposit zinc and manganese antimonides, metal precursors with excellent solubility in water were needed. To promote solubility, particularly for the antimony precursor, coordinating ligands were added to the deposition bath solutions. This work shows that the choice of coordinating ligand and metal-ligand speciation can alter both the electrochemistry and the film composition. This work focuses on the search for appropriate coordinating ligands, solution pH, and bath temperatures so that high quality films of ZnSb, MnSb, and Mn2Sb may be electrochemically deposited on a conducting substrate. Increasing use of natural resources for energy generation has driven research in the area of energy storage using superconducting materials. To meet energy storage needs the materials must have the following features: (i) safety, (ii) superconductivity at or above liquid nitrogen temperature (77 K), (iii) low cost manufacturing processes, and (iv) robustness. The search for materials that meet all of these criteria is on-going, specifically in the area of high temperature superconductivity. The precise mechanism of superconductivity is not known. A few theories explain some of the phenomenological aspects, but not all. In order to logically select and synthesize high temperature superconductors for industrial applications, the precise mechanism must first be elucidated. Additionally, a synthetic method that yields pure, high quality crystals is required because transition temperatures have been shown to vary depending on the preparation method due to impurities. Before measuring properties of superconductors, the development of a synthesis method that yields pure, high quality crystals is required. Most superconductors are synthesized using traditional solid state methods. This synthesis route precludes formation of kinetically stable phases. Low temperature synthesis is useful for probing thermodynamic verses kinetic stability of compounds as well as producing high quality single crystals. A novel low temperature hydrothermal synthesis of Sr-Ru-O compounds has been developed. These materials are important because of their interesting properties including superconductivity and ferromagnetism. Sr2RuO4 is particularly interesting as it is superconducting and isostructural to La2CuO 4, which is only superconducting when doped. Therefore, Sr2RuO 4 is a good choice for study of the mechanism of superconductivity. Additionally, new kinetically stable phases of the Sr-Ru-O family may be formed which may also be superconducting. Sr-Ru-O compounds were previously synthesized via the float zone method. There is one report of using hydrothermal synthesis, but the temperatures used were 480--630 °C. In general, hydrothermal methods are advantageous because of the potential for moderate temperatures and pressures to be used. Additionally, the reaction temperature, precursor choice, and reaction time can all be used to tune the composition and morphology of the product. Hydrothermal methods are inexpensive and a one-step synthesis which is very convenient to scale up for industrial application. This work shows how a hydrothermal method at temperatures between 140 °C and 210 °C was developed for the synthesis of the Sr-Ru-O family of compounds.
NASA Astrophysics Data System (ADS)
Yan, Junbin; Zhang, Hexuan; Xie, Zhengzheng; Liu, Jianyun
2017-08-01
Biomass carbon materials were prepared by hydrothermal method using Lentinus edodes, followed by activation by ZnCl2 at high carbonization temperature. SEM and contact angle test show that ZnCl2 has a significant effect on the surface morphology and properties of porous carbon materials. Using the porous carbon as electrodes of the capacitor, the specific capacitance of the porous carbon material was found to be 247.6 F/g. The desalination amount of porous carbon material in capacitor cell was 12.9 mg/g, being the 1.9 times of that of the commercial activated carbon.
NASA Astrophysics Data System (ADS)
Masaki, Y.; Nozaki, T.; Saruhashi, T.; Kyo, M.; Sakurai, N.; Yokoyama, T.; Akiyama, K.; Watanabe, M.; Kumagai, H.; Maeda, L.; Kinoshita, M.
2017-12-01
The middle Okinawa Trough, located along the Ryukyu- arc on the margin of the East China Sea, has several active hydrothermal fields. From February to March 2016, Cruise CK16-01 by D/V Chikyu targeted the Iheya-North Knoll and southern flank of the Iheya Minor Ridge to comprehend sub-seafloor geological structure and polymetallic sulfide mineralization. In this cruise, we installed two Kuroko cultivation apparatuses equipped with P/T sensors, flowmeter and load cell to monitor pressure, temperature and flow rate of hydrothermal fluid discharged from the artificial hydrothermal vent together with weight of hydrothermal precipitate. During Cruise KR16-17 in January 2017, two cultivation cells with sensor loggers were successfully recovered by ROV Kaiko MK-IV and R/V Kairei. We report these physical sensor data obtained by more than 10 months monitoring at two deep-sea artificial hydrothermal vents through many first and challenging operations.Hole C9017B at southern flank of the Iheya Minor Ridge (water depth of 1,500 mbsl), fluid temperature was constant ca. 75 ºC for 5 months from the beginning of monitoring. Then temperature gradually decrease to be 40 ºC. In November 2016, temperature and pressure suddenly dropped and quickly recovered due to the disturbance of subseafloor hydrology, induced by another drilling operation at Hole C9017A which is 10.8 meters northeastward from Hole C9017B during Cruise CK16-05. Temperature data exhibit conspicuous periodic 12.4hour cycles and this is attributable to oceanic tidal response. The amplitude of temperature variations increased along with decline of the temperature variations increased along with decline of the temperature. The average flow rate was 67 L/min for 9 hours from the onset of monitoring.Hole C9024A at the Iheya-North Knoll (water depth of 1,050 msl), the maximum temperature reached 308 ºC, which is similar to the maximum value of 311 ºC obtained from the ROV thermometer. The average flow rate was 289 L/min for 8 days from onset of monitoring.
Geochemistry of pyrite and chalcopyrite from an active black smoker in 49.6°E Southwest Indian Ridge
NASA Astrophysics Data System (ADS)
Yuan, Bo; Yang, Yaomin; Yu, Hongjun; Zhao, Yuexia; Ding, Qingfeng; Yang, Jichao; Tang, Xin
2017-06-01
Active hydrothermal chimneys, as the product of submarine hydrothermal activity, can be used to determine the fluid evolution and formation process of potential volcanic-hosted massive sulfide deposits. A hard-won specimen from an active hydrothermal chimney was collected in the 49.6°E ultraslow-spreading Southwest Indian Ridge (SWIR) field through a television-guided grab. A geochemical study of prominent sulfide (e.g., pyrite and chalcopyrite) included in this sample was performed using laser ablation inductively coupled plasma mass spectroscopy. The early sulfides produced at low temperature are of disseminated fine-grained anhedral morphology, whereas the late ones with massive, coarse euhedral features precipitated in a high-temperature setting. The systematic variations in the contents of minor and trace elements are apparently related to the crystallization sequence, as well as to texture. Micro-disseminated anhedral sulfides rich in Pb, As, Ni, Ba, Mn, Mo, U, and V were formed during the initial chimney wall growth, whereas those rich in Sn, Se, and Co with massive, coarse euhedral morphology were formed within the late metallogenic stage. The hydrothermal fluid composition has experienced a great change during the chimney growth. Such a conclusion is consistent with that indicated by using principal component analysis, which is a powerful statistical analysis method widely used to project multidimensional datasets (e.g., element contents in different mineral phases) into a few directions. This distribution pattern points to crystallographic controls on minor and trace element uptake during chimney growth, occurring with concomitant variations in the fluid composition evolutionary history. In this pyrite-chalcopyrite-bearing active hydrothermal chimney at the SWIR, the metal concentration and precipitation of sulfides largely occurred at the seafloor as a result of mixing between the upwelling hot hydrothermal fluid and cold seawater. Over the course of mixing, significant variations in metal solubility were caused by changes in temperature, pH, and redox conditions in the parental fluid phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raj, P. Markondeya; Lee, Baik-Woo; Kang, Nam-Kee
System integration and miniaturization demands are driving integrated thin film capacitor technologies towards ultrahigh capacitance densities for noise-free power supply, power conversion and efficient power management. Hydrothermal route can deposit crystalline ferroelectric films at low temperatures of less than 150 C. It is hence an attractive route for integrating high permittivity thin film capacitors on organic, silicon or flex substrates. However, hydrothermal films are not commercialized so far because of their inferior insulation characteristics. Embedded hydroxyl groups are attributed to be the cause for high leakage currents, temperature dependent properties and lower Breakdown Voltages (BDVs). This paper discusses the dielectricmore » characteristics such as capacitance density, leakage currents and Temperature Coefficient of Capacitance (TCC) of hydrothermal barium titanate films and correlates them to the embedded water and OH groups, film morphology, stoichiometry and crystallinity. With thermal treatment, majority of the OH groups can be removed leading to improved insulation characteristics. The room temperature I-V characteristics agreed with ionic conduction models for films baked at 160 C while higher baking temperatures of above 300 C resulted in Poole-Frenkel type conduction. A brief perspective is provided on the suitability of hydrothermal thin film capacitors for power supply applications.« less
NASA Astrophysics Data System (ADS)
Wang, P.; Yang, L.; Dai, B.; Yang, Z.; Guo, S.; Zhu, J.
2017-07-01
Vertically-aligned WO3 nanoplates on transparent conducting fluorine-doped tin oxide (FTO) glass were prepared by a facile template-free crystal-seed-assisted hydrothermal method. The effects of the hydrothermal temperature and reaction time on the crystal structure and morphology of the products were investigated by XRD and SEM. The XRD results showed that the as-prepared thin films obtained below 150∘C comprised orthorhombic WO3 ṡ H2O and completely converted to monoclinic WO3 at 180∘C. It was also noted that there was a phase transformation from orthorhombic to monoclinic by increasing the reaction time from 1 to 12 h. SEM analysis revealed that WO3 thin films are composed of plate-like nanostructures.
Chemical environments of submarine hydrothermal systems. [supporting abiogenetic theory
NASA Technical Reports Server (NTRS)
Shock, Everett L.
1992-01-01
The paper synthesizes diverse information about the inorganic geochemistry of submarine hydrothermal systems, provides a description of the fundamental physical and chemical properties of these systems, and examines the implications of high-temperature, fluid-driven processes for organic synthesis. Emphasis is on a few general features, i.e., pressure, temperature, oxidation states, fluid composition, and mineral alteration, because these features will control whether organic synthesis can occur in hydrothermal systems.
Chang, Huazhen; Ma, Lei; Yang, Shijian; Li, Junhua; Chen, Liang; Wang, Wei; Hao, Jiming
2013-11-15
A series of CeO2 catalysts prepared with sulfate (S) and nitrate (N) precursors by hydrothermal (H) and precipitation (P) methods were investigated in selective catalytic reduction of NOx by NH3 (NH3-SCR). The catalytic activity of CeO2 was significantly affected by the preparation methods and the precursor type. CeO2-SH, which was prepared by hydrothermal method with cerium (IV) sulfate as a precursor, showed excellent SCR activity and high N2 selectivity in the temperature range of 230-450 °C. Based on the results obtained by temperature-programmed reduction (H2-TPR), transmission infrared spectra (IR) and thermal gravimetric analysis (TGA), the excellent performance of CeO2-SH was correlated with the surface sulfate species formed in the hydrothermal reaction. These results indicated that sulfate species bind with Ce(4+) on the CeO2-SH catalyst, and the specific sulfate species, such as Ce(SO4)2 or CeOSO4, were formed. The adsorption of NH3 was promoted by these sulfate species, and the probability of immediate oxidation of NH3 to N2O on Ce(4+) was reduced. Accordingly, the selective oxidation of NH3 was enhanced, which contributed to the high N2 selectivity in the SCR reaction. However, the location of sulfate on the CeO2-SP catalyst was different. Plenty of sulfate species were likely deposited on CeO2-SP surface, covering the active sites for NO oxidation, which resulted in poor SCR activity in the test temperature range. Moreover, the resistance to alkali metals, such as Na and K, was improved over the CeO2-SH catalyst. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gilg, H. Albert; Frei, Robert
1994-05-01
Various geochronological methods ( U/Pb, Rb/Sr, and K/Ar) have been applied to constrain the timing of magmatism and polymetallic mineralization in the Kassandra mining district, northern Greece. These data provide the first geochronological evidence that porphyry copper mineralization, proximal copper skarns, and distal high-temperature carbonate-hosted Pb-Zn-Ag-Au replacement ores formed contemporaneously and probably within less than 2 million years. Polymetallic mineralization is temporally related to the emplacement of granodioritic to quartz dioritic porphyries (24-25 Ma) that postdate the largest post-tectonic intrusion of the area, the Stratoni granodiorite (27.9 ± 1.2 Ma). Andesite porphyry dikes, which crosscut the Pb-Zn-Ag-Au ores and associated alterations, represent the last magmatic phase in the area (19.1 ± 0.6 Ma) and did not contribute to metal concentration. The combination of K/Ar, Rb/Sr, and oxygen isotope studies of hydrothermal illite-rich clays and careful granulometric analysis constrains the reliability of these geochronological methods and emphasizes the importance of characterizing the post-formational history of the sample. We identify various processes which partly disturbed the K/Ar and Rb/Sr system of some clays, such as retrograde alteration by heated meteoric waters, superimposed supergene illitization, and resetting of both isotopic systems due to a hydrothermal overprint related to the intrusion of the andesite porphyry. Our data, however, suggest that diffusive Ar loss from the finest clay fractions (< 0.6 μm) during cooling of the hydrothermal system probably played the most important role in the disturbance of the K/Ar system. Conventional K/Ar ages of < 2 μm fractions from high-temperature illites (> 200°C), therefore, do not give reliable formation ages. The loss of Ar may be used to model the cooling history of the hydrothermal system applying the concept of closure temperatures ( DODSON, 1973). 40K- 40Ar rad isochrons of natural, coarser grained (> 0.6 μm) size fractions of illites from single samples, even when slightly contaminated with feldspars, may yield meaningful ages either of the formation or of a reheating event. The Rb/Sr dating of hydrothermal clays is sensitive to contamination by adsorbed strontium, which may not be cogenetic with the clay, as well as feldspars, which may not have been homogenized isotopically by the illitization process.
Yanagawa, Katsunori; Ijiri, Akira; Breuker, Anja; Sakai, Sanae; Miyoshi, Youko; Kawagucci, Shinsuke; Noguchi, Takuroh; Hirai, Miho; Schippers, Axel; Ishibashi, Jun-ichiro; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken
2017-01-01
Subseafloor microbes beneath active hydrothermal vents are thought to live near the upper temperature limit for life on Earth. We drilled and cored the Iheya North hydrothermal field in the Mid-Okinawa Trough, and examined the phylogenetic compositions and the products of metabolic functions of sub-vent microbial communities. We detected microbial cells, metabolic activities and molecular signatures only in the shallow sediments down to 15.8 m below the seafloor at a moderately distant drilling site from the active hydrothermal vents (450 m). At the drilling site, the profiles of methane and sulfate concentrations and the δ13C and δD isotopic compositions of methane suggested the laterally flowing hydrothermal fluids and the in situ microbial anaerobic methane oxidation. In situ measurements during the drilling constrain the current bottom temperature of the microbially habitable zone to ~45 °C. However, in the past, higher temperatures of 106–198 °C were possible at the depth, as estimated from geochemical thermometry on hydrothermally altered clay minerals. The 16S rRNA gene phylotypes found in the deepest habitable zone are related to those of thermophiles, although sequences typical of known hyperthermophilic microbes were absent from the entire core. Overall our results shed new light on the distribution and composition of the boundary microbial community close to the high-temperature limit for habitability in the subseafloor environment of a hydrothermal field. PMID:27754478
Yanagawa, Katsunori; Ijiri, Akira; Breuker, Anja; Sakai, Sanae; Miyoshi, Youko; Kawagucci, Shinsuke; Noguchi, Takuroh; Hirai, Miho; Schippers, Axel; Ishibashi, Jun-Ichiro; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken
2017-02-01
Subseafloor microbes beneath active hydrothermal vents are thought to live near the upper temperature limit for life on Earth. We drilled and cored the Iheya North hydrothermal field in the Mid-Okinawa Trough, and examined the phylogenetic compositions and the products of metabolic functions of sub-vent microbial communities. We detected microbial cells, metabolic activities and molecular signatures only in the shallow sediments down to 15.8 m below the seafloor at a moderately distant drilling site from the active hydrothermal vents (450 m). At the drilling site, the profiles of methane and sulfate concentrations and the δ 13 C and δD isotopic compositions of methane suggested the laterally flowing hydrothermal fluids and the in situ microbial anaerobic methane oxidation. In situ measurements during the drilling constrain the current bottom temperature of the microbially habitable zone to ~45 °C. However, in the past, higher temperatures of 106-198 °C were possible at the depth, as estimated from geochemical thermometry on hydrothermally altered clay minerals. The 16S rRNA gene phylotypes found in the deepest habitable zone are related to those of thermophiles, although sequences typical of known hyperthermophilic microbes were absent from the entire core. Overall our results shed new light on the distribution and composition of the boundary microbial community close to the high-temperature limit for habitability in the subseafloor environment of a hydrothermal field.
Hydrothermal synthesis of bismuth germanium oxide
Boyle, Timothy J.
2016-12-13
A method for the hydrothermal synthesis of bismuth germanium oxide comprises dissolving a bismuth precursor (e.g., bismuth nitrate pentahydrate) and a germanium precursor (e.g., germanium dioxide) in water and heating the aqueous solution to an elevated reaction temperature for a length of time sufficient to produce the eulytite phase of bismuth germanium oxide (E-BGO) with high yield. The E-BGO produced can be used as a scintillator material. For example, the air stability and radioluminescence response suggest that the E-BGO can be employed for medical applications.
Catalytic hydrothermal pretreatment of corncob into xylose and furfural via solid acid catalyst.
Li, Huiling; Deng, Aojie; Ren, Junli; Liu, Changyu; Lu, Qi; Zhong, Linjie; Peng, Feng; Sun, Runcang
2014-04-01
Selectively catalytic hydrothermal pretreatment of corncob into xylose and furfural has been developed in this work using solid acid catalyst (SO4(2-)/TiO2-ZrO2/La(3+)). The effects of corncob-to-water ratio, reaction temperature and residence time on the performance of catalytic hydrothermal pretreatment were investigated. Results showed that the solid residues contained mainly lignin and cellulose, which was indicative of the efficient removal of hemicelluloses from corncob by hydrothermal method. The prepared catalyst with high thermal stability and strong acid sites originated from the acid functional groups was confirmed to contribute to the hydrolysis of polysaccharides into monosaccharides followed by dehydration into furfural. Highest furfural yield (6.18 g/100g) could be obtained at 180°C for 120 min with 6.80 g/100g xylose yield when the corncob/water ratio of was 10:100. Therefore, selectively catalytic hydrothermal pretreatment of lignocellulosic biomass into important platform chemicals by solid acids is considered to be a potential treatment for biodiesel and chemical production. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Huili; Liu, Zhifang; Yang, Jiaqin
2014-09-15
Graphical abstract: Generally, large acid quantity and high temperature are beneficial to the formation of anhydrous WO3, but the acidity effect on the crystal phase is weaker than that of temperature. Large acid quantity is found helpful to the oriented growth of tungsten oxides, forming a nanoplate-like product. - Highlights: • Large acid quantity is propitious to the oriented growth of a WO{sub 3} nanoplate. • Effect of acid quantity on crystal phases of products is weaker than that of temperature. • One step hydrothermal synthesis of WO{sub 3} is facile and can be easily scaled up. • A WO{submore » 3} nanoplate shows a fast response and distinct sensing selectivity to acetone gas. - Abstract: WO{sub 3} nanostructures were successfully synthesized by a facile hydrothermal method using Na{sub 2}WO{sub 4}·2H{sub 2}O and HNO{sub 3} as raw materials. They are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The specific surface area was obtained from N{sub 2} adsorption–desorption isotherm. The effects of the amount of HNO{sub 3}, hydrothermal temperature and reaction time on the crystal phases and morphologies of the WO{sub 3} nanostructures were investigated in detail, and the reaction mechanism was discussed. Large amount of acid is found for the first time to be helpful to the oriented growth of tungsten oxides, forming nanoplate-like products, while hydrothermal temperature has more influence on the crystal phase of the product. Gas-sensing properties of the series of as-prepared WO{sub 3} nanoplates were tested by means of acetone, ethanol, formaldehyde and ammonia. One of the WO{sub 3} nanoplates with high specific surface area and high crystallinity displays high sensitivity, fast response and distinct sensing selectivity to acetone gas.« less
Aquilina, Alfred; Connelly, Douglas P.; Copley, Jon T.; Green, Darryl R. H.; Hawkes, Jeffrey A.; Hepburn, Laura E.; Huvenne, Veerle A. I.; Marsh, Leigh; Mills, Rachel A.; Tyler, Paul A.
2013-01-01
In the austral summer of 2011 we undertook an investigation of three volcanic highs in the Central Bransfield Basin, Antarctica, in search of hydrothermal activity and associated fauna to assess changes since previous surveys and to evaluate the extent of hydrothermalism in this basin. At Hook Ridge, a submarine volcanic edifice at the eastern end of the basin, anomalies in water column redox potential (Eh) were detected close to the seafloor, unaccompanied by temperature or turbidity anomalies, indicating low-temperature hydrothermal discharge. Seepage was manifested as shimmering water emanating from the sediment and from mineralised structures on the seafloor; recognisable vent endemic fauna were not observed. Pore fluids extracted from Hook Ridge sediment were depleted in chloride, sulfate and magnesium by up to 8% relative to seawater, enriched in lithium, boron and calcium, and had a distinct strontium isotope composition (87Sr/86Sr = 0.708776 at core base) compared with modern seawater (87Sr/86Sr ≈0.70918), indicating advection of hydrothermal fluid through sediment at this site. Biogeochemical zonation of redox active species implies significant moderation of the hydrothermal fluid with in situ diagenetic processes. At Middle Sister, the central ridge of the Three Sisters complex located about 100 km southwest of Hook Ridge, small water column Eh anomalies were detected but visual observations of the seafloor and pore fluid profiles provided no evidence of active hydrothermal circulation. At The Axe, located about 50 km southwest of Three Sisters, no water column anomalies in Eh, temperature or turbidity were detected. These observations demonstrate that the temperature anomalies observed in previous surveys are episodic features, and suggest that hydrothermal circulation in the Bransfield Strait is ephemeral in nature and therefore may not support vent biota. PMID:23359806
Extraction of valuable compounds from mangosteen pericarps by hydrothermal assisted sonication
NASA Astrophysics Data System (ADS)
Machmudah, Siti; Lestari, Sarah Duta; Shiddiqi, Qifni Yasa'Ash; Widiyastuti, Winardi, Sugeng; Wahyudiono, Kanda, Hideki; Goto, Motonobu
2015-12-01
Valuable compounds, such as xanthone and phenolic compounds, from mangosteen pericarps was extracted by hydrothermal treatment at temperatures of 120-160 °C and pressures of 5 MPa using batch and semi-batch extractor. This method is a simple and environmentally friendly extraction method requiring no chemicals other than water. Under these conditions, there is possibility for the formation of phenolic compounds from mangosteen pericarps from decomposition of bounds between lignin, cellulose, and hemicellulose via autohydrolysis. In order to increase the amount of extracted valuable compounds, sonication pre-treament was performed prior to the hydrothermal extraction process. 30 min of sonication pre-treatment could increase significantly the amount of xanthone and phenolic compounds mangosteen pericarps extraction. In batch-system, the xanthone recovery approach to 100 % at 160 °C with 30 min sonication pre-treatment for 150 min extraction time. Under semi-batch process, the total phenolic compounds in the extract was 217 mg/g sample at 160 °C with 30 min sonication pre-treatment for 150 min total extraction time. The results revealed that hydrothermal extraction assisted sonication pre-treatment is applicable method for the isolation of polyphenolic compounds from other types of biomass and may lead to an advanced plant biomass components extraction technology.
NASA Astrophysics Data System (ADS)
Ruddyard, A. A.; Soejoko, D. S.; Nurlely
2017-07-01
Carbonated hydroxyapatite is a biomaterial with high biocompatibility with human bone, moreso than regular hydroxyapatite, making it an acceptable synthetic bone graft material. The purpose of this research is to study the effect of sintering temperature and time on carbonated hydroxyapatite samples synthesized using a hydrothermal method with CaCO3 as one of its components. The samples are then characterized using Fourier-Transform Infrared Spectroscopy, X-Ray Diffraction, and Scanning Electron Microscope. Infrared (IR) spectra showed that the CO3 content in each sample is proportional to the amount of CaCO3 used during synthesis. X-Ray Diffraction (XRD) patterns showed an increase in apatite content and a decrease in calcite content as sintering temperature and time increases, with temperature increases having a stronger effect on the samples than time increases. Calcite disappears completely after sintering at 900 °C for 2 hours.
Mohtor, Nur Hamizah; Othman, Mohd Hafiz Dzarfan; Bakar, Suriani Abu; Kurniawan, Tonni Agustiono; Dzinun, Hazlini; Norddin, Muhammad Noorul Anam Mohd; Rajis, Zanariah
2018-05-28
Hydrothermal method has been proven to be an effective method to synthesise the nanostructured titanium dioxide (TiO 2 ) with good morphology and uniform distribution at low temperature. Despite of employing a well-known and commonly used glass substrate as the support to hydrothermally synthesise the nanostructured TiO 2 , this study emphasised on the application of kaolin hollow fibre membrane as the support for the fabrication of kaolin/TiO 2 nanorods (TNR) membrane. By varying the hydrothermal reaction times (2 h, 6 h, and 10 h), the different morphology, distribution, and properties of TiO 2 nanorods on kaolin support were observed by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscope (AFM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). It was found that the well-dispersed of TiO 2 nanorods have improved the surface affinity of kaolin/TNR membrane towards water, allowing kaolin/TNR membrane prepared from 10 h of hydrothermal reaction to exhibit the highest water permeation of 165 L/h.m 2 .bar. In addition, this prepared membrane also showed the highest photocatalytic activity of 80.3% in the decolourisation of reactive black 5 (RB5) under UV irradiation. On top of that, the kaolin/TNR membrane prepared from 10 h of hydrothermal reaction also exhibited a good resistance towards photocorrosion, enabling the reuse of this membrane for three consecutive cycles of photocatalytic degradation of RB5 without showing significant reduction in photocatalytic efficiency towards the decolourisation of RB5. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cino, C.; Seyfried, W. E., Jr.; Tan, C.; Fu, Q.
2017-12-01
Yellowstone National Park is a dynamic environment home to an array of geysers, hot springs, and hydrothermal vents fueled by the underlying continental magmatic intrusion. Yellowstone Lake vent fluids accounts for approximately 10% of the total geothermal flux for all of Yellowstone National Park. Though studying this remote hydrothermal system poses severe challenges, it provides an excellent natural laboratory to research hydrothermal fluids that undergo higher pressure and temperature conditions in an environment largely shielded from atmospheric oxygen. The location of these vents also provides chemistry that is characteristic of fluids deeper in the Yellowstone hydrothermal system. In August 2016, hydrothermal fluids were collected from the Stevenson Island vents in collaboration with the Hydrothermal Dynamics of Yellowstone Lake (HD-YLAKE) project using novel sampling techniques and monitoring instrumentation. The newly built ROV Yogi was deployed to reach the vents in-situ with temperatures in excess of 151oC at 100-120 m depth, equipped with a 12-cylinder isobaric sampler to collect the hydrothermal fluids. Results from geochemical analyses indicate the fluids are rich in gases such as CO2, CH4, and H2S, with sample concentrations of approximately 12 mM, 161 μm, and 2.1 mM respectively. However, lake water mixing with the hydrothermal endmember fluid likely diluted these concentrations in the collected samples. Isotopic analyses indicate CO2 has a δ13C of -6 indicating magmatic origins, however the CH4 resulted in a δ13C of -65 which is in the biological range. This biogenic signature is likely due to the pyrolysis of immature organic matter in the lake bottom sediment, since the high temperatures measured for the fluids would not allow the presence of methanogens. H2S concentrations have not been previously measured for the hydrothermal fluids in Yellowstone Lake, and our vent fluid samples indicate significantly higher H2S concentrations than reported for subaerial vents. The cause of these measured high dissolved H2S concentrations in Yellowstone Lake may result from temperature and/or redox effects.
Magnetic Nanostructures Patterned by Self-Organized Materials
2016-01-05
solvent composition on the structural and magnetic properties of MnZn ferrite nanoparticles obtained by hydrothermal synthesis Microfluid...techniques such as chemical synthesis , self-organized methods, sputtering, lithography and atomic layer deposition (ALD). We also performed micromagnetic...range of temperatures (1.8 to 300 K) and at high fields (up to 5 T). The low temperature measurements of magnetic nanoparticles allowed us to
2012-01-01
In recent years, zinc oxide (ZnO) has become one of the most popular research materials due to its unique properties and various applications. ZnO is an intrinsic semiconductor, with a wide bandgap (3.37 eV) and large exciton binding energy (60 meV) making it suitable for many optical applications. In this experiment, the simple hydrothermal method is used to grow indium-doped ZnO nanostructures on a silicon wafer, which are then annealed at different temperatures (400°C to 1,000°C) in an abundant oxygen atmosphere. This study discusses the surface structure and optical characteristic of ZnO nanomaterials. The structure of the ZnO nanostructures is analyzed by X-ray diffraction, the superficial state by scanning electron microscopy, and the optical measurements which are carried out using the temperature-dependent photoluminescence (PL) spectra. In this study, we discuss the broad peak energy of the yellow-orange emission which shows tendency towards a blueshift with the temperature increase in the PL spectra. This differs from other common semiconductors which have an increase in their peak energy of deep-level emission along with measurement temperature. PMID:22647253
Park, Jin Woo; Subramanian, Arunprabaharan; Mahadik, Mahadeo A; Lee, Su Yong; Choi, Sun Hee; Jang, Jum Suk
2018-03-28
In this paper, we focus on the controlled growth mechanism of α-Fe 2 O 3 nanostructures via the hydrothermal method. The field emission scanning electron microscopy (FESEM) results reveal that at a lower hydrothermal time, the initial nucleation involves the formation of short and thin β-FeOOH nanorods. The subsequent increase in the hydrothermal time leads β-FeOOH to form thicker and longer nanorods. However, high-temperature quenching (HTQ) at 800 °C for 10 min causes the conversion of akaganeite to the hematite phase and activation of hematite by Sn 4+ diffusion from a FTO substrate. Sn 4+ diffusion from the FTO substrate to the hematite nanostructure was elaborated by X-ray photoelectron spectroscopy (XPS). An α-Fe 2 O 3 nanorod photoanode prepared by a hydrothermal reaction for 3 h and HTQ exhibits the highest photocurrent density of 1.04 mA cm -2 . The excellent photoelectrochemical performance could be ascribed to the synergistic effect of the optimum growth of α-Fe 2 O 3 nanorod arrays and Sn 4+ diffusion. Intensity modulated photovoltage spectroscopy (IMVS) studies revealed that the α-Fe 2 O 3 photoanodes prepared at 3 h and HTQ exhibited a long electron lifetime (132.69 ms), and contribute to the enhanced PEC performance. The results confirmed that the controlled growth of the β-FeOOH nanorods, as well as Sn 4+ diffusion, played a key role in charge transfer during the photoelectrochemical application. The charge transfer mechanisms in α-Fe 2 O 3 nanostructure photoanodes prepared at different hydrothermal times and high-temperature quenching are also investigated.
Room temperature growth of ZnO nanorods by hydrothermal synthesis
NASA Astrophysics Data System (ADS)
Tateyama, Hiroki; Zhang, Qiyan; Ichikawa, Yo
2018-05-01
The effect of seed layer morphology on ZnO nanorod growth at room temperature was studied via hydrothermal synthesis on seed layers with different thicknesses and further annealed at different temperatures. The change in the thickness and annealing temperature enabled us to control over a diameter of ZnO nanorods which are attributed to the changing of crystallinity and roughness of the seed layers.
NASA Astrophysics Data System (ADS)
Masaki, Y.; Kinoshita, M.; Yamamoto, H.; Nakajima, R.; Kumagai, H.; Takai, K.
2014-12-01
Iheya-North hydrothermal field situated in the middle Okinawa trough backarc basin is one of the largest ongoing Kuroko deposits in the world. Active chimneys as well as diffuse ventings (maximum fluid temperature 311 °C) have been located and studied in detail through various geological and geophysical surveys. To clarify the spatial scale of the hydrothermal circulation system, intensive heat flow measurements were carried out and ~100 heat flow data in and around the field from 2002 to 2014. In 2010, Integrated Ocean Drilling Program (IODP) Expedition 331 was carried out, and subbottom temperature data were obtained around the hydrothermal sites. During the JAMSTEC R/V Kaiyo cruise, KY14-01 in 2014, Iheya-North "Natsu" and "Aki" hydrothermal fields were newly found. The Iheya-Noth "Natsu" and "Aki" sites are located 1.2 km and 2.6 km south from the Iheya-North original site, respectively, and the maximum venting fluid temperature was 317 °C. We obtained one heat flow data at the "Aki" site. The value was 17 W/m2. Currently, the relationship between these hydrothermal sites are not well known. Three distinct zones are identified by heat flow values within 3 km from the active hydrothermal field. They are high-heat flow zone (>1 W/m2; HHZ), moderate-heat-flow zone (1-0.1 W/m2; MHZ); and low-heat-flow zone (<0.1 W/m2; LHZ). With increasing distance east of the HHZ, heat flow gradually decreases towards MHZ and LHZ. In the LHZ, temperature at 37m below the seafloor (mbsf) was 6 °C, that is consistent with the surface low heat flow suggesting the recharge of seawater. However, between 70 and 90 mbsf, the coarser sediments were cored, and temperature increased from 25 °C to 40°C. The temperature was 905°C at 151 mbsf, which was measured with thermoseal strips. The low thermal gradient in the upper 40 m suggests downward fluid flow. We infer that a hydrothermal circulation in the scale of ~1.5 km horizontal vs. ~a few hundred meters vertical.
Schmidt, Christian; Chou, I-Ming; Dubessy, Jean; Caumon, Marie-Camille; Pérez, Fernando Rull
2012-01-01
In this chapter, we describe the hydrothermal diamond-anvil cell (HDAC), which is specifically designed for experiments on systems with aqueous fluids to temperatures up to ⬚~1000ºC and pressures up to a few GPa to tens of GPa. This cell permits optical observation of the sample and the in situ determination of properties by ‘photon-in photon-out’ techniques such as Raman spectroscopy. Several methods for pressure measurement are discussed in detail including the Raman spectroscopic pressure sensors a-quartz, berlinite, zircon, cubic boron nitride (c-BN), and 13C-diamond, the fluorescence sensors ruby (α-Al2O3:Cr3+), Sm:YAG (Y3Al5O12:Sm3+) and SrB4O7:Sm2+, and measurements of phase-transition temperatures. Furthermore, we give an overview of published Raman spectroscopic studies of geological fluids to high pressures and temperatures, in which diamond anvil cells were applied.
Schmidt, Christian; Chou, I-Ming; Dubessy, J.; Caumon, M.-C.; Rull, F.
2012-01-01
In this chapter, we describe the hydrothermal diamond-anvil cell (HDAC), which is specifically designed for experiments on systems with aqueous fluids to temperatures up to ~1000ºC and pressures up to a few GPa to tens of GPa. This cell permits optical observation of the sample and the in situ determination of properties by ‘photon-in photon-out’ techniques such as Raman spectroscopy. Several methods for pressure measurement are discussed in detail including the Raman spectroscopic pressure sensors a-quartz, berlinite, zircon, cubic boron nitride (c-BN), and 13C-diamond, the fluorescence sensors ruby (α-Al2O3:Cr3+), Sm:YAG (Y3Al5O12:Sm3+) and SrB4O7:Sm2+, and measurements of phase-transition temperatures. Furthermore, we give an overview of published Raman spectroscopic studies of geological fluids to high pressures and temperatures, in which diamond anvil cells were applied.
Synthesis of transparent dispersions of aluminium hydroxide nanoparticles
NASA Astrophysics Data System (ADS)
Chen, Bo; Wang, Jie-Xin; Wang, Dan; Zeng, Xiao-Fei; Clarke, Stuart M.; Chen, Jian-Feng
2018-07-01
Transparent dispersions of inorganic nanoparticles are attractive materials in many fields. However, a facile method for preparing such dispersions of aluminium hydroxide nanoparticles is yet to be realized. Here, we report a direct reactive method to prepare transparent dispersions of pseudo-boehmite nanoparticles (1 wt%) without any surface modification, and with an average particle size of 80 nm in length and 10 nm in width, as well as excellent optical transparency over 94% in the visible range. Furthermore, transparent dispersions of boehmite nanoparticles (1.5 wt%) were also achieved after an additional hydrothermal treatment. However, the optical transparency of dispersions decreased with the rise of hydrothermal temperature and the shape of particles changed from rhombs to hexagons. In particular, monodisperse hexagonal boehmite nanoplates with an average lateral size of 58 nm and a thickness of 12.5 nm were obtained at a hydrothermal temperature of 220 °C. The selectivity of crystal growth direction was speculated as the possible formation mechanism of these as-prepared aluminium hydroxide nanoparticles. Besides, two values of 19.6 wt% and 14.64 wt% were separately measured for the weight loss of pseudo-boehmite and boehmite nanoparticles after a continuous heating, indicating their potential flame-resistant applications in the fabrication of plastic electronics and optical devices with high transparency.
Synthesis of transparent dispersions of aluminium hydroxide nanoparticles.
Chen, Bo; Wang, Jie-Xin; Wang, Dan; Zeng, Xiao-Fei; Clarke, Stuart M; Chen, Jian-Feng
2018-07-27
Transparent dispersions of inorganic nanoparticles are attractive materials in many fields. However, a facile method for preparing such dispersions of aluminium hydroxide nanoparticles is yet to be realized. Here, we report a direct reactive method to prepare transparent dispersions of pseudo-boehmite nanoparticles (1 wt%) without any surface modification, and with an average particle size of 80 nm in length and 10 nm in width, as well as excellent optical transparency over 94% in the visible range. Furthermore, transparent dispersions of boehmite nanoparticles (1.5 wt%) were also achieved after an additional hydrothermal treatment. However, the optical transparency of dispersions decreased with the rise of hydrothermal temperature and the shape of particles changed from rhombs to hexagons. In particular, monodisperse hexagonal boehmite nanoplates with an average lateral size of 58 nm and a thickness of 12.5 nm were obtained at a hydrothermal temperature of 220 °C. The selectivity of crystal growth direction was speculated as the possible formation mechanism of these as-prepared aluminium hydroxide nanoparticles. Besides, two values of 19.6 wt% and 14.64 wt% were separately measured for the weight loss of pseudo-boehmite and boehmite nanoparticles after a continuous heating, indicating their potential flame-resistant applications in the fabrication of plastic electronics and optical devices with high transparency.
NASA Astrophysics Data System (ADS)
Tao, Chunhui; Chen, Sheng; Baker, Edward T.; Li, Huaiming; Liang, Jin; Liao, Shili; Chen, Yongshun John; Deng, Xianming; Zhang, Guoyin; Gu, Chunhua; Wu, Jialin
2017-06-01
Seafloor hydrothermal polymetallic sulfide deposits are a new type of resource, with great potential economic value and good prospect development. This paper discusses turbidity, oxidation-reduction potential, and temperature anomalies of hydrothermal plumes from the Zouyu-1 and Zouyu-2 hydrothermal fields on the southern Mid-Atlantic Ridge. We use the known location of these vent fields and plume data collected in multiple years (2009, 2011, 2013) to demonstrate how real-time plume exploration can be used to locate active vent fields, and thus associated sulfide deposits. Turbidity anomalies can be detected 10 s of km from an active source, but the location precision is no better than a few kilometers because fine-grained particles are quasi-conservative over periods of many days. Temperature and oxidation-reduction potential anomalies provide location precision of a few hundred meters. Temperature anomalies are generally weak and difficult to reliably detect, except by chance encounters of a buoyant plume. Oxidation-reduction potential is highly sensitive (nmol concentrations of reduced hydrothermal chemicals) to discharges of all temperatures and responds immediately to a plume encounter. Real-time surveys using continuous tows of turbidity and oxidation-reduction potential sensors offer the most efficient and precise surface ship exploration presently possible.
NASA Astrophysics Data System (ADS)
Bühring, Solveig I.; Amend, Jan P.; Gómez Sáez, Gonzalo V.; Häusler, Stefan; Hinrichs, Kai-Uwe; Pichler, Thomas; Pop Ristova, Petra; Price, Roy E.; Santi, Ioulia; Sollich, Miriam
2014-05-01
The shallow water hydrothermal vents off Milos Island, Greece, discharge hot, slightly acidic, reduced fluids into colder, slightly alkaline, oxygenated seawater. Gradients in temperature, pH, and geochemistry are established as the two fluids mix, leading to the formation of various microbial microniches. In contrast to deep-sea hydrothermal systems, the availability of sun light allows for a combination of photo- and chemotrophic carbon fixation. Despite the comparably easy accessibility of shallow water hydrothermal systems, little is known about their microbial diversity and functioning. We present data from a shallow hydrothermal system off Milos Island, one of the most hydrothermally active regions in the Mediterranean Sea. The physico-chemical changes from ambient seafloor to hydrothermal area were investigated and documented by in situ microsensor profiling of temperature, pH, total reduced sulfur and dissolved oxygen alongside porewater geochemistry. The spatial microbial diversity was determined using a combination of gene- and lipid-based approaches, whereas microbial functioning was assessed by stable isotope probing experiments targeting lipid biomarkers. In situ microprofiles indicated an extreme environment with steep gradients, offering a variety of microniches for metabolically diverse microbial communities. We sampled a transect along a hydrothermal patch, following an increase in sediment surface temperature from background to 90°C, including five sampling points up to 20 cm sediment depth. Investigation of the bacterial diversity using ARISA revealed differences in the community structure along the geochemical gradients, with the least similarity between the ambient and highly hydrothermally impacted sites. Furthermore, using multivariate statistical analyses it was shown that variations in the community structure could be attributed to differences in the sediment geochemistry and especially the sulfide content, and only indirectly to shifts in temperature. Results from intact polar lipid analyses were consistent with the ARISA data and clearly differentiated those samples located close to the vent from those found in less affected areas. Changes from phospho- and betaine lipids within the top layer of the unaffected area to glyco- and ornithine lipids in the hydrothermally influenced sediment layers reflected a change from photoautotrophic algae to a bacteria-dominated community as predominant lipid sources. A clear dominance of archaeal lipids indicated archaea as key players in the deeper, hotter layers of the hydrothermal sediment. We performed stable isotope probing experiments with 13C-bicarbonate in the dark to investigate if chemolithotrophy, as opposed to phototrophy, plays any significant role for carbon fixation in shallow vent systems. Different amendments revealed that not only chemolithotrophy represents an important pathway for carbon fixation in these ecosystems, but that diverse ways of dark CO2 fixation exist, with hydrogen being the most effective electron donor under high temperature conditions.
NASA Astrophysics Data System (ADS)
Scheuermann, P. P.; Seyfried, W. E.
2018-05-01
The subsurface pressure-temperature conditions at the Piccard hydrothermal field are constrained using the Si-Cl geothermobarometer. Ol-Mgt and Opx-Mgt are proposed as assemblages that buffer H2(aq) at Piccard.
Method of producing a carbon coated ceramic membrane and associated product
Liu, Paul K. T.; Gallaher, George R.; Wu, Jeffrey C. S.
1993-01-01
A method of producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane.
Hydrothermal studies in a new diamond anvil cell up to 10 GPa and from -190°C to 1200°C
Bassett, William A.; Shen, A.H.; Bucknum, M.; Chou, I.-Ming
1993-01-01
The new hydrothermal diamond anvil cell (HDAC) has been designed for optical microscopy and X-ray diffraction at pressures up to 10 GPa and temperatures between −190°C and 1200°C. Laser light reffected from the top and bottom anvil faces and the top and bottom solid sample faces produce interference fringes that provide a very sensitive means of monitoring the volume of sample chamber and for observing volume and refractive index changes in solid samples due to transitions and reactions. Synchrotron radiation has been used to make X-ray diffraction patterns of samples under hydrothermal conditions. Individual heaters and individual thermocouples provide temperature control with an accuracy of ±0.5°C. Liquid nitrogen directly introduced into the HDAC has been used to reduce the sample temperature to −190°C. The α-β phase boundary of quartz has been used to calculate the transition pressures from measured transition temperatures. With this method we have redetermined 5 isochores of H2O up to 850°C and 1.2 GPa at which the solution rate of the quartz became so rapid that the quartz dissolved completely before the α-β transition could be observed. When silica solutions were cooled, opal spherules and rods formed.
Evolution of Morphology and Crystallinity of Silica Minerals Under Hydrothermal Conditions
NASA Astrophysics Data System (ADS)
Isobe, H.
2011-12-01
Silica minerals are quite common mineral species in surface environment of the terrestrial planets. They are good indicator of terrestrial processes including hydrothermal alteration, diagenesis and soil formation. Hydrothermal quartz, metastable low temperature cristobalite and amorphous silica show characteristic morphology and crystallinity depending on their formation processes and kinetics under wide range of temperature, pressure, acidity and thermal history. In this study, silica minerals produced by acidic hydrothermal alteration related to volcanic activities and hydrothermal crystallization experiments from diatom sediment are examined with crystallographic analysis and morphologic observations. Low temperature form of cistobalite is a metastable phase and a common alteration product occured in highly acidic hydrothermal environment around fumaroles in geothermal / volcanic areas. XRD analysis revealed that the alteration degree of whole rock is represented by abundance of cristobalite. Detailed powder XRD analysis show that the primary diffraction peak of cristobalite composed with two or three phases with different d-spacing and FWHM by peak profile fitting analysis. Shorter d-spacing and narrower FWHM cristobalite crystallize from precursor materials with less-crystallized, longer d-spacing and wider FWHM cristobalite. Textures of hydrothermal cristobalite in altered rock shows remnant of porphylitic texture of the host rock, pyroxene-amphibole andesite. Diatom has amorphous silica shell and makes diatomite sediment. Diatomite found in less diagenetic Quarternary formation keeps amorphous silica diatom shells. Hydrothermal alteration experiments of amorphous silica diatomite sediment are carried out from 300 °C to 550 °C. Mineral composition of run products shows crystallization of cristobalite and quartz progress depending on temperature and run durations. Initial crystallization product, cristobalite grains occur as characteristic lepispheres and granules with various surface structures. At the very initial stage of cristobalite crystallization within 2 days run duration, cristobalite shows lepispheres a few micron meters in diameter with irregular, submicron scale ridges and grooves on the surface. With the run duration up to 7 days, lepispheres change to granules with smooth surface remaining a few micron meters in diameter. Crystallinity of cristobalite lepispheres and granules corresponds to opal-CT. Euhedral quartz crystals grow with dissolution of cristobalite grains. Growth rate of cristobalite and quartz is controlled by crystallization kinetics with induction period strongly depending on temperature. Induction period of cristobalite crystallization from amorphous silica may exceed several million years at temperature below 100 °C. Crystallinity, morphology and growth rate of silica minerals occurred in various terrestrial and planetary processes are controlled by temperature and acidity of hydrothermal fluid and nucleation and growth kinetics of silica minerals.
NASA Astrophysics Data System (ADS)
Kawasaki, Shin-Ichiro; Sue, Kiwamu; Ookawara, Ryuto; Wakashima, Yuichiro; Suzuki, Akira
2015-12-01
In the synthesis of metal oxide fine particles by continuous supercritical hydrothermal method, the particle characteristics are greatly affected by not only the reaction conditions (temperature, pressure, residence time, concentration, etc.), but also the heating rate from ambient to reaction temperature. Therefore, the heating method by direct mixing of starting solution at room temperature with supercritical water is a key technology for the particle production having smaller size and narrow distribution. In this paper, mixing engineering study through comparison between conventional T-shaped mixers and recently developed swirl mixers was carried out in the hydrothermal synthesis of NiO nanoparticles from Ni(NO3)2 aqueous solution at 400 °C and 30 MPa. Inner diameter in the mixers and total flow rates were varied. Furthermore, the heating rate was calculated by computational fluid dynamics (CFD) simulation. Relationship between the heating rate and the average particle size were discussed. It was clarified that the miniaturization of mixer inner diameter and the use of the swirl flow were effective for improving mixing performance and contributed to produce small and narrow distribution particle under same experimental condition of flow rate, temperature, pressure, residence time, and concentration of the starting materials. We have focused the mixer optimization due to a difference in fluid viscosity.
NASA Astrophysics Data System (ADS)
Hager, K. W.; Fullerton, H.; Moyer, C. L.
2015-12-01
Hydrothermal vents along the Mariana Arc and back-arc represent a hotspot of microbial diversity that has not yet been fully recognized. The Mariana Arc and back-arc contain hydrothermal vents with varied vent effluent chemistry and temperature, which translates to diverse community composition. We have focused on iron-rich sites where the dominant primary producers are iron oxidizing bacteria. Because microbes from these environments have proven elusive in culturing efforts, we performed culture independent analysis among different microbial communities found at these hydrothermal vents. Terminal-restriction fragment length polymorphism (T-RFLP) and Illumina sequencing of small subunit ribosomal gene amplicons were used to characterize community members and identify samples for shotgun metagenomics. Used in combination, these methods will better elucidate the composition and characteristics of the bacterial communities at these hydrothermal vent systems. The overarching goal of this study is to evaluate and compare taxonomic and metabolic diversity among different communities of microbial mats. We compared communities collected on a fine scale to analyze the bacterial community based on gross mat morphology, geography, and nearby vent effluent chemistry. Taxa richness and evenness are compared with rarefaction curves to visualize diversity. As well as providing a survey of diversity this study also presents a juxtaposition of three methods in which ribosomal small subunit diversity is compared with T-RFLP, next generation amplicon sequencing, and metagenomic shotgun sequencing.
Microbial community structure across fluid gradients in the Juan de Fuca Ridge hydrothermal system.
Anderson, Rika E; Beltrán, Mónica Torres; Hallam, Steven J; Baross, John A
2013-02-01
Physical and chemical gradients are dominant factors in shaping hydrothermal vent microbial ecology, where archaeal and bacterial habitats encompass a range between hot, reduced hydrothermal fluid and cold, oxidized seawater. To determine the impact of these fluid gradients on microbial communities inhabiting these systems, we surveyed bacterial and archaeal community structure among and between hydrothermal plumes, diffuse flow fluids, and background seawater in several hydrothermal vent sites on the Juan de Fuca Ridge using 16S rRNA gene diversity screening (clone libraries and terminal restriction length polymorphisms) and quantitative polymerase chain reaction methods. Community structure was similar between hydrothermal plumes and background seawater, where a number of taxa usually associated with low-oxygen zones were observed, whereas high-temperature diffuse fluids exhibited a distinct phylogenetic profile. SUP05 and Arctic96BD-19 sulfur-oxidizing bacteria were prevalent in all three mixing regimes where they exhibited overlapping but not identical abundance patterns. Taken together, these results indicate conserved patterns of redox-driven niche partitioning between hydrothermal mixing regimes and microbial communities associated with sinking particles and oxygen-deficient waters. Moreover, the prevalence of SUP05 and Arctic96BD-19 in plume and diffuse flow fluids indicates a more cosmopolitan role for these groups in the ecology and biogeochemistry of the dark ocean. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, S.; Tao, C.; Baker, E. T.; Li, H.
2016-12-01
The Zouyu-1 (14.41°W, 13.25°S) and Zouyu-2 (14.41°W, 13.28°S) hydrothermal fields are located on the neovolcanic Zouyu ridge on axis of a symmetrical spreading ridge, which is on the eastern side of the S14 segment on the southern Mid-Atlantic ridge (the ridge segments were numbered by Chunhui Tao (2016) ). The two hydrothermal fields were found during Chinese 22nd cruise in 2011 and 21st cruise in 2009 on board R/V Dayang YiHao, respectively. We collected data recorded by light-scattering and temperature sensors (Miniature Autonomous Plume Recorder, short for MAPR), and H2S and ORP sensors (Electro-chemical sensor, short for ECS) in multiple years (2009, 2011), yielding the following results: (1) The turbidity anomalies were widely distributed in the Zouyu-1 and Zouyu-2 hydrothermal fields. And the highest turbidity anomalies were concentrated around Zouyu-2 hydrothermal field, with a maximum value of 0.094 △NTU south of Zouyu-2 vent. The horizontal scale of hydrothermal plume maximum was 2.5 km. The plume maximum is offset 500 m east of the Zouyu-2 vent location. (2) ORP anomalies were detected near Zouyu-2 in 2011. Sharp and substantial ORP ( 80 mV) and H2S (2.5 nmol/L) anomalies occurred near 14.412°W,13.28°S for 300 m along the track line 22II-L07. (3)Temperature along the track line 21IV-L04 in the Zouyu-2 field increased by as much as 0.03 ° even as the depth of MAPR was largely unchanged. With the evidence of concomitant fluctuations in turbidity, it showed the temperature increases were hydrothermally induced. Keywords: hydrothermal plume, Zouyu-1 hydrothermal field, Zouyu-2 hydrothermal field
A review of nanostructured lithium ion battery materials via low temperature synthesis.
Chen, Jiajun
2013-01-01
Nanostructured materials afford us new opportunities to improve the current technology for synthesizing Li ion batteries. Generating nanomaterials with new properties via an inexpensive approach offers a tremendous potential for realizing high performance Li-ion batteries. In this review, I mainly summarize some of the recent progress made, and describe the patents awarded on synthesizing nanostructured cathode materials for these batteries via low temperature wet- chemistry methods. From an economical view, such syntheses, especially hydrothermal synthesis, may offer the opportunities for significantly lowering the cost of manufacturing battery materials, while conferring distinct environmental advantages. Recent advances in in-situ (real time) X-ray diffraction for studying hydrothermal synthesis have great potential for bettering the rational design of advanced lithium-electrode materials. The development of this technique also will be discussed.
NASA Astrophysics Data System (ADS)
Syverson, D. D.; Scheuermann, P.; Pester, N. J.; Higgins, J. A.; Seyfried, W. E., Jr.
2016-12-01
The elemental and isotopic mass balance of Ca and Sr between seawater and basalt at mid-ocean ridge (MOR) hydrothermal systems is an integrated reflection of the various physiochemical processes, which induce chemical exchange, in the subseafloor. Specifically, the processes of anhydrite precipitation and recrystallization are recognized to be important controls on governing the Ca and Sr elemental and isotope compositions of high temperature vent fluids, however, few experimental data exist to constrain these geochemical effects. Thus, to better understand the associated Sr/Ca partitioning and Ca isotope fractionation and rate of exchange between anhydrite and dissolved constituents, anhydrite precipitation and recrystallization experiments were performed at 175, 250, and 350°C and 500 bar at chemical conditions indicative of active MOR hydrothermal systems. The experimental data suggest that upon entrainment of seawater into MOR hydrothermal systems, anhydrite will precipitate rapidly and discriminate against the heavy isotopes of Ca (Δ44/40Ca(Anh-Fluid) = -0.68 - -0.25 ‰), whereas Sr/Ca partitioning depends on the saturation state of the evolving hydrothermal fluid with respect to anhydrite at each PTX (KD(Anh-Fluid) = 1.24 - 0.55). Coupling experimental constraints with the temperature gradient inferred for high temperature MOR hydrothermal systems in the oceanic crust, data suggest that the Ca isotope and Sr elemental composition of anhydrite formed near the seafloor will be influenced by disequilibrium effects, while, at higher temperatures further into the oceanic crust, anhydrite will be representative of equilibrium Sr/Ca partitioning and Ca isotope fractionation conditions. These experimental observations are consistent with analyzed Sr/Ca and Ca isotope compositions of anhydrites and vent fluids sampled from modern MOR hydrothermal systems1,2 and can be used to further constrain the geochemical effects of hydrothermal circulation in the oceanic crust throughout Earth's history. 1 Tivey, M. K. Generation of Seafloor Hydrothermal Deposits. Oceanography 20, 50-66 (2007).2 Amini, M. et al. Calcium isotope (δ44/40Ca) fractionation along hydrothermal pathways, Logatchev field (Mid-Atlantic Ridge, 14°45'N). Geochimica et Cosmochimica Acta 72, 4107-4122 (2008).
Phenols in hydrothermal petroleums and sediment bitumen from Guaymas Basin, Gulf of California
NASA Technical Reports Server (NTRS)
Simoneit, B. R.; Leif, R. N.; Ishiwatari, R.
1996-01-01
The aliphatic, aromatic and polar (NSO) fractions of seabed petroleums and sediment bitumen extracts from the Guaymas Basin hydrothermal system have been analyzed by gas chromatography and gas chromatography-mass spectrometry (free and silylated). The oils were collected from the interiors and exteriors of high temperature hydrothermal vents and represent hydrothermal pyrolyzates that have migrated to the seafloor by hydrothermal fluid circulation. The downcore sediments are representative of both thermally unaltered and thermally altered sediments. The survey has revealed the presence of oxygenated compounds in samples with a high degree of thermal maturity. Phenols are one class of oxygenated compounds found in these samples. A group of methyl-, dimethyl- and trimethyl-isoprenoidyl phenols (C27-C29) is present in all of the seabed NSO fractions, with the methyl- and dimethyl-isoprenoidyl phenols occurring as major components, and a trimethyl-isoprenoidyl phenol as a minor component. A homologous series of n-alkylphenols (C13-C33) has also been found in the seabed petroleums. These phenols are most likely derived from the hydrothermal alteration of sedimentary organic matter. The n-alkylphenols are probably synthesized under hydrothermal conditions, but the isoprenoidyl phenols are probably hydrothermal alteration products of natural product precursors. The suites of phenols do not appear to be useful tracers of high temperature hydrothermal processes.
[Elaboration of instant corn flour by hydrothermal process I].
Martínez B, F; el-Dahs, A A
1993-12-01
The objective of this research was to investigate a simplified hydrothermal process for the production of instant corn flour and evaluate some variables that affected the degree of gelatinization of corn flour, and evaluate some technological characteristics of the flour. The use of grits of lesser particle diameter and increasing temperature of the soaking water resulted in an increase in the rate of absorption of water of grits, permitting a reduction of soaking time necessary for the process. The instant corn flour prepared by the hydrothermal process using corn grits soaked in water at room temperature (28-30 degrees C) for 5 hours and steaming for 1 minute at 118 degrees C presented characteristics of viscosity, water absorption index and water solubility index similar to that of flours prepared with grits soaked in water at a temperature higher tan room temperature and different steaming time (5 and 15 minutes). The characteristics of color and shelf life of corn flour were improved with the hydrothermal process.
Belite cement clinker from coal fly ash of high Ca content. Optimization of synthesis parameters.
Guerrero, A; Goñi, S; Campillo, I; Moragues, A
2004-06-01
The optimization of parameters of synthesis of belite cement clinker from coal fly ash of high Ca content is presented in this paper. The synthesis process is based on the hydrothermal-calcination-route of the fly ash without extra additions. The hydrothermal treatment was carried out in demineralized water and a 1 M NaOH solution for 4 h at the temperatures of 100 degrees C, 150 degrees C, and 200 degrees C. The precursors obtained during the hydrothermal treatmentwere heated at temperatures of 700 degrees C, 800 degrees C, 900 degrees C, and 1000 degrees C. The changes of fly ash composition after the different treatments were characterized by X-ray diffraction (XRD), FT infrared (FTIR) spectroscopy, surface area (BET-N2), and thermal analyses. From the results obtained we concluded that the optimum temperature of the hydrothermal treatment was 200 degrees C, and the optimum temperature for obtaining the belite cement clinker was 800 degrees C.
Identifying bubble collapse in a hydrothermal system using hidden Markov models
Dawson, P.B.; Benitez, M.C.; Lowenstern, J. B.; Chouet, B.A.
2012-01-01
Beginning in July 2003 and lasting through September 2003, the Norris Geyser Basin in Yellowstone National Park exhibited an unusual increase in ground temperature and hydrothermal activity. Using hidden Markov model theory, we identify over five million high-frequency (>15Hz) seismic events observed at a temporary seismic station deployed in the basin in response to the increase in hydrothermal activity. The source of these seismic events is constrained to within ???100 m of the station, and produced ???3500-5500 events per hour with mean durations of ???0.35-0.45s. The seismic event rate, air temperature, hydrologic temperatures, and surficial water flow of the geyser basin exhibited a marked diurnal pattern that was closely associated with solar thermal radiance. We interpret the source of the seismicity to be due to the collapse of small steam bubbles in the hydrothermal system, with the rate of collapse being controlled by surficial temperatures and daytime evaporation rates. copyright 2012 by the American Geophysical Union.
Identifying bubble collapse in a hydrothermal system using hiddden Markov models
Dawson, Phillip B.; Benitez, M.C.; Lowenstern, Jacob B.; Chouet, Bernard A.
2012-01-01
Beginning in July 2003 and lasting through September 2003, the Norris Geyser Basin in Yellowstone National Park exhibited an unusual increase in ground temperature and hydrothermal activity. Using hidden Markov model theory, we identify over five million high-frequency (>15 Hz) seismic events observed at a temporary seismic station deployed in the basin in response to the increase in hydrothermal activity. The source of these seismic events is constrained to within ~100 m of the station, and produced ~3500–5500 events per hour with mean durations of ~0.35–0.45 s. The seismic event rate, air temperature, hydrologic temperatures, and surficial water flow of the geyser basin exhibited a marked diurnal pattern that was closely associated with solar thermal radiance. We interpret the source of the seismicity to be due to the collapse of small steam bubbles in the hydrothermal system, with the rate of collapse being controlled by surficial temperatures and daytime evaporation rates.
Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments
NASA Astrophysics Data System (ADS)
Kitadai, Norio
2015-12-01
Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.
Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments.
Kitadai, Norio
2015-12-01
Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.
NASA Astrophysics Data System (ADS)
Sholehah, Amalia; Achmad, NurSumiati; Dimyati, Arbi; Dwiyanti, Yanyan; Partuti, Tri
2017-05-01
ZnO thin layer has a broad potential application in optoelectronic devices. In the present study, vertically align ZnO layers on ITO glass were synthesized using wet chemical method. The seed layers were prepared using electrodeposition method at 3°C. After that, the growing process was carried out using chemical bath deposition (CBD) at 90°C. To improve the structural property of the ZnO layers, hydrothermal technique was used subsequently. Results showed that seeding layer has a great influence on the physical properties of the ZnO layers. Moreover, hydrothermal process conducted after the ZnO growth can enhance the morphological property of the layers. From the experiments, it is found that the ZnO layers has diameter of ∼60 nm with increasing thickness from ∼0.8 to 1.2 μm and band-gap energies of ∼3.2 eV.
The Activity of Trace Metals in Aqueous Systems and the Effect of Corrosion Control Inhibitors
1975-10-01
corrosion product on metallic zinc 49 Uncombined slilica as quartz or cristobalite forms by the hydrothermal alteration of solid zilicates or by direct... hydrothermally . The com- position of the solids are dependent on temperature and pressure as well as on the relative concentrations of the dissolved...of the few anhydrous simple silicates formed hydrotherm - ally. The sodium silicates, Na2SiO 3 and BNa 2Si205, are somewhat soluble in high temperature
Diffuse versus discrete venting at the Tour Eiffel vent site, Lucky Strike hydrothermal field
NASA Astrophysics Data System (ADS)
Mittelstaedt, E. L.; Escartin, J.; Gracias, N.; Olive, J. L.; Barreyre, T.; Davaille, A. B.; Cannat, M.
2010-12-01
Two styles of fluid flow at the seafloor are widely recognized: (1) localized outflows of high temperature (>300°C) fluids, often black or grey color in color (“black smokers”) and (2) diffuse, lower temperature (<100°C), fluids typically transparent and which escape through fractures, porous rock, and sediment. The partitioning of heat flux between these two types of hydrothermal venting is debated and estimates of the proportion of heat carried by diffuse flow at ridge axes range from 20% to 90% of the total axial heat flux. Here, we attempt to improve estimates of this partitioning by carefully characterizing the heat fluxes carried by diffuse and discrete flows at a single vent site, Tour Eiffel in the Lucky Strike hydrothermal field along the Mid-Atlantic Ridge. Fluid temperature and video data were acquired during the recent Bathyluck’09 cruise to the Lucky Strike hydrothermal field (September, 2009) by Victor aboard “Pourquoi Pas?” (IFREMER, France). Temperature measurements were made of fluid exiting discrete vents, of diffuse effluents immediately above the seafloor, and of vertical temperature gradients within discrete hydrothermal plumes. Video data allow us to calculate the fluid velocity field associated with these outflows: for diffuse fluids, Diffuse Flow Velocimetry tracks the displacement of refractive index anomalies through time; for individual hydrothermal plumes, Particle Image Velocimetry tracks eddies by cross-correlation of pixels intensities between subsequent images. Diffuse fluids exhibit temperatures of 8-60°C and fluid velocities of ~1-10 cm s-1. Discrete outflows at 204-300°C have velocities of ~1-2 m s-1. Combined fluid flow velocities, temperature measurements, and full image mosaics of the actively venting areas are used to estimate heat flux of both individual discrete vents and diffuse outflow. The total integrated heat flux and the partitioning between diffuse and discrete venting at Tour Eiffel, and its implications for the nature of hydrothermal activity across the Lucky Strike site are discussed along with the implications for crustal permeability, associated ecosystems, and mid-ocean ridge processes.
Preparation of thermally stable nanocrystalline hydroxyapatite by hydrothermal method.
Prakash Parthiban, S; Elayaraja, K; Girija, E K; Yokogawa, Y; Kesavamoorthy, R; Palanichamy, M; Asokan, K; Narayana Kalkura, S
2009-12-01
Thermally stable hydroxyapatite (HAp) was synthesized by hydrothermal method in the presence of malic acid. X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), differential thermal analysis (DTA), thermogravimetric analysis (TGA) was done on the synthesized powders. These analyses confirmed the sample to be free from impurities and other phases of calcium phosphates, and were of rhombus morphology along with nanosized particles. IR and Raman analyses indicated the adsorption of malic acid on HAp. Thermal stability of the synthesized HAp was confirmed by DTA and TGA. The synthesized powders were thermally stable upto 1,400 degrees C and showed no phase change. The proposed method might be useful for producing thermally stable HAp which is a necessity for high temperature coating applications.
Exploring reaction pathways in the hydrothermal growth of phase-pure bismuth ferrites
NASA Astrophysics Data System (ADS)
Goldman, Abby R.; Fredricks, Jeremy L.; Estroff, Lara A.
2017-06-01
Phase-pure bismuth ferrites (BiFeO3 and Bi2Fe4O9) are grown using hydrothermal synthesis. In addition to varying the KOH, bismuth, and iron salt concentrations to tune which crystalline phases are formed, we identified that a 48 h, pre-furnace, room temperature reaction is critical for the formation of phase-pure BiFeO3. To understand the reaction pathways leading to the different bismuth ferrite phases, we investigate the changes in composition of the intermediate products as a function of reagent concentrations and room temperature reaction times. During the syntheses that included a room temperature reaction, Bi25FeO40 is formed in the intermediate products, and BiFeO3 is the majority phase of the final products. The BiFeO3 crystals grown using this method are clusters of faceted subunits. These results indicate that forming Bi25FeO40 is a productive route to the formation of BiFeO3. Bi2Fe4O9 is formed via an alternate reaction pathway that proceeded via an amorphous precursor. This improved understanding of how hydrothermal synthesis can be used to control the phase-purity and morphology of bismuth ferrites opens doors to explore the multiferroic properties of BiFeO3 with complex morphologies.
Peptide synthesis in early earth hydrothermal systems
Lemke, K.H.; Rosenbauer, R.J.; Bird, D.K.
2009-01-01
We report here results from experiments and thermodynamic calculations that demonstrate a rapid, temperature-enhanced synthesis of oligopeptides from the condensation of aqueous glycine. Experiments were conducted in custom-made hydrothermal reactors, and organic compounds were characterized with ultraviolet-visible procedures. A comparison of peptide yields at 260??C with those obtained at more moderate temperatures (160??C) gives evidence of a significant (13 kJ ?? mol-1) exergonic shift. In contrast to previous hydrothermal studies, we demonstrate that peptide synthesis is favored in hydrothermal fluids and that rates of peptide hydrolysis are controlled by the stability of the parent amino acid, with a critical dependence on reactor surface composition. From our study, we predict that rapid recycling of product peptides from cool into near-supercritical fluids in mid-ocean ridge hydrothermal systems will enhance peptide chain elongation. It is anticipated that the abundant hydrothermal systems on early Earth could have provided a substantial source of biomolecules required for the origin of life. Astrobiology 9, 141-146. ?? 2009 Mary Ann Liebert, Inc. 2009.
Hurwitz, S.; Ingebritsen, S.E.; Sorey, M.L.
2002-01-01
Temperature measurements in deep drill holes on volcano summits or upper flanks allow a quantitative analysis of groundwater induced heat transport within the edifice. We present a new temperature-depth profile from a deep well on the summit of Kilauea Volcano, Hawaii, and analyze it in conjunction with a temperature profile measured 26 years earlier. We propose two groundwater flow models to interpret the complex temperature profiles. The first is a modified confined lateral flow model (CLFM) with a continuous flux of hydrothermal fluid. In the second, transient flow model (TFM), slow conductive cooling follows a brief, advective heating event. We carry out numerical simulations to examine the timescales associated with each of the models. Results for both models are sensitive to the initial conditions, and with realistic initial conditions it takes between 750 and 1000 simulation years for either model to match the measured temperature profiles. With somewhat hotter initial conditions, results are consistent with onset of a hydrothermal plume ???550 years ago, coincident with initiation of caldera subsidence. We show that the TFM is consistent with other data from hydrothermal systems and laboratory experiments and perhaps is more appropriate for this highly dynamic environment. The TFM implies that volcano-hydrothermal systems may be dominated by episodic events and that thermal perturbations may persist for several thousand years after hydrothermal flow has ceased.
NASA Technical Reports Server (NTRS)
Socki, Richard A.; Niles, Paul B.; Gibson, Everett K., Jr.; Romanek, Christopher S.; Zhang, Chuanlun L.; Bissada, Kadry K.
2008-01-01
The recent detection of methane in the Martian atmosphere and the possibility that its origin could be attributed to biological activity, have highlighted the importance of understanding the mechanisms of methane formation and its usefulness as a biomarker. Much debate has centered on the source of the methane in hydrothermal fluids, whether it is formed biologically by microorganisms, diagenetically through the decomposition of sedimentary organic matter, or inorganically via reduction of CO2 at high temperatures. Ongoing research has now shown that much of the methane present in sea-floor hydrothermal systems is probably formed through inorganic CO2 reduction processes at very high temperatures (greater than 400 C). Experimental results have indicated that methane might form inorganically at temperatures lower still, however these results remain controversial. Currently, methane in continental hydrothermal systems is thought to be formed mainly through the breakdown of sedimentary organic matter and carbon isotope equilibrium between CO2 and CH4 is thought to be rarely present if at all. Based on isotopic measurements of CO2 and CH4 in two continental hydrothermal systems, we suggest that carbon isotope equilibration exists at temperatures as low as 155 C. This would indicate that methane is forming through abiotic CO2 reduction at lower temperatures than previously thought and could bolster arguments for an abiotic origin of the methane detected in the martian atmosphere.
