Conjugated polymer/graphene oxide nanocomposite as thermistor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Girish M., E-mail: varadgm@gmail.com; Deshmukh, Kalim
2015-06-24
We demonstrated the synthesis and measurement of temperature dependent electrical resistivity of graphene oxide (GO) reinforced poly (3, 4 - ethylenedioxythiophene) - tetramethacrylate (PEDOTTMA)/Polymethylmethacrylate (PMMA) based nanocomposites. Negative temperature coefficient (NTC) was observed for 0.5, 1 % GO loading and the positive temperature coefficient (PTC) was observed for 1.5 and 2 % Go loading in the temperature (40 to 120 °C). The GO inducted nanocomposite perform as an excellent thermistor and suitable for electronic and sensor domain.
Chemical kinetic modeling of propene oxidation at low and intermediate temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilk, R.D.; Cernansky, N.P.; Pitz, W.J.
1986-01-13
A detailed chemical kinetic mechanism for propene oxidation is developed and used to model reactions in a static reactor at temperatures of 590 to 740/sup 0/K, equivalence ratios of 0.8 to 2.0, and a pressure of 600 torr. Modeling of hydrocarbon oxidation in this temperature range is important for the validation of detailed models to be used for performing calculations related to automotive engine knock. The model predicted induction periods and species concentrations for all the species measured experimentally in a static reactor by Wilk, Cernansky, and Cohen. The detailed model predicted a temperature region of approximately constant induction periodmore » which corresponded very closely to the region of negative temperature coefficient behavior found in the experiment. Overall, the calculated concentrations of acetaldehyde, ethene, and methane were somewhat low compared to the experimental measurements, and the calculated concentrations of formaldehyde and methanol were high. The characteristic s-shape of the fuel concentration history was well predicted. The importance of OH+C/sub 3/H/sub 6/ and related rections in determining product distributions and the importance of consumption reactions for allyl radicals was demonstrated by the modeling calculations. 18 refs., 4 figs., 1 tab.« less
Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santavicca, Daniel F., E-mail: daniel.santavicca@unf.edu; Adams, Jesse K.; Grant, Lierd E.
2016-06-21
We study the microwave impedance of extremely high aspect ratio (length/width ≈ 5000) superconducting niobium nitride nanowires. The nanowires are fabricated in a compact meander geometry that is in series with the center conductor of a 50 Ω coplanar waveguide transmission line. The transmission coefficient of the sample is measured up to 20 GHz. At high frequency, a peak in the transmission coefficient is seen. Numerical simulations show that this is a half-wave resonance along the length of the nanowire, where the nanowire acts as a high impedance, slow wave transmission line. This resonance sets the upper frequency limit for these nanowires asmore » inductive elements. Fitting simulations to the measured resonance enables a precise determination of the nanowire's complex sheet impedance at the resonance frequency. The real part is a measure of dissipation, while the imaginary part is dominated by kinetic inductance. We characterize the dependence of the sheet resistance and sheet inductance on both temperature and current and compare the results to recent theoretical predictions for disordered superconductors. These results can aid in the understanding of high frequency devices based on superconducting nanowires. They may also lead to the development of novel superconducting devices such as ultra-compact resonators and slow-wave structures.« less
NASA Astrophysics Data System (ADS)
Chan, A. A.; Ilie, R.; Elkington, S. R.; Albert, J.; Huie, W.
2017-12-01
It has been traditional to separate radiation belt radial-diffusion coefficients into two contributions: an "electrostatic" diffusion coefficient, which is assumed to be due to a potential (non-inductive) electric field, and an "electromagnetic" diffusion coefficient , which is assumed to be due to the combined effect of an inductive electric field and the corresponding time-dependent magnetic field. One difficulty in implementing this separation when using magnetospheric fields obtained from measurements, or from MHD simulations, is that only the total electric field is given; the separation of the electric field into potential and inductive parts is not readily available. In this work we separate the electric field using a numerical method based on the Helmholtz decomposition of the total motional electric field calculated by the BATS-R-US MHD code. The inner boundary for the electric potential is based on the Ridley Ionospheric Model solution and we assume floating boundary conditions in the solar wind. Using different idealized solar wind drivers, including a solar wind density that is oscillating at a single frequency or with a broad spectrum of frequencies, we calculate potential and inductive electric fields, electric and magnetic power spectral densities, and corresponding radial diffusion coefficients. Simulations driven by idealized solar wind conditions show a clear separation of the potential and inductive contributions to the power spectral densities and diffusion coefficients. Simulations with more realistic solar wind drivers are underway to better assess the use of electrostatic and electromagnetic diffusion coefficients in understanding ULF wave-particle interactions in Earth's radiation belts.
Characterisation of electrical resistance for CMC Materials up to 1200 °C
NASA Astrophysics Data System (ADS)
Stäbler, T.; Böhrk, H.; Voggenreiter, H.
2017-12-01
Damage to thermal protection systems (TPS) during atmospheric re-entry is a severe safety issue, especially when considering re-usability of space transportation systems. There is a need for structural health monitoring systems and non-destructive inspection methods. However, damages are hard to detect. When ceramic matrix composites, in this case carbon fibre reinforced silicon carbide (C/C-SiC), are used as a TPS, the electrical properties of the present semiconductor material can be used for health monitoring, since the resistivity changes with damage, strain and temperature. In this work the electrical resistivity as a function of the material temperature is analysed eliminating effects of thermal electricity and the thermal coefficient of electrical resistance is determined. A sensor network is applied for locally and time resolved monitoring of the 300 mm x 120 mm x 3 mm panel shaped samples. Since the material is used for atmospheric re-entry it needs to be characterised for a wide range of temperatures, in this case as high as 1200 °C. Therefore, experiments in an inductively heated test bench were conducted. Firstly, a reference sample was used with thermocouples for characterising the temperature distribution across the sample surface. Secondly, electrical resistance under heat load was measured, time and spatially resolved. Results will be shown and discussed in terms of resistance dependence on temperature, thermal coefficient of electrical resistance, thermal electricity and electrical path orientation including an analysis on effective conducting cross section. Conversely, the thermal coefficient can also be used to determine the material temperature as a function of electrical resistance.
Development of MEMS wireless wall temperature sensor for combustion studies
NASA Astrophysics Data System (ADS)
Lee, Minhyeok; Morimoto, Kenichi; Suzuki, Yuji
2017-03-01
In this paper, a MEMS-based wireless wall temperature sensor for application to combustion studies is proposed. The resonant frequency change of an LCR circuit on the sensor is used to detect the temperature change, and is transferred by inductive coupling between the sensor and the read-out coil. Sensitivity analysis has been made to examine the effect of the resistance/capacitance change of the sensor on the resonant frequency shifts. Based on the present analysis, the sensing principle with either TCR (temperature coefficient of resistance) or TCP (temperature coefficient of permittivity) can be determined for better temperature sensitivity. The sensor configuration is designed through an equivalent circuit model, and verified with a 3D electromagnetic simulation. A prototype sensor on a glass substrate is successfully fabricated through MEMS technologies. Performance of the sensor is evaluated in the steady thermal field with the temperature range from 25 °C to 175 °C. The profile of the resonant frequency change is well fitted with a quadratic curve derived from the model analysis. The temperature measurement accuracy of 1.6 °C at 25 °C and 0.87 °C at 175 °C has been obtained at the measurement distance of 0.71 mm. In addition, a similar measurement uncertainty can be achieved with a 52 ms measurement time interval.
Rate coefficient for H + O2 + M = HO2 + M evaluated from shock tube measurements of induction times
NASA Technical Reports Server (NTRS)
Slack, M. W.
1977-01-01
Shock tube experiments measured hydrogen-air induction times near the second explosion limit. By matching these experimental results with numerically predicted induction times, the rate coefficient for the reaction H + O2 + M = HO2 + M was evaluated as k-sub 4,N2 = 3.3 (plus or minus .6) x 10 to the 15 cm to the 6th/sq mole/s.
Three-phase inductive-coupled structures for contactless PHEV charging system
NASA Astrophysics Data System (ADS)
Lee, Jia-You; Shen, Hung-Yu; Li, Cheng-Bin
2016-07-01
In this article, a new-type three-phase inductive-coupled structure is proposed for the contactless plug-in hybrid electric vehicle (PHEV) charging system regarding with SAE J-1773. Four possible three-phase core structures are presented and subsequently investigated by the finite element analysis. To study the correlation between the core geometric parameter and the coupling coefficient, the magnetic equivalent circuit model of each structure is also established. In accordance with the simulation results, the low reluctance and the sharing of flux path in the core material are achieved by the proposed inductive-coupled structure with an arc-shape and three-phase symmetrical core material. It results in a compensation of the magnetic flux between each phase and a continuous flow of the output power in the inductive-coupled structure. Higher coupling coefficient between inductive-coupled structures is achieved. A comparison of coupling coefficient, mutual inductance, and self-inductance between theoretical and measured results is also performed to verify the proposed model. A 1 kW laboratory scale prototype of the contactless PHEV charging system with the proposed arc-shape three-phase inductive-coupled structure is implemented and tested. An overall system efficiency of 88% is measured when two series lithium iron phosphate battery packs of 25.6 V/8.4 Ah are charged.
Jia, Luqiang; Tu, Tingyong; Huai, Qiangqiang; Sun, Jiaowen; Chen, Shanshan; Li, Xin; Ding, Jian
2017-01-01
In heterologous protein productions by P. pastoris, methanol induction is generally initiated when cell concentration reaches very high density. The alternative strategy by initiating methanol induction at lower cells concentration was also reported to be effective in easing DO control, reducing toxic by-metabolites accumulation and increasing targeted proteins titers. However, the methanol/energy regulation mechanisms are seldom reported. We theoretically analyzed the methanol/energy metabolisms in protein expression process with the strategies of initiating induction at higher or lower cells concentrations, using monellin production as a prototype. When initiating induction at lower cells concentration and controlling induction temperature at 30°C, monellin concentration reached the highest levels of 2.62~2.71 g/L, which was 2.5~4.9 fold of those obtained with the strategy of initiating induction at higher cells concentration. With the desired induction strategy, 1) carbon metabolism ratio directing into the precursors synthesis route for monellin production reached the highest level of 65%, carbon metabolism ratios towards to precursors synthesis and ATP regeneration routes were regulated at relatively balanced levels; 2) monellin synthesis was completely cell growth associated, with the largest associated coefficient and higher specific growth rate; 3) theoretical NADH (energy) utilization efficiency η was the highest, and η stayed high levels (≥0.8) during most period (89%) within induction phase to supply sufficient energy in supporting monellin synthesis. PMID:28981536
Jia, Luqiang; Tu, Tingyong; Huai, Qiangqiang; Sun, Jiaowen; Chen, Shanshan; Li, Xin; Shi, Zhongping; Ding, Jian
2017-01-01
In heterologous protein productions by P. pastoris, methanol induction is generally initiated when cell concentration reaches very high density. The alternative strategy by initiating methanol induction at lower cells concentration was also reported to be effective in easing DO control, reducing toxic by-metabolites accumulation and increasing targeted proteins titers. However, the methanol/energy regulation mechanisms are seldom reported. We theoretically analyzed the methanol/energy metabolisms in protein expression process with the strategies of initiating induction at higher or lower cells concentrations, using monellin production as a prototype. When initiating induction at lower cells concentration and controlling induction temperature at 30°C, monellin concentration reached the highest levels of 2.62~2.71 g/L, which was 2.5~4.9 fold of those obtained with the strategy of initiating induction at higher cells concentration. With the desired induction strategy, 1) carbon metabolism ratio directing into the precursors synthesis route for monellin production reached the highest level of 65%, carbon metabolism ratios towards to precursors synthesis and ATP regeneration routes were regulated at relatively balanced levels; 2) monellin synthesis was completely cell growth associated, with the largest associated coefficient and higher specific growth rate; 3) theoretical NADH (energy) utilization efficiency η was the highest, and η stayed high levels (≥0.8) during most period (89%) within induction phase to supply sufficient energy in supporting monellin synthesis.
NASA Astrophysics Data System (ADS)
Magnasco, Valerio; Battezzati, Michele; Rapallo, Arnaldo; Costa, Camilla
2006-09-01
T-dependent long-range Keesom coefficients are evaluated up to the R-10 term for small values of the dimensionless parameter |a|. For large values of |a| corrections must be introduced mostly for the dipole-dipole term, the correct values of C6 being best obtained from a recently derived asymptotic formula. The corresponding attractive energies are the isotropic electrostatic contributions to the interaction energy and are temperature-dependent. Comparison with long-range induction and dispersion energy results for some simple polar axially symmetric molecules in the gas phase shows that at R = 10 a0 and T = 293 K the electrostatic dipole-dipole component is dominant for ∣ a11∣ > 0.5. For centrosymmetric molecules the corresponding electrostatic contribution is usually negligible with respect to dispersion.
Nd-Fe-B/Sm-M/Nd-M (M = Fe, Co, Ti, Cu, Zr) hybrid magnets with improved thermal stability
NASA Astrophysics Data System (ADS)
Grigoras, M.; Lostun, M.; Urse, M.; Borza, F.; Chiriac, H.; Lupu, N.
2018-02-01
Hybrid magnets of Nd12Fe82B6(2:14:1-phase)/Nd9.4Fe59Co25.3Ti6.3(3:29-phase) and Nd12Fe82B6/Sm11.1Co65.8Fe8.9Cu10.7Zr3.5(2:17-phase) with different weight ratio have been prepared by spark plasma sintering pressing technique from ball-milled powders obtained from melt-spun ribbons. Influence of the ratio between the two phases on the magnetic properties and thermal stability of the hybrid magnets was studied. It has been found that the ratio has a remarkable influence, especially on the thermal stability of the bulk magnets. However, the magnetic properties of such type of hybrid magnets result not only from the type and ratio of components but also from the interaction between them. It was found that in NdFeB/3:29 hybrid magnets with 15% content of 3:29-phase, the temperature coefficients of remanence (α) and of coercivity (β) are improved from -0.095 to -0.082 (%/°C) and from -0.57 to -0.47 (%/°C), respectively, as compared to the Nd2Fe14B single-phase counterpart. While for the NdFeB/2:17 hybrid magnets the content of 2:17-phase is not significantly influencing the temperature coefficient of induction (α), the temperature coefficient of °C (β) increases up to -0.41 (%/°C) for 10% content of 2:17-phase. The increase in the reversible temperature coefficients of hybrid magnets indicate a remarkable improvement of their thermal stability.
Response simulation and theoretical calibration of a dual-induction resistivity LWD tool
NASA Astrophysics Data System (ADS)
Xu, Wei; Ke, Shi-Zhen; Li, An-Zong; Chen, Peng; Zhu, Jun; Zhang, Wei
2014-03-01
In this paper, responses of a new dual-induction resistivity logging-while-drilling (LWD) tool in 3D inhomogeneous formation models are simulated by the vector finite element method (VFEM), the influences of the borehole, invaded zone, surrounding strata, and tool eccentricity are analyzed, and calibration loop parameters and calibration coefficients of the LWD tool are discussed. The results show that the tool has a greater depth of investigation than that of the existing electromagnetic propagation LWD tools and is more sensitive to azimuthal conductivity. Both deep and medium induction responses have linear relationships with the formation conductivity, considering optimal calibration loop parameters and calibration coefficients. Due to the different depths of investigation and resolution, deep induction and medium induction are affected differently by the formation model parameters, thereby having different correction factors. The simulation results can provide theoretical references for the research and interpretation of the dual-induction resistivity LWD tools.
Temperature responsive transmitter
NASA Technical Reports Server (NTRS)
Kleinberg, Leonard L. (Inventor)
1987-01-01
A temperature responsive transmitter is provided in which frequency varies linearly with temperature. The transmitter includes two identically biased transistors connected in parallel. A capacitor, which reflects into the common bases to generate negative resistance effectively in parallel with the capacitor, is connected to the common emitters. A crystal is effectively in parallel with the capacitor and the negative resistance. Oscillations occur if the magnitude of the absolute value of the negative resistance is less than the positive resistive impedance of the capacitor and the inductance of the crystal. The crystal has a large linear temperature coefficient and a resonant frequency which is substantially less than the gain-bandwidth product of the transistors to ensure that the crystal primarily determines the frequency of oscillation. A high-Q tank circuit having an inductor and a capacitor is connected to the common collectors to increase the collector current flow which in turn enhances the radiation of the oscillator frequency by the inductor.
Circuit Models for Inductive Strips in Fin-Line
1989-12-01
9875 SE523 35.9875 Ma6 12S.9075 12.0 .7975 120.1500 . 6034 30.1500 . 6034 30.1500 .7975 120.1SO0 13 9.~~~- - M II I I’ IT I II f j a I ; a ~ ~ ~ ~ ~ I I...42.553.1 .8174 132.55371 34 Table 12. Touchstone data file containing the computed scattering coefficients of anl inductive strip of length T= 200 mnils...6283 45.0422 .628H 45.0422 .7780 13S.0422 42 Table 20. Touchstone data file containing the computed scattering coefficients of anl inductive strip of
Effect of copper on the properties of Pr-Dy-Fe-Co-B sintered magnets
NASA Astrophysics Data System (ADS)
Kablov, E. N.; Piskorskii, V. P.; Valeev, R. A.; Volkov, N. V.; Davydova, E. A.; Shaikhutdinov, K. A.; Balaev, D. A.; Semenov, S. V.
2014-01-01
The effect of copper on the properties of magnets (Pr0.52Dy0.48)13(Fe65Co0.35)80.3 - x Cu x B6.7 ( x = 0-10) has been studied. Alloying with copper is shown to decrease the sintering temperature and to increase the content of the principal (Pr,Dy)2(Fe,Co)14B magnetic phase. For compositions with x = 1.3-3.3, copper is found to affect the value and sign of the temperature induction coefficient (TIC). It is shown that the effect of copper on the TIC is determined by the substitution of copper ions for iron ions in lattice sites, which are coupled via an antiferromagnetic exchange interaction.
Mechanism of lubrication by tricresylphosphate (TCP)
NASA Technical Reports Server (NTRS)
Faut, O. D.; Wheeler, D. R.
1983-01-01
A pin-on-disk tribometer equipped with an induction heater was used to study the coefficient of friction as a function of temperature for tricresylphosphate (TCP) on continuous vacuum melted (CVM) M-50 tool steel when the TCP was present in a liquid reservoir (bulk lubrication), and when it was applied as a liquid layer directly to the disk (limited lubrication). Under limited lubrication conditions, experiments were performed in dry ( 100 ppm H2O) air, dry ( 20 ppm H2O) nitrogen, dry nitrogen with the disks heated to 700 C then cooled to room temperature before the TCP was applied and the measurements made (preheated disks), and moist nitrogen using preheated disks. When the coefficient of friction was plotted as a function of the disk temperature, the friction decreased at a characteristic temperature, T sub r whose observed values were 265 C for bulk lubrication conditions in dry air, 225 C for limited lubrication conditions in dry air, and 215 C for limited lubrication conditions in dry nitrogen. No decrease in friction was observed with preheated disks; instead a sharp failure temperature was observed at 218 C, which was taken as the temperature about which the behavior of TCP should be judged, X-ray photoelectron spectroscopy confirmed the presence of phosphate on the surface of the iron pins used in the tribometer under TCP lubrication. Depth profile studies support the idea that a chemical reaction occurs between the TCP and the metal surface at T sub r.
Growth and characterization of LiInSe2 single crystals
NASA Astrophysics Data System (ADS)
Ma, Tianhui; Zhu, Chongqiang; Lei, Zuotao; Yang, Chunhui; Sun, Liang; Zhang, Hongchen
2015-04-01
Large and crack-free LiInSe2 single crystals were obtained by the vertical gradient freezing method with adding a temperature oscillation technology in a two-zone furnace. X-ray diffraction data showed that the pure LiInSe2 compound was synthesized. The grown crystals had different color depending on melt composition. The atomic ratios of elements of LiInSe2 crystals were obtained by an Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), and the structural formula were calculated according to the relative contents of elements. The average absorption coefficients were estimated by using average reflection indices. The absorption coefficients of the thermal annealing samples are 0.6 cm-1 at 2-3 μm. The transparent range of our LiInSe2 crystals is from 0.6 μm to 13.5 μm.
Heat-power working regimes of a high-frequency (0.44 MHz) 1000-kW induction plasmatron
NASA Astrophysics Data System (ADS)
Gorbanenko, V. M.; Farnasov, G. A.; Lisafin, A. B.
2015-12-01
The energy working regimes of a superpower high-frequency induction (HFI) plasmatron with a high-frequency (HF) generator are studied. The HFI plasmatron with a power of 1000 kVA and a working frequency of 440 kHz, in which air is used as a plasma-forming gas, can be used for treatment of various oxide powder materials. The energy regimes substantially influence finish products and their costs. Various working regimes of the HFI plasma unit and the following characteristics are studied: the dependence of the vibration power on the anode power, the dependence of the power losses on the anode power at various of plasma-forming gas flow rates, and the coefficients of efficiency of the plasmatron and the HFI-plasma unit at various powers. The effect of the plasma-forming gas flow rate on the bulk temperature is determined.
Mass sensitivity studies for an inductively driven railgun
NASA Astrophysics Data System (ADS)
Scanlon, J. J., III; Young, A. F.
1991-01-01
Those areas which result in substantial system mass reductions for an HPG (homopolar generator) driven EML (electromagnetic launcher) are identified. Sensitivity studies are performed by varying launch mass, peak acceleration, launcher efficiency, inductance gradient, injection velocity, barrel mass per unit length, fuel tankage and pump estimates, and component energy and power densities. Two major contributors to the system mass are the allowed number of shots per barrel versus the number required for the mission, and the barrel length. The effects of component performance parameters, such as friction coefficient, injection velocity, ablation coefficient, rail resistivity, armature voltage, peak acceleration, and inductance gradient on these two areas, are addressed.
High-frequency magnetodielectric response in yttrium iron garnet at room temperature
NASA Astrophysics Data System (ADS)
Zhu, Jie; Liu, Yuan; Jia, Longfei; Zhang, Baoshan; Yang, Yi; Tang, Dongming
2018-05-01
Magnetic and dielectric properties of Yttrium Iron Garnet are measured over a frequency ranging from 0.5 GHz to 10 GHz with a magnetic field applied parallel to the propagation direction of the microwave. At the same time, the magnetodielectric phenomena are detected quantitatively. The maximum amplitude of the magnetodielectric coefficient is acquired at the ferromagnetic resonance frequency, and the value is up to 1.2% with the magnetic field of 1500 Oe applied. The phenomena have been explained by the Faraday's electromagnetic induction of the precession of the magnetic moments in the electromagnetic field at the ferromagnetic resonance frequency.
Inductively-coupled plasmas in pure chlorine: comparison experiments/HPEM
NASA Astrophysics Data System (ADS)
Booth, Jean-Paul; Sirse, Nishant; Azamoum, Yasmina; Chabert, Pascal
2012-10-01
Inductively-coupled plasmas in chlorine-based gas mixtures are widely used for etching of nanometric features in silicon for CMOS device manufacture. This system is also of considerable fundamental interest as an archetype of strongly electronegative plasmas in a simple gas, for which reliable techniques exist to measure the densities of all key species. As such, it is an ideal test-bed for comparison of simulations to experiment. We have developed a technique based on two-photon Laser-Induced Fluorescence to determine the absolute Cl atom density. The Cl surface recombination coefficient was determined from time-resolved measurements in the afterglow. Electron densities were determined by microwave hairpin resonator and EEDF's were measured by Langmuir probe. Whereas the HPEM results were in good agreement at lower pressures (below 10mTorr), electron densities are increasingly underestimated at higher pressures. The gas temperature was measured by Doppler-resolved Infra-red Laser Absorption spectroscopy of Ar metastable atoms (with a small fraction Ar added). At higher pressures the gas temperature was considerably underestimated by the model. The concomitant overestimation of the gas density is a major reason for the disagreement between model and experiment.
Caspeta, Luis; Lara, Alvaro R; Pérez, Néstor O; Flores, Noemí; Bolívar, Francisco; Ramírez, Octavio T
2013-08-10
Traditional strategies for production of thermo-induced recombinant protein in Escherichia coli consist of a two-phase culture, with an initial growth stage at low temperature (commonly 30°C) followed by a production stage where temperature is increased stepwise (commonly up to 42°C). A disadvantage of such strategies is that growth is inhibited upon temperature increase, limiting the duration of the production stage and consequently limiting recombinant protein production. In this work, a novel oscillatory thermo-induction strategy, consisting on temperature fluctuations between 37 and 42°C or 30 and 42°C, was tested for improving recombinant protein production. In addition, the induction schemes were combined with one of three different nutrient feeding strategies: two exponential and one linear. Recombinant human preproinsulin (HPPI), produced under control of the λP(L)-cI857 system in the E. coli BL21 strain, was used as the model protein. Compared to the conventional induction scheme at constant temperature (42°C), longer productive times were attained under oscillatory induction, which resulted in a 1.3- to 1.7-fold increase in maximum HPPI concentration. Temperature oscillations led to a 2.3- to 4.0-fold increase in biomass accumulation and a decrease of 48-62% in the concentration of organic acids, compared to conventional induction. Under constant induction, growth ceased upon temperature increase and the maximum concentration of HPPI was 3.9 g/L, regardless of the post-induction feeding strategy used. In comparison, the combination of temperature oscillations and a high nutrient-feeding rate allowed sustained growth after induction and reaching up to 5.8 g/L of HPPI. Copyright © 2013 Elsevier B.V. All rights reserved.