NASA Astrophysics Data System (ADS)
Liu, Jing; Liu, Zhaoyue; Zhang, Tierui; Zhai, Jin; Jiang, Lei
2013-06-01
TiO2 nanotubular arrays formed by electrochemical anodization have attracted significant attention for photoelectrochemical applications that utilize solar energy. However, the as-anodized TiO2 nanotubes are amorphous, and need to be crystallized by high-temperature thermal annealing. Herein, we describe a low-temperature hydrothermal solid-gas route to crystallize TiO2 nanotubes. In this process, the as-anodized TiO2 hydroxo nanotubes are dehydrated to yield anatase phase via solid-gas interface reaction in an autoclave at a temperature of less than 180 °C. The solid-gas interface reaction alleviates the collapse of as-anodized TiO2 nanotubes during hydrothermal process efficiently. Compared with the common thermal annealing at the same temperature but at atmospheric pressure, the hydrothermal route improves the photocurrent density of TiO2 nanotubes by ~10 times in KOH electrolyte. The duration of the hydrothermal reaction has a substantial effect on the photoelectrochemical properties of TiO2 nanotubes, which is ascribed to the synergetic effect between the crystallization and structural evolution. Electron donors can further suppress the charge recombination in the low-temperature crystallized TiO2 nanotubes and boost the photocurrent density by ~120%.TiO2 nanotubular arrays formed by electrochemical anodization have attracted significant attention for photoelectrochemical applications that utilize solar energy. However, the as-anodized TiO2 nanotubes are amorphous, and need to be crystallized by high-temperature thermal annealing. Herein, we describe a low-temperature hydrothermal solid-gas route to crystallize TiO2 nanotubes. In this process, the as-anodized TiO2 hydroxo nanotubes are dehydrated to yield anatase phase via solid-gas interface reaction in an autoclave at a temperature of less than 180 °C. The solid-gas interface reaction alleviates the collapse of as-anodized TiO2 nanotubes during hydrothermal process efficiently. Compared with the common thermal annealing at the same temperature but at atmospheric pressure, the hydrothermal route improves the photocurrent density of TiO2 nanotubes by ~10 times in KOH electrolyte. The duration of the hydrothermal reaction has a substantial effect on the photoelectrochemical properties of TiO2 nanotubes, which is ascribed to the synergetic effect between the crystallization and structural evolution. Electron donors can further suppress the charge recombination in the low-temperature crystallized TiO2 nanotubes and boost the photocurrent density by ~120%. Electronic supplementary information (ESI) available: Morphology images of TiO2 nanotubular arrays crystallized by hydrothermal solid-liquid reaction at 130 °C, 160 °C and 180 °C for 4 h. Cross-sectional image of TiO2 nanotubular arrays prepared by anodizing Ti foil at 20 V for 20 min in 0.5 wt% HF solution followed by drying in air at 100 °C for 1 h; Photocurrent density-potential curves of TiO2 nanotubular arrays crystallized by thermal annealing at 450 °C and atmospheric pressure for 4 h. See DOI: 10.1039/c3nr01286g
Mineralogical and chemical characteristics of some natural jarosites
Desborough, G.A.; Smith, K.S.; Lowers, H.A.; Swayze, G.A.; Hammarstrom, J.M.; Diehl, S.F.; Leinz, R.W.; Driscoll, R.L.
2010-01-01
This paper presents a detailed study of the mineralogical, microscopic, thermal, and spectral characteristics of jarosite and natrojarosite minerals. Systematic mineralogic and chemical examination of a suite of 32 natural stoichiometric jarosite and natrojarosite samples from diverse supergene and hydrothermal environments indicates that there is only limited solid solution between Na and K at low temperatures, which suggests the presence of a solvus in the jarosite-natrojarosite system at temperatures below about 140 ??C. The samples examined in this study consist of either end members or coexisting end-member pairs of jarosite and natrojarosite. Quantitative electron-probe microanalysis data for several natural hydrothermal samples show only end-member compositions for individual grains or zones, and no detectable alkali-site deficiencies, which indicates that there is no hydronium substitution within the analytical uncertainty of the method. In addition, there is no evidence of Fe deficiencies in the natural hydrothermal samples. Hydronium-bearing jarosite was detected in only one relatively young supergene sample suggesting that terrestrial hydronium-bearing jarosites generally are unstable over geologic timescales. Unit-cell parameters of the 20 natural stoichiometric jarosites and 12 natural stoichiometric natrojarosites examined in this study have distinct and narrow ranges in the a- and c-cell dimensions. There is no overlap of these parameters at the 1?? level for the two end-member compositions. Several hydrothermal samples consist of fine-scale (2-10 ??m) intimate intergrowths of jarosite and natrojarosite, which could have resulted from solid-state diffusion segregation or growth zoning due to variations in the Na/K activity ratio of hydrothermal solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deus, R.C.; Cortés, J.A., E-mail: leandrosrr89@gmail.com; Ramirez, M.A.
Highlights: • CeO{sub 2} nanoparticles were obtained by microwave-hydrothermal method. • Rietveld refinement reveals a cubic structure. • KOH mineralizer agent exhibit weak agglomeration at low temperature and shorter time. - Abstract: The structural and photoluminescent properties at room temperature of CeO{sub 2} and La-doped CeO{sub 2} particles were undertaken. The obtained particles were synthesized by a microwave-assisted hydrothermal method (MAH) under different lanthanum contents. X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman), Ultra-violet spectroscopy (UV–vis) and photoluminescence (PL) measurements were carried out. XRD revealed that the powders are free of secondary phases and crystallize in themore » cubic structure. Raman data show that increasing La doping content increase oxygen vacancies due to lattice expansion. The UV/vis absorption spectroscopy suggested the presence of intermediate energy levels in the band gap of structurally ordered powders. Lanthanum addition creates oxygen vacancies and shifts the photoluminescence in the low energy range leading to intense PL emission.« less
Optical properties of titanium-di-oxide (TiO2) prepared by hydrothermal method
NASA Astrophysics Data System (ADS)
Rahman, Kazi Hasibur; Biswas, Sayari; Kar, Asit Kumar
2018-05-01
Research on titanate and its derived TiO2 nanostructures with large specific surface area have received great attention due to their enhanced efficiency in photocatalysis, DSSC etc. Here, in this communication TiO2 powder has been prepared by hydrothermal method at 180 °C. In this work we have shown the changes in optical properties of the powder with two different sintering temperatures ‒ 500 °C and 800 °C. The as prepared powder was also studied. FESEM images show spherical particles for the as prepared samples which look more like agglomeration after sintering. Band gaps of the prepared samples were calculated from UV-Vis spectroscopy which lies in the range 2.85 eV ‒ 3.13 eV. The photoluminescence (PL) spectra of the prepared samples were recorded at room temperature in the range of 300‒700 nm. It shows two distinct peaks at 412 nm and 425 nm.
NASA Astrophysics Data System (ADS)
Noerochim, Lukman; Ginanjar, Edith Setia; Susanti, Diah; Prihandoko, Bambang
2018-04-01
Lithium vanadium oxide (LiV3O8) has been successfully synthesized by hydrothermal method followed by calcination via the reaction of Lithium hydroxide (LiOH) and ammonium metavanade (NH4VO3). The precursors were heated at hydrothermal at 200 °C and then calcined at different calcination temperature in 400, 450, and 500 °C. The characterization by X-ray diffraction (XRD) and scanning electron microscope (SEM) is indicated that LiV3O8 micro-rod have been obtained by this method. The cyclic voltammetry (CV) result showed that redox reaction occur in potential range between 2.42 - 3.57 V for the reduction reaction and oxidation reaction in potential range between 2.01 V-3.69 V. The highest result was obtained for sample 450 °C with specific discharge capacity of 138 mA/g. The result showed that LiV3O8 has a promising candidate as a cathode material for lithium ion batteries.
Method of producing a carbon coated ceramic membrane and associated product
Liu, P.K.T.; Gallaher, G.R.; Wu, J.C.S.
1993-11-16
A method is described for producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane. 12 figures.
Hydrothermal synthesis of barium strontium titanate and bismuth titanate materials
NASA Astrophysics Data System (ADS)
Xu, Huiwen
Hydrothermal processing facilitates the synthesis of crystalline ceramic materials of varying composition or complex crystal structure. The present work can be divided into two parts. First is to study the low temperature hydrothermal synthesis of bismuth titanate. Second is to study both thermodynamic and kinetic aspects of the hydrothermally synthesized barium strontium titanate. A chelating agent was used to form a Bi-Ti gel precursor. By hydrothermally treating the Bi-Ti gel, crystalline bismuth titanate has been synthesized at 160°C for the first time. Microstructural evolution during the low temperature synthesis of bismuth titanate can be divided into two stages, including condensation of Bi-Ti gel particles and crystallization of bismuth titanate. Crystallization of bismuth titanate occurred by an in situ transformation mechanism at an early stage followed by a dissolution-reprecipitation mechanism. Phase separation was observed in hydrothermally synthesized barium strontium titanate (BST). By hydrothermally treating BST powders between 250°C--300°C, an asymmetrical miscibility gap was found in the BaTiO3-SrTiO 3 system at low temperatures (T ≤ 320°C). A subregular solid solution model was applied to calculate the equilibrium compositions and the Gibbs free energy of formation of BST solid solution at low temperatures (T ≤ 320°C). The Gibbs free energy of formation of Sr-rich BST phase is larger than that of Ba-rich BST phase. Kinetic studies of single phase BST solid solution at 80°C show that, compared to the BaTiO3 or Ba-rich BST, SrTiO3 and Sr-rich BST powders form at lower reaction rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Linlin; Yang, Xingxing; Fu, Zuoling, E-mail: zlfu@jlu.edu.cn
2015-05-15
Highlights: • Near-spherical CaSiO{sub 3} nanocrystals were synthesized via a hydrothermal method. • The effect of calcination temperature on crystalline phase formation was discussed. • Optical properties of trivalent ions doped CaSiO{sub 3} nanocrystals were investigated. • Tunable luminescence of CaSiO{sub 3}:Tb{sup 3+}, Eu{sup 3+} can be achieved by a simple method. - Abstract: CaSiO{sub 3}:RE{sup 3+} (RE{sup 3+} = Eu{sup 3+}, Sm{sup 3+}, Tb{sup 3+}, Dy{sup 3+}) nanocrystals were prepared by facile hydrothermal method with further calcinations. The crystal structure and the effects of annealing temperature on phase transition have been characterized by X-ray diffraction (XRD). The photoluminescence (PL)more » and PL excitation (PLE) spectra were used to characterize the optical properties of all samples. The effect of Eu{sup 3+} and Sm{sup 3+} doping concentrations on the luminescent intensity were also investigated in details, respectively. Moreover, the luminescence colors of the Tb{sup 3+} and Eu{sup 3+} co-doped CaSiO{sub 3} samples can be tuned by simply adjusting the relative doping concentrations of the rare earth ions under a single wavelength excitation, which might find potential applications in the fields of light display systems and optoelectronic devices.« less
Bleta, Rudina; Schiavo, Benedetto; Corsaro, Natale; Costa, Paula; Giaconia, Alberto; Interrante, Leonardo; Monflier, Eric; Pipitone, Giuseppe; Ponchel, Anne; Sau, Salvatore; Scialdone, Onofrio; Tilloy, Sébastien; Galia, Alessandro
2018-04-18
Hydrothermal liquefaction (HTL) is a promising technology for the production of biocrude oil from microalgae. Although this catalyst-free technology is efficient under high-temperature and high-pressure conditions, the biocrude yield and quality can be further improved by using heterogeneous catalysts. The design of robust catalysts that preserve their performance under hydrothermal conditions will be therefore very important in the development of biorefinery technologies. In this work, we describe two different synthetic routes (i.e., impregnation and cyclodextrin-assisted one-pot colloidal approach), for the preparation in aqueous phase of six high surface area CoMo/γ-Al 2 O 3 catalysts. Catalytic tests performed on the HTL of Nannochloropsis gaditana microalga indicate that solids prepared by the one-pot colloidal approach show higher hydrothermal stability and enhanced biocrude yield with respect to the catalyst-free test. The positive effect of the substitution of the block copolymer Tetronic T90R4 for Pluronic F127 in the preparation procedure was evidenced by diffuse reflectance UV-visible spectroscopy, X-ray diffraction, N 2 -adsorption-desorption, and H 2 -temperature-programmed reduction measurements and confirmed by the higher quality of the obtained biocrude, which exhibited lower oxygen content and higher-energy recovery equal to 62.5% of the initial biomass.
NASA Astrophysics Data System (ADS)
Byrdina, Svetlana; Revil, André; Gunawan, Hendra; Saing, Ugan B.; Grandis, Hendra
2017-07-01
Papandayan volcano in West Java, Indonesia, is characterized by intense hydrothermal activities manifested by numerous fumaroles at three craters or kawah, i.e. Mas, Manuk and Baru. The latter was created after November 2002 phreatic eruption. Since 2011, numerous volcano-tectonic B events are encountered and the volcano was set on alert status on several occasions. The purpose of the present study is to delineate the structure of the summital hydrothermal system from Self-Potential (SP), soil temperature and gas concentrations in the soil (CO2, SO2 and H2S) data. This combination of geophysical and geochemical methods allows identification of the weak permeable zones serving as preferential pathways for hydrothermal circulation and potential candidates to future landslides or flank collapses. This study is an on-going collaborative research project and we plan to conduct electrical resistivity tomography (ERT) and also Induced-Polarization (IP) surveys. Additional data would allow the 3D imaging of the studied area. The IP parameters will be used to characterise and to quantify the degree of alteration of the volcanic rocks as has been shown very recently in the laboratory studies. There are also rocks and soil samples that will undergo laboratory analyses at ISTerre for IP and complex resistivity parameters at the sample scale that will help to interpret the survey results.
NASA Astrophysics Data System (ADS)
Jamieson, John William; Hannington, Mark D.; Tivey, Margaret K.; Hansteen, Thor; Williamson, Nicole M.-B.; Stewart, Margaret; Fietzke, Jan; Butterfield, David; Frische, Matthias; Allen, Leigh; Cousens, Brian; Langer, Julia
2016-01-01
Hydrothermal vent deposits form on the seafloor as a result of cooling and mixing of hot hydrothermal fluids with cold seawater. Amongst the major sulfide and sulfate minerals that are preserved at vent sites, barite (BaSO4) is unique because it requires the direct mixing of Ba-rich hydrothermal fluid with sulfate-rich seawater in order for precipitation to occur. Because of its extremely low solubility, barite crystals preserve geochemical fingerprints associated with conditions of formation. Here, we present data from petrographic and geochemical analyses of hydrothermal barite from the Endeavour Segment of the Juan de Fuca Ridge, northeast Pacific Ocean, in order to determine the physical and chemical conditions under which barite precipitates within seafloor hydrothermal vent systems. Petrographic analyses of 22 barite-rich samples show a range of barite crystal morphologies: dendritic and acicular barite forms near the exterior vent walls, whereas larger bladed and tabular crystals occur within the interior of chimneys. A two component mixing model based on Sr concentrations and 87Sr/86Sr of both seawater and hydrothermal fluid, combined with 87Sr/86Sr data from whole rock and laser-ablation ICP-MS analyses of barite crystals indicate that barite precipitates from mixtures containing as low as 17% and as high as 88% hydrothermal fluid component, relative to seawater. Geochemical modelling of the relationship between aqueous species concentrations and degree of fluid mixing indicates that Ba2+ availability is the dominant control on mineral saturation. Observations combined with model results support that dendritic barite forms from fluids of less than 40% hydrothermal component and with a saturation index greater than ∼0.6, whereas more euhedral crystals form at lower levels of supersaturation associated with greater contributions of hydrothermal fluid. Fluid inclusions within barite indicate formation temperatures of between ∼120 °C and 240 °C during barite crystallization. The comparison of fluid inclusion formation temperatures to modelled mixing temperatures indicates that conductive cooling of the vent fluid accounts for 60-120 °C reduction in fluid temperature. Strontium zonation within individual barite crystals records fluctuations in the amount of conductive cooling within chimney walls that may result from cyclical oscillations in hydrothermal fluid flux. Barite chemistry and morphology can be used as a reliable indicator for past conditions of mineralization within both extinct seafloor hydrothermal deposits and ancient land-based volcanogenic massive sulfide deposits.
NASA Astrophysics Data System (ADS)
Plum, Christoph; Pradillon, Florence; Fujiwara, Yoshihiro; Sarrazin, Jozée
2017-03-01
The few existing studies on deep-sea hydrothermal vent copepods indicate low connectivity with surrounding environments and reveal high endemism among vents. However, the finding of non-endemic copepod species in association with engineer species at different reduced ecosystems poses questions about the dispersal of copepods and the colonization of hydrothermal vents as well as their ecological connectivity. The objective of this study is to understand copepod colonization patterns at a hydrothermal vent site in response to environmental factors such as temperature and fluid flow as well as the presence of different types of substrata. To address this objective, an in situ experiment was deployed using both organic (woods, pig bones) and inorganic (slates) substrata along a gradient of hydrothermal activity at the Lucky Strike vent field (Eiffel Tower, Mid-Atlantic Ridge). The substrata were deployed in 2011 during the MoMARSAT cruise and were recovered after two years in 2013. Overall, copepod density showed significant differences between substrata types, but was similar among different hydrothermal activity regimes. Highest densities were observed on woods at sites with moderate or low fluid input, whereas bones were the most densely colonized substrata at the 2 sites with higher hydrothermal influence. Although differences in copepod diversity were not significant, the observed trends revealed overall increasing diversity with decreasing temperature and fluid input. Slates showed highest diversity compared to the organic substrata. Temperature and fluid input had a significant influence on copepod community composition, resulting in higher similarity among stations with relatively high and low fluid inputs, respectively. While vent-specialists such as dirivultids and the tegastid Smacigastes micheli dominated substrata at high vent activity, the experiment demonstrated increasing abundance and dominance of non-vent taxa with decreasing temperature and fluid input. Effects of the substratum type on community composition were not significant, although at sites with moderate or low fluid input, woods exhibited distinctive communities with high densities and relative abundance of the taxon Nitocrella sp. In conclusion, copepod colonization and species composition were mainly influenced by hydrothermal fluid input and temperature rather than the type of substratum. The outcome of this study provides fundamental knowledge to better understand copepod colonization at hydrothermal vents.
Susan E. Meyer; Susan B. Debaene-Gill; Phil S. Allen
2000-01-01
Hydrothermal time (HTT) describes progress toward seed germination under various combinations of incubation water potential ( ) and temperature (T). To examine changes in HTT parameters during dormancy loss, seeds from two populations of the bunchgrass Elymus elymoides were incubated under seven temperature regimes following dry storage at 10, 20 and 30°C for intervals...
NASA Astrophysics Data System (ADS)
Liang, Yan-Yu; Bao, Shu-Juan; Li, Hu-Lin
2006-07-01
A series of spinel-structured materials have been prepared by a simple hydrothermal procedure in an aqueous medium. The new synthetic method is time and energy saving i.e., no further thermal treatment and extended grinding. The main experimental process involved the insertion of lithium into electrolytic manganese dioxide with glucose as a mild reductant in an autoclave. Both the hydrothermal temperature and the presence of glucose play the critical roles in determining the final spinel integrity. Particular electrochemical performance has also been systematically explored, and the results show that Al 3+, F - co-substituted spinels have the best combination of initial capacity and capacity retention among all these samples, exhibited the initial capacity of 115 mAh/g and maintained more than 90% of the initial value at the 50th cycle.
Hode, Tomas; von Dalwigk, Ilka; Broman, Curt
2003-01-01
The Siljan ring structure (368 +/- 1.1 Ma) is the largest known impact structure in Europe. It isa 65-km-wide, eroded, complex impact structure, displaying several structural units, including a central uplifted region surrounded by a ring-shaped depression. Associated with the impact crater are traces of a post-impact hydrothermal system indicated by precipitated and altered hydrothermal mineral assemblages. Precipitated hydrothermal minerals include quartz veins and breccia fillings associated with granitic rocks at the outer margin of the central uplift, and calcite, fluorite, galena, and sphalerite veins associated with Paleozoic carbonate rocks located outside the central uplift. Two-phase water/gas and oil/gas inclusions in calcite and fluorite display homogenization temperatures between 75 degrees C and 137 degrees C. With an estimated erosional unloading of approximately 1 km, the formation temperatures were probably not more than 10-15 degrees C higher. Fluid inclusion ice-melting temperatures indicate a very low salt content, reducing the probability that the mineralization was precipitated during the Caledonian Orogeny. Our findings suggest that large impacts induce low-temperature hydrothermal systems that may be habitats for thermophilic organisms. Large impact structures on Mars may therefore be suitable targets in the search for fossil thermophilic organisms.
NASA Astrophysics Data System (ADS)
Mittelstaedt, Eric; Davaille, Anne; van Keken, Peter E.; Gracias, Nuno; Escartin, Javier
2010-10-01
Diffuse flow velocimetry (DFV) is introduced as a new, noninvasive, optical technique for measuring the velocity of diffuse hydrothermal flow. The technique uses images of a motionless, random medium (e.g., rocks) obtained through the lens of a moving refraction index anomaly (e.g., a hot upwelling). The method works in two stages. First, the changes in apparent background deformation are calculated using particle image velocimetry (PIV). The deformation vectors are determined by a cross correlation of pixel intensities across consecutive images. Second, the 2-D velocity field is calculated by cross correlating the deformation vectors between consecutive PIV calculations. The accuracy of the method is tested with laboratory and numerical experiments of a laminar, axisymmetric plume in fluids with both constant and temperature-dependent viscosity. Results show that average RMS errors are ˜5%-7% and are most accurate in regions of pervasive apparent background deformation which is commonly encountered in regions of diffuse hydrothermal flow. The method is applied to a 25 s video sequence of diffuse flow from a small fracture captured during the Bathyluck'09 cruise to the Lucky Strike hydrothermal field (September 2009). The velocities of the ˜10°C-15°C effluent reach ˜5.5 cm/s, in strong agreement with previous measurements of diffuse flow. DFV is found to be most accurate for approximately 2-D flows where background objects have a small spatial scale, such as sand or gravel.
Park, Ki Young; Lee, Kwanyong; Kim, Daegi
2018-06-01
The aim of this work was to study the characterized hydrochar of algal biomass to produce solid fuel though hydrothermal carbonization. Hydrothermal carbonization conducted at temperatures ranging from 180 to 270 °C with a 60 min reaction improved the upgrading of the fuel properties and the dewatering of wet-basis biomasses such as algae. The carbon content, carbon recovery, energy recovery, and atomic C/O and C/H ratios in all the hydrochars in this study were improved. These characteristic changes in hydrochar from algal biomass are similar to the coalification reactions due to dehydration and decarboxylation with an increase in the hydrothermal reaction temperature. The results of this study indicate that hydrothermal carbonization can be used as an effective means of generating highly energy-efficient renewable fuel resources using algal biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.
Experiments of the Essential Amino Acids at high temperature and high pressure using DAC
NASA Astrophysics Data System (ADS)
Kubo, K.; Okamoto, K.
2017-12-01
Amino acids are organic compounds that form the fundamental part of life. Proteins are formed by peptide binding and polymerization of amino acids. Amino acids are polymerized in the ridge hydrothermal field, formed proteins, and might be evolved into life. Experimental studies on the polymerization of amino acids in hydrothermal environments have been conducted. However, they were hydrothermal experiments and after the experiments. All run products (amid-acids) were observed at ambient condition. Few in-situ observations of amino acids were done in experiments in hydrothermal condition. In order to perform in-situ observation of the polymerization of amino acids, we have conducted the DAC experiments. Amino acids were filled in the DAC, pressures were applied, then heated to high temperature with Raman analysis. In preliminary experiment using glycine, polymerization forming diglycine, were completed. Investigation amino acids polymerization under hydrothermal condition would shed light for new view of early life science.
A Hydrothermal Origin for the Sulfate-rich Ocean of Europa
NASA Technical Reports Server (NTRS)
Zolotov, M. Yu.; Shock, E. L.
2001-01-01
Thermodynamic calculations show that formation of a sulfate-rich ocean on Europa might require high-temperature alkaline hydrothermal processes in the oxidized silicate mantle. The ocean on Europa could be thought of as a cooled hydrothermal fluid. Additional information is contained in the original extended abstract.
Li, Chunxing; Wang, Xingdong; Zhang, Guangyi; Yu, Guangwei; Lin, Jingjiang; Wang, Yin
2017-06-15
To test the feasibility and practicability of the process combing hydrothermal pretreatment for dewatering with biogas production for full utilization of sewage sludge, hydrothermal/alkaline hydrothermal pretreatments and in turn anaerobic digestion of the filtrates obtained after dewatering the pretreated sludge were performed at bench- and pilot-scales. The hydrothermal temperature fell within the range of 140 °C-220 °C and the pretreatment time varied from 30 min to 120 min. For the alkaline hydrothermal pretreatment the pH value of the sludge was adjusted to 9.0-11.0 by adding Ca(OH) 2 . The results showed that the dewaterability of the sewage sludge was improved with increasing pretreatment temperature but the impact of the pretreatment time was not significant. The addition of Ca(OH) 2 gave better performance on the subsequent mechanical dewatering of the pretreated sludge compared to pure hydrothermal pretreatment, and the higher the pH value was, the better the dewaterability of the pretreated sludge was. The conditions of 180 °C/30 min and 160 °C/60 min/pH = 10.0 (for hydrothermal and alkaline hydrothermal pretreatments, respectively) resulted in relatively good results in the theoretical energy balance, which were verified in the pilot-scale tests. Based on the data from the pilot tests, the alkaline hydrothermal process realized self-sufficiency in energy at the cost of a proper amount of CaO. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zierenberg, R. A.; Fowler, A. P.; Schiffman, P.; Fridleifsson, G. Ó.; Elders, W. A.
2017-12-01
The Iceland Deep Drilling Project well IDDP-2, drilled to 4,659 m in the Reykjanes geothermal system, the on-land extension of the Mid Atlantic Ridge, SW Iceland. Drill core was recovered, for the first time, from a seawater-recharged, basalt-hosted hydrothermal system at supercritical conditions. The well has not yet been allowed to heat to in situ conditions, but temperature and pressure of 426º C and 340 bar was measured at 4500 m depth prior to the final coring runs. Spot drill cores were recovered between drilling depths of 3648.00 m and 4657.58 m. Analysis of the core is on-going, but we present the following initial observations. The cored material comes from a basaltic sheeted dike complex in the brittle-ductile transition zone. Felsic (plagiogranite) segregation veins are present in minor amounts in dikes recovered below 4300 m. Most core is pervasively altered to hornblende + plagioclase, but shows only minor changes in major and minor element composition. The deepest samples record the transition from the magmatic regime to the presently active hydrothermal system. Diabase near dike margins has been locally recrystallized to granoblastic-textured orthopyroxene-clinopyroxe-plagioclase hornfels. High temperature hydrothermal alteration includes calcic plagioclase (up to An100) and aluminous hornblende (up to 11 Wt. % Al2O3) locally intergrown with hydrothermal biotite, clinopyroxene, orthopyroxene and/or olivine. Hydrothermal olivine is iron-rich (Mg # 59-64) compared to expected values for igneous olivine. Biotite phenocrysts in felsic segregation veins have higher Cl and Fe compared to hydrothermal biotites. Orthopyroxene-clinopyroxene pairs in partially altered quench dike margins give temperature of 955° to 1067° C. Orthopyroxene-clinopyroxene pairs from hornfels and hydrothermal veins and replacements give temperature ranging from 774° to 888° C. Downhole fluid sampling is planned following thermal equilibration of the drill hole. Previous work has suggested that the Reykjanes geothermal system has been active since the last glaciation, 10ka. No shallow melt bodies have been detected on the Reykjanes Peninsula suggesting that hydrothermal circulation typical of black smoker systems can be sustained with out a magmatic heat source.
Zinc oxide hierarchical nanostructures for photocatalysis
NASA Astrophysics Data System (ADS)
Yukhnovets, O.; Semenova, A. A.; Levkevich, E. A.; Maximov, A. I.; Moshnikov, V. A.
2018-03-01
In this work, we perform the study of zinc oxide hierarchical structures synthesized by the low-temperature hydrothermal method. The paper considers morphological properties of obtained structures. Photocatalytic activity of samples was analysed by methyl orange degradation under UV irradiation. The sufficient decrease in methyl orange has been demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aggarwal, J.K.; Palmer, M.R.
Boron isotope ratios have been determined in a variety of different geothermal waters from hydrothermal systems across Iceland. Isotope ratios from the high temperature meteoric water recharged systems reflect the isotope ratio of the host rocks without any apparent fractionation. Seawater recharged geothermal systems exhibit more positive {delta}{sup 11}B values than the meteoric water recharged geothermal systems. Water/rock ratios can be assessed from boron isotope ratios in the saline hydrothermal systems. Low temperature hydrothermal systems also exhibit more positive {delta}{sup 11}B than the high temperature systems, indicating fractionation of boron due to adsorption of the lighter isotope onto secondary minerals.more » Fractionation of boron in carbonate deposits may indicate the level of equilibrium attained within the systems.« less
Ion-/proton-conducting apparatus and method
Yates, Matthew [Penfield, NY; Liu, Dongxia [Rochester, NY
2011-05-17
A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors.
NASA Astrophysics Data System (ADS)
Pintoro, A.; Ambarita, H.; Nur, T. B.; Napitupulu, F. H.
2018-02-01
Indonesia has a high potential energy resources from geothermal activities. Base on the report of Asian Development Bank and World Bank, the estimated of Indonesian hydrothermal geothermal resource considered to be the largest among the world. If it’s can be utilized to produce the electric power, it’s can contribute to increasing the electrification rates in Indonesia. In this study, an experimental studied of electric power generation, utilizing the Organic Rankine Cycle (ORC) system to convert the low level heat of hydrothermal as an energy source. The temperature of hydrothermal was modelled as hot water from water boiler which has a temperature range from 60 °C - 100 °C to heat up the organic working fluid of ORC system. The system can generated 1,337.7 watts of electricity when operated using R134A with hot water inlet temperature of 100 °C. Changing system working fluid to R245fa, the net power obtained increase to 1,908.9 watts with the same heat source condition. This study showed that the ORC system can be implemented to utilize low temperature heat source of hydrothermal in Indonesia.
Kim, Dong-Hyun; Lee, Sang-Bum; Jeong, Gwi-Taek
2014-06-01
In this work, to evaluate the efficacy of marine macro-algae Enteromorpha intestinalis as a potential bioenergy resource, the effects of reaction conditions (solid-to-liquid ratio, reaction temperature, and reaction time) on sugars produced by a combined process of hydrothermal and enzymatic hydrolysis were investigated. As a result of the hydrothermal hydrolysis, a 7.3g/L (8% yield) total reducing sugar was obtained under conditions including solid-to-liquid ratio of 1:10, reaction temperature of 170°C, and reaction time of 60min. By subsequent (post-hydrothermal) enzymatic hydrolysis of samples treated at 170°C for 30min, a 20.1g/L (22% yield) was achieved. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yi, E-mail: zhouyihn@163.com; Huang, Yan; Li, Dang
Graphical abstract: SEM images of the samples synthesized at different hydrothermal temperatures for 8 h: (a) 75; (b) 100; (c) 120; and (d) 140°C, followed by calcination at 450 °C for 2 h. Highlights: ► Effects of calcination temperature on the phase transformation were studied. ► Effects of hydrothermal temperature and time on the morphology growth were studied. ► A two-stage reaction mechanism for the formation was presented. ► The photocatalytic activity was evaluated under sunlight irradiation. ► Effects of calcination temperature on the photocatalytic activity were studied. - Abstract: Novel three-dimensional sea-urchin-like hierarchical TiO{sub 2} superstructures were synthesized onmore » a Ti plate in a mixture of H{sub 2}O{sub 2} and NaOH aqueous solution by a facile one-pot hydrothermal method at a low temperature, followed by protonation and calcination. The results of series of electron microscopy characterizations suggested that the hierarchical TiO{sub 2} superstructures consisted of numerous one-dimensional nanostructures. The microspheres were approximately 2–4 μm in diameter, and the one-dimensional TiO{sub 2} nanostructures were up to 600–700 nm long. A two-stage reaction mechanism, i.e., initial growth and then assembly, was proposed for the formation of these architectures. The three-dimensional sea-urchin-like hierarchical TiO{sub 2} microstructures showed excellent photocatalytic activity for the degradation of Rhodamine B aqueous solution under sunlight irradiation, which was attributed to the special three-dimensional hierarchical superstructure, and increased number of surface active sites. This novel superstructure has promising use in practical aqueous purification.« less
NASA Astrophysics Data System (ADS)
Kurian, Jessyamma; Mathew, M. Jacob
2018-04-01
In this paper we report the structural, optical and magnetic studies of three spinel ferrites namely CuFe2O4, MgFe2O4 and ZnFe2O4 prepared in an autoclave under the same physical conditions but with two different liquid medium and different surfactant. We use water as the medium and trisodium citrate as the surfactant for one method (Hydrothermal method) and ethylene glycol as the medium and poly ethylene glycol as the surfactant for the second method (solvothermal method). The phase identification and structural characterization are done using XRD and morphological studies are carried out by TEM. Cubical and porous spherical morphologies are obtained for hydrothermal and solvothermal process respectively without any impurity phase. The optical studies are carried out using FTIR and UV-Vis reflectance spectra. In order to elucidate the nonlinear optical behaviour of the prepared nanomaterial, open aperture z-scan technique is used. From the fitted z-scan curves nonlinear absorption coefficient and the saturation intensity are determined. The magnetic characterization of the samples is performed at room temperature using vibrating sample magnetometer measurements. The M-H curves obtained are fitted using theoretical equation and the different components of magnetization are determined. Nanoparticles with high saturation magnetization are obtained for MgFe2O4 and ZnFe2O4 prepared under solvothermal reaction. The magnetic hyperfine parameters and the cation distribution of the prepared materials are determined using room temperature Mössbauer spectroscopy. The fitted spectra reveal the difference in the magnetic hyperfine parameters owing to the change in size and morphology.
Xiong, Dehua; Zeng, Xianwei; Zhang, Wenjun; Wang, Huan; Zhao, Xiujian; Chen, Wei; Cheng, Yi-Bing
2014-04-21
In this work, we present one-step low temperature hydrothermal synthesis of submicrometer particulate CuAlO2 and AgAlO2 delafossite oxides, which are two important p-type transparent conducting oxides. The synthesis parameters that affect the crystal formation processes and the product morphologies, including the selection of starting materials and their molar ratios, the pH value of precursors, the hydrothermal temperature, pressure, and reaction time, have been studied. CuAlO2 crystals have been synthesized from the starting materials of CuCl and NaAlO2 at 320-400 °C, and from Cu2O and Al2O3 at 340-400 °C, respectively. AgAlO2 crystals have been successfully synthesized at the low temperature of 190 °C, using AgNO3 and Al(NO3)3 as the starting materials and NaOH as the mineralizer. The detailed elemental compositions, thermal stability, optical properties, and synthesis mechanisms of CuAlO2 and AgAlO2 also have been studied. Noteworthy is the fact that both CuAlO2 and AgAlO2 can be stabilized up to 800 °C, and their optical transparency can reach 60%-85% in the visible range. Besides, it is believed the crystal formation mechanisms uncovered in the synthesis of CuAlO2 and AgAlO2 will prove insightful guildlines for the preparation of other delafossite oxides.
Yang, Jingbin; Li, Dongxu; Fang, Yuan
2017-01-01
C-A-S-H (CaO-Al2O3-SiO2-H2O) and N-A-S-H (Na2O-Al2O3-SiO2-H2O) have a wide range of chemical compositions and structures and are difficult to separate from alkali-activated materials. Therefore, it is difficult to analyze their microscopic properties directly. This paper reports research on the synthesis of C-A-S-H and N-A-S-H particles with an average particle size smaller than 300 nm by applying the hydrothermal method. The composition and microstructure of the products with different CaO(Na2O)/SiO2 ratios and curing conditions were characterized using XRD, the RIR method, FTIR, SEM, TEM, and laser particle size analysis. The results showed that the C-A-S-H system products with a low CaO/SiO2 ratio were mainly amorphous C-A-S-H gels. With an increase in the CaO/SiO2 ratio, an excess of Ca(OH)2 was observed at room temperature, while in a high-temperature reaction system, katoite, C4AcH11, and other crystallized products were observed. The katoite content was related to the curing temperature and the content of Ca(OH)2 and it tended to form at a high-temperature and high-calcium environment, and an increase in the temperature renders the C-A-S-H gels more compact. The main products of the N-A-S-H system at room temperature were amorphous N-A-S-H gels and a small amount of sodalite. An increase in the curing temperature promoted the formation of the crystalline products faujasite and zeolite-P. The crystallization products consisted of only zeolite-P in the high-temperature N-A-S-H system and its content were stable above 70%. An increase in the Na2O/SiO2 ratio resulted in more non-bridging oxygen and the TO4 was more isolated in the N-A-S-H structure. The composition and microstructure of the C-A-S-H and N-A-S-H system products synthesized by the hydrothermal method were closely related to the ratio of the raw materials and the curing conditions. The results of this study increase our understanding of the hydration products of alkali-activated materials. PMID:28773061
NASA Astrophysics Data System (ADS)
Zhang, J.
2016-12-01
There is a high temperature hydrothermal activity area in the western plateau of Sichuan. More than 200 hot springs points have been found in the region, including 11 hot spring water temperature above local boiling point. Most of these distribute along Jinshajjiang fracture, Dege-Xiangcheng fracture, Ganzi-Litang fracture as well as Xianshuihe fracture, and form three high-temperature hydrothermal activity strips in the NW-SE direction. Using gravity, magnetic, seismic and helium isotope data, this paper analyzed the crust-mantle heat flow structure, crustal heat source distribution and water heating system. The results show that the geothermal activity mainly controlled by the "hot" crust. The ratio of crustal heat flow and surface heat flow is higher than 60%. In the high temperature hydrothermal activities area, there is lower S wave velocity zone with Vs<3.2 km/s in 15 30 km depth in middle and lower crust. Basing on the S wave velocity inversion temperature of crust-mantle, it has been found that there is a high temperature layer with 850 1000 ° in 20 40 km depth. It is the main heat source of high temperature hydrothermal activity area of western Sichuan. Our argument is that atmospheric precipitation, surface water infiltrated along the fault fracture into the crustal deep, heating by crustal hot source, and circulation to surface become high temperature hot water. Geothermal water mainly reserve in the Triassic strata of the containing water good carbonate rocks, and in the intrusive granite which is along the fault zone. The thermal energy of Surface heat thermal activities mainly comes from the high-temperature hot source which is located in the middle and lower crust. Being in the deep crustal fracture, the groundwater infiltrated to the deep crust and absorbed heat, then, quickly got back to the surface and formed high hot springs.
NASA Astrophysics Data System (ADS)
Borhade, A. V.; Wakchaure, S. G.; Dholi, A. G.; Kshirsagar, T. A.
2017-07-01
First time we report the synthesis, structural characterization and thermal behavior of an unusual N3 - containing alumino-silicate sodalite mineral. Azide sodalite, Na8[AlSiO4]6(N3)2 has been synthesized under hydrothermal conditions at 433 K in steel lined Teflon autoclave. The structural and microstructural properties of azide sodalite mineral was characterized by various methods including FT-IR, XRD, SEM, TGA, and MAS NMR. Crystal structure have been refined by Rietveld method in P\\bar 43n space group, indicating that the N3 - sodalite has cubic in lattice. High temperature study was carried out to see the effect of thermal expansion on cell dimension ( a o) of azide sodalite. Thermal behavior of sodalite was also assessed by thermogravimetric method.
Sub-seafloor Processes and the Composition of Diffuse Hydrothermal Fluids
NASA Astrophysics Data System (ADS)
Butterfield, D. A.; Lilley, M. D.; Huber, J. A.; Baross, J. A.
2002-12-01
High-temperature water/rock reactions create the primary hydrothermal fluids that are diluted with cool, "crustal seawater" to produce low-temperature, diffuse hydrothermal vent fluids. By knowing the composition of each of the components that combine to produce diffuse fluids, one can compare the composition of calculated mixtures with the composition of sampled fluids, and thereby infer what chemical constituents have been affected by processes other than simple conservative mixing. Although there is always uncertainty in the composition of fluids from the sub-seafloor, some processes are significant enough to alter diffuse fluid compositions from the expected conservative mixtures of hot,primary fluid and "crustal seawater." When hydrothermal vents with a wide range of temperature are sampled, processes occurring in different thermal and chemical environments potentially can be discerned. At Axial Volcano (AV) on the Juan de Fuca ridge, methane clearly is produced in warm sub-seafloor environments at temperatures of ~ 100° or less. Based on culturing and phylogenetic analysis from the same water samples at AV, hyperthermophilic methanogens are present in water samples taken from vents ranging in temperature from 15 to 78° C. Ratios of hydrogen sulfide to pseudo-conservative tracers (dissolved silica or heat) at AV decrease when primary fluids are highly diluted with oxygenated seawater. Phylogenetic signatures of microbes closely related to sulfide-oxidizers are present in these same fluids. Hydrogen sulfide oxidation represents the dominant source of energy for chemosynthesis at AV, as in most hydrothermal systems, but a relatively small proportion of the total hydrogen sulfide available is actually oxidized, except at the very lowest temperatures.
The stability of amino acids at submarine hydrothermal vent temperatures
NASA Technical Reports Server (NTRS)
Bada, Jeffrey L.; Miller, Stanley L.; Zhao, Meixun
1995-01-01
It has been postulated that amino acid stability at hydrothermal vent temperatures is controlled by a metastable thermodynamic equilibrium rather than by kinetics. Experiments reported here demonstrate that the amino acids are irreversibly destroyed by heating at 240 C and that quasi-equilibrium calculations give misleading descriptions of the experimental observations. Equilibrium thermodynamic calculations are not applicable to organic compounds under high-temperature submarine vent conditions.
NASA Astrophysics Data System (ADS)
Phumying, Santi; Labuayai, Sarawuth; Thomas, Chunpen; Amornkitbamrung, Vittaya; Swatsitang, Ekaphan; Maensiri, Santi
2013-06-01
Magnetite (Fe3O4) nanoparticles have been successfully synthesized by a novel hydrothermal method using ferric acetylacetonate (Fe(C5H8O2)3) and aloe vera plant-extracted solution. The influences of different reaction temperatures and times on the structure and magnetic properties of the synthesized Fe3O4 nanoparticles were investigated. The synthesized nanoparticles are crystalline and have particle sizes of ˜6-30 nm, as revealed by transmission electron microscopy (TEM). The results of X-ray diffraction (XRD), High resolution TEM (HRTEM) and selected area electron diffraction (SAED) indicate that the synthesized Fe3O4 nanoparticles have the inverse cubic spinel structure without the presence of any other phase impurities. The hysteresis loops of the Fe3O4 nanoparticles at room temperature show superparamagnetic behavior and the saturation magnetization of the Fe3O4 samples increases with increasing reaction temperature and time.
Heat flow evidence for hydrothermal circulation in the volcanic basement of subducting plates
NASA Astrophysics Data System (ADS)
Harris, R. N.; Spinelli, G. A.; Fisher, A. T.
2017-12-01
We summarize and interpret evidence for hydrothermal circulation in subducting oceanic basement from the Nankai, Costa Rica, south central Chile, Haida Gwaii, and Cascadia margins and explore the influence of hydrothermal circulation on plate boundary temperatures in these settings. Heat flow evidence for hydrothermal circulation in the volcanic basement of incoming plates includes: (a) values that are well below conductive (lithospheric) predictions due to advective heat loss, and (b) variability about conductive predictions that cannot be explained by variations in seafloor relief or thermal conductivity. We construct thermal models of these systems that include an aquifer in the upper oceanic crust that enhances heat transport via a high Nusselt number proxy for hydrothermal circulation. At the subduction zones examined, patterns of seafloor heat flow are not well fit by purely conductive simulations, and are better explained by simulations that include the influence of hydrothermal circulation. This result is consistent with the young basement ages (8-35 Ma) of the incoming igneous crust at these sites as well as results from global heat flow analyses showing a significant conductive heat flow deficit for crustal ages less than 65 Ma. Hydrothermal circulation within subducting oceanic basement can have a profound influence on temperatures close to the plate boundary and, in general, leads to plate boundary temperatures that are cooler than those where fluid flow does not occur. The magnitude of cooling depends on the permeability structure of the incoming plate and the evolution of permeability with depth and time. Resolving complex relationships between subduction processes, the permeability structure in the ocean crust, and the dynamics of hydrothermal circulation remains an interdisciplinary frontier.
Hydrothermal monitoring in a quiescent volcanic arc: Cascade Range, northwestern United States
Ingebritsen, S.E.; Randolph-Flagg, N. G.; Gelwick, K.D.; Lundstrom, E.A.; Crankshaw, I.M.; Murveit, A.M.; Schmidt, M.E.; Bergfeld, D.; Spicer, K.R.; Tucker, D.S.; Mariner, R.H.; Evans, William C.
2014-01-01
Ongoing (1996–present) volcanic unrest near South Sister, Oregon, is accompanied by a striking set of hydrothermal anomalies, including elevated temperatures, elevated major ion concentrations, and 3He/4He ratios as large as 8.6 RA in slightly thermal springs. These observations prompted the US Geological Survey to begin a systematic hydrothermal-monitoring effort encompassing 25 sites and 10 of the highest-risk volcanoes in the Cascade volcanic arc, from Mount Baker near the Canadian border to Lassen Peak in northern California. A concerted effort was made to develop hourly, multiyear records of temperature and/or hydrothermal solute flux, suitable for retrospective comparison with other continuous geophysical monitoring data. Targets included summit fumarole groups and springs/streams that show clear evidence of magmatic influence in the form of high 3He/4He ratios and/or anomalous fluxes of magmatic CO2 or heat. As of 2009–2012, summit fumarole temperatures in the Cascade Range were generally near or below the local pure water boiling point; the maximum observed superheat was 3 during periods of hourly record. Hydrothermal responses to these small seismic stimuli were generally undetectable or ambiguous. Evaluation of multiyear to multidecadal trends indicates that whereas the hydrothermal system at Mount St. Helens is still fast-evolving in response to the 1980–present eruptive cycle, there is no clear evidence of ongoing long-term trends in hydrothermal activity at other Cascade Range volcanoes that have been active or restless during the past century (Baker, South Sister, and Lassen). Experience gained during the Cascade Range hydrothermal-monitoring experiment informs ongoing efforts to capture entire unrest cycles at more active but generally less accessible volcanoes such as those in the Aleutian arc.
The effect of numerical methods on the simulation of mid-ocean ridge hydrothermal models
NASA Astrophysics Data System (ADS)
Carpio, J.; Braack, M.
2012-01-01
This work considers the effect of the numerical method on the simulation of a 2D model of hydrothermal systems located in the high-permeability axial plane of mid-ocean ridges. The behavior of hot plumes, formed in a porous medium between volcanic lava and the ocean floor, is very irregular due to convective instabilities. Therefore, we discuss and compare two different numerical methods for solving the mathematical model of this system. In concrete, we consider two ways to treat the temperature equation of the model: a semi-Lagrangian formulation of the advective terms in combination with a Galerkin finite element method for the parabolic part of the equations and a stabilized finite element scheme. Both methods are very robust and accurate. However, due to physical instabilities in the system at high Rayleigh number, the effect of the numerical method is significant with regard to the temperature distribution at a certain time instant. The good news is that relevant statistical quantities remain relatively stable and coincide for the two numerical schemes. The agreement is larger in the case of a mathematical model with constant water properties. In the case of a model with nonlinear dependence of the water properties on the temperature and pressure, the agreement in the statistics is clearly less pronounced. Hence, the presented work accentuates the need for a strengthened validation of the compatibility between numerical scheme (accuracy/resolution) and complex (realistic/nonlinear) models.
NASA Astrophysics Data System (ADS)
German, C. R.; von Damm, K. L.
2003-12-01
What is Hydrothermal Circulation?Hydrothermal circulation occurs when seawater percolates downward through fractured ocean crust along the volcanic mid-ocean ridge (MOR) system. The seawater is first heated and then undergoes chemical modification through reaction with the host rock as it continues downward, reaching maximum temperatures that can exceed 400 °C. At these temperatures the fluids become extremely buoyant and rise rapidly back to the seafloor where they are expelled into the overlying water column. Seafloor hydrothermal circulation plays a significant role in the cycling of energy and mass between the solid earth and the oceans; the first identification of submarine hydrothermal venting and their accompanying chemosynthetically based communities in the late 1970s remains one of the most exciting discoveries in modern science. The existence of some form of hydrothermal circulation had been predicted almost as soon as the significance of ridges themselves was first recognized, with the emergence of plate tectonic theory. Magma wells up from the Earth's interior along "spreading centers" or "MORs" to produce fresh ocean crust at a rate of ˜20 km3 yr-1, forming new seafloor at a rate of ˜3.3 km2 yr-1 (Parsons, 1981; White et al., 1992). The young oceanic lithosphere formed in this way cools as it moves away from the ridge crest. Although much of this cooling occurs by upward conduction of heat through the lithosphere, early heat-flow studies quickly established that a significant proportion of the total heat flux must also occur via some additional convective process (Figure 1), i.e., through circulation of cold seawater within the upper ocean crust (Anderson and Silbeck, 1981). (2K)Figure 1. Oceanic heat flow versus age of ocean crust. Data from the Pacific, Atlantic, and Indian oceans, averaged over 2 Ma intervals (circles) depart from the theoretical cooling curve (solid line) indicating convective cooling of young ocean crust by circulating seawater (after C. A. Stein and S. Stein, 1994). The first geochemical evidence for the existence of hydrothermal vents on the ocean floor came in the mid-1960s when investigations in the Red Sea revealed deep basins filled with hot, salty water (40-60 °C) and underlain by thick layers of metal-rich sediment (Degens and Ross, 1969). Because the Red Sea represents a young, rifting, ocean basin it was speculated that the phenomena observed there might also prevail along other young MOR spreading centers. An analysis of core-top sediments from throughout the world's oceans ( Figure 2) revealed that such metalliferous sediments did, indeed, appear to be concentrated along the newly recognized global ridge crest (Boström et al., 1969). Another early indication of hydrothermal activity came from the detection of plumes of excess 3He in the Pacific Ocean Basin (Clarke et al., 1969) - notably the >2,000 km wide section in the South Pacific ( Lupton and Craig, 1981) - because 3He present in the deep ocean could only be sourced through some form of active degassing of the Earth's interior, at the seafloor. (62K)Figure 2. Global map of the (Al+Fe+Mn):Al ratio for surficial marine sediments. Highest ratios mimic the trend of the global MOR axis (after Boström et al., 1969). One area where early heat-flow studies suggested hydrothermal activity was likely to occur was along the Galapagos Spreading Center in the eastern equatorial Pacific Ocean (Anderson and Hobart, 1976). In 1977, scientists diving at this location found hydrothermal fluids discharging chemically altered seawater from young volcanic seafloor at elevated temperatures up to 17 °C ( Edmond et al., 1979). Two years later, the first high-temperature (380±30 °C) vent fluids were found at 21° N on the East Pacific Rise (EPR) (Spiess et al., 1980) - with fluid compositions remarkably close to those predicted from the lower-temperature Galapagos findings ( Edmond et al., 1979). Since that time, hydrothermal activity has been found at more than 40 locations throughout the Pacific, North Atlantic, and Indian Oceans (e.g., Van Dover et al., 2002) with further evidence - from characteristic chemical anomalies in the ocean water column - of its occurrence in even the most remote and slowly spreading ocean basins ( Figure 3), from the polar seas of the Southern Ocean (German et al., 2000; Klinkhammer et al., 2001) to the extremes of the ice-covered Arctic ( Edmonds et al., 2003). (61K)Figure 3. Schematic map of the global ridge crest showing the major ridge sections along which active hydrothermal vents have already been found (red circles) or are known to exist from the detection of characteristic chemical signals in the overlying water column (orange circles). Full details of all known hydrothermally active sites and plume signals are maintained at the InterRidge web-site: http://triton.ori.u-tokyo.ac.jp/~intridge/wg-gdha.htm The most spectacular manifestation of seafloor hydrothermal circulation is, without doubt, the high-temperature (>400 °C) "black smokers" that expel fluids from the seafloor along all parts of the global ocean ridge crest. In addition to being visually compelling, vent fluids also exhibit important enrichments and depletions when compared to ambient seawater. Many of the dissolved chemicals released from the Earth's interior during venting precipitate upon mixing with the cold, overlying seawater, generating thick columns of black metal-sulfide and oxide mineral-rich smoke - hence the colloquial name for these vents: "black smokers" (Figure 4). In spite of their common appearance, high-temperature hydrothermal vent fluids actually exhibit a wide range of temperatures and chemical compositions, which are determined by subsurface reaction conditions. Despite their spectacular appearance, however, high-temperature vents may only represent a small fraction - perhaps as little as 10% - of the total hydrothermal heat flux close to ridge axes. A range of studies - most notably along the Juan de Fuca Ridge (JdFR) in the NE Pacific Ocean (Rona and Trivett, 1992; Schultz et al., 1992; Ginster et al., 1994) have suggested that, instead, axial hydrothermal circulation may be dominated by much lower-temperature diffuse flow exiting the seafloor at temperatures comparable to those first observed at the Galapagos vent sites in 1977. The relative importance of high- and low-temperature hydrothermal circulation to overall ocean chemistry remains a topic of active debate. (141K)Figure 4. (a) Photograph of a "black smoker" hydrothermal vent emitting hot (>400 °C) fluid at a depth of 2,834 m into the base of the oceanic water column at the Brandon vent site, southern EPR. The vent is instrumented with a recording temperature probe. (b) Diffuse flow hydrothermal fluids have temperatures that are generally <35 °C and, therefore, may host animal communities. This diffuse flow site at a depth of 2,500 m on the EPR at 9°50' N is populated by Riftia tubeworms, mussels, crabs, and other organisms. While most studies of seafloor hydrothermal systems have focused on the currently active plate boundary (˜0-1 Ma crust), pooled heat-flow data from throughout the world's ocean basins (Figure 1) indicate that convective heat loss from the oceanic lithosphere actually continues in crust from 0-65 Ma in age ( Stein et al., 1995). Indeed, most recent estimates would indicate that hydrothermal circulation through this older (1-65 Ma) section, termed "flank fluxes," may be responsible for some 70% or more of the total hydrothermal heat loss associated with spreading-plate boundaries - either in the form of warm (20-65 °C) altered seawater, or as cooler water, which is only much more subtly chemically altered ( Mottl, 2003).When considering the impact of hydrothermal circulation upon the chemical composition of the oceans and their underlying sediments, however, attention returns - for many elements - to the high-temperature "black smoker" systems. Only here do many species escape from the seafloor in high abundance. When they do, the buoyancy of the high-temperature fluids carries them hundreds of meters up into the overlying water column as they mix and eventually form nonbuoyant plumes containing a wide variety of both dissolved chemicals and freshly precipitated mineral phases. The processes active within these dispersing hydrothermal plumes play a major role in determining the net impact of hydrothermal circulation upon the oceans and marine geochemistry.
Ding, Jian; Zhang, Yu; Wang, Han; Jian, Huahua; Leng, Hao; Xiao, Xiang
2017-01-01
Southwest Indian Ridge (SWIR) is a typical oceanic ultraslow spreading ridge with intensive hydrothermal activities. The microbial communities in hydrothermal fields including primary producers to support the entire ecosystem by utilizing geochemical energy generated from rock-seawater interactions. Here we have examined the microbial community structures on four hydrothermal vents from SWIR, representing distinct characteristics in terms of temperature, pH and metal compositions, by using Illumina sequencing of the 16S small subunit ribosomal RNA (rRNA) genes, to correlate bacterial and archaeal populations with the nature of the vents influenced by ultraslow spreading features. Epsilon-, Gamma-, Alpha-, and Deltaproteobacteria and members of the phylum Bacteroidetes and Planctomycetes, as well as Thaumarchaeota, Woesearchaeota, and Euryarchaeota were dominant in all the samples. Both bacterial and archaeal community structures showed distinguished patterns compared to those in the fast-spreading East Pacific Ridge or the slow-spreading Mid-Atlantic Ridge as previously reported. Furthermore, within SWIR, the microbial communities are highly correlated with the local temperatures. For example, the sulfur-oxidizing bacteria were dominant within bacteria from low-temperature vents, but were not represented as the dominating group recovered from high temperature (over 300°C) venting chimneys in SWIR. Meanwhile, Thaumarchaeota, the ammonium oxidizing archaea, only showed high relative abundance of amplicons in the vents with high-temperature in SWIR. These findings provide insights on the microbial community in ultraslow spreading hydrothermal fields, and therefore assist us in the understanding of geochemical cycling therein. PMID:28659873
Decline of a Hydrothermal Vent Field - Escanaba Trough 12 Years Later
NASA Astrophysics Data System (ADS)
Zierenberg, R. A.; Clague, D. A.; Davis, A. S.; Lilley, M. D.; McClain, J. S.; Olson, E. S.; Ross, S. L.; Von Damm, K. L.
2001-12-01
Hydrothermal venting was discovered in Escanaba Trough, the southern sediment-covered portion of the Gorda Ridge, in 1988. Large pyrrhotite-rich massive sulfide mounds are abundant at each of the volcanic/intrusive centers that have been investigated in Escanaba Trough, but the only area of known hydrothermal venting is the NESCA site along the ridge axis at 41\\deg N. Hydrothermal fluids venting at 217\\deg C and 108\\deg C were sampled in 1988 on two sulfide mounds separated by about 275 m. The end-member fluid compositions were indistinguishable within analytical errors. Several sulfide mounds were observed in 1988 which had diffusely venting low temperature (< 20\\deg C) fluids that supported extensive vent communities dominated by fields of Ridgia. Nine holes were drilled in the NESCA area in 1996 on ODP Leg 169, including Hole 1036I that penetrated to basaltic basement at 405 m below sea floor (mbsf). Surveys of the area using the drill string camera located only one area of active venting at the same mound where 217\\deg C vent fluids were sampled from two active vents in 1988. Drill hole 1036A was spudded between the two active vents on this sulfide mound (approximately 4 and 8 m away) and penetrated to 115 mbsf. The NESCA site was revisited in 2000 using MBARI's R/V Western Flyer and ROV Tiburon. The hydrothermal vents appeared essentially identical to observations made from the drill string camera in 1996 despite the presence of a drill hole within meters of the two vents. The maximum vent temperature measured in 2000 was 212\\deg C. Fluid samples have major element and isotopic compositions very similar to those collected in 1988. The vent fluids have higher methane ( ~19 mmol/kg) than those from the geologically similar Middle Valley vent field, but lower values than those at Guaymas Basin. Drill hole 1036A was weakly venting, but the diffuse hydrothermal fluids could not be sampled with the equipment available. The walls of the drill hole were colonized by palm worms, limpets, and snails. Four other drill holes showed no hydrothermal flow nor visible evidence of down hole recharge. Mapping with Tiburon confirmed that the extent of hydrothermal venting at NESCA decreased dramatically since 1988. Formerly extensive colonies of Ridgia had vanished leaving no trace of their presence. Although hydrothermal venting has collapsed to a single mound, the temperature and composition of the fluids remained nearly unchanged. This is curious given that sediment pore fluids analyzed on Leg 169 included both high salinity and low salinity components of phase separated hydrothermal fluids in the shallow subsurface indicating that the hydrothermal field must have had a relatively recent (relative to the rate of pore fluid diffusion) high temperature history. Hydrothermal fluids presently venting at this site must be derived from an essentially homogeneous, approximately 215\\degC fluid reservoir that has declined in its fluid output on a decadal scale, but has not undergone significant changes in temperature and composition. Venting at the seafloor does not seem to have been affected by drilling in the hydrothermal field.
Optimized Pyroelectric Vidicon Thermal Imager. Volume II. Improper Ferroelectric Crystal Growth.
1980-09-01
75 4.1 Hydrothermal Synthesis of Boracite Powders..... 75 4.2 Hydrothermal Growth of Boracite Crystals ......... 77...4.2.1 Apparatus .......................... 77 4.2.2 Growth from Acidic Media .................o 78 4.2.3 Hydrothermal Growth in Basic Media ...... 99...Calculated temperature dependence of p/cc for DSP under biasing fields of 0, 2 and 5 kV/cm... 74 11 LIST OF ILLUSTRATIONS (Cont’d) Page Fig. 44: Hydrothermal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpraditpan, Athapon; Wirunmongkol, Thanakorn; Pavasupree, Sorapong, E-mail: sorapongp@yahoo.com
2013-09-01
Graphical abstract: - Highlights: • Nanofibers were prepared from low-cost ilmenite mineral via simple hydrothermal. • High photocatalyst nanofibers were prepared via post heat treatment method. • The nanofibers calcined at 100–700 °C for 2 h maintained nanofiber structure. • The calcined nanofibers at 400 °C showed the highest photocatalytic activity. - Abstract: Titanate nanofibers were synthesized via the hydrothermal method (120 °C for 72 h) using natural ilmenite mineral (FeTiO{sub 3}) as the starting material. The samples were characterized by X-ray diffraction (XRD), X-ray fluorescent (XRF), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Brunauer–Emmett–Teller (BET) for specificmore » surface area. The nanofibers were 20–90 nm in diameter and 2–7 μm in length. The as-synthesized nanofibers calcined at 300–400 °C showed TiO{sub 2} (B) whereas the nanofibers calcined at 500 °C revealed a mixture of two phases of TiO{sub 2} (B) and anatase. The nanofibers calcined at high temperature of 600–1000 °C showed a mixture of tri-crystalline of anatase, rutile, and Fe{sub 2}O{sub 3}. The rutile phase increased with increasing calcination temperature. The nanofibers calcined at 300–700 °C maintained their structure while the morphology of the nanofibers calcined at 800–1000 °C transformed into submicron rod-like structure. This increase of calcination temperature led to the phase transformation from thermodynamically metastable anatase to the most stable form of rutile phase. The crystallite size of prepared samples increased with increasing calcination temperature. Interestingly, with increasing calcination temperature, the absorption edge of the prepared samples shows an obvious shift to visible light region due to the change of crystallite phase and increased crystallite size. Therefore, the band gap energy of the prepared samples became narrower with increasing calcination temperature. Furthermore, the photocatalytic activity of the nanofibers calcined at 400 °C for 2 h was found to be not merely higher than those of the commercially available TiO{sub 2} nanoparticles powders (P-25, JRC-01, and JRC-03) but also the highest of all the samples in this study.« less
NASA Astrophysics Data System (ADS)
O'Brien, Charles E.; Giovannelli, Donato; Govenar, Breea; Luther, George W.; Lutz, Richard A.; Shank, Timothy M.; Vetriani, Costantino
2015-11-01
At deep-sea hydrothermal vents, reduced, super-heated hydrothermal fluids mix with cold, oxygenated seawater. This creates temperature and chemical gradients that support chemosynthetic primary production and a biomass-rich community of invertebrates. In late 2005/early 2006 an eruption occurred on the East Pacific Rise at 9°50‧N, 104°17‧W. Direct observations of the post-eruptive diffuse-flow vents indicated that the earliest colonizers were microbial biofilms. Two cruises in 2006 and 2007 allowed us to monitor and sample the early steps of ecosystem recovery. The main objective of this work was to characterize the composition of microbial biofilms in relation to the temperature and chemistry of the hydrothermal fluids and the observed patterns of megafaunal colonization. The area selected for this study had local seafloor habitats of active diffuse flow (in-flow) interrupted by adjacent habitats with no apparent expulsion of hydrothermal fluids (no-flow). The in-flow habitats were characterized by higher temperatures (1.6-25.2 °C) and H2S concentrations (up to 67.3 μM) than the no-flow habitats, and the microbial biofilms were dominated by chemosynthetic Epsilonproteobacteria. The no-flow habitats had much lower temperatures (1.2-5.2 °C) and H2S concentrations (0.3-2.9 μM), and Gammaproteobacteria dominated the biofilms. Siboglinid tubeworms colonized only in-flow habitats, while they were absent at the no-flow areas, suggesting a correlation between siboglinid tubeworm colonization, active hydrothermal flow, and the composition of chemosynthetic microbial biofilms.
NASA Technical Reports Server (NTRS)
Niles, Paul B.
2010-01-01
The importance of impact events during the early history of Mars is obvious through a simple examination of the character of the martian surface. This ancient, heavily cratered terrain has been shown to be associated with extensive phyllosilicate deposits. This geologic link could suggest that the extensive phyllosilicate-forming alteration may have occurred during early martian history through impact-induced hydrothermal alteration. However, examination of the oxygen isotopic composition of water on Mars suggests that the extensive phyllosilicate deposits were formed primarily through low temperature (<30 C) interactions, and that high temperature weathering in impact-induced hydrothermal systems have not been a dominant process on Mars. The average oxygen isotopic composition of water on Earth is dictated by the nature of water-rock interactions. If these interactions occur at higher temperatures then the water will contain a higher proportion of 18O, while lower temperature interactions will result in water with a lower proportion of 18O. Water on Earth today contains a higher proportion of 18O because of plate tectonics and hydrothermal interaction at mid-ocean ridges. The oxygen isotopic composition of water on early earth, however, may have been quite different, containing a smaller proportion of 18O suggesting much less hydrothermal interaction. Because there are not yet any direct measurements of the oxygen isotopic composition of water on Mars, it needs to be inferred through examination of carbonates preserved in martian meteorites and the isotopic composition of atmospheric CO2. This can be done because the oxygen incorporated into carbonates and CO2 is easily exchanged with liquid water if it is present. Independently, both measurements provide an estimate for the (Sigma)18O of water on Mars to be near -16%. This composition is consistent with low temperature weathering of the silicate crust, and indicates that impact hydrothermal systems did not play an important role in the early alteration of the planet. However, our understanding of impact-induced hydrothermal systems remains unclear. If most of the water mobilized by an impact event remained at relatively low temperatures (<30deg), low-temperature interactions could predominate in these environments. These conditions would be consistent with the isotopic constraints suggested in this study.
An Estimate of Shallow, Low-Temperature Geothermal Resources of the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullane, Michelle; Gleason, Michael; Reber, Tim
Low-temperature geothermal resources in the United States potentially hold an enormous quantity of thermal energy, useful for direct use in residential, commercial and industrial applications such as space and water heating, greenhouse warming, pool heating, aquaculture, and low-temperature manufacturing processes. Several studies published over the past 40 years have provided assessments of the resource potential for multiple types of low-temperature geothermal systems (e.g. hydrothermal convection, hydrothermal conduction, and enhanced geothermal systems) with varying temperature ranges and depths. This paper provides a summary and additional analysis of these assessments of shallow (= 3 km), low-temperature (30-150 degrees C) geothermal resources inmore » the United States, suitable for use in direct-use applications. This analysis considers six types of geothermal systems, spanning both hydrothermal and enhanced geothermal systems (EGS). We outline the primary data sources and quantitative parameters used to describe resources in each of these categories, and present summary statistics of the total resources available. In sum, we find that low-temperature hydrothermal resources and EGS resources contain approximately 8 million and 800 million TWh of heat-in-place, respectively. In future work, these resource potential estimates will be used for modeling of the technical and market potential for direct-use geothermal applications for the U.S. Department of Energy's Geothermal Vision Study.« less
An Estimate of Shallow, Low-Temperature Geothermal Resources of the United States: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullane, Michelle; Gleason, Michael; McCabe, Kevin
Low-temperature geothermal resources in the United States potentially hold an enormous quantity of thermal energy, useful for direct use in residential, commercial and industrial applications such as space and water heating, greenhouse warming, pool heating, aquaculture, and low-temperature manufacturing processes. Several studies published over the past 40 years have provided assessments of the resource potential for multiple types of low-temperature geothermal systems (e.g. hydrothermal convection, hydrothermal conduction, and enhanced geothermal systems) with varying temperature ranges and depths. This paper provides a summary and additional analysis of these assessments of shallow (= 3 km), low-temperature (30-150 degrees C) geothermal resources inmore » the United States, suitable for use in direct-use applications. This analysis considers six types of geothermal systems, spanning both hydrothermal and enhanced geothermal systems (EGS). We outline the primary data sources and quantitative parameters used to describe resources in each of these categories, and present summary statistics of the total resources available. In sum, we find that low-temperature hydrothermal resources and EGS resources contain approximately 8 million and 800 million TWh of heat-in-place, respectively. In future work, these resource potential estimates will be used for modeling of the technical and market potential for direct-use geothermal applications for the U.S. Department of Energy's Geothermal Vision Study.« less
Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method
2012-01-01
Background Nickel ferrite, a kind of soft magnetic materials is one of the most attracting class of materials due to its interesting and important properties and has many technical applications, such as in catalysis, sensors and so on. In this paper the synthesis of NiFe2O4 nanoparticles by the hydrothermal method is reported and the inhibition of surfactant (Glycerol or Sodium dodecyl sulfate) on the particles growth is investigated. Methods For investigation of the inhibition effect of surfactant on NiFe2O4 particles growth, the samples were prepared in presence of Glycerol and Sodium dodecyl sulfate. The X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM) and inductively coupled plasma atomic emission spectrometer (ICP-AES) techniques were used to characterize the samples. Results The results of XRD and ICP-AES show that the products were pure NiFe2O4 and also nanoparticles grow with increasing the temperature, while surfactant prevents the particle growth under the same condition. The average particle size was determined from the Scherrer's equation and TEM micrographs and found to be in the range of 50-60 nm that decreased up to 10-15 nm in presence of surfactant. The FT-IR results show two absorption bands near to 603 and 490 cm-1 for the tetrahedral and octahedral sites respectively. Furthermore, the saturated magnetization and coercivity of NiFe2O4 nanoparticles were in the range of 39.60 emu/g and 15.67 Qe that decreased for samples prepared in presence of surfactant. As well as, the nanoparticles exhibited a superparamagnetic behavior at room temperature. Conclusions Nanosized nickel ferrite particles were synthesized with and without surfactant assisted hydrothermal methods. The results show that with increasing of temperature, the crystallinity of nanoparticles is increased. In the presence of surfactants, the crystallinity of NiFe2O4 nanoparticles decreased in comparison with surfactant- free prepared samples. All of the nickel ferrite nanoparticles were superparamagnetic at room temperature. Graphical abstract PMID:22462726
NASA Astrophysics Data System (ADS)
Liu, Shiyuan; Wang, Lijun; Chou, Kuochih
2018-03-01
Using vanadium slag as raw material, Metal-doped Mn-Zn ferrites were synthesized by multi-step processes including chlorination of iron and manganese by NH4Cl, selective oxidation of Fe cation, and hydrothermal synthesis. The phase composition and magnetic properties of synthesized metal-doped Mn-Zn ferrite were characterized by X-ray powder diffraction, Raman spectroscopy, transmission electron microscopy (TEM), X-ray photon spectra (XPS) and physical property measurement. It was found that Mn/Zn mole ratio significantly affected the magnetic properties and ZnCl2 content significantly influenced the purity of the phase of ferrite. Synthesized metal-doped Mn-Zn ferrite, exhibiting a larger saturation magnetization (Ms = 60.01 emu/g) and lower coercivity (Hc = 8.9 Oe), was obtained when the hydrothermal temperature was controlled at 200 °C for 12 h with a Mn/Zn mole ratio of 4. The effect of ZnCl2 content, Mn/Zn mole ratio and temperature on magnetic properties of the synthesized metal-doped Mn-Zn ferrite were systemically investigated. This process provided a new insight to utilize resources in the aim of obtaining functional materials.