Numerical analysis method for linear induction machines.
NASA Technical Reports Server (NTRS)
Elliott, D. G.
1972-01-01
A numerical analysis method has been developed for linear induction machines such as liquid metal MHD pumps and generators and linear motors. Arbitrary phase currents or voltages can be specified and the moving conductor can have arbitrary velocity and conductivity variations from point to point. The moving conductor is divided into a mesh and coefficients are calculated for the voltage induced at each mesh point by unit current at every other mesh point. Combining the coefficients with the mesh resistances yields a set of simultaneous equations which are solved for the unknown currents.
Sabu, Sanyo; Singh, Isaac Sarojini Bright; Joseph, Valsamma
2017-12-01
Diatoms hold great promise as potential sources of biofuel production. In the present study, the biomass and lipid production in the marine diatom Navicula phyllepta, isolated from Cochin estuary, India and identified as a potential biodiesel feedstock, were optimized using Plackett-Burman (PB) statistical experimental design followed by central composite design (CCD) and response surface methodology (RSM). The growth analyses of the isolate in different nitrogen sources, salinities and five different enriched sea water media showed the best growth in the cheapest medium with minimum components using urea as nitrogen source at salinity between 25 and 40 g kg -1 . Plackett-Burman experimental analyses for screening urea, sodium metasilicate, sodium dihydrogen phosphate, ferric chloride, salinity, temperature, pH and agitation influencing lipid and biomass production showed that silicate and temperature had a positive coefficient on biomass production, and temperature had a significant positive coefficient, while urea and phosphate showed a negative coefficient on lipid content. A 2 4 factorial central composite design (FCCD) was used to optimize the concentration of the factors selected. The optimized media resulted in 1.62-fold increase (64%) in biomass (1.2 ± 0.08 g L -1 ) and 1.2-fold increase (22%) in estimated total lipid production (0.11 ± 0.003 g L -1 ) compared to original media within 12 days of culturing. A significantly higher biomass and lipid production in the optimized medium demands further development of a two-stage strategy of biomass production followed by induction of high lipid production under nutrient limitation or varying culture conditions for large-scale production of biodiesel from the marine diatom.
System and method of adjusting the equilibrium temperature of an inductively-heated susceptor
Matsen, Marc R; Negley, Mark A; Geren, William Preston
2015-02-24
A system for inductively heating a workpiece may include an induction coil, at least one susceptor face sheet, and a current controller coupled. The induction coil may be configured to conduct an alternating current and generate a magnetic field in response to the alternating current. The susceptor face sheet may be configured to have a workpiece positioned therewith. The susceptor face sheet may be formed of a ferromagnetic alloy having a Curie temperature and being inductively heatable to an equilibrium temperature approaching the Curie temperature in response to the magnetic field. The current controller may be coupled to the induction coil and may be configured to adjust the alternating current in a manner causing a change in at least one heating parameter of the susceptor face sheet.
NASA Technical Reports Server (NTRS)
King, C.; Righter, K.; Danielson, L.; Pando, K.; Lee, C.
2010-01-01
Currently there are several hypotheses for the thermal state of the early Earth. Some hypothesize a shallow magma ocean, or deep magma ocean, or heterogeneous accretion which requires no magma ocean at all. Previous models are unable to account for Ge depletion in Earth's mantle relative to CI chondrites. In this study, the element Ge is used to observe the way siderophile elements partition into the metallic core. The purpose of this research is to provide new data for Ge and to further test these models for Earth's early stages. The partition coefficients (D(sub Ge) = c(sub metal)/c(sub silicate), where D = partition coefficient of Ge and c = concentration of Ge in the metal and silicate, respectively) of siderophile elements were studied by performing series of high pressure, high temperature experiments. They are also dependent on oxygen fugacity, and metal and silicate composition. Ge is a moderately siderophile element found in both the mantle and core, and has yet to be studied systematically at high temperatures. Moreover, previous work has been limited by the low solubility of Ge in silicate melts (less than 100 ppm and close to detection limits for electron microprobe analysis). Reported here are results from 14 experiments studying the partitioning of Ge between silicate and metallic liquids. The Ge concentrations were then analyzed using Laser Ablation Inductively Coupled Mass Spectrometry (LA-ICP-MS) which is sensitive enough to detect ppm levels of Ge in the silicate melt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Seuli; Kang, Hyun-Ju; Kim, Yu-Sin
2016-06-15
The electron bounce resonance was experimentally investigated in a low pressure planar inductively coupled plasma. The electron energy probability functions (EEPFs) were measured at different chamber heights and the energy diffusion coefficients were calculated by the kinetic model. It is found that the EEPFs begin to flatten at the first electron bounce resonance condition, and the plateau shifts to a higher electron energy as the chamber height increases. The plateau which indicates strong electron heating corresponds not only to the electron bounce resonance condition but also to the peaks of the first component of the energy diffusion coefficients. As amore » result, the plateau formation in the EEPFs is mainly due to the electron bounce resonance in a finite inductive discharge.« less
NASA Astrophysics Data System (ADS)
Zhang, Cunshan; Zheng, Xinxin; Li, Haitao; Li, Zhenmei; Zhang, Tao; Jiao, Can
2018-04-01
High temperature superconducting pulsed power transformer (HTSPPT) is an important device for pulsed power supplies. It consists of a superconducting primary and a normal conducting secondary, which is used for energy storage and current amplification. The critical current density, the energy storage, and the coupling coefficient are three main performance indexes. They are affected by the geometry parameters of HTSPPT modules, such as the height and the width of the superconducting coils. In addition, the hoop stress of the HTSPPT coils is limited by the maximum tensile strength of high temperature superconducting (HTS) tapes. In this paper, Bi-2223/Ag HTS tapes are selected as the wire of primary inductor and the toroidal structure model is selected for multiple HTSPPT modules. The relationships between the geometry parameters of HTSPPT modules and the electrical performance are studied.
NASA Astrophysics Data System (ADS)
Chandran, Senthilkumar; Paulraj, Rajesh; Ramasamy, P.
2017-06-01
Semi-organic lithium hydrogen oxalate monohydrate non-linear optical single crystals have been grown by slow evaporation solution technique at 40 °C. The nucleation parameters such as critical radius, interfacial tension, and critical free energy change have been evaluated using the experimental data. The solubility and the nucleation curve of the crystal at different temperatures have been analyzed. The crystal has a positive temperature coefficient of solubility. The metastable zone width and induction period have been determined for the aqueous solution growth of lithium hydrogen oxalate monohydrate. The UV-vis-NIR spectrum showed this crystal has high transparency. The photoconductivity studies indicate lithium hydrogen oxalate monohydrate has positive photoconductivity behaviour. The low etch pit density observed on (0 0 1) crystal surface and the high resolution x-ray difraction analysis indicate the good quality of the grown crystals
Buckley, B A; Owen, M E; Hofmann, G E
2001-10-01
Spatio-temporal variation in heat-shock gene expression gives organisms the ability to respond to changing thermal environments. The temperature at which heat-shock genes are induced, the threshold induction temperature, varies as a function of the recent thermal history of an organism. To elucidate the mechanism by which this plasticity in gene expression is achieved, we determined heat-shock protein (Hsp) induction threshold temperatures in the intertidal mussel Mytilus trossulus collected from the field in February and again in August. In a separate experiment, threshold induction temperatures, endogenous levels of both the constitutive and inducible isoforms of Hsps from the 70 kDa family and the quantity of ubiquitinated proteins (a measure of cellular protein denaturation) were measured in M. trossulus after either 6 weeks of cold acclimation in the laboratory or acclimatization to warm, summer temperatures in the field over the same period. In addition, we quantified levels of activated heat-shock transcription factor 1 (HSF1) in both groups of mussels (HSF1 inducibly transactivates all classes of Hsp genes). Lastly, we compared the temperature of HSF1 activation with the induction threshold temperature in the congeneric M. californianus. It was found that the threshold induction temperature in M. trossulus was 23 degrees C in February and 28 degrees C in August. This agreed with the acclimation/acclimatization experiment, in which mussels acclimated in seawater tables to a constant temperature of 10-11 degrees C for 6 weeks displayed a threshold induction temperature of 20-23 degrees C compared with 26-29 degrees C for individuals that were experiencing considerably warmer body temperatures in the intertidal zone over the same period. This coincided with a significant increase in the inducible isoform of Hsp70 in warm-acclimatized individuals but no increase in the constitutive isoform or in HSF1. Levels of ubiquitin-conjugated protein were significantly higher in the field mussels than in the laboratory-acclimated individuals. Finally, the temperature of HSF1 activation in M. californianus was found to be approximately 9 degrees C lower than the induction threshold for this species.
Hydrogen-atmosphere induction furnace has increased temperature range
NASA Technical Reports Server (NTRS)
Caves, R. M.; Gresslin, C. H.
1966-01-01
Improved hydrogen-atmosphere induction furnace operates at temperatures up to 5,350 deg F. The furnace heats up from room temperature to 4,750 deg F in 30 seconds and cools down to room temperature in 2 minutes.
NASA Astrophysics Data System (ADS)
Moriyoshi, Yasuo; Kobayashi, Shigemi; Enomoto, Yoshiteru
Knock phenomenon in SI engines is regarded as an auto-ignition of unburned end-gas, and it has been widely examined by using rapid compression machines (RCM), shock-tubes or test engines. Recent researches point out the importance of the low temperature chemical reaction and the negative temperature coefficient (NTC). To investigate the effects, analyses of instantaneous local gas temperature, flow visualization and gaseous pressure were conducted in this study. As measurements using real engines are too difficult to analyze, the authors aimed to make measurements using a constant volume vessel under knock conditions where propagating flame exists during the induction time of auto-ignition. Adopting the two-wire thermocouple method enabled us to measure the instantaneous local gas temperature until the moment when the flame front passes by. High-speed images inside the unburned region were also recorded simultaneously using an endoscope. As a result, it was found that when knock occurs, the auto-ignition initiation time seems slightly early compared to the results without knock. This causes a higher volume ratio of unburned mixture and existence of many hot spots and stochastically leads to an initiation of knock.
Miyagawa, Yayoi; Ogawa, Takenobu; Nakagawa, Kyuya; Adachi, Shuji
2015-01-01
The induction period of crystallization, which is defined as the time required for oil to start to crystallize, is useful indicator of the freeze-thaw stability of food emulsions such as mayonnaise. We investigated the induction period of vegetable oils with low melting points, such as rapeseed and soybean oils, which are commonly employed for mayonnaise production. The induction period was measured by monitoring the temperature of a specimen during storage at low temperature. The induction period depended on the type of oil and lipophilic emulsifier, emulsifier concentration, and storage temperature. The effect of the oil type on the induction period depended on the composition of the oil. Differential scanning calorimetry (DSC) analyses of the lipophilic emulsifiers suggested that the melting trend of the emulsifier is strongly related to the induction period.
Investigation of induction motor temperature distribution in traction applications
NASA Astrophysics Data System (ADS)
Pugachev, A. A.; Kosmodamianskiy, A. S.
2017-10-01
The relevance of thermal behavior investigation of traction induction motors is shown. The brief survey of techniques to monitor the temperature of an induction motors is carried out. The detailed multi-node equivalent thermal circuit of an induction motor is designed for steady state. The calculation technique of some units’ thermal resistances by using of construction features and geometric sizes of an induction motor is shown. Results of thermal processes calculation for 14 kWAO-63-4 induction motor are shown. The adequacy of proposed thermal model is proved by means of good convergence of calculated results with the results obtained by the experimental investigation on the same induction motor. As a result of investigation, it is established that the slot winding of the stator located about on 2/3 of its length from the cooling air entrance has the highest value of temperature.
Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lal, Shankar, E-mail: shankar@rrcat.gov.in; Pant, K. K.
2016-08-15
Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday’s law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled withmore » β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.« less
Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient
NASA Astrophysics Data System (ADS)
Lal, Shankar; Pant, K. K.
2016-08-01
Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday's law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled with β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.
Resolving dispersion and induction components for polarisable molecular simulations of ionic liquids
NASA Astrophysics Data System (ADS)
Pádua, Agílio A. H.
2017-05-01
One important development in interaction potential models, or atomistic force fields, for molecular simulation is the inclusion of explicit polarisation, which represents the induction effects of charged or polar molecules on polarisable electron clouds. Polarisation can be included through fluctuating charges, induced multipoles, or Drude dipoles. This work uses Drude dipoles and is focused on room-temperature ionic liquids, for which fixed-charge models predict too slow dynamics. The aim of this study is to devise a strategy to adapt existing non-polarisable force fields upon addition of polarisation, because induction was already contained to an extent, implicitly, due to parametrisation against empirical data. Therefore, a fraction of the van der Waals interaction energy should be subtracted so that the Lennard-Jones terms only account for dispersion and the Drude dipoles for induction. Symmetry-adapted perturbation theory is used to resolve the dispersion and induction terms in dimers and to calculate scaling factors to reduce the Lennard-Jones terms from the non-polarisable model. Simply adding Drude dipoles to an existing fixed-charge model already improves the prediction of transport properties, increasing diffusion coefficients, and lowering the viscosity. Scaling down the Lennard-Jones terms leads to still faster dynamics and densities that match experiment extremely well. The concept developed here improves the overall prediction of density and transport properties and can be adapted to other models and systems. In terms of microscopic structure of the ionic liquids, the inclusion of polarisation and the down-scaling of Lennard-Jones terms affect only slightly the ordering of the first shell of counterions, leading to small decreases in coordination numbers. Remarkably, the effect of polarisation is major beyond first neighbours, significantly weakening spatial correlations, a structural effect that is certainly related to the faster dynamics of polarisable models.
High Resolution Switching Mode Inductance-to-Frequency Converter with Temperature Compensationti
Matko, Vojko; Milanović, Miro
2014-01-01
This article proposes a novel method for the temperature-compensated inductance-to-frequency converter with a single quartz crystal oscillating in the switching oscillating circuit to achieve better temperature stability of the converter. The novelty of this method lies in the switching-mode converter, the use of additionally connected impedances in parallel to the shunt capacitances of the quartz crystal, and two inductances in series to the quartz crystal. This brings a considerable reduction of the temperature influence of AT-cut crystal frequency change in the temperature range between 10 and 40 °C. The oscillator switching method and the switching impedances connected to the quartz crystal do not only compensate for the crystal's natural temperature characteristics but also any other influences on the crystal such as ageing as well as from other oscillating circuit elements. In addition, the method also improves frequency sensitivity in inductance measurements. The experimental results show that through high temperature compensation improvement of the quartz crystal characteristics, this switching method theoretically enables a 2 pH resolution. It converts inductance to frequency in the range of 85–100 μH to 2–560 kHz. PMID:25325334
Performance of High-frequency High-flux Magnetic Cores at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Gerber, Scott S.; Hammoud, Ahmad; Elbuluk, Malik E.; Patterson, Richard L.
2002-01-01
Three magnetic powder cores and one ferrite core, which are commonly used in inductor and transformer design for switch mode power supplies, were selected for investigation at cryogenic temperatures. The powder cores are Molypermalloy Core (MPC), High Flux Core (HFC), and Kool Mu Core (KMC). The performance of four inductors utilizing these cores has been evaluated as a function of temperature from 20 C to -180 C. All cores were wound with the same wire type and gauge to obtain equal values of inductance at room temperature. Each inductor was evaluated in terms of its inductance, quality (Q) factor, resistance, and dynamic hysteresis characteristics (B-H loop) as a function of temperature and frequency. Both sinusoidal and square wave excitations were used in these investigations. Measured data obtained on the inductance showed that both the MPC and the HFC cores maintain a constant inductance value, whereas with the KMC and ferrite core hold a steady value in inductance with frequency but decrease as temperature is decreased. All cores exhibited dependency, with varying degrees, in their quality factor and resistance on test frequency and temperature. Except for the ferrite, all cores exhibited good stability in the investigated properties with temperature as well as frequency. Details of the experimental procedures and test results are presented and discussed in the paper.
NASA Astrophysics Data System (ADS)
Liu, W.; Xu, J.; Smith, A. K.; Yuan, W.
2017-12-01
Ground-based observations of the OH(9-4, 8-3, 6-2, 5-1, 3-0) band airglows over Xinglong, China (40°24'N, 117°35'E) from December 2011 to 2014 are used to calculate rotational temperatures. The temperatures are calculated using five commonly used Einstein coefficient datasets. The kinetic temperature from TIMED/SABER is completely independent of the OH rotational temperature. SABER temperatures are weighted vertically by weighting functions calculated for each emitting vibrational state from two SABER OH volume emission rate profiles. By comparing the ground-based OH rotational temperature with SABER's, five Einstein coefficient datasets are evaluated. The results show that temporal variations of the rotational temperatures are well correlated with SABER's; the linear correlation coefficients are higher than 0.72, but the slopes of the fit between the SABER and rotational temperatures are not equal to 1. The rotational temperatures calculated using each set of Einstein coefficients produce a different bias with respect to SABER; these are evaluated over each of vibrational levels to assess the best match. It is concluded that rotational temperatures determined using any of the available Einstein coefficient datasets have systematic errors. However, of the five sets of coefficients, the rotational temperature derived with the Langhoff et al.'s (1986) set is most consistent with SABER. In order to get a set of optimal Einstein coefficients for rotational temperature derivation, we derive the relative values from ground-based OH spectra and SABER temperatures statistically using three year data. The use of a standard set of Einstein coefficients will be beneficial for comparing rotational temperatures observed at different sites.
Friction and Wear Characteristics of Candidate Foil Bearing Materials from 25 C to 800 C
NASA Technical Reports Server (NTRS)
DellaCorte, C.; Laskowski, J. A.
1996-01-01
The friction and wear behavior of unlubricated metal/metal sliding couples was investigated to screen potential candidates for high temperature foil bearings. The tribo-tests were run in an induction-heated high temperature pin-on-disk tribometer in an air atmosphere at a load of 4.9 N and at a sliding velocity of 1 m/s. The friction and wear properties of several nickel based alloys (Rene'41, Inconel X-750, Inconel 713C), iron based alloys (MA956 and Inconel 909) and a ceramic (Al2O3) were tested at 25, 500, and 800 C. In general, at elevated temperatures the alloys oxidized and formed a tenacious and lubricous oxide surface film or layer. At 800 C, Inconel X-750 versus Rene'41 had the lowest friction coefficient (0.27) and at 500 C, Inconel X-750 versus Inconel 909 the lowest pin wear (2.84 x 10(exp -6)cu mm/N-m). Gouging and severe wear of the softer material occurred whenever a significant difference in hardness existed between the pin and disk specimens.
Radiation-induced double-strand breaks in mammalian DNA: influence of temperature and DMSO.
Elmroth, K; Nygren, J; Erkell, L J; Hultborn, R
2000-11-01
To investigate the effects of subphysiological irradiation temperature (2 28 degrees C) and the influence of the radical scavenger DMSO on the induction of double-strand breaks (DSB) in chromosomal DNA from a human breast cancer cell line (MCF-7) as well as in intact cells. The rejoining of DSB in cells irradiated at 2 degrees C or 37 degrees C was also investigated. Agarose plugs with [14C]thymidine labelled MCF-7 cells were lysed in EDTA-NLS-proteinase-K buffer. The plugs containing chromosomal DNA were irradiated with X-rays under different temperatures and scavenging conditions. Intact MCF-7 cells were irradiated in Petri dishes and plugs were made. The cells were then lysed in EDTA-NLS-proteinase-K buffer. The induction of DSB was studied by constant field gel electrophoresis and expressed as DSB/100/Mbp, calculated from the fraction of activity released into the gel. The induction of DSB in chromosomal DNA was reduced by a decrease in temperature. This protective effect of low temperature was inhibited when the DNA was irradiated in the presence of DMSO. No difference was found when intact cells were irradiated at different temperatures. However, the rapid phase of rejoining was slower in cells irradiated at 37 degrees C than at 2 degrees C. The induction of DSB in naked DNA was reduced by hypothermic irradiation. The temperature had no influence on the induction of DSB in the presence of a high concentration of DMSO, indicating that the temperature effect is mediated via the indirect effects of ionizing radiation. Results are difficult to interpret in intact cells. Rejoining during irradiation at the higher temperature may counteract an increased induction. The difference in rejoining may be interpreted in terms of qualitative differences between breaks induced at the two temperatures.
NASA Astrophysics Data System (ADS)
Zhao, Tianzhuo; Fan, Zhongwei; Lian, Fuqiang; Liu, Yang; Lin, Weiran; Mo, Zeqiang; Nie, Shuzhen; Wang, Pu; Xiao, Hong; Li, Xin; Zhong, Qixiu; Zhang, Hongbo
2017-11-01
Laser-induced breakdown spectroscopy (LIBS) utilizing an echelle spectrograph-ICCD system is employed for on-line analysis of elements concentration in a vacuum induction melting workshop. Active temperature stabilization of echelle spectrometer is implemented specially for industrial environment applications. The measurement precision is further improved by monitoring laser parameters, such as pulse energy, spatial and temporal profiles, in real time, and post-selecting laser pulses with specific pulse energies. Experimental results show that major components of nickel-based alloys are stable, and can be well detected. By using internal standard method, calibration curves for chromium and aluminum are obtained for quantitative determination, with determination coefficient (relative standard deviation) to be 0.9559 (< 2.2%) and 0.9723 (< 2.8%), respectively.
Wang, Yi; Hua, Jian
2009-10-01
Temperature has a profound effect on plant growth and development. However, the molecular mechanisms underlying this regulation are not well understood. In particular, how moderate temperature variations are perceived and transduced inside the plant cells remains obscure. In this study, we analyzed transcriptional responses to a moderate decrease in temperature (cooling) in Arabidopsis thaliana. The cooling response involves a weaker and more transient induction of cold-induced genes, such as COR15a, than cold response. This induction probably accounts for the increase in freezing tolerance by cooling acclimation. Cooling also induces some defense response genes, and their induction, but not that of COR15a, requires the salicylic acid signaling pathway. Analysis of the regulation of COR15a reveals that cooling induction is mediated through the same C repeat/dehydration-responsive (CRT/DRE) element as cold induction. Furthermore, we identified a role for CBF1 and CBF4 in transducing signals of moderate decreases in temperature. It appears that variants of the CBF signaling cascade are utilized in cold and cooling responses, and a moderate decrease in temperature may invoke an adaptive response to prepare plants to cope with a more drastic decrease in temperature.
Bornkamp, Jennifer L; Robertson, Sheilah; Isaza, Natalie M; Harrison, Kelly; DiGangi, Brian A; Pablo, Luisito
2016-04-01
To assess the effect of anesthetic induction with a benzodiazepine plus ketamine or propofol on hypothermia in dogs undergoing ovariohysterectomy without heat support. 23 adult sexually intact female dogs undergoing ovariohysterectomy. Baseline rectal temperature, heart rate, and respiratory rate were recorded prior to premedication with buprenorphine (0.02 mg/kg, IM) and acepromazine (0.05 mg/kg, IM). Anesthesia was induced with midazolam or diazepam (0.25 mg/kg, IV) plus ketamine (5 mg/kg, IV; n = 11) or propofol (4 mg/kg, IV; 12) and maintained with isoflurane in oxygen. Rectal temperature was measured at hospital intake, prior to premedication, immediately after anesthetic induction, and every 5 minutes after anesthetic induction. Esophageal temperature was measured every 5 minutes during anesthesia, beginning 30 minutes after anesthetic induction. After anesthesia, dogs were covered with a warm-air blanket and rectal temperature was measured every 10 minutes until normothermia (37°C) was achieved. Dogs in both treatment groups had lower rectal temperatures within 5 minutes after anesthetic induction and throughout anesthesia. Compared with dogs that received a benzodiazepine plus ketamine, dogs that received a benzodiazepine plus propofol had significantly lower rectal temperatures and the interval from discontinuation of anesthesia to achievement of normothermia was significantly longer. Dogs in which anesthesia was induced with a benzodiazepine plus propofol or ketamine became hypothermic; the extent of hypothermia was more profound for the propofol combination. Dogs should be provided with adequate heat support after induction of anesthesia, particularly when a propofol-benzodiazepine combination is administered.
NASA Astrophysics Data System (ADS)
Hottenhuis, M. H. J.; Lucasius, C. B.