Suryanto, Bryan H R; Chen, Sheng; Duan, Jingjing; Zhao, Chuan
2016-12-28
The role of carbon nanotubes in the advancement of energy conversion and storage technologies is undeniable. In particular, carbon nanotubes have attracted significant applications for electrocatalysis. However, one central issue related to the use of carbon nanotubes is the required oxidative pretreatment that often leads to significant damage of graphitic structures which deteriorates their electrochemical properties. Traditionally, the oxidized carbon nanomaterials are treated at high temperature under an inert atmosphere to repair the oxidation-induced defect sites, which simultaneously removes a significant number of oxygen functional groups. Nevertheless, recent studies have shown that oxygen functional groups on the surface of MWCNT are the essential active centers for a number of important electrocatalytic reactions such as hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). Herein we first show that hydrothermal treatment as a mild method to improve the electrochemical properties and activities of surface-oxidized MWCNT for OER, HER, and ORR without significantly altering the oxygen content. The results indicate that hydrothermal treatment could potentially repair the defects without significantly reducing the pre-existing oxygen content, which has never been achieved before with conventional high-temperature annealing treatment.
NASA Astrophysics Data System (ADS)
Mozdbar, Afsaneh; Nouralishahi, Amideddin; Fatemi, Shohreh; Mirakhori, Ghazaleh
2018-01-01
In the recent decade, Carbon Quantum Dots (CQDs) have attracted lots of attention due to their excellent properties such as tunable photoluminescence, high chemical stability, low toxicity, and biocompatibility. Among all synthesis methods, the hydrothermal/solvothermal rout has been considered as one of the most common and simplest method. The type of precursors can affect the size of CQDs and determine their surface functional groups, the essential properties that deeply influence the optical specifications. In this work, the effect of different precursors on the final properties of carbon quantum dots is investigated. The carbon quantum dots were synthesized by hydrothermal/solvothermal rout using citric acid, thiourea, ethylamine and monoethanolamine as precursors in almost the same conditions of time and temperature. Resultant CQDs were characterized by using FTIR, UV-Visible Spectroscopy and Photoluminescence (PL) analysis. The results of UV-Vis spectroscopy showed that quantum dots synthesized from monoethanolamine have wider absorption band rather than the CQDs from other precursors and the absorption edge shifted from about 270 nm for ethylamine to about 470 nm in monoethanolamine. Furthermore, the results demonstrate that using citric acid and monoethanolamine as precursor improved production efficiency and emission quantum yield of the carbon dots.
Guide to the Revised Ground-Water Flow and Heat Transport Simulator: HYDROTHERM - Version 3
Kipp, Kenneth L.; Hsieh, Paul A.; Charlton, Scott R.
2008-01-01
The HYDROTHERM computer program simulates multi-phase ground-water flow and associated thermal energy transport in three dimensions. It can handle high fluid pressures, up to 1 ? 109 pascals (104 atmospheres), and high temperatures, up to 1,200 degrees Celsius. This report documents the release of Version 3, which includes various additions, modifications, and corrections that have been made to the original simulator. Primary changes to the simulator include: (1) the ability to simulate unconfined ground-water flow, (2) a precipitation-recharge boundary condition, (3) a seepage-surface boundary condition at the land surface, (4) the removal of the limitation that a specified-pressure boundary also have a specified temperature, (5) a new iterative solver for the linear equations based on a generalized minimum-residual method, (6) the ability to use time- or depth-dependent functions for permeability, (7) the conversion of the program code to Fortran 90 to employ dynamic allocation of arrays, and (8) the incorporation of a graphical user interface (GUI) for input and output. The graphical user interface has been developed for defining a simulation, running the HYDROTHERM simulator interactively, and displaying the results. The combination of the graphical user interface and the HYDROTHERM simulator forms the HYDROTHERM INTERACTIVE (HTI) program. HTI can be used for two-dimensional simulations only. New features in Version 3 of the HYDROTHERM simulator have been verified using four test problems. Three problems come from the published literature and one problem was simulated by another partially saturated flow and thermal transport simulator. The test problems include: transient partially saturated vertical infiltration, transient one-dimensional horizontal infiltration, two-dimensional steady-state drainage with a seepage surface, and two-dimensional drainage with coupled heat transport. An example application to a hypothetical stratovolcano system with unconfined ground-water flow is presented in detail. It illustrates the use of HTI with the combination precipitation-recharge and seepage-surface boundary condition, and functions as a tutorial example problem for the new user.
Hydrothermal heat discharge in the Cascade Range, northwestern United States
Ingebritsen, S.E.; Mariner, R.H.
2010-01-01
Hydrothermal heat discharge in the Cascade Range includes the heat discharged by thermal springs, by "slightly thermal" springs that are only a few degrees warmer than ambient temperature, and by fumaroles. Thermal-spring heat discharge is calculated on the basis of chloride-flux measurements and geothermometer temperatures and totals ~ 240 MW in the U.S. part of the Cascade Range, excluding the transient post-1980 discharge at Mount St. Helens (~80 MW as of 2004-5). Heat discharge from "slightly thermal" springs is based on the degree of geothermal warming (after correction for gravitational potential energy effects) and totals ~. 660. MW. Fumarolic heat discharge is calculated by a variety of indirect and direct methods and totals ~160 MW, excluding the transient mid-1970s discharge at Mount Baker (~80 MW) and transient post-1980 discharge at Mount St. Helens (>. 230. MW as of 2005). Other than the pronounced transients at Mount St. Helens and Mount Baker, hydrothermal heat discharge in the Cascade Range appears to be fairly steady over a ~25-year period of measurement. Of the total of ~. 1050. MW of "steady" hydrothermal heat discharge identified in the U.S. part of the Cascade Range, less than 50. MW occurs north of latitude 45??15' N (~0.1 MW per km arc length from 45??15' to 49??N). Much greater rates of hydrothermal heat discharge south of 45??15'N (~1.7 MW per km arc length from 40?? to 45??15'N) may reflect the influence of Basin and Range-style extensional tectonics (faulting) that impinges on the Cascades as far north as Mount Jefferson but is not evident farther north. ?? 2010.
Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico)
NASA Astrophysics Data System (ADS)
Hernández-Antonio, A.; Mahlknecht, J.; Tamez-Meléndez, C.; Ramos-Leal, J.; Ramírez-Orozco, A.; Parra, R.; Ornelas-Soto, N.; Eastoe, C. J.
2015-02-01
Groundwater chemistry and isotopic data from 40 production wells in the Atemajac and Toluquilla Valleys, located in and around the Guadalajara metropolitan area, were determined to develop a conceptual model of groundwater flow processes and mixing. Multivariate analysis including cluster analysis and principal component analysis were used to elucidate distribution patterns of constituents and factors controlling groundwater chemistry. Based on this analysis, groundwater was classified into four groups: cold groundwater, hydrothermal water, polluted groundwater and mixed groundwater. Cold groundwater is characterized by low temperature, salinity, and Cl and Na concentrations and is predominantly of Na-HCO3 type. It originates as recharge at Primavera caldera and is found predominantly in wells in the upper Atemajac Valley. Hydrothermal water is characterized by high salinity, temperature, Cl, Na, HCO3, and the presence of minor elements such as Li, Mn and F. It is a mixed HCO3 type found in wells from Toluquilla Valley and represents regional flow circulation through basaltic and andesitic rocks. Polluted groundwater is characterized by elevated nitrate and sulfate concentrations and is usually derived from urban water cycling and subordinately from agricultural practices. Mixed groundwaters between cold and hydrothermal components are predominantly found in the lower Atemajac Valley. Tritium method elucidated that practically all of the sampled groundwater contains at least a small fraction of modern water. The multivariate mixing model M3 indicates that the proportion of hydrothermal fluids in sampled well water is between 13 (local groundwater) and 87% (hydrothermal water), and the proportion of polluted water in wells ranges from 0 to 63%. This study may help local water authorities to identify and quantify groundwater contamination and act accordingly.
Chemical reaction path modeling of hydrothermal processes on Mars: Preliminary results
NASA Technical Reports Server (NTRS)
Plumlee, Geoffrey S.; Ridley, W. Ian
1992-01-01
Hydrothermal processes are thought to have had significant roles in the development of surficial mineralogies and morphological features on Mars. For example, a significant proportion of the Martian soil could consist of the erosional products of hydrothermally altered impact melt sheets. In this model, impact-driven, vapor-dominated hydrothermal systems hydrothermally altered the surrounding rocks and transported volatiles such as S and Cl to the surface. Further support for impact-driven hydrothermal alteration on Mars was provided by studies of the Ries crater, Germany, where suevite deposits were extensively altered to montmorillonite clays by inferred low-temperature (100-130 C) hydrothermal fluids. It was also suggested that surface outflow from both impact-driven and volcano-driven hydrothermal systems could generate the valley networks, thereby eliminating the need for an early warm wet climate. We use computer-driven chemical reaction path calculation to model chemical processes which were likely associated with postulated Martian hydrothermal systems.
NASA Astrophysics Data System (ADS)
Zhao, Haiqiang; Qi, Weihong; Ji, Wenhai; Wang, Tianran; Peng, Hongcheng; Wang, Qi; Jia, Yanlin; He, Jieting
2017-05-01
Fivefold symmetry appears only in small particles and quasicrystals because internal stress in the particles increases with the particle size. However, a typical Marks decahedron with five re-entrant grooves located at the ends of the twin boundaries can further reduce the strain energy. During hydrothermal synthesis, it is difficult to stir the reaction solution contained in a digestion high-pressure tank because of the relatively small size and high-temperature and high-pressure sealed environment. In this work, we optimized a hydrothermal reaction system by replacing the conventional drying oven with a homogeneous reactor to shift the original static reaction solution into a full mixing state. Large Marks-decahedral Pd nanoparticles ( 90 nm) have been successfully synthesized in the optimized hydrothermal synthesis system. Additionally, in the products, round Marks-decahedral Pd particles were also found for the first time. While it remains a challenge to understand the growth mechanism of the fivefold twinned structure, we proposed a plausible growth-mediated mechanism for Marks-decahedral Pd nanoparticles based on observations of the synthesis process.
Chemical environments of submarine hydrothermal systems
NASA Technical Reports Server (NTRS)
Shock, Everett L.
1992-01-01
Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such determinations rely on studies of pieces of deep oceanic crust uplifted by tectonic forces such as along the Southwest Indian Ridge, or more complete sections of oceanic crust called ophiolite sequences which are presently exposed on continents owing to tectonic emplacement. Much of what is thought to happen in submarine hydrothermal systems is inferred from studies of ophiolite sequences, and especially from the better-exposed ophiolites in Oman, Cyprus and North America. The focus of much that follows is on a few general features: pressure, temperature, oxidation states, fluid composition and mineral alteration, because these features will control whether organic synthesis can occur in hydrothermal systems.
NASA Astrophysics Data System (ADS)
Gao, F.; Leng, S. L.; Zhu, Z.; Li, X. J.; Hu, X.; Song, H. Z.
2018-04-01
The nanopowders of Cu2Se were synthesized by the hydrothermal method, and then were hot-pressed into bulk pellets. The effects of different preparation conditions on the structure and thermoelectric properties of Cu2Se nanocrystalline bulk alloys were investigated. The resistivity and Seebeck coefficients increase with the increment of hot-pressing temperatures, while they decrease with the increment of hot-pressing time, except for the Seebeck coefficients of the sample hot-pressed for 30 min. Based on the power factors and dimensionless thermoelectric figure-of-merit ( ZT) values, the optimum hot-pressing parameters are 700°C and 30 min.
Mathematical Models of Seafloor Hydrothermal Systems Driven by Serpentinization of Peridotite
NASA Astrophysics Data System (ADS)
Lowell, R. P.; Rona, P. A.; Germanovich, L. N.
2001-12-01
Most seafloor hydrothermal systems are driven by heat transfer from subsurface magma bodies. At slow spreading ridges of the Atlantic and Indian oceans, however, magma supply is low; and tectonic activity brings mantle rocks to shallow depths in the crust. Then, the heat of formation released upon serpentinization of peridotite provides the energy source for hydrothermal circulation. This latter class of system has been relatively unstudied, but recent discoveries of peridotite-hosted hydrothermal systems along the Mid-Atlantic Ridge suggest that such systems may play an important role in geochemical cycling and biogeochemical processes. The likelihood that peridotite-hosted hydrothermal systems was more prevalent during the Archean further suggests that such systems may have played a role in the origin of life. We present the first mathematical models of seafloor hydrothermal systems driven by heat released upon serpentinization of peridotite. We assume seawater circulates through a major crack network in the host-peridotite and that cooling of the host-rock leads to the formation of microcracks through which the fluid infiltrates. Reaction of the fluid in microcracks with the host rock results in serpentinization and the heat released upon serpentinization is transported to the seafloor by the fluid circulating in the main crack network. The temperature and heat output of the resulting hydrothermal system is a function of the main network permeability and the rate at which the serpentinization reaction proceeds via diffusion and propagation of the microcracks. Although the temperature of such a system can be quite variable, vent temperatures between 10° C and 100° C are likely for typical crustal parameters.
Palomares, Raul I.; Tracy, Cameron L.; Zhang, Fuxiang; ...
2015-04-16
Hydrothermal diamond anvil cells (HDACs) provide facile means for coupling synchrotron Xray techniques with pressure up to 10 GPa and temperature up to 1300 K. This manuscript reports on an application of the HDAC as an ambient-pressure sample environment for performing in situ defect annealing and thermal expansion studies of swift heavy ion irradiated CeO 2 and ThO 2 using synchrotron X-ray diffraction. The advantages of the in situ HDAC technique over conventional annealing methods include: rapid temperature ramping and quench times, high-resolution measurement capability, simultaneous annealing of multiple samples, and prolonged temperature- and apparatus stability at high temperatures. Isochronalmore » annealing between 300 K and 1100 K revealed 2-stage and 1-stage defect recovery processes for irradiated CeO 2 and ThO 2, respectively; indicating that the morphology of the defects produced by swift heavy ion irradiation of these two materials differs significantly. These results suggest that electronic configuration plays a major role in both the radiation-induced defect production and high temperature defect recovery mechanisms of CeO 2 and ThO 2.« less
NASA Astrophysics Data System (ADS)
Xing, Weinan; Ni, Liang; Huo, Pengwei; Lu, Ziyang; Liu, Xinlin; Luo, Yingying; Yan, Yongsheng
2012-10-01
A novel nanocatalyst CdS/halloysite nanotubes (HNTs) was synthesized by hydrothermal method with direct growth of CdS nanoparticles on the surface of HNTs. The as-prepared photocatalysts had been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (UV-vis DRS), Fourier transform infrared (FT-IR) and the thermo gravimetric analysis (TGA). The photocatalytic activity of the sample was evaluated by the degradation of tetracycline (TC) under visible light irradiation. Benefit from the excellent properties of CdS and HNTs, the photocatalyst exhibited good photocatalytic activity and stability. In order to find out the optimum synthesis condition to obtain the best photocatalytic activity, a series of experiments were performed with different CdS loading capacity, different sources of sulfide and different hydrothermal temperatures, etc. The best photodegradation rate could reach 93% in 60 min under visible light irradiation. Therefore, the combination of CdS nanoparticles with HNTs endowed this material with a potential use in environmental treatments in industries.
Xu, Guangyu; Di Iorio, Daniela
2011-10-01
Acoustic methods are applied to the investigation and monitoring of a vigorous hydrothermal plume within the Main Endeavor vent field at the Endeavor segment of the Juan de Fuca Ridge. Forward propagation and scattering from suspended particulates using Rayleigh scattering theory is shown to be negligible (log-amplitude variance σ(χ) (2)~10(-7)) compared to turbulence induced by temperature fluctuations (σ(χ) (2)~0.1). The backscattering from turbulence is then quantified using the forward scattering derived turbulence level, which gives a volume backscattering strength of s(V)=6.5 × 10(-8) m(-1). The volume backscattering cross section from particulates can range from s(V)=3.3 × 10(-6) to 7.2 × 10(-10) m(-1) depending on the particle size. These results show that forward scatter acoustic methods in hydrothermal vent applications can be used to quantify turbulence and its effect on backscatter measurements, which can be a dominant factor depending on the particle size and its location within the plume. © 2011 Acoustical Society of America
Hydrothermal activity in the Lau back-arc basin: Sulfides and water chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fouquet, Y.; Charlou, J.L.; Donval, J.P.
1991-04-01
The submersible Nautile completed 22 dives during the Nautilau cruise (R/V Nadir, April 17-May 10, 1989) for a detailed investigation of the southern Lau basin near Tonga. The objective of the scientific team from France, Germany, and Tonga was to understand the process of sea-floor ore formation associated with hydrothermal circulation along the Valu Fa back-arc ridge behind the Tonga-Kermadec trench. The four diving areas, between lat21{degree}25'S and 22{degree}40'S in water{approximately}2000 m deep, were selected on the basis of results from cruises of the R/V Jean Charcot and R/V Sonne. The Nadir cruise provided proof of hydrothermal activity-in all formore » areas, over more than 100 km-as indicated by the widespread occurence of hydrothermal deposits and by heat flow, conductivity, and temperature measurements near the sea bottom. The most spectacular findings were high-temperature white and black smokers and associated fauna and ore deposits. Hydrothermal water chemistry and sulfide composition data presented here indicate that this hydrothermal field is very different from the hydrothermal fields in oceanic ridges. This difference is seen in water chemistry of the hydrothermal fluid (pH=2 and high metal content) and the chemical composition of sulfides (enrichment in Ba, As, and Pb).« less
NASA Astrophysics Data System (ADS)
Fontaine, Fabrice J.; Cannat, Mathilde; Escartin, Javier; Crawford, Wayne C.
2014-07-01
processes and efficiency of hydrothermal heat extraction along the axis of mid-ocean ridges are controlled by lithospheric thermal and permeability structures. Hydrothermal circulation models based on the structure of fast and intermediate spreading ridges predict that hydrothermal cell organization and vent site distribution are primarily controlled by the thermodynamics of high-temperature mid-ocean ridge hydrothermal fluids. Using recent constraints on shallow structure at the slow spreading Lucky Strike segment along the Mid-Atlantic Ridge, we present a physical model of hydrothermal cooling that incorporates the specificities of a magma-rich slow spreading environment. Using three-dimensional numerical models, we show that, in contrast to the aforementioned models, the subsurface flow at Lucky Strike is primarily controlled by across-axis permeability variations. Models with across-axis permeability gradients produce along-axis oriented hydrothermal cells and an alternating pattern of heat extraction highs and lows that match the distribution of microseismic clusters recorded at the Lucky Strike axial volcano. The flow is also influenced by temperature gradients at the base of the permeable hydrothermal domain. Although our models are based on the structure and seismicity of the Lucky Strike segment, across-axis permeability gradients are also likely to occur at faster spreading ridges and these results may also have important implications for the cooling of young crust at fast and intermediate spreading centers.
2014-01-01
Shallow-sea (5 m depth) hydrothermal venting off Milos Island provides an ideal opportunity to target transitions between igneous abiogenic sulfide inputs and biogenic sulfide production during microbial sulfate reduction. Seafloor vent features include large (>1 m2) white patches containing hydrothermal minerals (elemental sulfur and orange/yellow patches of arsenic-sulfides) and cells of sulfur oxidizing and reducing microorganisms. Sulfide-sensitive film deployed in the vent and non-vent sediments captured strong geochemical spatial patterns that varied from advective to diffusive sulfide transport from the subsurface. Despite clear visual evidence for the close association of vent organisms and hydrothermalism, the sulfur and oxygen isotope composition of pore fluids did not permit delineation of a biotic signal separate from an abiotic signal. Hydrogen sulfide (H2S) in the free gas had uniform δ34S values (2.5 ± 0.28‰, n = 4) that were nearly identical to pore water H2S (2.7 ± 0.36‰, n = 21). In pore water sulfate, there were no paired increases in δ34SSO4 and δ18OSO4 as expected of microbial sulfate reduction. Instead, pore water δ34SSO4 values decreased (from approximately 21‰ to 17‰) as temperature increased (up to 97.4°C) across each hydrothermal feature. We interpret the inverse relationship between temperature and δ34SSO4 as a mixing process between oxic seawater and 34S-depleted hydrothermal inputs that are oxidized during seawater entrainment. An isotope mass balance model suggests secondary sulfate from sulfide oxidation provides at least 15% of the bulk sulfate pool. Coincident with this trend in δ34SSO4, the oxygen isotope composition of sulfate tended to be 18O-enriched in low pH (<5), high temperature (>75°C) pore waters. The shift toward high δ18OSO4 is consistent with equilibrium isotope exchange under acidic and high temperature conditions. The source of H2S contained in hydrothermal fluids could not be determined with the present dataset; however, the end-member δ34S value of H2S discharged to the seafloor is consistent with equilibrium isotope exchange with subsurface anhydrite veins at a temperature of ~300°C. Any biological sulfur cycling within these hydrothermal systems is masked by abiotic chemical reactions driven by mixing between low-sulfate, H2S-rich hydrothermal fluids and oxic, sulfate-rich seawater. PMID:25183951
Ion-conducting ceramic apparatus, method, fabrication, and applications
Yates, Matthew [Penfield, NY; Liu, Dongxia [Rochester, NY
2012-03-06
A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors.
Influence of temperature and aging time on HA synthesized by the hydrothermal method.
Kothapalli, C R; Wei, M; Legeros, R Z; Shaw, M T
2005-05-01
The influence of temperature and aging time on the morphology and mechanical properties of nano-sized hydroxyapatite (HA) synthesized by a hydrothermal method is reported here. The pre-mixed reactants were poured into a stirred autoclave and reacted at temperatures between 25-250 degrees C for 2-10 h. HA powders thus obtained were examined using X-ray diffraction (XRD), high-resolution field emission scanning electron microscopy (FESEM) and a particle size analyzer. It was found that the aspect ratio of the particles increased with the reaction temperature. The length of the HA particles increased with the reaction temperature below 170 degrees C, but it decreased when the temperature was raised above 170 degrees C. The agglomerates of HA particles were formed during synthesis, and their sizes were strongly dependent on reaction temperatures. As the reaction temperature increased, the agglomerate size decreased (p = 0.008). The density of the discs pressed from these samples reached 85-90% of the theoretical density after sintering at 1200 degrees C for 1 h. No decomposition to other calcium phosphates was detected at this sintering temperature. A correlation existed (p = 0.05) between the agglomerate sizes of HA particles synthesized at various conditions and their sintered densities. With the increase of the agglomerate size, the sintered density of the HA compact decreased. It was found that both the sintered density and flexural strength increased with increasing aging time and reaction temperature. A maximum flexural strength of 78 MPa was observed for the samples synthesized at 170 degrees C for 5 h with the predicted average at these conditions being 65 MPa. These samples attained an average sintered density of 88%.
NASA Astrophysics Data System (ADS)
Costa, I. A.; Barriga, F. J.; Fouquet, Y.
2014-12-01
Siliceous hydrothermal breccias were sampled in two Mid-Atlantic Ridge active sites: Lucky Strike and Menez Gwen. These hydrothermal fields are located in the border of the Azorean plateau, southwest of the Azores islands where the alteration processes affecting basaltic rocks are prominent (Costa et al., 2003). The hydrothermal breccias are genetically related with the circulation of low temperature hydrothermal fluids in diffuse vents. The groundmass of these breccias precipitates from the fluid and consolidates the clastic fragments mostly composed of basalt. The main sources are the surrounding volcanic hills. Breccias are found near hydrothermal vents and may play an important role in the protection of subseafloor hydrothermal deposits forming an impermeable cap due to the high content in siliceous material. The amorphous silica tends to precipitate when the fluid is conductively cooled as proposed by Fouquet et al. (1998) after Fournier (1983). The process evolves gradually from an initial stage where we have just the fragments and circulating seawater. The ascending hydrothermal fluid mixes with seawater, which favours the precipitation of the sulphide components. Sealing of the initially loose fragments begins, the temperature rises below this crust, and the processes of mixing fluid circulation and conductive cooling are simultaneous. At this stage the fluid becomes oversaturated with respect to amorphous silica. This form of silica can precipitate in the open spaces of the porous sulphides and seal the system. Normally this can happen at low temperatures. At this stage the hydrothermal breccia is formed creating a progressively less permeable, eventually impermeable cap rock at the surface. Once the fluid is trapped under this impermeable layer, conductive cooling is enhanced and mixing with seawater is restricted, making the precipitation of amorphous silica more efficient. Since the first discovery and description of recent mineralized submarine hydrothermal deposits, comparison with ancient volcanic massive sulphide deposits is appropriate. The proposed model can explain some of the processes taking place in the early phase of formation of old deposits where equivalent siliceous material is found in the hanging wall of the ore bodies (e.g. Barriga and Fyfe, 1988).
Thermohydrodynamic model: Hydrothermal system, shallowly seated magma chamber
NASA Astrophysics Data System (ADS)
Kiryukhin, A. V.
1985-02-01
The results of numerical modeling of heat exchange in the Hawaiian geothermal reservoir demonstrate the possibility of appearance of a hydrothermal system over a magma chamber. This matter was investigated in hydrothermal system. The equations for the conservation of mass and energy are discussed. Two possible variants of interaction between the magma chamber and the hydrothermal system were computated stationary dry magma chamber and dry magma chamber changing volume in dependence on the discharge of magma and taking into account heat exchange with the surrounding rocks. It is shown that the thermal supplying of the hydrothermal system can be ensured by the extraction of heat from a magma chamber which lies at a depth of 3 km and is melted out due to receipt of 40 cubic km of basalt melt with a temperature of 1,300 C. The initial data correspond with computations made with the model to the temperature values in the geothermal reservoir and a natural heat transfer comparable with the actually observed values.
NASA Astrophysics Data System (ADS)
Fujioka, Kantaro; Kobayashi, Kazuo; Kato, Kazuhiro; Aoki, Misumi; Mitsuzawa, Kyohiko; Kinoshita, Masataka; Nishizawa, Azusa
1997-12-01
Hydrothermal activities were monitored by an ocean bottom seismometer with hydrophone (OBSH) and a composite measuring system (Manatee) including CTD, current meter, transmission meter and cameras at a small depression on the TAG hydrothermal mound in the Mid-Atlantic Ridge. Low-frequency pressure pulses detected by the hydrophone with semi-diurnal periodicity seem to correspond to cycles of hydrothermal upflow from a small and short-lived smoker vent close to the observing site. The peaks of pressure pulses are synchronous with the maximum gradient of areal strain decrease due to tidal load release. Microearthquakes with very near epicenters occur sporadically and do not appear to be directly correlatable to hydrothermal venting. Temporal variations in bottom water temperature also have semi-diurnal periodicity but are more complicated than the pressure events. Temperatures may be affected both by upwelling of hot water and by lateral flow of the bottom current changing its directions with ocean tide.
Hydrothermal fluoride and chloride complexation of indium: an EXAFS study
NASA Astrophysics Data System (ADS)
Loges, Anselm; Testemale, Denis; Huotari, Simo; Honkanen, Ari-Pekka; Potapkin, Vasily; Wagner, Thomas
2017-04-01
Indium (In) is one of the geochemically lesser studied ore metals, and the factors that control the hydrothermal transport and deposition are largely unknown. It has no ore deposits of its own and is commonly mined as a by-product of Zn ores, and there are very few minerals that contain In as an essential structural component. Recently, industrial application of In in touch screen devices has drastically increased demand, which is projected to exceed supply from the current sources in the near future. Since the most relevant In sources are hydrothermal sphalerite ores and to a lesser extent hydrothermal greisen-type deposits in evolved granitic plutons, the aqueous geochemistry of In is of particular interest for understanding its ore forming processes. As a first step towards a comprehensive model for hydrothermal In solubility and speciation, we have studied In speciation in fluoride and chloride bearing solutions at 30-400˚ C and 500 bar using X-Ray Absorption Spectroscopy (XAS) measurements. The experiments were conducted in a unique hydrothermal autoclave setup at beamline BM30B-FAME at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Our results show that the complexation of In changes dramatically between 30 and 400˚ C. Below ca. 200˚ C, fluoride complexes are the most stable ones, but they break down at higher temperatures. Chloride complexes on the other hand become increasingly stable with increasing temperature. This behavior has interesting consequences for natural ore forming systems. In Cl-rich systems (e.g. massive sulfide ores formed in sea floor environments), cooling can be an effective precipitating mechanism. In F-rich systems, fluoride complexation can extend In mobility to low temperatures and In will only precipitate when F is effectively removed from the fluid, e.g. by mixing with a Ca-rich fluid and precipitation of fluorite (CaF2) as is commonly observed in skarn or greisen-type deposits. Due to In complexing with both F and Cl, depending on temperature, In distribution also has great potential as a fluid chemistry/temperature indicator in a wide range of different hydrothermal ore-forming systems.
Hydroxyl defects and conversion thermodynamics and kinetics of hydrothermal barium titanate
NASA Astrophysics Data System (ADS)
Atakan, Vahit
The main objectives of this study are to investigate the possibility of hydrothermal conversion of carboxylate based solid-state precursors to BaTiO3 and to characterize residual H or commonly referred as hydroxyls, which are common defects in hydrothermally synthesized ceramic oxides. Neutron scattering techniques, prompt gamma activation analysis (PGAA) and neutron powder diffraction (NPD) were selected as the main tools for characterization of residual H due to high interaction capability of neutrons with H. Residual H was classified as surface and lattice H. Total H content was measured by PGAA and surface H was measured by Karl Fischer Titration (KFT). NPD was used for estimating lattice H. It was found that 75% of the residual H was in the lattice. Even though more than half of the residual H was removed at low temperatures like 200°C, it was tough to remove H completely even at 1200°C. Residual H caused expansion in the unit cell and presence of lattice H was compensated by Ti vacancies. Yield diagrams were generated depending on a thermodynamic model to theoretically verify that hydrothermal conversion of carboxylate based solid-state precursors to BaTiO3 is possible. Theoretical results were then verified experimentally. It was found that BaC2O 4 and TiO2, and BaTiO(C2O4)2 can be successfully converted to BaTiO3 under hydrothermal conditions. However, BaCO3 and TiO2 precursors were not fully converted. Among barium oxalate and titania, and barium titanly oxalate (BTO) systems, conversion of BTO was more favorable in terms of reaction temperature and KOH concentration. BTO can be hydrothermally converted to BaTiO3 at temperatures as low as room temperature. Further studies on hydrothermal conversion of BTO showed that, reaction time can be reduced from 12 h to less than 5 seconds under atmospheric pressure at ˜103°C.
Teske, Andreas; de Beer, Dirk; McKay, Luke J.; Tivey, Margaret K.; Biddle, Jennifer F.; Hoer, Daniel; Lloyd, Karen G.; Lever, Mark A.; Røy, Hans; Albert, Daniel B.; Mendlovitz, Howard P.; MacGregor, Barbara J.
2016-01-01
The hydrothermal mats, mounds, and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview, we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution. Mapping these hydrothermal features and sampling locations within the southern Guaymas Basin suggest linkages to underlying shallow sills and heat flow gradients. Recognizing the inherent spatial limitations of much current Guaymas Basin sampling calls for comprehensive surveys of the wider spreading region. PMID:26925032
The Growth of Berlinite (AlPO4) Single Crystals.
1980-03-01
Solubility of AlPO 4 18 6. Solubility Data of Jahn and Kordes on AlPO4 19 7. AlPO 4 Seed Crystal 23 8. Tem-Pres Hydrothermal Research Unit 25 9...Since the vapor pressure of water rises rapidly with temperature, a closed hydrothermal system was used. In a seeded hydrothermal growth process, the...to investigate the hydrothermal growth of Berlinite (AlPO4 ) to determine the optimum growth conditions for large high quality crystals. Over thirty
Geothermal-energy files in computer storage: sites, cities, and industries
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Dea, P.L.
1981-12-01
The site, city, and industrial files are described. The data presented are from the hydrothermal site file containing about three thousand records which describe some of the principal physical features of hydrothermal resources in the United States. Data elements include: latitude, longitude, township, range, section, surface temperature, subsurface temperature, the field potential, and well depth for commercialization. (MHR)
Pressure calibrants in the hydrothermal diamond-anvil cell
Chou, I.-Ming
2007-01-01
Based on the equation of state of water (EOSW), experimental pressure in the hydrothermal diamond-anvil cell (HDAC) using pure water or dilute aqueous solutions as a pressure medium can be accurately determined at each measured temperature. Consequently, meaningful interpretations can be obtained for observations in the HDAC, which has been widely accepted as a versatile, modern apparatus for hydrothermal experiments. However, this is not true when other pressure media were used because there is no reliable way to determine experimental pressure other than the use of in situ pressure sensors. Most of the available pressure sensors are difficult to apply because they either require expensive facilities to perform the measurements or are unable to provide the accuracy needed for the interpretation of hydrothermal experiments. The only exception is to use the interferometric method to detect the ??-?? quartz transition, although such applications are limited to temperatures above 573??C. In this study, three pressure calibrants were calibrated for applications at lower temperatures, and they were based on visual observation of the ferroelastic phase transitions in BaTiO3 (tetragonal/cubic), Pb3(PO4)2 (monoclinic/trigonal), and PbTiO3 (tetragonal/cubic). For the phase transitions in BaTiO3 and Pb3(PO4)2, the temperature at which twinning disappears during heating was taken as the transition temperature (Ttr); the phase transition pressures (Ptr) can be calculated, respectively, from Ptr (MPa; ??3%) = 0.17 - 21.25 [(Ttr) - 115.3], and Ptr (MPa; ??2%) = 1.00 - 10.62 [(Ttr) - 180.2], where Ttr is in ??C. For the phase transition in PbTiO3, the temperature at which the movement of phase front begins (or ends) on heating (or cooling) was taken as the transition temperature (Ttr,h or Ttr,c), and the phase transition pressures on heating (Ptr,h) and cooling (Ptr,c) can be calculated from Ptr,h (MPa; ??4%) = 7021.7 - 14.235 (Ttr,h), and Ptr,c (MPa; ??4%) = 6831.3 - 14.001 (Ttr,c). Phase transitions for these three pressure calibrants are easy to detect visually, and their P-T phase boundaries have negative slopes and intersect isochors of most of the geologic fluids at high angles and, therefore, are easy to apply. Copyright ?? 2007 by V. H. Winston & Son, Inc. All rights reserved.
Organic synthesis during fluid mixing in hydrothermal systems
NASA Astrophysics Data System (ADS)
Shock, Everett L.; Schulte, Mitchell D.
1998-12-01
Hydrothermal circulation can lead to fluid mixing on any planet with liquid water and a source of heat. Aqueous fluids with differing compositions, especially different oxidation states, are likely to be far from thermodynamic equilibrium when they mix, and provide a source of free energy that can drive organic synthesis from CO2 and H2, and/or supply a source of geochemical energy to chemolithoautotrophic organisms. Results are presented that quantify the potential for organic synthesis during unbuffered fluid mixing in present submarine hydrothermal systems, as well as hypothetical systems that may have existed on the early Earth and Mars. Dissolved hydrogen, present in submarine hydrothermal fluids owing to the high-temperature reduction of H2O as seawater reacts with oceanic crustal rocks, provides the reduction potential and the thermodynamic drive for organic synthesis from CO2 (or bicarbonate) as hydrothermal fluids mix with seawater. The potential for organic synthesis is a strong function of the H2 content of the hydrothermal fluid, which is, in turn, a function of the prevailing oxidation state controlled by the composition of the rock that hosts the hydrothermal system. Hydrothermal fluids with initial oxidation states at or below those set by the fayalite-magnetite-quartz mineral assemblage show the greatest potential for driving organic synthesis. These calculations show that it is thermodynamically possible for 100% of the carbon in the mixed fluid to be reduced to a mixture of carboxylic acids, alcohols, and ketones in the range 250-50°C as cold seawater mixes with the hydrothermal fluid. As the temperature drops, larger organic molecules are favored, which implies that fluid mixing could drive the geochemical equivalent of a metabolic system. This enormous reduction potential probably drives a large portion of the primary productivity around present seafloor hydrothermal vents and would have been present in hydrothermal systems on the early Earth or Mars. The single largest control on the potential for organic synthesis is the composition of the rock that hosts the hydrothermal system.
Post-annealing effect on optical absorbance of hydrothermally grown zinc oxide nanorods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohar, Rahmat Setiawan; Djuhana, Dede; Imawan, Cuk
In this study, the optical absorbance of zinc oxide (ZnO) nanorods was investigated. The ZnO thin film were deposited on indium tin oxide (ITO) layers using ultrasonic spray pyrolysis (USP) method and then grown by hydrothermal method. In order to improve the optical absorbance, the ZnO nanorods were then post-annealed for one hour at three different of temperatures, namely 250, 400, and 500 °C. The X-ray diffraction (XRD) spectra and FESEM images show that the ZnO nanorods have the hexagonal wurtzite crystal structure and the increasing of post-annealing temperature resulted in the increasing of crystallite size from 38.2 nm to 48.4 nm.more » The UV-vis spectra shows that all samples of ZnO nanorods exhibited the identical sharp absorption edge at 390 nm indicating that all samples have the same bandgap. The post-annealing process seemed to decrease the optical absorbance in the region of 300-550 nm and increase the optical absorbance in the region of 550-700 nm..« less
Lipid biomarker and microbial community of 49.6°E hydrothermal field at Southwest Indian Ocean Ridge
NASA Astrophysics Data System (ADS)
Lei, J.; Chu, F.; Yu, X.; Li, X.; Tao, C.
2012-12-01
In 2007, Chinese Research Cruises Discovered the First Active Hydrothermal Vent Field at the Ultraslow Spreading Southwest Indian Ridge. This study intent to get composition, evolution and origin information of lipid compounds in SWIR, and recognize the style of lipid biomarkers which have obviously indicative significance for community structure.Soluble organic matter were extracted from geological samples (including chimney sulfide, oxide, around hydrothermal vents) in Southwest Indian Ridge (SWIR), and divided into hydrocarbon, fatty acid component by column chromatography. GC, GC-MS, HPLC-MS were applied for composition and abundance analysis. Lipid in hydrothermal sulfide contains obvious isoprenoidal hydrocarbon biomarkers (Sq, IS40) and GDGTs (m/z=653) that associated with methanogenic archaea which belongs to Euryarchaeota, and iso /anti-iso fatty acid (iC15:0, aiC15:0, iC17:0, aiC17:0)which may originated from sulfate reducing bacteria (SRB).Lipids extracted from hydrothermal oxide lack isoprenoidal hydrocarbon, and Ph/C18 (0.57) is much lower than sulfide (1.22). Fatty acid compound of oxide include abundant saturated fatty (C16:0, C18:0) acid and mono-unsaturated fatty acids (C16:1n7, C18:1n7), but much less iso/anti-iso was detected. Lipid composition of hydrothermal oxide showed that archaea activity was seldom in hydrothermal oxide, and sulfur-oxidizing bacteria was the main microbial community.Study of Jaeschke (2010) showed that high temperature hydrothermal venting encompassed different microbial community from low temperature hydrothermal venting. Our study showed that in different stage of hydrothermal, microbial community structure may be distinct.
NASA Astrophysics Data System (ADS)
Shao, H.; Yang, S.; Teng, F. Z.; Cai, D.; Humphris, S. E.
2016-12-01
Chlorite is a common alteration product during water-rock reactions in seafloor hydrothermal systems. This chlorite is commonly characterized by high concentrations of magnesium. However, the source of the Mg and its behavior during hydrothermal alteration have yet to be clarified. Mg isotopes have been used in recent years to investigate a variety of geological processes, including low temperature weathering and metamorphism processes, and Mg cycling in sediments. In this study, we investigate the source of Mg and its behavior in chlorite-rich sediments collected during IODP Expedition 331 from the active hydrothermal Iheya North Knoll field in the middle Okinawa Trough — an intra-continental rift in continental crust. This area is characterized by hemipelagic muds with interbedded thick layers of felsic pumiceous volcanic material. Based on mineralogical, geochemical, and isotopic data, we have previously suggested that the chlorite-rich sediments resulted from hydrothermal alteration of the pumiceous layers at temperatures of 220-300°C. Prior to Mg isotope analysis, all selected samples were pretreated with 1N HCl in order to remove carbonates and other unstable minerals, and measurements were made on both the residues (mainly chlorite) and leachates, as well as on bulk samples. The residues are expected to show higher δ26Mg than the leachates reflecting the Mg isotopic signature of the pumiceous material precursor and provide insight into the behavior of Mg isotopes during the high-temperature hydrothermal processes.
Susan E. Meyer; Phil S. Allen
2009-01-01
A principal goal of seed germination modelling for wild species is to predict germination timing under fluctuating field conditions. We coupled our previously developed hydrothermal time, thermal and hydrothermal afterripening time, and hydration-dehydration models for dormancy loss and germination with field seed zone temperature and water potential measurements from...
Methods for producing monodispersed particles of barium titanate
Hu, Zhong-Cheng
2001-01-01
The present invention is a low-temperature controlled method for producing high-quality, ultrafine monodispersed nanocrystalline microsphere powders of barium titanate and other pure or composite oxide materials having particles ranging from nanosized to micronsized particles. The method of the subject invention comprises a two-stage process. The first stage produces high quality monodispersed hydrous titania microsphere particles prepared by homogeneous precipitation via dielectric tuning in alcohol-water mixed solutions of inorganic salts. Titanium tetrachloride is used as an inorganic salt precursor material. The second stage converts the pure hydrous titania microsphere particles into crystalline barium titanate microsphere powders via low-temperature, hydrothermal reactions.
Dekov, V.M.; Cuadros, J.; Shanks, Wayne C.; Koski, R.A.
2008-01-01
Talc, kerolite-smectite, smectite, chlorite-smectite and chlorite samples from sediments, chimneys and massive sulfides from six seafloor hydrothermal areas have been analyzed for mineralogy, chemistry and oxygen isotopes. Samples are from both peridotite- and basalt-hosted hydrothermal systems, and basaltic systems include sediment-free and sediment-covered sites. Mg-phyllosilicates at seafloor hydrothermal sites have previously been described as talc, stevensite or saponite. In contrast, new data show tri-octahedral Mg-phyllosilicates ranging from pure talc and Fe-rich talc, through kerolite-rich kerolite-smectite to smectite-rich kerolite-smectite and tri-octahedral smectite. The most common occurrence is mixed-layer kerolite-smectite, which shows an almost complete interstratification series with 5 to 85% smectitic layers. The smectite interstratified with kerolite is mostly tri-octahedral. The degree of crystal perfection of the clay sequence decreases generally from talc to kerolite-smectite with lower crystalline perfection as the proportion of smectite layers in kerolite-smectite increases. Our studies do not support any dependence of the precipitated minerals on the type/subtype of hydrothermal system. Oxygen isotope geothermometry demonstrates that talc and kerolite-smectite precipitated in chimneys, massive sulfide mounds, at the sediment surface and in open cracks in the sediment near seafloor are high-temperature (> 250????C) phases that are most probably the result of focused fluid discharge. The other end-member of this tri-octahedral Mg-phyllosilicate sequence, smectite, is a moderate-temperature (200-250????C) phase forming deep within the sediment (??? 0.8??m). Chlorite and chlorite-smectite, which constitute the alteration sediment matrix around the hydrothermal mounds, are lower-temperature (150-200????C) phases produced by diffuse fluid discharge through the sediment around the hydrothermal conduits. In addition to temperature, other two controls on the precipitation of this sequence are the silica activity and Mg/Al ratio (i.e. the degree of mixing of seawater with hydrothermal fluid). Higher silica activity favors the formation of talc relative to tri-octahedral smectite. Vent structures and sedimentary cover preclude complete mixing of hydrothermal fluid and ambient seawater, resulting in lower Mg/Al ratios in the interior parts of the chimneys and deeper in the sediment which leads to the precipitation of phyllosilicates with lower Mg contents. Talc and kerolite-smectite have very low trace- and rare earth element contents. Some exhibit a negative or flat Eu anomaly, which suggests Eu depletion in the original hydrothermal fluid. Such Eu depletion could be caused by precipitation of anhydrite or barite (sinks for Eu2+) deeper in the system. REE abundances and distribution patterns indicate that chlorite and chlorite-smectite are hydrothermal alteration products of the background turbiditic sediment. ?? 2007 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ueda, Hisahiro; Shibuya, Takazo; Sawaki, Yusuke; Saitoh, Masafumi; Takai, Ken; Maruyama, Shigenori
2016-12-01
To understand the chemical nature of hydrothermal fluids in the komatiite-hosted seafloor hydrothermal system in the Hadean, we conducted two hydrothermal serpentinization experiments involving synthetic komatiite and a CO2-rich acidic NaCl fluid at 250 and 350 °C, 500 bars. During the experiments, the komatiites were strongly carbonated to yield iron-rich dolomite (3-9 wt.% FeO) at 250 °C and calcite (<0.8 wt.% FeO) at 350 °C, respectively. The carbonation of komatiites suppressed H2 generation in the fluids. The steady-state H2 concentrations in the fluid were approximately 0.024 and 2.9 mmol/kg at 250 and 350 °C, respectively. This correlation between the Fe content in carbonate mineral and the H2 concentration in the fluid suggests that the incorporation of ferrous iron into the carbonate mineral probably limited magnetite formation and consequent generation of hydrogen during the serpentinization of komatiites. The H2 concentration of the fluid at 350 °C corresponds to that of modern H2-rich seafloor hydrothermal systems, such as the Kairei hydrothermal field, where hydrogenotrophic methanogens dominate in the prosperous microbial ecosystem. Accordingly, the high-temperature serpentinization of komatiite would provide the H2-rich hydrothermal environments that were necessary for the emergence and early evolution of life in the Hadean ocean. In contrast, H2-rich fluids may not have been generated by serpentinization at temperatures below 250 °C because carbonate minerals become more stable with decreasing temperature in the komatiite-H2O-CO2 system.
NASA Astrophysics Data System (ADS)
Wang, Shujie; Li, Huaiming; Zhai, Shikui; Yu, Zenghui; Cai, Zongwei
2017-12-01
In this study, geochemical compositions of elements in sulfide samples collected from the Deyin-1 hydrothermal field near the 15°S southern Mid-Atlantic Ridge (SMAR) were analyzed by the X-ray fluorescence spectrometry (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) to examine the enrichment regulations of ore-forming elements and hydrothermal mineralization. These sulfide precipitates can be classified macroscopically into three types: Fe-rich sulfide, Fe-Cu-rich sulfide and Fe-Zn-rich sulfide, and are characterized by the enrichment of base metal elements along with a sequence of Fe>Zn>Cu. Compared with sulfides from other hydrothermal fields on MAR, Zn concentrations of sulfides in the research area are significantly high, while Cu concentrations are relatively low. For all major, trace or rare-earth elements (REE), their concentrations and related characteristic parameters exhibit significant variations (up to one or two orders of magnitude), which indicates the sulfides from different hydrothermal vents or even a same station were formed at different stages of hydrothermal mineralization, and suggests the variations of chemical compositions of the hydrothermal fluid with respect to time. The hydrothermal temperatures of sulfides precipitation decreased gradually from station TVG10 (st.TVG10) to st.TVG12, and to st.TVG11, indicating that the precipitation of hydrothermal sulfides is subjected to conditions changed from high temperature to low temperature, and that the hydrothermal activity of study area was at the late stage of a general trend of evolution from strong to weak. The abnormally low concentrations of REE in sulfides and their similar chondrite-normalized REE patterns show that REEs in all sulfides were derived from a same source, but underwent different processes of migration or enrichment, or sulfides were formed at different stages of hydrothermal mineralization. The sulfides collected from the active hydrothermal vent were mainly attributed to precipitating directly from the hydrothermal fluid, while those collected from the extinct hydrothermal chimney might have already been altered by the seawater. Generally, ore-forming elements in the sulfides can be divided into three groups: Fe-based element group, Cu-based element group and Zn-based element group. The first group includes Fe, Mn, Cr, Mo, Sn, Rb and bio-enriching elements, such as P and Si, reflecting the similar characteristics to Fe in the study area. And the second group contains Cu, W, Co, Se, Te and Bi, suggesting the similar behavior with Cu. Moreover, the third group includes Zn, Hf, Hg, Cd, Ta, Ga, Pb, As, Ag, Ni and Sb, which indicates the geochemical characteristics of most dispersed trace elements controlled by Zn-bearing minerals to some extent.
Bio-oil production via subcritical hydrothermal liquefaction of biomass
NASA Astrophysics Data System (ADS)
Durak, Halil
2017-04-01
Biomass based raw materials can be converted into the more valued energy forms using biochemical methods such as ethanol fermentation, methane fermentation and the thermochemical methods such as direct combustion, pyrolysis, gasification, liquefaction. The bio-oil obtained from the biomass has many advantages than traditional use. Firstly, it has features such as high energy density, easy storage and easy transportation. Bio-oil can be used as a fuel in engines, turbines and burning units directly. Besides, it can be converted into products in higher quality and volume via catalytic cracking, hydrodexygenation, emulsification, and steam reforming [1,2]. Many organic solvents such as acetone, ethanol, methanol, isopropanol are used in the supercritical liquefaction processes. When we think about the cost and effects of the organic solvent on nature, it will be understood better that it is necessary to find solvent that are more sensitive against nature. Here, water must have an important place because of its features. Most important solvent of the world water is named as "universal solvent" because none of the liquids can dissolve the materials as much as done by water. Water is found much at the nature and cost of it is very few when compared with the other solvent. Hydrothermal liquefaction, a thermochemical conversion process is an effective method used for converting biomass into the liquid products. General reaction conditions for hydrothermal liquefaction process are the 250-374 °C temperature range and 4 - 22 Mpa pressure values range, besides, the temperature values can be higher according to the product that is expected to be obtained [3,4]. In this study, xanthium strumarium plant stems have been used as biomass source. The experiments have been carried out using a cylindrical reactor (75 mL) at the temperatures of 300 °C. The produced liquids at characterized by elemental analysis, GC-MS and FT-IR. According to the analysis, different types of compounds were identified by GC-MS.
Hagstrum, J.T.; Johnson, C.M.
1986-01-01
Paleomagnetic and rock magnetic data combined with stable isotope data from the middle Tertiary pluton along the Rio Hondo in northern New Mexico suggest that its magnetic remanence has both thermal (TRM) and high-temperature chemical (CRM) components. Oxygen isotope temperatures indicate that magnetite associated with the more rapidly cooled higher levels of the pluton, and with mafic inclusions and cogenetic rhyolitic dikes sampled at lower levels of exposure, ceased subsolidus recrystallization and isotopic exchange above its Curie temperature (580??C) in the presence of a magmatic fluid. Continued cooling imparted a TRM to these portions of the pluton. The more slowly cooled granodiorite at lower levels has quartz-magnetite isotopic temperatures that are below the Curie temperature of magnetite implying that its magnetization is high-temperature CRM. Sub-Curie isotopic temperatures for other granitic plutons in the western U.S.A. suggest that CRM may be commonly derived from subsolidus interactions between magnetite and magmatic fluids in plutonic rocks. A meteoric-hydrothermal system generated by the cooling Rio Hondo pluton, and not by younger adjacent intrusions, resulted in limited alteration along zones of high permeability near the southern margin of the Rio Hondo pluton, and in more prevasive alteration of the pluton to the north. The meteoric-hydrothermal alteration occurred at relatively high temperatures (> 350??C) and, with the exception of local chloritization, caused little visible alteration of the rocks. The isotopic ratios indicate that little of the magnetite could have grown from or exchanged with a meteoric-hydrothermal fluid. ?? 1986.
Delaminated sodium nonatitanate and a method for producing delaminated sodium nonatitanate
Nyman, May D.
2016-02-02
A hydrothermal synthesis method of making a delaminated titanate is disclosed. The delaminated titanate has a unique structure or morphology. The delaminated titanate is first formed by forming at a low temperature a layered sodium nonatitanate (SNT), which may be referred to as layered sodium titanate. The layered SNT has a unique morphology. The layered SNT is then synthesized into a delaminated titanate having a unique morphology.
Takai, Ken; Oida, Hanako; Suzuki, Yohey; Hirayama, Hisako; Nakagawa, Satoshi; Nunoura, Takuro; Inagaki, Fumio; Nealson, Kenneth H; Horikoshi, Koki
2004-04-01
Distribution profiles of marine crenarchaeota group I in the vicinity of deep-sea hydrothermal systems were mapped with culture-independent molecular techniques. Planktonic samples were obtained from the waters surrounding two geographically and geologically distinct hydrothermal systems, and the abundance of marine crenarchaeota group I was examined by 16S ribosomal DNA clone analysis, quantitative PCR, and whole-cell fluorescence in situ hybridization. A much higher proportion of marine crenarchaeota group I within the microbial community was detected in deep-sea hydrothermal environments than in normal deep and surface seawaters. The highest proportion was always obtained from the ambient seawater adjacent to hydrothermal emissions and chimneys but not from the hydrothermal plumes. These profiles were markedly different from the profiles of epsilon-Proteobacteria, which are abundant in the low temperatures of deep-sea hydrothermal environments.
Ca and Sr Isotope Sytematics in Mid-Ocean Ridge Hydrothermal Fluids
NASA Astrophysics Data System (ADS)
Pester, N. J.; Syverson, D. D.; Higgins, J. A.; Seyfried, W. E., Jr.
2016-12-01
We report a comprehensive suite of Ca isotopic data (δ44/40Ca) from mid-ocean ridge hydrothermal fluids, standardized relative to seawater. Samples were acquired from 7 different vent fields on the EPR, JdFR and MAR during expeditions between 1999 and 2014. All endmember hydrothermal fluids (within analytical uncertainty) reflect an entirely MORB-dominated signal (-1.0 to -1.2 ‰). This rather uniform signal, despite variable fluid chemistries and a mixture of mafic to ultramafic host lithologies, is somewhat surprising given the noteworthy Ca concentrations in both the hydrothermal fluids and precursor seawater. One explanation for this observation involves the change in anhydrite (CaSO4) saturation with increasing temperature, and the molal concentration ratio of [Mg]:[Ca]:[SO4] in modern seawater of 53:10:28. The near quantitative removal of seawater Mg to silicate alteration phases, favorable at all temperatures, is largely charge balanced by exchange for basaltic Ca, and this process alone can account for the majority of the rock dominated δ44/40Casw signal. That these values are equivalent to MORB, however, suggests a high proportion of this Mg-Ca exchange occurs after seawater Ca precipitates as anhydrite in lower temperature (recharge) regimes of the hydrothermal system, aided by the low [Ca]/[SO4]. 87/86Sr ratios of hydrothermal fluids exhibit a seawater signal of 20 to 30% and Sr is therefore not quantitatively removed during incipient anhydrite formation. Strontium mobility in hydrothermal systems is still poorly understood, but the offset between the Ca and Sr isotopic signatures is consistent with near-equilibrium partitioning of Sr into anhydrite observed in recent experiments. Such observations from modern MOR systems place important constraints on the role of hydrothermal fluxes in paleo-seawater evolution, such as feedbacks involving significant variability in [Mg]:[Ca]:[SO4] ratios of seawater suggested over much of the Phanerozoic.
Fine-grained Goethite as a Precursor for Martian Gray Hematite
NASA Technical Reports Server (NTRS)
Glotch, T. D.; Morris, R. V.; Sharp, T. G.; Christensen, P. R.
2003-01-01
Several isolated deposits of gray, crystalline hematite on Mars were discovered using data returned from the Thermal Emission Spectrometer (TES) instrument aboard the Mars Global Surveyor spacecraft. Christensen et al. provided five testable hypotheses regarding the formation of crystalline hematite on Mars: 1) low-temperature precipitation of Fe oxides/hydroxides from standing, oxygenated, Fe-rich water, followed by subsequent alteration to gray hematite, 2) low-temperature leaching of iron-bearing silicates and other materials leaving a Fe-rich residue laterite-style weathering) which is subsequently altered to gray hematite, 3) direct precipitation of gray hematite from Fe-rich circulating fluids of hydrothermal or other origin, 4) formation of gray hematitic surface coatings during weathering, and 5) thermal oxidation of magnetite-rich lavas. Since this initial work, several authors have examined the hematite deposits to determine their formation mechanism. Lane et al. cited the absence of a 390/ cm absorption in the martian hematite spectrum as evidence for platy hematite grains. Their model for the formation of the deposits includes deposition of any of a variety of iron oxides or oxyhydroxides by aqueous or hydrothermal fluids, burial and metamorphosis to gray platy hematite grains, and exhumation in recent times. Based on a detailed geomorphic examination of the Sinus Meridiani region, Hynek et al. conclude that the most likely method of hematite formation was either emplacement by a hydrothermal fluid or oxidation of a magnetite-rich pyroclastic deposit. Similarly, Arvidson et al., favor a model involving the alteration of pyroclastic deposits by aqueous or hydrothermal fluids. Finally, based on geochemical modeling and an examination of Aram Chaos, Catling and Moore favor emplacement by hydrothermal fluids with a minimum temperature of 100 C. Comparison of the average martian hematite spectrum measured by TES to hematite emissivity spectra for a variety of naturally occurring hematites shows small but potentially important differences. In particular, band shapes, positions and relative band emissivities of hematite spectra vary over the range of samples. These differences imply that the natural variability of thermal infrared hematite spectra has not been fully characterized, especially with respect to the reaction pathway and crystal structure.
NASA Astrophysics Data System (ADS)
Fujii, M.; Okino, K.; Honsho, C.; Mochizuki, N.; Szitkar, F.; Dyment, J.
2013-12-01
Near-bottom magnetic profiling using submersible, deep-tow, Remotely Operated Vehicle (ROV) and Autonomous Underwater Vehicle (AUV) make possible to conduct high-resolution surveys and depict detailed magnetic features reflecting, for instance, the presence of fresh lavas or hydrothermal alteration, or geomagnetic paleo-intensity variations. We conducted near-bottom three component magnetic measurements onboard submersible Shinkai 6500 in the Southern Mariana Trough, where five active hydrothermal vent fields (Snail, Yamanaka, Archean, Pica, and Urashima sites) have been found in both on- and off-axis areas of the active back-arc spreading center, to detect signals from hydrothermally altered rock and to distinguish old and new submarine lava flows. Fourteen dives were carried out at an altitude of 1-40 m during the R/V Yokosuka YK10-10 and YK10-11 cruises in 2010. We carefully corrected the effect of the induced and permanent magnetizations of the submersible by applying the correction method for the shipboard three-component magnetometer measurement modified for deep-sea measurement, and subtracted the IGRF values from the corrected data to obtain geomagnetic vector anomalies along the dive tracks. We then calculated the synthetic magnetic vector field produced by seafloor, assumed to be uniformly magnetized, using three dimensional forward modeling. Finally, values of the absolute magnetizations were estimated by using a linear transfer function in the Fourier domain from the observed and synthetic magnetic anomalies. The distribution of estimated absolute magnetization generally shows low values around the five hydrothermal vent sites. This result is consistent with the equivalent magnetization distribution obtained from previous AUV survey data. The areas of low magnetization are also consistent with hydrothermal deposits identified in video records. These results suggest that low magnetic signals are due to hydrothermal alteration zones where host rocks are demagnetized by hydrothermal circulation. The low magnetization zones around the off-axis vent sites are about ten times wider than those surrounding the on-axis sites, possibly reflecting the longer duration of hydrothermal circulation at these sites. Another interesting result is that the absolute magnetization shows extremely high intensities (>80 A/m) at the neo volcanic zones (NVZ) and relatively low intensities (<10 A/m) two to five kilometers away from the NVZ. These variations are quite consistent with those of the Natural Remanent Magnetization measured on basalt samples, suggesting that the low-temperature oxidation of host rock due to the reaction with seawater has completed within a few kilometers distance from the spreading axis. We conclude that the magnetization of the uppermost oceanic crust decreases with age due to the combination of the both hydrothermal rapid alteration and the low-temperature gradual alteration processes.
2014-01-01
Background Ensiling may act as a pretreatment of fresh grass biomass and increase the enzymatic conversion of structural carbohydrates to fermentable sugars. However, ensiling does not provide sufficient severity to be a standalone pretreatment method. Here, ensiling of grass is combined with hydrothermal treatment (HTT) with the aim of improving the enzymatic biomass convertibility and decrease the required temperature of the HTT. Results Grass silage (Festulolium Hykor) was hydrothermally treated at temperatures of 170, 180, and 190°C for 10 minutes. Relative to HTT treated dry grass, ensiling increased the solubilization of dry matter (DM) during HTT and gave increased glucan content, but lower lignin in the insoluble fiber fraction. Ensiling improved glucose yields in the enzymatic hydrolysis of the washed solid fiber fraction at the lower HTT temperatures. At 170°C glucose yield improved from 17 to 24 (w/w)% (45 to 57% cellulose convertibility), and at 180°C glucose yield improved from 22 to 29 (w/w)% (54 to 69% cellulose convertibility). Direct HTT of grass at 190°C gave the same high glucose yield as for grass silage (35 (w/w)% (77% cellulose convertibility)) and improved xylan yields (27% xylan convertibility). The effect of ensiling of grass prior to HTT improved the enzymatic conversion of cellulose for HTT at 170 and 180°C, but the increased glucose release did not make up for the loss of water soluble carbohydrates (WSC) during ensiling. Overall, sugar yields (C6 + C5) were similar for HTT of grass and grass silage at both 170 and 180°C, but at 190°C the overall sugar yield was better for HTT of dry grass. Conclusions This study unequivocally establishes that ensiling of grass as a biomass pretreatment method comes with a loss of WSC. The loss of WSC by ensiling is not necessarily compensated for by providing a lower temperature requirement for HTT for high enzymatic monosaccharide release. However, ensiling can be an advantageous storage method prior to grass processing. PMID:25024743
Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method.
Nejati, Kamellia; Zabihi, Rezvanh
2012-03-30
Nickel ferrite, a kind of soft magnetic materials is one of the most attracting class of materials due to its interesting and important properties and has many technical applications, such as in catalysis, sensors and so on. In this paper the synthesis of NiFe2O4 nanoparticles by the hydrothermal method is reported and the inhibition of surfactant (Glycerol or Sodium dodecyl sulfate) on the particles growth is investigated. For investigation of the inhibition effect of surfactant on NiFe2O4 particles growth, the samples were prepared in presence of Glycerol and Sodium dodecyl sulfate. The X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM) and inductively coupled plasma atomic emission spectrometer (ICP-AES) techniques were used to characterize the samples. The results of XRD and ICP-AES show that the products were pure NiFe2O4 and also nanoparticles grow with increasing the temperature, while surfactant prevents the particle growth under the same condition. The average particle size was determined from the Scherrer's equation and TEM micrographs and found to be in the range of 50-60 nm that decreased up to 10-15 nm in presence of surfactant. The FT-IR results show two absorption bands near to 603 and 490 cm-1 for the tetrahedral and octahedral sites respectively. Furthermore, the saturated magnetization and coercivity of NiFe2O4 nanoparticles were in the range of 39.60 emu/g and 15.67 Qe that decreased for samples prepared in presence of surfactant. As well as, the nanoparticles exhibited a superparamagnetic behavior at room temperature. Nanosized nickel ferrite particles were synthesized with and without surfactant assisted hydrothermal methods. The results show that with increasing of temperature, the crystallinity of nanoparticles is increased. In the presence of surfactants, the crystallinity of NiFe2O4 nanoparticles decreased in comparison with surfactant- free prepared samples. All of the nickel ferrite nanoparticles were superparamagnetic at room temperature. GRAPHICAL
Kim, J. S.; Kim, S. Y.; Kim, D. H.; ...
2015-07-01
The specific feature of multi-component oxides synthesized by hydrothermal process under high temperature (633 K) and highly pressurized water (18.9 MPa) near critical point. Effects of hydrothermal processing duration times 24 hours and 72 hours, respectively, on the oxide formation of the Ni 59Zr 20Ti 16Si 2Sn 3 metallic glass synthesized by powder metallurgy process were characterized by X-ray diffractometer, differential scanning calorimeter along with the particle size, morphology and crystalline phase of the oxides. The crystallization of the needle-shape NiTiO 3, ZrTiO 4 and ZrSnO 4 ternary oxide phases observed on the surface of metallic glass at below glassmore » transition temperature and the morphology of oxide phases changed to plate-shape around 2 μm in diameter by the increase processing time. This hydrothermal processing in subcritical water provides accelerated dense metal oxide crystals due to the reaction medium being at higher pressure than conventional oxidation processing.« less
Boonna, Sureeporn; Tongta, Sunanta
2018-07-01
Structural transformation of crystallized debranched cassava starch prepared by temperature cycling (TC) treatment and then subjected to annealing (ANN), heat-moisture treatment (HMT) and dual hydrothermal treatments of ANN and HMT was investigated. The relative crystallinity, lateral crystal size, melting temperature and resistant starch (RS) content increased for all hydrothermally treated samples, but the slowly digestible starch (SDS) content decreased. The RS content followed the order: HMT → ANN > HMT > ANN → HMT > ANN > TC, respectively. The HMT → ANN sample showed a larger lateral crystal size with more homogeneity, whereas the ANN → HMT sample had a smaller lateral crystal size with a higher melting temperature. After cooking at 50% moisture, the increased RS content of samples was observed, particularly for the ANN → HMT sample. These results suggest that structural changes of crystallized debranched starch during hydrothermal treatments depend on initial crystalline characteristics and treatment sequences, influencing thermal stability, enzyme digestibility, and cooking stability. Copyright © 2018 Elsevier Ltd. All rights reserved.
On the fate of arsenic in the Menez Gwen hydrothermal system, Mid-Atlantic Ridge
NASA Astrophysics Data System (ADS)
Breuer, C.; Ruiz Chancho, M.; Pichler, T.
2011-12-01
Samples of hydrothermal fluids and on-site associated mussels (Bathymodiolus azoricus) were collected during the M 82/3 cruise of RV Meteor at the Menez Gwen hydrothermal field (37° 50' N, MAR) and analyzed for total and arsenic species (arsenite, arsenate and organorarsenicals) with ICP-(HR)MS and HPLC-ICP-(HR)MS respectively. Fluids emitting with temperatures of up to 280 °C and at 840 - 865 m depth contained total endmember As concentrations between 9.5 and 19.23 μg L-1 while local seawater concentrations varied around 1.5 μg L-1. The most important factors controlling the amount of As in these fluids are the E-MORB host rock composition and temperature of the fluids leading to phase separation or not. Regarding arsenic speciation in the fluids, there is discrepancy about the best method of preservation for water samples when speciation analysis of arsenic species must be carried out and a lack of information is especially relevant when marine hydrothermal vent samples have to be preserved. For this, one of the objectives of the present study was the comparison of different preservation methods of fluid samples collected at the Menez Gwen hydrothermal field. The methods used in the present study were: freezing at -20 °C, acidification with HCl and addition of EDTA. Most of these have been used by different authors for the preservation of inorganic arsenic species but organic arsenic species have not been taken into account and particularly hydrothermal fluids were not investigated. The results show very different proportions of arsenite and arsenate depending on the preservation procedure but the presence of methylated arsenic species or arsenosugars was not detected. The highest proportions of arsenite were found in the samples preserved with HCl. The presence of thio-arsenic species was tested with the addition of hydrogen peroxide. Moreover, mass balance calculations showed the presence of one or more species, which could not be detected with the chromatographic separation used in the present study. It was also observed that there was a strong T and pH dependence with arsenite, especially in the flash frozen samples. From this study it can be clearly stated that sample preservation is a critical point and further studies related with preservation of marine hydrothermal vent fluids for arsenic speciation must be carried out. Although arsenic has been extensively investigated in marine organisms, there is still little information about the metabolism of this element in organisms habiting the deep see, with only one publication so far. Bathymodiolus azoricus has never been studied regarding arsenic speciation and the fact that it is exposed to arsenic concentrations higher than other marine organisms makes it very interesting from the metabolism point of view. The mussels collected near the vents were dissected in gill, muscle and digestive gland and analyzed for total and arsenic species. Results are discussed taking into account the exposure and possible metabolism paths taking place in deep-sea hydrothermal systems.
Seafloor weathering buffering climate: numerical experiments
NASA Astrophysics Data System (ADS)
Farahat, N. X.; Archer, D. E.; Abbot, D. S.
2013-12-01
Continental silicate weathering is widely held to consume atmospheric CO2 at a rate controlled in part by temperature, resulting in a climate-weathering feedback [Walker et al., 1981]. It has been suggested that weathering of oceanic crust of warm mid-ocean ridge flanks also has a CO2 uptake rate that is controlled by climate [Sleep and Zahnle, 2001; Brady and Gislason, 1997]. Although this effect might not be significant on present-day Earth [Caldeira, 1995], seafloor weathering may be more pronounced during snowball states [Le Hir et al., 2008], during the Archean when seafloor spreading rates were faster [Sleep and Zahnle, 2001], and on waterworld planets [Abbot et al., 2012]. Previous studies of seafloor weathering have made significant contributions using qualitative, generally one-box, models, and the logical next step is to extend this work using a spatially resolved model. For example, experiments demonstrate that seafloor weathering reactions are temperature dependent, but it is not clear whether the deep ocean temperature affects the temperature at which the reactions occur, or if instead this temperature is set only by geothermal processes. Our goal is to develop a 2-D numerical model that can simulate hydrothermal circulation and resulting alteration of oceanic basalts, and can therefore address such questions. A model of diffusive and convective heat transfer in fluid-saturated porous media simulates hydrothermal circulation through porous oceanic basalt. Unsteady natural convection is solved for using a Darcy model of porous media flow that has been extensively benchmarked. Background hydrothermal circulation is coupled to mineral reaction kinetics of basaltic alteration and hydrothermal mineral precipitation. In order to quantify seafloor weathering as a climate-weathering feedback process, this model focuses on hydrothermal reactions that influence carbon uptake as well as ocean alkalinity: silicate rock dissolution, calcium and magnesium leaching reactions, carbonate precipitation, and clay formation.
NASA Astrophysics Data System (ADS)
Nithya, V. D.; Kalai Selvan, R.; Vasylechko, Leonid
2015-11-01
The well defined microstructures of BiPO4 were successfully synthesized by the facile hexamethylenetetramine (HMT) assisted hydrothermal method. The low temperature monoclinic BiPO4 structure with space group P21/n, were obtained from X-ray diffraction (XRD) for the pristine and HMT-assisted BiPO4 with 1, 3, 5 and 10 mmole concentration. A transformation from low temperature monazite-type phase to the high temperature SbPO4-type phase of BiPO4 was observed at the 10 mmole concentration. There was a variation in the morphology from polyhedron to octahedra-like and finally into cube shape upon an increase in concentration of HMT. The role of reaction time in the morphology of BiPO4 particles was investigated. The selected area electron diffraction (SAED) pattern elucidated the ordered dot pattern and the calculated d-spacing revealed the formation of BiPO4. An increased specific capacitance of HMT assisted materials (202 F/g) compared with pristine BiPO4 (89 F/g) at 5 mA/cm2 was observed upon morphological variation due to HMT addition.
NASA Astrophysics Data System (ADS)
Babaei, Amir Haji; Ganji, Alireza
2018-03-01
The Ahmadabad hematite/barite deposit is located to the northeast of the city of Semnan, Iran. Geostructurally, this deposit lies between the Alborz and the Central Iran zones in the Semnan Subzone. Hematite-barite mineralisation occurs in the form of a vein along a local fault within Eocene volcanic host rocks. The Ahmadabad deposit has a simple mineralogy, of which hematite and barite are the main constituents, followed by pyrite and Fe-oxyhydroxides such as limonite and goethite. Based on textural relationships between the above-mentioned principal minerals, it could be deduced that there are three hydrothermal mineralisation stages in which pyrite, hematite and barite with primary open space filling textures formed under different hydrothermal conditions. Subsequently, in the supergene stage, goethite and limonite minerals with secondary replacement textures formed under oxidation surficial conditions. Microthermometric studies on barite samples show that homogenisation temperatures (TH) for primary fluid inclusions range from 142 to 256°C with a temperature peak between 200 and 220°C. Salinities vary from 3.62 to 16.70 NaCl wt% with two different peaks, including one of 6 to 8 NaCl wt% and another of 12 to 14 NaCl wt%. This indicates that two different hydrothermal waters, including basinal and sea waters, could have been involved in barite mineralisation. The geochemistry of the major and trace elements in the samples studied indicate a hydrothermal origin for hematite and barite mineralisation. Moreover, the Fe/Mn ratio (>10) and plots of hematite samples of Ahmadabad ores on Al-Fe-Mn, Fe-Mn-(Ni+Co+ Cu)×10, Fe-Mn-SiX2 and MnO/TiO2 - Fe2O3/TiO2 diagrams indicate that hematite mineralisation in the Ahmadabad deposit occurred under hydrothermal conditions. Furthermore, Ba and Sr enrichment, along with Pb, Zn, Hg, Cu and Sb depletion, in the barite samples of Ahmadabad ores are indicative of a low temperature hydrothermal origin for the deposit. A comparison of the ratios of LaN/YbN, CeN/YbN, TbN/LaN, SmN/NdN and parameters of Ce/Ce* and La/La* anomalies of the hematite, barite, host volcanic rocks and quartz latite samples to each other elucidate two important points: 1) the barite could have originated from volcanic host rocks, 2) the hematite could have originated from a quartz latite lithological unit. The chondrite normalised REE patterns of samples of hematite barite, volcanic host rocks and quartz latite imply that two different hydrothermal fluids could be proposed for hematite and barite mineralisation. The comparison between chondrite normalised REE patterns of Ahmadabad barite with oceanic origin barite and low temperature hydrothermal barite shows close similarities to the low temperature hydrothermal barite deposits.
NASA Technical Reports Server (NTRS)
Schulte, Mitchell; Rogers, Karyn L.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
Hydrothermal environments are locations of varied geochemistry due to the disequilibrium between vent fluids and seawater. The disequilibrium geochemistry has been hypothesized to include reactions to synthesize organic compounds. Observations of the organic geochemistry of hydrothermal vent sites has received little attention. Experimental simulations of these environments, however, indicate that organic compounds may have difficulty forming in a purely aqueous environment. On the other hand, thiols. thioesters and disulfides have been implicated as reaction intermediates between CO or CO2 in experiments of carbon reduction in hydrothermal environments as well as in a variety of biological processes and other abiotic reactions (Wachtershauser, 1990, OLEB 20, 173; Heinen and Lauwers, 1996, OLEB 26, 13 1, Huber and Wachtershauser, 1997, Science 276, 245; Russell et al., 1998, in Thermophiles: The keys to molecular evolution and the origin of life?). The reduction of CO2 to thiols, for example, is observed using the FeS-H2S/FeS2 couple to provide the reducing power (see Schoonen et al., 1999, OLEB 29, 5). In addition, the enzyme involved in final stage of methanogenesis, coenzyme-M, is itself a thiol. Thus, organic sulfur compounds may hold the key to the organic chemistry leading to the origin of life at high temperatures. Understanding the biochemical processes of microorganisms that can live to temperatures at least as high as 113 C (Blochl et al., 1996, Extremophiles 1, 14) requires knowledge of the properties of the chemical reactions involved. In order to assess the role of aqueous organic sulfur compounds in hydrothermal organic geochemistry, we have been attempting to determine their thermodynamic properties. We have culled the literature to obtain the properties of organic sulfur compounds. We are able to calculate a number of essential properties, such as free energies of formation, from solubility data available in the literature together with standard properties of organic sulfur gases. However, a number of the properties for aqueous organic sulfur compounds have not been experimentally determined. Furthermore, most of thermodynamic data that are available are for 25 C and 1 bar. In order to determine reaction properties to temperatures and pressures appropriate to the hydrothermal conditions in which thermophilic organisms actually live, we use equations of state developed by Helgeson and co-workers (Helgeson et al., 1981, AJS 281, 1249). A key piece of information needed to go up in temperature is the partial molal heat capacity, which is one of the properties for which experimental data are unavailable for nearly all organic sulfur compounds. We have used correlation methods to determine the partial molal heat capacities and volumes of many organic solutes. These estimates allow us to asses the role of organic sulfur compounds during the reduction of carbon in hydrothermal settings. We will present these data, along with examples of the thermodynamic properties of reactions involving aqueous organic sulfur compounds.
Rejebian, V.A.; Harris, A.G.; Huebner, J.S.
1987-01-01
Experimental and field data are used to extend the utility of conodonts as semi-quantitative thermal indices into the regimes of regional and contact metamorphism, as well as hydrothermal alteration. These experiments approximate the type of Colour Alteration Indices mixture characteristically found in conodonts recovered from hydrothermally altered rocks. These data indicate that CAI values of 6 to 8 cannot be used to assess precise temperatures of hydrothermally altered rocks but may serve as useful indicators of potential mineralization. - from Authors
NASA Astrophysics Data System (ADS)
Hanamuro, T.; Umeda, K.; Maeda, K.
2008-12-01
Although there is no known evidence of volcanism during the Pliocene nor the Quaternary in the Kii Peninsula, it has long been recognized to host several hot springs with discharge temperatures greater than 60°C. In addition, numerous small-scale vein-type metal deposits are distributed around the southern part of the peninsula, with a heat source thought to be the Middle Miocene acidic magmatism associated with Kumano Acidic Rocks. The results of the TL (Thermoluminescence), FT (Fission Track) and K-Ar dating of altered rocks from these hot spring areas showed that the vein-type ore deposits and their surrounding altered rocks experienced high temperature hydrothermal alteration related to acidic magmatism in the Middle Miocene, whereas relatively low temperature alteration has occurred since the Pliocene in the Hongu and Totsukawa hot spring areas [Hanamuro et al., 2008]. Chemical and isotope data were obtained for fluid inclusions trapped in hydrothermal minerals in the peripheral parts of the high-temperature hot springs and in vein-type ore deposits. The hot spring inclusions indicate temperatures reached ~100°C with salinities of about 2 wt % (NaCl equiv.). In contrast, the inclusions in the vein-type deposits are characterized by high temperature fluids (>260°C) with high salinity (>5 wt %). The 3He/4He ratios of the hot spring inclusions have relatively high values, generally in agreement with those of the present-day hydrothermal fluids, indicating a significant contribution by deep source gases (i.e., mantle helium). These results suggest that the amagmatic hydrothermal system related to high-temperature hot springs in the southern Kii Peninsula have formed since the Pliocene and were caused by high temperature fluids with a lower crust provenance, presumably supplied from the subducting slab of the Philippine Sea Plate (PHS) [Umeda et al., 2006]. After a hiatus of about 4 Ma, the PHS resumed subduction beneath the SW Japan Arc at around 6 Ma [Kamata and Kodama, 1994]. This indicates that the present-day plate system for the SW Japan arc formed at around 6 Ma and continues to the present day. Although we lack definitive information on the age of hydrothermal alteration, it seems reasonable to infer that the amagmatic hydrothermal activity since about 6 Ma in the southern Kii Peninsula has occurred in a manner synchronous with the present-day plate system of the SW Japan Arc. Reference Hanamuro et al. (2008): Japanese Magazine of Mineralogical and Petrological Sciences, 37, 27-38 (in Japanese with English Abstract). Kamata and Kodama (1994): Journal of Geophysical Research, 233, 69-81. Umeda et al. (2006): Journal of Volcanology and Geothermal Research, 149, 47-61.
NASA Astrophysics Data System (ADS)
Xiong, Xin-Bo; Huang, Jian-Feng; Zeng, Xie-Rong; Liang, Ping; Zou, Ji-Zhao
2012-06-01
A hydroxyapatite (HA) coating was achieved on H2O2-treated carbon/carbon (C/C) composite through hydrothermally treating and induction heating deposited CaHPO4 coating in an ammonia solution under ultrasonic water bath. Then, this HA coating was placed in a NH4F solution and hydrothermally treated again to fabricate fluorinated hydroxyapatite (FHA) coatings for 24 h at 353, 373, 393 and 413 K, respectively. The structure, morphology and chemical composition of the HA and FHA coatings were characterized by SEM, XRD, EDS and FTIR, and the adhesiveness and chemical stability of these FHA coatings were examined by a scratch test and an immersion test, respectively. The results showed that the as-prepared FHA coatings contained needle-like or stripe-like crystals, different from those of the HA coating. As the fluoridation temperature rose, the adhesiveness of the FHA coating first increased from 34.8 to 40.9 N at a temperature between 353 and 393 K, and then decreased to 24.2 N at 413 K, while the dissolution rate of the FHA coating decreased steadily. The reasons for the property variation of the FHA coatings were proposed by analyzing the morphology, composition and structure of the coatings.
Direct hydrothermal growth of GDC nanorods for low temperature solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Hong, Soonwook; Lee, Dohaeng; Yang, Hwichul; Kim, Young-Beom
2018-06-01
We report a novel synthesis technique of gadolinia-doped ceria (GDC) nano-rod (NRs) via direct hydrothermal process to enhance performance of low temperature solid oxide fuel cell by increasing active reaction area and ionic conductivity at interface between cathode and electrolyte. The cerium nitrate hexahydrate, gadolinium nitrate hexahydrate and urea were used to synthesis GDC NRs for growth on diverse substrate. The directly grown GDC NRs on substrate had a width from 819 to 490 nm and height about 2200 nm with a varied urea concentration. Under the optimized urea concentration of 40 mMol, we confirmed that GDC NRs able to fully cover the substrate by enlarging active reaction area. To maximize ionic conductivity of GDC NRs, we synthesis varied GDC NRs with different ratio of gadolinium and cerium precursor. Electrochemical analysis revealed a significant enhanced performance of fuel cells applying synthesized GDC NRs with a ratio of 2:8 gadolinium and cerium precursor by reducing polarization resistance, which was chiefly attributed to the enlarged active reaction area and enhanced ionic conductivity of GDC NRs. This method of direct hydrothermal growth of GDC NRs enhancing fuel cell performance was considered to apply other types of catalyzing application using nano-structure such as gas sensing and electrolysis fields.
López Zavala, Miguel Ángel; Lozano Morales, Samuel Alejandro; Ávila-Santos, Manuel
2017-11-01
Effect of hydrothermal treatment, acid washing and annealing temperature on the structure and morphology of TiO 2 nanotubes during the formation process was assessed. X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy analysis were conducted to describe the formation and characterization of the structure and morphology of nanotubes. Hydrothermal treatment of TiO 2 precursor nanoparticles and acid washing are fundamental to form and define the nanotubes structure. Hydrothermal treatment causes a change in the crystallinity of the precursor nanoparticles from anatase phase to a monoclinic phase, which characterizes the TiO 2 nanosheets structure. The acid washing promotes the formation of high purity nanotubes due to Na + is exchanged from the titanate structure to the hydrochloric acid (HCl) solution. The annealing temperature affects the dimensions, structure and the morphology of the nanotubes. Annealing temperatures in the range of 400 °C and 600 °C are optimum to maintain a highly stable tubular morphology of nanotubes. Additionally, nanotubes conserve the physicochemical properties of the precursor Degussa P25 nanoparticles. Temperatures greater than 600 °C alter the morphology of nanotubes from tubular to an irregular structure of nanoparticles, which are bigger than those of the precursor material, i.e., the crystallinity turn from anatase phase to rutile phase inducing the collapse of the nanotubes.
NASA Astrophysics Data System (ADS)
Khatamian, M.; Khandar, A. A.; Haghighi, M.; Ghadiri, M.
2011-11-01
Nanosized ZSM-5 type ferrisilicates were successfully prepared using hydrothermal process. Several parameters including gel initiative compositions (Na+ or K+ alkali system), SiO2/Fe2O3 molar ratios and hydrothermal temperature were systematically investigated. The samples were characterized by XRD, TEM, SEM-EDS, BET surface area and ICP techniques. It was found that surface areas and the total pore volume increase with increasing in the SiO2/Fe2O3 molar ratio at Na-FZ ferrisilicates. The catalytic performance of the synthesized catalysts was evaluated in ethylbenzene dehydrogenation to styrene in the presence of N2O or steam at temperatures ranging from 400 °C to 660 °C under atmospheric pressure. The effects of gel initiative compositions, SiO2/Fe2O3 molar ratio as well as the hydrothermal synthesis temperature on the catalytic performance of these catalysts have been addressed. It was shown that styrene yield significantly influenced by altering in the SiO2/Fe2O3 ratio but was not greatly influenced by changes in hydrothermal synthesis temperatures. The comparison between performance of potassium and sodium containing catalysts was shown that the one with potassium has higher yield and selectivity toward styrene production at an optimum temperature of 610 °C.
NASA Astrophysics Data System (ADS)
Mursito, Anggoro Tri; Hirajima, T.; Listiyowati, L. N.
2018-02-01
Mempawah peat of West Kalimantan was selected as raw material for studying the physicochemical properties of peat fuel products and their characteristic in the hydrothermal upgrading process at a temperature range of 150°C to 380°C at an average heating rate of 6.6°C/min for 30 minutes. The 13C NMR spectra revealed changes in the effect of temperature on carbon aromaticity of raw peat and peat fuel products which were in 0.39 to 0.63 as the temperature increased. Other phenomenon occurring during the experiment was hydrophilicity index of peat fuel surface decreases of about 1.7 and 1.4 with increased treatment temperature. We also found that hydrothermal upgrading also affected the combustion properties of peat fuel products. Ignition temperature of raw peat and solid products were at 175°C and between 188°C to 285°C respectively. Temperature at the maximum combustion rate of raw peat and solid products was at 460°C, and between 477°C to 509°C were suggested to the increasing of reactivity of solid products respectively. Here, we discussed several phenomenon of the peat fuel product during hydrothermal process with a respect to the change in the physicochemical properties as determined by Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric and Differential Thermal Analysis (TG-DTA) analyses, 13C NMR and also other supporting analytical equipment.
Energy for biologic sulfate reduction in a hydrothermally formed ocean on Europa
NASA Astrophysics Data System (ADS)
Zolotov, Mikhail Y.; Shock, Everett L.
2003-04-01
Formation of a sulfate-bearing ocean on Jupiter's satellite Europa by quenched hydrothermal fluids provides a source of metabolic energy for low-temperature sulfate-reducing organisms that use dissolved H2 as an electron donor. Inhibition of thermodynamically favorable sulfate reduction in cooled hydrothermal fluids creates the potential for biologic reduction. Both high temperature and reduced conditions of ocean-forming hydrothermal solutions favor sulfate reduction in quenched fluids. The maximum amount of energy available to support autotrophic sulfate reduction is on the order of a few kilojoules per kilogram of water and is limited by the low abundances of either H2 or sulfate in ocean-forming fluids. Although this irreplaceable energy source might have supported early life on Europa, maintenance of biologic sulfate reduction throughout the ocean's history would require a supply of organic compounds from endogenic sources or from the satellite's surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quirino, M.R.; Oliveira, M.J.C.; Keyson, D.
Highlights: • ZnAl{sub 2}O{sub 4} spinel was synthesized by the microwave hydrothermal method in only 15 or 30 min. • The powders show high specific surface area. • ZAT{sub b}15 showed activity of 52.22% for the conversion of soybean oil into biodiesel. - Abstract: Zinc aluminate is a material with high thermal stability and high mechanical strength that, owing to these properties, is used as a catalyst or support. In this work, zinc aluminate spinel was synthesized by the microwave hydrothermal method in only 15 or 30 min at a low temperature (150 °C) without templates, using only Al(NO{sub 3}){submore » 3}·9H{sub 2}O, Zn(NO{sub 3}){sub 2}·6H{sub 2}O, and urea as precursors and applied in the transesterification of soybean oil. X-ray diffraction analysis showed that ZnAl{sub 2}O{sub 4} had a cubic structure without secondary phases. The nitrogen adsorption measurements (BET) revealed a high surface area (266.57 m{sup 2} g{sup −1}) for the nanopowder synthesized in 15 min. This powder showed activity of 52.22% for the catalytic conversion of soybean oil into biodiesel by transesterification.« less
Methanethiol abundance in high-temperature hydrothermal fluids from the Mid-Atlantic Ridge
NASA Astrophysics Data System (ADS)
Reeves, E.; Seewald, J. S.; Saccocia, P.; van der Meer, M.
2008-12-01
The formation of aqueous organic sulfur compounds in hydrothermal systems remains poorly constrained, despite their potential significance in 'prebiotic' chemistry and the origin of life. The simplest - methanethiol (CH3SH) - has been implicated as a critical abiogenic precursor to the establishment of primitive microbial metabolism in early Earth hydrothermal settings. It also represents a readily-utilized substrate for microbial sulfate-reducing communities and a potential intermediate species in abiotic CH4 formation. To assess the abundance of CH3SH and factors regulating its stability under hydrothermal conditions we measured CH3SH concentrations in a suite of hydrothermal fluids collected from the Rainbow, Lucky Strike, TAG and Lost City hydrothermal sites located on the Mid-Atlantic Ridge. Fluids were collected using isobaric gas-tight samplers and analyzed for CH3SH by shipboard purge-and-trap gas chromatography. Measured concentrations at Rainbow (1.2 -- 223nM), Lucky Strike (1.1 -- 26nM), TAG (8.5 -- 11nM) and Lost City (1.6 -- 3.0nM) are all substantially lower than predicted for thermodynamic equilibrium with CO2, H2 and H2S at measured vent conditions. The highest concentrations (91 -- 223nM), however, were observed at Rainbow in intermediate temperature (128 -- 175°C) H2-rich fluids that may have undergone conductive cooling. Increased concentrations with decreasing temperature is consistent with the thermodynamic drive for the formation from CO2, suggesting a possible abiotic origin for CH3SH in some fluids. Substantially lower concentrations in the low temperature fluids at Lost City are consistent with the extremely low levels of CO2 and H2S in these fluids. Other possible sources of CH3SH to vent fluids must be considered, however, and include thermal alteration of biomass present in low-temperature environments and microbial consortia that produce CH3SH as a byproduct of anaerobic methane oxidation. Current models for the emergence of primordial metabolism in highly-reducing alkaline hydrothermal environments invoke CH3SH as a key reactant leading to Acetyl CoA-based (Wood-Ljungdahl) carbon fixation pathways. Results of this study challenge the notion that high-pH, reducing fluids emanating from serpentinite-hosted hydrothermal systems like Lost City were favorable for the production of CH3SH, the establishment of a primitive metabolic cycle and the emergence of microbial life on Earth.
Urea-based hydrothermal synthesis of LiNi0.5Co0.2Mn0.3O2 cathode material for Li-ion battery
NASA Astrophysics Data System (ADS)
Shi, Yang; Zhang, Minghao; Fang, Chengcheng; Meng, Ying Shirley
2018-08-01
A urea-based hydrothermal approach has been applied to synthesize LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode materials with focus on investigating the influence of the reaction conditions on their electrochemical performance. The compositions of the carbonate precursor are precisely controlled by tuning urea concentration, hydrothermal reaction temperature, and time. The mole ratio between urea and transition metal ions and reaction temperature influence the composition of the precursor; while the reaction time influences the electrochemical performance of the final product. The optimized materials show better cyclability and rate capability compared with the materials synthesized with other hydrothermal reaction conditions. The enhancement is attributed to the larger Li+ diffusion coefficient and lower charge transfer resistance, which are due to the lower degree of Li/Ni cation mixing and more uniform distribution of transition metal ions. This work is a systematic study on the synthesis of NCM523 cathode material by a urea-based hydrothermal approach.
NASA Astrophysics Data System (ADS)
Boulart, Cédric; Briais, Anne; Chavagnac, Valérie; Révillon, Sidonie; Ceuleneer, Georges; Donval, Jean-Pierre; Guyader, Vivien; Barrere, Fabienne; Ferreira, Nicolas; Hanan, Barry; Hémond, Christophe; Macleod, Sarah; Maia, Marcia; Maillard, Agnès.; Merkuryev, Sergey; Park, Sung-Hyun; Ruellan, Etienne; Schohn, Alexandre; Watson, Sally; Yang, Yun-Seok
2017-07-01
Using a combined approach of seafloor mapping, MAPR and CTD survey, we report evidence for active hydrothermal venting along the 130°-140°E section of the poorly-known South-East Indian Ridge (SEIR) from the Australia-Antarctic Discordance (AAD) to the George V Fracture Zone (FZ). Along the latter, we report Eh and CH4 anomalies in the water column above a serpentinite massif, which unambiguously testify for ultramafic-related fluid flow. This is the first time that such circulation is observed on an intermediate-spreading ridge. The ridge axis itself is characterized by numerous off-axis volcanoes, suggesting a high magma supply. The water column survey indicates the presence of at least ten distinct hydrothermal plumes along the axis. The CH4:Mn ratios of the plumes vary from 0.37 to 0.65 denoting different underlying processes, from typical basalt-hosted to ultramafic-hosted high-temperature hydrothermal circulation. Our data suggest that the change of mantle temperature along the SEIR not only regulates the magma supply, but also the hydrothermal activity. The distribution of hydrothermal plumes from a ridge segment to another implies secondary controls such as the presence of fractures and faults along the axis or in the axial discontinuities. We conclude from these results that hydrothermal activity along the SEIR is controlled by magmatic processes at the regional scale and by the tectonics at the segment scale, which influences the type of hydrothermal circulation and leads to various chemical compositions. Such variety may impact global biogeochemical cycles, especially in the Southern Ocean where hydrothermal venting might be the only source of nutrients.
Numerical Modeling of Hydrothermal Circulation at the Longqi-1 Field: Southwest Indian Ridge
NASA Astrophysics Data System (ADS)
Guo, Z.; Lowell, R. P.; Tao, C.; Rupke, L.; Lewis, K. C.
2017-12-01
The Longqi-1(Dragon Flag) hydrothermal field is the first high-temperature hydrothermal system observed on the ultra-slow spreading Southwest Indian Ridge. Hydrothermal vents with temperatures near 380 °C are localized by detachment faulting within which extensional deformation likely increases permeability to provide preferred pathways for hydrothermal discharge. To better understand the Longqi-1 circulation system, we construct a 2-D numerical simulations in a NaCl- H2O fluid constrained by key observational data, such as vent temperature and heat output, crust structure derived from seismic data, and fault zone geometry deduced from seismicity. Heat output from AUV surveys is estimated to be » 300 ± 100 MW, and this value, in conjunction with vent temperature was used with the single-pass modeling approach to obtain an average permeability of 10-13 m-2 within the fault zone. In analogy with other fault-controlled hydrothermal systems such as Logatchev-1 we assume a lower background permeability of 10-14 m-2. The top boundary of the system is permeable and maintained at constant seafloor pressure, which is divided into two parts by the detachment fault. The pressure of the southern part is lower than the northern part to simulate the effect of the seafloor topography. The top boundary is upstream weighted to allow high temperature fluid to exit, while recharging fluid is maintained at 10°C. The bottom boundary is impermeable and is given a fixed temperature distribution at a depth of 7 km below the seafloor. The highest value Tmax is maintained over a distance given lateral distance and decreases linearly towards two ends to 300 °C. The salinity is set to 3.2 wt. % NaCl, and the simulations are assumed to be single phase. The results show that with a 7 km deep circulation system, Tmax = 550 oC gives a reasonable temperature and heat output of venting plume.We infer that the observed high salinity results from serpentinization reactions. Assuming all salinity in excess of seawater comes from uptake of H2O during serpentinization, we can estimate the rate of reaction and heat release of serpentinezation based on a simplified reaction equation, observed heat output and salinity data. The estimated rate of heat release during serpentinization is 20 MW. This is approximately 10% of the heat output of Dragon Flag vent field.
Cao, Leichang; Zhang, Cheng; Chen, Huihui; Tsang, Daniel C W; Luo, Gang; Zhang, Shicheng; Chen, Jianmin
2017-12-01
Hydrothermal liquefaction has been widely applied to obtain bioenergy and high-value chemicals from biomass in the presence of a solvent at moderate to high temperature (200-550°C) and pressure (5-25MPa). This article summarizes and discusses the conversion of agricultural and forestry wastes by hydrothermal liquefaction. The history and development of hydrothermal liquefaction technology for lignocellulosic biomass are briefly introduced. The research status in hydrothermal liquefaction of agricultural and forestry wastes is critically reviewed, particularly for the effects of liquefaction conditions on bio-oil yield and the decomposition mechanisms of main components in biomass. The limitations of hydrothermal liquefaction of agricultural and forestry wastes are discussed, and future research priorities are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Multiphase groundwater flow near cooling plutons
Hayba, D.O.; Ingebritsen, S.E.
1997-01-01
We investigate groundwater flow near cooling plutons with a computer program that can model multiphase flow, temperatures up to 1200??C, thermal pressurization, and temperature-dependent rock properties. A series of experiments examines the effects of host-rock permeability, size and depth of pluton emplacement, single versus multiple intrusions, the influence of a caprock, and the impact of topographically driven groundwater flow. We also reproduce and evaluate some of the pioneering numerical experiments on flow around plutons. Host-rock permeability is the principal factor influencing fluid circulation and heat transfer in hydrothermal systems. The hottest and most steam-rich systems develop where permeability is of the order of 10-15 m2. Temperatures and life spans of systems decrease with increasing permeability. Conduction-dominated systems, in which permeabilities are ???10-16m2, persist longer but exhibit relatively modest increases in near-surface temperatures relative to ambient conditions. Pluton size, emplacement depth, and initial thermal conditions have less influence on hydrothermal circulation patterns but affect the extent of boiling and duration of hydrothermal systems. Topographically driven groundwater flow can significantly alter hydrothermal circulation; however, a low-permeability caprock effectively decouples the topographically and density-driven systems and stabilizes the mixing interface between them thereby defining a likely ore-forming environment.
Hydrothermal Aging Effects on Fe/SSZ-13 and Fe/Beta NH3–SCR Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Feng; Szanyi, János; Wang, Yilin
Cu/SSZ-13 has been successfully commercialized as a diesel engine exhaust aftertreatment SCR catalyst in the past few years. This catalyst, however, displays undesirable NH3-SCR selectivity at elevated reaction temperature (≥ 350 C) after hydrothermal aging. Fe/zeolites, despite the fact that most of them degrade beyond tolerance after hydrothermal aging at temperatures ≥ 650 C, typically maintain good SCR selectivities. In recent years, Fe/beta has been identified as one of the more robust Fe/zeolites for use in NH3-SCR, where activity maintains even after hydrothermal aging at 750 C. Very recently, we, for the first time, synthesized and tested NH3-SCR performance formore » fresh and hydrothermally aged Fe/SSZ-13 catalysts. This study demonstrated that Fe/SSZ-13 is also a promising robust SCR catalyst, especially for high-temperature applications. In the present study, we compare catalytic performance between Fe/SSZ-13 and Fe/beta with similar Fe loadings and Si/Al ratios. Special attention is paid to effects from hydrothermal aging, aiming to understanding similarities and differences between these two catalysts. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Program for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.« less
NASA Astrophysics Data System (ADS)
Tao, C.; Lin, J.; Guo, S.; Chen, Y. J.; Wu, G.; Han, X.; German, C. R.; Yoerger, D. R.; Zhu, J.; Zhou, N.; Su, X.; Baker, E. T.; Party, S.
2007-12-01
Two recent cruises on board the Chinese research vessel Dayang Yihao have successfully investigated the first active hydrothermal vent field to be located along the ultraslow spreading Southwest Indian Ridge (SWIR) and collected hydrothermal sulfide deposit samples. The newly discovered hydrothermal vent field is located on the western end of a magmatically robust spreading segment immediately west of the Gallieni transform fault. Preliminary evidence of strong turbidity anomalies was first measured during a Nov. 2005 cruise on board Dayang Yihao (InterRidge News, vol. 15, pp. 33-34, 2006). Color video footages of the seafloor in the vent-field area were first obtained by a deep-towed video camera in February 2007 during DY115-19 Leg 1, when significant water column turbidity anomalies, noticeable temperature anomalies and methane anomalies were also measured. The vent field was then precisely located, mapped, and photographed in great detail in February- March 2007 during the DY115-19 Leg 2, using the autonomous underwater vehicle ABE of the Woods Hole Oceanographic Institution. A high-resolution bathymetric map, more than 5,000 near-bottom color photos, and several types of water column data were all obtained during three phases of ABE dives. Within the approximately 120-m-long by 100-m-wide hydrothermal field, three groups of active high-temperature vents were identified and color images of black smokers and associated biological communities were obtained from ABE, flying 5 m above the seafloor. Hydrothermal sulfide deposits were then successfully obtained using a TV-guided grab.
NASA Astrophysics Data System (ADS)
Tao, C.; Lin, J.; Guo, S.; Chen, Y. J.; Wu, G.; Han, X.; German, C. R.; Yoerger, D. R.; Zhu, J.; Zhou, N.; Su, X.; Baker, E. T.; Party, S.
2004-12-01
Two recent cruises on board the Chinese research vessel Dayang Yihao have successfully investigated the first active hydrothermal vent field to be located along the ultraslow spreading Southwest Indian Ridge (SWIR) and collected hydrothermal sulfide deposit samples. The newly discovered hydrothermal vent field is located on the western end of a magmatically robust spreading segment immediately west of the Gallieni transform fault. Preliminary evidence of strong turbidity anomalies was first measured during a Nov. 2005 cruise on board Dayang Yihao (InterRidge News, vol. 15, pp. 33-34, 2006). Color video footages of the seafloor in the vent-field area were first obtained by a deep-towed video camera in February 2007 during DY115-19 Leg 1, when significant water column turbidity anomalies, noticeable temperature anomalies and methane anomalies were also measured. The vent field was then precisely located, mapped, and photographed in great detail in February- March 2007 during the DY115-19 Leg 2, using the autonomous underwater vehicle ABE of the Woods Hole Oceanographic Institution. A high-resolution bathymetric map, more than 5,000 near-bottom color photos, and several types of water column data were all obtained during three phases of ABE dives. Within the approximately 120-m-long by 100-m-wide hydrothermal field, three groups of active high-temperature vents were identified and color images of black smokers and associated biological communities were obtained from ABE, flying 5 m above the seafloor. Hydrothermal sulfide deposits were then successfully obtained using a TV-guided grab.
NASA Astrophysics Data System (ADS)
Brothelande, E.; Lénat, J.-F.; Chaput, M.; Gailler, L.; Finizola, A.; Dumont, S.; Peltier, A.; Bachèlery, P.; Barde-Cabusson, S.; Byrdina, S.; Menny, P.; Colonge, J.; Douillet, G. A.; Letort, J.; Letourneur, L.; Merle, O.; Di Gangi, F.; Nakedau, D.; Garaebiti, E.
2016-08-01
In this contribution, we focus on one of the most active resurgences on Earth, that of the Yenkahe dome in the Siwi caldera (Tanna Island, Vanuatu), which is associated with the persistently active Yasur volcano. Gravity and magnetic surveys have been carried out over the past few years in the area, as well as electrical methods including electrical resistivity tomography (ERT), time domain electro-magnetics (TDEM) and self-potential (SP). These investigations were completed by thermometry, CO2 soil gas measurements, field observations and sampling. This multi-method approach allows geological structures within the caldera to be identified, as well as associated hydrothermal features. The global structure of the caldera is deduced from gravity data, which shows the caldera rim as a high density structure. Large lava fields, emplaced before and after the onset of resurgence, are evidenced by combined gravity, magnetic and resistivity signals. In the middle of the caldera, the Yenkahe dome apparently results from a combination of volcanic and tectonic events, showing that lava extrusion and resurgence have been operating simultaneously or alternately during the Siwi caldera post-collapse history. There is a clear distinction between the western and eastern parts of the dome. The western part is older and records the growth of an initial volcanic cone and the formation of a small caldera. This small caldera (paleo-Yasur caldera), partially filled with lava flows, is the present-day focus of volcanic activity and associated fluid circulation and alteration. The eastern part of the dome is presumably younger, and is characterized by intense, extensive hydrothermal alteration and activity. Its northern part is covered by lava flow piles and exhibits a shallow hydrothermal zone in ERT. The southern part has hydrothermal alteration and activity extending at least down to the base of the resurgent dome. This part of the dome is built up of low cohesion rock and is thus potentially prone to gravitational landslides. Lastly, while self-potential and temperature data suggest that widespread hydrothermal circulation occurs throughout almost all of the caldera, and possibly beyond, the most active parts of this hydrothermal system are associated with the dome. The presence of this active hydrothermal system is the clearest indicator that these methods can provide of a potential shallow magmatic body underneath the dome.
Shi, Xixi; Pan, Lingling; Chen, Shuoping; Xiao, Yong; Liu, Qiaoyun; Yuan, Liangjie; Sun, Jutang; Cai, Lintao
2009-05-19
Hexagonal ZnO micronuts (HZMNs) have been successfully synthesized with the assistance of poly(ethylene glycol) (PEG) 300 via a hydrothermal method. The structure and morphology of the HZMNs were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). An individual ZnO micronut is revealed as twinned crystals. Time-dependent investigation shows that the growth of HZMNs involves a dissolution-recrystallization process followed by Ostwald ripening, in which is the first formed solid ZnO particles dissolve and transform to HZMNs with hollow structure. PEG 300 has been found to play a crucial role in the growth of this unique hollow structure. TEM observations show that the PEG chains aggregate to globules in water, which then have interaction with the dissolved zinc species to form the globules in a coiled state under hydrothermal conditions. These Zn(II)-PEG 300 globules act as soft template for the growth of HZMNs, and the possible growth mechanism is proposed. The room-temperature photoluminescence (PL) spectrum shows red emission around 612 nm with a full width at half-maximum (fwhm) only about 13 nm.
Hydrothermal preparation of hierarchical ZIF-L nanostructures for enhanced CO2 capture.
Ding, Bing; Wang, Xianbiao; Xu, Yongfei; Feng, Shaojie; Ding, Yi; Pan, Yang; Xu, Weifan; Wang, Huanting
2018-06-01
A zeolitic imidazolate framework (ZIF-L) with hierarchical morphology was synthesized through hydrothermal method. The hierarchical product consists of ZIF-L leaves with length of several micrometers, width of 1 ∼ 2 μm and thickness of ∼300 nm cross connected symmetrically. It was found that the hydrothermal temperature is crucial for the formation of such hierarchical nanostructure. The formation mechanism was investigated to be a secondary crystal growth process. The hierarchical ZIF-L has larger surface area compared with the two-dimensional (2D) ZIF-L leaves. Subsequently, the hierarchical ZIF-L exhibited enhanced CO 2 adsorption capacity (1.56 mmol·g -1 ) as compared with that of the reported two-dimensional ZIF-L leaves (0.94 mmol·g -1 ). This work not only reveals a new strategy for the formation of hierarchical ZIF-L nanostructures, but also supplies a potential material for CO 2 capture. Copyright © 2018 Elsevier Inc. All rights reserved.
Wang, Aiyong; Wang, Yilin; Walter, Eric D.; ...
2017-10-07
Cu, Fe and Cu + Fe ion exchanged Beta and SSZ-13 catalysts were prepared by solution ion exchange using commercial NH 4/Beta, and NH 4/SSZ-13 that was prepared in-house. To study hydrothermal aging effects, Beta supported catalysts were aged hydrothermally at 700 °C and SSZ-13 supported catalysts were aged at 750 °C. In order to reveal the effects of Fe addition in the co-exchanged catalysts, these catalysts were characterized by means of powder X-ray diffraction (XRD), N 2 adsorption-desorption, electron paramagnetic resonance (EPR), 27Al-nuclear magnetic resonance ( 27Al-NMR) and propylene coking followed with temperature programmed reaction (TPR), and further testedmore » with standard NH 3-SCR with and without the presence of propylene. Collectively, the catalyst characterizations and reaction testing indicated minor beneficial effects of Fe addition in Cu,Fe/Beta, where NH 3-SCR activity, N 2 selectivity and hydrothermal stability were all slightly improved. In contrast, Fe addition did not show apparent beneficial effects in low-temperature SCR for the Cu,Fe/SSZ-13 case. In conclusion, at elevated reaction temperatures, however, the presence of Fe indeed considerably improved NO conversion and N 2 selectivity for the hydrothermally aged Cu,Fe/SSZ-13 catalyst in the presence of propylene.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Aiyong; Wang, Yilin; Walter, Eric D.
Cu, Fe and Cu + Fe ion exchanged Beta and SSZ-13 catalysts were prepared by solution ion exchange using commercial NH 4/Beta, and NH 4/SSZ-13 that was prepared in-house. To study hydrothermal aging effects, Beta supported catalysts were aged hydrothermally at 700 °C and SSZ-13 supported catalysts were aged at 750 °C. In order to reveal the effects of Fe addition in the co-exchanged catalysts, these catalysts were characterized by means of powder X-ray diffraction (XRD), N 2 adsorption-desorption, electron paramagnetic resonance (EPR), 27Al-nuclear magnetic resonance ( 27Al-NMR) and propylene coking followed with temperature programmed reaction (TPR), and further testedmore » with standard NH 3-SCR with and without the presence of propylene. Collectively, the catalyst characterizations and reaction testing indicated minor beneficial effects of Fe addition in Cu,Fe/Beta, where NH 3-SCR activity, N 2 selectivity and hydrothermal stability were all slightly improved. In contrast, Fe addition did not show apparent beneficial effects in low-temperature SCR for the Cu,Fe/SSZ-13 case. In conclusion, at elevated reaction temperatures, however, the presence of Fe indeed considerably improved NO conversion and N 2 selectivity for the hydrothermally aged Cu,Fe/SSZ-13 catalyst in the presence of propylene.« less
Fabrication Method Study of ZnO Nanocoated Cellulose Film and Its Piezoelectric Property
Ko, Hyun-U; Kim, Hyun Chan; Kim, Jung Woong; Zhai, Lindong; Kim, Jaehwan
2017-01-01
Recently, a cellulose-based composite material with a thin ZnO nanolayer—namely, ZnO nanocoated cellulose film (ZONCE)—was fabricated to increase its piezoelectric charge constant. However, the fabrication method has limitations to its application in mass production. In this paper, a hydrothermal synthesis method suitable for the mass production of ZONCE (HZONCE) is proposed. A simple hydrothermal synthesis which includes a hydrothermal reaction is used for the production, and the reaction time is controlled. To improve the piezoelectric charge constant, the hydrothermal reaction is conducted twice. HZONCE fabricated by twice-hydrothermal reaction shows approximately 1.6-times improved piezoelectric charge constant compared to HZONCE fabricated by single hydrothermal reaction. Since the fabricated HZONCE has high transparency, dielectric constant, and piezoelectric constant, the proposed method can be applied for continuous mass production. PMID:28772971
NASA Astrophysics Data System (ADS)
Li, Long; Lollar, Barbara Sherwood; Li, Hong; Wortmann, Ulrich G.; Lacrampe-Couloume, Georges
2012-05-01
Ammonium/ammonia is an essential nutrient and energy source to support life in oceanic and terrestrial hydrothermal systems. Thus the stability of ammonium is crucial to determine the habitability or ecological structure in hydrothermal environments, but still not well understood. To date, the lack of constraints on nitrogen isotope fractionations between ammonium and ammonia has limited the application of nitrogen isotopes to trace (bio)geochemical processes in such environments. In this study, we carried out laboratory experiments to (1) examine the stability of ammonium in an ammonium sulfate solution under temperature conditions from 20 to 70 °C and pH from 2.1 to 12.6 and (2) determine nitrogen isotope fractionation between ammonium and ammonia. Our experimental results show that ammonium is stable under the experimental temperatures when pH is less than 6. In experiments with starting pH greater than 8, significant ammonium was lost as a result of dissociation of ammonium and degassing of ammonia product. Nitrogen concentrations in the fluids decreased by more than 50% in the first two hours, indicating extremely fast effusion rates of ammonia. This implies that ammonium at high pH fluids (e.g., Lost City Hydrothermal Vents, Oman ophiolite hyperalkaline springs) may not be stable. Habitable environments may be more favorable at the leading edge of a pH gradient toward more acidic conditions, where the fluid can efficiently trap any ammonia transferred from a high pH vent. Although modeling shows that high temperature, low pH hydrothermal vents (e.g., Rainbow hydrothermal vent) may have the capability to retain ammonium, their high temperatures may limit habitability. The habitable zone associated with such a hydrothermal vent is likely at the lower front of a temperature gradient. In contrast, modeling of ammonium in deep terrestrial systems, suggests that saline fracture waters in crystalline rocks such as described in the Canadian Shield and in the Witwatersrand Basin, South Africa may also provide habitable environments for life. The nitrogen isotope results of remaining ammonium from the partial dissociation experiments fit well with a batch equilibrium model, indicating equilibrium nitrogen isotope fractionations have been reached between ammonium and its dissociation product aqueous ammonia. Modeling yielded nitrogen isotope fractionations between ammonium and aqueous ammonia were 45.4‰ at 23 °C, 37.7‰ at 50 °C, and 33.5‰ at 70 °C, respectively. A relationship between nitrogen equilibrium isotope fractionation and temperature is determined for the experimental temperature range as: 103·lnα(aq)=25.94×{103}/{T}-42.25 Integrated with three previous theoretical estimates on nitrogen isotope equilibrium fractionations between ammonium and gaseous ammonia, we achieved three possible temperature-dependent nitrogen isotope equilibrium fractionation between aqueous ammonia and gaseous ammonia:
Influence of hydrothermal processing on functional properties and grain morphology of finger millet.
Dharmaraj, Usha; Meera, M S; Reddy, S Yella; Malleshi, Nagappa G
2015-03-01
Finger millet was hydrothermally processed followed by decortication. Changes in color, diameter, density, sphericity, thermal and textural characteristics and also some of the functional properties of the millet along with the grain morphology of the kernels after hydrothermal processing and decortication were studied. It was observed that, the millet turned dark after hydrothermal processing and color improved over native millet after decortication. A slight decrease in grain diameter was observed but sphericity of the grains increased on decortication. The soft and fragile endosperm turned into a hard texture and grain hardness increased by about 6 fold. Hydrothermal processing increased solubility and swelling power of the millet at ambient temperature. Pasting profile indicated that, peak viscosity decreased significantly on hydrothermal processing and both hydrothermally processed and decorticated millet exhibited zero breakdown viscosity. Enthalpy was negative for hydrothermally processed millet and positive for decorticated grains. Microscopic studies revealed that the orderly structure of endosperm changed to a coherent mass after hydrothermal processing and the different layers of seed coat get fused with the endosperm.
Can hydrothermal pretreatment improve anaerobic digestion for biogas from lignocellulosic biomass?
Wang, Dou; Shen, Fei; Yang, Gang; Zhang, Yanzong; Deng, Shihuai; Zhang, Jing; Zeng, Yongmei; Luo, Tao; Mei, Zili
2018-02-01
Hydrothermally-pretreated rice straw (HPRS) from various pretreatment temperatures was anaerobically-digested in whole slurry. Results indicated promoting pretreatment temperature significantly deconstructed rice straw, and facilitated the conversion of insoluble fractions to soluble fractions. Although 306.6 mL/g TS biogas was maximally yielded in HPRS-90 and HPRS-180, respectively, via digestion in whole slurry, it was only 3% promotion compared to the unpretreated rice straw. HPRS-210 yielded 208.5 mL/g TS biogas, which was 30% reduction with longer lag period of 19.8 d, suggesting serious inhibitions happened. Through slightly increasing organic loading, more serious acidification and reduction on biogas yield, especially at higher pretreatment temperatures, indicated the soluble fractions controlled digestion performances. Pearson correlation analysis suggested negative relationship existed between methane yield and the soluble fractions including soluble carbohydrates, formic acid and furfural. Hydrothermal pretreatment, especially at higher temperature, did not improve anaerobic digestion, thereby, was not recommended, however, lower temperature can be considered potentially. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ma, Ming-Guo
2012-01-01
Hierarchically nanosized hydroxyapatite (HA) with flower-like structure assembled from nanosheets consisting of nanorod building blocks was successfully synthesized by using CaCl2, NaH2PO4, and potassium sodium tartrate via a hydrothermal method at 200°C for 24 hours. The effects of heating time and heating temperature on the products were investigated. As a chelating ligand and template molecule, the potassium sodium tartrate plays a key role in the formation of hierarchically nanostructured HA. On the basis of experimental results, a possible mechanism based on soft-template and self-assembly was proposed for the formation and growth of the hierarchically nanostructured HA. Cytotoxicity experiments indicated that the hierarchically nanostructured HA had good biocompatibility. It was shown by in-vitro experiments that mesenchymal stem cells could attach to the hierarchically nanostructured HA after being cultured for 48 hours. Objective The purpose of this study was to develop facile and effective methods for the synthesis of novel hydroxyapatite (HA) with hierarchical nanostructures assembled from independent and discrete nanobuilding blocks. Methods A simple hydrothermal approach was applied to synthesize HA by using CaCl2, NaH2PO4, and potassium sodium tartrate at 200°C for 24 hours. The cell cytotoxicity of the hierarchically nanostructured HA was tested by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Results HA displayed the flower-like structure assembled from nanosheets consisting of nanorod building blocks. The potassium sodium tartrate was used as a chelating ligand, inducing the formation and self-assembly of HA nanorods. The heating time and heating temperature influenced the aggregation and morphology of HA. The cell viability did not decrease with the increasing concentration of hierarchically nanostructured HA added. Conclusion A novel, simple and reliable hydrothermal route had been developed for the synthesis of hierarchically nanosized HA with flower-like structure assembled from nanosheets consisting of nanorod building blocks. The HA with the hierarchical nanostructure was formed via a soft-template assisted self-assembly mechanism. The hierarchically nanostructured HA has a good biocompatibility and essentially no in-vitro cytotoxicity. PMID:22619527
Effect of bath temperature on surface morphology and photocatalytic activity of ZnO nanorods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sriharan, N.; Senthil, T. S., E-mail: tssenthi@gmail.com; Muthukumarasamy, N.
2016-05-06
ZnO nanorods were prepared by using simple hydrothermal method using four different bath temperatures. All the prepared ZnO nanorods are annealed at 450°C and are characterized by using various techniques such as X-ray diffraction, UV spectra and scanning electron microscopy. Photocatalytic activity of the prepared ZnO nanorods is analyzed. A novel photocatalytic reactor designed with ZnO nanorods prepared at 90°C shows enhanced catalytic efficiency. The role of light irradiation time, bath temperature and surface morphology of the ZnO nanorods on the performance of photocatalytic reaction is analyzed.
Localized temperature and chemical reaction control in nanoscale space by nanowire array.
Jin, C Yan; Li, Zhiyong; Williams, R Stanley; Lee, K-Cheol; Park, Inkyu
2011-11-09
We introduce a novel method for chemical reaction control with nanoscale spatial resolution based on localized heating by using a well-aligned nanowire array. Numerical and experimental analysis shows that each individual nanowire could be selectively and rapidly Joule heated for local and ultrafast temperature modulation in nanoscale space (e.g., maximum temperature gradient 2.2 K/nm at the nanowire edge; heating/cooling time < 2 μs). By taking advantage of this capability, several nanoscale chemical reactions such as polymer decomposition/cross-linking and direct and localized hydrothermal synthesis of metal oxide nanowires were demonstrated.
Hydrovolcanic and Hydrothermal Biomediated Mineral Growth in Basaltic Tuff, Surtsey Volcano, Iceland
NASA Astrophysics Data System (ADS)
Jackson, M. D.; Couper, S.; Ivarsson, M.; Stan, C. V.; Tamura, N.; Miyagi, L. M.; Moore, J. G.
2017-12-01
Fine-scale analyses of hydroclasts in 1979 Surtsey basaltic tuff drill core provide new methods for examining hydrovolcanic and hydrothermal magma-rock influences on biomediated alteration in palagonitized submarine tephra. Synchrotron source X-ray microdiffraction and microfluorescence studies from Advanced Light Source beamline 12.3.2, epifluorescent UVA illumination microscopy, S/TEM EDX compositional analyses, and Raman spectroscopy define diverse nanocrystalline clay mineral structures at 137.9 m depth (93.8 °C (1980)) and 102.6 m depth (141.3 °C (1980)). At 137.9 m, olivine contains endolithic microborings; vermicular microstructures in altered glass contain nontronite exhibiting crystallographic preferred orientation; and 75-150 µm sub-circular microstructures in altered glass contain Al-tobermorite, a calcium-silicate-hydrate with 11.3 Å interlayer spacing, zeolite, and epifluorescent, thread-like structures. At 102.6 m depth, concentrically-layered microstructures occur in altered glass and altered olivine. These have nontronite crystallographic preferred orientations that rotate around a longitudinal axis commonly occupied by a 10-80 µm long, epifluorescent thread-like structure. Pronounced carbon concentrations detected by S/TEM EDX trace layer boundaries. First-order Raman bands at 1370 cm-1 (disorder-related) and at 1580 cm-1 (order-related), and second-order bands at 2500-3300 cm-1 (overtone scattering) detect degraded organic carbonaceous matter, a strong indication of biological origin. Sub-circular nanostructures in altered glass at 137.9 m depth show similar spectra. Borehole fluid temperatures at 102.6 m, 141.3 °C in 1980, exceeded 130 °C, the assumed limit for growth of microorganisms, however. Previous analyses suggest an early low temperature episode in submarine deposits, prior to development of a hydrothermal system driven by 1964-1967 magmatic intrusions. The abundant traces of biomediated nanocrystalline clay mineral growth validate this hypothesis. Hydrovolcanic fragmentation apparently increased ingress of seawater from the marine biosphere. Both eruptive and hydrothermal water-rock interactions influenced palagonitic alteration at the submillimeter scale during diverse temperature chronologies in the very young volcano.
NASA Astrophysics Data System (ADS)
Ji, Renlong; Cao, Chuanbao
2014-10-01
Barium titanate (BTO) with different morphology is prepared through hydrothermal method using titania spheres as precursor, then calcined at different temperatures and ultimately coated with cobalt ferrite (BTO/CFO). The dielectric dispersion of the composite containing BTO (75 wt. % ratio in paraffin wax) shows evidence of resonance behaviour in the microwave spectrum, rather than the usually observed relaxation mode. The imaginary part of permittivity (ɛ″) displays a strong peak in the 10-13 GHz frequency region, especially for buckhorn-like BTO (hydrothermally synthesized at 110 °C and calcined at 1100 °C). The dielectric response anomaly of BTO in special morphology is due to the emission of plane acoustic waves caused by electrostrictive and converse piezoelectric effects. An accepted model is adopted to simulate the resonance frequency. The minimum reflection loss of cauliflower-like BTO (hydrothermally synthesized at 110 °C, then calcined at 600 °C for 2 h, 75 wt. % ratio) in paraffin wax reaches -30.831 dB at 10.56 GHz with a matching thickness of 2 mm, lower than all the reported values. When the sintering temperature is changed to 1100 °C (buckhorn-like BTO), the minimum reflection loss value is -24.37 dB at 12.56 GHz under the thickness of 3 mm. After combination with CFO, the value reaches -42.677 dB when the thickness is 5.6 mm. The ginger-like BTO (hydrothermally synthesized at 200 °C and calcined at different temperatures) is inferior in microwave reflection reduction. The electromagnetic interference shielding effectiveness of buckhorn-like BTO composite is calculated to be -12.7 dB (94.6% shielding) at resonance frequency (2 mm, 11.52 GHz). This work clearly shows the potential to tune the dielectric property of ferroelectrics through control of morphology, facilitating new comprehension of the ferroelectrics in microwave regime.
Hydrothermal nontronite formation at Eolo Seamount (Aeolian volcanic arc, Tyrrhenian Sea)
Dekov, V.M.; Kamenov, George D.; Stummeyer, Jens; Thiry, M.; Savelli, C.; Shanks, Wayne C.; Fortin, D.; Kuzmann, E.; Vertes, A.
2007-01-01
A sediment core containing a yellowish-green clay bed was recovered from an area of extensive hydrothermal deposition at the SE slope of the Eolo Seamount, Tyrrhenian Sea. The clay bed is composed of pure nontronite (described for the first time in the Tyrrhenian Sea), which appears to be the most aluminous nontronite ever found among the seafloor hydrothermal deposits. The high Al content suggests precipitation from Al-containing hydrothermal solutions. The REE distribution of the Eolo nontronite has a V-shape pattern. The heavy REE enrichment is in part due to their preferential partitioning in the nontronite structure. This enrichment was possibly further enhanced by the HREE preferential sorption on bacterial cell walls. The light REE enrichment is the result of scavenging uptake by one of the nontronite precursors, i.e., poorly-ordered Fe-oxyhydroxides, from the hydrothermal fluids. Oxygen isotopic composition of the nontronite yields a formation temperature of 30????C, consistent with a low-temperature hydrothermal origin. The relatively radiogenic Nd isotopic signature of the nontronite compared to the present-day Mediterranean seawater indicates that approximately half of Nd, and presumably the rest of the LREE, are derived from local volcanic sources. On the other hand, 87Sr/86Sr is dominated by present-day seawater Sr. Scanning electron microscopy investigation revealed that the nontronite is composed of aggregates of lepispheres and tube-like filaments, which are indicative of bacteria assisted precipitation. Bacteria inhabiting this hydrothermal site likely acted as reactive geochemical surfaces on which poorly-ordered hydrothermal Fe-oxyhydroxides and silica precipitated. Upon aging, the interactions of these primary hydrothermal precipitates coating bacterial filaments and cell walls likely led to the formation of nontronite. Finally, the well-balanced interlayer and layer charges of the crystal lattice of seafloor hydrothermal nontronite decrease its sorption capacity to zero. Thus the ubiquitous nontronite precipitation along the active plate boundaries and around the hot spots has no significant impact on oceanic trace element chemistry. ?? 2007 Elsevier B.V. All rights reserved.
Gardner, W.P.; Susong, D.D.; Solomon, D.K.; Heasler, H.P.
2011-01-01
Multiple environmental tracers are used to investigate age distribution, evolution, and mixing in local- to regional-scale groundwater circulation around the Norris Geyser Basin area in Yellowstone National Park. Springs ranging in temperature from 3??C to 90??C in the Norris Geyser Basin area were sampled for stable isotopes of hydrogen and oxygen, major and minor element chemistry, dissolved chlorofluorocarbons, and tritium. Groundwater near Norris Geyser Basin is comprised of two distinct systems: a shallow, cool water system and a deep, high-temperature hydrothermal system. These two end-member systems mix to create springs with intermediate temperature and composition. Using multiple tracers from a large number of springs, it is possible constrain the distribution of possible flow paths and refine conceptual models of groundwater circulation in and around a large, complex hydrothermal system. Copyright 2011 by the American Geophysical Union.
Oxygen and carbon isotope ratios of hydrothermal minerals from Yellowstone drill cores
Sturchio, N.C.; Keith, T.E.C.; Muehlenbachs, K.
1990-01-01
Oxygen and carbon isotope ratios were measured for hydrothermal minerals (silica, clay and calcite) from fractures and vugs in altered rhyolite, located between 28 and 129 m below surface (in situ temperatures ranging from 81 to 199??C) in Yellowstone drill holes. The purpose of this study was to investigate the mechanism of formation of these minerals. The ??18O values of the thirty-two analyzed silica samples (quartz, chalcedony, ??-cristobalite, and ??-cristobalite) range from -7.5 to +2.8???. About one third of the silica 7samples have ??18O values that are consistent with isotopic equilibrium with present thermal waters; most of the other silica samples appear to have precipitated from water enriched in 18O (up to 4.7???) relative to present thermal water, assuming precipitation at present in situ temperatures. Available data on fluid-inclusion homogenization temperatures in hydrothermal quartz indicate that silica precipitation occurred mostly at temperatures above those measured during drilling and imply that 15O enrichments in water during silica precipitation were generally larger than those estimated from present conditions. Similarly, clay minerals (celadonite and smectite) have ??18O values higher (by 3.5 to 7.9???) than equilibrium values under present conditions. In contrast, all eight analyzed calcite samples are close to isotopic equilibrium with present thermal waters. The frequent incidence of apparent 18O enrichment in thermal water from which the hydrothermal minerals precipitated may indicate that a higher proportion of strongly 18O-enriched deep hydrothermal fluid once circulated through shallow portions of the Yellowstone system, or that a recurring transient 18O-enrichment effect occurs at shallow depths and is caused either by sudden decompressional boiling or by isotopic exchange at low water/rock ratios in new fractures. The mineralogy and apparent 18O enrichments of hydrothermal fracture-filling minerals are consistent with deposition during transient boiling or rock-water exchange (fracturing) events. ?? 1990.
Autthanit, Chaowat; Jongsomjit, Bunjerd
2018-02-01
The present work deals with the catalytic performance of SBA-15 supported catalysts in the gas phase catalytic dehydration of ethanol in the temperature range of 200 to 400°C. The SBA-15 support was incorporated on a zirconium (Zr) and bimetal of zirconium and lanthanum (Zr-La) prepared by sol-gel (SG) and hydrothermal (HT) methods. The catalysts were characterized by means of N 2 physisorption, SEM/EDX, and NH 3 -TPD. The experimental results demonstrated that the Zr-La/SBA-15-HT exhibited the highest catalytic activity. Ethanol conversion and ethylene selectivity were found to increase with increased reaction temperature. The best catalytic results were achieved for Zr-La/SBA-15-HT indicating values of ethanol conversion and ethylene yield of ca. 84% and 80%, respectively at 400°C. The most important parameter influencing their catalytic properties appears to be the interaction between metal and support depending on different methods. The metal dispersion inside the siliceous matrix of SBA-15 has a direct influence on their surface acidity. Meanwhile, the performance of these SBA-15 supported catalysts in ethanol dehydration is also related with the alteration of surface acidity caused by the introduction of Zr and Zr-La.
Xu, Guangyu; Jackson, Darrell R; Bemis, Karen G
2017-03-01
The relative importance of suspended particles and turbulence as backscattering mechanisms within a hydrothermal plume located on the Endeavour Segment of the Juan de Fuca Ridge is determined by comparing acoustic backscatter measured by the Cabled Observatory Vent Imaging Sonar (COVIS) with model calculations based on in situ samples of particles suspended within the plume. Analysis of plume samples yields estimates of the mass concentration and size distribution of particles, which are used to quantify their contribution to acoustic backscatter. The result shows negligible effects of plume particles on acoustic backscatter within the initial 10-m rise of the plume. This suggests turbulence-induced temperature fluctuations are the dominant backscattering mechanism within lower levels of the plume. Furthermore, inversion of the observed acoustic backscatter for the standard deviation of temperature within the plume yields a reasonable match with the in situ temperature measurements made by a conductivity-temperature-depth instrument. This finding shows that turbulence-induced temperature fluctuations are the dominant backscattering mechanism and demonstrates the potential of using acoustic backscatter as a remote-sensing tool to measure the temperature variability within a hydrothermal plume.
NASA Astrophysics Data System (ADS)
Gholamrezaei, Sousan; Salavati-Niasari, Masoud; Ghanbari, Davood; Bagheri, Samira
2016-01-01
Different morphologies of Ag2Te nanostructures were synthesized using TeCl4 as a new precursor and hydrazine hydrate as reducing agent by a hydrothermal method. Various parameters that affect on morphology and purity of nanostructures were optimized. According to our experiments the best time and temperature for preparation of this nanostructure are 12 h and 120 °C. The photo-catalytic behaviour of nanostructures in presence of UV- visible light for degradation of methyl orange was investigated. Results show that the presence of UV light is necessary for an efficient degradation of dye in aqueous solution. On the other hand, as observations propose the Ag2Te reveal a strong photoluminescence peak at room temperature that could be attributed to high level transition in the semiconductor. Nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) techniques and UV-visible scanning spectrometer (UV-Vis).
The magnetic signature of ultramafic-hosted hydrothermal systems (Invited)
NASA Astrophysics Data System (ADS)
Szitkar, F.; Dyment, J.; Honsho, C.; Horen, H.; Fouquet, Y.
2013-12-01
While the magnetic response of basalt-hosted hydrothermal sites is well known, that of ultramafic-hosted hydrothermal sites (UMHS) remains poorly documented. Here we present the magnetic signature of three of the six UMHS investigated to date on the Mid-Atlantic Ridge, i.e. sites Rainbow, Ashadze (1 and 2), and Logachev. Two magnetic signatures are observed. Sites Rainbow and Ashadze 1 are both characterized by a positive reduced-to-the-pole magnetic anomaly, i.e. a positive magnetization contrast. Conversely, sites Ashadze 2 and Logachev do not exhibit any clear magnetic signature. Rock-magnetic measurements on samples from site Rainbow reveal a strong magnetization (~30 A/m adding induced and remanent contributions) borne by sulfide-impregnated serpentinites; the magnetic carrier being magnetite. This observation can be explained by three (non exclusive) processes: (1) higher temperature serpentinization at the site resulting in the formation of more abundant / more strongly magnetized magnetite; (2) the reducing hydrothermal fluid protecting magnetite at the site from the oxidation which otherwise affects magnetite in contact with seawater; and (3) the formation of primary (hydrothermal) magnetite. We apply a new inversion method developed by Honsho et al. (2012) to the high-resolution magnetic anomalies acquired 10 m above seafloor at sites Rainbow and Ashadze 1. This method uses the Akaike Bayesian Information Criterion (ABIC) and takes full advantage of the near-seafloor measurements, avoiding the upward-continuation (i.e. loss of resolution) of other inversion schemes. This inversion reveals a difference in the intensity of equivalent magnetization obtained assuming a 100 m thick magnetic layer, ~30 A/m at site Rainbow and only 8A/m at site Ashadze, suggesting a thinner or less magnetized source for the latter. Hydrothermal sites at Ashadze 2 and Logachev are much smaller (of the order of 10 m) than the previous ones (several 100 m). These sites, known as "smoking craters", are episodically affected by explosions. The lack of any significant magnetic signature is explained by their small size and the random orientation of the (possibly magnetized) blocks spread out from the explosions. While basalt-hosted sites are characterized by a lack of magnetization, UMHS are characterized by a positive magnetization contrast, ranging from very strong (at site Rainbow) to negligible (at sites Ashadze 2 and Logachev) as a function of parameters such as the size of the deposit, the mode of discharge, and the fluid temperature, which effects remains to be carefully investigated.
Kawamura, Kunio; Nagayoshi, Hiroki; Yao, Toshio
2010-05-14
In situ monitoring of quantities, interactions, and conformations of proteins is essential for the study of biochemistry under hydrothermal environments and the analysis of hyperthermophilic organisms in natural hydrothermal systems on Earth. We have investigated the potential of a capillary-flow hydrothermal UV-vis spectrophotometer (CHUS) for performing in situ measurements of proteins and determining their behavior at extremely high temperatures, in combination with a chromogenic reagents probe, which interacts with the proteins. The spectral shift obtained using a combination of water-soluble porphyrin (TPPS) and bovine serum albumin (BSA) was the best among the spectral shifts obtained using different combinations of chromogenic reagents and proteins. The association behavior of TPPS with BSA was investigated in detail using CHUS at temperatures up to 175 degrees C and the association constant (K(ass)) of TPPS with BSA was successfully determined at temperatures up to 100 degrees C. The lnK(ass) values were inversely proportional to the T(-1) values in the temperature range 50-100 degrees C. These analyses showed for the first time that the decrease of association of TPPS with BSA is due to the conformational change, fragmentation, and/or denaturing of BSA rather than the decrease of the hydrophobic association between TPPS and BSA. This study conclusively demonstrates the usability of the CHUS system with a chromogenic reagent as an in situ detection and measurement system for thermostable proteins at extremely high temperatures. Copyright 2010 Elsevier B.V. All rights reserved.
Methods and apparatus for catalytic hydrothermal gasification of biomass
Elliott, Douglas C.; Butner, Robert Scott; Neuenschwander, Gary G.; Zacher, Alan H.; Hart, Todd R.
2012-08-14
Continuous processing of wet biomass feedstock by catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent separation of sulfur contaminants, or combinations thereof. Treatment further includes separating the precipitates out of the wet feedstock, removing sulfur contaminants, or both using a solids separation unit and a sulfur separation unit, respectively. Having removed much of the inorganic wastes and the sulfur that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.
Richter, F; Fricke, T; Wachendorf, M
2011-04-01
In order to determine influencing parameters on energy production of the IFBB process, herbage from a lowland hay meadow (Arrhenaterion) was sampled and ensiled at eight dates between 27 April and 21 June 2007. The silage from each date was processed in six IFBB treatments with and without hydrothermal conditioning at different temperatures. Methane yields and higher heating values were determined and an energy balance was calculated with whole-crop digestion (WCD) of the silage as reference system. Maximum net energy yields were 10.2 MWh ha(-1) for the IFBB treatment without hydrothermal conditioning and 9.0 MWh ha(-1) for the treatment with hydrothermal conditioning at 50 °C. WCD achieved a maximum net energy yield of 3.7 MWh ha(-1). Energy conversion efficiency ranged from 0.24 to 0.54 and was predicted with high accuracy by temperature of hydrothermal conditioning as well as concentration of neutral detergent fibre and dry matter in the silage (R(2)=0.90). Copyright © 2011 Elsevier Ltd. All rights reserved.
Drieberg, Susan L.; Hagemann, Steffen G.; Huston, David L.; Landis, Gary; Ryan, Chris G.; Van Achterbergh, Esmé; Vennemann, Torsten
2013-01-01
The ~3240 Ma Panorama volcanic-hosted massive sulfide (VHMS) district is unusual for its high degree of exposure and low degree of postdepositional modification. In addition to typical seafloor VHMS deposits, this district contains greisen- and vein-hosted Mo-Cu-Zn-Sn mineral occurrences that are contemporaneous with VHMS orebodies and are hosted by the Strelley granite complex, which also drove VHMS circulation. Hence the Panorama district is a natural laboratory to investigate the role of magmatic-hydrothermal fluids in VHMS hydrothermal systems. Regional and proximal high-temperature alteration zones in volcanic rocks underlying the VHMS deposits are dominated by chlorite-quartz ± albite assemblages, with lesser low-temperature sericite-quartz ± K-feldspar assemblages. These assemblages are typical of VHMS hydrothermal systems. In contrast, the alteration assemblages associated with granite-hosted greisens and veins include quartz-topaz-muscovite-fluorite and quartz-muscovite (sericite)-chlorite-ankerite. These vein systems generally do not extend into the overlying volcanic pile. Fluid inclusion and stable isotope studies suggest that the greisens were produced by high-temperature (~590°C), high-salinity (38–56 wt % NaCl equiv) fluids with high densities (>1.3 g/cm3) and high δ18O (9.3 ± 0.6‰). These fluids are compatible with the measured characteristics of magmatic fluids evolved from the Strelley granite complex. In contrast, fluids in the volcanic pile (including the VHMS ore-forming fluids) were of lower temperature (90°–270°C), lower salinity (5.0–11.2 wt % NaCl equiv), with lower densities (0.88–1.01 g/cm3) and lower δ18O (−0.8 ± 2.6‰). These fluids are compatible with evolved Paleoarchean seawater. Fluids that formed the quartz-chalcopyrite-sphalerite-cassiterite veins, which are present within the granite complex near the contact with the volcanic pile, were intermediate in temperature and isotopic composition between the greisen and volcanic pile fluids (T = 240°–315°C; δ18O = 4.3 ± 1.5‰) and are interpreted to indicate mixing between the two end-member fluids. Evidence of mixing between evolved seawater and magmatic-hydrothermal fluid within the granite complex, together with the lack of evidence for a magmatic component in fluids from the volcanic pile, suggest partitioning of magmatic-hydrothermal from evolved seawater hydrothermal systems in the Panorama VHMS system. This separation is interpreted to result from either the swamping of a relatively small magmatic-hydro-thermal system by evolved seawater or density contrasts precluding movement of magmatic-hydrothermal fluids into the volcanic pile. Variability in the salinity of fluids in the volcanic pile, combined with evidence for mixing of low- and high-salinity fluids in the massive sulfide lens, is interpreted to indicate that phase separation occurred within the Panorama hydrothermal system. Although we consider this phase separation to have most likely occurred at depth within the system, as has been documented in modern VHMS systems, the data do not allow the location of the inferred phase separation to be determined.