1988-09-01
Quantitative information about the influence of impurities on the crystal growth process of potassium hydrogen phthalate from its aqueous solution was obtained at two levels: microscopic and macroscopic. At the microscopic level, detailed in situ observations of spiral steps at the (010) face were performed. The velocity of these steps was measured, as well in a "clean" as in a contaminated solution, where the influence of a number of different impurities was investigated. This resulted in a measure of effectiveness of step retardation for each of these impurities. From the same microscopic observations it was observed how these effectiveness factors were influenced by the supersaturation σ, the saturation temperature Ts of the solution and the concentration cimp of the impurity that w as used. At the macroscopic level, ICP (inductively coupled plasma) measurements were carried out in order to determine the distribution coefficient of the same impurities. In these measurements again the influence of the impurity concentration and the supersaturation on the distribution coefficient kD was determined.
Temperature correction in conductivity measurements
Smith, Stanford H.
1962-01-01
Electrical conductivity has been widely used in freshwater research but usual methods employed by limnologists for converting measurements to conductance at a given temperature have not given uniformly accurate results. The temperature coefficient used to adjust conductivity of natural waters to a given temperature varies depending on the kinds and concentrations of electrolytes, the temperature at the time of measurement, and the temperature to which measurements are being adjusted. The temperature coefficient was found to differ for various lake and stream waters, and showed seasonal changes. High precision can be obtained only by determining temperature coefficients for each water studied. Mean temperature coefficients are given for various temperature ranges that may be used where less precision is required.
NASA Astrophysics Data System (ADS)
Škoro, Nikola; Puač, Nevena; Lazović, Saša; Cvelbar, Uroš; Kokkoris, George; Gogolides, Evangelos
2013-11-01
In this paper we present results of measurements and global modelling of low-pressure inductively coupled H2 plasma which is suitable for surface cleaning applications. The plasma is ignited at 1 Pa in a helicon-type reactor and is characterized using optical emission measurements (optical actinometry) and electrical measurements, namely Langmuir and catalytic probe. By comparing catalytic probe data obtained at the centre of the chamber with optical actinometry results, an approximate calibration of the actinometry method as a semi-quantititative measure of H density was achieved. Coefficients for conversion of actinometric ratios to H densities are tabulated and provided. The approximate validity region of the simple actinometry formula for low-pressure H2 plasma is discussed in the online supplementary data (stacks.iop.org/JPhysD/46/475206/mmedia). Best agreement with catalytic probe results was obtained for (Hβ, Ar750) and (Hβ, Ar811) actinometric line pairs. Additionally, concentrations of electrons and ions as well as plasma potential, electron temperature and ion fluxes were measured in the chamber centre at different plasma powers using a Langmuir probe. Moreover, a global model of an inductively coupled plasma was formulated using a compiled reaction set for H2/Ar gas mixture. The model results compared reasonably well with the results on H atom and charge particle densities and a sensitivity analysis of important input parameters was conducted. The influence of the surface recombination, ionization, and dissociation coefficients, and the ion-neutral collision cross-section on model results was demonstrated.
Study of diffusion coefficient of anhydrous trehalose glasses by using PFG-NMR spectroscopy
NASA Astrophysics Data System (ADS)
Kwon, Hyun-Joung; Takekawa, Reiji; Kawamura, Junichi; Tokuyama, Michio
2013-02-01
We investigated the temperature dependent long time self-diffusion coefficient of the anhydrous trehalose supercooled liquids by using pulsed field gradient nuclear magnetic resonance (PFG-NMR) spectroscopy. At the same temperature ranges, the diffusion coefficient convoluted from the α-relaxation time as Einstein-Smoluchowski relaxation, measured by using the dielectric loss spectroscopy are well overlapped with diffusion coefficients within experimental error. The temperature dependent diffusion coefficients obtained from different methods are normalized by fictive temperature and well satisfied the single master curve, proposed by Tokuyama.
Heat and cold acclimation in helium-cold hypothermia in the hamster.
NASA Technical Reports Server (NTRS)
Musacchia, X. J.
1972-01-01
A study was made of the effects of acclimation of hamsters to high (34-35 C) and low (4-5 C) temperatures for periods up to 6 weeks on the induction of hypothermia in hamsters. Hypothermia was achieved by exposing hamsters to a helox mixture of 80% helium and 20% oxygen at 0 C. Hypothermic induction was most rapid (2-3 hr) in heat-acclimated hamsters and slowest (6-12 hr) in cold-acclimated hamsters. The induction period was intermediate (5-8 hr) in room temperature nonacclimated animals (controls). Survival time in hypothermia was relatable to previous temperature acclimations. The hypothesis that thermogenesis in cold-acclimated hamsters would accentuate resistance to induction of hypothermia was substantiated.
Heide, O M
2003-09-01
The effect of temperature during short-day (SD) dormancy induction was examined in three boreal tree species in a controlled environment. Saplings of Betula pendula Roth, B. pubescens Ehrh. and Alnus glutinosa (L.) Moench. were exposed to 5 weeks of 10-h SD induction at 9, 15 and 21 degrees C followed by chilling at 5 degrees C for 40, 70, 100 and 130 days and subsequent forcing at 15 degrees C in a 24-h photoperiod for 60 days. In all species and with all chilling periods, high temperature during SD dormancy induction significantly delayed bud burst during subsequent flushing at 15 degrees C. In A. glutinosa, high temperature during SD dormancy induction also significantly increased the chilling requirement for dormancy release. Field experiments at 60 degrees N with a range of latitudinal birch populations revealed a highly significant correlation between autumn temperature and days to bud burst in the subsequent spring. September temperature alone explained 20% of the variation between years in time of bud burst. In birch populations from 69 and 71 degrees N, which ceased growing and shed their leaves in August when the mean temperature was 15 degrees C, bud burst occurred later than expected compared with lower latitude populations (56 degrees N) in which dormancy induction took place more than 2 months later at a mean temperature of about 6 degrees C. It is concluded that this autumn temperature response may be important for counterbalancing the potentially adverse effects of higher winter temperatures on dormancy stability of boreal trees during climate warming.
Exercises in Practical Physics
NASA Astrophysics Data System (ADS)
Schuster, Arthur; Lees, Charles H.
2015-10-01
Preface; Preface to the fifth edition; Part I. Preliminary: 1. Treatment of observations; 2. Measurement of length; 3. Measurement of intervals of time; 4. Calibration of a spirit level; 5. Calibration of a graduated tube; Part II. General Physics: 6. The balance; 7. Accurate weighing with the balance; 8. Density of a solid; 9. Density of a liquid; 10. Moments of inertia; 11. Gravitational acceleration by reversible pendulum; 12. Young's modulus by the bending of beams; 13. Modulus of rigidity; 14. Viscosity; 15. Surface tension; Part III. Heat: 16. Coefficient of expansion of a solid; 17. Thermal expansion of a liquid; 18. Coefficient of increase of pressure of a gas with temperature; 19. Coefficient of expansion of a gas as constant pressure; 20. Effect of pressure on the boiling point of a liquid; 21. Laws of cooling; 22. Cooling correction in calorimetry; 23. Specific heat of quartz; 24. Latent heat of water; 25. Latent heat of steam; 26. Heat of solution of a salt; 27. The mechanical equivalent of heat; Part IV. Sound: 28. Frequency of a tuning fork by the syren; 29. The velocity of sound in air and other bodies by Kundt's method; 30. Study of vibrations of tuning forks by means of Lissajous' figures; Part V. Light: 31. Angles by the optical method; 32. The sextant; 33. Curvatures and powers of lenses; 34. Index of refraction by total reflection; 35. Resolving power of a lens; 36. The prism spectroscope; 37. Reduction of spectroscopic measurements to an absolute scale; 38. The spectrometer; 39. Refractive index and dispersion of a solid by the spectrometer; 40. Refractive index and dispersion of a liquid. Specific refractive powers; 41. Photometry; 42. Interference of light. The biprism; 43. Newton's rings; 44. Wave length of light by the diffraction grating; 45. Rotation of plane by polarisation; 46. Saccharimetry; Part VI. Magnetism and Electricity: 47. Horizontal components of magnetic fields; 48. Magnetic dip; 49. Magnetisation curves; 50. The water voltameter; 51. The copper voltameter; 52. Adjustment and standardisation of galvanometers; 53. The Post Office resistance bridge; 54. High resistances; 55. Low resistances; 56. The resistance of a galvanometer; 57. The resistance of a cell; 58. Comparison of resistance standards; 59. Change of resistance with temperature; 60. The resistance of electrolytes; 61. Construction of a standard cell; 62. Electromotive forces; 63. The potentiometer method of measuring currents; 64. Thermo-electric circuits; 65. The mechanical equivalent of heat by the electric method; 66. Induction of electric currents; 67. Standardisation of a ballistic galvanometer; 68. The self-inductance of a coil; 69. Comparison of self and mutual inductances; 70. Leakage and absorption in condensers; 71. Comparison of condensers; 72. The capacitance of a condenser; 73. High resistance by condenser; 74. The characteristic curves of a triode tube; 75. The quadrant electrometer; 76. Ionisation currents by electrometer; Appendix. Details of dimensions of apparatus; Index.
Transparent athermal glass-ceramics in Li2O-Al2O3-SiO2 system
NASA Astrophysics Data System (ADS)
Himei, Yusuke; Nagakane, Tomohiro; Sakamoto, Akihiko; Kitamura, Naoyuki; Fukumi, Kohei; Nishii, Junji; Hirao, Kazuyuki
2005-04-01
An attempt has been conducted to develop multicomponent transparent glass-ceramics which have athermal property better than silica glass. Transparent Li2O-Al2O3-SiO2 (LAS) glass-ceramics with small thermal expansion coefficient was chosen as a candidate. Athermal property of the glass-ceramics was improved by the independent control of temperature coefficients of electronic polarizability and thermal expansion coefficient, both of which govern the temperature coefficient of optical path length. It was found that temperature coefficient of electronic polarizability and thermal expansion coefficient of the LAS glass-ceramics were controllable by the additives and crystallization conditions. The doping of B2O3 and the crystallization under a hydrostatic pressure of 196 MPa were very effective to reduce temperature coefficient of electronic polarizability without a remarkable increase in thermal expansion coefficient. It was deduced that the reduction in temperature coefficient of electronic polarizability by the crystallization under 196 MPa resulted from the inhibition of the precipitation of beta-spodumene solid solution. The relative temperature coefficients of optical path length of B2O3-doped glass-ceramic crystallized under 196 MPa was 11.7 x 10-6/°C, which was slightly larger than that of silica glass. Nevertheless, the thermal expansion coefficient of this glass-ceramic was smaller than that of silica glass.
USDA-ARS?s Scientific Manuscript database
The effect of the duration of high temperature interruption and the timing of it’s occurrence during inductive period on the extent of inhibition of inflorescence production in ‘Arbequina’ olive trees was investigated. Trees kept under inductive conditions in different growth chambers were subjected...
A rapid method to extract Seebeck coefficient under a large temperature difference
NASA Astrophysics Data System (ADS)
Zhu, Qing; Kim, Hee Seok; Ren, Zhifeng
2017-09-01
The Seebeck coefficient is one of the three important properties in thermoelectric materials. Since thermoelectric materials usually work under large temperature difference in real applications, we propose a quasi-steady state method to accurately measure the Seebeck coefficient under large temperature gradient. Compared to other methods, this method is not only highly accurate but also less time consuming. It can measure the Seebeck coefficient in both the temperature heating up and cooling down processes. In this work, a Zintl material (Mg3.15Nb0.05Sb1.5Bi0.49Te0.01) was tested to extract the Seebeck coefficient from room temperature to 573 K. Compared with a commercialized Seebeck coefficient measurement device (ZEM-3), there is ±5% difference between those from ZEM-3 and this method.
Beta blocker infusion decreases the magnitude of core hypothermia after anesthesia induction.
Inoue, S; Abe, R; Kawaguchi, M; Kobayashi, H; Furuya, H
2010-12-01
Beta-1-receptor blockade reduces heart rate, cardiac output, and arterial pressure while increasing peripheral vascular resistance. It is possible that beta blockers not only inhibit the core-to-peripheral re-distribution of body heat and cutaneous heat loss due to vasodilation after anesthesia induction but also reduce the convective transfer of heat from the core to peripheral tissues by decreasing cardiac output. The authors investigated whether the co-administration of esmolol or landiolol, ultra-short-acting beta blockers, attenuates the magnitude of initial re-distribution hypothermia after anesthesia induction and tracheal intubation. Immediately prior to the induction of anesthesia, patients were randomly assigned to receive 0.2 mg kg-1 of landiolol (landiolol group; N=30), 1 mg kg-1 of esmolol (esmolol group; N=30), or 0.1 mL kg-1 of saline (control group; N=30). Heart rate, blood pressure, cardiac output, and tympanic, forearm, and digit temperatures were recorded. Forearm minus fingertip skin-surface temperature gradients (temperature gradient) were calculated. Tympanic membrane temperatures 15 to 60 min after the induction of anesthesia were significantly higher in the esmolol group than in the control group although the temperature gradient was similar among the three groups. Both esmolol and landiolol inhibited the increase in HR and MAP after the induction of anesthesia and tracheal intubation. The cardiac index in the esmolol group was significantly lower than in the control group. The degree of hemodynamic attenuation after induction by esmolol was larger than that of landiolol. The co-administration of esmolol, but not landiolol, attenuated the magnitude of initial re-distribution hypothermia after anesthesia induction and tracheal intubation. Esmolol likely prevented initial hypothermia because it attenuated the convective transfer of heat from the core to peripheral tissues by decreasing cardiac output.
Sommer, Yuliya L.; Ward, Cynthia D.; Pan, Yi; Caldwell, Kathleen L.; Jones, Robert L.
2016-01-01
In this study, we evaluated the effect of temperature on the long-term stability of three mercury species in bovine blood. We used inductively coupled plasma mass spectrometry (ICP-MS) analysis to determine the concentrations of inorganic (iHg), methyl (MeHg) and ethyl (EtHg) mercury species in two blood pools stored at temperatures of −70, −20, 4, 23°C (room temperature) and 37°C. Over the course of a year, we analyzed aliquots of pooled specimens at time intervals of 1, 2, 4 and 6 weeks and 2, 4, 6, 8, 10 and 12 months. We applied a fixed-effects linear model, step-down pairwise comparison and coefficient of variation statistical analysis to examine the temperature and time effects on changes in mercury species concentrations. We observed several instances of statistically significant differences in mercury species concentrations between different temperatures and time points; however, with considerations of experimental factors (such as instrumental drift and sample preparation procedures), not all differences were scientifically important. We concluded that iHg, MeHg and EtHg species in bovine whole blood were stable at −70, −20, 4 and 23°C for 1 year, but blood samples stored at 37°C were stable for no more than 2 weeks. PMID:26912563
TiN Coating of Accelerator Beamline Chambers
NASA Astrophysics Data System (ADS)
Leung, K. N.; Gough, R. A.; Mashaw, A.; Lee, Y.; Wutte, D.
1997-05-01
One of the problems encountered in many high-power rf systems is multipactoring inside vacuum cavities. The potential for multipactoring occurs whenever the secondary electron emission (SEM) coefficient of the surface exceeds unity. The secondary electtron emission coefficient of titanium-nitride is always less than unity. Therefore, a TiN coating can reduce multipactoring and also reduce photoemission electron from beam-pipe surfaces. The TiN film is very stable. A new technique is being explored at LBNL that will allow an efficient way to coat differently shaped surfaces. In this technique, rf-induction discharge with an exposed Ti induction antenna is used. Tests are being performed using argon, nitrogen, and a mixture of argon/nitrogen gases. Results of this testing will be presented.
The pressure coefficient of the Curie temperature of ferromagnetic superconductors
NASA Astrophysics Data System (ADS)
Konno, R.; Hatayama, N.
2012-12-01
The pressure coefficient of the Curie temperature of ferromagnetic superconductors is studied numerically. In our previous study the pressure coefficient of the Curie temperature and that of the superconducting transition temperature were shown based on the Hamiltonian derived by Linder et al. within the mean field approximation about the electron-electron interaction analytically. There have been no numerical results of the pressure coefficient of the Curie temperature derived from the microscopic model. In this study the numerical results are reported. These results are qualitatively consistent with the experimental data in UGe2.
NASA Technical Reports Server (NTRS)
Seidel, A.; Soellner, W.; Stenzel, C.
2012-01-01
Electromagnetic levitation under microgravity provides unique opportunities for the investigation of liquid metals, alloys and semiconductors, both above and below their melting temperatures, with minimized disturbances of the sample under investigation. The opportunity to perform such experiments will soon be available on the ISS with the EML payload which is currently being integrated. With its high-performance diagnostics systems EML allows to measure various physical properties such as heat capacity, enthalpy of fusion, viscosity, surface tension, thermal expansion coefficient, and electrical conductivity. In studies of nucleation and solidification phenomena the nucleation kinetics, phase selection, and solidification velocity can be determined. Advanced measurement capabilities currently being studied include the measurement and control of the residual oxygen content of the process atmosphere and a complementary inductive technique to measure thermophysical properties.
Effect of a magnetic field on the permittivity of 80%La0.7Sr0.3MnO3/20%GeO2 composite
NASA Astrophysics Data System (ADS)
Kabirov, Yu. V.; Gavrilyachenko, V. G.; Bogatin, A. S.; Sitalo, E. I.; Yatsenko, V. K.
2018-01-01
The dielectric properties of a magnetoresistive conducting two-phase 80%La0.7Sr0.3MnO3/20%GeO2 (wt %) composite have been studied near the percolation threshold in magnetic fields from 0 to 15 kOe at frequencies of the measurement field from 5 kHz to 1 MHz. The samples have inductive impedances; i.e., their permittivities can be considered negative due to a high conductivity in this frequency range. The permittivity increases in magnitude in magnetic field, and the values of the magnetodielectric coefficient reach 23% at room temperature. The reasons for the effect of magnetic field on the dielectric permittivity of samples are discussed.
NASA Astrophysics Data System (ADS)
Wu, Jing; Huang, Junbing; Wu, Hanping; Gu, Hongcan; Tang, Bo
2014-12-01
In order to verify the validity of the regional reference grating method in solve the strain/temperature cross sensitive problem in the actual ship structural health monitoring system, and to meet the requirements of engineering, for the sensitivity coefficients of regional reference grating method, national standard measurement equipment is used to calibrate the temperature sensitivity coefficient of selected FBG temperature sensor and strain sensitivity coefficient of FBG strain sensor in this modal. And the thermal expansion sensitivity coefficient of the steel for ships is calibrated with water bath method. The calibration results show that the temperature sensitivity coefficient of FBG temperature sensor is 28.16pm/°C within -10~30°C, and its linearity is greater than 0.999, the strain sensitivity coefficient of FBG strain sensor is 1.32pm/μɛ within -2900~2900μɛ whose linearity is almost to 1, the thermal expansion sensitivity coefficient of the steel for ships is 23.438pm/°C within 30~90°C, and its linearity is greater than 0.998. Finally, the calibration parameters are used in the actual ship structure health monitoring system for temperature compensation. The results show that the effect of temperature compensation is good, and the calibration parameters meet the engineering requirements, which provide an important reference for fiber Bragg grating sensor is widely used in engineering.
Feedback regulated induction heater for a flowing fluid
Migliori, Albert; Swift, Gregory W.
1985-01-01
A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable proportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005.degree. C. at a flow rate of 50 cm.sup.3 /second with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.
Feedback regulated induction heater for a flowing fluid
Migliori, A.; Swift, G.W.
1984-06-13
A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable porportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005/sup 0/C at a flow rate of 50 cm/sup 3//sec with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.
Parameters assessment of the inductively-coupled circuit for wireless power transfer
NASA Astrophysics Data System (ADS)
Isaev, Yu N.; Vasileva, O. V.; Budko, A. A.; Lefebvre, S.
2017-02-01
In this paper, a wireless power transfer model through the example of inductively-coupled coils of irregular shape in software package COMSOL Multiphysics is studied. Circuit parameters, such as inductance, coil resistance and self-capacitance were defined through electromagnetic energy by the finite-element method. The study was carried out according to Helmholtz equation. Spatial distribution of current per unit depending on frequency and the coupling coefficient for analysis of resonant frequency and spatial distribution of the vector magnetic potential at different distances between coils were presented. The resulting algorithm allows simulating the wireless power transfer between the inductively coupled coils of irregular shape with the assessment of the optimal parameters.
Induction Curing of Thiol-acrylate and Thiolene Composite Systems
Ye, Sheng; Cramer, Neil B.; Stevens, Blake E.; Sani, Robert L.; Bowman, Christopher N.
2011-01-01
Induction curing is demonstrated as a novel type of in situ radiation curing that maintains most of the advantages of photocuring while eliminating the restriction of light accessibility. Induction curing is utilized to polymerize opaque composites comprised of thiol-acrylate and thiol-ene resins, nanoscale magnetic particles, and carbon nanotubes. Nanoscale magnetic particles are dispersed in the resin and upon exposure to the magnetic field, these particles lead to induction heating that rapidly initiates the polymerization. Heat transfer profiles and reaction kinetics of the samples are modeled during the reactions with varying induction heater power, species concentration, species type and sample thickness, and the model is compared with the experimental results. Thiol-ene polymerizations achieved full conversion between 1.5 minutes and 1 hour, depending on the field intensity and the composition, with the maximum reaction temperature decreasing from 146 – 87 °C when the induction heater power was decreased from 8 – 3 kW. The polymerization reactions of the thiol-acrylate system were demonstrated to achieve full conversion between 0.6 and 30 minutes with maximum temperatures from 139 to 86 °C. The experimental behavior was characterized and the temperature profile modeled for the thiol-acrylate composite comprised of sub100nm nickel particles and induction heater power in the range of 32 to 20 kW. A 9°C average deviation was observed between the modeling and experimental results for the maximum temperature rise. The model also was utilized to predict reaction temperatures and kinetics for systems with varying thermal initiator concentration, initiator half-life, monomer molecular weight and temperature gradients in samples with varying thickness, thereby demonstrating that induction curing represents a designable and tunable polymerization method. Finally, induction curing was utilized to cure thiol-acrylate systems containing carbon nanotubes where 1 wt% carbon nanotubes resulted in systems where the storage modulus increased from 17.6 ± 0.2 to 21.6 ± 0.1 MPa and an electrical conductivity that increased from <10−7 to 0.33 ± 0.5 S/m. PMID:21765552
Effect of different methods of pulse width modulation on power losses in an induction motor
NASA Astrophysics Data System (ADS)
Gulyaev, Alexander; Fokin, Dmitrii; Shuharev, Sergey; Ten, Evgenii
2017-10-01
We consider the calculation of modulation power losses in a system “induction motor-inverter” for various pulse width modulation (PWM) methods of the supply voltage. Presented values of modulation power losses are the result of modeling a system “DC link - two-level three-phase voltage inverter - induction motor - load”. In this study the power losses in a system “induction motor - inverter” are computed, as well as losses caused by higher harmonics of PWM supply voltage, followed by definition of active power consumed by the DC link for a specified value mechanical power on the induction motor shaft. Mechanical power was determined by the rotation speed and the torque on the motor shaft in various quasi-sinusoidal supply voltage PWM modes. These calculations reveal the best coefficient of performance (COP) in a system of a variable frequency drive (VFD) with independent voltage inverter controlled by induction motor PWM.
Kelledes, William L.; St. John, Don K.
1992-01-01
The present invention maintains constant torque in an inverter driven AC induction motor during variations in rotor temperature. It is known that the torque output of a given AC induction motor is dependent upon rotor temperature. At rotor temperatures higher than the nominal operating condition the rotor impedance increases, reducing the rotor current and motor torque. In a similar fashion, the rotor impedance is reduced resulting in increased rotor current and motor torque when the rotor temperature is lower than the nominal operating condition. The present invention monitors the bus current from the DC supply to the inverter and adjusts the slip frequency of the inverter drive to maintain a constant motor torque. This adjustment is based upon whether predetermined conditions implying increased rotor temperature or decreased rotor temperature exist for longer that a predetermined interval of time.
Thermal Effects Modeling Developed for Smart Structures
NASA Technical Reports Server (NTRS)
Lee, Ho-Jun
1998-01-01
Applying smart materials in aeropropulsion systems may improve the performance of aircraft engines through a variety of vibration, noise, and shape-control applications. To facilitate the experimental characterization of these smart structures, researchers have been focusing on developing analytical models to account for the coupled mechanical, electrical, and thermal response of these materials. One focus of current research efforts has been directed toward incorporating a comprehensive thermal analysis modeling capability. Typically, temperature affects the behavior of smart materials by three distinct mechanisms: Induction of thermal strains because of coefficient of thermal expansion mismatch 1. Pyroelectric effects on the piezoelectric elements; 2. Temperature-dependent changes in material properties; and 3. Previous analytical models only investigated the first two thermal effects mechanisms. However, since the material properties of piezoelectric materials generally vary greatly with temperature (see the graph), incorporating temperature-dependent material properties will significantly affect the structural deflections, sensory voltages, and stresses. Thus, the current analytical model captures thermal effects arising from all three mechanisms through thermopiezoelectric constitutive equations. These constitutive equations were incorporated into a layerwise laminate theory with the inherent capability to model both the active and sensory response of smart structures in thermal environments. Corresponding finite element equations were formulated and implemented for both the beam and plate elements to provide a comprehensive thermal effects modeling capability.