Narula, Chaitanya K.; Yang, Xiaofan
2017-07-04
A catalyst composition includes a heterobimetallic zeolite characterized by a chabazite structure loaded with copper ions and at least one trivalent metal ion other than Al.sup.3+. The catalyst composition decreases NO.sub.x emissions in diesel exhaust and is suitable for operation in a catalytic converter.
Hydrothermal mineralogy of core from geothermal drill holes at Newberry Volcano, Oregon
Bargar, Keith E.; Keith, Terry E.
1999-01-01
Hydrothermal mineralogy studies of specimens collected from nine geothermal drill holes suggest that, at the locations and depths drilled, past temperatures have been hottest (exceeding 300?C) near ring fractures on the south and west sides of Newberry Volcano.
USDA-ARS?s Scientific Manuscript database
Hydrothermal carbonization (HTC), utilizing high temperature and pressure, has the potential to treat agricultural waste and inactivate pathogens, antibiotic resistance genes (ARG), and contaminants of emerging concern (CEC) in an environmentally and economically friendly manner. Livestock mortality...
Massive Hydrothermal Flows of Fluids and Heat: Earth Constraints and Ocean World Considerations
NASA Astrophysics Data System (ADS)
Fisher, A. T.
2018-05-01
This presentation reviews the hydrogeologic nature of Earth's ocean crust and evidence for massive flows of low-temperature (≤70°C), seafloor hydrothermal circulation through ridge flanks, including the influence of crustal relief and crustal faults.
Møller, Mikkel H; Glombitza, Clemens; Lever, Mark A; Deng, Longhui; Morono, Yuki; Inagaki, Fumio; Doll, Mechthild; Su, Chin-Chia; Lomstein, Bente A
2018-01-01
We investigated the impact of temperature on the microbial turnover of organic matter (OM) in a hydrothermal vent system in Guaymas Basin, by calculating microbial bio- and necromass turnover times based on the culture-independent D:L-amino acid model. Sediments were recovered from two stations near hydrothermal mounds (<74°C) and from one cold station (<9°C). Cell abundance at the two hydrothermal stations dropped from 10 8 to 10 6 cells cm -3 within ∼5 m of sediment depth resulting in a 100-fold lower cell number at this depth than at the cold site where numbers remained constant at 10 8 cells cm -3 throughout the recovered sediment. There were strong indications that the drop in cell abundance was controlled by decreasing OM quality. The quality of the sedimentary OM was determined by the diagenetic indicators %T AA C (percentage of total organic carbon present as amino acid carbon), %T AA N (percentage of total nitrogen present as amino acid nitrogen), aspartic acid:β-alanine ratios, and glutamic acid:γ-amino butyric acid ratios. All parameters indicated that the OM became progressively degraded with increasing sediment depth, and the OM in the hydrothermal sediment was more degraded than in the uniformly cold sediment. Nonetheless, the small community of microorganisms in the hydrothermal sediment demonstrated short turnover times. The modeled turnover times of microbial bio- and necromass in the hydrothermal sediments were notably faster (biomass: days to months; necromass: up to a few hundred years) than in the cold sediments (biomass: tens of years; necromass: thousands of years), suggesting that temperature has a significant influence on the microbial turnover rates. We suggest that short biomass turnover times are necessary for maintance of essential cell funtions and to overcome potential damage caused by the increased temperature.The reduced OM quality at the hyrothemal sites might thus only allow for a small population size of microorganisms.
Dekov, Vesselin; Boycheva, Tanya; Halenius, Ulf; Billstrom, Kjell; Kamenov, George D.; Shanks, Wayne C.; Stummeyer, Jens
2011-01-01
Dredging along the west wall of the core complex at 12°50′N Mid-Atlantic Ridge sampled a number of black oxyhydroxide crusts and breccias cemented by black and dark brown oxyhydroxide matrix. Black crusts found on top of basalt clasts (rubble) are mainly composed of Mn-oxides (birnessite, 10-Å manganates) with thin films of nontronite and X-ray amorphous FeOOH on their surfaces. Their chemical composition (low trace- and rare earth-element contents, high Li and Ag concentrations, rare earth element distribution patterns with negative both Ce and Eu anomalies), Sr–Nd–Pb-isotope systematic and O-isotope data suggest low-temperature (~ 20 °C) hydrothermal deposition from a diffuse vent area on the seafloor. Mineralogical, petrographic and geochemical investigations of the breccias showed the rock clasts were hydrothermally altered fragments of MORBs. Despite the substantial mineralogical changes caused by the alteration the Sr–Nd–Pb-isotope ratios have not been significantly affected by this process. The basalt clasts are cemented by dark brown and black matrix. Dark brown cement exhibits geochemical features (very low trace- and rare earth- element contents, high U concentration, rare earth element distribution pattern with high positive Eu anomaly) and Nd–Pb-isotope systematics (similar to that of MORB) suggesting that the precursor was a primary, high-temperature Fe-sulfide, which was eventually altered to goethite at ambient seawater conditions. The data presented in this work points towards the possible existence of high- and low-temperature hydrothermal activity at the west wall of the core complex at 12°50′N Mid-Atlantic Ridge. Tectonic setting at the site implies that the proposed hydrothermal field is possibly ultramafic-hosted.
Brown, Shaun T.; Kennedy, B. Mack; DePaolo, Donald J.; Hurwitz, Shaul; Evans, William C.
2013-01-01
We present chemical and isotopic data for fluids, minerals and rocks from the Long Valley meteoric-hydrothermal system. The samples encompass the presumed hydrothermal upwelling zone in the west moat of the caldera, the Casa Diablo geothermal field, and a series of wells defining a nearly linear, ∼16 km long, west-to-east trend along the likely fluid flow path. Fluid samples were analyzed for the isotopes of water, Sr, and Ca, the concentrations of major cations and anions, alkalinity, and total CO2. Water isotope data conform to trends documented in earlier studies, interpreted as indicating a single hydrothermal fluid mixing with local groundwater. Sr isotopes show subtle changes along the flow path, which requires rapid fluid flow and minimal reaction between the channelized fluids and the wallrocks. Sr and O isotopes are used to calculate fracture spacing using a dual porosity model. Calculated fracture spacing and temperature data for hydrothermal fluids indicate the system is (approximately) at steady-state. Correlated variations among total CO2, and the concentration and isotopic composition of Ca suggest progressive fluid degassing (loss of CO2), which drives calcite precipitation as the fluid flows west-to-east and cools. The shifts in Ca isotopes require that calcite precipitated at temperatures of 150–180 °C is fractionated by ca. −0.3‰ to −0.5‰ relative to aqueous species. Our data are the first evidence that Ca isotopes undergo kinetic fractionation at high temperatures (>100 °C) and can be used to trace calcite precipitation along hydrothermal fluid flow paths.
NASA Technical Reports Server (NTRS)
Simoneit, Bernd R. T.; Grimalt, Joan O.; Hayes, J. M.; Hartman, Hyman
1987-01-01
Hydrocarbons and bulk organic matter of two sediment cores within the Atlantis II Deep are analyzed, and microbial inputs and minor terrestrial sources are found to represent the major sedimentary organic material. Results show that extensive acid-catalyzed reactions are occurring in the sediments, and the Atlantis II Deep is found to exhibit a lower degree of thermal maturation than other hydrothermal or intrusive systems. The lack of carbon number preference noted among the n-alkanes suggests that the organic matter of these sediments has undergone some degree of catagenesis, though yields of hydrocarbons are much lower than those found in other hydrothermal areas, probably due to the effect of lower temperature and poor source-rock characteristics.
NASA Astrophysics Data System (ADS)
Wang, Peng; Chen, Xiaohong; Shen, Licheng; Wu, Kunyu; Huang, Mingzhi; Xiao, Qiong
2016-06-01
Mapamyum geothermal field (MGF) in western Tibet is one of largest geothermal areas characterized by the occurrence of hydrothermal explosions on the Tibetan Plateau. The geochemical properties of hydrothermal water in the MGF system were investigated to trace the origin of the solutes and to determine the equilibrium temperatures of the feeding reservoir. The study results show that the geochemistry of hydrothermal waters in the MGF system is mainly of the Na-HCO3 type. The chemical components of hydrothermal waters are mainly derived from the minerals in the host rocks (e.g., K-feldspar, albite, Ca-montmorillonite, and Mg-montmorillonite). The hydrothermal waters are slightly supersaturated or undersaturated with respect to aragonite, calcite, dolomite, chalcedony and quartz (saturation indices close to 0), but are highly undersaturated with respect to gypsum and anhydrite (saturation indices < 0). Mixing models and Na-K-Mg ternary diagrams show that strong mixing between cold meteoric water and deeply-seated thermal fluids occurred during the upward flowing process. δD and δ18O data confirm that the meteoric water acts as the water source of the geothermal waters. An 220 °C equilibrated reservoir temperature of hydrothermal spring waters was calculated via both the Na-K-Mg ternary diagrams and the cationic chemical geothermometers. The logpCO2 of hydrothermal waters in the MGF system ranges from - 2.59 to - 0.57 and δ13C of the total dissolved inorganic carbon ranges from - 5.53‰ to - 0.94‰, suggesting that the carrier CO2 in hydrothermal water are mainly of a magmatic or metamorphic CO2 origin.
NASA Astrophysics Data System (ADS)
Gillis, Kathryn M.; Thompson, Geoffrey
1993-12-01
An extensive suite of hydrothermally altered rocks were recovered by Alvin and dredging along the MARK [Mid-Atlantic Ridge, south of the Kane Fracture Zone (23 24°N)] where detachment faulting has provided a window into the crustal component of hydrothermal systems. Rocks of basaltic composition are altered to two assemblages with these characteristics: (i) type I: albitic plagioclase (An02 10)+mixed-layer smectite/chlorite or chlorite±actinolite±quartz±sphene, <10% of the clinopyroxene is altered, and there is no trace metal mobility; (ii) type II: plagioclase (An10 30)+amphibole (actinolite-magnesio-hornblende) +chlorite+sphene, >20% of the clinopyroxene is altered, and Cu and Zn are leached. The geochemical signature of these alteration types reflects the relative proportion and composition of secondary minerals, and the degree of alteration of primary phases, and does not show simple predictive relationships. Element mobilities indicate that both alteration types formed at low water/rock ratios. The MARK assemblages are typical of the greenschist and transition to the amphibolite facies, and represent two distinct, albeit overlapping, temperature regimes: type I-180 to 300°C and type II-250 to 450°C. By analogy with DSDP/ODP Hole 504B and many ophiolites, the MARK metabasalts were altered within the downwelling limb of a hydrothermal cell and type I and II samples formed in the upper and lower portions of the sheeted like complex, respectively. Episodic magmatic and hydrothermal events at slow-spreading ridges suggest that these observed mineral assemblages represent the cumulative effects of more than one hydrothermal event. Groundmass and vein assemblages in the MARK metabasalts indicate either that alteration conditions did not change during successive hydrothermal events or that these assemblages record only the highest temperature event. Lack of retrograde reactions or overprinting of lower temperature assemblages (e.g., zeolites) suggests that there is a continuum in alteration conditions while crustal segments remain in the ridge axis environment. The type II samples may be representative of the reaction zone where compositions of hydrothermal fluids actively venting at the seafloor today become fixed. This prediction necessitates interaction between hydrothermal fluids and intersertal glass and/or mafic phases, in addition to plagioclase, in order to produce the observed range in vented fluid pH.
NASA Astrophysics Data System (ADS)
Shi, Z.; Wang, G.
2017-12-01
Understanding the geochemical and geothermal characteristic of the hydrothermal systems provide useful information in appropriate evaluating the geothermal potential in this area. In this paper, we investigate the chemical and isotopic composition of thermal water in an underexploited geothermal belt, Yidun-Litang area, in eastern Tibetan Plateau geothermal belt. 24 hot springs from the Yidun and Litang area were collected and analyzed. The chemical facies of the hot springs are mainly Na-HCO3 type water. Water-rock interaction, cation exchange are the dominant hydrogeochemical processes in the hydrothermal evolution. All the hot springs show long-time water-rock interaction and significant 18O shift occurred in the Yindun area. Tritium data indicate the long-time water-rock interaction time in the hydrothermal system. According to the isotope and geochemical data, the hydrothermal systems in Yidun and Litang area may share a common deep parent geothermal liquid but receive different sources of meteoric precipitation and undergone different geochemical processes. The Yidun area have relative high reservoir equilibrium temperature (up to 230 °C) while the reservoir temperature at Litang area is relative low (up to 128 °C).
Diverse styles of submarine venting on the ultraslow spreading Mid-Cayman Rise
German, C. R.; Bowen, A.; Coleman, M. L.; Honig, D. L.; Huber, J. A.; Jakuba, M. V.; Kinsey, J. C.; Kurz, M. D.; Leroy, S.; McDermott, J. M.; de Lépinay, B. Mercier; Nakamura, K.; Seewald, J. S.; Smith, J. L.; Sylva, S. P.; Van Dover, C. L.; Whitcomb, L. L.; Yoerger, D. R.
2010-01-01
Thirty years after the first discovery of high-temperature submarine venting, the vast majority of the global mid-ocean ridge remains unexplored for hydrothermal activity. Of particular interest are the world’s ultraslow spreading ridges that were the last to be demonstrated to host high-temperature venting but may host systems particularly relevant to prebiotic chemistry and the origins of life. Here we report evidence for previously unknown, diverse, and very deep hydrothermal vents along the ∼110 km long, ultraslow spreading Mid-Cayman Rise (MCR). Our data indicate that the MCR hosts at least three discrete hydrothermal sites, each representing a different type of water-rock interaction, including both mafic and ultramafic systems and, at ∼5,000 m, the deepest known hydrothermal vent. Although submarine hydrothermal circulation, in which seawater percolates through and reacts with host lithologies, occurs on all mid-ocean ridges, the diversity of vent types identified here and their relative geographic isolation make the MCR unique in the oceans. These new sites offer prospects for an expanded range of vent-fluid compositions, varieties of abiotic organic chemical synthesis and extremophile microorganisms, and unparalleled faunal biodiversity—all in close proximity. PMID:20660317
Yanagawa, Katsunori; Breuker, Anja; Schippers, Axel; Nishizawa, Manabu; Ijiri, Akira; Hirai, Miho; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken
2014-10-01
The impacts of lithologic structure and geothermal gradient on subseafloor microbial communities were investigated at a marginal site of the Iheya North hydrothermal field in the Mid-Okinawa Trough. Subsurface marine sediments composed of hemipelagic muds and volcaniclastic deposits were recovered through a depth of 151 m below the seafloor at site C0017 during Integrated Ocean Drilling Program Expedition 331. Microbial communities inferred from 16S rRNA gene clone sequencing in low-temperature hemipelagic sediments were mainly composed of members of the Chloroflexi and deep-sea archaeal group. In contrast, 16S rRNA gene sequences of marine group I Thaumarchaeota dominated the microbial phylotype communities in the coarse-grained pumiceous gravels interbedded between the hemipelagic sediments. Based on the physical properties of sediments such as temperature and permeability, the porewater chemistry, and the microbial phylotype compositions, the shift in the physical properties of the sediments is suggested to induce a potential subseafloor recharging flow of oxygenated seawater in the permeable zone, leading to the generation of variable chemical environments and microbial communities in the subseafloor habitats. In addition, the deepest section of sediments under high-temperature conditions (∼90°C) harbored the sequences of an uncultivated archaeal lineage of hot water crenarchaeotic group IV that may be associated with the high-temperature hydrothermal fluid flow. These results indicate that the subseafloor microbial community compositions and functions at the marginal site of the hydrothermal field are highly affected by the complex fluid flow structure, such as recharging seawater and underlying hydrothermal fluids, coupled with the lithologic transition of sediments. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Breuker, Anja; Schippers, Axel; Nishizawa, Manabu; Ijiri, Akira; Hirai, Miho; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken
2014-01-01
The impacts of lithologic structure and geothermal gradient on subseafloor microbial communities were investigated at a marginal site of the Iheya North hydrothermal field in the Mid-Okinawa Trough. Subsurface marine sediments composed of hemipelagic muds and volcaniclastic deposits were recovered through a depth of 151 m below the seafloor at site C0017 during Integrated Ocean Drilling Program Expedition 331. Microbial communities inferred from 16S rRNA gene clone sequencing in low-temperature hemipelagic sediments were mainly composed of members of the Chloroflexi and deep-sea archaeal group. In contrast, 16S rRNA gene sequences of marine group I Thaumarchaeota dominated the microbial phylotype communities in the coarse-grained pumiceous gravels interbedded between the hemipelagic sediments. Based on the physical properties of sediments such as temperature and permeability, the porewater chemistry, and the microbial phylotype compositions, the shift in the physical properties of the sediments is suggested to induce a potential subseafloor recharging flow of oxygenated seawater in the permeable zone, leading to the generation of variable chemical environments and microbial communities in the subseafloor habitats. In addition, the deepest section of sediments under high-temperature conditions (∼90°C) harbored the sequences of an uncultivated archaeal lineage of hot water crenarchaeotic group IV that may be associated with the high-temperature hydrothermal fluid flow. These results indicate that the subseafloor microbial community compositions and functions at the marginal site of the hydrothermal field are highly affected by the complex fluid flow structure, such as recharging seawater and underlying hydrothermal fluids, coupled with the lithologic transition of sediments. PMID:25063666
NASA Astrophysics Data System (ADS)
Stewart, L. C.; Algar, C. K.; Topçuoğlu, B. D.; Fortunato, C. S.; Larson, B. I.; Proskurowski, G. K.; Butterfield, D. A.; Vallino, J. J.; Huber, J. A.; Holden, J. F.
2014-12-01
Hydrogenotrophic methanogens are keystone high-temperature autotrophs in deep-sea hydrothermal vents and tracers of habitability and biogeochemical activity in the hydrothermally active subseafloor. At Axial Seamount, nearly all thermophilic methanogens are Methanothermococcus and Methanocaldococcus species, making this site amenable to modeling through pure culture laboratory experiments coupled with field studies. Based on field microcosm incubations with 1.2 mM, 20 μM, or no hydrogen, the growth of methanogens at 55°C and 80°C is limited primarily by temperature and hydrogen availability, with ammonium amendment showing no consistent effect on total methane output. The Arrhenius constants for methane production by Methanocaldococcus jannaschii (optimum 82°C) and Methanothermococcus thermolithotrophicus (optimum 65°C) were determined in pure culture bottle experiments. The Monod constants for hydrogen concentration were measured by growing both organisms in a 2-liter chemostat at two dilution rates; 55°C, 65°C and 82°C; and variable hydrogen concentrations. M. jannaschii showed higher ks and Vmax constants than M. thermolithotrophicus. In the field, hydrogen and methane concentrations in hydrothermal end-member and low-temperature diffuse fluids were measured, and the concentrations of methanogens that grow at 55°C and 80°C in diffuse fluids were determined using most-probable-number estimates. Methane concentration anomalies in diffuse fluids relative to end-member hydrothermal concentrations and methanogen cell concentrations are being used to constrain a 1-D reactive transport model using the laboratory-determined Arrhenius and Monod constants for methane production by these organisms. By varying flow path length and subseafloor cell concentrations in the model, our goal is to determine solutions for the potential depth of the subseafloor biosphere coupled with the amount of methanogenic biomass it contains.
Carten, R.B.; Geraghty, E.P.; Walker, B.M.
1988-01-01
The Henderson porphyry molybdenum deposit was formed by the superposition of coupled alteration and mineralization events, of varying intensity and size, that were associated with each of at least 11 intrusions. Deposition of molybdenite was accompanied by time-equivalent silicic and potassic alteration. High-temperature alteration and mineralization are spatially and temporally linked to the crystallization of compositionally zoned magma in the apex of stocks. Differences in hydrothermal features associated with each intrusion (e.g., mass of ore, orientation and type of veins, density of veins, and intensity of alteration) correlate with differences in primary igneous features (e.g., composition, texture, morphology, and size). The systematic relations between hydrothermal and magmatic features suggest that primary magma compositions, including volatile contents, largely control the geometry, volume, level of emplacement, and mechanisms of crystallization of stocks. These elements in turn govern the orientations and densities of fractures, which ultimately determine the distribution patterns of hydrothermal alteration and mineralization. -from Authors
Hemley, J.J.; Hunt, J.P.
1992-01-01
The experimental metal solubilities for rock-buffered hydrothermal systems provide important insights into the acquisition, transport, and deposition of metals in real hydrothermal systems that produced base metal ore deposits. Water-rock reactions that determine pH, together with total chloride and changes in temperature and fluid pressure, play significant roles in controlling the solubility of metals and determining where metals are fixed to form ore deposits. Deposition of metals in hydrothermal systems occurs where changes such as cooling, pH increase due to rock alteration, boiling, or fluid mixing cause the aqueous metal concentration to exceed saturation. Metal zoning results from deposition occurring at successive saturation surfaces. Zoning is not a reflection simply of relative solubility but of the manner of intersection of transport concentration paths with those surfaces. Saturation surfaces will tend to migrate outward and inward in prograde and retrograde time, respectively, controlled by either temperature or chemical variables. -from Authors
[Study on hydrothermal stability of the collagen].
Wang, Yajuan; Chen, Hui; Shan, Zhihua
2009-02-01
The low hydrothermal stability of the raw collagen restricts its usage. To improve the hydrothermal stability of collagen, two kinds of materials with weak astringency were used by experts. The research proved that the synergistic effect was formed during the process. In this study, by using UV, FT-IR, 13CNMR spectra and elemental analysis on the salicylic acid and metal-salicylic complexes, we could get the structural formula of every compound. And then, the hide powder was treated with the compounds. At last, the treated hide powder was tested by DSC. It could be presumed that the Rigid Matrix formed between the collagen doses can increase the hydrothermal stability of raw collagen, The result indicated that salicylic-chrome with large stable constant was better than others in improving the heat resistance of raw collagen, and the denaturalization temperature of hide powder treated with salicylic-chrome was 146.7 degrees C. Salicylic-aluminum was in the second place, the relevant temperature being 145.7 degrees C.
Hydrothermal germanium over the southern East pacific rise.
Mortlock, R A; Froelich, P N
1986-01-03
Germanium enrichment in the oceanic water column above the southern axis of the East Pacific Rise results from hydrothermal solutions emanating from hot springs along the rise crest. This plume signature provides a new oceanic tracer of reactions between seawater and sea floor basalts during hydrothermal alteration. In contrast to the sharp plumes of (3)He and manganese, the germanium plume is broad and diffuse, suggesting the existence of pervasive venting of low-temperature solutions off the ridge axis.
NASA Astrophysics Data System (ADS)
Minami, H.; Ohara, Y.
2017-09-01
High-resolution geophysical mapping was conducted from an autonomous underwater vehicle on the flank of Daisan-Kume Knoll in the Ryukyu Arc, southwest of Japan. 1 m resolution bathymetry identified 264 spires, 173 large mounds and 268 small mounds within a depression that is up to 1600 m wide and up to 60 m deep, at water depths between 1330 and 1470 m. Hydrothermal venting is strongly inferred from the observation of plumes in sidescan sonar imagery and positive temperature anomalies over the spires and mounds. This field, named the Gondou Field, has a giant mound G1 with a diameter of 280 m and a height of 80 m. Mound G1 has distinctive summit ridges composed of multiple spires where acoustic plumes with temperature anomalies up to 1.12°C are observed, indicative of high-temperature venting. Other than mound G1, a number of active large mounds more than 30 m wide and spires over 10-22 m tall are common and they concentrate in the central and southern areas of the field, suggesting that these areas are the center of present hydrothermal activity. Acoustic plumes imaged by side-scan sonar at the Gondou Field are different in character from bubble plumes imaged in other hydrothermal fields in the Ryukyu Arc. The plumes are diffused and deflected as they rise through the water column and have a shape consistent with black smokers.
Electrochemical performance of Fe3O4 micro flower as anode for lithium ion batteries
NASA Astrophysics Data System (ADS)
Noerochim, Lukman; Anggara, Dika; Susanti, Diah; Subhan, Achmad; Sudaryanto
2018-04-01
Graphite is generally employed in commercial lithium ion batteries which has a specific capacity of 372 mAh/g. In this study, graphite is replaced with carbon-coated magnetite (Fe3O4/C) which has large theoretical specific capacity of 926 mAh/g, environmental friendly, and low cost production. The synthesis of Fe3O4/C is carried out by hydrothermal method with reacting FeCl3 and hexamethylenetetramine (HMT) at temperature variation of 160, 170 and 180°C. The following process is heated by calcination at temperature variations 450, 500 and 550°C. XRD and SEM results show that the as-prepared Fe3O4/C powder has a single phase of Fe3O4 and morphology micro-flowers like with size between 700 nm - 3 µm. CV test results show redox reaction occurs in the voltage range between 0.21-0.85 V and 1.68-1.81 V. The highest specific discharge capacity is obtained 644 mAh/g for specimen with temperature hydrothermal of 170°C and temperature calcination of 550°C. This result shows that Fe3O4/C has a high potential as anode material for lithium ion battery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viayan, B.; Dimitrijevic, N. M.; Rajh, T.
Titania nanotubes having diameters 8 to 12 nm and lengths of 50-300 nm were prepared using a hydrothermal method. Further, the titania nanotubes were calcined over the temperature range 200-800 C in order to enhance their photocatalytic properties by altering their morphology. The calcined titania nanotubes were characterized by using X-ray diffraction and surface area analysis and their morphological features were studied by scanning and transmission electron microscopy. Nanotubes calcined at 400 C showed the maximum extent of photocatalyitc reduction of carbon dioxide to methane, whereas samples calcined at 600 C produced maximum photocatalytic oxidation of acetaldehyde. Electron paramagnetic resonancemore » (EPR) spectroscopy was used to interrogate the effects of nanotube structure on the charge separation and trapping as a function of calcination temperature. EPR results indicated that undercoordinated titania sites are associated with maximum CO{sub 2} reduction occurring in nanotubes calcined at 400 C. Despite the collapse of the nantube structure to form nanorods and the concomitant loss of surface area, the enhanced charge separation associated with increased crystallinity promoted high rates of oxidation of acetaldehyde in titania materials calcined at 600 C. These results illustrate that calcination temperature allows us to tune the morphological and surface features of the titania nanostructures for particular photocatalytic reactions.« less
NASA Astrophysics Data System (ADS)
Di Iorio, D.
2011-12-01
An acoustic scintillation system was built in partnership with ASL Environmental Sciences (Sidney BC Canada), which provided a unique opportunity for two engineering undergraduate students to live and work abroad. The acoustic instrumentation was tested in coastal waters and then deployed to study deep-sea hydrothermal plume dynamics. Undergraduate students were involved in the deployment of instrumentation and the development of processing software to give vertical velocities and temperature fluctuations from a vigorous hydrothermal vent. A graduate student thesis has yielded insights into the vertical and azimuthal dependence of entrainment and into plume bending and rise height. Teachers and Ocean Science Bowl students also participated in research cruises describing physical oceanography of estuaries, coastal waters, and deep-sea hydrothermal vents and participated in data collection, processing and analysis. Teachers used the knowledge they gained to develop creative educational curricula at their schools, to present their experiences at national conferences and to publish an article in the National Science Teachers Association - The Science Journal. One of the teachers was recently recognized with the Presidential Award for Excellence in Mathematics and Science Teaching. Working with the ocean bowl team at Oconee County High School has led to top ten placements in the national championships in 2005 (fourth place) and 2006 (sixth place). In order to increase quantitative methods in an undergraduate class, students acquire data from an ocean observatory and analyze the data for specific quantities of interest. One such project led to the calculation of the upper ocean heat content for the Greenland Sea using 7 years of Argo profiles, which showed a 0.04oC/year trend. These results were then published in JGR.
Petitto, Carolina; Delahay, Gérard
2018-03-01
Nitrogen oxides (NO x : NO, NO 2 ) are a concern due to their adverse health effects. Diesel engine transport sector is the major emitter of NO x . The regulations have been strengthened and to comply with them, one of the two methods commonly used is the selective catalytic reduction of NO x by NH 3 (NH 3 -SCR), NH 3 being supplied by the in-situ hydrolysis of urea. Efficiency and durability of the catalyst for this process are highly required. Durability is evaluated by hydrothermal treatment of the catalysts at temperature above 800°C. In this study, very active catalysts for the NH 3 -SCR of NO x were prepared by using a silicoaluminophosphate commercial zeolite as copper host structure. Characterizations by X-ray diffraction (XRD), scanning electron microscopy (SEM) and temperature programmed desorption of ammonia (NH 3 -TPD) showed that this commercial zeolite was hydrothermally stable up to 850°C and, was able to retain some structural properties up to 950°C. After hydrothermal treatment at 850°C, the NO x reduction efficiency into NH 3 -SCR depends on the copper content. The catalyst with a copper content of 1.25wt.% was the most active. The difference in activity was much more important when using NO than the fast NO/NO 2 reaction mixture. Copyright © 2017. Published by Elsevier B.V.
Chen, Jinyang; Xu, Tianjiao; Ding, Junying; Ji, Yimei; Ni, Pei; Li, Zhilian
2012-10-15
In situ transformation of 4,4'-Dibromobiphenyl (4,4'-DBB) in water was observed with hydrothermal diamond anvil cell (HDAC) up to 633 K. It shows that 4,4'-DBB dissolves in water to form a homogenous phase at the temperature of 588 K and thus subcritical water oxidation of 4,4'-DBB higher than the temperature can be a homogenous phase. To accelerate the oxidative degradation, some Mn-Ce-Co complex oxide nanoparticles of about 100 nm were prepared by co-precipitation hydrothermal method. The nanoparticles show enough stability and catalytic activity for oxidative degradation of 4,4'-DBB in subcritical water. The catalytic activation increases with some Co doping and as for the complex oxides of Mn(1)Ce(1), Mn(0.9)Ce(1)Co(0.1), Mn(0.5)Ce(1)Co(0.5), Mn(0.1)Ce(1)Co(0.9), and Co(1)Ce(1), the Mn(0.9)Ce(1)Co(0.1) presents the best activation. The main intermediate products of degradation are benzoic acid and phenol. The apparent activation energy (E(a)) is 35.92 with 5% Mn(0.9)Ce(1)Co(0.1) as catalyst and 46.69 kJ/mol with no catalyst about the chemical oxygen demand (COD). Copyright © 2012 Elsevier B.V. All rights reserved.
One-step synthesis of hydrothermally stable mesoporous aluminosilicates with strong acidity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Dongjiang; School of Physical and Chemical Sciences, Queensland University of Technology, Brisbane, QLD 4001; Xu Yao
2008-09-15
Using tetraethylorthosilicate (TEOS), polymethylhydrosiloxane (PMHS) and aluminium isopropoxide (AIP) as the reactants, through a one-step nonsurfactant route based on PMHS-TEOS-AIP co-polycondensation, hydrothermally stable mesoporous aluminosilicates with different Si/Al molar ratios were successfully prepared. All samples exclusively showed narrow pore size distribution centered at 3.6 nm. To assess the hydrothermal stability, samples were subjected to 100 deg. C distilled water for 300 h. The boiled mesoporous aluminosilicates have nearly the same N{sub 2} adsorption-desorption isotherms and the same pore size distributions as those newly synthesized ones, indicating excellent hydrothermal stability. The {sup 29}Si MAS NMR spectra confirmed that PMHS and TEOSmore » have jointly condensed and CH{sub 3} groups have been introduced into the materials. The {sup 27}Al MAS NMR spectra indicated that Al atoms have been incorporated in the mesopore frameworks. The NH{sub 3} temperature-programmed desorption showed strong acidity. Due to the existence of large amount of CH{sub 3} groups, the mesoporous aluminosilicates obtained good hydrophobicity. Owing to the relatively large pore and the strong acidity provided by the uniform four-coordinated Al atoms, the excellent catalytic performance for 1,3,5-triisopropylbenzene cracking was acquired easily. The materials may be a profitable complement for the synthesis of solid acid catalysts. - Graphical abstract: Based on the nonsurfactant method, a facile one-step synthesis route has been developed to prepare methyl-modified mesoporous aluminosilicates that possessed hydrothermal stability and strong acidity.« less
Synthesis of high luminescent carbon nanoparticles
NASA Astrophysics Data System (ADS)
Gvozdyuk, Alina A.; Petrova, Polina S.; Goryacheva, Irina Y.; Sukhorukov, Gleb B.
2017-03-01
In this article we report an effective and simple method for synthesis of high luminescent carbon nanodots (CDs). In our work as a carbon source sodium dextran sulfate (DS) was used because it is harmless, its analogs are used in medicine as antithrombotic compounds and blood substitutes after hemorrhage. was used as a substrate We investigated the influence of temperature parameters of hydrothermal synthesis on the photoluminescence (PL) intensity and position of emission maxima. We discovered that the PL intensity can be tuned by changing of synthesis temperature and CD concentration.
NASA Astrophysics Data System (ADS)
Xu, S. J.; Chua, S. J.; Liu, B.; Gan, L. M.; Chew, C. H.; Xu, G. Q.
1998-07-01
Cu-, Eu-, or Mn-doped ZnS nanocrystalline phosphors were prepared at room temperature using a chemical synthesis method. Transmission electron microscopy observation shows that the size of the ZnS clusters is in the 3-18 nm range. New luminescence characteristics such as strong and stable visible-light emissions with different colors were observed from the doped ZnS nanocrystals at room temperature. These results strongly suggest that impurities, especially transition metals and rare-earth metals-activated ZnS nanoclusters form a new class of luminescent materials.
NASA Astrophysics Data System (ADS)
Riapanitra, Anung; Asakura, Yusuke; Cao, Wenbin; Noda, Yasuto; Yin, Shu
2018-06-01
Fluorine-doped VO2(M) nanoparticles have been successfully synthesized using the hydrothermal method at a supercritical temperature of 490 °C. The pristine VO2(M) has the critical phase transformation temperature of 64 °C. The morphology and homogeneity of the monoclinic structure VO2(M) were adopted by the fluorine-doped system. The obtained particle size of the samples is smaller at the higher concentration of anion doping. The best reduction of critical temperature was achieved by fluorine doping of 0.13% up to 48 °C. The thin films of the fluorine-doped VO2(M) showed pronounced thermochromic property and therefore are suitable for smart window applications.
Hydrothermal activity at slow-spreading ridges: variability and importance of magmatic controls
NASA Astrophysics Data System (ADS)
Escartin, Javier
2016-04-01
Hydrothermal activity along mid-ocean ridge axes is ubiquitous, associated with mass, chemical, and heat exchanges between the deep lithosphere and the overlying envelopes, and sustaining chemiosynthetic ecosystems at the seafloor. Compared with hydrothermal fields at fast-spreading ridges, those at slow spreading ones show a large variability as their location and nature is controlled or influenced by several parameters that are inter-related: a) tectonic setting, ranging from 'volcanic systems' (along the rift valley floor, volcanic ridges, seamounts), to 'tectonic' ones (rift-bounding faults, oceanic detachment faults); b) the nature of the host rock, owing to compositional heterogeneity of slow-spreading lithosphere (basalt, gabbro, peridotite); c) the type of heat source (magmatic bodies at depth, hot lithosphere, serpentinization reactions); d) and the associated temperature of outflow fluids (high- vs.- low temperature venting and their relative proportion). A systematic review of the distribution and characteristics of hydrothermal fields along the slow-spreading Mid-Atlantic Ridge suggests that long-lived hydrothermal activity is concentrated either at oceanic detachment faults, or along volcanic segments with evidence of robust magma supply to the axis. A detailed study of the magmatically robust Lucky Strike segment suggests that all present and past hydrothermal activity is found at the center of the segment. The association of these fields to central volcanos, and the absence of indicators of hydrothermal activity along the remaining of the ridge segment, suggests that long-lived hydrothermal activity in these volcanic systems is maintained by the enhanced melt supply and the associated magma chamber(s) required to build these volcanic edifices. In this setting, hydrothermal outflow zones at the seafloor are systematically controlled by faults, indicating that hydrothermal fluids in the shallow crust exploit permeable fault zones to circulate. While less studied, similar hydrothermal systems are found elsewhere associated to other central volcanoes along the ridge axis (e.g., Menez Gwenn at the Mid-Atlantic Ridge and Soria Mornia or Troll Wall at the Arctic Ridges). Long-lived hydrothermal activity plays an important role in controlling the thermal structure of the lithosphere and its accretion at and near-axis, and also determining the distribution and biogeography of vent communities. Along slow-spreading segments, long-lived hydrothermal activity can be provided both by volcanic systems (e.g., Lucky Strike) and tectonic systems (oceanic detachment faults). While magmatic and hydrothermal activity is relatively well understood now in volcanic systems (e.g., Lucky Strike), tectonic systems (oceanic detachment faults) require further integrated studies to constrain the links between long-lived localization of deformation along oceanic detachment faults, hydrothermal activity, and origin and nature of off-axis heat sources animating hydrothermal circulation.
Surface nano-structure of polyamide 6 film by hydrothermal treatment
NASA Astrophysics Data System (ADS)
Wang, Xiaosong; Wang, Zhiliang; Liang, Songmiao; Jin, Yan; Lotz, Bernard; Yang, Shuguang
2018-06-01
Polyamide 6 (PA 6) melts and dissolves in super-heated water when T > 160 °C. Commercial PA 6 films were treated in super-heated water at 140 °C < T < 160 °C, i.e. below melting. Morphology, thermal behavior, mechanical properties, oxygen permeability and transparency of the film before and after hydrothermal treatment are investigated. After hydrothermal treatment, the melting temperature, crystallinity, elongation at break and toughness increase, whereas the strength decreases. The transparency and oxygen permeability decrease slightly. More interestingly, the hydrothermal treatment generates on the film surface a nano-structured layer 100 nm thick, which greatly improves adhesion and printing performance.
NASA Astrophysics Data System (ADS)
Zhang, Dongzhi; Liu, Jingjing; Xia, Bokai
2016-08-01
A metal oxide/graphene composite film-based sensor toward room-temperature detection of ppm-level nitrogen dioxide (NO2) gas has been demonstrated. The sensor prototype was constructed on a PCB substrate with microelectrodes, and a tin oxide-reduced graphene oxide (SnO2-rGO) composite as sensing film was prepared by one-step hydrothermal synthesis of tin tetrachloride pentahydrate solution in the presence of graphene oxide (GO). The SnO2-rGO hybrid composite was examined by scanning electron microscope and x-ray diffraction (XRD). The gas sensing properties of the SnO2-rGO composite were investigated at room temperature by exposing it to a wide concentration ranging from 1 ppm to 2000 ppm toward NO2 gas. The experiment results showed that the sensor exhibited a high response, superior selectivity, good repeatability, rapid response/recovery characteristics and low detection limit of 1 ppm, which exceeded that of a pure rGO sensor. The gas sensing mechanisms of the proposed sensor toward NO2 were possibly attributed to the nano-hybrid structures and n- p heterojunctions created at the interface of the SnO2 nanocrystals and rGO nanosheets.
NASA Astrophysics Data System (ADS)
Indirajith, R.; Rajalakshmi, M.; Gopalakrishnan, R.; Ramamurthi, K.
2016-03-01
Bismuth selenide (Bi2Se3) was synthesized by hydrothermal method at 200 °C and confirmed by powder X-ray diffraction (XRD) studies. The synthesized material was utilized to deposit bismuth selenide thin films at various substrate temperatures (Room Temperature-RT, 150 °C, 250 °C, 350 °C and 450 °C) by electron beam evaporation technique. XRD study confirmed the polycrystalline nature of the deposited Bi2Se3films. Optical transmittance spectra showed that the deposited (at RT) films acquire relatively high average transmittance of 60%in near infrared region (1500-2500 nm). An indirect allowed optical band gap calculated from the absorption edge for the deposited films is ranging from 0.62 to 0.8 eV. Scanning electron and atomic force microscopy analyses reveal the formation of nano-scale sized particles on the surface and that the nature of surface microstructures is influenced by the substrate temperature. Hall measurements showed improved electrical properties, for the films deposited at 350 °C which possess 2.8 times the mobility and 0.9 times the resistivity of the films deposited at RT.
NASA Astrophysics Data System (ADS)
Daud, Yunus; Rosid, Syamsu; Fahmi, Fikri; Yunus, Faris Maulana; Muflihendri, Reza
2018-02-01
Ijen geothermal area is high-temperature geothermal system located in Bondowoso regency, East Java. It is categorized as caldera-hosted geothermal system which is covered by quaternary andesitic volcanic rocks with steep topography at the surrounding. Several surface thermal manifestations are found, such as altered rocks near Mt. Kukusan and a group of Blawan hotsprings in the northern part of the caldera. Geomagnetic survey was conducted at 72 stations which is distributed inside the caldera to delineate the existence of hydrothermal activity. Magnetic anomaly was obtained by reducing total magnetic measured on the field by IGRF and diurnal variation. Reduction to pole (RTP) method was applied with geomagnetic inclination of about -32°. In general, the result shows that high magnetic anomaly is distributed at the boundary of study area, while low magnetic anomaly is observed in the centre. The low anomaly indicates demagnetized rock that probably caused by hydrothermal activity. It has a good correlation with surface alteration observed close to Mt. Kukusan as well as high temperature reservoir drilled in the centre of caldera. Accordingly, the low magnetic anomaly also presents the possibility of geothermal reservoir in Ijen geothermal area.
USDA-ARS?s Scientific Manuscript database
Hydrothermal carbonization (HTC) is a relatively low temperature thermal conversion process that is gaining significant attention as a sustainable and environmentally beneficial approach for the transformation of biomass and waste streams to value-added products. Although there are numerous studies ...
NASA Astrophysics Data System (ADS)
Boulart, C.; Chavagnac, V.; Briais, A.; Revillon, S.; Donval, J. P.; Guyader, V.
2015-12-01
We report on the first evidence for hydrothermal activity along the intermediate-spreading South-East Indian Ridge (SEIR) between Australia and Antarctica (128°E-140°E), discovered during the STORM cruise of R/V L'Atalante. This section of the SEIR is located east of the low-magma Australian-Antarctic Discordance (AAD), where the ridge has the morphology of a slow-spreading mid-ocean ridge despite its intermediate spreading rate of 75 mm/yr. The axial depth decreases eastward, reflecting an eastward increase in magma budget.Using in-situ geochemical tracers based on optical backscatter, temperature, redox potential sensor and in situ mass spectrometer (ISMS) anomalies, we establish the existence of several distinct hydrothermal plumes within the water column along the 500 nautical miles ridge section. At one site, the combination of near-bottom temperature anomalies of 0.1°C together with strong dissolved methane and dissolved carbon dioxide anomalies revealed by the ISMS provides the precise location of an active vent in the Deep Southern Indian Ocean off Tasmania. Hydrothermal venting along the 128°E-140°E section of the SEIR appears to be significant, an observation consistent with the global link between spreading rate and plume occurrence (Baker and German, 2004). Moreover, the plume incidence increases westward and, in the eastern part, hydrothermal venting seems to be less significant, suggesting a possible influence of the high magma budget, as observed in mid-ocean ridge sections affected by hotspots. Future investigation will focus on the direct identification of venting sources and the study of hydrothermal circulation within the specific settings of the AAD. The observation of new venting sites at the frontier between Pacific and Indian Oceans may also provide new insights on the biogeography (diversity and distribution) of hydrothermal fauna. Baker, E. T., and C. R. German (2004), On the global distribution of hydrothermal vent fields, in Mid-Ocean Ridges: Hydrothermal Interactions
NASA Astrophysics Data System (ADS)
Gregory, Melissa J.; Mathur, Ryan
2017-11-01
Copper stable isotope geochemistry has the potential to constrain aspects of ore deposit formation once variations in the isotopic data can be related to the physiochemical conditions during metal deposition. This study presents Cu isotope ratios for samples from the Pebble porphyry Cu-Au-Mo deposit in Alaska. The δ65Cu values for hypogene copper sulfides range from -2.09‰ to 1.11‰ and show linear correlations with the δ18O isotope ratios calculated for the fluid in equilibrium with the hydrothermal alteration minerals in each sample. Samples with sodic-potassic, potassic, and illite alteration display a negative linear correlation between the Cu and O isotope results. This suggests that fractionation of Cu isotopes between the fluid and precipitating chalcopyrite is positive as the hydrothermal fluid is evolving from magmatic to mixed magmatic-meteoric compositions. Samples with advanced argillic alteration display a weak positive linear correlation between Cu and O isotope results consistent with small negative fluid-chalcopyrite Cu isotope fractionation during fluid evolution. The hydrothermal fluids that formed sodic-potassic, potassic, and illite alteration likely transported Cu as CuHS0. Hydrothermal fluids that resulted in advanced argillic alteration likely transport Cu as CuCl2-. The pH conditions also control Cu isotope fractionation, consistent with previous experimental work. Larger fractionation factors were found between fluids and chalcopyrite precipitating under neutral conditions contrasting with small fractionation factors calculated between fluids and chalcopyrite precipitating under acidic conditions. Therefore, this study proposes that hydrothermal fluid compositions and pH conditions are related to Cu isotope variations in high temperature magmatic-hydrothermal deposits.
NASA Astrophysics Data System (ADS)
Choudapur, V. H.; Bennal, A. S.; Raju, A. B.
2018-04-01
The ZnS nanomaterial is synthesized by hydrothermal method under optimized conditions using Zinc acetate and sodium sulphide as precursors. The Zinc Sulphide thin films are obtained by simple spin coating method with high optical transmittance. The prepared thin films are adhesive and uniform. The x-ray diffraction analysis showed that the films are polycrystalline in cubic phase with the preferred orientation along (111) direction. Current-voltage curves were recorded at room temperature using Keithley 617 programmable electrometer and conductivity is calculated for the film coated on ITO by two probe method. The pH of the solution is varied by using ammonia and hydrochloric acid. The comparative studies of effect of pH on the morphology, crystallanity and optoelectronic properties of the films are studied. It is observed that the pH of the solution has large influence on optoelectronic properties. The thin film prepared with neutral pH has higher crystallanity, bandgap and conductivity as compared to the samples prepared in acidic or basic solutions.
NASA Astrophysics Data System (ADS)
Galy, A.; Carder, E.; Elderfield, H.
2006-12-01
It has been long recognised that the input of Mg in the ocean by river is removed by precipitation of Mg-rich bearing phases, either directly from the ocean such as dolomite or through hydrothermal circulation in the oceanic crust. The sampling of hydrothermal fluids demonstrated the efficiency of Mg consumption by the alteration of the oceanic crust, even at temperatures as low as 15°. For high-temperature fluids vented through black or white smokers in the vicinity of the ridge, the Mg concentration is up to 50 time lower than in seawater, and the close relationship between chlorine and Mg led to the idea that seawater was feeding the hydrothermal system and that Mg is quantitatively removed from it during high-T° alteration, the so called zero Mg hypothesis. Despite some hint for a non zero Mg hydrothermal end-member for a handful sites, the low concentration of Mg in oceanic hydrothermal fluids (around 1 mmol/l) has been mainly attributed to contamination by seawater during the sampling. Here we present Mg isotopic composition of 14 seawater samples from the Atlantic, Pacific and Indian Oceans and the Mediterranean and Red Seas and covering a range of depth of almost 5km and 26 hydrothermal fluids from 7 sites in the Atlantic and Pacific Oceans with temperature from 15° to 380°C. We find the magnesium isotope composition of seawater to be constant, with a δ^{26}Mg = -0.82±0.10 ‰ relative to the DSM3 standard. This value is consistent with a long residence time for Mg in seawater. In addition, out of the 26 hydrothermal fluids studied, more than 58% differ from seawater for their Mg isotopic composition by more than 2σ. This number rises up to 88% at 2σmean level and the shift is systematic with the fluids being either indistinguishable from seawater or enriched in light isotopes by up to 2.4‰ in δ^{26}Mg. This clearly demonstrates that fluids having low Mg concentrations are not solely bearing Mg added by contamination during sampling. The isotopic and concentration data are consistent with the preferential incorporation of heavy isotopes of Mg during the weathering and already similar to the mechanisms found in soil (Tipper et al., 2006a, doi:10.1016/j.epsl.2006.04.033). The fractionation factor (α) is around 1.001 for the high-T° fluids, while the low temperature fluids, samples off axis during the ODP Leg 168 (Est of Juan de Fuca Ridge), requires a more variable and higher α of 1.001 to 1.003. At low temperature, the α is somehow greater that the estimate made from the soil formation but the T-α relationship is consistent with the expected behaviour for an equilibrium isotopic fractionation. However, such a large α implies that the significant flux of the low-T component of the hydrothermal circulation required to fulfil the heat budget of the oceanic lithosphere would buffer any isotopic mass balance calculation of the oceanic Mg to an unsustainable value (e.g. Tipper et al., 2006b, doi:10.1016/j.epsl.2006.07.037). Therefore, either the low-T hydrothermal circulation leaves the Mg unaffected, or the off axis fluids from the ODP Leg 168 are not representative of the global low-T hydrothermal circulation. Given that Mg gets significantly re-incorporated in soil processes, we favour the later hypothesis and propose that a significant part of the low-T hydrothermal circulation is occurring around relief of the oceanic floor, including seamounts, with a different residence-time and chemistry than what have been described in the ODP Leg 168 setting.
Molecular alteration of marine dissolved organic matter under experimental hydrothermal conditions
NASA Astrophysics Data System (ADS)
Hawkes, Jeffrey A.; Hansen, Christian T.; Goldhammer, Tobias; Bach, Wolfgang; Dittmar, Thorsten
2016-02-01
Marine dissolved organic matter (DOM) is a large (660 Pg) pool of reduced carbon that is subject to thermal alteration in hydrothermal systems and sedimentary basins. In natural high-temperature hydrothermal systems, DOM is almost completely removed, but the mechanism and temperature dependence of this removal have not been studied to date. We investigated molecular-level changes to DOM that was solid-phase extracted (SPE-DOM) from the deep ocean of the North Pacific Ocean. This complex molecular mixture was experimentally exposed to temperatures between 100 and 380 °C over the course of two weeks in artificial seawater, and was then characterised on a molecular level via ultrahigh-resolution Fourier-transform ion cyclotron mass spectrometry (FT-ICR-MS). Almost 93% of SPE-DOM was removed by the treatment at 380 °C, and this removal was accompanied by a consistent pattern of SPE-DOM alteration across the temperatures studied. Higher molecular weight and more oxygen rich compounds were preferentially removed, suggesting that decarboxylation and dehydration of carboxylic acid and alcohol groups are the most rapid degradation mechanisms. Nitrogen containing compounds followed the same overall trends as those containing just C, H and O up to 300 °C. Above this temperature, the most highly altered samples contained very little of the original character of marine DOM, instead being mainly composed of very low intensity N- and S- containing molecules with a high H/C ratio (>1.5). Our results suggest that abiotic hydrothermal alteration of SPE-DOM may already occur at temperatures above 68 °C. Our experiments were conducted without a sedimentary or mineral phase, and demonstrate that profound molecular alteration and almost complete removal of marine SPE-DOM requires nothing more than heating in a seawater matrix.
Hein, J.R.; Clague, D.A.; Koski, R.A.; Embley, R.W.; Dunham, R.E.
2008-01-01
A Tiburon ROV dive within the East Blanco Depression (EBD) increased the mapped extent of a known hydrothermal field by an order of magnitude. In addition, a unique opal-CT (cristobalite-tridymite)-hematite mound was discovered, and mineralized sediments and rock were collected and analyzed. Silica-hematite mounds have not previously been found on the deep ocean floor. The light-weight rock of the porous mound consists predominantly of opal-CT and hematite filaments, rods, and strands, and averages 77.8% SiO2 and 11.8% Fe2O3. The hematite and opal-CT precipitated from a low-temperature (???115?? C), strongly oxidized, silica- and iron-rich, sulfur-poor hydrothermal fluid; a bacterial mat provided the framework for precipitation. Samples collected from a volcaniclastic rock outcrop consist primarily of quartz with lesser plagioclase, smectite, pyroxene, and sulfides; SiO2 content averages 72.5%. Formation of these quartz-rich samples is best explained by cooling in an up-flow zone of silica-rich hydrothermal fluids within a low permeability system. Opal-A, opal-CT, and quartz mineralization found in different places within the EBD hydrothermal field likely reflects decreasing silica saturation and increasing temperature of the mineralizing fluid with increasing silica crystallinity. Six push cores recovered gravel, coarse sand, and mud mineralized variously by Fe or Mn oxides, silica, and sulfides. Total rare-earth element concentrations are low for both the rock and push core samples. Ce and Eu anomalies reflect high and low temperature hydrothermal components and detrital phases. A remarkable variety of types of mineralization occur within the EBD field, yet a consistent suite of elements is enriched (relative to basalt and unmineralized cores) in all samples analyzed: Ag, Au, S, Mo, Hg, As, Sb, Sr, and U; most samples are also enriched in Cu, Pb, Cd, and Zn. On the basis of these element enrichments, the EBD hydrothermal field might best be described as a base- and precious-metal-bearing, silica-Fe-oxide-barite deposit. Such deposits are commonly spatially and temporally associated with volcanogenic massive sulfide (VMS) ores. A plot of data for pathfinder elements shows a large hot spot at the northwestern margin of the field, which may mark a region where moderate to high temperature sulfide deposits are forming at depth; further exploration of the hydrothermal field to the northwest is warranted.
NASA Astrophysics Data System (ADS)
Kring, D. A.; Schmieder, M.; Tikoo, S.; Riller, U. P.; Simpson, S. L.; Osinski, G.; Cockell, C. S.; Coolen, M.; Gulick, S. P. S.; Morgan, J. V.
2017-12-01
Impact cratering, particularly large basin-size craters with diameters >100 km, have the potential to generate vast subsurface hydrothermal systems. There were dozens of such impacts during the Hadean and early Archean, some of which vaporized seas for brief periods of time, during which the safest niches for early life may have been in those subsurface hydrothermal systems. The Chicxulub crater can serve as a proxy for those events. New IODP-ICDP core recovered by Expedition 364 reveals a high-temperature (>300 degree C) system that may have persisted for more than 100,000 years. Of order 105 to 106 km3 of crust was structurally deformed, melted, and vaporized within about 10 minutes of the impact. The crust had to endure immense strain rates of 104/s to 106/s, up to 12 orders of magnitude greater than those associated with igneous and metamorphic processes. The outcome is a porous, permeable region that is a perfect host for hydrothermal circulation across the entire diameter of the crater to depths up to 5 or 6 km. The target rocks at Chicxulub are composed of an 3 km-thick carbonate platform sequence over a crystalline basement composed of igneous granite, granodiorite, and a few other intrusive components, such as dolerite, and metamorphic assemblages composed, in part, of gneiss and mica schist. Post-impact hydrothermal alteration includes Ca-Na- and K-metasomatism, pervasive hydration to produce layered silicates, and lower-temperature vug-filling zeolites as the system cycled from high temperatures to low temperatures. While the extent of granitic crust on early Earth is still debated and, thus, the direct application of those mineral reactions to the Hadean and early Archean can be debated, the thermal evolution of the system should be applicable to diverse crustal compositions. It is important to point out that pre-impact thermal conditions of Hadean and early Archean crust can affect the size of an impact basin and, in turn, the proportion of that basin that may experience hydrothermal conditions. The Chicxulub crater - as sampled by Expedition 364 - will provide the baseline needed to assess the spatial and temporal extent of Hadean and early Archean hydrothermal systems and their potential as crucibles for pre-biotic chemistry and the early evolution of microbial life.
NASA Astrophysics Data System (ADS)
Cathalot, C.; Laes-Huon, A.; Pelleter, E.; Maillard, L.; Chéron, S.; Boissier, A.; Waeles, M.; Cotte, L.; Pernet-Coudrier, B.; Gayet, N.; Sarrazin, J.; Sarradin, P. M.
2016-12-01
Despite the importance of trace metals for marine ecosystems and in the global carbon cycle, dissolved metal sources in the deep ocean and their export mechanism are, today, still unconstrained. The historical view that dissolved metals are largely removed from hydrothermal plumes through precipitation of a range of iron-bearing minerals is now being challenged. Several potential mechanisms for the delivery of hydrothermally sourced metals to the open ocean have been suggested and require a thorough documentation of the early mixing processes between the hydrothermal fluids and the ambient seawater. The geochemistry of a plume, and specially the rising plume, is dictated by the nature and composition of the host rock, fluid temperature, phase separation at depth and subsurface mixing processes, and thus can vary in temperature, pH, metal and dissolved gases content between spatially close hydrothermal vents. Here, we present in situ chemical conditions during the early mixing gradient between hydrothermal fluids and seawater at the Lucky Strike site (Mid-Atlantic Ridge), using a multi proxy approach targeting both the dissolved and particulate phase and combining in situ measurements and analysis back in the lab. Indeed, in situ O2, H2S and temperature measurements were performed at a 1Hz frequency, coupled to lower frequency analysis of in situ Fe2+. In addition, particulate material filtered in situ was analyzed using Inductive Coupled Plasma - Mass Spectrometry, X-Ray Diffraction, X-Ray Fluorescence and Scanning Electron Microscopy and provided useful insights regarding the reactivity of metals during the mixing processes. Our results show different behavior within the Lucky Strike vent field. Fe and S co-precipitation through chalcopyrite formation at the newly discovered Capelinhos site seem to be the main process. At the White Caste site, on the other hand, wurzite and sphalerite precipitation seems to dominate the dilution processes, H2S being rapidly titrated with the available Zinc early in the mixing. Our results indicate a clear control by subsurface mixing processes, at a very local scale: within a single vent field, temperature outflow of the hydrothermal fluid clearly drives Cu, Fe and Zn scavenging in the particulate phase, and controlling hence the iron stability and export.
Phosphate-bonded calcium aluminate cements
Sugama, Toshifumi
1993-01-01
A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120.degree. C. to about 300.degree. C. to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate.
Phosphate-bonded calcium aluminate cements
Sugama, T.
1993-09-21
A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120 C to about 300 C to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate. 10 figures.
NASA Astrophysics Data System (ADS)
Ursu, Daniel; Miclau, Nicolae; Miclau, Marinela
2018-03-01
We report for the first time in situ hydrothermal synthesis of n-type Cu2O thin film using strong alkaline solution. The use of copper foil as substrate and precursor material, low synthesis temperature and short reaction time represent the arguments of a new, simple, inexpensive and high field synthesis method for the preparation of n-type Cu2O thin film. The donor concentration of n-type Cu2O thin film obtained at 2 h of reaction time has increased two orders of magnitude than previous reported values. We have demonstrated n-type conduction in Cu2O thin film prepared in strong alkaline solution, in the contradiction with the previous works. Based on experimental results, the synthesis mechanism and the origin of n-type photo-responsive behavior of Cu2O thin film were discussed. We have proposed that the unexpected n-type character could be explained by H doping of Cu2O thin film in during of the hydrothermal synthesis that caused the p-to-n conductivity-type conversion. Also, this work raises new questions about the origin of n-type conduction in Cu2O thin film, the influence of the synthesis method on the nature of the intrinsic defects and the electrical conduction behavior.
NASA Astrophysics Data System (ADS)
Lellala, Kashinath; Namratha, K.; Sudhakar, K.; Byrappa, K.
2016-05-01
In the present work, undoped and doped Aluminum/Zinc Oxide - graphene oxide (Al/ZnO-GO) nanocomposite have been successfully synthesized by hydrothermal method from zinc acetate and aluminum nitrate solutions without using of any surfactant/stabilizing agents. The results show that the composites of GO nanosheets are decorated densely by Al/ZnO nanoparticles, which displays a good morphology and blend between GO and Al/ZnO. Hybrid composites exhibit an enhanced photocatalytic performance in reduction of dyes under UV-Vis radiation better than bare ZnO-GO and GO for methylene blue dye. The hydrothermal method leads to particles with a higher crystalline due to ambient temperature of the reaction and autogenously pressure conditions, which alters the phases and crystallizations of the nanocomposite. The optical band gap is narrowed to lower energy values due to controlled addition of aluminum and GO in the composite. The improved optical property in Al-doped ZnO flower decorated on GO can be attributed to the decrease in oxygen deficiency after Al doping. XRD, FTIR, UV-Vis spectroscopy, Raman, and Field Emission Scanning Electron Microscopy characterized the effects of Al doping on the structural characteristics and optical properties on the ZnO-GO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lellala, Kashinath; Namratha, K.; Byrappa, K., E-mail: kashinathlellala@gmail.com, E-mail: kbyrappa@gmail.com
In the present work, undoped and doped Aluminum/Zinc Oxide - graphene oxide (Al/ZnO-GO) nanocomposite have been successfully synthesized by hydrothermal method from zinc acetate and aluminum nitrate solutions without using of any surfactant/stabilizing agents. The results show that the composites of GO nanosheets are decorated densely by Al/ZnO nanoparticles, which displays a good morphology and blend between GO and Al/ZnO. Hybrid composites exhibit an enhanced photocatalytic performance in reduction of dyes under UV-Vis radiation better than bare ZnO-GO and GO for methylene blue dye. The hydrothermal method leads to particles with a higher crystalline due to ambient temperature of themore » reaction and autogenously pressure conditions, which alters the phases and crystallizations of the nanocomposite. The optical band gap is narrowed to lower energy values due to controlled addition of aluminum and GO in the composite. The improved optical property in Al-doped ZnO flower decorated on GO can be attributed to the decrease in oxygen deficiency after Al doping. XRD, FTIR, UV-Vis spectroscopy, Raman, and Field Emission Scanning Electron Microscopy characterized the effects of Al doping on the structural characteristics and optical properties on the ZnO-GO.« less
Hydrothermal carbonization of municipal solid waste for carbon sequestration and energy generation
USDA-ARS?s Scientific Manuscript database
A fairly new, innovative technique, called hydrothermal carbonization (HTC), has the potential to change the way municipal solid waste (MSW) is managed. HTC is a wet, low temperature (180-350°C), low pressure (in a closed system) thermochemical waste treatment/conversion technology that has been sho...
Near-field entrainment in black smoker plumes
NASA Astrophysics Data System (ADS)
Smith, J. E.; Germanovich, L. N.; Lowell, R. P.
2013-12-01
In this work, we study the entrainment rate of the ambient fluid into a plume in the extreme conditions of hydrothermal venting at ocean floor depths that would be difficult to reproduce in the laboratory. Specifically, we investigate the flow regime in the lower parts of three black smoker plumes in the Main Endeavour Field on the Juan de Fuca Ridge discharging at temperatures of 249°C, 333°C, and 336°C and a pressure of 21 MPa. Such flow conditions are typical for ocean floor hydrothermal venting but would be difficult to reproduce in the laboratory. The centerline temperature was measured at several heights in the plume above the orifice. Using a previously developed turbine flow meter, we also measured the mean flow velocity at the orifice. Measurements were conducted during dives 4452 and 4518 on the submersible Alvin. Using these measurements, we obtained a range of 0.064 - 0.068 for values of the entrainment coefficient α, which is assumed constant near the orifice. This is half the value of α ≈ 0.12 - 0.13 that would be expected for plume flow regimes based on the existing laboratory results and field measurements in lower temperature and pressure conditions. In fact, α = 0.064 - 0.068 is even smaller than the value of α ≈ 0.075 characteristic of jet flow regimes and appears to be the lowest reported in the literature. Assuming that the mean value α = 0.066 is typical for hydrothermal venting at ocean floor depths, we then characterized the flow regimes of 63 black smoker plumes located on the Endeavor Segment of the Juan de Fuca Ridge. Work with the obtained data is ongoing, but current results indicate that approximately half of these black smokers are lazy in the sense that their plumes exhibit momentum deficits compared to the pure plume flow that develops as the plume rises. The remaining half produces forced plumes that show the momentum excess compared to the pure plumes. The lower value of the entrainment coefficient has important implications for measurements of mass and heat output at mid-oceanic ridges. For example, determining heat output based on the maximum height of plume rise has become a common method of measuring heat flux produced by hydrothermal circulation at mid-oceanic ridges. The fundamental theory for the rise and spreading of turbulent buoyant plumes suggests that the heat output in this method is proportional to α2 and is, therefore, sensitive to the value of α. The considerably different entrainment rates in lazy and forced black smoker plumes may be important for understanding larvae transport mechanism in the life cycle of macrofauna near hydrothermal vents.
Fabrication of flexible piezoelectric PZT/fabric composite.
Chen, Caifeng; Hong, Daiwei; Wang, Andong; Ni, Chaoying
2013-01-01
Flexible piezoelectric PZT/fabric composite material is pliable and tough in nature which is in a lack of traditional PZT patches. It has great application prospect in improving the sensitivity of sensor/actuator made by piezoelectric materials especially when they are used for curved surfaces or complicated conditions. In this paper, glass fiber cloth was adopted as carrier to grow PZT piezoelectric crystal particles by hydrothermal method, and the optimum conditions were studied. The results showed that the soft glass fiber cloth was an ideal kind of carrier. A large number of cubic-shaped PZT nanocrystallines grew firmly in the carrier with a dense and uniform distribution. The best hydrothermal condition was found to be pH 13, reaction time 24 h, and reaction temperature 200°C.
Fabrication of Flexible Piezoelectric PZT/Fabric Composite
Chen, Caifeng; Hong, Daiwei; Wang, Andong; Ni, Chaoying
2013-01-01
Flexible piezoelectric PZT/fabric composite material is pliable and tough in nature which is in a lack of traditional PZT patches. It has great application prospect in improving the sensitivity of sensor/actuator made by piezoelectric materials especially when they are used for curved surfaces or complicated conditions. In this paper, glass fiber cloth was adopted as carrier to grow PZT piezoelectric crystal particles by hydrothermal method, and the optimum conditions were studied. The results showed that the soft glass fiber cloth was an ideal kind of carrier. A large number of cubic-shaped PZT nanocrystallines grew firmly in the carrier with a dense and uniform distribution. The best hydrothermal condition was found to be pH 13, reaction time 24 h, and reaction temperature 200°C. PMID:24348194
Zr/ZrO2 sensors for in situ measurement of pH in high-temperature and -pressure aqueous solutions.
Zhang, R H; Zhang, X T; Hu, S M
2008-04-15
The aim of this study is to develop new pH sensors that can be used to test and monitor hydrogen ion activity in hydrothermal conditions. A Zr/ZrO2 oxidation electrode is fabricated for in situ pH measurement of high-temperature aqueous solutions. This sensor responds rapidly and precisely to pH over a wide range of temperature and pressure. The Zr/ZrO2 electrode was made by oxidizing zirconium metal wire with Na2CO3 melt, which produced a thin film of ZrO2 on its surface. Thus, an oxidation-reduction electrode was produced. The Zr/ZrO2 electrode has a good electrochemical stability over a wide range of pH in high-temperature aqueous solutions when used with a Ag/AgCl reference electrode. Measurements of the Zr/ZrO2 sensor potential against a Ag/AgCl reference electrode is shown to vary linearly with pH between temperatures 20 and 200 degrees C. The slope of the potential versus pH at high temperature is slightly below the theoretical value indicated by the Nernst equation; such deviation is attributed to the fact that the sensor is not strictly at equilibrium with the solution to be tested in a short period of time. The Zr/ZrO2 sensor can be calibrated over the conditions that exist in the natural deep-seawater. Our studies showed that the Zr/ZrO2 electrode is a suitable pH sensor for the hydrothermal systems at midocean ridge or other geothermal systems with the high-temperature environment. Yttria-stabilized zirconia sensors have also been used to investigate the pH of hydrothermal fluids in hot springs vents at midocean ridge. These sensors, however, are not sensitive below 200 degrees C. Zr/ZrO2 sensors have wider temperature range and can be severed as good alternative sensors for measuring the pH of hydrothermal fluids.
The El Teniente porphyry Cu-Mo deposit from a hydrothermal rutile perspective
NASA Astrophysics Data System (ADS)
Rabbia, Osvaldo M.; Hernández, Laura B.; French, David H.; King, Robert W.; Ayers, John C.
2009-11-01
Mineralogical, textural, and chemical analyses (EPMA and PIXE) of hydrothermal rutile in the El Teniente porphyry Cu-Mo deposit help to better constrain ore formation processes. Rutile formed from igneous Ti-rich phases (sphene, biotite, Ti-magnetite, and ilmenite) by re-equilibration and/or breakdown under hydrothermal conditions at temperatures ranging between 400°C and 700°C. Most rutile nucleate and grow at the original textural position of its Ti-rich igneous parent mineral phase. The distribution of Mo content in rutile indicates that low-temperature (˜400-550°C), Mo-poor rutile (5.4 ± 1.1 ppm) is dominantly in the Mo-rich mafic wallrocks (high-grade ore), while high-temperature (˜550-700°C), Mo-rich rutile (186 ± 20 ppm) is found in the Mo-poor felsic porphyries (low-grade ore). Rutile from late dacite ring dikes is a notable exception to this distribution pattern. The Sb content in rutile from the high-temperature potassic core of the deposit to its low-temperature propylitic fringe remains relatively constant (35 ± 3 ppm). Temperature and Mo content of the hydrothermal fluids in addition to Mo/Ti ratio, modal abundance and stability of Ti-rich parental phases are key factors constraining Mo content and provenance in high-temperature (≥550°C) rutile. The initial Mo content of parent mineral phases is controlled by melt composition and oxygen fugacity as well as timing and efficiency of fluid-melt separation. Enhanced reduction of SO2-rich fluids and sulfide deposition in the Fe-rich mafic wallrocks influences the low-temperature (≤550°C) rutile chemistry. The data are consistent with a model of fluid circulation of hot (>550°C), oxidized (ƒO2 ≥ NNO + 1.3), SO2-rich and Mo-bearing fluids, likely exsolved from deeper crystallizing parts of the porphyry system and fluxed through the upper dacite porphyries and related structures, with metal deposition dominantly in the Fe-rich mafic wallrocks.
NASA Astrophysics Data System (ADS)
Fontaine, F. J.; Cannat, M.; Escartin, J.; Crawford, W. C.; Singh, S. C.
2012-12-01
The modalities and efficiency of hydrothermal heat evacuation at mid-ocean ridges (25% of the global heat loss) are controlled by the lithosphere thermal and permeability structures for which we had robust constraints only for fast/intermediate spreading axis until the last past few years during which integrated geophysical, geological and geochemical studies focused on some hydrothermal sites at slow-spreading ridges. At the Lucky Strike vent field of the mid-atlantic ridge - a hydrothermal complex composed of high-temperature (maximum T=340°C), smoker-like vents and associated diffuse flow and extracting a few hundreds MW from the oceanic lithosphere - a seafloor observatory which installation started in 2005 highlights local interactions between hydrothermal, tectonic and magmatic processes. Detailed geophysical and geological investigations stress the role of the local axial fault system on localizing high- and low-temperature ventings around the faulted rim of a paleo lava lake. Microseismic studies bring constraints on the subseafloor hydrology and suggest an along-axis flow pattern, with a privileged recharge area located about a kilometer north off the active discharges. Seismic reflection studies image a central magma chamber fueling the hydrothermal sites and also reveal its along-axis depth variations likely influencing hydrothermal cell organization and flow focusing. Such linkages among hydrothermal dynamics, heat source and crustal permeability geometries usually lack quantitative constraints at mid-ocean ridges in general, and the Lucky Strike segment settings offers a unique opportunity to couple high-resolution geophysical data to hydrodynamic model. Here we develop a series of original two- and three-dimensional numerical and physical models of hydrothermal activity, tailored to this slow-spreading environment. Our results highlight physical linkages among magmatism, tectonics and crustal hydrology stressing the key role of faulting and magma chamber roof-topology in focusing fluid flow at the center of the Lucky Strike segment. They also help identifying some causes of variations in the modalities of hydrothermal heat extraction along the global ridge network.
NASA Astrophysics Data System (ADS)
Kitada, K.; Wu, H. Y.; Miyazaki, J.; Akiyama, K.; Nozaki, T.; Ishibashi, J. I.; Kumagai, H.; Maeda, L.
2016-12-01
The Okinawa trough is an active backarc basin behind the Ryukyu subduction zone and exhibits active rifting associated with extension of the continental margin. The temperature measurement in this area is essential for understanding hydrothermal system and hydraulic structure. During the CK16-01 cruise this March, we have conducted the in-situ temperature measurements by the newly developed downhole tool, TRDT (Thermo-Resistant Downhole Thermometer) in hydrothermal fields of the mid-Okinawa Trough. The purpose of this measurement is to investigate the in-situ temperature structure in deep-hot zones and its variation after coring and/or drilling. TRDT was designed by JAMSTEC as a memory downhole tool to measure in-situ borehole temperature under the extreme high temperature environment. First trial was conducted in the CK14-04 cruise by the free fall deployment to reduce the operation time. However, there was no temperature data recorded due to the strong vibration during the operation. After CK14-04 cruise, TRDT was modified to improve the function against vibration and shock. The improved TRDT passed the high temperature, vibration and shock tests to ensure the data acquisition of borehole logging. During the CK16-01 cruise, we have first successfully collected the in-situ temperature data from hydrothermal borehole in the Iheya North Knoll with wireline system. The temperature at depth of 187mbsf continued to increase almost linearly from 220 to 245°C during the 20 minute measurements time. This suggests that the inside borehole was cooled down by pumping seawater through drill pipes during the coring and lowering down the TRDT tool to the bottom hole. The in-situ temperature were extrapolated with exponential curve using nonlinear least squares fitting and the estimated equilibrium temperature was 278°C. To recover the in-situ temperature more precisely, the measurement time should kept as long as possible by considering the temperature rating. The operational procedure is also important to succeed in temperature logging. TRDT was deployed by wireline system to avoid damage from the strong vibration and shock. In order to get in-situ temperature data, the key factors are: 1) keeping the borehole for recovering the in-situ temperature after the coring; 2) TRDT sensor deployment without pumping seawater.
A hydrothermal atomic force microscope for imaging in aqueous solution up to 150 °C
NASA Astrophysics Data System (ADS)
Higgins, Steven R.; Eggleston, Carrick M.; Knauss, Kevin G.; Boro, Carl O.
1998-08-01
We present the design of a contact atomic force microscope (AFM) that can be used to image solid surfaces in aqueous solution up to 150 °C and 6 atm. The main features of this unique AFM are: (1) an inert gas pressurized microscope base containing stepper motor for coarse advance and the piezoelectric tube scanner; (2) a chemically inert membrane separating these parts from the fluid cell; (3) a titanium fluid cell with fluid inlet-outlet ports, a thermocouple port, and a sapphire optical window; (4) a resistively heated ceramic booster heater for the fluid cell to maintain the temperature of solutions sourced from a hydrothermal bomb; and (5) mass flow control. The design overcomes current limitations on the temperature and pressure range accessible to AFM imaging in aqueous solutions. Images taken at temperature and pressure are presented, demonstrating the unit-cell scale (<1 nm) vertical resolution of the AFM under hydrothermal conditions.
Sekine, Yasuhito; Shibuya, Takazo; Postberg, Frank; Hsu, Hsiang-Wen; Suzuki, Katsuhiko; Masaki, Yuka; Kuwatani, Tatsu; Mori, Megumi; Hong, Peng K.; Yoshizaki, Motoko; Tachibana, Shogo; Sirono, Sin-iti
2015-01-01
It has been suggested that Saturn's moon Enceladus possesses a subsurface ocean. The recent discovery of silica nanoparticles derived from Enceladus shows the presence of ongoing hydrothermal reactions in the interior. Here, we report results from detailed laboratory experiments to constrain the reaction conditions. To sustain the formation of silica nanoparticles, the composition of Enceladus' core needs to be similar to that of carbonaceous chondrites. We show that the presence of hydrothermal reactions would be consistent with NH3- and CO2-rich plume compositions. We suggest that high reaction temperatures (>50 °C) are required to form silica nanoparticles whether Enceladus' ocean is chemically open or closed to the icy crust. Such high temperatures imply either that Enceladus formed shortly after the formation of the solar system or that the current activity was triggered by a recent heating event. Under the required conditions, hydrogen production would proceed efficiently, which could provide chemical energy for chemoautotrophic life. PMID:26506464
Chen, Xue; Li, Hanyin; Sun, Shaoni; Cao, Xuefei; Sun, Runcang
2016-12-16
Due to the enormous abundance of lignin and its unique aromatic nature, lignin has great potential for the production of industrially useful fuels, chemicals, and materials. However, the rigid and compact structure of the plant cell walls significantly blocks the separation of lignin. In this study, wheat straw was hydrothermally pretreated at different temperatures (120-200 °C) followed by post-treatment with 70% ethanol containing 1% NaOH to improve the isolation of lignin. Results demonstrated that the content of associated carbohydrates of the lignin fractions was gradually reduced with the increment of the hydrothermal severity. The structure of the lignins changed regularly with the increase of the pretreatment temperature from 120 to 200 °C. In particular, the contents of β-O-4', β-β', β-5' linkages and aliphatic OH in the lignins showed a tendency of decrease, while the content of phenolic OH and thermal stability of the lignin fractions increased steadily as the increment of the pretreatment temperature.
NASA Astrophysics Data System (ADS)
Chen, Xue; Li, Hanyin; Sun, Shaoni; Cao, Xuefei; Sun, Runcang
2016-12-01
Due to the enormous abundance of lignin and its unique aromatic nature, lignin has great potential for the production of industrially useful fuels, chemicals, and materials. However, the rigid and compact structure of the plant cell walls significantly blocks the separation of lignin. In this study, wheat straw was hydrothermally pretreated at different temperatures (120-200 °C) followed by post-treatment with 70% ethanol containing 1% NaOH to improve the isolation of lignin. Results demonstrated that the content of associated carbohydrates of the lignin fractions was gradually reduced with the increment of the hydrothermal severity. The structure of the lignins changed regularly with the increase of the pretreatment temperature from 120 to 200 °C. In particular, the contents of β-O-4‧, β-β‧, β-5‧ linkages and aliphatic OH in the lignins showed a tendency of decrease, while the content of phenolic OH and thermal stability of the lignin fractions increased steadily as the increment of the pretreatment temperature.
Sekine, Yasuhito; Shibuya, Takazo; Postberg, Frank; Hsu, Hsiang-Wen; Suzuki, Katsuhiko; Masaki, Yuka; Kuwatani, Tatsu; Mori, Megumi; Hong, Peng K; Yoshizaki, Motoko; Tachibana, Shogo; Sirono, Sin-iti
2015-10-27
It has been suggested that Saturn's moon Enceladus possesses a subsurface ocean. The recent discovery of silica nanoparticles derived from Enceladus shows the presence of ongoing hydrothermal reactions in the interior. Here, we report results from detailed laboratory experiments to constrain the reaction conditions. To sustain the formation of silica nanoparticles, the composition of Enceladus' core needs to be similar to that of carbonaceous chondrites. We show that the presence of hydrothermal reactions would be consistent with NH3- and CO2-rich plume compositions. We suggest that high reaction temperatures (>50 °C) are required to form silica nanoparticles whether Enceladus' ocean is chemically open or closed to the icy crust. Such high temperatures imply either that Enceladus formed shortly after the formation of the solar system or that the current activity was triggered by a recent heating event. Under the required conditions, hydrogen production would proceed efficiently, which could provide chemical energy for chemoautotrophic life.
Delineating Spatial Patterns in the Yellowstone Hydrothermal System using Geothermometry
NASA Astrophysics Data System (ADS)
King, J.; Hurwitz, S.; Lowenstern, J. B.
2015-12-01
Yellowstone National Park is unmatched with regard to its quantity of active hydrothermal features. Origins of thermal waters in its geyser basins have been traced to mixing of a deep parent water with meteoric waters in shallow local reservoirs (Fournier, 1989). A mineral-solution equilibrium model was developed to calculate water-rock chemical re-equilibration temperatures in these shallow reservoirs. We use the GeoT program, which uses water composition data as input to calculate saturation indices of selected minerals; the "best-clustering" minerals are then statistically determined to infer reservoir temperatures (Spycher et al., 2013). We develop the method using water composition data from Heart Lake Geyser Basin (HLGB), for which both chemical and isotopic geothermometers predict a reservoir water temperature of 205°C ± 10°C (Lowenstern et al., 2012), and minerals found in drill cores in Yellowstone's geyser basins. We test the model for sensitivity to major element composition, pH, Total Inorganic Carbon (TIC) and selected minerals to optimize model parameters. Calculated temperatures are most accurate at pH values below 9.0, and closely match the equilibrium saturation indices of quartz, stilbite, microcline, and albite. The model is optimized with a TIC concentration that is consistent with the mass of diffuse CO2 flux in HLGB (Lowenstern et al., 2012). We then use water compositions from other thermal basins in Yellowstone in search of spatial variations in reservoir temperatures. We then compare the calculated temperatures with various SiO2 and cation geothermometers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Xiaolei; Zhang, Yu; Li, Qiuyu
2014-11-15
Graphical abstract: A facile hydrothermal method for the synthesis of uniform spindle-like SrMoO{sub 4}:Eu{sup 3+} phosphors with the assistance of sodium citrate (Na{sub 3}Cit). - Highlights: • Well-crystallized spindle-like SrMoO{sub 4}:Eu{sup 3+} phosphors have been synthesized. • The influence of the reaction temperature and reaction time were clearly shown. • The dosage of Na{sub 3}Cit has a strong effect on the spindle-like SrMoO{sub 4}:Eu{sup 3+} phosphors. • The growth mechanism for the formation of final samples was proposed. - Abstract: Highly uniform spindle-like SrMoO{sub 4}:Eu{sup 3+} phosphors have been prepared by a facile hydrothermal method using sodium citrate (Na{sub 3}Cit)more » as the chelating reagent. X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectrum (EDS), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform-infrared spectroscopy (FT-IR) and photoluminescence spectra (PL) were used to characterize the resulting samples. The dosage of sodium citrate, reaction temperature and reaction time play key roles in the formation of the final samples. The possible formation mechanism for SrMoO{sub 4}:Eu{sup 3+} phosphors has been proposed. Upon excitation by ultraviolet radiation, the as-synthesized SrMoO{sub 4}:Eu{sup 3+} phosphors show the characteristic {sup 5}D{sub 0}–{sup 7}F{sub J} (J = 1, 2, 3, 4) emission lines with red emission {sup 5}D{sub 0}–{sup 7}F{sub 2} (613 nm) as the most prominent group.« less
In Search for Diffuse Hydrothermal Venting at North Pond, Western Flank of the Mid-Atlantic-Ridge
NASA Astrophysics Data System (ADS)
Villinger, H. W.; Becker, K.; Hulme, S.; Kaul, N. E.; Müller, P.; Wheat, C. G.
2015-12-01
We present results from temperature measurements made with a ROV temperature lance in sediments deposited on the slopes of abyssal hills and small basins surrounding North Pond. North Pond is a ~8x15 km large sediment basin located on ~7 Ma year old crust west of the Mid-Atlantic Ridge at 23°N. Data were collected with the ROV Jason II during cruise MSM37 on the German RV Maria S. Merian in April 2014. The temperature lance consists of a 60 cm long stainless steel tube (o.d. 12 mm) housing 8 thermistors with a spacing of 80 mm, resulting in an active length of 56 cm. Data are logged with an 8-channel data logger (XR-420-T8, RBR, Ottawa) and transmitted online to the control van of the ROV. Data reduction and temperature gradient calculation is done according to the HFRED algorithm (Villinger & Davis, 1987). 90 sites in total were visited, 88 gave good data for temperature gradient calculation. Calculated gradients are usually of good to very good quality. The gradients vary between less than 20 to more than 1000 mK/m reflecting the very heterogeneous distribution of geothermal heat flow. The expected conductive lithospheric heat flow for North Pond is ~190 mW/m2 (geothermal gradient of ~190 mK/m with a thermal conductivity of 1 W/Km). The highest temperature gradients are measured in places where temperature ~50 cm below the sediment-water boundary exceeds bottom water temperature by ~0.5 K . These high temperature gradients may reflect local hydrothermal circulation within the pillow lavas, however no focused discharge was detected. The analysis of temperature measurements made with the ROV-mounted CTD shows clearly detectable bottom water temperature anomalies. We infer that they are either caused by hydrothermal discharge through the thin sediment cover or through unsedimented pillow basalts nearby. Hydrothermal circulation in a North-Pond-like environment appears to be diffuse in nature, hence very difficult if not impossible to detect and to quantify.
Stability of peptides in high-temperature aqueous solutions
NASA Astrophysics Data System (ADS)
Shock, Everett L.
1992-09-01
Estimated standard molal thermodynamic properties of aqueous dipeptides and their constituent amino acids indicate that temperature increases correspond to increased stability of peptide bonds relative to hydrolysis reactions. Pressure increases cause slight decreases in peptide bond stability, which are generally offset by greater stability caused by temperature increases along geothermal gradients. These calculations suggest that peptides, polypeptides, and proteins may survive hydrothermal alteration of organic matter depending on the rates of the hydrolysis reactions. Extremely thermophilic organisms may be able to take advantage of the decreased energy required to form peptide bonds in order to maintain structural proteins and enzymes at elevated temperatures and pressures. As the rates of hydrolysis reactions increase with increasing temperature, formation of peptide bonds may become a facile process in hydrothermal systems and deep in sedimentary basins.
NASA Astrophysics Data System (ADS)
Wilcock, W.
2003-04-01
Hydrothermal circulation is the dominant mechanism for cooling young oceanic crust and knowledge of its depth, extent and timing is critical for our understanding of crustal accretion. At fast-spreading ridges there is considerable controversy regarding the importance of this process in the lower crust. Geochemical data indicate that high-temperature hydrothermal fluids react with the lower crust but they also suggest that the reactions are limited to a narrow temperature interval and involve relatively small volumes of fluid. As a result many geochemical studies conclude that high-temperature hydrothermal circulation plays a relatively small role in heat transport in the lower crust and occurs in a closed system that is isolated from upper crustal hydrothermal cells. In contrast, seismic observations on the fast spreading East Pacific Rise show that the mid-crustal axial magma chamber is underlain by a low velocity zone which is no more than 5-8 km wide throughout the lower crust and is interpreted as a region of elevated temperatures containing relatively low average melt fractions. Irrespective of the style of lower crustal accretion, simple physical considerations suggest that this structure is only thermally feasible if the lower crust cools by extensive hydrothermal circulation. Modeling studies indicate that this requires the permeability of the lower crust to temporarily reach at least ~10-13 m2. In order to reconcile the geochemical and geophysical data it is important to recognize that the thermal constraints do not require pervasive seawater circulation in the lower crust and can be satisfied by focused flow through narrow permeable zones spaced as far as about 1 km apart. Widely spaced regions of flow might be difficult to find in the field especially if the sampling strategies focus on the freshest outcrops. There is a tendency to overestimate the volume of fluid that must circulate through an open single-pass system. The fluid-rock ratios (0.2 - 1) inferred from oxygen isotope studies are often cited as evidence of limited circulation but when interpreted physically they are actually sufficient to transport a substantial proportion of the heat required to solidify and cool the lower crust. Nevertheless the geophysical constraints are also compatible with circulation in a two-layer double diffusive system favored by many researchers, in which the lower crust is cooled by a recirculating brine cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biasotto, G.; Simoes, A.Z., E-mail: alezipo@yahoo.com; Foschini, C.R.
Highlights: Black-Right-Pointing-Pointer BiFeO{sub 3} (BFO) nanoparticles were grown by hydrothermal microwave method (HTMW). Black-Right-Pointing-Pointer The soaking time is effective in improving phase formation. Black-Right-Pointing-Pointer Rietveld refinement reveals an orthorhombic structure. Black-Right-Pointing-Pointer The observed magnetism of the BFO crystallites is a consequence of particle size. Black-Right-Pointing-Pointer The HTMW is a genuine technique for low temperatures and short times of synthesis. -- Abstract: Hydrothermal microwave method (HTMW) was used to synthesize crystalline bismuth ferrite (BiFeO{sub 3}) nanoparticles (BFO) in the temperature of 180 Degree-Sign C with times ranging from 5 min to 1 h. BFO nanoparticles were characterized by means of X-raymore » analyses, FT-IR, Raman spectroscopy, TG-DTA and FE-SEM. X-ray diffraction results indicated that longer soaking time was benefit to refraining the formation of any impurity phases and growing BFO crystallites into almost single-phase perovskites. Typical FT-IR spectra for BFO nanoparticles presented well defined bands, indicating a substantial short-range order in the system. TG-DTA analyses confirmed the presence of lattice OH{sup -} groups, commonly found in materials obtained by HTMW process. Compared with the conventional solid-state reaction process, submicron BFO crystallites with better homogeneity could be produced at the temperature as low as 180 Degree-Sign C. These results show that the HTMW synthesis route is rapid, cost effective, and could be used as an alternative to obtain BFO nanoparticles in the temperature of 180 Degree-Sign C for 1 h.« less
Dissolved gases in hydrothermal (phreatic) and geyser eruptions at Yellowstone National Park, USA
Hurwitz, Shaul; Clor, Laura; McCleskey, R. Blaine; Nordstrom, D. Kirk; Hunt, Andrew G.; Evans, William C.
2016-01-01
Multiphase and multicomponent fluid flow in the shallow continental crust plays a significant role in a variety of processes over a broad range of temperatures and pressures. The presence of dissolved gases in aqueous fluids reduces the liquid stability field toward lower temperatures and enhances the explosivity potential with respect to pure water. Therefore, in areas where magma is actively degassing into a hydrothermal system, gas-rich aqueous fluids can exert a major control on geothermal energy production, can be propellants in hazardous hydrothermal (phreatic) eruptions, and can modulate the dynamics of geyser eruptions. We collected pressurized samples of thermal water that preserved dissolved gases in conjunction with precise temperature measurements with depth in research well Y-7 (maximum depth of 70.1 m; casing to 31 m) and five thermal pools (maximum depth of 11.3 m) in the Upper Geyser Basin of Yellowstone National Park, USA. Based on the dissolved gas concentrations, we demonstrate that CO2 mainly derived from magma and N2 from air-saturated meteoric water reduce the near-surface saturation temperature, consistent with some previous observations in geyser conduits. Thermodynamic calculations suggest that the dissolved CO2 and N2 modulate the dynamics of geyser eruptions and are likely triggers of hydrothermal eruptions when recharged into shallow reservoirs at high concentrations. Therefore, monitoring changes in gas emission rate and composition in areas with neutral and alkaline chlorine thermal features could provide important information on the natural resources (geysers) and hazards (eruptions) in these areas.
NASA Astrophysics Data System (ADS)
Basile-Doelsch, Isabelle; Puyraveau, Romain-Arnaud; Guihou, Abel; Haurine, Frederic; Deschamps, Pierre; rad, Setareh; Nehlig, Pierre
2017-04-01
Low temperature chemical weathering fractionates silicon (Si) isotopes while forming secondary silicates. The Si fractionation ranges of high temperature secondary phyllosilicates formed in hydrothermal alteration environments have not been investigated to date. Several parameters, including temperature, reaction rates, pH, ionic concentrations in solution, precipitation/dissolution series or kinetic versus equilibrium regime are not the same in hydrothermal alteration and surface weathering systems and may lead to different fractionation factors. In this work, we analyzed Si isotopes in these two types of alteration conditions in two profiles sampled on the volcanic island of Mayotte. In both profiles, Si-bearing secondary mineral was kaolinite. Both profiles showed 30Si depletion as a function of the degree of alteration but each with a distinct pattern. In the meteoric weathering profile, from the bottom to the top, a gradual decrease of the δ30Si from parent rock (-0.29 ± 0.13 ‰) towards the most weathered product (-2.05 ± 0.13 ‰) was observed. In the hydrothermal alteration profile, in which meteoric weathering was also superimposed at the top of the profile, an abrupt transition of the δ30Si was measured at the interface between parent-rock (-0.21 ± 0.11 ‰) and the altered products, with a minimum value of -3.06 ± 0.16 ‰˙ At the scale of Si-bearing secondary minerals, in the chemical weathering system, a Δ30Sikaol-parentrock of -1.9 ‰ was observed, in agreement with results in the literature. A low temperature kinetic fractionation 30ɛ of -2.29 ‰ was calculated using a simple steady state model. However, an unexpected Δ30Sikaol-parentrock of -2.85 ‰ was measured in the hydrothermal alteration site, pointing to possible mechanisms linked to dissolution/precipitation series and/or to ionic composition of the solution as the main controlling factors of fractionation in hydrothermal conditions. At the scale of the profiles, both δ30Si bulk rocks showed linear correlations with the SiO2:Al2O3 ratios, suggesting an alternative alteration index based on Si isotopic composition.
Hydrothermal Signatures at Gale Crater, Mars, and Possible In-Situ Formation of Tridymite
NASA Astrophysics Data System (ADS)
Yen, A. S.; Morris, R. V.; Gellert, R.; Berger, J. A.; Sutter, B.; Downs, R. T.; Bristow, T.; Treiman, A. H.; Ming, D. W.; Achilles, C.; Blake, D. F.; Chipera, S.; Clark, B. C.; Craig, P.; Morrison, S. M.; Rampe, E. B.; Schmidt, M. E.; Schwenzer, S. P.; Thompson, L. M.; Vaniman, D.
2017-12-01
The occurrence of tridymite, a high temperature SiO2 polymorph definitively identified by the Curiosity rover in the Buckskin mudstone sample at Gale crater, Mars, has been attributed to detrital accumulation of rhyolitic material. This interpretation of a detrital origin is revisited in light of the observation that the tridymite-hosting sediments appear to have interacted with the same fluids that produced alteration halos in the overlying sandstone. The alteration halos in the Stimson sandstone are light-toned, elevated silica zones within 50 cm of a central fracture. They have likely experienced chemical leaching under acidic conditions resulting in depletion of metals (including Al), retention of Ti, formation of amorphous iron sulfates, 50% reduction of the pyroxene:plagioclase ratio, a factor of two increase in the Fe/Mn ratio, and passive enrichment of Si. This alteration is not constrained (nor precluded) to have occurred at elevated temperatures, but there are abundant indicators of hydrothermal activity within Gale crater. High concentrations of Ge, Zn, Ni, Pb, Cu, Se and Ga in a variety of samples analyzed by the Alpha Particle X-ray Spectrometer are indicative of mobility in hydrothermal solutions. Mineralogy of Gale crater samples determined by the CheMin X-ray diffraction instrument includes phases which may be associated with hydrothermal activity (smectites, anhydrite, hematite), but definitive detections of mineral assemblages that are necessarily hydrothermal in origin remain absent. The nearly identical patterns of enriched and depleted elements of the Stimson alteration halos (relative to parent rocks) and the tridymite-bearing unit (relative to typical mudstone samples) require the consideration of co-genetic origins. Cristobalite, a SiO2 polymorph stable above 1470°C found in the Buckskin sample, is known to form in hydrothermal solutions at temperatures well below its stability field (Henderson et al., 1971). Formation of well-crystalline tridymite at temperatures below its thermodynamic stability range (870-1470°C) has not been established, but cannot be excluded. Thus, the possibility that the fluids responsible for the passive enrichment of silica in the Stimson alteration halos also resulted in the in-situ formation of tridymite deserves further consideration.
Hydrothermal signature in the axial-sediments from the Carlsberg Ridge in the northwest Indian Ocean
NASA Astrophysics Data System (ADS)
Yu, Zenghui; Li, Huaiming; Li, Mengxing; Zhai, Shikui
2018-04-01
30 sediments grabbed from 24 sites between the equator and 10°N along the Carlsberg Ridge (CR) in the northwest Indian Ocean has been analyzed for bulk chemical compositions. Hydrothermal components in the sediments are identified and characterized. They mainly occur at 6.3°N as sulfide debris and at 3.6°N as both sulfide and high temperature water-rock interaction products. The enrichment of chalcophile elements such as Zn, Cu, Pb and the depletion of alkalis metals such as K and Rb are the typical features of hydrothermal components. High U/Fe, low (Nd/Yb)N and negative Ce anomaly infer the uptake of seawater in the hydrothermal deposits by oxidizing after deposition. However, the general enrichment of Mn in hydrothermal plumed-derived materials is not found in the sediments, which may indicate the limited diffusion of fluids or plumes, at least in the direction along the Carlsberg spreading center. The hydrothermal components show their similarity to the hydrothermal deposits from the Indian Ocean Ridge. At 3.6°N ultramafic rocks or gabbroic intrusions, may be involved in the hydrothermal system.
Hydrothermal Synthesis of Analcime from Kutingkeng Formation Mudstone
NASA Astrophysics Data System (ADS)
Hsiao, Yin-Hsiu; Chen, Kuan-Ting; Ray, Dah-Tong
2015-04-01
In southwest of Taiwan, the foothill located in Tainan-Kaohsiung city is the exposed area of Pliocene strata to early Pleistocene strata. The strata are about a depth of five thousand, named as Kutigkeng Formation. The outcrop of Kutigkeng Formation is typical badlands, specifically called 'Moon World.' It is commonly known as no important economic applications of agricultural land. The mineral compositions of Kutingkeng Formation are quartz, clay minerals and feldspar. The clay minerals consist of illite, clinochlore and swelling clays. To study how the phase and morphology of analcime formed by hydrothermal synthesis were affected, analcime was synthesized from the mudstone of Kutinkeng Formation with microwave hydrothermal reaction was investigated. The parameters of the experiment were the reaction temperature, the concentration of mineralizer, solids/liquid ratio and time. The sodium silicate (Na2SiO3) were used as mineralizer. The results showed that the analcime could be synthesized by hydrothermal reaction above 180° from Kutinkeng Formation mudstone samples. At the highest temperature (240°) of this study, the high purity analcime could be produced. When the concentration of Na2SiO3=3~6M, analcime could be synthesized at 240°. The best solids/liquid ratio was approximate 1 to 5. The hydrothermal reaction almost was completed after 4 hours.
NASA Astrophysics Data System (ADS)
Andersen, C.; Theissen-Krah, S.; Hannington, M.; Rüpke, L.; Petersen, S.
2017-06-01
The potential of mining seafloor massive sulfide deposits for metals such as Cu, Zn, and Au is currently debated. One key challenge is to predict where the largest deposits worth mining might form, which in turn requires understanding the pattern of subseafloor hydrothermal mass and energy transport. Numerical models of heat and fluid flow are applied to illustrate the important role of fault zone properties (permeability and width) in controlling mass accumulation at hydrothermal vents at slow spreading ridges. We combine modeled mass-flow rates, vent temperatures, and vent field dimensions with the known fluid chemistry at the fault-controlled Logatchev 1 hydrothermal field of the Mid-Atlantic Ridge. We predict that the 135 kilotons of SMS at this site (estimated by other studies) can have accumulated with a minimum depositional efficiency of 5% in the known duration of hydrothermal venting (58,200 year age of the deposit). In general, the most productive faults must provide an efficient fluid pathway while at the same time limit cooling due to mixing with entrained cold seawater. This balance is best met by faults that are just wide and permeable enough to control a hydrothermal plume rising through the oceanic crust. Model runs with increased basal heat input, mimicking a heat flow contribution from along-axis, lead to higher mass fluxes and vent temperatures, capable of significantly higher SMS accumulation rates. Nonsteady state conditions, such as the influence of a cooling magmatic intrusion beneath the fault zone, also can temporarily increase the mass flux while sustaining high vent temperatures.
Sorey, M.L.; Suemnicht, G.A.; Sturchio, N.C.; Nordquist, G.A.
1991-01-01
Data collected since 1985 from test drilling, fluid sampling, and geologic and geophysical investigations provide a clearer definition of the hydrothermal system in Long Valley caldera than was previously available. This information confirms the existence of high-temperature (> 200??C) reservoirs within the volcanic fill in parts of the west moat. These reservoirs contain fluids which are chemically similar to thermal fluids encountered in the central and eastern parts of the caldera. The roots of the present-day hydrothermal system (the source reservoir, principal zones of upflow, and the magmatic heat source) most likely occur within metamorphic basement rocks beneath the western part of the caldera. Geothermometer-temperature estimates for the source reservoir range from 214 to 248??C. Zones of upflow of hot water could exist beneath the plateau of moat rhyolite located west of the resurgent dome or beneath Mammoth Mountain. Lateral flow of thermal water away from such upflow zones through reservoirs in the Bishop Tuff and early rhyolite accounts for temperature reversals encountered in most existing wells. Dating of hot-spring deposits from active and inactive thermal areas confirms previous interpretations of the evolution of hydrothermal activity that suggest two periods of extensive hot-spring discharge, one peaking about 300 ka and another extending from about 40 ka to the present. The onset of hydrothermal activity around 40 ka coincides with the initiation of rhyolitic volcanism along the Mono-Inyo Craters volcanic chain that extends beneath the caldera's west moat. ?? 1991.
Effect of elevated temperature on soil hydrothermal regimes and growth of wheat crop.
Pramanik, P; Chakrabarti, Bidisha; Bhatia, Arti; Singh, S D; Maity, A; Aggarwal, P; Krishnan, P
2018-03-14
An attempt has been made to study the effect of elevated temperature on soil hydrothermal regimes and winter wheat growth under simulated warming in temperature gradient tunnel (TGT). Results showed that bulk density (BDs) of 0, 0.9, and 2.5 °C were significantly different whereas BDs of 2.8 and 3.5 °C were not significantly different. Water filled pore space (WFPS) was maximum at 3.5 °C temperature rise and varied between 43.80 and 98.55%. Soil surface temperature (ST) at different dates of sowing increased with rise in sensor temperature and highest ST was observed at S5 sensors (3.5 °C temperature rise). Temperature and its difference were high for the top soil, and were stable for the deep soil. Photosynthesis rate (μmol CO 2 m -2 s -1 ) of wheat was lower at higher temperature in different growth stages of wheat. In wheat, stomatal conductance declined from 0.67 to 0.44 mol m -2 s -1 with temperature rise. Stomatal conductance decreased with increase in soil temperature and gravimetric soil moisture content (SWC). In TGT, 0 °C temperature rise showed highest root weight density (RWD) (5.95 mg cm -3 ); whereas, 2.8 and 3.5 °C showed lowest RWD (4.90 mg cm -3 ). Harvest index was maximum (0.37) with 0 °C temperature rise, and it decreased with increase in temperature, which indicated that both grain and shoot biomass decreased with increase in temperature. Intensive studies are needed to quantify the soil hydrothermal regimes inside TGT along with the crop growth parameters.
Calibrated Hydrothermal Parameters, Barrow, Alaska, 2013
Atchley, Adam; Painter, Scott; Harp, Dylan; Coon, Ethan; Wilson, Cathy; Liljedahl, Anna; Romanovsky, Vladimir
2015-01-29
A model-observation-experiment process (ModEx) is used to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. Each column was used in a coupled calibration to identify moss, peat and mineral soil hydrothermal properties to be used in up-scaled simulations. Observational soil temperature data from a tundra site located near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated hydrothermal parameters for moss, peat, and mineral soil hydrothermal parameters.
NASA Astrophysics Data System (ADS)
Dell'Agli, G.; Mascolo, G.; Mascolo, M. C.; Pagliuca, C.
2005-06-01
Mechanical mixtures of zirconia xerogel and crystalline Y 2O 3 were hydrothermally treated by microwave and traditional route, respectively. Some mixtures were used either as powders form or as cylindrical compacts isostatically pressed at 150 MPa. The microwave-hydrothermal treatments were performed at 110, 150 and 200 °C for reaction times up to 2 h, whereas the traditional hydrothermal treatments were performed at 110 °C at increasing reaction times up to 7 days. All the treatments were performed in the presence of diluted (0.2 M) or concentrated (2.0 M) solution of (K 2CO 3+KOH) mineralizer. The crystallization-stabilization mechanism of synthesized Y-based zirconia powders and the reaction times for the full crystallization at the low temperature of hydrothermal treatments are discussed.
Brillouin spectroscopy of fluid inclusions proposed as a paleothermometer for subsurface rocks.
El Mekki-Azouzi, Mouna; Tripathi, Chandra Shekhar Pati; Pallares, Gaël; Gardien, Véronique; Caupin, Frédéric
2015-08-28
As widespread, continuous instrumental Earth surface air temperature records are available only for the last hundred fifty years, indirect reconstructions of past temperatures are obtained by analyzing "proxies". Fluid inclusions (FIs) present in virtually all rock minerals including exogenous rocks are routinely used to constrain formation temperature of crystals. The method relies on the presence of a vapour bubble in the FI. However, measurements are sometimes biased by surface tension effects. They are even impossible when the bubble is absent (monophasic FI) for kinetic or thermodynamic reasons. These limitations are common for surface or subsurface rocks. Here we use FIs in hydrothermal or geodic quartz crystals to demonstrate the potential of Brillouin spectroscopy in determining the formation temperature of monophasic FIs without the need for a bubble. Hence, this novel method offers a promising way to overcome the above limitations.
Brillouin spectroscopy of fluid inclusions proposed as a paleothermometer for subsurface rocks
Mekki-Azouzi, Mouna El; Tripathi, Chandra Shekhar Pati; Pallares, Gaël; Gardien, Véronique; Caupin, Frédéric
2015-01-01
As widespread, continuous instrumental Earth surface air temperature records are available only for the last hundred fifty years, indirect reconstructions of past temperatures are obtained by analyzing “proxies”. Fluid inclusions (FIs) present in virtually all rock minerals including exogenous rocks are routinely used to constrain formation temperature of crystals. The method relies on the presence of a vapour bubble in the FI. However, measurements are sometimes biased by surface tension effects. They are even impossible when the bubble is absent (monophasic FI) for kinetic or thermodynamic reasons. These limitations are common for surface or subsurface rocks. Here we use FIs in hydrothermal or geodic quartz crystals to demonstrate the potential of Brillouin spectroscopy in determining the formation temperature of monophasic FIs without the need for a bubble. Hence, this novel method offers a promising way to overcome the above limitations. PMID:26316328
NASA Astrophysics Data System (ADS)
Stobbs, I. J.; Lusty, P.; Petersen, S.; Murton, B. J.
2017-12-01
Two extinct seafloor massive sulphide (eSMS) deposits within the TAG hydrothermal field, 26oN, mid-Atlantic ridge, were mapped and drilled: Southern Mound and the newly discovered `Rona Mound'. Surface mapping was undertaken by combining high definition video footage and high resolution bathymetry to interpret surface geological and geomorphological features. Drill core was recovered using the BGS RD2 robotic drilling rig. Surface mapping of the mounds revealed a superficial cover of carbonate and iron-oxyhydroxides sediments, observed to directly overly oxide coated sulphide material within fault scarps, which dissect the flanks of both mounds. Drilling at the summits of the mounds revealed similar stratigraphy to the mapping, with the addition of a coherent and dense layer of red-coloured silica-rich `jasper', up to 3m thick, underlying the sediments and overlying unoxidised massive sulphides. The jasper mineralogy is dominated by silica, with minor iron oxides and rare disseminated sulphides. It displays a range of complex textures including filamentous and dendritic iron oxides often coated in silica. Drill core samples show the material to be porous, but relatively impermeable. Strong and positive Eu (REE) anomalies indicates a hydrothermal origin with little evidence of a seawater signature (lack of negative Ce anomaly). Silica precipitation is associated with low temperature hydrothermal activity, chert and jasper materials are locally present within the nearby hydrothermally active TAG mound and are more widespread at low-temperature diffuse hydrothermal sites such as within the MESO field. We interpret the `jasper' layers to be a common product, formed during the waning, low temperature, stage of the hydrothermal cycle which may form an impermeable and resistant `cap' that protects the underlying massive sulphide ore body from oxidation and dissolution. The formation of a `jasper cap' could act automatically to preserve eSMS deposits when hydrothermal circulation ceases and is essential to preserving the resource potential of eSMS deposits. This `jasper' capping layer is important from an economic perspective, and reinforces the need for shallow sub-seafloor mapping as part of any deep-sea mineral exploration. This research received funding from the EC FP7 project Blue Mining (604500).
Hydrothermal Reactivity of Amines
NASA Astrophysics Data System (ADS)
Robinson, K.; Shock, E.; Hartnett, H. E.; Williams, L. B.; Gould, I.
2013-12-01
The reactivity of aqueous amines depends on temperature, pH, and redox state [1], all of which are highly variable in hydrothermal systems. Temperature and pH affect the ratio of protonated to unprotonated amines (R-NH2 + H+ = R-NH3+), which act as nucleophiles and electrophiles, respectively. We hypothesize that this dual nature can explain the pH dependence of reaction rates, and predict that rates will approach a maximum at pH = pKa where the ratio of protonated and unprotonated amines approaches one and the two compounds are poised to react with one another. Higher temperatures in hydrothermal systems allow for more rapid reaction rates, readily reversible reactions, and unique carbon-nitrogen chemistry in which water acts as a reagent in addition to being the solvent. In this study, aqueous benzylamine was used as a model compound to explore the reaction mechanisms, kinetics, and equilibria of amines under hydrothermal conditions. Experiments were carried out in anoxic silica glass tubes at 250°C (Psat) using phosphate-buffered solutions to observe changes in reaction rates and product distributions as a function of pH. The rate of decomposition of benzylamine was much faster at pH 4 than at pH 9, consistent with the prediction that benzylamine acts as both nucleophile and an electrophile, and our estimate that the pKa of benzylamine is ~5 at 250°C and Psat. Accordingly, dibenzylamine is the primary product of the reaction of two benzylamine molecules, and this reaction is readily reversible under hydrothermal conditions. Extremely acidic or basic pH can be used to suppress dibenzylamine production, which also suppresses the formation of all other major products, including toluene, benzyl alcohol, dibenzylimine, and tribenzylamine. This suggests that dibenzylamine is the lone primary product that then itself reacts as a precursor to produce the above compounds. Analog experiments performed with ring-substituted benzylamine derivatives and chiral methylbenzylamine suggest an SN2 mechanism for the formation of dibenzylamine. These results show the interdependence of pH and speciation with amine reaction rates. We predict the distribution of primary, secondary, tertiary, and quaternary amines in hydrothermal solutions can be used to solve for the pH of subsurface reaction zones in hydrothermal systems. [1] McCollom, T.M. (2013) The influence of minerals on decomposition of the n-alkyl-α-amino acid norvaline under hydrothermal conditions. Geochim. Cosmochim. Acta, 104, 330-357.
Controlling ZIF-67 crystals formation through various cobalt sources in aqueous solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Xiangli; Jiangsu Key Laboratory of Advanced Metallic Materials, Nanjing 211189; Xing, Tiantian
2016-03-15
Zeolitic imidazolate frameworks ZIF-67 were prepared under hydrothermal (120 °C) and non-hydrothermal (room temperature) from various cobalt sources and 2-methylimidazolate (Hmim) in aqueous solution within 30 min. The particle size and morphology were found to be related to the reactivity of the cobalt salt, Hmim/Co{sup 2+} molar ratios and experimental condition. Using Co(NO{sub 3}){sub 2} as cobalt source, small-sized ZIF-67 crystals with agglomeration were formed. For CoCl{sub 2}, small-sized rhombic dodecahedron were obtained. While large-sized crystals of rhombic dodecahedron structure were obtained from CoSO{sub 4} and Co(OAc){sub 2}. Under hydrothermal condition, the size of ZIF-67 crystals tended to be moremore » uniform and the morphology were more regular comparing to non-hydrothermal condition. This study provides a simple way to control the size and morphology of ZIF-67 crystals prepared in aqueous solution. - Graphical abstract: Zeolitic imidazolate frameworks ZIF-67 were prepared under hydrothermal (120 °C) and non-hydrothermal (room temperature) from four different cobalt sources (Co(NO{sub 3}){sub 2}, CoCl{sub 2}, CoSO{sub 4} and Co(OAc){sub 2}) in aqueous solution within 30 min. The particle size and morphology were found to be related to the reactivity of the cobalt salt, Hmim/Co{sup 2+} molar ratios and experimental condition. - Highlights: • The particle size and morphology were determined by the reactivity of cobalt salt. • ZIF-67 could be prepared from CoSO{sub 4} and Co(OAc){sub 2} at Hmim/Co{sup 2+} molar ratio of 10. • Uniform and regular particles were obtained under hydrothermal condition.« less
NASA Astrophysics Data System (ADS)
Lu, G. S.; Amend, J.; LaRowe, D.
2017-12-01
Chemolithoautotrophic microorganisms are important primary producers in hydrothermal environments. The potential catabolic energy sources that thermophilic chemolithoautotrophs can take advantage of can be quantified by combining analytical geochemical data and thermodynamic calculations. This approach explicitly considers how microbial communities are shaped by environmental conditions such as temperature, pressure, pH and the concentrations of electron donors and acceptors. In this study, we have calculated the Gibbs free energy available from 730 redox reactions in 30 terrestrial, shallow-sea, and deep-sea hydrothermal venting systems around the world (326 geochemical data sets) to better determine the relationship between microbial physiology and environment. The reactions with NO2-, O2, MnO2 and NO3- as terminal electron acceptors yield 5-20 kJ/mol e- more energy in terrestrial and shallow-sea hydrothermal systems than in deep-sea hydrothermal settings. However, reactions in which As5+, S0, FeS2 and SO42- as electron acceptors are more favorable by 5-30 kJ/mol e- in deep-sea hydrothermal systems than in the other two types of hydrothermal systems. The most exergonic reactions were predominantly NO2-, O2, MnO2 and NO3- reduction or Fe2+, pyrite, CO and CH4 oxidation. In contrast, reduction of N2, CO, and CO2 or oxidation of N2, Mn2+, and NO2-, though still often exergonic, yielded significantly less energy. Our results provide a comprehensive view of the distribution of energy supplies from redox reactions in high-temperature ecosystems on a global scale. Furthermore, the bioenergetic modeling carried out in this study can be used to test physiological predictions made from metagenomic and proteomic data sets, explore in situ biogeochemical interactions, predict possible but yet-to-be observed metabolisms and guide cultivation efforts.
Effects of hydrothermal exposure on a low-temperature cured epoxy
NASA Technical Reports Server (NTRS)
Lauver, R. W.
1978-01-01
Thermal mechanical analysis was employed to monitor the penetration temperature of a low-temperature epoxy resin. Both neat resin and E-glass composite samples were examined. The effects of cure temperature variation and moisture content on the apparent glass transition temperature were determined.
Experimental constraints on hydrothermal activities in Enceladus
NASA Astrophysics Data System (ADS)
Sekine, Y.; Shibuya, T.; Suzuki, K.; Kuwatani, T.
2012-12-01
One of the most remarkable findings by the Cassini-Huygens mission is perhaps water-rich plumes erupting from the south-pole region of Enceladus [1]. Given such geological activity and the detection of sodium salts in the plume, the interior of Enceladus is highly likely to contain an interior ocean interacting with the rock core [2]. A primary question regarding astrobiology and planetary science is whether Enceladus has (or had) hydrothermal activities in the interior ocean. Because N2 might be formed by thermal dissociation of primordial NH3 [3], the presence of N2 in the plume may be a possible indicator for the presence of hydrothermal activities in Enceladus. However, the Cassini UVIS revealed that the plumes do not contain large amounts of N2 [4]. Although these observations may not support the presence of hydrothermal activities, whether NH3 dissociation proceeds strongly depends on the kinetics of hydrothermal reactions and interactions with the rock components, which remain largely unknown. Furthermore, the Cassini CDA recently showed that small amounts of SiO2 might have been included in the plume dusts [5]. Formation of amorphous SiO2 usually occurs when high-temperature and/or high-pH solution with high concentrations of dissolved SiO2 cools and/or is neutralized. Thus, the presence of SiO2 in the plume dusts may suggest the presence of a temperature and/or pH gradient in the ocean. However, no laboratory experiments have investigated what processes control pH and SiO2 concentrations in hydrothermal fluids possibly existing in Enceladus. Here, we show the results of laboratory experiments simulating hydrothermal systems on Enceladus. As the initial conditions, we used both aqueous solution of high concentrations (0.01-2%) of NH3 and NaHCO3 and powdered olivine as an analog for the rock components. Our experimental results show that formation of N2 from NH3 is kinetically and thermodynamically inhibited even under high temperature conditions (< 400°C). This is because NH3 decomposition proceeds inefficiently due to efficient H2 production via serpentinization. Our experimental results also suggest that SiO2 concentration dissolved in hydrothermal fluids simulating Enceladus' condition would be buffered by the serpentine-brucite system. The presence of NH3 in the hydrothermal conditions keeps pH of the solution high (pH 9-11). We suggest that under such conditions, SiO2 concentrations in the fluids would be 0.1 mmol/L or less for temperature < 350°C. Given the SiO2 solubility of 1-10 mmol/L at 0°C and pH 9-11, direct formation of amorphous SiO2 would not occur in Enceladus' hydrothermal systems. To produce amorphous SiO2, large-scale hydrothermal activities and subsequent concentration of dissolved SiO2 in the ocean (due to freezing and/or evaporation of liquid water) would be required, which is consistent with high concentrations of radiogenic Ar and sodium salts in the plume [2, 6]. [1] Porco et al., Science 311, 1393 (2006). [2] Postberg et al., Nature 459, 1098 (2009). [3] Matson et al., Icarus 187, 569 (2007). [4] Hansen t al., Geophs. Res. Lett. 38, L11202 (2011). [5] Hsu et al., EOS Trans. AGU, (2010). [6] Waite et al., Nature 460, 487 (2009).
Sulfate Reduction and Sulfide Biomineralization By Deep-Sea Hydrothermal Vent Microorganisms
NASA Astrophysics Data System (ADS)
Picard, A.; Gartman, A.; Clarke, D. R.; Girguis, P. R.
2014-12-01
Deep-sea hydrothermal vents are characterized by steep temperature and chemical gradients and moderate pressures. At these sites, mesophilic sulfate-reducing bacteria thrive, however their significance for the formation of sulfide minerals is unknown. In this study we investigated sulfate reduction and sulfide biomineralization by the deep-sea bacterium Desulfovibrio hydrothermalis isolated from a deep-sea vent chimney at the Grandbonum vent site (13°N, East Pacific Rise, 2600 m water depth) [1]. Sulfate reduction rates were determined as a function of pressure and temperature. Biomineralization of sulfide minerals in the presence of various metal concentrations was characterized using light and electron microscopy and optical spectroscopy. We seek to better understand the significance of biological sulfate reduction in deep-sea hydrothermal environments, to characterize the steps in sulfide mineral nucleation and growth, and identify the interactions between cells and minerals. [1] D. Alazard, S. Dukan, A. Urios, F. Verhe, N. Bouabida, F. Morel, P. Thomas, J.L. Garcia and B. Ollivier, Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents, Int. J. Syst. Evol. Microbiol., 53 (2003) 173-178.
Rusk, B.G.; Lowers, H.A.; Reed, M.H.
2008-01-01
High-resolution electron microprobe maps show the distribution of Ti, Al, Ca, K, and Fe among quartz growth zones revealed by scanning electron microscope-cathodoluminescence (SEM-CL) from 12 hydrothermal ore deposits formed between ???100 and e1750 ??C. The maps clearly show the relationships between trace elements and CL intensity in quartz. Among all samples, no single trace element consistently correlates with variations in CL intensity. However in vein quartz from five porphyry-Cu (Mo-Au) deposits, CL intensity always correlates positively with Ti concentrations, suggesting that Ti is a CL activator in quartz formed at >400 ??C. Ti concentrations in most rutile-bearing vein quartz from porphyry copper deposits indicate reasonable formation temperatures of 2000 ppm, but in high-temperature quartz, Al concentrations are consistently in the range of several hundred ppm. Aluminum concentrations in quartz refl ect the Al solubility in hydrothermal fluids, which is strongly dependent on pH. Aluminum concentrations in quartz therefore reflect fluctuations in pH that may drive metal-sulfide precipitation in hydrothermal systems. ?? 2008 The Geological Society of America.
A demonstration of an affinity between pyrite and organic matter in a hydrothermal setting
2011-01-01
One of the key-principles of the iron-sulphur world theory is to bring organic molecules close enough to interact with each other, using the surface of pyrite as a substrate in a hydrothermal setting. The present paper explores the relationship of pyrite and organic matter in a hydrothermal setting from the geological record; in hydrothermal calcite veins from Carboniferous limestones in central Ireland. Here, the organic matter is accumulated as coatings around, and through, pyrite grains. Most of the pyrite grains are euhedral-subhedral crystals, ranging in size from ca 0.1-0.5 mm in diameter, and they are scattered throughout the matrix of the vein calcite. The organic matter was deposited from a hydrothermal fluid at a temperature of at least 200°C, and gives a Raman signature of disordered carbon. This study points to an example from a hydrothermal setting in the geological record, demonstrating that pyrite can have a high potential for the concentration and accumulation of organic materials. PMID:21299877
Bassett, William A.; Anderson, Alan J.; Mayanovic, Robert A.; Chou, I.-Ming
2000-01-01
A hydrothermal diamond anvil cell (HDAC) has been modified by drilling holes with a laser to within 150 ??m of the anvil face to minimize the loss of X-rays due to absorption and scatter by diamond. This modification enables acquisition of K-edge X-ray absorption fine structure (XAFS) spectra from first-row transition metal ions in aqueous solutions at temperatures ranging from 25??C to 660??C and pressures up to 800 MPa. These pressure-temperature (P-T) conditions are more than sufficient for carrying out experimental measurements that can provide data valuable in the interpretation of fluid inclusions in minerals found in ore-forming hydrothermal systems as well as other important lithospheric processes involving water. (C) 2000 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Agusu, La; Ode Ahmad, La; Anggara, Desna; Alimin; Mitsudo, Seitaro; Fujii, Yutaka; Kikuchi, Hiromitsu
2018-04-01
Reduced graphene oxide has been synthesihzed by one-pot microwave assisted hydrothermal method. Effects of microwave power and irradiation time to its crystal structure and electrical conductivity were investigated. Here, graphene oxide, firstly, were synthesized by modified hummers method and subsequently mixed with Zn as a reducing agent. Then it was transferred to modified domestic microwave oven (800 watts) with glass distiller equipment for completely reduction process. Three different power levels (240, 400, 630 watts) and two cases of irradiation times (20 and 40 minutes) were treated. XRD study shows that irradiation time variation is more effective than the variation of power level. Power level of 270 watts and for 40 minutes microwave irradiation are enough for producing estimated bilayer rGO with graphene interlayer of ~0.4 nm. Bilayer graphene and water molecule (~0.3 nm) may vibrate the same manner and perhaps they are accepting the same temperature. Graphene seems to be re-arranged in unspecified way among the thermal pressure, temperature gradient and/or water surface tension between graphene and water induced by microwave, in order to achieve thermal equilibrium through out the system The electrical conductivity rGO/PVA (60/40 %w) paper are ranging from 15.6 to 43.4 mS/cm.
Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Oyler, James R.; Rotness, Jr, Leslie J.; Schmidt, Andrew J.; Zacher, Alan H.
2016-08-02
A system and process are described for clean separation of biocrudes and water by-products from hydrothermal liquefaction (HTL) product mixtures of organic and biomass-containing feedstocks at elevated temperatures and pressures. Inorganic compound solids are removed prior to separation of biocrude and water by-product fractions to minimize formation of emulsions that impede separation. Separation may be performed at higher temperatures that reduce heat loss and need to cool product mixtures to ambient. The present invention thus achieves separation efficiencies not achieved in conventional HTL processing.
In Situ Materials Study in Hot Hydrothermal Vent Fluid
NASA Astrophysics Data System (ADS)
Holland, P. M.; Schindele, W. J.; Holland, C. E.; Lilley, M. D.; Olson, E. J.
2004-12-01
We are developing methods and technology for in situ sampling and analysis of volatiles from hot hydrothermal vent fluids inside the mixing boundary. These fluids can reach temperatures of up to 400° C and are known to be corrosive to most materials. While titanium has been the material of choice for contact with these fluids, we wanted to assess whether other materials, such as Hastelloy or nickel might be suitable for in situ sampling from hydrothermal vents. For the present study, small (1/16" o.d.) tubes of chemically pure titanium, Hastelloy C, and Nickel 200 were prepared, using 316 stainless steel as a control. These were placed in an assembly with other test items, and inserted into the hydrothermal vent Sully in the Main Endeavor Field on the Juan de Fuca Plate in June 2003 by the Jason II ROV operated from the R/V Thompson. The assembly was retrieved 46 days later after exposure to approximately 360° C hydrothermal vent fluid at a depth of 2200 m. Inspection showed the stainless steel to be completely eroded away and nickel to be extensively corroded, however both the Hastelloy and titanium tubes were in excellent condition with the 0.030" i.d. passages in the tubes remaining open. Other test items included a miniature titanium filtered inlet fitting containing an 80 mesh titanium screen made of 0.004" (0.1 mm) chemically pure titanium wire, an Inconel washer and a sapphire ball. Apart from some discoloration, there appeared to be no significant degradation in these materials apart from signs of etching on the sapphire.
NASA Astrophysics Data System (ADS)
Maucourant, Samuel; Giammanco, Salvatore; Greco, Filippo; Dorizon, Sophie; Del Negro, Ciro
2014-06-01
A multidisciplinary approach integrating self-potential, soil temperature, heat flux, CO2 efflux and gravity gradiometry signals was used to investigate a relatively small fissure-related hydrothermal system near the summit of Mt. Etna volcano (Italy). Measurements were performed through two different surveys carried out at the beginning and at the end of July 2009, right after the end of the long-lived 2008-2009 flank eruption and in coincidence with an increase in diffuse flank degassing related to a reactivation of the volcano, leading to the opening of a new summit vent (NSEC). The main goal was to use a multidisciplinary approach to the detection of hidden fractures in an area of evident near-surface hydrothermal activity. Despite the different methodologies used and the different geometry of the sampling grid between the surveys, all parameters concurred in confirming that the study area is crossed by faults related with the main fracture systems of the south flank of the volcano, where a continuous hydrothermal circulation is established. Results also highlighted that hydrothermal activity in this area changed both in space and in time. These changes were a clear response to variations in the magmatic system, notably to migration of magma at various depth within the main feeder system of the volcano. The results suggest that this specific area, initially chosen as the optimal test-site for the proposed approach, can be useful in order to get information on the potential reactivation of the summit craters of Mt. Etna.
NASA Astrophysics Data System (ADS)
Crone, T. J.; Kinsey, J. C.; Mittelstaedt, E. L.
2017-12-01
Hydrothermal venting at mid-ocean ridges influences ocean chemistry, the thermal and chemical structure of the oceanic crust, and the evolution of unique and diverse autolithotrophically-supported ecosystems. Axially-hosted hydrothermal systems are responsible for 20-25% of the total heat flux out of Earth's interior, and likely play a large role in local as well as global biogeochemical cycles. Despite the importance of these systems, only a few studies have attempted to constrain the volume and heat flux of an entire hydrothermal vent field. In July of 2014 we used the Sentry autonomous underwater vehicle (AUV) to survey the water column over the ASHES hydrothermal vent field which is located within the caldera of Axial Seamount, an active submarine volcano located on the Juan de Fuca Ridge. To estimate the total heat and mass flux from this vent field, we equipped Sentry with a Nortek acoustic Doppler velocimeter (ADV), an inertial measurement unit (IMU), two acoustic Doppler current profilers (ADCPs), and two SBE3 temperature probes, allowing us to obtain precise measurements of fluid temperature and water velocity. The survey was designed using a control volume approach in which Sentry was pre-programmed to survey a 150-m-square centered over the vent field flying a grid pattern with 5-m track line spacing followed by a survey of the perimeter. This pattern was repeated multiple times during several 10-h dives at different altitudes, including 10, 20, 40, and 60 m above the seafloor, and during one 40-h survey at an altitude of 10 m. During the 40-h survey, the pattern was repeated nine times allowing us to obtain observations over several tidal cycles. Water velocity data obtained with Sentry were corrected for platform motion and then combined with the temperature measurements to estimate heat flux. The analysis of these data will likely provide the most accurate and highest resolution heat and mass flux estimates at a seafloor hydrothermal field to date.
NASA Astrophysics Data System (ADS)
Pałgan, Dominik; Devey, Colin W.; Yeo, Isobel A.
2017-12-01
Current estimates indicate that the number of high-temperature vents (one of the primary pathways for the heat extraction from the Earth's mantle) - at least 1 per 100 km of axial length - scales with spreading rate and should scale with crustal thickness. But up to present, shallow ridge axes underlain by thick crust show anomalously low incidences of high-temperature activity. Here we compare the Reykjanes Ridge, an abnormally shallow ridge with thick crust and only one high-temperature vent known over 900 km axial length, to the adjacent subaerial Reykjanes Peninsula (RP), which is characterized by high-temperature geothermal sites confined to four volcanic systems transected by fissure swarms with young (Holocene) volcanic activity, multiple faults, cracks and fissures, and continuous seismic activity. New high-resolution bathymetry (gridded at 60 m) of the Reykjanes Ridge between 62°30‧N and 63°30‧N shows seven Axial Volcanic Ridges (AVR) that, based on their morphology, geometry and tectonic regime, are analogues for the volcanic systems and fissure swarms on land. We investigate in detail the volcano-tectonic features of all mapped AVRs and show that they do not fit with the previously suggested 4-stage evolution model for AVR construction. Instead, we suggest that AVR morphology reflects the robust or weak melt supply to the system and two (or more) eruption mechanisms may co-exist on one AVR (in contrast to 4-stage evolution model). Our interpretations indicate that, unlike on the Reykjanes Peninsula, faults on and around AVRs do not cluster in orientation domains but all are subparallel to the overall strike of AVRs (orthogonal to spreading direction). High abundance of seamounts shows that the region centered at 62°47‧N and 25°04‧W (between AVR-5 and -6) is volcanically robust while the highest fault density implies that AVR-1 and southern part of AVR-6 rather undergo period of melt starvation. Based on our observations and interpretations we expect all of the AVRs on Reykjanes Ridge to be hydrothermally active but morphological and hydrographic settings of this ridge may cause hydrothermal plumes to be quickly dispersed and diluted due to exposure to strong bottom currents. Therefore, combined CTD and autonomous vehicles surveys are probably the most efficient methods for hydrothermal exploration along the Reykjanes Ridge.
Stealth export of hydrogen and methane from a low temperature serpentinization system
NASA Astrophysics Data System (ADS)
Larson, B. I.; Lang, S. Q.; Lilley, M. D.; Olson, E. J.; Lupton, J. E.; Nakamura, K.; Buck, N. J.
2015-11-01
Chemical input to the deep sea from hydrothermal systems is a globally distributed phenomenon. Hydrothermal discharge is one of the primary mechanisms by which the Earth's interior processes manifest themselves at the Earth's surface, and it provides a source of energy for autotrophic processes by microbes that are too deep to capitalize on sunlight. Much is known about the water-column signature of this discharge from high-temperature mid-ocean Ridge (MOR) environments and their neighboring low-temperature counterparts. Hydrothermal discharge farther away from the ridge, however, has garnered less attention, owing in part to the difficulty in finding this style of venting, which eludes methods of detection that work well for high-temperature 'black smoker'-type venting. Here we present a case study of the plume from one such 'invisible' off-axis environment, The Lost City, with an emphasis on the dissolved volatile content of the hydrothermal plume. Serpentinization and abiotic organic synthesis generate significant concentrations of H2 and CH4 in vent fluid, but these species are unevenly transported to the overlying plume, which itself appears to be a composite of two different sources. A concentrated vent cluster on the talus slope channels fluid through at least eight chimneys, producing a water-column plume with the highest observed concentrations of CH4 in the field. In contrast, a saddle in the topography leading up to a carbonate cap hosts broadly distributed, nearly invisible venting apparent only in its water-column signals of redox potential and dissolved gas content, including the highest observed plume H2. After normalizing H2 and CH4 to the 3He background-corrected anomaly (3HeΔ) to account for mixing and relative amount of mantle input, it appears that, while a minimum of 60% of CH4 is transported out of the system, greater than 90% of the H2 is consumed in the subsurface prior to venting. The exception to this pattern occurs in the plume originating from the area dubbed Chaff Beach, in which somewhat more than 10% of the original H2 remains, indicating that this otherwise unremarkable plume, and others like it, may represent a significant source of H2 to the deep sea.
Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.
2009-01-01
Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing and vein-fi lling; and (5) areal dimensions of many large hydrothermal explosion craters in Yellowstone are similar to those of its active geyser basins and thermal areas. For Yellowstone, our knowledge of hydrothermal craters and ejecta is generally limited to after the Yellowstone Plateau emerged from beneath a late Pleistocene icecap that was roughly a kilometer thick. Large hydrothermal explosions may have occurred earlier as indicated by multiple episodes of cementation and brecciation commonly observed in hydrothermal ejecta clasts. Critical components for large, explosive hydrothermal systems include a watersaturated system at or near boiling temperatures and an interconnected system of well-developed joints and fractures along which hydrothermal fluids flow. Active deformation of the Yellowstone caldera, active faulting and moderate local seismicity, high heat flow, rapid changes in climate, and regional stresses are factors that have strong infl uences on the type of hydrothermal system developed. Ascending hydrothermal fluids flow along fractures that have developed in response to active caldera deformation and along edges of low-permeability rhyolitic lava flows. Alteration of the area affected, self-sealing leading to development of a caprock for the hydrothermal system, and dissolution of silica-rich rocks are additional factors that may constrain the distribution and development of hydrothermal fields. A partial lowpermeability layer that acts as a cap to the hydrothermal system may produce some over-pressurization, thought to be small in most systems. Any abrupt drop in pressure initiates steam fl ashing and is rapidly transmitted through interconnected fractures that result in a series of multiple large-scale explosions contributing to the excavation of a larger explosion crater. Similarities between the size and dimensions of large hydrothermal explosion craters and thermal fields in Yellowstone may indicate that catastrophic events which result in l
NASA Astrophysics Data System (ADS)
Cherniak, D. J.; Zhang, X. Y.; Nakamura, M.; Watson, E. B.
2004-09-01
We report measurements of oxygen diffusion in natural monazites under both dry, 1-atm conditions and hydrothermal conditions. For dry experiments, 18O-enriched CePO4 powder and monazite crystals were sealed in Ag-Pd capsules with a solid buffer (to buffer at NNO) and annealed in 1-atm furnaces. Hydrothermal runs were conducted in cold-seal pressure vessels, where monazite grains were encapsulated with 18O-enriched water. Following the diffusion anneals, oxygen concentration profiles were measured with Nuclear Reaction Analysis (NRA) using the reaction 18O(p,α)15N. Over the temperature range 850-1100 °C, the Arrhenius relation determined for dry diffusion experiments on monazite is given by: Under wet conditions at 100 MPa water pressure, over the temperature range 700-880 °C, oxygen diffusion can be described by the Arrhenius relationship: Oxygen diffusion under hydrothermal conditions has a significantly lower activation energy for diffusion than under dry conditions, as has been found the case for many other minerals, both silicate and nonsilicate. Given these differences in activation energies, the differences between dry and wet diffusion rates increase with lower temperatures; for example, at 600 °C, dry diffusion will be more than 4 orders of magnitude slower than diffusion under hydrothermal conditions. These disparate diffusivities will result in pronounced differences in the degree of retentivity of oxygen isotope signatures. For instance, under dry conditions (presumably rare in the crust) and high lower-crustal temperatures (∼800 °C), monazite cores of 70-μm radii will preserve O isotope ratios for about 500,000 years; by comparison, they would be retained at this temperature under wet conditions for about 15,000 years.
NASA Astrophysics Data System (ADS)
Fouquet, Yves; Cambon, Pierre; Etoubleau, Joël; Charlou, Jean Luc; Ondréas, Hélène; Barriga, Fernando J. A. S.; Cherkashov, Georgy; Semkova, Tatiana; Poroshina, Irina; Bohn, M.; Donval, Jean Pierre; Henry, Katell; Murphy, Pamela; Rouxel, Olivier
Several hydrothermal deposits associated with ultramafic rocks have recently been found along slow spreading ridges with a low magmatic budget. Three preferential settings are identified: (1) rift valley walls near the amagmatic ends of ridge segments; (2) nontransform offsets; and (3) ultramafic domes at inside corners of ridge transform-fault intersections. The exposed mantle at these sites is often interpreted to be a detachment fault. Hydrothermal cells in ultramafic rocks may be driven by regional heat flow, cooling gabbroic intrusions, and exothermic heat produced during serpentinization. Along the Mid-Atlantic Ridge (MAR), hydrothermal deposits in ultramafic rocks include the following: (1) sulfide mounds related to high-temperature low-pH fluids (Logatchev, Rainbow, and Ashadze); (2) carbonate chimneys related to low-temperature, high-pH fluids (Lost City); (3) low-temperature diffuse venting and high-methane discharge associated with silica, minor sulfides, manganese oxides, and pervasive alteration (Saldanha); and (4) stockwork quartz veins with sulfides at the base of detachment faults (15°05'N). These settings are closely linked to preferential circulation of fluid along permeable detachment faults. Compared to mineralization in basaltic environments, sulfide deposits associated with ultramafic rocks are enriched in Cu, Zn, Co, Au, and Ni. Gold has a bimodal distribution in low-temperature Zn-rich and in high-temperature Cu-rich mineral assemblages. The Cu-Zn-Co-Au deposits along the MAR seem to be more abundant than in ophiolites on land. This may be because ultramafic-hosted volcanogenic massive sulfide deposits on slow spreading ridges are usually not accreted to continental margins during obduction and may constitute a specific marine type of mineralization.
Evidence for organic synthesis in high temperature aqueous media - facts and prognosis
NASA Technical Reports Server (NTRS)
Simoneit, Bernd R. T.
1995-01-01
Hydrothermal systems are common along the active tectonic areas of the earth. Potential sites being studied for organic matter alteration and possible organic synthesis are spreading ridges, off-axis systems, back-arc activity, hot spots, volcanism, and subduction. Organic matter alteration, primarily reductive and generally from immature organic detritus, occurs in these high temperature and rapid fluid flow hydrothermal regimes. Hot circulating water (temperature range - warm to greater than 400 C) is responsible for these molecular alterations, expulsion and migration. Compounds that are obviously synthesized are minor components because they are generally masked by the pyrolysis products formed from contemporary natural organic precursors. The reactivity of organic compounds in hot water (200-350 C) has been studied in autoclaves, and supercritical water as a medium for chemistry has also been evaluated. This high temperature aqueous organic chemistry and the strong reducing conditions of the natural systems suggest this as an important route to produce organic compounds on the primitive earth. Thus a better understanding of the potential syntheses of organic compounds in hydrothermal systems will require investigations of the chemistry of condensation, autocatalysis, catalysis and hydrolysis reactions in aqueous mineral buffered systems over a range of temperatures from warm to greater than 400 C.
NASA Astrophysics Data System (ADS)
Deburgomaster, Paul
The vast structural complexity of inorganic oxides with structure directing organocations, nitrogen containing ligands and organophosphonate ligands was explored. The hydrothermal reaction conditions utilized herein include the variables of temperature, pH, fill volume and stoichiometry. The systems studied included: (1) the complex materials rendered from reactions of organoamine cations on the structure of vanadium oxides, oxyfluorides and fluorides. As with other systems, the influence of the mineralizer HF was not limited to pH as fluorine incorporation was not uncommon. In specific cases this coincided with reduction of vanadium sites. (2) The copper-organonitrogen ligand/vanadium oxide/aromatic phosphonate system has been studied. The rigid aromatic di- and tri-phosphonate tethers have provided a series of materials which are structurally distinct from the previously investigated aliphatic series. The inclusion of copper-coordinated nitrogen bi- and tri-dentate ligands also provided structural diversity. Product composition was highly influenced by the HF/V ratio. A similar study was conducted with the ligand 1,4-carboxy-phenylphosphonic acid. (3) The preparation of a series of bimetallic organic-inorganic hybrid materials of the M(II)/VxOy/organonitrogen ligand class was further evidence of the utility of thermodynamically driven hydrothermal synthesis. (4) While decomposition of the spherical Keplerate molybdenum clusters is encountered under hydrothermal conditions, this highly soluble form of molybdate was investigated for the development of hybrid organic-inorganic room temperature solution synthesis.