Evidence for a high temperature differentiation in a molten earth: A preliminary appraisal
NASA Technical Reports Server (NTRS)
Murthy, V. Rama
1992-01-01
If the earth were molten during its later stages of accretion as indicated by the present understanding of planetary accretion process, the differentiation that led to the formation of the core and mantle must have occurred at high temperatures in the range of 3000-5000 K because of the effect of pressure on the temperature of melting in the interior of the earth. This calls into question the use of low-temperature laboratory measurements of partition coefficients of trace elements to make inferences about earth accretion and differentiation. The low temperature partition coefficients cannot be directly applied to high temperature fractionations because partition coefficients refer to an equilibrium specific to a temperature for a given reaction, and must change in some proportion to exp 1/RT. There are no laboratory data on partition coefficients at the high temperatures relevant to differentiation in the interior of the earth, and an attempt to estimate high temperature distribution coefficients of siderophile elements was made by considering the chemical potential of a given element at equilibrium and how this potential changes with temperature, under some specific assumptions.
Nilchi, A; Khanchi, A; Atashi, H; Bagheri, A; Nematollahi, L
2006-10-11
A description is given of the preparation and properties of potassium hexacyanocobalt (II) ferrate (II) (KCFC) and the composite, potassium hexacyanocobalt (II) ferrate (II)-polyacrylonitrile (KCFC-PAN). The materials were dried at high temperatures and characterized by chemical analysis, scanning electron microscope, X-ray diffraction, inductively coupled plasma and infrared. The ion exchange of alkaline earth metals and molybdenum on a nonstoichiometric compound K(2)[CoFe(CN)(6)] and its PAN based absorber was examined by batch methods. The adsorption of molybdenum from aqueous solutions on KCFC-PAN was investigated and optimized as a function of equilibration time and pH. The materials which were dried at optimum high temperature of 110 degrees C were found to be stable in water, dilute acids, alkaline solutions and relatively high temperature. The distribution coefficient values K(d) for alkaline earth metals, followed the same trend of increase for both sets of absorbers studied, i.e. Ba(2+)>Sr(2+)>Ca(2+)>Mg(2+), which closely resembles to the order of the size of the hydrated cations. However, the K(d) values show a significant increase for PAN based absorbers in comparison to KCFC absorbers.
High-Precision Hysteresis Sensing of the Quartz Crystal Inductance-to-Frequency Converter
Matko, Vojko; Milanović, Miro
2016-01-01
A new method for the automated measurement of the hysteresis of the temperature-compensated inductance-to-frequency converter with a single quartz crystal is proposed. The new idea behind this method is a converter with two programmable analog switches enabling the automated measurement of the converter hysteresis, as well as the temperature compensation of the quartz crystal and any other circuit element. Also used is the programmable timing control device that allows the selection of different oscillating frequencies. In the proposed programmable method two different inductances connected in series to the quartz crystal are switched in a short time sequence, compensating the crystal’s natural temperature characteristics (in the temperature range between 0 and 50 °C). The procedure allows for the measurement of the converter hysteresis at various values of capacitance connected in parallel with the quartz crystal for the converter sensitivity setting at selected inductance. It, furthermore, enables the measurement of hysteresis at various values of inductance at selected parallel capacitance (sensitivity) connected to the quartz crystal. The article shows that the proposed hysteresis measurement of the converter, which converts the inductance in the range between 95 and 100 μH to a frequency in the range between 1 and 200 kHz, has only 7 × 10−13 frequency instability (during the temperature change between 0 and 50 °C) with a maximum 1 × 10−11 hysteresis frequency difference. PMID:27367688
Properties of Superconducting Mo, Mo2n and Trilayer Mo2n-Mo-Mo2n Thin Films
NASA Technical Reports Server (NTRS)
Barrentine, E. M.; Stevenson, T. R.; Brown, A. D.; Lowitz, A. E.; Noroozian, O.; U-Yen, K.; Eshan, N.; Hsieh, W. T.; Moseley, S. H.; Wollack, E. J.
2014-01-01
We present measurements of the properties of thin film superconducting Mo, Mo2N and Mo2N/Mo/Mo2N trilayers of interest for microwave kinetic inductance detector (MKID) applications. Using microwave resonator devices, we investigate the transition temperature, energy gaps, kinetic inductance, and internal quality factors of these materials. We present an Usadel-based interpretation of the trilayer transition temperature as a function of trilayer thicknesses, and a 2-gap interpretation to understand the change in kinetic inductance and internal resonance quality factor (Q) as a function of temperature.
Reactivity Coefficient Calculation for AP1000 Reactor Using the NODAL3 Code
NASA Astrophysics Data System (ADS)
Pinem, Surian; Malem Sembiring, Tagor; Tukiran; Deswandri; Sunaryo, Geni Rina
2018-02-01
The reactivity coefficient is a very important parameter for inherent safety and stability of nuclear reactors operation. To provide the safety analysis of the reactor, the calculation of changes in reactivity caused by temperature is necessary because it is related to the reactor operation. In this paper, the temperature reactivity coefficients of fuel and moderator of the AP1000 core are calculated, as well as the moderator density and boron concentration. All of these coefficients are calculated at the hot full power condition (HFP). All neutron diffusion constant as a function of temperature, water density and boron concentration were generated by the SRAC2006 code. The core calculations for determination of the reactivity coefficient parameter are done by using NODAL3 code. The calculation results show that the fuel temperature, moderator temperature and boron reactivity coefficients are in the range between -2.613 pcm/°C to -4.657pcm/°C, -1.00518 pcm/°C to 1.00649 pcm/°C and -9.11361 pcm/ppm to -8.0751 pcm/ppm, respectively. For the water density reactivity coefficients, the positive reactivity occurs at the water temperature less than 190 °C. The calculation results show that the reactivity coefficients are accurate because the results have a very good agreement with the design value.
Quartz tuning-fork oscillations in He II and drag coefficient
NASA Astrophysics Data System (ADS)
Gritsenko, I. A.; Zadorozhko, A. A.; Neoneta, A. S.; Chagovets, V. K.; Sheshin, G. A.
2011-07-01
The temperature dependencies of drag coefficient for quartz tuning forks of various geometric dimensions, immersed in the He II, were determined experimentally in the temperature range 0.1-3 K. It is identified, that these dependencies are similar, but the values of drag coefficient are different for tuning forks with different geometric dimensions. It is shown, that the obtained specific drag coefficient depends only on the temperature and frequency of vibrations, when the value of drag coefficient is normalized to the surface area of moving tuning-fork prong. The temperature dependencies of normalized drag coefficient for the tuning forks of various dimensions, wire, and microsphere, oscillating in the Не II, are compared. It is shown, that in the ballistic regime of scattering of quasiparticles, these dependencies are identical and have a slope proportional to T4, which is determined by the density of thermal excitations. In the hydrodynamic regime at T > 0.5 K, the behavior of the temperature dependence of specific drag coefficient is affected by the size and frequency of vibrating body. The empirical relation, which allows to describe the behavior of specific drag coefficient for vibrating tuning forks, microsphere, and wire everywhere over the temperature region and at various frequencies, is proposed.
Cryogenic fiber optic temperature sensor and method of manufacturing the same
NASA Technical Reports Server (NTRS)
Kochergin, Vladimir (Inventor)
2012-01-01
This invention teaches the fiber optic sensors temperature sensors for cryogenic temperature range with improved sensitivity and resolution, and method of making said sensors. In more detail, the present invention is related to enhancement of temperature sensitivity of fiber optic temperature sensors at cryogenic temperatures by utilizing nanomaterials with a thermal expansion coefficient that is smaller than the thermal expansion coefficient of the optical fiber but larger in absolute value than the thermal expansion coefficient of the optical fiber at least over a range of temperatures.
NASA Technical Reports Server (NTRS)
Banan, Mohsen; Gray, Ross T.; Wilcox, William R.
1992-01-01
The heat transfer coefficient between a molten charge and its surroundings in a Bridgman furnace was experimentally determined using in-situ temperature measurement. The ampoule containing an isothermal melt was suddenly moved from a higher temperature zone to a lower temperature zone. The temperature-time history was used in a lumped-capacity cooling model to evaluate the heat transfer coefficient between the charge and the furnace. The experimentally determined heat transfer coefficient was of the same order of magnitude as the theoretical value estimated by standard heat transfer calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poutsma, Marvin L.
Recently we presented structure-reactivity correlations for the gas-phase ambient-temperature rate constants for hydrogen abstraction from sp 3-hybridized carbon by chlorine atom and hydroxyl radical (Cl•/HO• + HCR 3 → HCl/HOH + •CR 3); the reaction enthalpy effect was represented by the independent variable Δ rH and the polar effect by the independent variables F and R, the Hammett constants for field/inductive and resonance effects. Both these reactions are predominantly exothermic and have early transition states. Here we present a parallel treatment for Br• whose reaction is significantly endothermic with a correspondingly late transition state. In spite of lower expectations becausemore » the available data base is less extensive and much more scattered and because long temperature extrapolations are often required, the resulting least-squares fit (log k 298,Br = –0.147 Δ rH –4.32 ΣF –4.28 ΣR –12.38 with r 2 = 0.92) was modestly successful and useful for initial predictions. The coefficient of Δ rH was ~4-fold greater, indicative of the change from an early to a late transition state; meanwhile the sizable coefficients of ΣF and ΣR indicate the persistence of the polar effect. Although the mean unsigned deviation of 0.79 log k 298 units is rather large, it must be considered in the context of a total span of over 15 log units in the data set. Lastly, the major outliers are briefly discussed.« less
Poutsma, Marvin L
2016-01-21
Recently we presented structure-reactivity correlations for the gas-phase ambient-temperature rate constants for hydrogen abstraction from sp(3)-hybridized carbon by chlorine atom and hydroxyl radical (Cl•/HO• + HCR3 → HCl/HOH + •CR3); the reaction enthalpy effect was represented by the independent variable ΔrH and the "polar effect" by the independent variables F and R, the Hammett constants for field/inductive and resonance effects. Both these reactions are predominantly exothermic and have early transition states. Here, we present a parallel treatment for Br• whose reaction is significantly endothermic with a correspondingly late transition state. Despite lower expectations because the available database is less extensive and much more scattered and because long temperature extrapolations are often required, the resulting least-squares fit (log k298,Br = -0.147 ΔrH - 4.32 ΣF - 4.28 ΣR - 12.38 with r(2) = 0.92) was modestly successful and useful for initial predictions. The coefficient of ΔrH was ∼4-fold greater, indicative of the change from an early to a late transition state; meanwhile the sizable coefficients of ΣF and ΣR indicate the persistence of the "polar effect". Although the mean unsigned deviation of 0.79 log k298 units is rather large, it must be considered in the context of a total span of over 15 log units in the data set. The major outliers are briefly discussed.
Infrared Sensor-Based Temperature Control for Domestic Induction Cooktops
Lasobras, Javier; Alonso, Rafael; Carretero, Claudio; Carretero, Enrique; Imaz, Eduardo
2014-01-01
In this paper, a precise real-time temperature control system based on infrared (IR) thermometry for domestic induction cooking is presented. The temperature in the vessel constitutes the control variable of the closed-loop power control system implemented in a commercial induction cooker. A proportional-integral controller is applied to establish the output power level in order to reach the target temperature. An optical system and a signal conditioning circuit have been implemented. For the signal processing a microprocessor with 12-bit ADC and a sampling rate of 1 Ksps has been used. The analysis of the contributions to the infrared radiation permits the definition of a procedure to estimate the temperature of the vessel with a maximum temperature error of 5 °C in the range between 60 and 250 °C for a known cookware emissivity. A simple and necessary calibration procedure with a black-body sample is presented. PMID:24638125
Infrared sensor-based temperature control for domestic induction cooktops.
Lasobras, Javier; Alonso, Rafael; Carretero, Claudio; Carretero, Enrique; Imaz, Eduardo
2014-03-14
In this paper, a precise real-time temperature control system based on infrared (IR) thermometry for domestic induction cooking is presented. The temperature in the vessel constitutes the control variable of the closed-loop power control system implemented in a commercial induction cooker. A proportional-integral controller is applied to establish the output power level in order to reach the target temperature. An optical system and a signal conditioning circuit have been implemented. For the signal processing a microprocessor with 12-bit ADC and a sampling rate of 1 Ksps has been used. The analysis of the contributions to the infrared radiation permits the definition of a procedure to estimate the temperature of the vessel with a maximum temperature error of 5 °C in the range between 60 and 250 °C for a known cookware emissivity. A simple and necessary calibration procedure with a black-body sample is presented.
Kaiser, Elias; Kromdijk, Johannes; Harbinson, Jeremy; Heuvelink, Ep; Marcelis, Leo F M
2017-01-01
Plants depend on photosynthesis for growth. In nature, factors such as temperature, humidity, CO 2 partial pressure, and spectrum and intensity of irradiance often fluctuate. Whereas irradiance intensity is most influential and has been studied in detail, understanding of interactions with other factors is lacking. We tested how photosynthetic induction after dark-light transitions was affected by CO 2 partial pressure (20, 40, 80 Pa), leaf temperatures (15·5, 22·8, 30·5 °C), leaf-to-air vapour pressure deficits (VPD leaf-air ; 0·5, 0·8, 1·6, 2·3 kPa) and blue irradiance (0-20 %) in tomato leaves (Solanum lycopersicum). Rates of photosynthetic induction strongly increased with CO 2 partial pressure, due to increased apparent Rubisco activation rates and reduced diffusional limitations. High leaf temperature produced slightly higher induction rates, and increased intrinsic water use efficiency and diffusional limitation. High VPD leaf-air slowed down induction rates and apparent Rubisco activation and (at 2·3 kPa) induced damped stomatal oscillations. Blue irradiance had no effect. Slower apparent Rubisco activation in elevated VPD leaf-air may be explained by low leaf internal CO 2 partial pressure at the beginning of induction. The environmental factors CO 2 partial pressure, temperature and VPD leaf-air had significant impacts on rates of photosynthetic induction, as well as on underlying diffusional, carboxylation and electron transport processes. Furthermore, maximizing Rubisco activation rates would increase photosynthesis by at most 6-8 % in ambient CO 2 partial pressure (across temperatures and humidities), while maximizing rates of stomatal opening would increase photosynthesis by at most 1-3 %. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Gama-Arachchige, N. S.; Baskin, J. M.; Geneve, R. L.; Baskin, C. C.
2013-01-01
Background and Aims Physical dormancy (PY)-break in some annual plant species is a two-step process controlled by two different temperature and/or moisture regimes. The thermal time model has been used to quantify PY-break in several species of Fabaceae, but not to describe stepwise PY-break. The primary aims of this study were to quantify the thermal requirement for sensitivity induction by developing a thermal time model and to propose a mechanism for stepwise PY-breaking in the winter annual Geranium carolinianum. Methods Seeds of G. carolinianum were stored under dry conditions at different constant and alternating temperatures to induce sensitivity (step I). Sensitivity induction was analysed based on the thermal time approach using the Gompertz function. The effect of temperature on step II was studied by incubating sensitive seeds at low temperatures. Scanning electron microscopy, penetrometer techniques, and different humidity levels and temperatures were used to explain the mechanism of stepwise PY-break. Key Results The base temperature (Tb) for sensitivity induction was 17·2 °C and constant for all seed fractions of the population. Thermal time for sensitivity induction during step I in the PY-breaking process agreed with the three-parameter Gompertz model. Step II (PY-break) did not agree with the thermal time concept. Q10 values for the rate of sensitivity induction and PY-break were between 2·0 and 3·5 and between 0·02 and 0·1, respectively. The force required to separate the water gap palisade layer from the sub-palisade layer was significantly reduced after sensitivity induction. Conclusions Step I and step II in PY-breaking of G. carolinianum are controlled by chemical and physical processes, respectively. This study indicates the feasibility of applying the developed thermal time model to predict or manipulate sensitivity induction in seeds with two-step PY-breaking processes. The model is the first and most detailed one yet developed for sensitivity induction in PY-break. PMID:23456728
Temperature dependence of damage coefficient in electron irradiated solar cells
NASA Technical Reports Server (NTRS)
Faith, T. J.
1973-01-01
Measurements of light-generated current vs cell temperature on electron-irradiated n/p silicon solar cells show the temperature coefficient of this current to increase with increasing fluence for both 10-ohm and 20-ohm cells. A relationship between minority-carrier diffusion length and light-generated current was derived by combining measurements of these two parameters: vs fluence at room temperature, and vs cell temperature in cells irradiated to a fluence of 1 x 10 to the 15th power e/sq cm. This relationship was used, together with the light-generated current data, to calculate the temperature dependence of the diffusion-length damage coefficient. The results show a strong decrease in the damage coefficient with increasing temperature in the range experienced by solar panels in synchronous earth orbit.
Stochastic Approach to Determine CO2 Hydrate Induction Time in Clay Mineral Suspensions
NASA Astrophysics Data System (ADS)
Lee, K.; Lee, S.; Lee, W.
2008-12-01
A large number of induction time data for carbon dioxide hydrate formation were obtained from a batch reactor consisting of four independent reaction cells. Using resistance temperature detector(RTD)s and a digital microscope, we successfully monitored the whole process of hydrate formation (i.e., nucleation and crystal growth) and detected the induction time. The experiments were carried out in kaolinite and montmorillonite suspensions at temperatures between 274 and 277 K and pressures ranging from 3.0 to 4.0 MPa. Each set of data was analyzed beforehand whether to be treated by stochastic manner or not. Geochemical factors potentially influencing the hydrate induction time under different experimental conditions were investigated by stochastic analyses. We observed that clay mineral type, pressure, and temperature significantly affect the stochastic behavior of the induction times for CO2 hydrate formation in this study. The hydrate formation kinetics along with stochastic analyses can provide basic understanding for CO2 hydrate storage in deep-sea sediment and geologic formation, securing its stability under the environments.
Removable preheater elements improve oxide induction furnace
NASA Technical Reports Server (NTRS)
Leipold, M. H.
1964-01-01
Heat and corrosion resistant preheater elements are used in oxide induction furnaces to raise the temperature to the level for conducting electricity. These preheater elements are then removed and the induction coil energized.
NASA Astrophysics Data System (ADS)
Goodchild, Martin; Janes, Stuart; Jenkins, Malcolm; Nicholl, Chris; Kühn, Karl
2015-04-01
The aim of this work is to assess the use of temperature corrected substrate moisture data to improve the relationship between environmental drivers and the measurement of substrate moisture content in high porosity soil-free growing environments such as coir. Substrate moisture sensor data collected from strawberry plants grown in coir bags installed in a table-top system under a polytunnel illustrates the impact of temperature on capacitance-based moisture measurements. Substrate moisture measurements made in our coir arrangement possess the negative temperature coefficient of the permittivity of water where diurnal changes in moisture content oppose those of substrate temperature. The diurnal substrate temperature variation was seen to range from 7° C to 25° C resulting in a clearly observable temperature effect in substrate moisture content measurements during the 23 day test period. In the laboratory we measured the ML3 soil moisture sensor (ThetaProbe) response to temperature in Air, dry glass beads and water saturated glass beads and used a three-phase alpha (α) mixing model, also known as the Complex Refractive Index Model (CRIM), to derive the permittivity temperature coefficients for glass and water. We derived the α value and estimated the temperature coefficient for water - for sensors operating at 100MHz. Both results are good agreement with published data. By applying the CRIM equation with the temperature coefficients of glass and water the moisture temperature coefficient of saturated glass beads has been reduced by more than an order of magnitude to a moisture temperature coefficient of
Jo, Youn Yi; Kim, Hong Soon; Chang, Young Jin; Yun, Soon Young; Kwak, Hyun Jeong
2013-07-01
Perioperative hypothermia can develop easily during shoulder arthroscopy, because cold irrigation can directly influence core body temperature. The authors investigated whether active warming and humidification of inspired gases reduces falls in core body temperature and allows redistribution of body heat in patients undergoing arthroscopic shoulder surgery under general anesthesia. Patients scheduled for arthroscopic shoulder surgery were randomly assigned to receive either room temperature inspired gases using a conventional respiratory circuit (the control group, n = 20) or inspired gases humidified and heated using a humidified and electrically heated circuit (HHC) (the heated group, n = 20). Core temperatures were significantly lower in both groups from 30 min after anesthesia induction, but were significantly higher in the heated group than in the control group from 75 to 120 min after anesthesia induction. In this study the use of a humidified and electrically heated circuit did not prevent core temperature falling during arthroscopic shoulder surgery, but it was found to decrease reductions in core temperature from 75 min after anesthesia induction.
Microstructure, soft magnetic properties and applications of amorphous Fe-Co-Si-B-Mo-P alloy
NASA Astrophysics Data System (ADS)
Hasiak, Mariusz; Miglierini, Marcel; Łukiewski, Mirosław; Łaszcz, Amadeusz; Bujdoš, Marek
2018-05-01
DC thermomagnetic properties of Fe51Co12Si16B8Mo5P8 amorphous alloy in the as-quenched and after annealing below crystallization temperature are investigated. They are related to deviations in the microstructure as revealed by Mössbauer spectrometry. Study of AC magnetic properties, i.e. hysteresis loops, relative permeability and core losses versus maximum induction was aimed at obtaining optimal initial parameters for simulation process of a resonant transformer for a rail power supply converter. The results obtained from numerical analyses including core losses, winding losses, core mass, and dimensions were compared with the same parameters calculated for Fe-Si alloy and ferrite. Moreover, Steinmetz coefficients were also calculated for the as-quenched Fe51Co12Si16B8Mo5P8 amorphous alloy.
Davulis, Peter M; da Cunha, Mauricio Pereira
2013-04-01
A full set of langatate (LGT) elastic, dielectric, and piezoelectric constants with their respective temperature coefficients up to 900°C is presented, and the relevance of the dielectric and piezoelectric constants and temperature coefficients are discussed with respect to predicted and measured high-temperature SAW propagation properties. The set of constants allows for high-temperature acoustic wave (AW) propagation studies and device design. The dielectric constants and polarization and conductive losses were extracted by impedance spectroscopy of parallel-plate capacitors. The measured dielectric constants at high temperatures were combined with previously measured LGT expansion coefficients and used to determine the elastic and piezoelectric constants using resonant ultrasound spectroscopy (RUS) measurements at temperatures up to 900°C. The extracted LGT piezoelectric constants and temperature coefficients show that e11 and e14 change by up to 62% and 77%, respectively, for the entire 25°C to 900°C range when compared with room-temperature values. The LGT high-temperature constants and temperature coefficients were verified by comparing measured and predicted phase velocities (vp) and temperature coefficients of delay (TCD) of SAW delay lines fabricated along 6 orientations in the LGT plane (90°, 23°, Ψ) up to 900°C. For the 6 tested orientations, the predicted SAW vp agree within 0.2% of the measured vp on average and the calculated TCD is within 9.6 ppm/°C of the measured value on average over the temperature range of 25°C to 900°C. By including the temperature dependence of both dielectric and piezoelectric constants, the average discrepancies between predicted and measured SAW properties were reduced, on average: 77% for vp, 13% for TCD, and 63% for the turn-over temperatures analyzed.
Knott, J.R.; Sarna-Wojcicki, A. M.; Montanez, I.P.; Wan, E.
2007-01-01
Volcanic glass samples from the same volcanic center (intra-source) often have a similar major-element composition. Thus, it can be difficult to distinguish between individual tephra layers, particularly when using similarity coefficients calculated from electron microprobe major-element measurements. Minor/trace element concentrations in glass can be determined by solution inductively coupled plasma mass spectrometry (S-ICP-MS), but have not been shown as suitable for use in large tephrochronologic databases. Here, we present minor/trace-element concentrations measured by S-ICP-MS and compare these data by similarity coefficients, the method commonly used in large databases. Trial samples from the Bishop Tuff, the upper and lower tuffs of Glass Mountain and the tuffs of Mesquite Spring suites from eastern California, USA, which have an indistinguishable major-element composition, were analyzed using S-ICP-MS. The resulting minor/trace element similarity coefficients clearly separated the suites of tephra layers and, in most cases, individual tephra layers within each suite. Comparisons with previous instrumental neutron activation analysis (INAA) elemental measurements were marginally successful. This is important step toward quantitative correlation in large tephrochronologic databases to achieve definitive identification of volcanic glass samples and for high-resolution age determinations. ?? 2007 Elsevier Ltd and INQUA.
Influence of temperature on acid-stress adaptation in Listeria monocytogenes
USDA-ARS?s Scientific Manuscript database
Several factors play critical roles in controlling the induction of acid-stress adaptation in L. monocytogenes. Our findings show that temperature plays a significant role in the induction of acid-stress adaptation in Listeria monocytogenes and two distinct patterns were observed: (I) Presence of su...