Synthesis and characterisations of SnO2 nanorods via low temperature hydrothermal method
NASA Astrophysics Data System (ADS)
Inderan, Vicinisvarri; Lim, Shin Ye; Ong, Teng Sian; Bastien, Samuel; Braidy, Nadi; Lee, Hooi Ling
2015-12-01
In the present study, tin oxide (SnO2) nanorods were successfully synthesized through hydrothermal treatment at a relatively low temperature (180 °C) using various concentrations of metal precursor, SnCl4·5H2O (0.04 M-0.16 M) in a mixed solution of ethanol and water before bringing the pH to 13 by adding 6 M NaOH. The effect of concentration on the morphology and structure of SnO2 were comprehensively studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis) and Fourier Transform Infrared (FTIR). It was found that increasing the concentration of tin precursor from 0.04 M to 0.16 M leads to a complete conversion from nanospheres to nanoplates and finally to nanorods. The SEM results confirmed that SnO2 nanorods are obtained for concentrations up to 0.12 M. At synthesis condition of 0.12 M, SnCl4·5H2O and pH 13, single rutile nanorods with preferential growth in the [002] direction were obtained. It was found that the diameter of nanorods formed at 0.12 M is similar to that of nanoplates formed at 0.08 M (20 nm), which suggests that spear-shaped nanorods might have originated from the primary nanoparticles (the particles grown in lower concentration during hydrothermal treatment). Possible reaction mechanisms are proposed to explain the observed morphologies.
NASA Astrophysics Data System (ADS)
Sheikholeslami, M.; Ganji, D. D.
2017-12-01
In this paper, semi analytical approach is applied to investigate nanofluid Marangoni convection in presence of magnetic field. Koo-Kleinstreuer-Li model is taken into account to simulate nanofluid properties. Homotopy analysis method is utilized to solve the final ordinary equations which are obtained from similarity transformation. Roles of Hartmann number and nanofluid volume fraction are presented graphically. Results show that temperature augments with rise of nanofluid volume fraction. Impact of nanofluid volume fraction on normal velocity is more than tangential velocity. Temperature gradient enhances with rise of magnetic number.
Vailulu'u Seamount, Samoa: Life and Death at the Edge of An Active Submarine Volcano
NASA Astrophysics Data System (ADS)
Vailulu'U Research Group, T.
2005-12-01
Exploration of Vailulu'u seamount (14°13'S; 169°04'W) by manned submersible, ROV, and surface ship revealed a new, 300m tall volcano that has grown in the summit crater in less than four years. This shows that Vailulu'u's eruption behavior is at this stage not predictable and continued growth could allow Vailulu'u to breach sea level within decades Several types of hydrothermal vents fill Vailulu'u crater with particulates that reduce visibility to less than a few meters in some regions. Hydrothermal solutions mix with seawater that enters the crater from its breaches to produce distinct biological habitats. Low temperature hydrothermal vents can produce Fe-oxide chimneys or up to one meter-thick microbial mats. Higher temperature vents (85°C) produce low salinity acidic fluids containing buoyant droplets of immiscible CO2. Low temperature hydrothermal vents at Nafanua summit (708m depth) support a thriving population of eels (Dysommia rusosa). The areas around the high temperature vents and the moat and remaining crater around the new volcano is almost devoid of any macroscopic life and is littered with fish, and mollusk carcasses that apparently died from exposure to hydrothermal fluid components in deeper crater waters. Acid- tolerant polychaetes adapt to this environment and feed near and on these carcasses. Vailulu'u presents a natural laboratory for the study of how seamounts and their volcanic systems interact with the hydrosphere to produce distinct biological habitats, and how marine life can adapt to these conditions or be trapped in a toxic volcanic system that leads to mass mortality. The Vailulu'u research team: Hubert Staudigel, Samantha Allen, Brad Bailey, Ed Baker, Sandra Brooke, Ryan Delaney, Blake English, Lisa Haucke, Stan Hart, John Helly, Ian Hudson, Matt Jackson, Daniel Jones, Alison Koleszar, Anthony Koppers, Jasper Konter, Laurent Montesi, Adele Pile, Ray Lee, Scott Mcbride, Julie Rumrill, Daniel Staudigel, Brad Tebo, Alexis Templeton, Rhea Workman, Craig Young, Robert Zierenberg.
NASA Astrophysics Data System (ADS)
Erçetin, Engin; Düşünür Doǧan, Doǧa
2017-04-01
The aim of the study is to present a numerical temperature and fluid-flow modelling for the topographic effects on hydrothermal circulation. Bathymetry can create a major disturbance on fluid flow pattern. ANSYS Fluent Computational fluid dynamics software is used for simulations. Coupled fluid flow and temperature quations are solved using a 2-Dimensional control volume finite difference approach. Darcy's law is assumed to hold, the fluid is considered to be anormal Boussinesq incompressible fluid neglecting inertial effects. Several topographic models were simulated and both temperature and fluid flow calculations obtained for this study. The preliminary simulations examine the effect of a ingle bathymetric high on a single plume and the secondary study of simulations investigates the effect of multiple bathymetric highs on multiple plume. The simulations were also performed for the slow spreading Lucky Strike segment along the Mid-Atlantic Ridge (MAR), one of the best studied regions along the MAR, where a 3.4 km deep magma chamber extending 6 km along-axis is found at its center. The Lucky Strike segment displays a transitional morphology between that of the FAMOUS - North FAMOUS segments, which are characterized by well-developed axial valleys typical of slow-spreading segments, and that of the Menez Gwen segment, characterized by an axial high at the segment center. Lucky Strike Segment hosts a central volcano and active vent field located at the segment center and thus constitutes an excellent case study to simulate the effects of bathymetry on fluid flow. Results demonstrate that bathymetric relief has an important influence on hydrothermal flow. Subsurface pressure alterations can be formed by bathymetric highs, for this reason, bathymetric relief ought to be considered while simulating hydrothermal circulation systems. Results of this study suggest the dominant effect of bathymetric highs on fluid flow pattern and Darcy velocities will be presented. Keywords: Hydrothermal Circulation, Lucky Strike, Bathymetry - Topography, Vent Location, Fluid Flow, Numerical Modelling
NASA Astrophysics Data System (ADS)
Zhang, Tao; Shi, Juan; Liu, Jian; Wang, Daxi; Zhao, Zhen; Cheng, Kai; Li, Jianmei
2016-07-01
The surface of Cu-ZSM-5 catalyst was modified by chemical liquid deposition (CLD) of tetraethoxysilane (TEOS) for enhancing its hydrothermal stability in the selective catalytic reduction of NO with NH3. After hydrothermal aging at 750 °C for 13 h, the catalytic performance of Cu-ZSM-5-Aged catalyst was significantly reduced for NO reduction in the entire temperature range, while that of Cu-ZSM-5-CLD-Aged catalyst was affected very little. The characterization results indicated that an inert silica layer was deposited on the surface of Cu-ZSM-5 and formed a protective layer, which prevents the detachment of Cu2+ from ZSM-5 ion-exchange positions and the dealumination of zeolite during the hydrothermal aging process. Based on the data it is hypothesized to be the primary reason for the high hydrothermal stability of Cu-ZSM-5-CLD catalyst.
Structural variation of eucalyptus lignin in a combination of hydrothermal and alkali treatments.
Sun, Shao-Ni; Li, Han-Yin; Cao, Xue-Fei; Xu, Feng; Sun, Run-Cang
2015-01-01
In this work, the structural features of the lignin isolated with 2% NaOH at 90°C for 2.5h from the hydrothermally pretreated eucalyptus fibers at different temperatures (100-200°C) for different times (15-60min) were thoroughly investigated. Results showed that the hydrothermal pretreatment facilitated the separation of alkali lignin from the pretreated fibers. It was found that the linkages of β-O-4, β-β, and β-5 decreased gradually with the increase of hydrothermal severity. Furthermore, decreased molecular weights (1630-510g/mol), associated carbohydrates contents (1.99-0.05%) and aliphatic OH contents (3.37-0.65mmol/g), and increased phenolic OH contents (0.71-2.98mmol/g) and thermal stability of the alkali lignins were observed with the increase of the hydrothermal severity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Marine Subsurface Microbial Communities Across a Hydrothermal Gradient in Okinawa Trough Sediments
NASA Astrophysics Data System (ADS)
Brandt, L. D.; Hser Wah Saw, J.; Ettema, T.; House, C. H.
2015-12-01
IODP Expedition 331 to the Okinawa backarc basin provided an opportunity to study the microbial stratigraphy within the sediments surrounding a hydrothermal vent. The Okinawa backarc basin is a sedimented region of the seafloor located on a continental margin, and also hosts a hydrothermal network within the subsurface. Site C0014 within the Iheya North hydrothermal field is located 450 m east of the active vent and has a surface temperature of 5°C with no evidence of hydrothermal alteration within the top 10 meters below sea floor (mbsf). Temperature increases with depth at an estimated rate of 3°C/m and transitions from non-hydrothermal margin sediments to a hydrothermally altered regime below 10 mbsf. In this study, we utilized deep 16S rRNA sequencing of DNA from IODP Expedition 331 Site C0014 sediment horizons in order to assess diversity throughout the sediment column as well as determine the potential limits of the biosphere. Analysis of the amplicon data shows a shift over 15 mbsf from a heterogeneous community of cosmopolitan marine subsurface taxa toward an archaeal-dominated community in the deepest horizons of the predicted biosphere. Notably, the phylum Chloroflexi represents a substantial taxon through most horizons, where it appears to be replaced below 10 mbsf by punctuations of thermophilic and methanotrophic Archaea and Miscellaneous Crenarchaeotic Group abundances. DNA from the aforementioned transition horizons was further analyzed using metagenomic sequencing. Preliminary taxonomic analysis of the metagenomic data agrees well with amplicon data in capturing the shift in relative abundance of Archaea increasing with depth. Additionally, reverse gyrase, a gene found exclusively in hyperthermophilic microorganisms, was recovered only in the metagenome of the deepest horizon. A BLAST search of this protein sequence against the GenBank non-redudnant protein database produced top hits with reverse gyrase from Thermococcus and Pyrococcus, which are known thermophiles. Up until now, thermophiles and hyperthermophiles have been studied in cultured hydrothermal vent fluid samples, or have been identified from 16S rRNA taxonomic analyses. These recovered genes provide direct evidence for a pervasive subsurface hyperthermophilic biosphere in off-axis hydrothermal sediments.
Constraining the thermal structure beneath Lusi: insights from temperature record in erupted clasts
NASA Astrophysics Data System (ADS)
Malvoisin, Benjamin; Mazzini, Adriano; Miller, Stephen
2016-04-01
Sedimentary units beneath Lusi from surface to depth are the Pucangan formation, the Upper Kalibeng formation where shales and then volcanoclastic clasts are found, the Kujung-Propuh-Tuban formation composed of carbonates and the Ngimbang formation composed of shales. Water and gas geochemistry as well as surface deformation indicate that Lusi is a hydrothermal system rooted at >4 km depth. However, the thermal structure beneath Lusi is still poorly constrained whereas it has first-order impacts on the physical and chemical processes observed during the eruption. In the framework of the Lusi Lab project (ERC grant n° 308126) and of a project of the Swiss National Science Foundation (n°160050) we studied erupted clasts collected at the crater site to determine their source and temperature record. Three types of clasts were studied based on morphological and mineralogical basis. The first type is limestones mainly composed of Ca- and Fe-bearing carbonates. The clasts of the second type are light grey shales (LGS) containing carbonaceous matter, illite/smectite mixture, plagioclase and quartz. The third type is also a shale with a black colour containing hydrocarbons (black shales, BS) and with the additional presence of Na-rich plagioclase, biotite and chlorite. The presence of these latter minerals indicates hydrothermal activity at relatively high temperature. Better constraints on temperature were obtained by using both Raman spectroscopic carbonaceous material thermometry (RSCM) and chlorite geothermometry. Temperatures below 200°C were determined for the LGS with RSCM. BS recorded two temperatures. The first one, around 170°C, is rather consistent with an extrapolation of the geothermal gradient measured before the eruption up to 4,000 m depth. Combined with mineralogical observations, this suggests that BS originate from the Ngimbang formation. The second recorded higher temperature around 250°C indicates heating, probably through interaction with high temperature hydrothermal fluids. Calculations performed for such a heating indicate that associated clay dehydration is sufficient to provide the water released during the eruption and that heating-induced overpressure could favor fluid ascent. These results confirm the hydrothermal scenario in which Lusi eruption is fed by high temperature fluid circulation from the neighboring Arjuno-Welirang volcanic complex.
A Blind Hydrothermal System in an Ocean Island Environment: Humu'ula Saddle, Hawaii Island
NASA Astrophysics Data System (ADS)
Thomas, D. M.; Wallin, E.; Lautze, N. C.; Lienert, B. R.; Pierce, H. A.
2014-12-01
A recently drilled groundwater investigation borehole, drilled to a depth of 1760 m in the Humu'ula Saddle of Hawaii Island, encountered an unexpectedly high temperature gradient of more than 160 ̊C/km. Although prior MT surveys across the region identified conductive formations of modest extent in the region, there were few surface manifestations of geologic structures likely to host a geothermal system and no evidence of an active, extensive hydrothermal system. Cores recovered from the borehole showed the presence of intrusive formations and moderate hydrothermal alteration at depth with progressive infilling of fractures and vesicles with depth and temperature. Independent modeling of gravity data (Flinders et al., 2013) suggests the presence of a broad intrusive complex within the region that is consistent with the borehole's confirmation of a high-elevation (~1400 m amsl) regional water table. A subsequent MT survey covering much of the western Saddle region has confirmed the presence of highly conductive conditions, consistent with thermal activity, to depths of 4 km and greater. Light stable isotope data for the borehole fluids indicate that the regional water table is derived from recharge from the upper elevations of Mauna Kea; major element chemistry indicates that formation temperatures exceed 200 ̊C. A conceptual model of the hydrothermal system, along with isotopic and fluid chemistry of the thermal fluids will be presented.
Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass
Elliott, Douglas C; Oyler, James R
2014-11-04
Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.
Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass
Elliott, Douglas C; Oyler, James
2013-12-17
Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogenous catalyst for gasification.
Sub-glacial Origin of the Hot Springs Bay Valley hydrothermal System, Akutan, Alaska
NASA Astrophysics Data System (ADS)
Stelling, P. L.; Tobin, B.; Knapp, P.
2015-12-01
Exploration for geothermal energy in Hot Springs Bay Valley (HSBV) on Akutan Island, Alaska, has revealed a rich hydrothermal history, including what appears to be a stage of peak activity during a significant glacial period. Alteration mineralogy observed in 754 m of drill core recovered from the outflow zone is dominated by chlorite and includes minor smectite clays, a suite of zeolite species and several moderately high-temperature hydrothermal minerals (epidote/clinozoisite, prehnite, adularia and wairakite). The latter minerals each have minimum formation temperatures exceeding 200 oC, and fluid inclusion results in related calcite crystals indicate temperatures of formation to be as high as 275 oC, some 100 oC hotter than the modern boiling point with depth (BPD) curve at that depth (>62 m). In order to maintain liquid temperatures this high, the pressure during mineralization must have been substantially greater (~680 bar), a pressure change equivalent to erosion of ~280 m of rock (ρ=2.5 g/cm3). Although glacial erosion rates are too low (0.034 mm/yr; Bekele et al., 2003) for this amount of erosion to occur in a single glaciation, glacial melting and ablation are substantially more rapid (~100 mm/yr; Bekele et al., 2003; Person et al., 2012). Thus, a more probable scenario than pure erosion is that peak hydrothermal conditions occurred during a large glacial event, with the added pressure from the overlying ice allowing the high temperature minerals to form closer to the ground surface. Subsequent melting of the ice eroded upper tributary valleys and upper levels of the originally smectite-rich alteration assemblage, explaining the paucity of swelling clays in the region. We present mineralogical, fluid inclusion and geochronologic evidence to support these conclusions, and discuss the general implications of sub-glacial hydrothermal system formation and geothermal resource potential. References: Bekele, E., Rostron, B. and Person, M. (2003) Fluid pressure implications of erosional unloading, basin hydrodynamics and glaciation in the Alberta Basin, Western Canada. J. of Geochem. Exploration, 78-79, 143-7. Person, M., Bense, V., Cohen, D. and Banerjee, A, (2012). Models of ice-sheet hydrogeologic interactions: a review. Geofluids, 12, 58-78
Effects of hydrothermal exposure on a low-temperature cured epoxy
NASA Technical Reports Server (NTRS)
Lauver, R. W.
1978-01-01
Thermal mechanical analysis was employed to monitor the penetration temperature of a low-temperature epoxy resin (EPON 826/D230). Both neat resin and E-glass composite samples were examined. The effects of cure temperature variation and moisture content on the apparent glass transition temperature were determined.
NASA Astrophysics Data System (ADS)
Syverson, D.; Seyfried, W. E.
2010-12-01
Anhydrite (CaSO4) is an important mineral in subseafloor hydrothermal systems. Its solubility likely plays a role in controlling mass transfer reactions in the relatively low temperature and ultramafic-hosted Lost City Hydrothermal Field (LCHF), while also precipitating from seawater during recharge of more widespread high-temperature hydrothermal systems at mid-ocean ridges. Strontium partitions into anhydrite, although the magnitude and mechanism by which this occurs, is still unclear, as is the effect of precipitation rate. In the absence of these data it is not possible to predict accurately the geochemical implications of Sr/Ca ratios of vent fluids. Accordingly, the potential usefulness of these data to constrain temperature, and as a means to understand the flux of seawater derived Sr into deeper portions of subseafloor hydrothermal systems, is limited. Here we report results of experiments designed to assess Ca-Sr exchange during anhydrite-fluid reaction as a function of temperature, fluid chemistry and distance from equilibrium. Anhydrite used for the experiments was synthesized to avoid compositional impurities and annealed to achieve grain sizes (10-100 micron) and uniform crystalline properties. NaCl fluids (0.55 m) with known Sr/Ca ratios were used for the experiments. Experiments were performed at 200° and 250°C, 500 bars, while time series changes in fluid chemistry were monitored by fluid sampling at experimental conditions. Isobaric temperature change as well as chemical perturbation by addition of fluids with anomalous Sr/Ca ratio permitted phase equilibria to be unambiguously assed. Moreover, the chemical perturbation experiments provided information on the effect of rate of reaction on Sr-Ca exchange. Isobaric temperature jumps demonstrate that initially anhydrite precipitation incorporates Sr preferentially. With further reaction progress and approach to equilibrium Sr uptake by anhydrite recrystallization becomes less effective. Long-term equilibration (~3 months) of fluid and anhydrite at 250°C produces aSr/aCa*1000 of 2.8425. Results from the isothermal spike experiments indicate that the rate of exchange (dF/dt) for aSr/aCa is on the order of 0.01/day. Applying the experimentally determined Sr/Ca data to endmember vent fluids from LCHF suggests subseafloor temperatures near 200°C, in good agreement with constraints imposed by observed Ca and sulfate concentrations assuming anhydrite-fluid equilibria. Furthermore, the effect of supersaturated partitioning and experimentally determined rate at which Sr is incorporated into anhydrite suggests that seawater Sr uptake by anhydrite may be very effective, especially if the rate of formation is rapid, as might be expected owing to the sharply increasing geothermal gradient likely for the recharge portions of most of basalt-hosted hydrothermal systems at mid-ocean ridges. This would have important implications for the flux of radiogenic Sr and calculations of fluid/rock ratios at depth in the ocean crust.
Room temperature ferromagnetism of tin oxide nanocrystal based on synthesis methods
NASA Astrophysics Data System (ADS)
Sakthiraj, K.; Hema, M.; Balachandrakumar, K.
2016-04-01
The experimental conditions used in the preparation of nanocrystalline oxide materials play an important role in the room temperature ferromagnetism of the product. In the present work, a comparison was made between sol-gel, microwave assisted sol-gel and hydrothermal methods for preparing tin oxide nanocrystal. X-ray diffraction analysis indicates the formation of tetragonal rutile phase structure for all the samples. The crystallite size was estimated from the HRTEM images and it is around 6-12 nm. Using optical absorbance measurement, the band gap energy value of the samples has been calculated. It reveals the existence of quantum confinement effect in all the prepared samples. Photoluminescence (PL) spectra confirms that the luminescence process originates from the structural defects such as oxygen vacancies present in the samples. Room temperature hysteresis loop was clearly observed in M-H curve of all the samples. But the sol-gel derived sample shows the higher values of saturation magnetization (Ms) and remanence (Mr) than other two samples. This study reveals that the sol-gel method is superior to the other two methods for producing room temperature ferromagnetism in tin oxide nanocrystal.
Geologic setting of the Snake Pit hydrothermal site: An active vent field on the Mid-Atlantic Ridge
NASA Astrophysics Data System (ADS)
Karson, Jeffrey A.; Brown, Jennifer R.
1988-03-01
The Snake Pit Hydrothermal Site lies on the axis of the Mid-Atlantic Ridge at 23°22' N latitude, about 30 km south of the Kane Transform Intersection. Active ‘black smoker’ vents and a surrounding field of hydrothermal sediment occur at the crest of a laterally extensive neovolcanic ridge. It is one of the first active hydrothermal vent fields to be found on a slow-spreading ridge axis and despite significant differences in its geologic setting from those of the East Pacific Rise, has many similarities to its fast-spreading counterparts. Although preliminary reports have documented many interesting aspects of these vents and their surroundings, new data collected from the manned submersible ALVIN and the deep-towed ANGUS camera system define the regional tectonic setting as well as the local geologic environment of this fascinating area. The Snake Pit vents are located on a local peak of a volcanic constructional ridge at a depth of 3450 m, 700 800 m deeper than vents known from the East Pacific Rise, Galapagos, or Juan de Fuca spreading centers. The vent field is at least 600 m long and up to 200 m wide and is covered by a thick blanket of greenish to yellow-orange hydrothermal sediment. Both active and extinct vents are perched along the crests of steep-sided sulfide mounds that reach heights of over 40 m. High-temperature (350° C) fluids are vented from black smoker chimneys and low-temperature (226° C) fluids seep from sulphide domes and subordinate anhydrite constructions. Water temperatures, flow rates, fluid chemistries, and mineralization are strikingly similar to vents of faster spreading ridge crests; however, a somewhat distinct fauna inhabit the area.
Dutra, Dam; Pereira, Gkr; Kantorski, K Z; Exterkate, Ram; Kleverlaan, C J; Valandro, L F; Zanatta, F B
The aim of this study was to evaluate the effect of grinding with diamond burs and low-temperature aging on the material surface characteristics and bacteria adhesion on a yttrium-stabilized tetragonal zirconia polycrystalline (Y-TZP) surface. Y-TZP specimens were made from presintered blocks, sintered as recommended by the manufacturer, and assigned into six groups according to two factors-grinding (three levels: as sintered, grinding with extra-fine diamond bur [25-μm grit], and grinding with coarse diamond bur [181-μm grit]) and hydrothermal aging-to promote low-temperature degradation (two levels: presence/absence). Phase transformation (X-ray diffractometer), surface roughness, micromorphological patterns (atomic force microscopy), and contact angle (goniometer) were analyzed. Bacterial adhesion (colony-forming units [CFU]/biofilm) was quantified using an in vitro polymicrobial biofilm model. Both the surface treatment and hydrothermal aging promoted an increase in m-phase content. Roughness values increased as a function of increasing bur grit sizes. Grinding with a coarse diamond bur resulted in significantly lower values of contact angle (p<0.05) when compared with the extra-fine and control groups, while there were no differences (p<0.05) after hydrothermal aging simulation. The CFU/biofilm results showed that neither the surface treatment nor hydrothermal aging simulation significantly affected the bacteria adherence (p>0.05). Grinding with diamond burs and hydrothermal aging modified the Y-TZP surface properties; however, these properties had no effect on the amount of bacteria adhesion on the material surface.
NASA Astrophysics Data System (ADS)
Evans, Guy N.; Tivey, Margaret K.; Seewald, Jeffrey S.; Wheat, C. Geoff
2017-10-01
This study investigates the morphology, mineralogy, and geochemistry of seafloor massive sulfide (SMS) deposits from six back-arc hydrothermal vent fields along the Eastern Lau Spreading Center (ELSC) and Valu Fa Ridge (VFR) in the context of endmember vent fluid chemistry and proximity to the Tonga Subduction Zone. To complement deposit geochemistry, vent fluid analyses of Cu, Zn, Ba, Pb and H2,(aq) were completed to supplement existing data and enable thermodynamic calculations of mineral saturation states at in situ conditions. Results document southward increases in the abundance of mantle-incompatible elements in hydrothermal fluids (Ba and Pb) and SMS deposits (Ba, Pb, As, and Sb), which is also expressed in the abundance of barite (BaSO4) and galena (PbS) in SMS deposits. These increases correspond to a decrease in distance between the ELSC/VFR and the Tonga Subduction Zone that correlates with a change in crustal lithology from back-arc basin basalt in the north to mixed andesite, rhyolite, and dacite in the south. Barite influences deposit morphology, contributing to the formation of horizontal flanges and squat terraces. Results are also consistent with a regional-scale lowering of hydrothermal reaction zone temperatures from north to south (except at the southernmost Mariner vent field) that leads to lower-temperature, higher-pH vent fluids relative to mid-ocean ridges of similar spreading rates (Mottl et al., 2011). These fluids are Cu- and Zn-poor and the deposits formed from these fluids are Cu-poor but Zn-rich. In contrast, at the Mariner vent field, higher-temperature and lower pH vent fluids are hypothesized to result from higher reaction zone temperatures and the localized addition of acidic magmatic volatiles (Mottl et al., 2011). The Mariner fluids are Cu- and Zn-rich and vent from SMS deposits that are rich in Cu but poor in Zn with moderate amounts of Pb. Thermodynamic calculations indicate that the contrasting metal contents of vent fluids and SMS deposits can be accounted for by vent fluid pH. Wurtzite/sphalerite ((Zn, Fe)S) and galena (PbS) are saturated at higher temperatures in higher-pH, Zn-, Cu-, and Pb-poor ELSC/VFR vent fluids, but are undersaturated at similar temperatures in low-pH, Zn-, Cu-, and Pb-rich vent fluids from the Mariner vent field. Indicators of pH in the ELSC and VFR SMS deposits include the presence of co-precipitated wurtzite and chalcopyrite along conduit linings in deposits formed from higher pH fluids, and different correlations between concentrations of Zn and Ag in bulk geochemical analyses. Significant positive bulk geochemical Zn:Ag correlations occur for deposits at vent fields where hydrothermal fluids have a minimum pH (at 25 °C) < 3.3, while correlations of Zn:Ag are weak or negative for deposits at vent fields where the minimum vent fluid pH (at 25 °C) > 3.6. Data show that the compositions of the mineral linings of open conduit chimneys (minerals present, mol% FeS in (Zn,Fe)S) that precipitate directly from hydrothermal fluids closely reflect the temperature and sulfur fugacity of sampled hydrothermal fluids. These mineral lining compositions thus can be used as indicators of hydrothermal fluid temperature and composition (pH, metal content, sulfur fugacity).
1987-07-30
produced by the hydrothern-al syn- thesis method is the most easily sinterable independent of whether or not an additive is added. Based on this...combination properties of a stacked ceramic formed of (E) and a conventional ceramic. Aml (I ,, __________ ,__ (Cl 0D) Er " -120 70 20 , Er- 0 - ’ 80 I so...such an additive for low firing temperature to easily sin- terable Barium Titanate obtained by the hydrothermal syn- thesis method. It is also
Liu, Jinmei; Wu, Weiwei; Bai, Suo; Qin, Yong
2011-11-01
Well aligned ZnO nanowire (NW) arrays are grown on Kevlar fiber and Kapton film via the chemical vapor deposition (CVD) method. These NWs have better crystallinity than those synthesized through the low-temperature hydrothermal method. The average length and diameter of ZnO NWs grown on Kevlar fiber can be controlled from 0.5 to 2.76 μm and 30 to 300 nm, respectively. A flexible ultraviolet (UV) sensor based on Kevlar fiber/ZnO NWs hybrid structure is made to detect UV illumination quantificationally.
NASA Astrophysics Data System (ADS)
Black, S.; Hynek, B. M.; Kierein-Young, K. S.; Avard, G.; Alvarado-Induni, G.
2015-12-01
Proper characterization of mineralogy is an essential part of geologic interpretation. This process becomes even more critical when attempting to interpret the history of a region remotely, via satellites and/or landed spacecraft. Orbiters and landed missions to Mars carry with them a wide range of analytical tools to aid in the interpretation of Mars' geologic history. However, many instruments make a single type of measurement (e.g., APXS: elemental chemistry; XRD: mineralogy), and multiple data sets must be utilized to develop a comprehensive understanding of a sample. Hydrothermal alteration products often exist in intimate mixtures, and vary widely across a site due to changing pH, temperature, and fluid/gas chemistries. These characteristics require that we develop a detailed understanding regarding the possible mineral mixtures that may exist, and their detectability in different instrument data sets. This comparative analysis study utilized several analytical methods on existing or planned Mars rovers (XRD Raman, LIBS, Mössbauer, and APXS) combined with additional characterization (thin section, VNIR, XRF, SEM-EMP) to develop a comprehensive suite of data for hydrothermal alteration products collected from Poás and Turrialba volcanoes in Costa Rica. Analyzing the same samples across a wide range of instruments allows for direct comparisons of results, and identification of instrumentation "blind spots." This provides insight into the ability of in-situ analyses to comprehensively characterize sites on Mars exhibiting putative hydrothermal characteristics, such as the silica and sulfate deposits at Gusev crater [eg: Squyres et al., 2008], as well as valuable information for future mission planning and data interpretation. References: Squyres et al. (2008), Detection of Silica-Rich Deposits on Mars, Science, 320, 1063-1067, doi:10.1126/science.1155429.
Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming
2007-01-01
A modified hydrothermal diamond anvil cell (HDAC) rail assembly has been constructed for making synchrotron x-ray absorption spectroscopy, x-ray fluorescence, and x-ray mapping measurements on fluids or solid phases in contact with hydrothermal fluids up to ???900??C and 700 MPa. The diamond anvils of the HDAC are modified by laser milling grooves or holes, for the reduction of attenuation of incident and fluorescent x rays and sample cavities. The modified HDAC rail assembly has flexibility in design for measurement of light elements at low concentrations or heavy elements at trace levels in the sample and the capability to probe minute individual phases of a multiphase fluid-based system using focused x-ray microbeam. The supporting rail allows for uniform translation of the HDAC, rotation and tilt stages, and a focusing mirror, which is used to illuminate the sample for visual observation using a microscope, relative to the direction of the incident x-ray beam. A structure study of Eu(III) aqua ion behavior in high-temperature aqueous solutions and a study of Nb partitioning and coordination in a silicate melt in contact with a hydrothermal fluid are described as applications utilizing the modified HDAC rail assembly. ?? 2007 American Institute of Physics.
Diverse styles of submarine venting on the ultra-slow spreading Mid-Cayman Rise (Invited)
NASA Astrophysics Data System (ADS)
German, C. R.; Bowen, A.; Coleman, M. L.; Honig, D. L.; Huber, J. A.; Jakuba, M.; Kinsey, J. C.; Kurz, M. D.; Leroy, S.; McDermott, J.; Mercier de Lepinay, B. F.; Nakamura, K.; Seewald, J.; Smith, J.; Sylva, S.; van Dover, C. L.; Whitcomb, L. L.; Yoerger, D. R.
2010-12-01
Thirty years after the first discovery of high-temperature submarine venting, the vast majority of the global Mid Ocean Ridge remains unexplored for hydrothermal activity. Of particular interest are the world’s ultra-slow spreading ridges which were the last to be demonstrated to host high-temperature venting, but may host systems particularly relevant to pre-biotic chemistry and the origins of life. Here we report first evidence for diverse and very deep hydrothermal vents along the ~110 km long, ultra-slow spreading Mid-Cayman Rise collected using a combination of CTD-rosette operations and dives of the Hybrid Remotely Operated Vehicle (HROV) Nereus in 2009 followed by shore based work-up of samples for geochemical and microbiological analyses. Our data indicate that the Mid-Cayman Rise hosts at least three discrete hydrothermal sites, each representing a different type of water-rock interaction, including both mafic and ultra-mafic systems and, at ~5000 m, the deepest known hydrothermal vent. Although submarine hydrothermal circulation, in which seawater percolates through and reacts with host lithologies, occurs on all mid-ocean ridges, the diversity of vent-types identified here and their relative geographic isolation make the Mid-Cayman Rise unique in the oceans. These new sites offer prospects for: an expanded range of vent-fluid compositions; varieties of abiotic organic chemical synthesis and extremophile microorganisms; and unparalleled faunal biodiversity - all in close proximity.
Moore, Diane E.; Hickman, S.; Lockner, D.A.; Dobson, P.F.
2001-01-01
Detailed study of core samples of silicic tuff recovered from three geothermal wells along the strike-slip Great Sumatran fault zone near Silangkitang, North Sumatra, supports a model for enhanced hydrothermal circulation adjacent to this major plate-boundary fault. Two wells (A and C) were drilled nearly vertically ??1 km southwest of the eastern (i.e., the principal) fault trace, and the third, directional well (B) was drilled eastward from the site of well A to within ??100 m of the principal fault trace. The examined core samples come from depths of 1650-2120 m at measured well temperatures of 180-320 ??C. The samples collected near the principal fault trace have the highest temperatures, the largest amount of secondary pore space that correlates with high secondary permeability, and the most extensive hydrothermal mineral development. Secondary permeability and the degree of hydrothermal alteration decrease toward the southwestern margin of the fault zone. These features indicate episodic, localized flow of hot, possibly CO2-rich fluids within the fault zone. The microstructure populations identified in the core samples correlate to the subsidiary fault patterns typical of strike-slip faults. The geothermal reservoir appears to be centered on the fault zone, with the principal fault strands and adjoining, highly fractured and hydrothermally altered rock serving as the main conduits for vertical fluid flow and advective heat transport from deeper magmatic sources.
McCollom, Thomas M
2007-12-01
Numerical models are employed to investigate sources of chemical energy for autotrophic microbial metabolism that develop during mixing of oxidized seawater with strongly reduced fluids discharged from ultramafic-hosted hydrothermal systems on the seafloor. Hydrothermal fluids in these systems are highly enriched in H(2) and CH(4) as a result of alteration of ultramafic rocks (serpentinization) in the subsurface. Based on the availability of chemical energy sources, inferences are made about the likely metabolic diversity, relative abundance, and spatial distribution of microorganisms within ultramafic-hosted systems. Metabolic reactions involving H(2) and CH(4), particularly hydrogen oxidation, methanotrophy, sulfate reduction, and methanogenesis, represent the predominant sources of chemical energy during fluid mixing. Owing to chemical gradients that develop from fluid mixing, aerobic metabolisms are likely to predominate in low-temperature environments (<20-30 degrees C), while anaerobes will dominate higher-temperature environments. Overall, aerobic metabolic reactions can supply up to approximately 7 kJ of energy per kilogram of hydrothermal fluid, while anaerobic metabolic reactions can supply about 1 kJ, which is sufficient to support a maximum of approximately 120 mg (dry weight) of primary biomass production by aerobic organisms and approximately 20-30 mg biomass by anaerobes. The results indicate that ultramafic-hosted systems are capable of supplying about twice as much chemical energy as analogous deep-sea hydrothermal systems hosted in basaltic rocks.
NASA Technical Reports Server (NTRS)
Leif, Roald N.
1993-01-01
High temperature alteration of sedimentary organic matter associated with marine hydrothermal systems involves complex physical and chemical processes that are not easily measured in most natural systems. Many of these processes can be evaluated indirectly by examining the geochemistry of the hydrothermal system in the laboratory. In this investigation, an experimental organic geochemical approach to studying pyrolysis of sedimentary organic matter is applied to the hydrothermal system in the Guaymas Basin, Gulf of California. A general survey of hydrothermal oils and extractable organic matter (bitumen) in hydrothermally altered sediments identified several homologous series of alkanones associated with a high temperature hydrothermal origin. The alkanones range in carbon number from C11 to C30 with no carbon number preference. Alkan-2-ones are in highest concentrations, with lower amounts of 3-, 4-, 5- (and higher) homologs. The alkanones appear to be pyrolysis products synthesized under extreme hydrothermal conditions. Hydrous pyrolysis and confinement pyrolysis experiments were performed to simulate thermally enhanced diagenetic and catagenetic changes in the immature sedimentary organic matter. The extent of alteration was measured by monitoring the n-alkanes, acyclic isoprenoids, steroid and triterpenoid biomarkers, polycyclic aromatic hydrocarbons and alkanones. The results were compared to bitumen extracts from sediments which have been naturally altered by a sill intrusion and accompanied hydrothermal fluid flow. These pyrolysis experiments duplicated many of the organic matter transformations observed in the natural system. Full hopane and sterane maturation occurred after 48 hr in experiments at 330 deg C with low water/rock mass ratios (0.29). A variety of radical and ionic reactions are responsible for the organic compound conversions which occur under extreme hydrothermal conditions. Short duration pyrolysis experiments revealed that a portion of the hydrocarbons generated from kerogen was observed to go through alkene intermediates, and the rate of alkene isomerization was influenced by the ionic strength and catalytic mineral phases. Confinement of the organic pyrolysate to the bulk sediment accelerated the rates of the biomarker epimerization reactions, suggesting that these reactions are influenced strongly by the association of the inorganic matrix, and that the relative rates of some ionic and radical reactions can be influenced by the water/rock ratio during the pyrolysis experiments.
NASA Astrophysics Data System (ADS)
Benjamin, S. B.; Haymon, R. M.
2004-12-01
It has been estimated from heat flow measurements that at least 40% of the total hydrothermal heat lost from oceanic lithosphere is removed from 0.1-5 Ma abyssal hill terrain on mid-ocean ridge flanks. Despite the large magnitude of estimated hydrothermal heat loss from young abyssal hills, little is known about characteristics of hydrothermal vents and mineral deposits in this setting. This study describes the first abyssal hill hydrothermal samples to be collected on the flank of a fast-spreading ridge. The mineral deposits were discovered at "Tevnia Site" on the axis-facing fault scarp of an abyssal hill, located on ˜0.1 Ma lithosphere ˜5 km east of the East Pacific Rise (EPR) axis at 10\\deg 20'N. Observations of Galatheid crabs, "dandelion" siphonophores, and colonies of dead, yet still intact, Tevnia worm tubes at this site during Alvin dives in 1994 suggests relatively recent hydrothermal activity. The deposits are friable hydrothermal precipitates incorporating volcanic clasts brecciated at both the micro and macro scales. The petrographic sequence of brecciation, alteration, and cementation exhibited by the samples suggests that they formed from many pulses of hydrothermal venting interspersed with, and perhaps triggered by, repeated tectonic events as the abyssal hill was uplifted and moved off-axis (see also Haymon et al., this session). Observed minerals include x-ray amorphous opaline silica and Fe-oxide phases, crystalline Mn-oxides (birnessite and todorokite), an irregularly stratified mixed layer nontronite-celadonite, and residual calcite in sediment-derived microfossils incorporated into the breccia matrix. This mineral assemblage suggests that the deposits precipitated from moderately low-temperature (<140\\deg C) fluids, enriched in K, Fe, Si, and Mn, with a near-neutral pH. The presence of tubeworm casings at the site is evidence that the hydrothermal fluids carried H2S, however no metal sulfide phases were identified in the samples. Although the fluids were actively venting from an abyssal hill distal to the ridge crest, the presence of Fe- and K-rich nontronite-celadonite suggests an axial fluid source. However, the observed textures, minerals, and microfossils, combined with the absence of copper, zinc, and sulfur minerals, clearly distinguishes these near-axis samples from hydrothermal deposits formed at higher temperatures (>350\\deg C) on the mid-ocean ridge crest.
Hydrothermal synthesis and magnetic properties of Mn doped ZnS nanoparticles
NASA Astrophysics Data System (ADS)
Rashad, M. M.; Rayan, D. A.; El-Barawy, K.
2010-01-01
Nanocrystallite Mn doped Zn1-XS (X = 0 to 0.4) powders have been synthesized through a hydrothermal route. The effect of the hydrothermal temperature and Mn2+ ions substitution on the crystal structure, crystallite size, microstructure and magnetic properties were investigated using (XRD), (SEM) and (VSM). The results revealed that wurtzite zinc sulfide phase was formed using thiourea as a sulfur source at temperature 150- 200oC for 24 h. The crystallite size was (7.9-15.1 nm) was obtained at the same conditions. The doping of Mn2+ ions decreased the crystallite size of the formed ZnS wurtzite phase was in the range between 7.9 and 3.8 nm. SEM micrographs showed that the produced ZnS and Mn doped ZnS particles were appeared as spherical shape. The magnetic properties were improved by substitution of Mn2+ ions up to 0.2.
Fan, Rui; Li, Nan; Xu, Honggao; Xiang, Jun; Wang, Lei; Gao, Yanxiang
2016-01-01
To improve the bioactivity and sweetness properties of glycyrrhizic acid (GL), the hydrothermal hydrolysis of GL into glycyrrhetinic acid (GA) and glycyrrhetinic acid 3-O-mono-β-D-glucuronide (GAMG) in subcritical water was investigated. The effects of temperature, time and their interaction on the conversion ratios were analyzed and the reactions were elaborated with kinetics and thermodynamics. The results showed that GL hydrothermal hydrolysis was significantly (P < 0.05) affected by reaction time and temperature, as well as their interaction, and could be fitted into first-order kinetics. The thermodynamic analysis indicated that the hydrolysis of GL was endergonic and non-spontaneous. The hydrolytic pathways were composed of complex consecutive and parallel reactions. It was concluded that subcritical water may be a potential medium for producing GAMG and GA. Copyright © 2015 Elsevier Ltd. All rights reserved.
Woodruff, L.G.; Froelich, A.J.; Belkin, H.E.; Gottfried, D.
1995-01-01
High-TiO2, quartz-normative (HTQ) tholeiite sheets of Early Jurassic age have intruded mainly Late Triassic sedimentary rocks in several early Mesozoic basins in the eastern US. Field observations, petrographic study, geochemical analyses and stable isotope data from three HTQ sheet systems were used to develop a general model of magmatic differentiation and magmatic-hydrothermal interaction for HTQ sheets. The three sheet systems have remarkably similar major-oxide and trace-element compositions. Cumulus and evolved diabase in comagmatic sheets separated by tens of kilometers are related by igneous differentiation. Differentiated diabase in all three sheets have petrographic and geochemical signatures and fluid inclusions indicating hydrothermal alteration beginning near magmatic temperatures and continuing to relatively low temperatures. Sulfur and oxygen isotope data are consistent with a magmatic origin for the hydrothermal fluid. -from Authors
Hydrothermal Growth of Polyscale Crystals
NASA Astrophysics Data System (ADS)
Byrappa, Kullaiah
In this chapter, the importance of the hydrothermal technique for growth of polyscale crystals is discussed with reference to its efficiency in synthesizing high-quality crystals of various sizes for modern technological applications. The historical development of the hydrothermal technique is briefly discussed, to show its evolution over time. Also some of the important types of apparatus used in routine hydrothermal research, including the continuous production of nanosize crystals, are discussed. The latest trends in the hydrothermal growth of crystals, such as thermodynamic modeling and understanding of the solution chemistry, are elucidated with appropriate examples. The growth of some selected bulk, fine, and nanosized crystals of current technological significance, such as quartz, aluminum and gallium berlinites, calcite, gemstones, rare-earth vanadates, electroceramic titanates, and carbon polymorphs, is discussed in detail. Future trends in the hydrothermal technique, required to meet the challenges of fast-growing demand for materials in various technological fields, are described. At the end of this chapter, an Appendix 18.A containing a more or less complete list of the characteristic families of crystals synthesized by the hydrothermal technique is given with the solvent and pressure-temperature (PT) conditions used in their synthesis.
Chen, Xue; Li, Hanyin; Sun, Shaoni; Cao, Xuefei; Sun, Runcang
2016-01-01
Due to the enormous abundance of lignin and its unique aromatic nature, lignin has great potential for the production of industrially useful fuels, chemicals, and materials. However, the rigid and compact structure of the plant cell walls significantly blocks the separation of lignin. In this study, wheat straw was hydrothermally pretreated at different temperatures (120–200 °C) followed by post-treatment with 70% ethanol containing 1% NaOH to improve the isolation of lignin. Results demonstrated that the content of associated carbohydrates of the lignin fractions was gradually reduced with the increment of the hydrothermal severity. The structure of the lignins changed regularly with the increase of the pretreatment temperature from 120 to 200 °C. In particular, the contents of β-O-4′, β-β′, β-5′ linkages and aliphatic OH in the lignins showed a tendency of decrease, while the content of phenolic OH and thermal stability of the lignin fractions increased steadily as the increment of the pretreatment temperature. PMID:27982101
Volli, Vikranth; Purkait, M K
2015-10-30
This work discusses the utilization of flyash for synthesis of heterogeneous catalyst for transesterification. Different types of zeolites were synthesized from alkali fusion followed by hydrothermal treatment of coal flyash as source material. The synthesis conditions were optimized to obtain highly crystalline zeolite based on degree of crystallinity and cation exchange capacity (CEC). The effect of CEC, acid treatment, Si/Al ratio and calcination temperature (800, 900 and 1000 °C) on zeolite formation was also studied. Pure, single phase and highly crystalline zeolite was obtained at flyash/NaOH ratio (1:1.2), fusion temperature (550 °C), fusion time (1 h), hydrothermal temperature (110 °C) and hydrothermal time (12h). The synthesized zeolite was ion-exchanged with potassium and was used as catalyst for transesterification of mustard oil to obtain a maximum conversion of 84.6% with 5 wt% catalyst concentration, 12:1 methanol to oil molar ratio, reaction time of 7 h at 65 °C. The catalyst was reused for 3 times with marginal reduction in activity. Copyright © 2015 Elsevier B.V. All rights reserved.
Preliminary Reconnaissance of West Astringent Creek Thermal Area, Yellowstone National Park
NASA Astrophysics Data System (ADS)
Fairley, J. P., Jr.; Villegas, G.; Aunan, M. M.; Lindsey, C.; Sorensen, A.; Larson, P. B.
2016-12-01
The West Astringent Creek Thermal Area (WACTA) is one of the newest thermal areas in Yellowstone National Park (YNP). Thermal activity in the headwaters region of Astringent Creek, on the southeast edge of Sour Creek Dome, was rst noted in 1985; subsequent developments included the appearance of a high-temperature (104C) hydrothermal fumarole (which later metamorphosed into a mud volcano) and an area of tree-kill due to rising ground temperatures [Hutchinson, 1996]. We conducted a preliminary exploration of the hydrothermal area through visual evaluation of the spatial extent, location of the features, and nature of the hydrothermal area. 16 features were chosen based upon the following criteria: 1) initial appearance, 2) location in the thermal area, 3) location with respect to each other, and 4) accessibility. From these features we collected in-situ temperature and pH, as well as aqueous samples for geochemical analysis of cations, and deuterium and oxygen isotopes. With the information collected we will make a brief description of the thermal area and present a basis to conduct future research to obtain an amplified characterization of the WACTA.
Li, Ming; Magdassi, Shlomo; Gao, Yanfeng; Long, Yi
2017-09-01
Vanadium dioxide (VO 2 ) is a widely studied inorganic phase change material, which has a reversible phase transition from semiconducting monoclinic to metallic rutile phase at a critical temperature of τ c ≈ 68 °C. The abrupt decrease of infrared transmittance in the metallic phase makes VO 2 a potential candidate for thermochromic energy efficient windows to cut down building energy consumption. However, there are three long-standing issues that hindered its application in energy efficient windows: high τ c , low luminous transmittance (T lum ), and undesirable solar modulation ability (ΔT sol ). Many approaches, including nano-thermochromism, porous films, biomimetic surface reconstruction, gridded structures, antireflective overcoatings, etc, have been proposed to tackle these issues. The first approach-nano-thermochromism-which is to integrate VO 2 nanoparticles in a transparent matrix, outperforms the rest; while the thermochromic performance is determined by particle size, stoichiometry, and crystallinity. A hydrothermal method is the most common method to fabricate high-quality VO 2 nanoparticles, and has its own advantages of large-scale synthesis and precise phase control of VO 2 . This Review focuses on hydrothermal synthesis, physical properties of VO 2 polymorphs, and their transformation to thermochromic VO 2 (M), and discusses the advantages, challenges, and prospects of VO 2 (M) in energy-efficient smart windows application. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chiodini, Giovanni; Marini, Luigi; Russo, Massimo
2001-07-01
A high-temperature hydrothermal system is present underneath the crater area of Vesuvio volcano. It is suggested that NaCl brines reside in the high-temperature reservoir and influence the chemical composition of the gases discharged by the fumaroles of the crater bottom (vents FC1, FC2, and FC5). These have typical hydrothermal compositions, with H 2O and CO 2 as major components, followed by H 2, H 2S, N 2, CH 4, and CO (in order of decreasing contents) and undetectable SO 2, HCl, and HF. Fumarolic H 2O is either meteoric water enriched in 18O through high-temperature water-rock oxygen isotope exchange or a mixture of meteoric and arc-type magmatic water. Fumarolic CO 2 is mainly generated by decarbonation reactions of marine carbonates, but the addition of small amounts of magmatic CO 2 is also possible. All investigated gas species (H 2O, CO 2, CO, CH 4, H 2, H 2S, N 2, and NH 3) equilibrate, probably in a saturated vapor phase, at temperatures of 360 to 370°C for vent FC1 and 430 to 445°C for vents FC2 and FC5. These temperatures are confirmed by the H 2-Ar geoindicator. The minimum salt content of the liquid phase coexisting with the vapor phase is ˜14.9 wt.% NaCl, whereas its maximum salinity corresponds to halite saturation (49.2-52.5 wt.% NaCl). These poorly constrained salinities of NaCl brines reflect in large uncertainties in total fluid pressures, which are estimated to be 260 to 480 bar for vents FC2 and FC5 and 130 to 220 bar for vent FC1. Pressurization in some parts of the hydrothermal system, and its subsequent discharge through hydrofracturing, could explain the relatively frequent seismic crises recorded in the Vesuvio area after the last eruption. An important heat source responsible for hydrothermal circulation is represented by the hot rocks of the eruptive conduits, which have been active from 1631 to 1944. Geochemical evidence suggests that no input of fresh magma at shallow depths took place after the end of the last eruptive period.
NASA Astrophysics Data System (ADS)
Hassanpour, A.; Guo, P.; Shen, S.; Bianucci, P.
2017-10-01
Undoped and C-doped (C: Mg2+, Ni2+, Mn2+, Co2+, Cu2+, Cr3+) ZnO nanorods were synthesized by a hydrothermal method at temperatures as low as 60 °C. The effect of doping on the morphology of the ZnO nanorods was visualized by taking their cross section and top SEM images. The results show that the size of nanorods was increased in both height and diameter by cation doping. The crystallinity change of the ZnO nanorods due to each doping element was thoroughly investigated by an x-ray diffraction (XRD). The XRD patterns show that the wurtzite crystal structure of ZnO nanorods was maintained after cation addition. The optical Raman-active modes of undoped and cation-doped nanorods were measured with a micro-Raman setup at room temperature. The surface chemistry of samples was investigated by x-ray photoelectron spectroscopy and energy-dispersive x-ray spectroscopy. Finally, the effect of each cation dopant on band-gap shift of the ZnO nanorods was investigated by a photoluminescence setup at room temperature. Although the amount of dopants (Mg2+, Ni2+, and Co2+) was smaller than the amount of Mn2+, Cu2+, and Cr3+ in the nanorods, their effect on the band structure of the ZnO nanorods was profound. The highest band-gap shift was achieved for a Co-doped sample, and the best crystal orientation was for Mn-doped ZnO nanorods. Our results can be used as a comprehensive reference for engineering of the morphological, structural and optical properties of cation-doped ZnO nanorods by using a low-temperature synthesis as an economical mass-production approach.
An in-situ Mobile pH Calibrator for application with HOV and ROV platform in deep sea environments
NASA Astrophysics Data System (ADS)
Tan, C.; Ding, K.; Seyfried, W. E., Jr.
2014-12-01
Recently, a novel in-situ sensor calibration instrument, Mobile pH Calibrator (MpHC), was developed for application with HOV Alvin. It was specifically designed to conduct in-situ pH measurement in deep sea hydrothermal diffuse fluids with in-situ calibration function. In general, the sensor calibrator involves three integrated electrodes (pH, dissolved H2 and H2S) and a temperature sensor, all of which are installed in a cell with a volume of ~ 1 ml. A PEEK check valve cartridge is installed at the inlet end of the cell to guide the flow path during the measurement and calibration processes. Two PEEK tubes are connected at outlet end of the cell for drawing out hydrothermal fluid and delivering pH buffer fluids. During its measurement operation, the pump draws in hydrothermal fluid, which then passes through the check valve directly into the sensing cell. When in calibration mode, the pump delivers pH buffers into the cell, while automatically closing the check valve to the outside environment. This probe has two advantages compared to our previous unit used during KNOX18RR MAR cruise in 2008 and MARS cabled observatory deployment in 2012. First, in the former design, a 5 cm solenoid valve was equipped with the probe. This enlarged size prevented its application in specific point or small area. In this version, the probe has only a dimension of 1.6 cm for an easy access to hydrothermal biological environments. Secondly, the maximum temperature condition of the earlier system was limited by the solenoid valve precluding operation in excess of 50 ºC. The new design avoids this problem, which improves its temperature tolerance. The upper limit of temperature condition is now up to 100oC, therefore enabling broader application in hydrothermal diffuse flow system on the seafloor. During SVC cruise (AT26-12) in the Gulf of Mexico this year, the MpHC was successfully tested with Alvin dives at the depth up to 2600 m for measuring pH with in-situ calibration in seafloor cold seep environment. The measurement and calibration were also conducted in hydrothermal diffuse flow at temperature condition exceeding 70 ºC with Alvin dives during a recent cruise AT26-17 in ASHES vent field and Main Endeavour Field on Juan de Fuca Ridge. Data from these seagoing deployments will be presented, with emphasis on both technical and scientific aplications.
Zinc oxide hollow microstructures and nanostructures formed under hydrothermal conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dem'yanets, L. N., E-mail: demianets@ns.crys.ras.ru; Artemov, V. V.; Li, L. E.
Zinc oxide low-dimensional hollow structures in the form of hexagonal plates with holes at the center of the {l_brace}0001{r_brace} facets are synthesized in the course of the low-temperature interaction of ZnO precursors with aqueous solutions of potassium fluoride under hydrothermal conditions. Crystals have the shape of single-walled or multiwalled 'nuts.' The high optical quality of the structures is confirmed by cathodoluminescence data at room temperature. The mechanism of the formation of ZnO 'nanonuts' and products of the interaction of the ZnO precursors with KF is proposed.
Wang, Ronghua; Han, Meng; Zhao, Qiannan; Ren, Zonglin; Guo, Xiaolong; Xu, Chaohe; Hu, Ning; Lu, Li
2017-01-01
As known to all, hydrothermal synthesis is a powerful technique for preparing inorganic and organic materials or composites with different architectures. In this reports, by controlling hydrothermal conditions, nanostructured polyaniline (PANi) in different morphologies were composited with graphene sheets (GNS) and used as electrode materials of supercapacitors. Specifically, ultrathin PANi layers with total thickness of 10–20 nm are uniformly composited with GNS by a two-step hydrothermal-assistant chemical oxidation polymerization process; while PANi nanofibers with diameter of 50~100 nm are obtained by a one-step direct hydrothermal process. Benefitting from the ultrathin layer and porous structure, the sheet-like GNS/PANi composites can deliver specific capacitances of 532.3 to 304.9 F/g at scan rates of 2 to 50 mV/s. And also, this active material showed very good stability with capacitance retention as high as ~99.6% at scan rate of 50 mV/s, indicating a great potential for using in supercapacitors. Furthermore, the effects of hydrothermal temperatures on the electrochemical performances were systematically studied and discussed. PMID:28291246
Lonsdale, P.F.; Bischoff, J.L.; Burns, V.M.; Kastner, M.; Sweeney, R.E.
1980-01-01
A submersible dive on a turbidite-covered spreading axis in Guaymas Basin photographed and sampled extensive terraces and ledges of talc. The rock contains siliceous microfossils, smectite, and euhedral pyrrhotite as well as rather pure iron-rich talc. S and O isotopes indicate precipitation around a hydrothermal vent, at about 2800C. - Authors
The potential for prebiotic synthesis in hydrothermal systems. [Abstract only
NASA Technical Reports Server (NTRS)
Ferris, James P.
1994-01-01
Contemporary hydrothermal systems provide a reducing environment where organic compounds are formed and may react to generate the molecules used in the first living systems. The organic compounds percolate through mineral assemblages at a variety of temperatures so the proposed synthetic reactions are driven by heat and catalyzed by minerals (Ferris, 1992). Some examples of potential prebiotic reactions are discussed.
Geothermic Potential Assessment of hydrothermal vents of Township Barranca De Upia - Meta - Colombia
NASA Astrophysics Data System (ADS)
Chica, J.; Chicangana, G.; Eco Energy Research Group
2013-05-01
Hydrothermal vents have been traditionally exploited in Colombia as a source of tourism revenue such as pools and saunas. Leaving aside its high potential for geothermal power generation in applications like heating, drying, cooling, extensive use in crops, livestock, electricity generation and more. Currently the use given to this natural resource in the town of Barranca de Upia in Meta department, central Colombia, is like Wellness Centre. However, the geothermal gradient for the area where hydrothermal vents occur, indicates that the water emerges at temperatures above 70 ° C (Alfaro et al., 2003), which opens a window of opportunity to assess their geothermal potential, in order to know the actual energy potential of the region as an option of augmenting their development. this research is the analysis of information gathered from databases in gravimetry and magnetometry of the study area and the temperatures measured in wells derived from the oil industry. Based on that information, a numerical analysis of the data will be performed in order to establish a model to parameterize the energy potential of the study area and identify possible uses of the energy contained by the hydrothermal vents.
Chen, Jinbo
2018-06-14
Hyper-accumulator biomass, Pteris vittata L., was hydrothermally converted into bio-oils via hydrothermal liquefaction (HTL) in sub-supercritical water. The distributions and characterizations of various products as well as energy recovery under different temperatures (250-390 °C) were investigated. The highest bio-oil yield of 16.88% was obtained at 350 °C with the hydrothermal conversion of 61.79%, where the bio-oil was dominated by alcohols, esters, phenols, ketones and acidic compounds. The higher heating values of bio-oil were in the range of 19.93-35.45 MJ/kg with a H/C ratio of 1.26-1.46, illustrating its high energy density and potential for use as an ideal liquid fuel. The main gaseous products were CO 2 , H 2 , CO, and CH 4 with the H 2 yield peaking at 22.94%. The total energy recovery from bio-oils and solid residues fell within the range of 37.72-45.10%, highlighting the potential of HTL to convert hyper-accumulator biomass into valuable fuels with high conversion efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.
Grimaldi, Maira Prearo; Marques, Marina Paganini; Laluce, Cecília; Cilli, Eduardo Maffud; Sponchiado, Sandra Regina Pombeiro
2015-01-01
Ethanol production from sugarcane bagasse requires a pretreatment step to disrupt the cellulose-hemicellulose-lignin complex and to increase biomass digestibility, thus allowing the obtaining of high yields of fermentable sugars for the subsequent fermentation. Hydrothermal and lime pretreatments have emerged as effective methods in preparing the lignocellulosic biomass for bioconversion. These pretreatments are advantageous because they can be performed under mild temperature and pressure conditions, resulting in less sugar degradation compared with other pretreatments, and also are cost-effective and environmentally sustainable. In this study, we evaluated the effect of these pretreatments on the efficiency of enzymatic hydrolysis of raw sugarcane bagasse obtained directly from mill without prior screening. In addition, we evaluated the structure and composition modifications of this bagasse after lime and hydrothermal pretreatments. The highest cellulose hydrolysis rate (70 % digestion) was obtained for raw sugarcane bagasse pretreated with lime [0.1 g Ca(OH)2/g raw] for 60 min at 120 °C compared with hydrothermally pretreated bagasse (21 % digestion) under the same time and temperature conditions. Chemical composition analyses showed that the lime pretreatment of bagasse promoted high solubilization of lignin (30 %) and hemicellulose (5 %) accompanied by a cellulose accumulation (11 %). Analysis of pretreated bagasse structure revealed that lime pretreatment caused considerable damage to the bagasse fibers, including rupture of the cell wall, exposing the cellulose-rich areas to enzymatic action. We showed that lime pretreatment is effective in improving enzymatic digestibility of raw sugarcane bagasse, even at low lime loading and over a short pretreatment period. It was also demonstrated that this pretreatment caused alterations in the structure and composition of raw bagasse, which had a pronounced effect on the enzymes accessibility to the substrate, resulting in an increase of cellulose hydrolysis rate. These results indicate that the use of raw sugarcane bagasse (without prior screening) pretreated with lime (cheaper and environmentally friendly reagent) may represent a cost reduction in the cellulosic ethanol production.
Modeling the hydrothermal circulation and the hydrogen production at the Rainbow site with Cast3M
NASA Astrophysics Data System (ADS)
Perez, F.; Mügler, C.; Charlou, J.; Jean-baptiste, P.
2012-12-01
On the Mid-Atlantic Ridge, the Rainbow venting site is described as an ultramafic-hosted active hydrothermal site and releases high fluxes of methane and hydrogen [1, 2]. This behavior has first been interpreted as the result of serpentinization processes. But geochemical reactions involving olivine and plagioclase assemblages, and leading to chlorite, tremolite, talc and magnetite assemblages, could contribute to the observed characteristics of the exiting fluid [2]. The predominance of one of these geochemical reactions or their coexistence strongly depend on the hydrothermal fluid circulation. We developed and validated a 2D/3D numerical model using a Finite Volume method to simulate heat driven fluid flows in the framework of the Cast3M code [3, 4]. We also developed a numerical model for hydrogen production and transport that is based on experimental studies of the serpentinization processes [5-6]. This geochemical model takes into account the exothermic and water-consuming behavior of the serpentinization reaction and it can be coupled to our thermo-hydrogeological model. Our simulations provide temperatures, mass fluxes and venting surface areas very close to those estimated in-situ [7]. We showed that a single-path model [8] was necessary to simulate high values such as the in-situ measured temperatures and estimated water mass fluxes of the Rainbow site [7]. This single-path model will be used to model the production and transport of hydrogen at the Rainbow hydrothermal site. References [1]Charlou et al. (2010) AGU Monograph series. [2]Seyfried et al. (2011) Geochim. Cosmochim. Acta 75, 1574-1593. [3]http://www-cast3m.cea.fr. [4]Martin & Fyfe (1970) Chem. Geol. 6, 185-202. [5] Marcaillou et al. (2011) Earth and Planet. Sci. Lett. 303, 281-290. [6]Malvoisin et al. (2012) JGR, 117, B01104. [7]Perez et al. (2012) submited to Computational Geosciences. [8]Lowell & Germanovich (2004) AGU, Washington DC, USA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behdadfar, Behshid, E-mail: bbehdadfar@ma.iut.ac.ir; Kermanpur, Ahmad; Sadeghi-Aliabadi, Hojjat
Monodispersed aqueous ferrofluids of iron oxide nanoparticle were synthesized by hydrothermal-reduction route. They were characterized by X-ray diffraction analysis, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy and dynamic light scattering. The results showed that certain concentrations of citric acid (CA) are required to obtain only magnetic iron oxides with mean particle sizes around 8 nm. CA acts as a modulator and reducing agent in iron oxide formation which controls nanoparticle size. The XRD, magnetic and heating measurements showed that the temperature and time of hydrothermal reaction can affect the magnetic properties of obtained ferrofluids. The synthesized ferrofluids weremore » stable at pH 7. Their mean hydrodynamic size was around 80 nm with polydispersity index (PDI) of 0.158. The calculated intrinsic loss power (ILP) was 9.4 nHm{sup 2}/kg. So this clean and cheap route is an efficient way to synthesize high ILP aqueous ferrofluids applicable in magnetic hyperthermia. - Graphical abstract: Monodispersed aqueous ferrofluids of iron oxide nanoparticles were synthesized by hydrothermal-reduction method with citric acid as reductant which is an efficient way to synthesize aqueous ferrofluids applicable in magnetic hyperthermia. Highlights: Black-Right-Pointing-Pointer Aqueous iron oxide ferrofluids were synthesized by hydrothermal-reduction route. Black-Right-Pointing-Pointer Citric acid acted as reducing agent and surfactant in the route. Black-Right-Pointing-Pointer This is a facile, low energy and environmental friendly route. Black-Right-Pointing-Pointer The aqueous iron oxide ferrofluids were monodispersed and stable at pH of 7. Black-Right-Pointing-Pointer The calculated intrinsic loss power of the synthesized ferrofluids was very high.« less
NASA Astrophysics Data System (ADS)
Rosas-Carbajal, M.; Marteau, J.; Tramontini, M.; de Bremond d Ars, J.; Le Gonidec, Y.; Carlus, B.; Ianigro, J. C.; Deroussi, S.; Komorowski, J. C.; Gibert, D.
2017-12-01
Muon imaging has recently emerged as a powerful method to complement standard geophysical tools in the study of the Earth's subsurface. Muon measurements yield a radiography of the average density along the muon path, allowing to image large volumes of a geological body from a single observation point. Long-term measurements allow to infer density changes by tracking the associated variations in the muon flux. In the context of volcanic hydrothermal systems, this approach helps to characterize zones of steam formation, condensation, water infiltration and storage. We present results of imaging the La Soufrière de Guadeloupe dome and shallow active hydrothermal system with a network of muon telescopes viewing the dome from different positions around its base. First, we jointly invert the muon radiographies of the different telescopes with gravity data to obtain a three-dimensional density model of the lava dome. The model reveals an extended low density region where the hydrothermal system is most active. We then analyze the dynamics of the hydrothermal system from long-term measurements (more than 2 years of almost non-interrupted acquisition) with 5 simultaneous muon telescopes. We identify a periodicity of 1-2 months in the density increase/decrease in the most active zones below fumaroles and acid boiling ponds. Our simultaneous-muon telescope strategy provides constraints on the three-dimensional location of the density changes and an improved quantification of the associated mass flux changes. We compare the temporal trends acquired by the different muon telescopes to time-series of rainfall on the summit recharge area as well as to ground temperature profiles in the vicinity of thermal anomalies and high-discharge summit fumaroles.
Inactivation of Escherichia coli Endotoxin by Soft Hydrothermal Processing▿
Miyamoto, Toru; Okano, Shinya; Kasai, Noriyuki
2009-01-01
Bacterial endotoxins, also known as lipopolysaccharides, are a fever-producing by-product of gram-negative bacteria commonly known as pyrogens. It is essential to remove endotoxins from parenteral preparations since they have multiple injurious biological activities. Because of their strong heat resistance (e.g., requiring dry-heat sterilization at 250°C for 30 min) and the formation of various supramolecular aggregates, depyrogenation is more difficult than sterilization. We report here that soft hydrothermal processing, which has many advantages in safety and cost efficiency, is sufficient to assure complete depyrogenation by the inactivation of endotoxins. The endotoxin concentration in a sample was measured by using a chromogenic limulus method with an endotoxin-specific limulus reagent. The endotoxin concentration was calculated from a standard curve obtained using a serial dilution of a standard solution. We show that endotoxins were completely inactivated by soft hydrothermal processing at 130°C for 60 min or at 140°C for 30 min in the presence of a high steam saturation ratio or with a flow system. Moreover, it is easy to remove endotoxins from water by soft hydrothermal processing similarly at 130°C for 60 min or at 140°C for 30 min, without any requirement for ultrafiltration, nonselective adsorption with a hydrophobic adsorbent, or an anion exchanger. These findings indicate that soft hydrothermal processing, applied in the presence of a high steam saturation ratio or with a flow system, can inactivate endotoxins and may be useful for the depyrogenation of parenterals, including end products and medical devices that cannot be exposed to the high temperatures of dry heat treatments. PMID:19502435
Bargar, Keith E.; ,
1993-01-01
The SUNEDCO 58-28 geothermal exploration drill hole was completed in 1981 to a depth of 2, 457 m near Breitenbush Hot Springs in the Western Cascade Mountains of northern Oregon. One hundred thirteen liquid-rich fluid inclusions (mostly secondary) were analyzed from drill cuttings samples of hydrothermal quartz, calcite, and anhydrite, as well as primary quartz phenocrysts. Except for one hydrothermal quartz specimen, minimum homogenization temperature (Th) measurements of fluid inclusions plot very close to the present measured temperatures for the drill hole. Fluid-inclusion data from near the bottom of the drill hole suggest that these rocks were altered by water of significantly greater salinity than Breitenbush Hot Springs water.
NASA Astrophysics Data System (ADS)
Spelz, R. M.; Lupton, J. E.; Evans, L. J.; Zierenberg, R. A.; Clague, D. A.; Neumann, F.; Paduan, J. B.
2015-12-01
Numerous submarine deep-sea hydrothermal vents related to volcanic activity of the East Pacific Rise (EPR) are situated along the Pacific margins of Mexico. Until recently, active hydrothermal venting was unknown between the Guaymas Basin and 21°N on the EPR. MBARI's recent oceanographic surveys have added 7 new active vent sites. In this study, we aimed to sample the high-temperature hydrothermal fluids emanating from two distinct vent sites, named Meyibo and Auka, located in the Alarcon Rise and Pescadero Basin, respectively. Mantle-derived He have long been identified in hydrothermal fluid releases. The presence of He in aqueous fluids with 3He/4He ratios greater than in-situ production values (~0.05 RA, where RA = air He or 1.4 x 10-6) indicates the presence of mantle-derived melts. Preliminary analyses of He-isotope ratios derived from the newly discovered Meyibo and Auka hydrothermal fields show high 3He/4He ratios (~8RA), typical of MORB's. Auka vent field, characterized by chimneys composed of light carbonate minerals and oil-like hydrocarbons, and temperatures between 250-290oC, show average values of ~7.87RA. In contrast, the black-smokers at the Meyibo field, composed of dark sulfide minerals and temperatures over 350oC, yielded a higher He ratio of ~8.24RA. Recently, it has become clear that regional maximum mantle He values correlate with the velocity structure in the mantle, therefore, He has the potential to map regions of the underlying mantle that are undergoing partial melting. Seismic records could then be compared with the geochemical He ratio signal and supply information regarding tectonics and other processes involved in the generation of these gases. The data presented here will be completing a totally new inventory of He results from hydrothermal vents in the EPR and fault-termination basins distributed along the P-NA plate boundary in the Gulf of California. The results will be further coupled with the analysis of other geochemical indicators of mantle degassing to assess the relationship between He-isotopes and mantle velocity structure in the region.