Resonant structure of low-energy H3+ dissociative recombination
NASA Astrophysics Data System (ADS)
Petrignani, Annemieke; Altevogt, Simon; Berg, Max H.; Bing, Dennis; Grieser, Manfred; Hoffmann, Jens; Jordon-Thaden, Brandon; Krantz, Claude; Mendes, Mario B.; Novotný, Oldřich; Novotny, Steffen; Orlov, Dmitry A.; Repnow, Roland; Sorg, Tobias; Stützel, Julia; Wolf, Andreas; Buhr, Henrik; Kreckel, Holger; Kokoouline, Viatcheslav; Greene, Chris H.
2011-03-01
High-resolution dissociative recombination rate coefficients of rotationally cool and hot H3+ in the vibrational ground state have been measured with a 22-pole trap setup and a Penning ion source, respectively, at the ion storage-ring TSR. The experimental results are compared with theoretical calculations to explore the dependence of the rate coefficient on ion temperature and to study the contributions of different symmetries to probe the rich predicted resonance spectrum. The kinetic energy release was investigated by fragment imaging to derive internal temperatures of the stored parent ions under differing experimental conditions. A systematic experimental assessment of heating effects is performed which, together with a survey of other recent storage-ring data, suggests that the present rotationally cool rate-coefficient measurement was performed at 380-130+50 K and that this is the lowest rotational temperature so far realized in storage-ring rate-coefficient measurements on H3+. This partially supports the theoretical suggestion that temperatures higher than assumed in earlier experiments are the main cause for the large gap between the experimental and the theoretical rate coefficients. For the rotationally hot rate-coefficient measurement a temperature of below 3250 K is derived. From these higher-temperature results it is found that increasing the rotational ion temperature in the calculations cannot fully close the gap between the theoretical and the experimental rate coefficients.
High temperature XRD of Cu2GeSe3
NASA Astrophysics Data System (ADS)
Premkumar D., S.; Chetty, Raju; Malar, P.; Mallik, Ramesh Chandra
2015-06-01
The Cu2GeSe3 is prepared by solid state synthesis method. The high temperature XRD has been done at different temperature from 30 °C to 450 °C. The reitveld refinement confirms Cu2GeSe3 phase and orthorhombic crystal structure. The lattice constants are increasing with increase in the temperature and their rate of increase with respect to temperature are used for finding the thermal expansion coefficient. The calculation of the linear and volume coefficient of thermal expansion is done from 30 °C to 400 °C. Decrease in the values of linear expansion coefficients with temperature are observed along a and c axis. Since thermal expansion coefficient is the consequence of the distortion of atoms in the lattice; this can be further used to find the minimum lattice thermal conductivity at given temperature.
NASA Astrophysics Data System (ADS)
Jha, Pankaj; Sands, Timothy D.; Jackson, Philip; Bomberger, Cory; Favaloro, Tela; Hodson, Stephen; Zide, Joshua; Xu, Xianfan; Shakouri, Ali
2013-05-01
The cross-plane thermoelectric transport properties of La0.67Sr0.33MnO3 (LSMO)/LaMnO3 (LMO) oxide metal/semiconductor superlattices were investigated. The LSMO and LMO thin-film depositions were performed using pulsed laser deposition to achieve low resistivity constituent materials for LSMO/LMO superlattice heterostructures on (100)-strontium titanate substrates. X-ray diffraction and high-resolution reciprocal space mapping indicate that the superlattices are epitaxial and pseudomorphic. Cross-plane devices were fabricated by etching cylindrical pillar structures in superlattices using inductively, this coupled-plasma reactive-ion etching. The cross-plane electrical conductivity data for LSMO/LMO superlattices reveal a lowering of the effective barrier height to 223 meV as well as an increase in cross-plane conductivity by an order of magnitude compared to high resistivity superlattices. These results suggest that controlling the oxygen deficiency in the constituent materials enables modification of the effective barrier height and increases the cross-plane conductivity in oxide superlattices. The cross-plane LSMO/LMO superlattices showed a giant Seebeck coefficient of 2560 μV/K at 300 K that increases to 16 640 μV/K at 360 K. The giant increase in the Seebeck coefficient with temperature may include a collective contribution from the interplay of charge, spin current, and phonon drag. The low resistance oxide superlattices exhibited a room temperature cross-plane thermal conductivity of 0.92 W/m K, this indicating that the suppression of thermal conductivities due to the interfaces is preserved in both low and high resistivity superlattices. The high Seebeck coefficient, the order of magnitude improvement in cross-plane conductivity, and the low thermal conductivity in LSMO/LMO superlattices resulted in a two order of magnitude increase in cross-plane power factor and thermoelectric figure of merit (ZT), compared to the properties of superlattices with higher resistivity that were reported previously. The temperature dependence of the cross-plane power factor in low resistance superlattices suggests a direction for further investigations of the potential LSMO/LMO oxide superlattices for thermoelectric devices.
Gas-film coefficients for the volatilization of ketones from water
Rathbun, R.E.; Tai, D.Y.
1986-01-01
Volatilization is a significant process in determining the fate of many organic compounds in streams and rivers. Quantifying this process requires knowledge of the mass-transfer coefficient from water, which is a function of the gas-film and liquid-film coefficients. The gas-film coefficient can be determined by measuring the flux for the volatilization of pure organic liquids. Volatilization fluxes for acetone, 2-butanone, 2-pentanone, 3-pentanone, 4-methyl-2-pentanone, 2-heptanone, and 2-octanone were measured in the laboratory over a range of temperatures. Gas-film coefficients were then calculated from these fluxes and from vapor pressure data from the literature. An equation was developed for predicting the volatilization flux of pure liquid ketones as a function of vapor pressure and molecular weight. Large deviations were found for acetone, and these were attributed to the possibility that acetone may be hydrogen bonded. A second equation for predicting the flux as a function of molecular weight and temperature resulted in large deviations for 4methyl-2-pentanone. These deviations were attributed to the branched structure of this ketone. Four factors based on the theory of volatilization and relating the volatilization flux or rate to the vapor pressure, molecular weight, temperature, and molecular diffusion coefficient were not constant as suggested by the literature. The factors generally increased with molecular weight and with temperature. Values for acetone corresponded to ketones with a larger molecular weight, and the acetone factors showed the greatest dependence on temperature. Both of these results are characteristic of compounds that are hydrogen bonded. Relations from the literature commonly used for describing the dependence of the gas-film coefficient on molecular weight and molecular diffusion coefficient were not applicable to the ketone gas-film coefficients. The dependence on molecular weight and molecular diffusion coefficient was in general U-shaped with the largest coefficients observed for acetone, the next largest for 2octanone, and the smallest for 2-pentanone and 3-pentanone. The gas-film coefficient for acetone was much more dependent on temperature than were the coefficients for the other ketones. Such behavior is characteristic of hydrogen-bonded substances. Temperature dependencies of the other ketones were about twice the theoretical value, but were comparable to a literature value for water. Ratios of the ketone gas-film coefficients to the gasfilm coefficients for the evaporation of water were approximately constant for all the ketones except for acetone, whose values were considerably larger. The ratios increased with temperature; however, the increases were small except for acetone. These ratios can be combined with an equation from the literaure for predicting the gasfilm coefficient for evaporation of water from a canal to predict the gas-film coefficients for the volatilization of ketones from streams and rivers.
Almasi, Hadi; Zandi, Mohsen; Beigzadeh, Sara; Haghju, Sara; Mehrnow, Nazila
2016-07-14
Chitosan films were loaded with NE nettle (Urtica dioica L.) extract (NE) at concentrations of 0, 0.5, 1 and 1.5%w/w in the free or nanoliposomal form to obtain active and nanoactive films, respectively. The antioxidant potential of the films containing NE-loaded nanoliposomes was decreased in comparison of free NE incorporated films. Diffusion of NE to soybean oil was enough to delay the induction of the oxidation of soybean oil stored for 60 days in contact with chitosan based films. Release studies indicated that the release rate of NE in 95% ethanol simulant significantly decreased by the nanoencapsulation of NE. The diffusion coefficient (D) for chitosan films containing 1.5%w/w of free and encapsulated NE at 25 °C was 18.80 and 3.68 × 10 -7 cm 2 s -1 , respectively. Moreover, the formation of nanoliposomes diminished the increasing effect of temperature on the release rate as when storage temperature increased from 4 °C to 40 °C.
NASA Astrophysics Data System (ADS)
Ansari, Ziaul Haque; Zeng, Yan; Demopoulos, George P.; Li, Zhibao
2018-07-01
MgCl2-ethanol adducts play a key role in the synthesis of supported Ziegler-Natta catalysts. The morphology of the MgCl2-ethanol adducts, which is controlled by their crystallization process, can determine the structure and thus the property of the polyolefin products. Here we study the nucleation kinetics of MgCl2-ethanol adducts by measuring the metastable zone width (MSZW) and induction time at different temperatures. Supersaturation ratios used in induction time measurements were predicted by the Mixed Solvent Electrolyte (MSE) model embedded in OLI System. Nývlt‧s approach was applied to determine MSZW. By the induction time measurement, the effect of temperature, and supersaturation were studied. It was found that induction time decreases as either temperature or supersaturation increases. The measured MSZW and induction time are used to estimate the nucleation kinetics of the system, and thereby distinguishing between the homogeneous and heterogeneous mechanisms. The interfacial tension and other related nucleation parameters were calculated from the induction time data. XRD and TGA indicate that the MgCl2-ethanol adduct has the stoichiometry of MgCl2·6C2H5OH.
USDA-ARS?s Scientific Manuscript database
The effect of temperature on the co-toxicity coefficients (CTC) value was used to evaluate mixture efficacy of different temperature coefficient chemicals from 15°C to 35°C by exposing third-instar Apolygus lucorum (Meyer-Dür) to dip-treated asparagus bean pods. The results indicated the joint actio...
Ryan, Sean F; Valella, Patti; Thivierge, Gabrielle; Aardema, Matthew L; Scriber, J Mark
2018-04-01
A key adaptation in insects for dealing with variable environmental conditions is the ability to diapause. The tiger swallowtail butterflies, Papilio glaucus and P. canadensis are ideal species to explore the genetic causes and population genetic consequences of diapause because divergence in this trait is believed to be a salient factor in maintaining a hybrid zone between these species. Yet little is known about the factors that influence diapause induction in this system. Here we explored how spatial (latitudinal), environmental (temperature) and genetic (hybridization) factors affect diapause induction in this system. Specifically, a series of growth chamber experiments using wild caught individuals from across the eastern United States were performed to: (1) evaluate how critical photoperiod varies with latitude, (2) isolate the stage in which induction occurs, (3) test whether changes in temperature affected rates of diapause induction, and (4) explore how the incidence of diapause is affected in hybrid offspring. We find that induction occurs in the larval stage, is not sensitive to a relatively broad range of temperatures, appears to have a complex genetic basis (i.e., is not simply a dominant trait following a Mendelian inheritance pattern) and that the critical photoperiod increases by 0.4 h with each increasing degree in latitude. This work deepens our understanding of how spatial, environmental and genetic variation influences a key seasonal adaptation (diapause induction) in a well-developed ecological model system and will make possible future studies that explore how climatic variation affects the population dynamics and genetics of this system. © 2016 Institute of Zoology, Chinese Academy of Sciences.
Transport coefficients in high-temperature ionized air flows with electronic excitation
NASA Astrophysics Data System (ADS)
Istomin, V. A.; Oblapenko, G. P.
2018-01-01
Transport coefficients are studied in high-temperature ionized air mixtures using the modified Chapman-Enskog method. The 11-component mixture N2/N2+/N /N+/O2/O2+/O /O+/N O /N O+/e- , taking into account the rotational and vibrational degrees of freedom of molecules and electronic degrees of freedom of both atomic and molecular species, is considered. Using the PAINeT software package, developed by the authors of the paper, in wide temperature range calculations of the thermal conductivity, thermal diffusion, diffusion, and shear viscosity coefficients for an equilibrium ionized air mixture and non-equilibrium flow conditions for mixture compositions, characteristic of those in shock tube experiments and re-entry conditions, are performed. For the equilibrium air case, the computed transport coefficients are compared to those obtained using simplified kinetic theory algorithms. It is shown that neglecting electronic excitation leads to a significant underestimation of the thermal conductivity coefficient at temperatures higher than 25 000 K. For non-equilibrium test cases, it is shown that the thermal diffusion coefficients of neutral species and the self-diffusion coefficients of all species are strongly affected by the mixture composition, while the thermal conductivity coefficient is most strongly influenced by the degree of ionization of the flow. Neglecting electronic excitation causes noticeable underestimation of the thermal conductivity coefficient at temperatures higher than 20 000 K.
Research on low-temperature anodic bonding using induction heating
NASA Astrophysics Data System (ADS)
Chen, Mingxiang; Yi, Xinjian; Yuan, Liulin; Liu, Sheng
2006-04-01
This paper presents a new low temperature silicon-glass anodic bonding process using induction heating. Anodic bonding between silicon and glass (Pyrex 7740) has been achieved at temperature below 300 °C and almost bubble-free interfaces have been obtained. A 1KW 400KHz power supply is used to induce heat in graphite susceptors (simultaneously as the high-voltage electrodes of anodic bonding), which conduct heat to the bonding pair and permanently join the pair in 5 minutes. The results of pull tests indicate a bonding strength of above 5.0MPa for induction heating, which is greater than the strength for resistive heating at the same temperature. The fracture mainly occurs across the interface or inside the glass other than in the interface when the bonding temperature is over 200 °C Finally, the interfaces are examined and analyzed by scanning electron microscopy (SEM) and the bonding mechanisms are discussed.
Uncoupling thermotolerance from the induction of heat shock proteins.
Smith, B J; Yaffe, M P
1991-01-01
Exposure of cells to elevated temperatures causes a rapid increase in the synthesis of heat shock proteins (hsps) and induces thermotolerance, the increased ability of cells to survive exposure to lethal temperatures; however, the connection between hsp induction and the acquisition of thermotolerance is unclear. hsp induction in the yeast Saccharomyces cerevisiae is mediated by the activation of heat-shock transcription factor, and recently we have described a mutation, hsf1-m3, in heat-shock transcription factor that prevents the factor's activation. We now demonstrate that this mutation results in a general block in heat-shock induction but does not affect the acquisition of thermotolerance. Our results indicate that high-level induction of the major hsps is not required for cells to acquire thermotolerance. Images PMID:1763024
NASA Technical Reports Server (NTRS)
Jordan, Jennifer L.; Ponchak, George E.; Spry, David J.; Neudeck, Philip G.
2018-01-01
Wireless sensors placed in high temperature environments, such as aircraft engines, are desirable to reduce the mass and complexity of routing wires. While communication with the sensors is straight forward, providing power wirelessly is still a challenge. This paper introduces an inductive wireless power transfer circuit incorporating SiC Schottky diodes and its operation from room temperature (25 C) to 500 C.
Induction graphitizing furnace acceptance test report
NASA Technical Reports Server (NTRS)
1972-01-01
The induction furnace was designed to provide the controlled temperature and environment required for the post-cure, carbonization and graphitization processes for the fabrication of a fibrous graphite NERVA nozzle extension. The acceptance testing required six tests and a total operating time of 298 hrs. Low temperature mode operations, 120 to 850 C, were completed in one test run. High temperature mode operations, 120 to 2750 C, were completed during five tests.
Thermal Expansion of Ferromagnetic Superconductors:. Possible Application to UGe2
NASA Astrophysics Data System (ADS)
Hatayama, Nobukuni; Konno, Rikio
2011-03-01
We investigate the temperature dependence of thermal expansion of the ferromagnetic triplet superconductors and their thermal expansion coefficients below the superconducting transition temperature of a majority spin conduction band. The free energy of the ferromagnetic superconductors derived by Linder et al. is used. The superconducting gaps in the A2 phase of 3He and with a node in UGe2 are considered. By applying Takahashi's method to the free energy, i.e. by taking into account the volume dependence of the free energy explicitly, the temperature dependence of the thermal expansion and the thermal expansion coefficients is studied below the superconducting transition temperature of the majority spin conduction band. We find that we have anomalies of the thermal expansion in the vicinity of the superconducting transition temperatures and that we have divergence of the thermal expansion coefficients are divergent at the superconducting transition temperatures. The Grüneisen's relation between the temperature dependence of the thermal expansion coefficients and the temperature dependence of the specific heat at low temperatures is satisfied.
Thermal Expansion of Ferromagnetic Superconductors:. Possible Application to UGe2
NASA Astrophysics Data System (ADS)
Hatayama, Nobukuni; Konno, Rikio
We investigate the temperature dependence of thermal expansion of the ferromagnetic triplet superconductors and their thermal expansion coefficients below the superconducting transition temperature of a majority spin conduction band. The free energy of the ferromagnetic superconductors derived by Linder et al. is used. The superconducting gaps in the A2 phase of 3He and with a node in UGe2 are considered. By applying Takahashi's method to the free energy, i.e. by taking into account the volume dependence of the free energy explicitly, the temperature dependence of the thermal expansion and the thermal expansion coefficients is studied below the superconducting transition temperature of the majority spin conduction band. We find that we have anomalies of the thermal expansion in the vicinity of the superconducting transition temperatures and that we have divergence of the thermal expansion coefficients are divergent at the superconducting transition temperatures. The Grüneisen's relation between the temperature dependence of the thermal expansion coefficients and the temperature dependence of the specific heat at low temperatures is satisfied.
Gao, Min-Jie; Zhan, Xiao-Bei; Gao, Peng; Zhang, Xu; Dong, Shi-Juan; Li, Zhen; Shi, Zhong-Ping; Lin, Chi-Chung
2015-05-01
Various induction strategies were investigated for effective porcine interferon-α (pIFN-α) production by Pichia pastoris in a 10 L fermenter. We found that pIFN-α concentration could be significantly improved with the strategies of low-temperature induction or methanol/sorbitol co-feeding. On this basis, a combinational strategy of induction at lower temperature (20 °C) with methanol/sorbitol co-feeding has been proposed for improvement of pIFN-α production. The results reveal that maximal pIFN-α concentration and antiviral activity reach the highest level of 2.7 g/L and 1.8 × 10(7) IU/mg with the proposed induction strategy, about 1.3-2.1 folds higher than those obtained with other sub-optimal induction strategies. Metabolic analysis and online multi-variable measurement results indicate that energy metabolic enrichment is responsible for the performance enhancement of pIFN-α production, as a large amount of ATP could be simultaneously produced from both formaldehyde oxidation pathway in methanol metabolism and tricarboxylic acid (TCA) cycle in sorbitol metabolism. In addition, the proposed combinational induction strategy enables P. pastoris to be resistant to high methanol concentration (42 g/L), which conceivably occur associating with the error-prone methanol over-feeding. As a result, the proposed combinational induction strategy simultaneously increased the targeted protein concentration and operational stability leading to significant improvement of pIFN-α production.
High temperature XRD of Cu{sub 2}GeSe{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Premkumar, D. S.; Malar, P.; Chetty, Raju
2015-06-24
The Cu{sub 2}GeSe{sub 3} is prepared by solid state synthesis method. The high temperature XRD has been done at different temperature from 30 °C to 450 °C. The reitveld refinement confirms Cu{sub 2}GeSe{sub 3} phase and orthorhombic crystal structure. The lattice constants are increasing with increase in the temperature and their rate of increase with respect to temperature are used for finding the thermal expansion coefficient. The calculation of the linear and volume coefficient of thermal expansion is done from 30 °C to 400 °C. Decrease in the values of linear expansion coefficients with temperature are observed along a andmore » c axis. Since thermal expansion coefficient is the consequence of the distortion of atoms in the lattice; this can be further used to find the minimum lattice thermal conductivity at given temperature.« less
Richardson, John G.; Morrison, John L.; Hawkes, Grant L.
2006-07-04
An induction heating apparatus includes a measurement device for indicating an electrical resistance of a material to be heated. A controller is configured for energizing an inductor in response to the indicated resistance. An inductor may be energized with an alternating current, a characteristic of which may be selected in response to an indicated electrical resistance. Alternatively, a temperature of the material may be indicated via measuring the electrical resistance thereof and a characteristic of an alternating current for energizing the inductor may be selected in response to the temperature. Energizing the inductor may minimize the difference between a desired and indicated resistance or the difference between a desired and indicated temperature. A method of determining a temperature of at least one region of at least one material to be induction heated includes correlating a measured electrical resistance thereof to an average temperature thereof.
Matschegewski, Claudia; Zetzsche, Holger; Hasan, Yaser; Leibeguth, Lena; Briggs, William; Ordon, Frank; Uptmoor, Ralf
2015-01-01
Cauliflower (Brassica oleracea var. botrytis) is a vernalization-responsive crop. High ambient temperatures delay harvest time. The elucidation of the genetic regulation of floral transition is highly interesting for a precise harvest scheduling and to ensure stable market supply. This study aims at genetic dissection of temperature-dependent curd induction in cauliflower by genome-wide association studies and gene expression analysis. To assess temperature-dependent curd induction, two greenhouse trials under distinct temperature regimes were conducted on a diversity panel consisting of 111 cauliflower commercial parent lines, genotyped with 14,385 SNPs. Broad phenotypic variation and high heritability (0.93) were observed for temperature-related curd induction within the cauliflower population. GWA mapping identified a total of 18 QTL localized on chromosomes O1, O2, O3, O4, O6, O8, and O9 for curding time under two distinct temperature regimes. Among those, several QTL are localized within regions of promising candidate flowering genes. Inferring population structure and genetic relatedness among the diversity set assigned three main genetic clusters. Linkage disequilibrium (LD) patterns estimated global LD extent of r2 = 0.06 and a maximum physical distance of 400 kb for genetic linkage. Transcriptional profiling of flowering genes FLOWERING LOCUS C (BoFLC) and VERNALIZATION 2 (BoVRN2) was performed, showing increased expression levels of BoVRN2 in genotypes with faster curding. However, functional relevance of BoVRN2 and BoFLC2 could not consistently be supported, which probably suggests to act facultative and/or might evidence for BoVRN2/BoFLC-independent mechanisms in temperature-regulated floral transition in cauliflower. Genetic insights in temperature-regulated curd induction can underpin genetically informed phenology models and benefit molecular breeding strategies toward the development of thermo-tolerant cultivars. PMID:26442034
Rathbun, R.E.; Tai, D.Y.
1988-01-01
The two-film model is often used to describe the volatilization of organic substances from water. This model assumes uniformly mixed water and air phases separated by thin films of water and air in which mass transfer is by molecular diffusion. Mass-transfer coefficients for the films, commonly called film coefficients, are related through the Henry's law constant and the model equation to the overall mass-transfer coefficient for volatilization. The films are modeled as two resistances in series, resulting in additive resistances. The two-film model and the concept of additivity of resistances were applied to experimental data for acetone and t-butyl alcohol. Overall mass-transfer coefficients for the volatilization of acetone and t-butyl alcohol from water were measured in the laboratory in a stirred constant-temperature bath. Measurements were completed for six water temperatures, each at three water mixing conditions. Wind-speed was constant at about 0.1 meter per second for all experiments. Oxygen absorption coefficients were measured simultaneously with the measurement of the acetone and t-butyl alcohol mass-transfer coefficients. Gas-film coefficients for acetone, t-butyl alcohol, and water were determined by measuring the volatilization fluxes of the pure substances over a range of temperatures. Henry's law constants were estimated from data from the literature. The combination of high resistance in the gas film for solutes with low values of the Henry's law constants has not been studied previously. Calculation of the liquid-film coefficients for acetone and t-butyl alcohol from measured overall mass-transfer and gas-film coefficients, estimated Henry's law constants, and the two-film model equation resulted in physically unrealistic, negative liquid-film coefficients for most of the experiments at the medium and high water mixing conditions. An analysis of the two-film model equation showed that when the percentage resistance in the gas film is large and the gas-film resistance approaches the overall resistance in value, the calculated liquid-film coefficient becomes extremely sensitive to errors in the Henry's law constant. The negative coefficients were attributed to this sensitivity and to errors in the estimated Henry's law constants. Liquid-film coefficients for the absorption of oxygen were correlated with the stirrer Reynolds number and the Schmidt number. Application of this correlation with the experimental conditions and a molecular-diffusion coefficient adjustment resulted in values of the liquid-film coefficients for both acetone and t-butyl alcohol within the range expected for all three mixing conditions. Comparison of Henry's law constants calculated from these film coefficients and the experimental data with the constants calculated from literature data showed that the differences were small relative to the errors reported in the literature as typical for the measurement or estimation of Henry's law constants for hydrophilic compounds such as ketones and alcohols. Temperature dependence of the mass-transfer coefficients was expressed in two forms. The first, based on thermodynamics, assumed the coefficients varied as the exponential of the reciprocal absolute temperature. The second empirical approach assumed the coefficients varied as the exponential of the absolute temperature. Both of these forms predicted the temperature dependence of the experimental mass-transfer coefficients with little error for most of the water temperature range likely to be found in streams and rivers. Liquid-film and gas-film coefficients for acetone and t-butyl alcohol were similar in value. However, depending on water mixing conditions, overall mass-transfer coefficients for acetone were from two to four times larger than the coefficients for t-butyl alcohol. This difference in behavior of the coefficients resulted because the Henry's law constant for acetone was about three times larger than that of
Gas-film coefficients for the volatilization of ethylene dibromide from water
Rathbun, R.E.; Tal, D.Y.
1986-01-01
Gas-film coefficients for the volatilization of ethylene dibromide (EDB) and water were determined in the laboratory as a function of wind speed and temperature. The ratio of the coefficients was independent of wind speed and increased slightly with temperature. Use of this ratio with an environmentally determined gas-film coefficient for the evaporation of water permits determination of the gas-film coefficient for the volatilization of EDB from environmental waters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shijia, E-mail: wangsg@mail.ustc.edu.cn; Wang, Shaojie
2015-04-15
The evolution of the plasma temperature and density in an international thermonuclear experimental reactor (ITER)-like fusion device has been studied by numerically solving the energy transport equation coupled with the particle transport equation. The effect of particle pinch, which depends on the magnetic curvature and the safety factor, has been taken into account. The plasma is primarily heated by the alpha particles which are produced by the deuterium-tritium fusion reactions. A semi-empirical method, which adopts the ITERH-98P(y,2) scaling law, has been used to evaluate the transport coefficients. The fusion performances (the fusion energy gain factor, Q) similar to the ITERmore » inductive scenario and non-inductive scenario (with reversed magnetic shear) are obtained. It is shown that the particle pinch has significant effects on the fusion performance and profiles of a fusion reactor. When the volume-averaged density is fixed, particle pinch can lower the pedestal density by ∼30%, with the Q value and the central pressure almost unchanged. When the particle source or the pedestal density is fixed, the particle pinch can significantly enhance the Q value by 60%, with the central pressure also significantly raised.« less
Refractory metal shielding /insulation/ increases operating range of induction furnace
NASA Technical Reports Server (NTRS)
Ebihara, B. T.
1965-01-01
Thermal radiation shield contains escaping heat from an induction furnace. The shield consists of a sheet of refractory metal foil and a loosely packed mat of refractory metal fibers in a concentric pattern. This shielding technique can be used for high temperature ovens, high temperature fluid lines, and chemical reaction vessels.
NASA Astrophysics Data System (ADS)
Schmid, Philipp; Liewald, Mathias
2011-08-01
The forming behavior of metastable austenitic stainless steel is mainly dominated by the temperature-dependent TRIP effect (transformation induced plasticity). Of course, the high dependency of material properties on the temperature level during forming means the temperature must be considered during the FE analysis. The strain-induced formation of α'-martensite from austenite can be represented by using finite element programs utilizing suitable models such as the Haensel-model. This paper discusses the determination of parameters for a completely thermal-mechanical forming simulation in LS-DYNA based on the material model of Haensel. The measurement of the martensite evolution in non-isothermal tensile tests was performed with metastable austenitic stainless steel EN 1.4301 at different rolling directions between 0° and 90 °. This allows an estimation of the influence of the rolling direction to the martensite formation. Of specific importance is the accuracy of the martensite content measured by magnetic induction methods (Feritscope). The observation of different factors, such as stress dependence of the magnetisation, blank thickness and numerous calibration curves discloses a substantial important influence on the parameter determination for the material models. The parameters obtained for use of Haensel model and temperature-dependent friction coefficients are used to simulate forming process of a real component and to validate its implementation in the commercial code LS-DYNA.
NASA Astrophysics Data System (ADS)
Enpuku, Keiji; Matsuo, Masaaki; Yoshida, Yujiro; Yamashita, Shigeya; Sasayama, Teruyoshi; Yoshida, Takashi
2018-06-01
We developed a magnetometer based on inductance modulation of a coil made from a high-critical-temperature superconducting material. The coil inductance was modulated over time via a modulation current applied to a magnetic wire that was inserted into the coil. The magnetic field was then converted into a signal voltage using this time-dependent inductance. The relationship between magnetometer performance and the modulation current conditions was studied. Under appropriate conditions, the magnetometer had responsivity of 885 V/T. The magnetic field noise was 1.3 pT/Hz1/2 in the white noise region and 5.6 pT/Hz1/2 at f = 1 Hz.
NASA Technical Reports Server (NTRS)
Taylor, Maynard F.; Kirchgessner, Thomas A.
1959-01-01
Measurements of average heat transfer and friction coefficients and local heat transfer coefficients were made with helium flowing through electrically heated smooth tubes with length-diameter ratios of 60 and 92 for the following range of conditions: Average surface temperature from 1457 to 4533 R, Reynolds numbe r from 3230 to 60,000, heat flux up to 583,200 Btu per hr per ft2 of heat transfer area, and exit Mach numbe r up to 1.0. The results indicate that, in the turbulent range of Reynolds number, good correlation of the local heat transfer coefficients is obtained when the physical properties and density of helium are evaluated at the surface temperature. The average heat transfer coefficients are best correlated on the basis that the coefficient varies with [1 + (L/D))(sup -0,7)] and that the physical properties and density are evaluated at the surface temperature. The average friction coefficients for the tests with no heat addition are in complete agreement with the Karman-Nikuradse line. The average friction coefficients for heat addition are in poor agreement with the accepted line.
NASA Astrophysics Data System (ADS)
Rylander, Marissa N.; Feng, Yusheng; Zhang, Yongjie; Bass, Jon; Stafford, Roger J.; Hazle, John D.; Diller, Kenneth R.
2006-07-01
Thermal therapy efficacy can be diminished due to heat shock protein (HSP) induction in regions of a tumor where temperatures are insufficient to coagulate proteins. HSP expression enhances tumor cell viability and imparts resistance to chemotherapy and radiation treatments, which are generally employed in conjunction with hyperthermia. Therefore, an understanding of the thermally induced HSP expression within the targeted tumor must be incorporated into the treatment plan to optimize the thermal dose delivery and permit prediction of the overall tissue response. A treatment planning computational model capable of predicting the temperature, HSP27 and HSP70 expression, and damage fraction distributions associated with laser heating in healthy prostate tissue and tumors is presented. Measured thermally induced HSP27 and HSP70 expression kinetics and injury data for normal and cancerous prostate cells and prostate tumors are employed to create the first HSP expression predictive model and formulate an Arrhenius damage model. The correlation coefficients between measured and model predicted temperature, HSP27, and HSP70 were 0.98, 0.99, and 0.99, respectively, confirming the accuracy of the model. Utilization of the treatment planning model in the design of prostate cancer thermal therapies can enable optimization of the treatment outcome by controlling HSP expression and injury.
Sturtevant, Blake T; Pereira da Cunha, Mauricio
2010-03-01
This paper reports on the assessment of langatate (LGT) acoustic material constants and temperature coefficients by surface acoustic wave (SAW) delay line measurements up to 130 degrees C. Based upon a full set of material constants recently reported by the authors, 7 orientations in the LGT plane with Euler angles (90 degrees, 23 degrees, Psi) were identified for testing. Each of the 7 selected orientations exhibited calculated coupling coefficients (K(2)) between 0.2% and 0.75% and also showed a large range of predicted temperature coefficient of delay (TCD) values around room temperature. Additionally, methods for estimating the uncertainty in predicted SAW propagation properties were developed and applied to SAW phase velocity and temperature coefficient of delay calculations. Starting from a purchased LGT boule, the SAW wafers used in this work were aligned, cut, ground, and polished at University of Maine facilities, followed by device fabrication and testing. Using repeated measurements of 2 devices on separate wafers for each of the 7 orientations, the room temperature SAW phase velocities were extracted with a precision of 0.1% and found to be in agreement with the predicted values. The normalized frequency change and the temperature coefficient of delay for all 7 orientations agreed with predictions within the uncertainty of the measurement and the predictions over the entire 120 degrees C temperature range measured. Two orientations, with Euler angles (90 degrees, 23 degrees, 123 degrees) and (90 degrees, 23 degrees, 119 degrees), were found to have high predicted coupling for LGT (K(2) > 0.5%) and were shown experimentally to exhibit temperature compensation in the vicinity of room temperature, with turnover temperatures at 50 and 60 degrees C, respectively.
XRF inductive bead fusion and PLC based control system
NASA Astrophysics Data System (ADS)
Zhu, Jin-hong; Wang, Ying-jie; Shi, Hong-xin; Chen, Qing-ling; Chen, Yu-xi
2009-03-01
In order to ensure high-quality X-ray fluorescence spectrometry (XRF) analysis, an inductive bead fusion machine was developed. The prototype consists of super-audio IGBT induction heating power supply, rotation and swing mechanisms, and programmable logic controller (PLC). The system can realize sequence control, mechanical movement control, output current and temperature control. Experimental results show that the power supply can operate at an ideal quasi-resonant state, in which the expected power output and the required temperature can be achieved for rapid heating and the uniform formation of glass beads respectively.
Promoted-Combustion Chamber with Induction Heating Coil
NASA Technical Reports Server (NTRS)
Richardson, Erin; Hagood, Richard; Lowery, Freida; Herald, Stephen
2006-01-01
An improved promoted-combustion system has been developed for studying the effects of elevated temperatures on the flammability of metals in pure oxygen. In prior promoted-combustion chambers, initial temperatures of metal specimens in experiments have been limited to the temperatures of gas supplies, usually near room temperature. Although limited elevated temperature promoted-combustion chambers have been developed using water-cooled induction coils for preheating specimens, these designs have been limited to low-pressure operation due to the hollow induction coil. In contrast, the improved promoted-combustion chamber can sustain a pressure up to 10 kpsi (69 MPa) and, through utilization of a solid induction coil, is capable of preheating a metal specimen up to its melting point [potentially in excess of 2,000 F (approximately equal to 1,100 C)]. Hence, the improved promoted combustion chamber makes a greater range of physical conditions and material properties accessible for experimentation. The chamber consists of a vertical cylindrical housing with an inner diameter of 8 in. (20.32 cm) and an inner height of 20.4 in. (51.81 cm). A threaded, sealing cover at one end of the housing can be unscrewed to gain access for installing a specimen. Inlet and outlet ports for gases are provided. Six openings arranged in a helical pattern in the chamber wall contain sealed sapphire windows for viewing an experiment in progress. The base of the chamber contains pressure-sealed electrical connectors for supplying power to the induction coil. The connectors feature a unique design that prevents induction heating of the housing and the pressure sealing surfaces; this is important because if such spurious induction heating were allowed to occur, chamber pressure could be lost. The induction coil is 10 in. (25.4 cm) long and is fitted with a specimen holder at its upper end. At its lower end, the induction coil is mounted on a ceramic base, which affords thermal insulation to prevent heating of the base of the chamber during use. A sapphire cylinder protects the coil against slag generated during an experiment. The induction coil is energized by a 6-kW water-cooled power supply operating at a frequency of 400 kHz. The induction coil is part of a parallel-tuned circuit, the tuning of which is used to adjust the coupling of power to the specimen. The chamber is mounted on a test stand along with pumps, valves, and plumbing for transferring pressurized gas into and out of the chamber. In addition to multiple video cameras aimed through the windows encircling the chamber, the chamber is instrumented with gauges for monitoring the progress of an experiment. One of the gauges is a dual-frequency infrared temperature transducer aimed at the specimen through one window. Chamber operation is achieved via a console that contains a computer running apparatus-specific software, a video recorder, and real-time video monitors. For safety, a blast wall separates the console from the test stand.
Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements
NASA Astrophysics Data System (ADS)
Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing
2009-08-01
Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.
Poutsma, Marvin L.
2015-12-14
Recently we presented structure-reactivity correlations for the gas-phase ambient-temperature rate constants for hydrogen abstraction from sp 3-hybridized carbon by chlorine atom and hydroxyl radical (Cl•/HO• + HCR 3 → HCl/HOH + •CR 3); the reaction enthalpy effect was represented by the independent variable Δ rH and the polar effect by the independent variables F and R, the Hammett constants for field/inductive and resonance effects. Both these reactions are predominantly exothermic and have early transition states. Here we present a parallel treatment for Br• whose reaction is significantly endothermic with a correspondingly late transition state. In spite of lower expectations becausemore » the available data base is less extensive and much more scattered and because long temperature extrapolations are often required, the resulting least-squares fit (log k 298,Br = –0.147 Δ rH –4.32 ΣF –4.28 ΣR –12.38 with r 2 = 0.92) was modestly successful and useful for initial predictions. The coefficient of Δ rH was ~4-fold greater, indicative of the change from an early to a late transition state; meanwhile the sizable coefficients of ΣF and ΣR indicate the persistence of the polar effect. Although the mean unsigned deviation of 0.79 log k 298 units is rather large, it must be considered in the context of a total span of over 15 log units in the data set. Lastly, the major outliers are briefly discussed.« less
Calculations on the rate of the ion-molecule reaction between NH3(+) and H2
NASA Technical Reports Server (NTRS)
Herbst, Eric; Defrees, D. J.; Talbi, D.; Pauzat, F.; Koch, W.
1991-01-01
The rate coefficient for the ion-molecule reaction NH3(+) + H2 yields NH4(+) + H has been calculated as a function of temperature with the use of the statistical phase space approach. The potential surface and reaction complex and transition state parameters used in the calculation have been taken from ab initio quantum chemical calculations. The calculated rate coefficient has been found to mimic the unusual temperature dependence measured in the laboratory, in which the rate coefficient decreases with decreasing temperature until 50-100 K and then increases at still lower temperatures. Quantitative agreement between experimental and theoretical rate coefficients is satisfactory given the uncertainties in the ab initio results and in the dynamics calculations. The rate coefficient for the unusual three-body process NH3(+) + H2 + He yields NH4(+) + H + He has also been calculated as a function of temperature and the result found to agree well with a previous laboratory determination.
NASA Astrophysics Data System (ADS)
Lu, Haibao; Huang, Wei Min; Leng, Jinsong
2014-04-01
We present a phenomenological model for studying the constitutive relations and working mechanism of the chemo-responsive shape memory effect (SME) in shape memory polymers (SMPs). On the basis of the solubility parameter equation, diffusion model and permeation transition model, a phenomenological model is derived for quantitatively identifying the influential factors in the chemically induced SME in SMPs. After this, a permeability parallel model and series model are implemented in order to couple the constitutive relations of the permeability coefficient, stress and relaxation time as a function of stretch, separately. The inductive effect of the permeability transition on the transition temperature is confirmed as the driving force for the chemo-responsive SME. Furthermore, the analytical result from the phenomenological model is compared with the available experimental results and the simulation of a semi-empirical model reported in the literature for verification.
14 CFR 23.1103 - Induction system ducts.
Code of Federal Regulations, 2013 CFR
2013-01-01
... withstanding the effects of temperature extremes, fuel, oil, water, and solvents to which it is expected to be exposed in service and maintenance without hazardous deterioration or delamination. (d) For reciprocating engine installations, each induction system duct must be— (1) Strong enough to prevent induction system...
14 CFR 23.1103 - Induction system ducts.
Code of Federal Regulations, 2010 CFR
2010-01-01
... withstanding the effects of temperature extremes, fuel, oil, water, and solvents to which it is expected to be exposed in service and maintenance without hazardous deterioration or delamination. (d) For reciprocating engine installations, each induction system duct must be— (1) Strong enough to prevent induction system...
14 CFR 23.1103 - Induction system ducts.
Code of Federal Regulations, 2012 CFR
2012-01-01
... withstanding the effects of temperature extremes, fuel, oil, water, and solvents to which it is expected to be exposed in service and maintenance without hazardous deterioration or delamination. (d) For reciprocating engine installations, each induction system duct must be— (1) Strong enough to prevent induction system...
14 CFR 23.1103 - Induction system ducts.
Code of Federal Regulations, 2014 CFR
2014-01-01
... withstanding the effects of temperature extremes, fuel, oil, water, and solvents to which it is expected to be exposed in service and maintenance without hazardous deterioration or delamination. (d) For reciprocating engine installations, each induction system duct must be— (1) Strong enough to prevent induction system...
14 CFR 23.1103 - Induction system ducts.
Code of Federal Regulations, 2011 CFR
2011-01-01
... withstanding the effects of temperature extremes, fuel, oil, water, and solvents to which it is expected to be exposed in service and maintenance without hazardous deterioration or delamination. (d) For reciprocating engine installations, each induction system duct must be— (1) Strong enough to prevent induction system...
Auxiliary coil controls temperature of RF induction heater
NASA Technical Reports Server (NTRS)
1966-01-01
Auxiliary coil controls the temperature of an RF induction furnace that is powered by a relatively unstable RF generator. Manual or servoed adjustments of the relative position of the auxiliary coil, which is placed in close proximity to the RF coil, changes the looseness of the RF coil and hence the corresponding heating effect of its RF field.
Takenaka, T; Kiriyama, R; Muramatsu, M; Kitagawa, A; Uchida, T; Kurisu, Y; Nozaki, D; Yano, K; Yoshida, Y; Sato, F; Kato, Y; Iida, T
2012-02-01
An electron cyclotron resonance ion source (ECRIS) is used to generate multicharged ions for many kinds of the fields. We have developed an evaporator by using induction heating method that can generate pure vapor from solid state materials in ECRIS. We develop the new matching and protecting circuit by which we can precisely control the temperature of the induction heating evaporator. We can control the temperature within ±15 °C around 1400 °C under the operation pressure about 10(-4) Pa. We are able to use this evaporator for experiment of synthesizing process to need pure vapor under enough low pressure, e.g., experiment of generation of endohedral Fe-fullerene at the ECRIS.
Wetz, Anna J; Perl, Thorsten; Brandes, Ivo F; Harden, Markus; Bauer, Martin; Bräuer, Anselm
2016-11-01
Perioperative hypothermia is a frequently observed phenomenon of general anesthesia and is associated with adverse patient outcome. Recently, a significant influence of core temperature before induction of anesthesia has been reported. However, there are still little existing data on core temperature before induction of anesthesia and no data regarding potential risk factors for developing preoperative hypothermia. The purpose of this investigation was to estimate the incidence of hypothermia before anesthesia and to determine if certain factors predict its incidence. Data from 7 prospective studies investigating core temperature previously initiated at our department were analyzed. Patients undergoing a variety of elective surgical procedures were included. Core temperature was measured before induction of anesthesia with an oral (314 patients), infrared tympanic (143 patients), or tympanic contact thermometer (36 patients). Available potential predictors included American Society of Anesthesiologists status, sex, age, weight, height, body mass index, adipose ratio, and lean body weight. Association with preoperative hypothermia was assessed separately for each predictor using logistic regression. Independent predictors were identified using multivariable logistic regression. A total of 493 patients were included in the study. Hypothermia was found in 105 patients (21.3%; 95% confidence interval, 17.8%-25.2%). The median core temperature was 36.3°C (25th-75th percentiles, 36.0°C-36.7°C). Two independent factors for preoperative hypothermia were identified: male sex and age (>52years). As a consequence of the high incidence of hypothermia before anesthesia, measuring core temperature should be mandatory 60 to 120minutes before induction to identify and provide adequate treatment to hypothermic patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Choi, Ji-Won; Kim, Duk-Kyung; Lee, Seung-Won; Park, Jung-Bo; Lee, Gyu-Hong
2016-06-01
To evaluate the clinical efficacy of intravenous (IV) fluid warming in patients undergoing laparoscopic colorectal surgery. Adult patients undergoing laparoscopic colorectal surgery were randomly assigned to receive either IV fluids at room temperature (control group) or warmed IV fluids (warm fluids group). Each patient received a standardized goal-directed fluid regimen based on stroke volume variances. Oesophageal temperature was measured at 15 min intervals for 2 h after induction of anaesthesia. A total of 52 patients were enrolled in the study. The drop in core temperature in the warm fluids group was significantly less than in the control group 2 h after the induction of anaesthesia. This significant difference was seen from 30 min after induction. IV fluid warming was associated with a smaller drop in core temperature than room temperature IV fluids in laparoscopic colorectal surgery incorporating goal-directed fluid therapy. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Brinovar, Iztok; Srpčič, Gregor; Seme, Sebastijan; Štumberger, Bojan; Hadžiselimović, Miralem
2017-07-01
This article deals with the classification of explosion-proof protected induction motors, which are used in hazardous areas, into adequate temperature and efficiency class. Hazardous areas are defined as locations with a potentially explosive atmosphere where explosion may occur due to present of flammable gasses, liquids or combustible dusts (industrial plants, mines, etc.). Electric motors and electrical equipment used in such locations must be specially designed and tested to prevent electrical initiation of explosion due to high surface temperature and arcing contacts. This article presents the basic tests of three-phase explosion-proof protected induction motor with special emphasis on the measuring system and temperature rise test. All the measurements were performed with high-accuracy instrumentation and accessory equipment and carried out at the Institute of energy technology in the Electric machines and drives laboratory and Applied electrical engineering laboratory.
NASA Technical Reports Server (NTRS)
Snyder, G. Jeffrey (Inventor)
2015-01-01
A high temperature Seebeck coefficient measurement apparatus and method with various features to minimize typical sources of errors is described. Common sources of temperature and voltage measurement errors which may impact accurate measurement are identified and reduced. Applying the identified principles, a high temperature Seebeck measurement apparatus and method employing a uniaxial, four-point geometry is described to operate from room temperature up to 1300K. These techniques for non-destructive Seebeck coefficient measurements are simple to operate, and are suitable for bulk samples with a broad range of physical types and shapes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Min-Hyong; Chung, Chin-Wook
2008-10-13
A mode transition from an inductive mode to a helicon mode is observed in a solenoidal inductive discharge immersed in a weak dc magnetic field. The measured electron temperature and the plasma density at the reactor radial boundary show a sudden increase when the magnetic field strength reaches the critical value and the electron cyclotron frequency exceeds the rf driving frequency. These increases are due to the electron heating by the helicon wave. Such increases in the temperature and the density are not observed at the plasma center because the helicon wave cannot propagate to the center of the solenoidalmore » type reactor unless the magnetic field is very high. These results show that the transition of the discharge from the inductive to the helicon mode occurs at the critical magnetic field strength.« less
Inductance position sensor for pneumatic cylinder
NASA Astrophysics Data System (ADS)
Ripka, Pavel; Chirtsov, Andrey; Mirzaei, Mehran; Vyhnanek, Jan
2018-04-01
The position of the piston in pneumatic cylinder with aluminum wall can be measured by external inductance sensor without modifications of the aluminum piston and massive iron piston rod. For frequencies below 20 Hz the inductance is increasing with inserting rod due to the rod permeability. This mode has disadvantage of slow response to piston movement and also high temperature sensitivity. At the frequency of 45 Hz the inductance is position independent, as the permeability effect is compensated by the eddy current effect. At higher frequencies eddy current effects in the rod prevail, the inductance is decreasing with inserting rod. In this mode the sensitivity is smaller but the sensor response is fast and temperature stability is better. We show that FEM simulation of this sensor using measured material properties gives accurate results, which is important for the sensor optimization such as designing the winding geometry for the best linearity.
Resistance thermometer has linear resistance-temperature coefficient at low temperatures
NASA Technical Reports Server (NTRS)
Kuzyk, W.
1966-01-01
Resistance thermometer incorporating a germanium resistance element with a platinum resistance element in a wheatstone bridge circuit has a linear temperature-resistance coefficient over a range from approximately minus 140 deg C to approximately minus 253 deg C.
An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling.
Gong, Chen; Liu, Dake; Miao, Zhidong; Wang, Wei; Li, Min
2017-06-11
The inductive link is widely used in implantable biomedical sensor systems to achieve near-field communication (NFC) and wireless power transfer (WPT). However, it is tough to achieve reliable NFC on an inductive WPT link when the coupling coefficient is ultra-low (0.01 typically), since the NFC signal (especially for the uplink from the in-body part to the out-body part) could be too weak to be detected. Traditional load shift keying (LSK) requires strong coupling to pass the load modulation information to the power source. Instead of using LSK, we propose a dual-carrier NFC scheme for the weak-coupled inductive link; using binary phase shift keying (BPSK) modulation, its downlink data are modulated on the power carrier (2 MHz), while its uplink data are modulated on another carrier (125 kHz). The two carriers are transferred through the same coil pair. To overcome the strong interference of the power carrier, dedicated circuits are introduced. In addition, to minimize the power transfer efficiency decrease caused by adding NFC, we optimize the inductive link circuit parameters and approach the receiver sensitivity limit. In the prototype experiments, even though the coupling coefficient is as low as 0.008, the in-body transmitter costs only 0.61 mW power carrying 10 kbps of data, and achieves a 1 × 10 - 7 bit error rate under the strong interference of WPT. This dual-carrier NFC scheme could be useful for small-sized implantable biomedical sensor applications.
An induction reactor for studying crude-oil oxidation relevant to in situ combustion.