Hydrothermal deposition on the Juan de Fuca Ridge over multiple glacial-interglacial cycles
NASA Astrophysics Data System (ADS)
Costa, Kassandra M.; McManus, Jerry F.; Middleton, Jennifer L.; Langmuir, Charles H.; Huybers, Peter J.; Winckler, Gisela; Mukhopadhyay, Sujoy
2017-12-01
Hydrothermal systems play an important role in modern marine chemistry, but little is known about how they may have varied on 100,000 year timescales. Here we present high-resolution records of non-lithogenic metal fluxes within sediment cores covering the last 500,000 years of hydrothermal deposition on the flanks of the Juan de Fuca Ridge. Six adjacent, gridded cores were analyzed by x-ray fluorescence for Fe, Mn, and Cu concentrations, corrected for lithogenic inputs with Ti, and normalized to excess initial 230Th to generate non-lithogenic metal flux records that provide the longest orbitally resolved reconstructions of hydrothermal activity currently available. Fe fluxes vary with global sea level over the last two glacial cycles, suggesting higher hydrothermal deposition during interglacial periods. The observed negative relationship between Fe and Mn indicates variable sediment redox conditions and diagenetic remobilization of sedimentary Mn over time. Thus, Mn fluxes may not be a reliable indicator for hydrothermal activity in the Juan de Fuca Ridge sediment cores. Cu fluxes show substantial high-frequency variability that may be linked to changes in vent temperature related to increased magmatic production during glacial periods. Deglacial hydrothermal peaks on the Juan de Fuca Ridge are consistent with previously published records from the Mid-Atlantic Ridge and the East Pacific Rise. Moreover, on the Juan de Fuca Ridge, the deglacial peaks in hydrothermal activity are followed by relatively high hydrothermal fluxes throughout the ensuing interglacial periods relative to the previous glacial period.
NASA Astrophysics Data System (ADS)
Rushdi, Ahmed I.; Simoneit, Bernd R. T.
2006-04-01
Precursor compounds for abiotic proto cellular membranes are necessary for the origin of life. Amphipathic compounds such as fatty acids and acyl glycerols are important candidates for micelle/bilayer/vesicle formation. Two sets of experiments were conducted to study dehydration reactions of model lipid precursors in aqueous media to form acyl polyols and wax esters, and to evaluate the stability and reactions of the products at elevated temperatures. In the first set, mixtures of n-nonadecanoic acid and ethylene glycol in water, with and without oxalic acid, were heated at discrete temperatures from 150 ∘C to 300 ∘C for 72 h. The products were typically alkyl alkanoates, ethylene glycolyl alkanoates, ethylene glycolyl bis-alkanoates and alkanols. The condensation products had maximum yields between 150 ∘C and 250 ∘C, and were detectable and thus stable under hydrothermal conditions to temperatures < 300 ∘C. In the second set of experiments, mixtures of n-heptanoic acid and glycerol were heated using the same experimental conditions, with and without oxalic acid, between 100 ∘C and 250 ∘C. The main condensation products were two isomers each of monoacylglycerols and diacylglycerols at all temperatures, as well as minor amounts of the fatty acid anhydride and methyl ester. The yield of glyceryl monoheptanoates generally increased with increasing temperature and glyceryl diheptanoates decreased noticeably with increasing temperature. The results indicate that condensation reactions and abiotic synthesis of organic lipid compounds under hydrothermal conditions occur easily, provided precursor concentrations are sufficiently high.
NASA Astrophysics Data System (ADS)
Haymon, R. M.; Anderson, P. G.; Baker, E. T.; Resing, J. A.; White, S. M.; MacDonald, K. C.
2006-12-01
Though nearly one-fifth of the mid-ocean ridge (MOR) lies on or near hotspots, it has been debated whether hotspots increase or decrease MOR hydrothermal flux, or affect vent biota. Despite hotspot enhancement of melt supply, high-temperature vent plumes are enigmatically sparse along two previously-surveyed ridge- hotspot intersections [Reykjanes Ridge (RR), Southeast Indian Ridge (SEIR)]. This has been attributed to crustal thickening by excess volcanism. During the 2005-06 GalAPAGoS expedition, we conducted nested sonar, plume, and camera surveys along a 540 km-long portion of the Galapagos Spreading Center (GSC) where the ridge intersects the Galapagos hotspot at lon. 94.5 -89.5 deg. W. Although MOR hydrothermal springs were first found along the eastern GSC crest in 1977 near lon. 86 deg. W, the GalAPAGoS smokers are the first active high-temperature vents to be found anywhere along the Cocos-Nazca plate boundary. Active and/or recently-inactive smokers were located beneath plumes at 5 sites on the seafloor between lon. 91 deg. W and 94.5 deg. W (see Anderson et al., this session) during near-bottom, real-time fiber-optic Medea camera surveys. Smokers occur along eruptive seafloor fissures atop axial volcanic ridges near the middles of ridge segments, mainly in areas underlain by relatively shallow, continuous axial magma chamber (AMC) seismic reflectors. These findings (1) support magmatic, rather than tectonic, control of GSC smoker distribution; (2) demonstrate that thick crust at MOR-hotspot intersections does not prevent high-temperature hydrothermal vents from forming; and, (3) appear to be inconsistent with models suggesting that enhanced hydrothermal cooling causes abrupt deepening of the AMC and transition from non-rifted to rifted GSC morphology near lon. 92.7 deg. W. The widely-spaced smoker sites located on different GSC segments exhibit remarkably similar characteristics and seafloor settings. Most sites are mature or extinct, and are on lava flows of visually-similar ages (estimated to be tens-to-hundreds of years old). Possibly a volcanic pulse may have activated the hotspot- affected western GSC, and powered contemporaneous hydrothermal vents that now are waning. It may be that hotspots produce episodes of near-synchronous, extensive ridge volcanism and hydrothermal activity, followed by periods of quiescence. This idea is consistent with: the episodic eruption histories of Hawaii and Iceland; variably anomalous hydrothermal plume incidence (low on RR, SEIR, GSC; high on Mid-Atlantic Ridge near Azores hotspot); models of episodic melt extraction from mantle plumes; and evidence for magma propagation along hotspot-influenced ridges. Our hypothesis potentially can be tested by studies of gene flow between animal communities located on either side of the Galapagos hotspot, and by dating of GSC hydrothermal chimneys and the lava flows on which they are constructed.
NASA Astrophysics Data System (ADS)
Han, C.; Wu, G.; Qin, H.; Wang, Z.
2012-12-01
Investigation of active hydrothermal mound as well as non-active massive sulfide mound are studied recently. However, there is still lack of in-situ detection method for the non-active massive sulfide mound. Even though Transient ElectroMagnetic (TEM) and Electric Self-potential (SP) methods are good, they both are labour, time and money cost work. We proposed a new multiparameter chemical sensor method to study the seafloor active hydrothermal mound as well as non-active massive sulfide mound. This sensor integrates Eh, S2- ions concentration and pH electrochemical electrodes together, and could found chemical change caused by the active hydrothermal vent, even weak chemical abnormalities by non-active massive sulfide hydrothermal mound which MARP and CTD sometimes cannot detect. In 2012, the 1st Leg of the Chinese 26th cruise, the multiparameter chemical sensor was carried out with the deepsea camera system over the Carlsberg Ridge in Indian Ocean by R/V DAYANGYIHAO. It was shown small Eh and S2- ions concentration abnormal around a site at Northwest Indian ridge. This site was also evidenced by the TV grab. In the 2nd Leg of the same cruise in June, this chemical sensor was carried out with TEM and SP survey system. The chemical abnormalities are matched very well with both TEM and SP survey results. The results show that the multiparameter chemical sensor method not only can detect active hydrothermal mound, but also can find the non-active massive sulfide hydrothermal mound.
Dynamics of the Yellowstone hydrothermal system
Hurwitz, Shaul; Lowenstern, Jacob B.
2014-01-01
The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.
Discovery of hydrothermally active and extinct talc mounds on the Mid-Cayman Rise
NASA Astrophysics Data System (ADS)
Hodgkinson, M.; Murton, B. J.; Roberts, S.
2013-12-01
Since 1977, hydrothermal vents have been the subject of intense scientific interest due to their role in cooling the oceanic crust and global geochemical cycles. Until now, two types of hydrothermal system have been identified: one, driven by magmatic heat extruding ';black smoker' fluids; and another, involving serpentinisation of ultramafic rocks and the precipitation of carbonate/brucite chimneys. Here, we present details of a new, off-axis type of hydrothermal system consisting of mounds of predominately botryoidal talc (a magnesium-silicate) with accessory silica and copper sulphides, and chimneys exhaling fluids of moderate temperature and pH. Discovered on the Mid-Cayman Rise (MCR) in 2010, the Von Damm Vent Field (VDVF) features a NNW-ESE-trending line of four overlapping cones, the largest of which is 75 m high by 150 m in diameter. The VDVF is hosted in the gabbroic footwall of the Mount Dent Oceanic Core Complex (MDOCC), which includes serpentinised peridotite at depth. The largest cone vents clear fluids from two main orifices at its summit, with primary temperatures of 215°C. Elsewhere, both focussed and diffuse flow areas emit fluids with temperatures of up to 150°C. The surrounding ~1 m thick pelagic sediment contains abundant pockmarks that emit methane-rich fluids at temperatures of less than 10°C. During the return to the MCR in early 2013, several other talc mounds were discovered within a kilometre of the active VDVF. These inactive mounds also comprise an assemblage of botryoidal talc, silica, disseminated sulphides (including chalcopyrite) and sulphates. One of these mounds (Mystic Mount) is double the volume of the active VDVF. The unique dominance of talc as the major mineral forming the hydrothermal structures indicates unusual vent fluid compositions that are able to carry both copper (at high-temperatures) and precipitate magnesium silicate. Thermodynamic modelling indicates that talc precipitates on mixing a moderately acidic, silica rich fluid (e.g. the primary VDVF fluids) with only 2% of seawater. At lower pH (e.g. typical ';black smoker' fluids), the ratio jumps to over 90% while at high pH (e.g. ';Lost City' fluids) brucite and carbonate dominate. Estimates using recently measured vent temperatures and fluid fluxes indicate a heat flux of ~800 MW for the active VDVF. Assuming the primary vent fluid has remained largely unchanged, the VDVF could have grown in under 1000 years and Mystic Mount in ~2000 years. Both the hydrothermal mounds and faults in the surrounding gabbro share a NNW-ESE orientation that is consistent with a brittle structural control imposed by the flexural curvature of the MDOCC in response to the uplift of the lower oceanic crust along a low-angle detachment fault. We propose that these flexural faults provide pathways for fluids to ingress deep into the MDOCC where they react with both mafic rocks (producing high-temperature, low pH, sulphide and copper-bearing fluids), peridotites and carbonates (increasing the pH) resulting in a moderate pH, silica-rich fluid that precipitates talc on mixing with seawater. The presence of further, inactive, talc mounds within 1 km of the VDVF indicates hydrothermal activity on OCCs has been widespread and represents a significant but hitherto overlooked mechanism of crustal heat loss and chemical interaction with the ocean at slow-spreading ridges.
Microwave Synthesized ZnO Nanorod Arrays for UV Sensors: A Seed Layer Annealing Temperature Study.
Pimentel, Ana; Ferreira, Sofia Henriques; Nunes, Daniela; Calmeiro, Tomas; Martins, Rodrigo; Fortunato, Elvira
2016-04-20
The present work reports the influence of zinc oxide (ZnO) seed layer annealing temperature on structural, optical and electrical properties of ZnO nanorod arrays, synthesized by hydrothermal method assisted by microwave radiation, to be used as UV sensors. The ZnO seed layer was produced using the spin-coating method and several annealing temperatures, ranging from 100 to 500 °C, have been tested. X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and spectrophotometry measurements have been used to investigate the structure, morphology, and optical properties variations of the produced ZnO nanorod arrays regarding the seed layer annealing temperatures employed. After the growth of ZnO nanorod arrays, the whole structure was tested as UV sensors, showing an increase in the sensitivity with the increase of seed layer annealing temperature. The UV sensor response of ZnO nanorod arrays produced with the seed layer annealed temperature of 500 °C was 50 times superior to the ones produced with a seed layer annealed at 100 °C.
Microwave Synthesized ZnO Nanorod Arrays for UV Sensors: A Seed Layer Annealing Temperature Study
Pimentel, Ana; Ferreira, Sofia Henriques; Nunes, Daniela; Calmeiro, Tomas; Martins, Rodrigo; Fortunato, Elvira
2016-01-01
The present work reports the influence of zinc oxide (ZnO) seed layer annealing temperature on structural, optical and electrical properties of ZnO nanorod arrays, synthesized by hydrothermal method assisted by microwave radiation, to be used as UV sensors. The ZnO seed layer was produced using the spin-coating method and several annealing temperatures, ranging from 100 to 500 °C, have been tested. X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and spectrophotometry measurements have been used to investigate the structure, morphology, and optical properties variations of the produced ZnO nanorod arrays regarding the seed layer annealing temperatures employed. After the growth of ZnO nanorod arrays, the whole structure was tested as UV sensors, showing an increase in the sensitivity with the increase of seed layer annealing temperature. The UV sensor response of ZnO nanorod arrays produced with the seed layer annealed temperature of 500 °C was 50 times superior to the ones produced with a seed layer annealed at 100 °C. PMID:28773423
NASA Astrophysics Data System (ADS)
Henri, P. A.; Rommevaux, C.; Chavagnac, V.; Degboe, J.; Destrigneville, C.; Boulart, C.; Lesongeur, F.; Castillo, A.; Goodfroy, A.
2015-12-01
To study the hydrothermal forcing on microbial colonization, and impacts on the oceanic crust alteration, an integrated study was led at the Tour Eiffel hydrothermal site (Lucky Strike hydrothermal field, 37°N, MAR). We benefited from an annual survey between 2009 and 2011 of temperatures, along with sampling of focused and diffused fluids for chemical analysis, and chimney sampling and samples from microbial colonization experiments analyzed for prokaryotic composition and rock alteration study. The chemical composition of the fluids show an important increase in the CO2 concentration at the Eiffel Tower site between 2009 and 2010 followed by a decrease between 2010 and 2011. In 2011, several fluid samples show an important depletion in Si, suggesting that some Si was removed by interaction with the stockwork before emission. Our observations, regarding the previous studies of chemical fluid affected by a magmatic event lead us to suppose that a magmatic/tectonic event occurred under the Lucky Strike hydrothermal field between 2009 and 2010. The results of the prokaryotic communities' analysis show that a shift occurred in the dominant microbial metabolisms present in the colonizer retrieved in 2010 and the one retrieved in 2011. Archaeal communities shifted from chemolithoautotropic sulfite/thiosulfate reducers-dominated in 2010 to ammonia oxidizers-dominated in 2011. The bacterial communities also undergo a shift, from a community with diversified metabolisms in 2010 to a community strongly dominated by chemolithoautotrophic sulfide or hydrogen oxidation in 2011. Moreover, in terms of ecological preferendum, the Archaeal communities shifted from thermophilic-dominated to mesophilic-dominated. The present study underline the influence of modifications in gases compositions of hydrothermal fluids subsequently to a degassing of the magma chamber and their impact on the microbial communities living in the vicinity of hydrothermal vents at the Eiffel Tower site.
Dekov, V.M.; Kamenov, George D.; Savelli, C.; Stummeyer, Jens; Thiry, M.; Shanks, Wayne C.; Willingham, A.L.; Boycheva, T.B.; Rochette, P.; Kuzmann, E.; Fortin, D.; Vertes, A.
2009-01-01
A sediment core taken from the south-east slope of the Eolo Seamount is composed of alternating red-brown and light-brown to bluish-grey layers with signs of re-deposition in the middle-upper section. The red-brown layers are Fe-rich metalliferous sediments formed as a result of low-temperature (??? 77????C) hydrothermal discharge, whereas the bluish-grey layers most probably originated from background sedimentation of Al-rich detrital material. The metalliferous layers are composed mainly of Si-rich goethite containing some Al. Co-precipitation of hydrothermally released SiO44- and Fe2+ as amorphous or poorly crystalline Fe-Si-oxyhydroxides explains the high Si concentration in goethite. The elevated Al content of the goethite is fairly unusual, but reflects the extremely high background Al content of the Tyrrhenian seawater due to the high eolian terrigenous flux from the Sahara desert. The Sr and Nd isotope data suggest that the Eolo metalliferous sediments are the product of a 3-component mixture: hydrothermal fluid, seawater, and detrital material (Saharan dust and Aeolian Arc material). The enrichment in Fe, P, As, Mo, Cd, Be, Sb, W, Y, V, depletion in REE and transition elements (Cu, Co, Ni, Zn) and the REE distribution patterns support the low-temperature hydrothermal deposition of the metalliferous layers. The hydrothermal field is located in a seawater layer of relative O2 depletion, which led to a significant fractionation of the hydrothermally emitted Fe and Mn. Fe-oxyhydroxides precipitated immediately around the vents whereas Mn stayed in solution longer and the Mn-oxides precipitated higher up on the seamount slope in seawater with relatively higher O2 levels. High seismic activity led to sediment re-deposition and slumping of the Mn-rich layers down slope and mixing with the Fe-rich layers. ?? 2009 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Gao; Yu, Lin, E-mail: gych@gdut.edu.cn; Lan, Bang
Highlights: • One-dimensional α-MnO{sub 2} nanowires were prepared by a facile hydrothermal route. • Shape and crystal phase of the products were controlled by tuning reaction conditions. • A possible formation mechanism of the α-MnO{sub 2} nanowires was discussed. • The α-MnO{sub 2} nanowires showed great catalytic activity for toluene combustion. - Abstract: α-MnO{sub 2} nanowires with a length about 6–10 μm and an average diameter of 20 nm were synthesized through a facile hydrothermal process without any templates or surfactants. The products were characterized by X-ray powder diffraction, Raman spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, hydrogenmore » temperature-programmed reduction techniques, X-ray photoelectron spectroscopy and surface area analysis. The effects of the hydrothermal temperature and the concentration of CH{sub 3}COOH on the crystal phase and morphology of the final products were studied in detail. The hydrothermal temperature and the concentration of CH{sub 3}COOH play crucial roles in determining the crystal phase and morphology of the products. The possible formation mechanism of the α-MnO{sub 2} nanowires was investigated and discussed. Additionally, the as-prepared α-MnO{sub 2} nanowires showed higher catalytic activity for toluene combustion than the commercial MnO{sub 2}, suggesting their potential applications in the elimination of volatile organic compounds.« less
Formation of hydrothermal biochar and char stability in soils
NASA Astrophysics Data System (ADS)
Baumert, Julia; Gleixner, Gerd
2010-05-01
The use of charcoal as an artificial soil additive is suggested to beneficially modify degraded soil, reduce greenhouse gas emission and improve crop yields. So far research has been mainly done using pyrolysis chars which are produced by dry pyrolysis of biomass. Here we used hydrothermal carbonisation (HTC). In this process wet biomass is converted to char at moderate temperatures (~200°C). Due to the exothermal carbonisation reaction this process is almost energy neutral, i.e. the energy needed to start the carbonisation equals the energy released during carbonisation. Different process parameters have been used to modify the properties of the produced chars. We examined the chemical and morphological properties of hydrothermally synthesized biochar. Cellulose, yeast and sucrose were used as model substances for a range of parent material types like organic and garden waste as well as residues from biogas production. By modifying the process conditions of hydrothermal carbonisation concerning temperature (180°C to 220°C) and duration (6 hours to 24 hours) we produced a variety of different biochars. Our findings suggest that the elemental composition and the thermal stability of resulting chars depend on the feedstock and production conditions. Functional group chemistry determined by NMR shows that the aromaticity of the product increases as a function of temperature whereas the amount of O-alkylic compounds declines, concurrently. Our results show that the properties of the biochar can be manipulated by the modification of process conditions. This opens the opportunity to adjust the charcoal to a given soil type.
Lack of Microbial Diversity in an Extreme Mars Analog Setting: Poás Volcano, Costa Rica.
Hynek, Brian M; Rogers, Karyn L; Antunovich, Monique; Avard, Geoffroy; Alvarado, Guillermo E
2018-04-24
The Poás volcano in Costa Rica has been studied as a Mars geochemical analog environment, since both the style of hydrothermal alteration present and the alteration mineralogy are consistent with Mars' relict hydrothermal systems. The site hosts an active volcano, with high-temperature fumaroles (up to 980°C) and an ultra-acidic lake. This lake, Laguna Caliente, is one of the most dynamic environments on Earth, with frequent phreatic eruptions, temperatures ranging from near-ambient to almost boiling, a pH range of -1 to 1.5, and a wide range of chemistries and redox potential. Martian acid-sulfate hydrothermal systems were likely similarly dynamic and equally challenging to life. The microbiology existing within Laguna Caliente was characterized for the first time, with sampling taking place in November, 2013. The diversity of the microbial community was surveyed via extraction of environmental DNA from fluid and sediment samples followed by Illumina sequencing of the 16S rRNA gene. The microbial diversity was limited to a single species of the bacterial genus Acidiphilium. This organism likely gets its energy from oxidation of reduced sulfur in the lake, including elemental sulfur. Given Mars' propensity for sulfur and acid-sulfate environments, this type of organism is of significant interest to the search for past or present life on the Red Planet. Key Words: Mars astrobiology-Acid-sulfate hydrothermal systems-Extremophiles-Acidic-High temperature-Acidiphilium bacteria. Astrobiology 18, xxx-xxx.
Martian Magmatic-Driven Hydrothermal Sites: Potential Sources of Energy, Water, and Life
NASA Technical Reports Server (NTRS)
Anderson, R. C.; Dohm, J. M.; Baker, V. R.; Ferris, J. C.; Hare, T. M.; Tanaka, K. L.; Klemaszewski, J. E.; Skinner, J. A.; Scott, D. H.
2000-01-01
Magmatic-driven processes and impact events dominate the geologic record of Mars. Such recorded geologic activity coupled with significant evidence of past and present-day water/ice, above and below the martian surface, indicate that hydrothermal environments certainly existed in the past and may exist today. The identification of such environments, especially long-lived magmatic-driven hydrothermal environments, provides NASA with significant target sites for future sample return missions, since they (1) could favor the development and sustenance of life, (2) may comprise a large variety of exotic mineral assemblages, and (3) could potentially contain water/ice reservoirs for future Mars-related human activities. If life developed on Mars, the fossil record would presumably be at its greatest concentration and diversity in environments where long-term energy sources and water coexisted such as at sites where long-lived, magmatic-driven hydrothermal activity occurred. These assertions are supported by terrestrial analogs. Small, single-celled creatures (prokaryotes) are vitally important in the evolution of the Earth; these prokaryotes are environmentally tough and tolerant of environmental extremes of pH, temperature, salinity, and anoxic conditions found around hydrothermal vents. In addition, there is a great ability for bacteria to survive long periods of geologic time in extreme conditions, including high temperature hydrogen sulfide and sulfur erupted from Mount St. Helens volcano. Our team of investigators is conducting a geological investigation using multiple mission-derived datasets (e.g., existing geologic map data, MOC imagery, MOLA, TES image data, geophysical data, etc.) to identify prime target sites of hydrothermal activity for future hydrological, mineralogical, and biological investigations. The identification of these sites will enhance the probability of success for future missions to Mars.
Microsphere morphology tuning and photo-luminescence properties of monoclinic Y2WO6
NASA Astrophysics Data System (ADS)
Gao, Hong; Bai, Yulong; Zhang, Junying; Tang, Zilong
2015-04-01
Effects of the solution pH value and reaction time on the precursor morphology and photoluminescence properties are investigated for hydrothermally prepared monoclinic Y2WO6 phosphors. In the near-neutral environment, sodium dodecyl benzene sulfonate (SDBS) surfactant forms small microspheres micelles as template to synthesize microspherical precursor. H+ ions concentration affects the arrangement of negative ionic surfactant SDBS. As a result, jujube-liked and popcorn-like loose microspheres formed at low pH value. When the pH value is 5.2 and the hydrothermal reaction time reaches 24 h, respectively, the strongest luminescent intensity can be obtained. Under this condition, the precursor presented regular microsphere with diameter of 4.0 μm. After high-temperature heat treatment, the obtained phosphor particles still exhibit microsphere-like shape. Therefore, we provide an effective method to tune the morphology of Y2WO6 phosphors and study the relationship between morphology and luminescent performance.
NASA Astrophysics Data System (ADS)
Wan, Houzhao; Ji, Xiao; Jiang, Jianjun; Yu, Jingwen; Miao, Ling; Zhang, Li; Bie, Shaowei; Chen, Haichao; Ruan, Yunjun
2013-12-01
Cobalt sulfide nanotubes are synthesized by hydrothermal method. The precursor is characterized by XRD, FTIR and SEM. We study the influence of temperature on the evolution of this special coarse shape nanostructure and analyze relationship between the sizes of cobalt sulfide nanotubes and the capacitive properties of active materials. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are used to study the effects of microstructure and morphology of the samples on their capacitance and conductivity. The specific capacitance of cobalt sulfide nanotubes (obtained in 80 °C) electrode exhibits a capacitance of 285 F g-1 at the current density of 0.5 A g-1 as well as rather good cycling stability. Moreover, during the cycling process, the coulombic efficiency remains 99%. The as-prepared cobalt sulfide nanotubes electrode exhibits excellent electrochemical performance as electrode materials for supercapacitors.
A pathway for the growth of core-shell Pt-Pd nanoparticles
Narula, Chaitanya Kumar; Yang, Xiaofan; Li, Chen; ...
2015-10-12
In this study, the aging of both Pt-Pd nanoparticles and core-shell Pt-Pd nanoparticles has been reported to result in alloying of Pt with Pd. In comparison to monometallic Pt catalysts, the growth of Pd-Pt bimetallics is slower; however, the mechanism of growth of particles and the mechanism by which Pd improves the hydrothermal durability of bimetallic Pd-Pt particles remains uncertain. In our work on hydrothermal aging of core-shell Pt-Pd nanoparticles, synthesized by solution methods, with varying Pd:Pt ratio of 1:4, 1:1, and 4:1, we compare the growth of core-shell Pt-Pd nanoparticles and find that particles grow by migrating and joiningmore » together. The unique feature of the observed growth is that Pd shells from both particles open up and join, allowing the cores to merge. At high temperatures, alloying occurs in good agreement with reports by other workers.« less
Hydrothermal epitaxy and resultant properties of EuTiO3 films on SrTiO3(001) substrate
2014-01-01
We report a novel epitaxial growth of EuTiO3 films on SrTiO3(001) substrate by hydrothermal method. The morphological, structural, chemical, and magnetic properties of these epitaxial EuTiO3 films were examined by scanning electron microscopy, transmission electron microscopy, high-resolution X-ray diffractometry, X-ray photoelectron spectroscopy, and superconducting quantum interference device magnetometry, respectively. As-grown EuTiO3 films with a perovskite structure were found to show an out-of-plane lattice shrinkage and room-temperature ferromagnetism, possibly resulting from an existence of Eu3+. Postannealing at 1,000°C could reduce the amount of Eu3+, relax the out-of-plane lattice shrinkage, and impact the magnetic properties of the films. PACS 81.10.Aj; 81.15.-z; 61.05.-a PMID:24948889
Functionalization of graphene by size and doping control and its optoelectronic applications
NASA Astrophysics Data System (ADS)
Tang, Libin; Ji, Rongbin; Tian, Pin; Kong, Jincheng; Xiang, Jinzhong
2017-02-01
Graphene has received intensive attention in recent years because of the special physical and chemical properties. However, up to now graphene has not been widely used in optoelectronic fields yet, which is mainly caused by its semimetal properties. Therefore, changing its properties from semimetal to semiconductor is becoming a focal point. Recently, aiming at tuning the energy band of graphene, we have carried out systematic studies on the preparations of graphene based materials and devices, the CVD growth techniques of monolayer and double layer graphenes have been developed, the large-area doped graphene films have been fabricated to tune the structure-related optical and electrical properties. A novel graphene oxide (GO) preparation method namely "Tang-Lau method" has been invented, the graphene quantum dots growths by microwave assisted hydrothermal method and "Soft-Template method" have been developed, the Cl, S and K doped graphene quantum dots preparations by hydrothermal methods have also been invented. Systematic investigations have been carried out for the effect of preparation parameters on the properties of graphene based materials, the effects of size, doping elements on the energy level of graphene based materials have been explored and discussed. Based on the semiconducting graphene based materials, some novel room temperature photodetectors covering detection wavebands from UV, Vis and NIR have been designed and fabricated.
NASA Astrophysics Data System (ADS)
Buskop, J.; Joseph, E. P.; Inguaggiato, S.; Varekamp, J. C.; Ku, T.
2017-12-01
The major goals of volcano hydrothermal monitoring are to obtain information on temperature, origin, and changes in chemical composition of volcanic fluids. This data contributes to the baseline geochemical monitoring of volcanic activity and informs on potential volcanic hazards to which the public may be exposed. The origins of hydrothermal fluids are diverse and can be magmatic, crustal and atmospheric. Studies of isotopes, inert gases, and thermodynamic calculations help elucidate the origin in each case and determine provenance of volatiles and a re-evaluation of reservoir temperatures. Sulphur isotope ratio (δ34S) for H2S leached from rock is <0 ‰, of magmatic origin = 0‰ and of marine origin >0 ‰. Low δ15N (-7.3 ‰) is indicative of low sediment addition to source magmas, while high δ15N (+2.1 ‰) indicates greater sediment contribution in magma formation. Baseline monitoring of hydrothermal gases of Dominica for the period 2000 - 2006 show compositions typical of those found in arc-type settings, with N2 excess and low amounts of He and Ar. The dry gas is dominated by CO2 (ranging from 492 to 993 mmol/mol), and has a hydrothermal signature with hydrogen sulphide as the main sulphurous gas. Over the past decade, Dominica has experienced volcanic and tectonic seismicity and a sudden draining episode at the Boiling Lake in November 2016. This study evaluates data obtained in 2017 on gas composition from five (5) hydrothermal areas across the island (Valley of Desolation, Sulphur Spring, Watten Waven, Galion and Penville cold Soufriere) to determine temporal and spatial deviations from baseline geochemical conditions. This study also presents new data, obtained in 2017, on sulphur and nitrogen isotopes to evaluate contributions from various source components. Preliminary results show high CH4/CO2 ratios for gases from Sulphur Springs and Galion, indicative of a significant hydrothermal contribution to these fluids. However, high helium isotope compositions of 7.02 R/Ra signify a clear magmatic origin. This is consistent with the previously established baseline chemistry of the hydrothermal systems on Dominica.
Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9-10°N
Rouxel, O.; Shanks, Wayne C.; Bach, W.; Edwards, K.J.
2008-01-01
In this study, we report on coupled Fe- and S-isotope systematics of hydrothermal fluids and sulfide deposits from the East Pacific Rise at 9–10°N to better constrain processes affecting Fe-isotope fractionation in hydrothermal environments. We aim to address three fundamental questions: (1) Is there significant Fe-isotope fractionation during sulfide precipitation? (2) Is there significant variability of Fe-isotope composition of the hydrothermal fluids reflecting sulfide precipitation in subsurface environments? (3) Are there any systematics between Fe- and S-isotopes in sulfide minerals? The results show that chalcopyrite, precipitating in the interior wall of a hydrothermal chimney displays a limited range of δ56Fe values and δ34S values, between − 0.11 to − 0.33‰ and 2.2 to 2.6‰ respectively. The δ56Fe values are, on average, slightly higher by 0.14‰ relative to coeval vent fluid composition while δ34S values suggest significant S-isotope fractionation (− 0.6 ± 0.2‰) during chalcopyrite precipitation. In contrast, systematically lower δ56Fe and δ34S values relative to hydrothermal fluids, by up to 0.91‰ and 2.0‰ respectively, are observed in pyrite and marcasite precipitating in the interior of active chimneys. These results suggest isotope disequilibrium in both Fe- and S-isotopes due to S-isotopic exchange between hydrothermal H2S and seawater SO42− followed by rapid formation of pyrite from FeS precursors, thus preserving the effects of a strong kinetic Fe-isotope fractionation during FeS precipitation. In contrast, δ56Fe and δ34S values of pyrite from inactive massive sulfides, which show evidence of extensive late-stage reworking, are essentially similar to the hydrothermal fluids. Multiple stages of remineralization of ancient chimney deposits at the seafloor appear to produce minimal Fe-isotope fractionation. Similar affects are indicated during subsurface sulfide precipitation as demonstrated by the lack of systematic differences between δ56Fe values in both high-temperature, Fe-rich black smokers and lower-temperature, Fe-depleted vents.
NASA Astrophysics Data System (ADS)
Tao, W.; Tao, C.; Li, H.; Zhaocai, W.; Jinhui, Z.; Qinzhu, C.; Shili, L.
2014-12-01
Mid-ocean ridges, largely present far from the continental plates, are characterized by complex geological structures and numerous hydrothermal systems with complex controlling factors. Exploring seafloor sulfide resources for industrial and scientific applications is a challenge. With the advent of geophysical surveys for seabed investigation, near-bottom magnetic prospecting, which yields shallow geological structure, is an efficient method for investigating active and inactive hydrothermal fields and for researching the structure of hydrothermal systems (Tivey et al., 1993, 1996;German et al., 2008). We collected near-bottom magnetic data in the Longqi hydrothermal area, located in the southwest Indian ridge (49.6° E; Zhu et al., 2010; Tao et al., 2014), using the autonomous benthic explorer, an autonomous underwater vehicle, during the second leg of the Chinese cruise DY115-19 on board R/V DaYangYiHao. Based on the results of the intensity of the spatial differential vector method (Seaman et al., 1993), we outline the hydrothermal alternation zone. By building models, we subsequently infer a fault along the discovered hydrothermal vents; this fault line may be connected to a detachment fault (Zhao et al., 2013). In addition, we discuss the channels of the hydrothermal circulation system (Figure 1), and presume that heat was conducted to the sea subsurface by the detachment fault; the aqueous fluid that infiltrated the fault is heated and conveyed to the seafloor, promoting the circulation of the hydrothermal system.
Behavior of a hammerhead ribozyme in aqueous solution at medium to high temperatures
NASA Astrophysics Data System (ADS)
El-Murr, Nizar; Maurel, Marie-Christine; Rihova, Martina; Vergne, Jacques; Hervé, Guy; Kato, Mikio; Kawamura, Kunio
2012-09-01
The "RNA world" hypothesis proposes that—early in the evolution of life—RNA molecules played important roles both in information storage and in enzymatic functions. However, this hypothesis seems to be inconsistent with the concept that life may have emerged under hydrothermal conditions since RNA molecules are considered to be labile under such extreme conditions. Presently, the possibility that the last common ancestor of the present organisms was a hyperthermophilic organism which is important to support the hypothesis of the hydrothermal origin of life has been subject of strong discussions. Consequently, it is of importance to study the behavior of RNA molecules under hydrothermal conditions from the viewpoints of stability, catalytic functions, and storage of genetic information of RNA molecules and determination of the upper limit of temperature where life could have emerged. In the present work, self-cleavage of a natural hammerhead ribozyme was examined at temperatures 10-200 °C. Self-cleavage was investigated in the presence of Mg2+, which facilitates and accelerates this reaction. Self-cleavage of the hammerhead ribozyme was clearly observed at temperatures up to 60 °C, but at higher temperatures self-cleavage occurs together with hydrolysis and with increasing temperature hydrolysis becomes dominant. The influence of the amount of Mg2+ on the reaction rate was also investigated. In addition, we discovered that the reaction proceeds in the presence of high concentrations of monovalent cations (Na+ or K+), although very slowly. Furthermore, at high temperatures (above 60 °C), monovalent cations protect the ribozyme against degradation.
LiFePO4 Nanostructures Fabricated from Iron(III) Phosphate (FePO4 x 2H2O) by Hydrothermal Method.
Saji, Viswanathan S; Song, Hyun-Kon
2015-01-01
Electrode materials having nanometer scale dimensions are expected to have property enhancements due to enhanced surface area and mass/charge transport kinetics. This is particularly relevant to intrinsically low electronically conductive materials such as lithium iron phosphate (LiFePO4), which is of recent research interest as a high performance intercalation electrode material for Li-ion batteries. Many of the reported works on LiFePO4 synthesis are unattractive either due to the high cost of raw materials or due to the complex synthesis technique. In this direction, synthesis of LiFePO4 directly from inexpensive FePO4 shows promise.The present study reports LiFePO4 nanostructures prepared from iron (III) phosphate (FePO4 x 2H2O) by precipitation-hydrothermal method. The sintered powder was characterized by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Inductive coupled plasma-optical emission spectroscopy (ICP-OES), and Electron microscopy (SEM and TEM). Two synthesis methods, viz. bulk synthesis and anodized aluminum oxide (AAO) template-assisted synthesis are reported. By bulk synthesis, micro-sized particles having peculiar surface nanostructuring were formed at precipitation pH of 6.0 to 7.5 whereas typical nanosized LiFePO4 resulted at pH ≥ 8.0. An in-situ precipitation strategy inside the pores of AAO utilizing the spin coating was utilized for the AAO-template-assisted synthesis. The template with pores filled with the precipitate was subsequently subjected to hydrothermal process and high temperature sintering to fabricate compact rod-like structures.
Influence of temperature on nitrogen fate during hydrothermal carbonization of food waste.
Wang, Tengfei; Zhai, Yunbo; Zhu, Yun; Peng, Chuan; Xu, Bibo; Wang, Tao; Li, Caiting; Zeng, Guangming
2018-01-01
The influence of temperature (180-260°C) on the fate of nitrogen during hydrothermal carbonization (HTC) of food waste (FW) was assessed. The distribution and evolution of nitrogen in aqueous products and bio-oil, as well as hydrochar, were conducted. Results suggested that elevated temperature enhanced the deamination and the highest ammonium concentration (929.75mg/L) was acquired at 260°C. At temperatures above 220°C, the total N in the hydrochar became stable, whereas the mass percentage of N increased. Amines and heterocyclic-N compounds from protein cracking and Maillard reactions were identified as the main nitrogen-containing compounds in the bio-oil. As to the hydrochar, increasing temperature resulted in condensed nitrogen-containing aromatic heterocycles (e.g. pyridine-N and quaternary-N). In particular, remarkable Maillard reactions at 180°C and the highest temperature at 260°C enhanced nitrogen incorporation (i.e. quaternary-N) into hydrochar. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Maussen, Katharine; Villacorte, Edgardo; Rebadulla, Ryan R.; Maximo, Raymond Patrick; Debaille, Vinciane; Bornas, Ma. Antonia; Bernard, Alain
2018-02-01
Taal volcano (Luzon Island, Philippines) has last erupted in 1977 but has known some periods of increased activity, characterised by seismic swarms, ground deformation, increased carbon dioxide flux and in some cases temperature anomalies and the opening of fissures. We studied major, trace element and sulphur and strontium isotopic composition of Taal lake waters and hot springs over a period of 25 years to investigate the geochemical evolution of Taal volcano's hydrothermal system and its response to volcanic unrest. Long-term evolution of Main Crater Lake (MCL) composition shows a slow but consistent decrease of acidity, SO4, Mg, Fe and Al concentrations and a trend from light to heavy sulphate, consistent with a general decrease of volcanic gases dissolving in the hydrothermal system. Na, K and Cl concentrations remain constant indicating a non-volcanic origin for these elements. Sulphate and strontium isotopic data suggest this neutral chloride-rich component represents input of geothermal water into Taal hydrothermal system. A significant deviation from the long-term baseline can be seen in two samples from 1995. That year, pH dropped from 2.6 to 2.2, F, Si and Fe concentrations increased and Na, K and Cl concentrations decreased. Sulphate was depleted in 34S and temperature was 4 °C above baseline level at the time of sampling. We attribute these changes to the shallow intrusion of a degassing magma body during the unrest in 1991-1994. More recent unrest periods have not caused significant changes in the geochemistry of Taal hydrothermal waters and are therefore unlikely to have been triggered by shallow magma intrusion. A more likely cause for these events is thus pressurisation of the hydrothermal reservoir by increasing degassing from a stagnant magma reservoir. Our study indicates that new magmatic intrusions that might lead to the next eruption of Taal volcano are expected to change the geochemistry of MCL in the same way as in 1994-1995, with the most notable effects being changes in temperature, pH, F and Si concentrations.
One-Step Hydrothermal Synthesis of Zeolite X Powder from Natural Low-Grade Diatomite.
Yao, Guangyuan; Lei, Jingjing; Zhang, Xiaoyu; Sun, Zhiming; Zheng, Shuilin
2018-05-28
Zeolite X powder was synthesized using natural low-grade diatomite as the main source of Si but only as a partial source of Al via a simple and green hydrothermal method. The microstructure and surface properties of the obtained samples were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), wavelength dispersive X-ray fluorescence (XRF), calcium ion exchange capacity (CEC), thermogravimetric-differential thermal (TG-DTA) analysis, and N₂ adsorption-desorption technique. The influence of various synthesis factors, including aging time and temperature, crystallization time and temperature, Na₂O/SiO₂ and H₂O/Na₂O ratio on the CEC of zeolite, were systematically investigated. The as-synthesized zeolite X with binary meso-microporous structure possessed remarkable thermal stability, high calcium ion exchange capacity of 248 mg/g and large surface area of 453 m²/g. In addition, the calcium ion exchange capacity of zeolite X was found to be mainly determined by the crystallization degree. In conclusion, the synthesized zeolite X using diatomite as a cost-effective raw material in this study has great potential for industrial application such as catalyst support and adsorbent.
Flexible room-temperature formaldehyde sensors based on rGO film and rGo/MoS2 hybrid film
NASA Astrophysics Data System (ADS)
Li, Xian; Wang, Jing; Xie, Dan; Xu, Jianlong; Xia, Yi; Li, Weiwei; Xiang, Lan; Li, Zhemin; Xu, Shiwei; Komarneni, Sridhar
2017-08-01
Gas sensors based on reduced graphene oxide (rGO) films and rGO/MoS2 hybrid films were fabricated on polyethylene naphthalate substrates by a simple self-assembly method, which yielded flexible devices for detection of formaldehyde (HCHO) at room temperature. The sensing test results indicated that the rGO and rGO/MoS2 sensors were highly sensitive and fully recoverable to a ppm-level of HCHO. The bending and fatigue test results revealed that the sensors were also mechanically robust, durable and effective for long-term use. The rGO/MoS2 sensors showed higher sensitivities than rGO sensors, which was attributed to the enhanced HCHO adsorption and electron transfer mediated by MoS2. Furthermore, two kinds of MoS2 nanosheets were prepared by either hydrothermal synthesis or chemical exfoliation and were compared for their detection of HCHO, which revealed that the hydrothermally produced MoS2 nanosheets with rich defects led to enhanced sensitivity of the rGO/MoS2 sensors. Moreover, these fabricated flexible sensors can be applied for the HCHO detection in food packaging.
Flexible room-temperature formaldehyde sensors based on rGO film and rGo/MoS2 hybrid film.
Li, Xian; Wang, Jing; Xie, Dan; Xu, Jianlong; Xia, Yi; Li, Weiwei; Xiang, Lan; Li, Zhemin; Xu, Shiwei; Komarneni, Sridhar
2017-08-11
Gas sensors based on reduced graphene oxide (rGO) films and rGO/MoS 2 hybrid films were fabricated on polyethylene naphthalate substrates by a simple self-assembly method, which yielded flexible devices for detection of formaldehyde (HCHO) at room temperature. The sensing test results indicated that the rGO and rGO/MoS 2 sensors were highly sensitive and fully recoverable to a ppm-level of HCHO. The bending and fatigue test results revealed that the sensors were also mechanically robust, durable and effective for long-term use. The rGO/MoS 2 sensors showed higher sensitivities than rGO sensors, which was attributed to the enhanced HCHO adsorption and electron transfer mediated by MoS 2 . Furthermore, two kinds of MoS 2 nanosheets were prepared by either hydrothermal synthesis or chemical exfoliation and were compared for their detection of HCHO, which revealed that the hydrothermally produced MoS 2 nanosheets with rich defects led to enhanced sensitivity of the rGO/MoS 2 sensors. Moreover, these fabricated flexible sensors can be applied for the HCHO detection in food packaging.
Abbas, Mohamed; Zhang, Juan; Lin, Ke; Chen, Jiangang
2018-04-01
In this study, Fe 3 O 4 nanocubes (NCs) decorated on RGO nanosheets (NSs) structures were successfully synthesized through an innovative and environmentally-friendly rapid sonochemical method. More importantly, iron(II) sulfate heptahydrate and GO were employed as precursors and water as reaction medium, meanwhile, NaOH within the generated free radicals from the high intensity ultrasound were sufficient as reducing and base agent in our clean synthesis. Moreover, the hydrothermal method as a conventional approach was employed to synthesize the same catalysts for the comparison with the ultrasonocation technique. The as-synthesized Fe 3 O 4 and RGO/Fe 3 O 4 NSs catalysts were exposed to industrially relevant Fischer-tropsch synthesis (FTS) conditions at various reaction temperatures (250-290 °C), and they subjected to fully characterization before and after FTS reaction using XRD, TEM, HRTEM, EDS mapping, XPS, FTIR, BET, H 2 -TPR, H 2 -TPD and CO-TPD to understand the structure-performance relationships. Notably, the catalysts produced using the sonochemical method had a better CO conversion rate [Fe 3 O 4 (80%), RGO/Fe 3 O 4 (82%)] than the hydrothermally synthesized catalysts. However, compared to the naked-Fe 3 O 4 catalysts, the sonochemically and hydrothermally synthesized RGO-supported Fe 3 O 4 catalysts had higher long chain hydrocarbon (C5+) selectivity values (72% and 67%) and C 2 -C 4 olefin/paraffin selectivity ratio (3.2 and 2) and low CH4 selectivity values (6% and 8.5%), respectively. This can be attributed to their high surface area, the degree of reducibility, and content of Hägg iron carbide (χ-Fe 5 C 2 ) as the most active phase of the FTS reaction. Proposed reaction mechanisms for the sonochemical and hydrothermal reaction synthesis of Fe 3 O 4 and RGO/Fe 3 O 4 nanoparticles are discussed. In conclusion, our developed surfactantless-sonochemical method holds promise for the eco-friendly synthesis of highly efficient catalysts materials for FTS reaction. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Asadi Haroni, Hooshang; Hassan Tabatabaei, Seyed
2016-04-01
Muteh gold mining area is located in 160 km NW of Isfahan town. Gold mineralization is meso-thermal type and associated with silisic, seresitic and carbonate alterations as well as with hematite and goethite. Image processing and interpretation were applied on the ASTER satellite imagery data of about 400 km2 at the Muteh gold mining area to identify hydrothermal alterations and iron oxides associated with gold mineralization. After applying preprocessing methods such as radiometric and geometric corrections, image processing methods of Principal Components Analysis (PCA), Least Square Fit (Ls-Fit) and Spectral Angle Mapper (SAM) were applied on the ASTER data to identify hydrothermal alterations and iron oxides. In this research reference spectra of minerals such as chlorite, hematite, clay minerals and phengite identified from laboratory spectral analysis of collected samples were used to map the hydrothermal alterations. Finally, identified hydrothermal alteration and iron oxides were validated by visiting and sampling some of the mapped hydrothermal alterations.
NASA Astrophysics Data System (ADS)
Frias, S. M. P.; Takahashi, R.; Imai, A.; Blamey, N.
2017-12-01
The Kay Tanda epithermal deposit in Lobo, Batangas, Philippines is mainly hosted in quartz-rich hydrothermal breccia and quartz veins. These contain varying gold grades with some reaching bonanza gold grades as high as 200 ppm Au. They also contain varying amounts of base metal sulfides such as sphalerite, galena, chalcopyrite and pyrite whose abundances increase with depth. Petrographic analysis of the samples revealed different quartz textures such as colloform textures in quartz veins at shallow levels and feathery, flamboyant and mosaic textures in the matrix of hydrothermal breccias at deeper levels. These textures are indicative of boiling conditions. To elucidate the fluid conditions, fluid source, composition and processes during the formation of the deposit, fluid inclusion microthermometry, quantitative fluid inclusion gas analysis and laser Raman spectroscopy were conducted. Doubly polished thin wafers prepared from the quartz veins and quartz crystals in the matrix of hydrothermal breccias. Microthermometric analysis of primary fluid inclusions included measurements of the freezing temperature Tf, the temperature of ice melting Tm, and the homogenization temperature of the fluid phase by disappearance of vapor Th. Liquid-to-vapor (L-V) ratios are variable, thus, liquid-rich liquid-vapor inclusions and vapor-rich liquid-vapor inclusions coexist in some samples. The sizes of the primary fluid inclusions may reach 100 micrometers. The homogenization temperatures range 200 °C to 380 °C, with the mode around 250 °C to 280 °C. Salinities range from 2 to 7 wt% NaCl equivalent, with the mode around 4 to 5 wt% NaCl equivalent. Trends of the distribution of fluid inclusion populations based on their homogenization temperature and salinity suggest boiling which is consistent with the variable liquid to vapor ratios, i.e. coexistence of liquid-rich inclusions and vapor-rich inclusions.
NASA Astrophysics Data System (ADS)
Kolandaivelu, K. P.; Lowell, R. P.
2015-12-01
To better understand the effects of anhydrite precipitation on mid-ocean ridge hydrothermal systems, we conducted 2-D numerical simulations of two-phase hydrothermal circulation in a NaCl-H2O fluid at the East Pacific Rise 9°50'N. The simulations were constrained by key observational thermal data and seismicity that suggests the fluid flow is primarily along axis with recharge focused into a small zone near a 4th order discontinuity. The simulations considered an open-top square box with a fixed seafloor pressure of 25 MPa, and nominal seafloor temperature of 10 °C. The sides of the box were assumed to be impermeable and insulated. We considered two models: a homogeneous model with a permeability of 10-13 m2 and a heterogeneous model in which layer 2A extrusives were given a higher permeability. Both models had a fixed bottom temperature distribution and initial porosity of 0.1. Assuming that anhydrite precipitation resulted from the decrease in solubility with increasing temperature as downwelling fluid gets heated, we calculated the rate of porosity decrease and sealing times in each cell at certain time snapshots in the simulations. The results showed that sealing would occur most rapidly in limited regions near the base of the high-temperature plumes, where complete sealing could occur on decadal time scales. Though more detailed analysis is needed, it appeared that the areas of rapid sealing would likely have negligible impact on the overall circulation pattern and hydrothermal vent temperatures. The simulations also indicated that sealing due to anhydrite precipitation would occur more slowly at the margins of the ascending plumes. The sealing times in the deep recharge zone determined in these simulations were considerably greater than estimated from 1D analytical calculations, suggesting that with a 2D model, focused recharge at the EPR 9°50'N site may occur, at least on a decadal time scale.
Kaye, Jonathan Z; Márquez, M Carmen; Ventosa, Antonio; Baross, John A
2004-03-01
To assess the physiological and phylogenetic diversity of culturable halophilic bacteria in deep-sea hydrothermal-vent environments, six isolates obtained from low-temperature hydrothermal fluids, sulfide rock and hydrothermal plumes in North and South Pacific Ocean vent fields located at 1530-2580 m depth were fully characterized. Three strains were isolated on media that contained oligotrophic concentrations of organic carbon (0.002 % yeast extract). Sequencing of the 16S rRNA gene indicated that all strains belonged to the genus Halomonas in the gamma-subclass of the Proteobacteria. Consistent with previously described species, the novel strains were slightly to moderately halophilic and grew in media containing up to 22-27 % total salts. The isolates grew at temperatures as low as -1 to 2 degrees C and had temperature optima of 30 or 20-35 degrees C. Both the minimum and optimum temperatures for growth were similar to those of Antarctic and sea-ice Halomonas species and lower than typically observed for the genus as a whole. Phenotypic tests revealed that the isolates were physiologically versatile and tended to have more traits in common with each other than with closely related Halomonas species, presumably a reflection of their common deep-sea, hydrothermal-vent habitat of origin. The G+C content of the DNA for all strains was 56.0-57.6 mol%, and DNA-DNA hybridization experiments revealed that four strains (Eplume1(T), Esulfide1(T), Althf1(T) and Slthf2(T)) represented novel species and that two strains (Eplume2 and Slthf1) were related to Halomonas meridiana. The proposed new species names are Halomonas neptunia (type strain Eplume1(T)=ATCC BAA-805(T)=CECT 5815(T)=DSM 15720(T)), Halomonas sulfidaeris (type strain Esulfide1(T)=ATCC BAA-803(T)=CECT 5817(T)=DSM 15722(T)), Halomonas axialensis (type strain Althf1(T)=ATCC BAA-802(T)=CECT 5812(T)=DSM 15723(T)) and Halomonas hydrothermalis (type strain Slthf2(T)=ATCC BAA-800(T)=CECT 5814(T)=DSM 15725(T)).
Alteration and mineralization of an oceanic forearc and the ophiolite-ocean crust analogy
Alt, J.C.; Teagle, D.A.H.; Brewer, T.; Shanks, Wayne C.; Halliday, A.
1998-01-01
Mineralogical, chemical, and isotopic (O, C, S, and Sr) analyses were performed on minerals and bulk rocks from a forearc basement section to understand alteration processes and compare with mid-ocean ridges (MOR) and ophiolites. Ocean Drilling Program Hole 786B in the Izu-Bonin forearc penetrates 103 m of sediment and 725 m into volcanic flows, breccias, and basal dikes. The rocks comprise boninites and andesites to rhyolites. Most of the section was affected by low-temperature (<100??C) seawater alteration, with temperatures increasing downward. The rocks are partly (5-25%) altered to smectite, Fe-oxyhydroxide, calcite, and phillipsite, and exhibit gains of K, Rb, and P, loss of Ca, variable changes in Si, Na, Mg, Fe, Sr, and Y, and elevated ??18O and 87Sr/86Sr. Higher temperatures (???150??C) in the basal dikes below 750 m led to more intense alteration and formation of chlorite-smectite, corrensite, albite, K-feldspar, and quartz (??chlorite). A 5 m thick hydrothermally altered and pyritized zone at 815 m in the basal dikes reacted with mixtures of seawater and hydrothermal fluids to Mg-chlorite, albite, and pyrite, and gained Mg and S and lost Si and Ca. Focused flow of hydrothermal fluids produced sericitization halos (Na-K sericite, quartz, pyrophyllite, K-feldspar, and pyrite) along quartz veins at temperatures of 200??-250??C. High 87Sr/86Sr ratios of chloritized (???0.7055) and sericitized (???0.7065) rocks indicate involvement of seawater via mixing with hydrothermal fluids. Low ??34S of sulfide (???2 to -5.5???) and sulfate (12.5???) are consistent with input of magmatic SO2 into hydrothermal fluids and disproportionation to sulfide and sulfate. Alteration processes were generally similar to those at MORs, but the arc section is more intensively altered, in part because of the presence of abundant glassy rocks and mafic phases. The increase in alteration grade below 750 m and the mineralization in the basal dikes are analogous to changes that occur near the base of the volcanic section in MOR and the Troodos ophiolite.
The Preparation and Characterization of Natrolite Synthetized by Purified Attapulgite
NASA Astrophysics Data System (ADS)
Li, H. J.; Zhou, X. D.; Zhang, J. M.; Wu, X. Y.; Gao, H. B.
2017-06-01
This paper mainly researched the hydrothermal synthesis of Natrolite, using amorphous silicon source from the purified attapulgite. The effects of silicon source, silicon aluminum ratio, crystallization time and crystallization temperature on the synthesis of natrolite were investigated. The results showed that the optimal synthesis condition of natrolite was: Hydrothermal activated ATP with NaOH was silicon source, silicon aluminum ratio was 10:1, crystallization time lasted to 72h and crystallization temperature was 150°C, the template was removed by calcining 8 hours at 550°C. The structural formula of obtained natrolite is Na2Al2Si3O10•2H2O.
Hyperbaric hydrothermal atomic force microscope
Knauss, Kevin G.; Boro, Carl O.; Higgins, Steven R.; Eggleston, Carrick M.
2002-01-01
A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.
Hyperbaric Hydrothermal Atomic Force Microscope
Knauss, Kevin G.; Boro, Carl O.; Higgins, Steven R.; Eggleston, Carrick M.
2003-07-01
A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.
Sun, Yan-qing; Sun, Zhen; Zhang, Jing-lai
2015-06-01
Hydrothermal liquefaction in subcritical water is a potential way to treat sewage sludge as a resource rather than a waste. This study focused on the transformation regularity of nitrogen in aqueous product which was derived from hydrothermal liquefaction of sewage sludge under different operating conditions. Results showed, within the studied temperature scope and time span, the concentration of total nitrogen (TN) fluctuated in the range of 2867.62 mg x L(-1) to 4171.30 mg x L(-1). The two major exiting formation of nitrogen in aqueous product was ammonia nitrogen (NH4+ -N) and organic nitrogen (Org-N). NH4+ -N possessed 54.6%-90.7% of TN, while Org-N possessed 7.4%-44.5%. The concentration of nitrate nitrogen (NO- -N) was far more less than NH4+ -N and Org-N. Temperature had a great influence on the transformation regularity of nitrogen. Both the concentration of TN and Org-N increased accordingly to the increase of reaction temperature. With the reaction time prolonging, the concentration of TN and Org-N increased, while the concentration of NH4+ -N increased first, then became stationary, and then decreased slightly.
NASA Astrophysics Data System (ADS)
Fujii, Masakazu; Okino, Kyoko; Sato, Taichi; Sato, Hiroshi; Nakamura, Kentaro
2016-05-01
High-resolution vector magnetic measurements were performed on an inactive ultramafic-hosted hydrothermal vent field, called Yokoniwa Hydrothermal Field (YHF), using a deep-sea manned submersible Shinkai6500 and an autonomous underwater vehicle r2D4. The YHF has developed at a non-transform offset massif of the Central Indian Ridge. Dead chimneys were widely observed around the YHF along with a very weak venting of low-temperature fluids so that hydrothermal activity of the YHF was almost finished. The distribution of crustal magnetization from the magnetic anomaly revealed that the YHF is associated with enhanced magnetization, as seen at the ultramafic-hosted Rainbow and Ashadze-1 hydrothermal sites of the Mid-Atlantic Ridge. The results of rock magnetic analysis on seafloor rock samples (including basalt, dolerite, gabbro, serpentinized peridotite, and hydrothermal sulfide) showed that only highly serpentinized peridotite carries high magnetic susceptibility and that the natural remanent magnetization intensity can explain the high magnetization of Yokoniwa. These observations reflect abundant and strongly magnetized magnetite grains within the highly serpentinized peridotite. Comparisons with the Rainbow and Ashadze-1 suggest that in ultramafic-hosted hydrothermal systems, strongly magnetized magnetite and pyrrhotite form during the progression of hydrothermal alteration of peridotite. After the completion of serpentinization and production of hydrogen, pyrrhotites convert into pyrite or nonmagnetic iron sulfides, which considerably reduces their levels of magnetization. Our results revealed origins of the magnetic high and the development of subsurface chemical processes in ultramafic-hosted hydrothermal systems. Furthermore, the results highlight the use of near-seafloor magnetic field measurements as a powerful tool for detecting and characterizing seafloor hydrothermal systems.
Volpe, Maurizio; Goldfarb, Jillian L; Fiori, Luca
2018-01-01
Opuntia ficus-indica cladodes are a potential source of solid biofuel from marginal, dry land. Experiments assessed the effects of temperature (180-250°C), reaction time (0.5-3h) and biomass to water ratio (B/W; 0.07-0.30) on chars produced via hydrothermal carbonization. Multivariate linear regression demonstrated that the three process parameters are critically important to hydrochar solid yield, while B/W drives energy yield. Heating value increased together with temperature and reaction time and was maximized at intermediate B/W (0.14-0.20). Microscopy shows evidence of secondary char formed at higher temperatures and B/W ratios. X-ray diffraction, thermogravimetric data, microscopy and inductively coupled plasma mass spectrometry suggest that calcium oxalate in the raw biomass remains in the hydrochar; at higher temperatures, the mineral decomposes into CO 2 and may catalyze char/tar decomposition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Secondary mineral growth in fractures in the Miravalles geothermal system, Costa Rica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rochelle, C.A.; Milodowski, A.E.; Savage, D.
1989-01-01
A mineralogical, fluid-chemical, and theoretical study of hydrothermal alteration in veins from drillcore from the Miravalles geothermal field, Costa Rica has revealed a complex history of mineral-fluid reaction which may be used to characterize changes in temperature and fluid composition with time. Mineralogical and mineral-chemical data are consistent with hydrothermal alteration in the temperature range 200{sup 0}-270{sup 0}C, with deeper portions of the system having undergone temperatures in excess of 300{sup 0}C. Thermodynamic calculations suggest that the observed alteration assemblage is not equilibrium with current well fluids, unless estimates of reservoir pH are incorrect. Fe-Al zoning of prehnite and epidotemore » in veins is consistent with rapid, isothermal fluctuations in fluid composition at current reservoir temperatures, and may be due to changes in volatile content of the fluid due to tectonic activity.« less
NASA Astrophysics Data System (ADS)
Coban, Mustafa Burak
2018-06-01
A new GdIII coordination complex, {[Gd(2-stp)2(H2O)6].2(4,4'-bipy).4(H2O)}, complex 1, (2-stp = 2-sulfoterephthalate anion and 4,4'-bipy = 4,4'-bipyridine), has been synthesized by hydrothermal method and characterized by elemental analysis, solid state UV-Vis and FT-IR spectroscopy, single-crystal X-ray diffraction, solid state photoluminescence and variable-temperature magnetic measurements. The crystal structure determination shows that GdIII ions are eight coordinated and adopt a distorted square-antiprismatic geometry. Molecules interacting through intra- and intermolecular (O-H⋯O, O-H⋯N) hydrogen bonds in complex 1, give rise to 3D hydrogen bonded structure and the discrete lattice 4,4'-bipy molecules occupy the channel of the 3D structure. π-π stacking interactions also exist 4,4'-bipy-4,4'-bipy and 4,4'-bipy-2-stp molecule rings in 3D structures. Additionally, solid state photoluminescence properties of complex 1 at room temperature have been investigated. Under the excitation of UV light (at 349 nm), the complex 1 exhibited green emissions (at 505 nm) of GdIII ion in the visible region. Furthermore, Variable-temperature magnetic susceptibility and isothermal magnetization as function of external magnetic field studies reveal that complex 1 displays possible antiferromagnetic interaction.
Edmonds, H N; Michael, P J; Baker, E T; Connelly, D P; Snow, J E; Langmuir, C H; Dick, H J B; Mühe, R; German, C R; Graham, D W
2003-01-16
Submarine hydrothermal venting along mid-ocean ridges is an important contributor to ridge thermal structure, and the global distribution of such vents has implications for heat and mass fluxes from the Earth's crust and mantle and for the biogeography of vent-endemic organisms. Previous studies have predicted that the incidence of hydrothermal venting would be extremely low on ultraslow-spreading ridges (ridges with full spreading rates <2 cm x yr(-1)-which make up 25 per cent of the global ridge length), and that such vent systems would be hosted in ultramafic in addition to volcanic rocks. Here we present evidence for active hydrothermal venting on the Gakkel ridge, which is the slowest spreading (0.6-1.3 cm x yr(-1)) and least explored mid-ocean ridge. On the basis of water column profiles of light scattering, temperature and manganese concentration along 1,100 km of the rift valley, we identify hydrothermal plumes dispersing from at least nine to twelve discrete vent sites. Our discovery of such abundant venting, and its apparent localization near volcanic centres, requires a reassessment of the geologic conditions that control hydrothermal circulation on ultraslow-spreading ridges.
Wang, Xiangfu; Zheng, Jin; Xuan, Yan; Yan, Xiaohong
2013-09-09
NaYbF(4):Tm3+@SiO(2) core-shell micro-particles were synthesized by a hydrothermal method and subsequent ultrasonic coating process. Optical temperature sensing has been observed in NaYbF4: Tm(3+)@SiO(2)core-shell micro-particles with a 980 nm infrared laser as excitation source.The fluorescence intensity ratios, optical temperature sensitivity, and temperature dependent population re-distribution ability from the thermally coupled (1)D(2)/(1)G(4) and (3)F(2) /(3)H(4) levels of the Tm(3+) ion have been analyzed as a function of temperature in the range of 100~700 K in order to check its availability as a optical temperature sensor. A better behavior as a lowtemperature sensor has been obtained with a minimum sensitivity of 5.4 × 10(-4) K(-1) at 430 K. It exhibits temperature induced population re-distribution from (1)D(2) /(1)G(4) thermally coupled levels at higher temperature range.
Condensation Reactions and Formation of Amides, Esters, and Nitriles Under Hydrothermal Conditions
NASA Astrophysics Data System (ADS)
Rushdi, Ahmed I.; Simoneit, Bernd R. T.
2004-06-01
Hydrothermal pyrolysis experiments were performed to assess condensation (dehydration) reactions to amide, ester, and nitrile functionalities from lipid precursors. Beside product formation, organic compound alteration and stability were also evaluated. Mixtures of nonadecanoic acid, hexadecanedioic acid, or hexadecanamide with water, ammonium bicarbonate, and oxalic acid were heated at 300°C for 72 h. In addition, mixtures of ammonium bicarbonate and oxalic acid solutions were used to test the abiotic formation of organic nitrogen compounds at the same temperature. The resulting products were condensation compounds such as amides, nitriles, and minor quantities of N-methylalkyl amides, alkanols, and esters. Mixtures of alkyl amide in water or oxalic acid yielded mainly hydrolysis and dehydration products, and with ammonium bicarbonate and oxalic acid the yield of condensation products was enhanced. The synthesis experiments with oxalic acid and ammonium bicarbonate solutions yielded homologous series of alkyl amides, alkyl amines, alkanes, and alkanoic acids, all with no carbon number predominances. These organic nitrogen compounds are stable and survive under the elevated temperatures of hydrothermal fluids.
Fossil evidence for serpentinization fluids fueling chemosynthetic assemblages
Lartaud, Franck; Little, Crispin T. S.; de Rafelis, Marc; Bayon, Germain; Dyment, Jerome; Ildefonse, Benoit; Gressier, Vincent; Fouquet, Yves; Gaill, Françoise; Le Bris, Nadine
2011-01-01
Among the deep-sea hydrothermal vent sites discovered in the past 30 years, Lost City on the Mid-Atlantic Ridge (MAR) is remarkable both for its alkaline fluids derived from mantle rock serpentinization and the spectacular seafloor carbonate chimneys precipitated from these fluids. Despite high concentrations of reduced chemicals in the fluids, this unique example of a serpentinite-hosted hydrothermal system currently lacks chemosynthetic assemblages dominated by large animals typical of high-temperature vent sites. Here we report abundant specimens of chemosymbiotic mussels, associated with gastropods and chemosymbiotic clams, in approximately 100 kyr old Lost City-like carbonates from the MAR close to the Rainbow site (36 °N). Our finding shows that serpentinization-related fluids, unaffected by high-temperature hydrothermal circulation, can occur on-axis and are able to sustain high-biomass communities. The widespread occurrence of seafloor ultramafic rocks linked to likely long-range dispersion of vent species therefore offers considerably more ecospace for chemosynthetic fauna in the oceans than previously supposed. PMID:21518892
Ranganathan, Panneerselvam; Savithri, Sivaraman
2018-06-01
Computational Fluid Dynamics (CFD) technique is used in this work to simulate the hydrothermal liquefaction of Nannochloropsis sp. microalgae in a lab-scale continuous plug-flow reactor to understand the fluid dynamics, heat transfer, and reaction kinetics in a HTL reactor under hydrothermal condition. The temperature profile in the reactor and the yield of HTL products from the present simulation are obtained and they are validated with the experimental data available in the literature. Furthermore, the parametric study is carried out to study the effect of slurry flow rate, reactor temperature, and external heat transfer coefficient on the yield of products. Though the model predictions are satisfactory in comparison with the experimental results, it still needs to be improved for better prediction of the product yields. This improved model will be considered as a baseline for design and scale-up of large-scale HTL reactor. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fossil evidence for serpentinization fluids fueling chemosynthetic assemblages.
Lartaud, Franck; Little, Crispin T S; de Rafelis, Marc; Bayon, Germain; Dyment, Jerome; Ildefonse, Benoit; Gressier, Vincent; Fouquet, Yves; Gaill, Françoise; Le Bris, Nadine
2011-05-10
Among the deep-sea hydrothermal vent sites discovered in the past 30 years, Lost City on the Mid-Atlantic Ridge (MAR) is remarkable both for its alkaline fluids derived from mantle rock serpentinization and the spectacular seafloor carbonate chimneys precipitated from these fluids. Despite high concentrations of reduced chemicals in the fluids, this unique example of a serpentinite-hosted hydrothermal system currently lacks chemosynthetic assemblages dominated by large animals typical of high-temperature vent sites. Here we report abundant specimens of chemosymbiotic mussels, associated with gastropods and chemosymbiotic clams, in approximately 100 kyr old Lost City-like carbonates from the MAR close to the Rainbow site (36 °N). Our finding shows that serpentinization-related fluids, unaffected by high-temperature hydrothermal circulation, can occur on-axis and are able to sustain high-biomass communities. The widespread occurrence of seafloor ultramafic rocks linked to likely long-range dispersion of vent species therefore offers considerably more ecospace for chemosynthetic fauna in the oceans than previously supposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farid, Muhammad Asim; Asghar, Muhammad Adnan; Ashiq, Muhammad Naeem, E-mail: naeemashiqqau@yahoo.com
2014-11-15
Graphical abstract: Variation of dielectric constant with frequency for all the synthesized materials. - Highlights: • Hydrothermal method has been successfully employed to synthesize the zirconates. • XRD confirmed the formation of required phase. • Increased electrical resistivity makes these materials useful for microwave devices. • Dielectric parameters of zirconates decrease with increasing frequency. • Dielectric constant decreases with increasing substituents concentration. - Abstract: A hydrothermal method was successfully employed for the synthesis of a series of vanadium and germanium co-doped pyrochlore lanthanum zirconates with composition La{sub 2−x}V{sub x}Zr{sub 2−y}Ge{sub y}O{sub 7} (where x, y = 0.0, 0.25, 0.50, 0.75more » and 1.0). The XRD and FTIR analyses confirmed the formation of single phase except vanadium and germanium substituted samples and the crystallite sizes are in the range of 7–31 nm for V{sup 3+}–Ge{sup 4+} substituted samples. The theoretical compositions are confirmed by the ED-XRF studies. The room temperature electrical resistivity increase with the substituents concentration which suggests that the synthesized materials can be used for microwave devices as such devices required highly resistive materials. Dielectric properties were measured in the frequency range of 6 kHz to 1 MHz. The dielectric parameters decrease with increase in frequency. The DC resistivity data is in good agreement with the dielectric data.« less