Bazargan, Mohammad; Lapene, Alexandre; Chen, Bo; Castanier, Louis M; Kovscek, Anthony R
2013-07-01
In a conventional ramped temperature oxidation kinetics cell experiment, an electrical furnace is used to ramp temperature at a prescribed rate. Thus, the heating rate of a kinetics cell experiment is limited by furnace performance to heating rates of about 0.5-3 °C/min. A new reactor has been designed to overcome this limit. It uses an induction heating method to ramp temperature. Induction heating is fast and easily controlled. The new reactor covers heating rates from 1 to 30 °C/min. This is the first time that the oxidation profiles of a crude oil are available over such a wide range of heating rate. The results from an induction reactor and a conventional kinetics cell at roughly 2 °C/min are compared to illustrate consistency between the two reactors. The results at low heating rate are the same as the conventional kinetics cell. As presented in the paper, the new reactor couples well with the isoconversional method for interpretation of reaction kinetics.
NASA Technical Reports Server (NTRS)
Sergeev, A. V.; Karasik, B. S.; Gogidze, I. G.; Mitin, V. V.
2001-01-01
While experimental studies of kinetic-inductance sensors have been limited so far by the temperature range near the superconducting transition, these detectors can be very sensitivity at temperatures well below the transition, where the number of equilibrium quasiparticles is exponentially small. In this regime, a shift of the quasiparticle chemical potential under radiation results in the change of the kinetic inductance, which can be measured by a sensitive SQUID readout. We modeled the kinetic inductance response of detectors made from disordered superconducting Nb, NbC, and MoRe films. Low phonon transparency of the interface between the superconductor and the substrate causes substantial re-trapping of phonons providing high quantum efficiency and the operating time of approximately 1 ms at 1 K. Due to the small number of quasiparticles, the noise equivalent power of the detector determined by the quasiparticle generation-recombination noise can be as small as approximately 10(exp -19) W/Hz(exp 1/2) at He4 temperatures.
Foxman, Ellen F; Storer, James A; Fitzgerald, Megan E; Wasik, Bethany R; Hou, Lin; Zhao, Hongyu; Turner, Paul E; Pyle, Anna Marie; Iwasaki, Akiko
2015-01-20
Most isolates of human rhinovirus, the common cold virus, replicate more robustly at the cool temperatures found in the nasal cavity (33-35 °C) than at core body temperature (37 °C). To gain insight into the mechanism of temperature-dependent growth, we compared the transcriptional response of primary mouse airway epithelial cells infected with rhinovirus at 33 °C vs. 37 °C. Mouse airway cells infected with mouse-adapted rhinovirus 1B exhibited a striking enrichment in expression of antiviral defense response genes at 37 °C relative to 33 °C, which correlated with significantly higher expression levels of type I and type III IFN genes and IFN-stimulated genes (ISGs) at 37 °C. Temperature-dependent IFN induction in response to rhinovirus was dependent on the MAVS protein, a key signaling adaptor of the RIG-I-like receptors (RLRs). Stimulation of primary airway cells with the synthetic RLR ligand poly I:C led to greater IFN induction at 37 °C relative to 33 °C at early time points poststimulation and to a sustained increase in the induction of ISGs at 37 °C relative to 33 °C. Recombinant type I IFN also stimulated more robust induction of ISGs at 37 °C than at 33 °C. Genetic deficiency of MAVS or the type I IFN receptor in infected airway cells permitted higher levels of viral replication, particularly at 37 °C, and partially rescued the temperature-dependent growth phenotype. These findings demonstrate that in mouse airway cells, rhinovirus replicates preferentially at nasal cavity temperature due, in part, to a less efficient antiviral defense response of infected cells at cool temperature.
High temperature XRD of Cu2.1Zn0.9SnSe4
NASA Astrophysics Data System (ADS)
Chetty, Raju; Mallik, Ramesh Chandra
2014-04-01
Quaternary compound with chemical composition Cu2.1Zn0.9SnSe4 is prepared by solid state synthesis. High temperature XRD (X-Ray Diffraction) of this compound is used in studying the effect of temperature on lattice parameters and thermal expansion coefficients. Thermal expansion coefficient is one of the important quantities in evaluating the Grüneisen parameter which further useful in determining the lattice thermal conductivity of the material. The high temperature XRD of the material revealed that the lattice parameters as well as thermal expansion coefficients of the material increased with increase in temperature which confirms the presence of anharmonicty.
Diffusion coefficients of nitric oxide in water: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Pokharel, Sunil; Pantha, Nurapati; Adhikari, N. P.
2016-09-01
Self-diffusion coefficients along with the mutual diffusion coefficients of nitric oxide (NO) and SPC/E water (H2O) as solute and solvent of the mixture, have been studied within the framework of classical molecular dynamics level of calculations using GROMACS package. The radial distribution function (RDF) of the constituent compounds are calculated to study solute-solute, solute-solvent and solvent-solvent molecular interactions as a function of temperature. A dilute solution of five NO molecules (mole fraction 0.018) and 280 H2O molecules (mole fraction 0.982) has been taken as the sample. The self-diffusion coefficient of the solvent is calculated by using mean square displacement (MSD) where as that for solute (NO) is calculated by using MSD and velocity auto-correlation function (VACF). The results are then compared with the available experimental values. The results from the present work for water come in good agreement, very precise at low temperatures, with the experimental values. The diffusion coefficients of NO, on the other hands, agree well with the available theoretical studies, and also with experiment at low temperatures (up to 310 K). The results at the higher temperatures (up to 333 K), however, deviate significantly with the experimental observations. Also, the mutual diffusion coefficients of NO in water have been calculated by using Darken’s relation. The temperature dependence of the calculated diffusion coefficients follow the Arrhenius behavior.
Su, Ya; Yao, X. Steve; Li, Zhihong; Meng, Zhuo; Liu, Tiegen; Wang, Longzhi
2015-01-01
We present detailed measurement results of optical attenuation’s thermal coefficients (referenced to the temperature of the skin surface) in different depth regions of in vivo human forearm skins using optical coherence tomography (OCT). We first design a temperature control module with an integrated optical probe to precisely control the surface temperature of a section of human skin. We propose a method of using the correlation map to identify regions in the skin having strong correlations with the surface temperature of the skin and find that the attenuation coefficient in these regions closely follows the variation of the surface temperature without any hysteresis. We observe a negative thermal coefficient of attenuation in the epidermis. While in dermis, the slope signs of the thermal coefficient of attenuation are different at different depth regions for a particular subject, however, the depth regions with a positive (or negative) slope are different in different subjects. We further find that the magnitude of the thermal coefficient of attenuation coefficient is greater in epidermis than in dermis. We believe the knowledge of such thermal properties of skins is important for several noninvasive diagnostic applications, such as OCT glucose monitoring, and the method demonstrated in this paper is effective in studying the optical and biological properties in different regions of skin. PMID:25780740
Wang, Xia; Zhang, Luyan; Chen, Gang
2011-11-01
As a self-regulating heating device, positive temperature coefficient ceramic heater was employed for hot embossing and thermal bonding of poly(methyl methacrylate) microfluidic chip because it supplied constant-temperature heating without electrical control circuits. To emboss a channel plate, a piece of poly(methyl methacrylate) plate was sandwiched between a template and a microscopic glass slide on a positive temperature coefficient ceramic heater. All the assembled components were pressed between two elastic press heads of a spring-driven press while a voltage was applied to the heater for 10 min. Subsequently, the embossed poly(methyl methacrylate) plate bearing negative relief of channel networks was bonded with a piece of poly(methyl methacrylate) cover sheet to obtain a complete microchip using a positive temperature coefficient ceramic heater and a spring-driven press. High quality microfluidic chips fabricated by using the novel embossing/bonding device were successfully applied in the electrophoretic separation of three cations. Positive temperature coefficient ceramic heater indicates great promise for the low-cost production of poly(methyl methacrylate) microchips and should find wide applications in the fabrication of other thermoplastic polymer microfluidic devices.
NASA Astrophysics Data System (ADS)
Goldenstein, Christopher S.; Jeffries, Jay B.; Hanson, Ronald K.
2013-11-01
Absorption lineshapes for two unresolved H2O doublets near 4029.52 and 4041.92 cm-1 were measured at high-resolution in a heated static cell using two distributed-feedback diode lasers. Measurements were acquired for H2O, CO2, and N2 perturbers over a temperature and pressure range of 650-1325 K and 2-760 Torr, respectively. Strong collisional narrowing effects were observed in CO2 and N2, but not in pure H2O. The Galatry profile was used to infer collisional-broadening and -narrowing coefficients and their respective temperature dependence for CO2 and N2 perturbers. The collisional-broadening and -narrowing coefficients for CO2 perturbers were found to decrease with increasing temperature in a similar manner. For N2 perturbers, the collisional-broadening coefficients increased with temperature while the collisional-narrowing coefficients decreased with increasing temperature. Self-broadening coefficients were inferred from Voigt profile fits and are compared with HITEMP 2010. The linestrengths of 17 H2O transitions are also reported.
Unipolar memristive Switching in Bulk Negative Temperature Coefficient Thermosensitive Ceramics
Wu, Hongya; Cai, Kunpeng; Zhou, Ji; Li, Bo; Li, Longtu
2013-01-01
A memristive phenomenon was observed in macroscopic bulk negative temperature coefficient nickel monoxide (NiO) ceramic material. Current-voltage characteristics of memristors, pinched hysteretic loops were systematically observed in the Ag/NiO/Ag cell. A thermistor-based model for materials with negative temperature coefficient was proposed to explain the mechanism of the experimental phenomena. Most importantly, the results demonstrate the potential for a realization of memristive systems based on macroscopic bulk materials. PMID:24255717
Tropospheric temperature measurements using a rotational raman lidar
NASA Astrophysics Data System (ADS)
Lee, Robert Benjamin, III
Using the Hampton University (HU) Mie and Raman lidar, tropospheric temperature profiles were inferred from lidar measurements of anti-Stokes rotational Raman (RR) backscattered laser light from atmospheric nitrogen and oxygen molecules. The molecules were excited by 354.7 nanometer (nm) laser light emitted by the HU lidar. Averaged over 60-minute intervals, RR backscattered signals were detected in narrow 353.35 nm and 354.20 nm spectral bands with full-widths-at-half-maxima (FWHM) of 0.3 nm. During the special April 19-30, 2012, Ground-Based Remote Atmospheric Sounding Program (GRASP) campaign, the lidar temperature calibration coefficients were empirically derived using linear least squares and second order polynomial analyses of the lidar backscattered RR signals and of reference temperature profiles, obtained from radiosondes. The GRASP radiosondes were launched within 400 meters of the HU lidar site. Lidar derived temperature profiles were obtained at altitudes from the surface to over 18 kilometers (km) at night, and up to 5 km during the day. Using coefficients generated from least squares analyses, nighttime profiles were found to agree with profiles from reference radiosonde measurements within 3 K, at altitudes between 4 km and 9 km. Coefficients generated from the second order analyses yielded profiles which agreed with the reference profiles within 1 K uncertainty level in the 4 km to 10 km altitude region. Using profiles from GRASP radiosondes, the spatial and temporal homogeneities of the atmosphere, over HU, were estimated at the 1.5 K level within a 10 km radius of HU, and for observational periods approaching 3 hours. Theoretical calibration coefficients were derived from the optical and physical properties of the HU RR lidar and from the spectroscopic properties of atmospheric molecular nitrogen and oxygen. The theoretical coefficients along with lidar measurements of sky background radiances were used to evaluate the temporal stability of the empirically derived temperature profiles from the RR lidar measurements. The evaluations revealed systematic drifts in the coefficients. Frequent reference radiosonde temperature profiles should be used to correct for the drifts in the coefficients. For the first time, the cause of the coefficient drifts has been identified as the differences in the aging of the spectral responses of the HU lidar detector pairs. For the first time, the use of lidar sky background measurements was demonstrated as a useful technique to correct for the coefficient drift. This research should advance the derivations of lidar temperature calibration coefficients which can be used for long observational periods of temperature fields without the need for frequent lidar calibrations using radiosondes.
Inductance Jump at Melting of Vortex Lattice in Untwinned YBaCuO
NASA Astrophysics Data System (ADS)
Matl, P.; Wu, H.; Ong, N. P.; Gagnon, R.; Taillefer, L.
1997-03-01
We have measured the complex resistivity in an untwinned single crystal YBaCuO between 70K and 120K at a fixed magnetic field. As T increases towards the melting temperature Tm the inductance increases rapidly. At Tm the inductance undergoes a discontinuous jump, which we correlate with the collapse of the shear modulus c_66. We describe how the magnitude of the jump varies with temperature, field, and frequency. We have also extracted the viscosity of the vortex lattice from a Bardeen-Stephen fit to the low field complex resistivity measured at 1 to 15 MHz between 80K and T_c. We find that the viscosity decreases as 1.2x10-13 kg m-1 s-1 K-1 as the temperature approaches T_c.
Auto-induction for high level production of biologically active reteplase in Escherichia coli.
Fathi-Roudsari, Mehrnoosh; Maghsoudi, Nader; Maghsoudi, Amirhossein; Niazi, Sepideh; Soleiman, Morvarid
2018-06-07
Reteplase is a third generation tissue plasminogen activator (tPA) with a modified structure and prolonged half-life in comparison to native tPA. As a non-glycosylated protein, reteplase is expressed in Escherichia coli. Due to presence of several disulfide bonds, high level production of reteplase is complicated and needs extra steps for conversion to biologically active form. Auto-induction represents a method for high-yield growth of bacterial cells and higher expression of recombinant proteins. Here we have tried to optimize the auto-induction procedure for soluble and active expression of reteplase in E. coli. Results showed that using auto-induction strategy at 37 °C, Rosetta-gami (DE3) had the highest level of active and soluble reteplase production in comparison to E. coli strains BL21 (DE3), and Shuffel T7. Temperature dominantly affected the level of active reteplase production. Decreasing the temperature to 25 and 18 °C increased the level of active reteplase by 20 and 60%, respectively. The composition of auto-induction medium also dramatically changed the active production of reteplase in cytoplasm. Using higher enriched auto-induction medium, super broth base including trace elements, significantly increased biologically active reteplase by 30%. It is demonstrated here that auto-induction is a powerful method for expression of biologically active reteplase in oxidative cytoplasm of Rosetta-gami. Optimizing expression condition by decreasing temperature and using an enriched auto-induction medium resulted in at least three times higher level of active reteplase production. Production of correctly folded and active reteplase in spite of its complex structure helps for removal of inefficient and cumbersome step of refolding. Copyright © 2018. Published by Elsevier Inc.
Pépino, Marc; Goyer, Katerine; Magnan, Pierre
2015-11-01
Temperature is the primary environmental factor affecting physiological processes in ectotherms. Heat-transfer models describe how the fish's internal temperature responds to a fluctuating thermal environment. Specifically, the rate coefficient (k), defined as the instantaneous rate of change in body temperature in relation to the difference between ambient and body temperature, summarizes the combined effects of direct thermal conduction through body mass, passive convection (intracellular and intercellular fluids) and forced convective heat transfer (cardiovascular system). The k-coefficient is widely used in fish ecology to understand how body temperature responds to changes in water temperature. The main objective of this study was to estimate the k-coefficient of brook charr equipped with internal temperature-sensitive transmitters in controlled laboratory experiments. Fish were first transferred from acclimation tanks (10°C) to tanks at 14, 19 or 23°C (warming experiments) and were then returned to the acclimation tanks (10°C; cooling experiments), thus producing six step changes in ambient temperature. We used non-linear mixed models to estimate the k-coefficient. Model comparisons indicated that the model incorporating the k-coefficient as a function of absolute temperature difference (dT: 4, 9 and 13°C) best described body temperature change. By simulating body temperature in a heterogeneous thermal environment, we provide theoretical predictions of maximum excursion duration between feeding and resting areas. Our simulations suggest that short (i.e. <60 min) excursions could be a common thermoregulatory behaviour adopted by cold freshwater fish species to sustain body temperature below a critical temperature threshold, enabling them to exploit resources in an unfavourable thermal environment. © 2015. Published by The Company of Biologists Ltd.
Javiya, Umesh; Chew, John; Hills, Nick; Dullenkopf, Klaus; Scanlon, Timothy
2013-05-01
The prediction of the preswirl cooling air delivery and disk metal temperature are important for the cooling system performance and the rotor disk thermal stresses and life assessment. In this paper, standalone 3D steady and unsteady computation fluid dynamics (CFD), and coupled FE-CFD calculations are presented for prediction of these temperatures. CFD results are compared with previous measurements from a direct transfer preswirl test rig. The predicted cooling air temperatures agree well with the measurement, but the nozzle discharge coefficients are under predicted. Results from the coupled FE-CFD analyses are compared directly with thermocouple temperature measurements and with heat transfer coefficients on the rotor disk previously obtained from a rotor disk heat conduction solution. Considering the modeling limitations, the coupled approach predicted the solid metal temperatures well. Heat transfer coefficients on the rotor disk from CFD show some effect of the temperature variations on the heat transfer coefficients. Reasonable agreement is obtained with values deduced from the previous heat conduction solution.
Onel, L; Blitz, M A; Seakins, P W
2012-04-05
Monoethanol amine (H2NCH2CH2OH, MEA) has been proposed for large-scale use in carbon capture and storage. We present the first absolute, temperature-dependent determination of the rate coefficient for the reaction of OH with MEA using laser flash photolysis for OH generation, monitoring OH removal by laser-induced fluorescence. The room-temperature rate coefficient is determined to be (7.61 ± 0.76) × 10(-11) cm(3) molecule(-1) s(-1), and the rate coefficient decreases by about 40% by 510 K. The temperature dependence of the rate coefficient is given by k1= (7.73 ± 0.24) × 10(-11)(T/295)(-(0.79±0.11)) cm(3) molecule(-1) s(-1). The high rate coefficient shows that gas-phase processing in the atmosphere will be competitive with uptake onto aerosols.
Spin Diffusion Coefficient of A1-PHASE of Superfluid 3He at Low Temperatures
NASA Astrophysics Data System (ADS)
Afzali, R.; Pashaee, F.
The spin diffusion coefficient tensor of the A1-phase of superfluid 3He at low temperatures and melting pressure is calculated using the Boltzmann equation approach and Pfitzner procedure. Then considering Bogoliubov-normal interaction, we show that the total spin diffusion is proportional to 1/T2, the spin diffusion coefficient of superfluid component D\\uparrowxzxz is proportional to T-2, and the spin diffusion coefficient of super-fluid component D\\uparrowxxxx (=D\\uarrowxyxy) is independent of temperature. Furthermore, it is seen that superfluid components play an important role in spin diffusion of the A1-phase.
Dispersion of thermooptic coefficients of soda-lime-silica glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, G.
1995-01-01
The thermooptic coefficients, i.e., the variation of refractive index with temperature (dn/dT), are analyzed in a physically meaningful model for two series of soda-lime-silica glasses. 25Na{sub 2}O{center_dot}xCaO{center_dot}(75 {minus} x)SiO{sub 2} and (25 {minus} x)Na{sub 2}O{center_dot}xCaO {center_dot} 75SiO{sub 2}. This model is based on three physical parameters--the thermal expansion coefficient and excitonic and isentropic optical bands that are in the vacuum ultraviolet region--instead of on consideration of the temperature coefficient of electronic polarizability, as suggested in 1960. This model is capable of predicting and analyzing the thermooptic coefficients throughout the transmission region of the optical glasses at any operating temperature.
NASA Technical Reports Server (NTRS)
Harward, C. N.
1977-01-01
Measurements were performed to determine the pressure and temperature dependence of CFM-12 absorption coefficients for CO2 waveguide laser radiation. The absorption coefficients of CFM-12 for CO2 waveguide laser radiation were found to have no spectral structure within small spectral bandwidths around the CO2 waveguide laser lines in the CO2 spectral band for pressures above 20 torr. All of the absorption coefficients for the CO2 laser lines studied are independent of pressure above 100 torr, except for the P(36) laser CO2 spectral band. The absorption coefficients associated with the P(42) line in the same band showed the greatest change with temperature, and it also has the largest value of all the lines studied.
Numerical optimization of the ramp-down phase with the RAPTOR code
NASA Astrophysics Data System (ADS)
Teplukhina, Anna; Sauter, Olivier; Felici, Federico; The Tcv Team; The ASDEX-Upgrade Team; The Eurofusion Mst1 Team
2017-10-01
The ramp-down optimization goal in this work is defined as the fastest possible decrease of a plasma current while avoiding any disruptions caused by reaching physical or technical limits. Numerical simulations and preliminary experiments on TCV and AUG have shown that a fast decrease of plasma elongation and an adequate timing of the H-L transition during current ramp-down can help to avoid reaching high values of the plasma internal inductance. The RAPTOR code (F. Felici et al., 2012 PPCF 54; F. Felici, 2011 EPFL PhD thesis), developed for real-time plasma control, has been used for an optimization problem solving. Recently the transport model has been extended to include the ion temperature and electron density transport equations in addition to the electron temperature and current density transport equations, increasing the physical applications of the code. The gradient-based models for the transport coefficients (O. Sauter et al., 2014 PPCF 21; D. Kim et al., 2016 PPCF 58) have been implemented to RAPTOR and tested during this work. Simulations of the AUG and TCV entire plasma discharges will be presented. See the author list of S. Coda et al., Nucl. Fusion 57 2017 102011.
High temperature XRD of Cu{sub 2.1}Zn{sub 0.9}SnSe{sub 4}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chetty, Raju, E-mail: rcmallik@physics.iisc.ernet.in; Mallik, Ramesh Chandra, E-mail: rcmallik@physics.iisc.ernet.in
2014-04-24
Quaternary compound with chemical composition Cu{sub 2.1}Zn{sub 0.9}SnSe{sub 4} is prepared by solid state synthesis. High temperature XRD (X-Ray Diffraction) of this compound is used in studying the effect of temperature on lattice parameters and thermal expansion coefficients. Thermal expansion coefficient is one of the important quantities in evaluating the Grüneisen parameter which further useful in determining the lattice thermal conductivity of the material. The high temperature XRD of the material revealed that the lattice parameters as well as thermal expansion coefficients of the material increased with increase in temperature which confirms the presence of anharmonicty.
Temperature and current coefficients of lasing wavelength in tunable diode laser spectroscopy.
Fukuda, M; Mishima, T; Nakayama, N; Masuda, T
2010-08-01
The factors determining temperature and current coefficients of lasing wavelength are investigated and discussed under monitoring CO(2)-gas absorption spectra. The diffusion rate of Joule heating at the active layer to the surrounding region is observed by monitoring the change in the junction voltage, which is a function of temperature and the wavelength (frequency) deviation under sinusoidal current modulation. Based on the experimental results, the time interval of monitoring the wavelength after changing the ambient temperature or injected current (scanning rate) has to be constant at least to eliminate the monitoring error induced by the deviation of lasing wavelength, though the temperature and current coefficients of lasing wavelength differ with the rate.
Decomposition of carbon dioxide by recombining hydrogen plasma with ultralow electron temperature
NASA Astrophysics Data System (ADS)
Yamazaki, Masahiro; Nishiyama, Shusuke; Sasaki, Koichi
2018-06-01
We examined the rate coefficient for the decomposition of CO2 in low-pressure recombining hydrogen plasmas with electron temperatures between 0.15 and 0.45 eV, where the electron-impact dissociation was negligible. By using this ultralow-temperature plasma, we clearly observed decomposition processes via vibrational excited states. The rate coefficient of the overall reaction, CO2 + e → products, was 1.5 × 10‑17 m3/s in the ultralow-temperature plasma, which was 10 times larger than the decomposition rate coefficient of 2 × 10‑18 m3/s in an ionizing plasma with an electron temperature of 4 eV.
Low temperature coefficient of resistance and high gage factor in beryllium-doped silicon
NASA Technical Reports Server (NTRS)
Robertson, J. B.; Littlejohn, M. A.
1974-01-01
The gage factor and resistivity of p-type silicon doped with beryllium was studied as a function of temperature, crystal orientation, and beryllium doping concentration. It was shown that the temperature coefficient of resistance can be varied and reduced to zero near room temperature by varying the beryllium doping level. Similarly, the magnitude of the piezoresistance gage factor for beryllium-doped silicon is slightly larger than for silicon doped with a shallow acceptor impurity such as boron, whereas the temperature coefficient of piezoresistance is about the same for material containing these two dopants. These results are discussed in terms of a model for the piezoresistance of compensated p-type silicon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Dae Jung; Lee, Dong-Hun; Kim, Kihong
We study theoretically the linear mode conversion between electromagnetic waves and Langmuir waves in warm, stratified, and unmagnetized plasmas, using a numerically precise calculation based on the invariant imbedding method. We verify that the principle of reciprocity for the forward and backward mode conversion coefficients holds precisely regardless of temperature. We also find that the temperature dependence of the mode conversion coefficient is substantially stronger than that previously reported. Depending on the wave frequency and the incident angle, the mode conversion coefficient is found to increase or decrease with the increase of temperature.
Effect of modified thermal conductivity on the temperature distribution in the protonosphere.
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Fontheim, E. G.; Mahajan, K. K.
1973-01-01
At typical protonospheric electron densities the electron mean free path is sufficiently long so that the coefficient of thermal conductivity is no longer given by Spitzer's expression. The effect on the temperature profile of using the corrected expression for conductivity is investigated. The corrected thermal conduction coefficient is density-dependent and has a more complicated temperature dependence than the coefficient applicable to higher density plasmas. The results indicate that the effect is not negligible even under quiet conditions and at low latitudes.
Eng, Jason W-L; Reed, Chelsey B; Kokolus, Kathleen M; Repasky, Elizabeth A
2014-12-01
Researchers studying the murine response to stress generally use mice housed under standard, nationally mandated conditions as controls. Few investigators are concerned whether basic physical aspects of mouse housing could be an additional source of stress, capable of influencing the subsequent impact of an experimentally applied stressor. We have recently become aware of the potential for housing conditions to impact important physiological and immunological properties in mice. Here we sought to determine whether housing mice at standard temperature (ST; 22 °C) vs. thermoneutral temperature (TT; 30 °C) influences baseline expression of heat shock proteins (HSPs) and their typical induction following a whole body heating. There were no significant differences in baseline expression of HSPs at ST and TT. However, in several cases, the induction of Hsp70, Hsp110 and Hsp90 in tissues of mice maintained at ST was greater than at TT following 6 h of heating (which elevated core body temperature to 39.5 °C). This loss of HSP induction was also seen when mice housed at ST were treated with propranolol, a β-adrenergic receptor antagonist, used clinically to treat hypertension and stress. Taken together, these data show that housing temperature significantly influences the expression of HSPs in mice after whole body heating and thus should be considered when stress responses are studied in mice.
NASA Astrophysics Data System (ADS)
He, Cunfu; Yang, Meng; Liu, Xiucheng; Wang, Xueqian; Wu, Bin
2017-11-01
The magnetic hysteresis behaviours of ferromagnetic materials vary with the heat treatment-induced micro-structural changes. In the study, the minor hysteresis loop measurement technique was used to quantitatively characterise the case depth in two types of medium carbon steels. Firstly, high-frequency induction quenching was applied in rod samples to increase the volume fraction of hard martensite to the soft ferrite/pearlite (or sorbite) in the sample surface. In order to determine the effective and total case depth, a complementary error function was employed to fit the measured hardness-depth profiles of induction-hardened samples. The cluster of minor hysteresis loops together with the tangential magnetic field (TMF) were recorded from all the samples and the comparative study was conducted among three kinds of magnetic parameters, which were sensitive to the variation of case depth. Compared to the parameters extracted from an individual minor loop and the distortion factor of the TMF, the magnitude of three-order harmonic of TMF was more suitable to indicate the variation in case depth. Two new minor-loop coefficients were introduced by combining two magnetic parameters with cumulative statistics of the cluster of minor-loops. The experimental results showed that the two coefficients monotonically linearly varied with the case depth within the carefully selected magnetisation region.
Influence of leucite content on slow crack growth of dental porcelains.
Cesar, Paulo F; Soki, Fabiana N; Yoshimura, Humberto N; Gonzaga, Carla C; Styopkin, Victor
2008-08-01
To determine the stress corrosion susceptibility coefficient, n, of seven dental porcelains (A: Ceramco I; B: Ceramco-II; C: Ceramco-III; D: d.Sign; E: Cerabien; F: Vitadur-Alpha; and G: Ultropaline) after aging in air or artificial saliva, and correlate results with leucite content (LC). Bars were fired according to manufacturers' instructions and polished before induction of cracks by a Vickers indenter (19.6N, 20s). Four specimens were stored in air/room temperature, and three in saliva/37 degrees C. Five indentations were made per specimen and crack lengths measured at the following times: approximately 0; 1; 3; 10; 30; 100; 300; 1000 and 3000 h. The stress corrosion coefficient n was calculated by linear regression analysis after plotting crack length as a function of time, considering that the slope of the curve was [2/(3n+2)]. Microstructural analysis was performed to determine LC. LC of the porcelains were 22% (A and B); 6% (C); 15% (D); 0% (E and F); and 13% (G). Except for porcelains A and D, all materials showed a decrease in their n values when stored in artificial saliva. However, the decrease was more pronounced for porcelains B, F, and G. Ranking of materials varied according to storage media (in air, porcelain G showed higher n compared to A, while in saliva both showed similar coefficients). No correlation was found between n values and LC in air or saliva. Storage media influenced the n value obtained for most of the materials. LC did not affect resistance to slow crack growth regardless of the test environment.
Precision capacitor has improved temperature and operational stability
NASA Technical Reports Server (NTRS)
Brookshier, W. K.; Lewis, R. N.
1967-01-01
Vacuum dielectric capacitor is fabricated from materials with very low temperature coefficients of expansion. This precision capacitor in the 1000-2000 picofarad range has a near-zero temperature coefficient of capacitance, eliminates ion chamber action caused by air ionization in the dielectric, and minimizes electromagnetic field charging effects.
Nakanishi, Koichi; Kogure, Akinori; Fujii, Takenao; Kokawa, Ryohei; Deuchi, Keiji; Kuwana, Ritsuko; Takamatsu, Hiromu
2013-10-09
If a fixed stress is applied to the three-dimensional z-axis of a solid material, followed by heating, the amount of thermal expansion increases according to a fixed coefficient of thermal expansion. When expansion is plotted against temperature, the transition temperature at which the physical properties of the material change is at the apex of the curve. The composition of a microbial cell depends on the species and condition of the cell; consequently, the rate of thermal expansion and the transition temperature also depend on the species and condition of the cell. We have developed a method for measuring the coefficient of thermal expansion and the transition temperature of cells using a nano thermal analysis system in order to study the physical nature of the cells. The tendency was seen that among vegetative cells, the Gram-negative Escherichia coli and Pseudomonas aeruginosa have higher coefficients of linear expansion and lower transition temperatures than the Gram-positive Staphylococcus aureus and Bacillus subtilis. On the other hand, spores, which have low water content, overall showed lower coefficients of linear expansion and higher transition temperatures than vegetative cells. Comparing these trends to non-microbial materials, vegetative cells showed phenomenon similar to plastics and spores showed behaviour similar to metals with regards to the coefficient of liner thermal expansion. We show that vegetative cells occur phenomenon of similar to plastics and spores to metals with regard to the coefficient of liner thermal expansion. Cells may be characterized by the coefficient of linear expansion as a physical index; the coefficient of linear expansion may also characterize cells structurally since it relates to volumetric changes, surface area changes, the degree of expansion of water contained within the cell, and the intensity of the internal stress on the cellular membrane. The coefficient of linear expansion holds promise as a new index for furthering the understanding of the characteristics of cells. It is likely to be a powerful tool for investigating changes in the rate of expansion and also in understanding the physical properties of cells.
2013-01-01
Background If a fixed stress is applied to the three-dimensional z-axis of a solid material, followed by heating, the amount of thermal expansion increases according to a fixed coefficient of thermal expansion. When expansion is plotted against temperature, the transition temperature at which the physical properties of the material change is at the apex of the curve. The composition of a microbial cell depends on the species and condition of the cell; consequently, the rate of thermal expansion and the transition temperature also depend on the species and condition of the cell. We have developed a method for measuring the coefficient of thermal expansion and the transition temperature of cells using a nano thermal analysis system in order to study the physical nature of the cells. Results The tendency was seen that among vegetative cells, the Gram-negative Escherichia coli and Pseudomonas aeruginosa have higher coefficients of linear expansion and lower transition temperatures than the Gram-positive Staphylococcus aureus and Bacillus subtilis. On the other hand, spores, which have low water content, overall showed lower coefficients of linear expansion and higher transition temperatures than vegetative cells. Comparing these trends to non-microbial materials, vegetative cells showed phenomenon similar to plastics and spores showed behaviour similar to metals with regards to the coefficient of liner thermal expansion. Conclusions We show that vegetative cells occur phenomenon of similar to plastics and spores to metals with regard to the coefficient of liner thermal expansion. Cells may be characterized by the coefficient of linear expansion as a physical index; the coefficient of linear expansion may also characterize cells structurally since it relates to volumetric changes, surface area changes, the degree of expansion of water contained within the cell, and the intensity of the internal stress on the cellular membrane. The coefficient of linear expansion holds promise as a new index for furthering the understanding of the characteristics of cells. It is likely to be a powerful tool for investigating changes in the rate of expansion and also in understanding the physical properties of cells. PMID:24107328
Arévalo, Cristina; Montealegre-Meléndez, Isabel; Ariza, Enrique; Kitzmantel, Michael; Rubio-Escudero, Cristina; Neubauer, Erich
2016-01-01
This research is focused on the influence of processing temperature on titanium matrix composites reinforced through Ti, Al, and B4C reactions. In order to investigate the effect of Ti-Al based intermetallic compounds on the properties of the composites, aluminum powder was incorporated into the starting materials. In this way, in situ TixAly were expected to form as well as TiB and TiC. The specimens were fabricated by the powder metallurgy technique known as inductive hot pressing (iHP), using a temperature range between 900 °C and 1400 °C, at 40 MPa for 5 min. Raising the inductive hot pressing temperature may affect the microstructure and properties of the composites. Consequently, the variations of the reinforcing phases were investigated. X-ray diffraction, microstructural analysis, and mechanical properties (Young’s modulus and hardness) of the specimens were carried out to evaluate and determine the significant influence of the processing temperature on the behavior of the composites. PMID:28774039
Thermal and vibration dynamic analysis of an induction motor using optical fiber Bragg gratings
NASA Astrophysics Data System (ADS)
Sousa, Kleiton d. M.; Dreyer, Uilian J.; Martelli, Cicero; Cardozo da Silva, Jean Carlos
2015-09-01
In this paper it is presented the results of temperature and vibration measurements in a Three-phase Induction Motor (TIM) running at no-load condition. Vibration and temperature analysis are the most successful techniques used for condition monitoring of induction motors. The vibration is measured using two FBGs installed inside of the motor between two subsequent stator teeth. The motor spectrum of vibration when power is at 60 Hz presents the frequencies 60 Hz, 120 Hz, 180 Hz, and 240 Hz as theoretically expected. For the temperature measurement two FBGs are encapsulated in an alumina tube fixed along the stator. The results show 0.9°C difference between the two FBG caused by the motor ventilation nearer of one FBG. These measurements can be used to determine TIM parameters and still be predictive maintenance tool.
Ambipolar thermoelectric power of chemically-exfoliated RuO2 nanosheets
NASA Astrophysics Data System (ADS)
Kim, Jeongmin; Yoo, Somi; Moon, Hongjae; Kim, Se Yun; Ko, Dong-Su; Roh, Jong Wook; Lee, Wooyoung
2018-01-01
The electrical conductivity and Seebeck coefficient of RuO2 nanosheets are enhanced by metal nanoparticle doping using Ag-acetate solutions. In this study, RuO2 monolayer and bilayer nanosheets exfoliated from layered alkali metal ruthenates are transferred to Si substrates for device fabrication, and the temperature dependence of their conductivity and Seebeck coefficients is investigated. For pristine RuO2 nanosheets, the sign of the Seebeck coefficient changes with temperature from 350-450 K. This indicates that the dominant type of charge carrier is dependent on the temperature, and the RuO2 nanosheets show ambipolar carrier transport behavior. By contrast, the sign of the Seebeck coefficient for Ag nanoparticle-doped RuO2 nanosheets does not change with temperature, indicating that the extra charge carriers from metal nanoparticles promote n-type semiconductor behavior.
Next generation dilatometer for highest accuracy thermal expansion measurement of ZERODUR®
NASA Astrophysics Data System (ADS)
Jedamzik, Ralf; Engel, Axel; Kunisch, Clemens; Westenberger, Gerhard; Fischer, Peter; Westerhoff, Thomas
2015-09-01
In the recent years, the ever tighter tolerance for the Coefficient of thermal expansion (CTE) of IC Lithography component materials is requesting significant progress in the metrology accuracy to determine this property as requested. ZERODUR® is known for its extremely low CTE between 0°C to 50°C. The current measurement of the thermal expansion coefficient is done using push rod dilatometer measurement systems developed at SCHOTT. In recent years measurements have been published showing the excellent CTE homogeneity of ZERODUR® in the one-digit ppb/K range using these systems. The verifiable homogeneity was limited by the CTE(0°C, 50°C) measurement repeatability in the range of ± 1.2 ppb/K of the current improved push rod dilatometer setup using an optical interferometer as detector instead of an inductive coil. With ZERODUR® TAILORED, SCHOTT introduced a low thermal expansion material grade that can be adapted to individual customer application temperature profiles. The basis for this product is a model that has been developed in 2010 for better understanding of the thermal expansion behavior under given temperature versus time conditions. The CTE behavior predicted by the model has proven to be in very good alignment with the data determined in the thermal expansions measurements. The measurements to determine the data feeding the model require a dilatometer setup with excellent stability and accuracy for long measurement times of several days. In the past few years SCHOTT spent a lot of effort to drive a dilatometer measurement technology based on the push rod setup to its limit, to fulfill the continuously demand for higher CTE accuracy and deeper material knowledge of ZERODUR®. This paper reports on the status of the dilatometer technology development at SCHOTT.
Structural phase transition and multiferroic properties of Bi0.8A0.2Fe0.8Mn0.2O3 (A = Ca, Sr)
NASA Astrophysics Data System (ADS)
Rout, Jyoshna; Choudhary, R. N. P.
2018-05-01
The multiferroic BiFeO3 and Bi0.8A0.2Fe0.8Mn0.2O3 (A = Ca, Sr) have been synthesized using direct mechanosynthesis. Detailed investigations were made on the influence of Ca-Mn and Sr-Mn co-substitutions on the structure change, electric and magnetic properties of the BFO. Rietveld refinement on the XRD pattern of the modified samples clarifies the structural transition from R3c:H (parent BiFeO3) to the biphasic structure (R3c: H + Pnma). Scanning electron micrographs confirmed the polycrystalline nature of the materials and each of the microstructure comprised of uniformly distributed grains with less porosity. The dielectric measurements reveal that enhancement in dielectric properties due to the reduction of oxygen vacancies by substitutional ions. Studies of frequency-dependence of impedance and related parameters exhibit that the electrical properties of the materials are strongly dependent on temperature, and bear a good correlation with its microstructure. The bulk resistance (evaluated from impedance studies) is found to decrease with increasing temperature for all the samples. The alternating current (ac) conductivity spectra show a typical signature of an ionic conducting system, and are found to obey Jonscher's universal power law. Preliminary studies of magnetic characteristics of the samples reveal enhanced magnetization for Ca-Mn co-substituted sample. The magnetoelectric coefficient as the function of applied dc magnetizing field under fixed ac magnetic field 15.368 Oe is measured and this ME coefficient αME corresponds to induction of polarization by a magnetic field.
Cross-plane electrical and thermal transport in oxide metal/semiconductor superlattices
NASA Astrophysics Data System (ADS)
Jha, Pankaj
Perovskite oxides display a rich variety of electronic properties as metals, ferroelectrics, ferromagnetics, multiferroics, and thermoelectrics. Cross-plane electron filtering transport in metal/semiconductor superlattices provides a potential approach to increase the thermoelectric figure of merit (ZT). La0.67Sr0.33MnO3 (LSMO) and LaMnO3 (LMO) thin-film depositions were optimized using pulsed laser deposition (PLD) to achieve low resistivity constituent materials for LSMO/LMO superlattice heterostructures on (100)-strontium titanate (STO) substrates. X-ray diffraction and high-resolution reciprocal space mapping (RSM) indicate that the superlattices are epitaxial and pseudomorphic. Cross-plane devices were fabricated by etching cylindrical pillar structures in superlattices using inductively-coupled-plasma reactive-ion etching. The cross-plane electrical conductivity data for LSMO/LMO superlattices reveal an effective barrier height of 220 meV. The cross-plane LSMO/LMO superlattices showed a giant Seebeck coefficient of 2560 microV/K at 300K that increases to 16640 microV/K at 360K. The large Seebeck coefficient may arise due to hot electron and spin filtering as LSMO/LMO superlattice constituent materials exhibit spintronic properties where charges and spin current are intertwined and can generate a spin-Seebeck effect. The room temperature thermal conductivity achieved in low resistivity superlattices was 0.92 W/mK, which indicates that cross-plane phonon scattering at interfaces reduces the lattice contribution to the thermal conductivity. The giant contribution of spin-Seebeck, the large temperature dependence of the cross-plane power factor, and the low thermal conductivity in low resistance LSMO/LMO superlattices may offer opportunities to realize spin-magnetic thermoelectric devices, and suggests a direction for further investigations of the potential of LSMO/LMO oxide superlattices for thermoelectric devices.
An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling
Gong, Chen; Liu, Dake; Miao, Zhidong; Wang, Wei; Li, Min
2017-01-01
The inductive link is widely used in implantable biomedical sensor systems to achieve near-field communication (NFC) and wireless power transfer (WPT). However, it is tough to achieve reliable NFC on an inductive WPT link when the coupling coefficient is ultra-low (0.01 typically), since the NFC signal (especially for the uplink from the in-body part to the out-body part) could be too weak to be detected. Traditional load shift keying (LSK) requires strong coupling to pass the load modulation information to the power source. Instead of using LSK, we propose a dual-carrier NFC scheme for the weak-coupled inductive link; using binary phase shift keying (BPSK) modulation, its downlink data are modulated on the power carrier (2 MHz), while its uplink data are modulated on another carrier (125 kHz). The two carriers are transferred through the same coil pair. To overcome the strong interference of the power carrier, dedicated circuits are introduced. In addition, to minimize the power transfer efficiency decrease caused by adding NFC, we optimize the inductive link circuit parameters and approach the receiver sensitivity limit. In the prototype experiments, even though the coupling coefficient is as low as 0.008, the in-body transmitter costs only 0.61 mW power carrying 10 kbps of data, and achieves a 1 × 10−7 bit error rate under the strong interference of WPT. This dual-carrier NFC scheme could be useful for small-sized implantable biomedical sensor applications. PMID:28604610
Zorgani, Youssef Agrebi; Koubaa, Yassine; Boussak, Mohamed
2016-03-01
This paper presents a novel method for estimating the load torque of a sensorless indirect stator flux oriented controlled (ISFOC) induction motor drive based on the model reference adaptive system (MRAS) scheme. As a matter of fact, this method is meant to inter-connect a speed estimator with the load torque observer. For this purpose, a MRAS has been applied to estimate the rotor speed with tuned load torque in order to obtain a high performance ISFOC induction motor drive. The reference and adjustable models, developed in the stationary stator reference frame, are used in the MRAS scheme in an attempt to estimate the speed of the measured terminal voltages and currents. The load torque is estimated by means of a Luenberger observer defined throughout the mechanical equation. Every observer state matrix depends on the mechanical characteristics of the machine taking into account the vicious friction coefficient and inertia moment. Accordingly, some simulation results are presented to validate the proposed method and to highlight the influence of the variation of the inertia moment and the friction coefficient on the speed and the estimated load torque. The experimental results, concerning to the sensorless speed with a load torque estimation, are elaborated in order to validate the effectiveness of the proposed method. The complete sensorless ISFOC with load torque estimation is successfully implemented in real time using a digital signal processor board DSpace DS1104 for a laboratory 3 kW induction motor. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Defect characterization by inductive heated thermography
NASA Astrophysics Data System (ADS)
Noethen, Matthias; Meyendorf, Norbert
2012-05-01
During inductive-thermographic inspection, an eddy current of high intensity is induced into the inspected material and the thermal response is detected by an infrared camera. Anomalies in the surface temperature during and after inductive heating correspond to inhomogeneities in the material. A finite element simulation of the surface crack detection process using active thermography with inductive heating has been developed. The simulation model is based on the finite element software ANSYS. The simulation tool was tested and used for investigations on steel components with different longitudinal orientated cracks, varying in shape, width and height. This paper focuses on surface connected longitudinal orientated cracks in austenitic steel. The results show that depending on the excitation frequency the temperature distribution of the material under test are different and a possible way to measure the depth of the crack will be discussed.
Optimization of a one-step heat-inducible in vivo mini DNA vector production system.
Nafissi, Nafiseh; Sum, Chi Hong; Wettig, Shawn; Slavcev, Roderick A
2014-01-01
While safer than their viral counterparts, conventional circular covalently closed (CCC) plasmid DNA vectors offer a limited safety profile. They often result in the transfer of unwanted prokaryotic sequences, antibiotic resistance genes, and bacterial origins of replication that may lead to unwanted immunostimulatory responses. Furthermore, such vectors may impart the potential for chromosomal integration, thus potentiating oncogenesis. Linear covalently closed (LCC), bacterial sequence free DNA vectors have shown promising clinical improvements in vitro and in vivo. However, the generation of such minivectors has been limited by in vitro enzymatic reactions hindering their downstream application in clinical trials. We previously characterized an in vivo temperature-inducible expression system, governed by the phage λ pL promoter and regulated by the thermolabile λ CI[Ts]857 repressor to produce recombinant protelomerase enzymes in E. coli. In this expression system, induction of recombinant protelomerase was achieved by increasing culture temperature above the 37°C threshold temperature. Overexpression of protelomerase led to enzymatic reactions, acting on genetically engineered multi-target sites called "Super Sequences" that serve to convert conventional CCC plasmid DNA into LCC DNA minivectors. Temperature up-shift, however, can result in intracellular stress responses and may alter plasmid replication rates; both of which may be detrimental to LCC minivector production. We sought to optimize our one-step in vivo DNA minivector production system under various induction schedules in combination with genetic modifications influencing plasmid replication, processing rates, and cellular heat stress responses. We assessed different culture growth techniques, growth media compositions, heat induction scheduling and temperature, induction duration, post-induction temperature, and E. coli genetic background to improve the productivity and scalability of our system, achieving an overall LCC DNA minivector production efficiency of ∼ 90%.We optimized a robust technology conferring rapid, scalable, one-step in vivo production of LCC DNA minivectors with potential application to gene transfer-mediated therapeutics.
Optimization of a One-Step Heat-Inducible In Vivo Mini DNA Vector Production System
Wettig, Shawn; Slavcev, Roderick A.
2014-01-01
While safer than their viral counterparts, conventional circular covalently closed (CCC) plasmid DNA vectors offer a limited safety profile. They often result in the transfer of unwanted prokaryotic sequences, antibiotic resistance genes, and bacterial origins of replication that may lead to unwanted immunostimulatory responses. Furthermore, such vectors may impart the potential for chromosomal integration, thus potentiating oncogenesis. Linear covalently closed (LCC), bacterial sequence free DNA vectors have shown promising clinical improvements in vitro and in vivo. However, the generation of such minivectors has been limited by in vitro enzymatic reactions hindering their downstream application in clinical trials. We previously characterized an in vivo temperature-inducible expression system, governed by the phage λ pL promoter and regulated by the thermolabile λ CI[Ts]857 repressor to produce recombinant protelomerase enzymes in E. coli. In this expression system, induction of recombinant protelomerase was achieved by increasing culture temperature above the 37°C threshold temperature. Overexpression of protelomerase led to enzymatic reactions, acting on genetically engineered multi-target sites called “Super Sequences” that serve to convert conventional CCC plasmid DNA into LCC DNA minivectors. Temperature up-shift, however, can result in intracellular stress responses and may alter plasmid replication rates; both of which may be detrimental to LCC minivector production. We sought to optimize our one-step in vivo DNA minivector production system under various induction schedules in combination with genetic modifications influencing plasmid replication, processing rates, and cellular heat stress responses. We assessed different culture growth techniques, growth media compositions, heat induction scheduling and temperature, induction duration, post-induction temperature, and E. coli genetic background to improve the productivity and scalability of our system, achieving an overall LCC DNA minivector production efficiency of ∼90%.We optimized a robust technology conferring rapid, scalable, one-step in vivo production of LCC DNA minivectors with potential application to gene transfer-mediated therapeutics. PMID:24586704
Passive athermalization: required accuracy of the thermo-optical coefficients
NASA Astrophysics Data System (ADS)
Rogers, John R.
2014-12-01
Passive athermalization requires that the materials (both optical and mechanical) and optical powers be carefully selected in order for the image to stay adequately in focus at the plane of the detector as the various materials change in physical dimension and refractive index. For a large operational temperature range, the accuracy of the thermo-optical coefficients (dn/dT coefficients and the Coefficients of Thermal Expansion) can limit the performance of the final system. Based on an example lens designed to be passively athermalized over a 200°C temperature range, and using a Monte Carlo analysis technique, we examine the accuracy to which the expansion coefficients and dn/dT coefficients of the system must be known.
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.
2009-01-01
The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."
Gas-film coefficients for streams
Rathbun, R.E.; Tai, D.Y.
1983-01-01
Equations for predicting the gas-film coefficient for the volatilization of organic solutes from streams are developed. The film coefficient is a function of windspeed and water temperature. The dependence of the coefficient on windspeed is determined from published information on the evaporation of water from a canal. The dependence of the coefficient on temperature is determined from laboratory studies on the evaporation of water. Procedures for adjusting the coefficients for different organic solutes are based on the molecular diffusion coefficient and the molecular weight. The molecular weight procedure is easiest to use because of the availability of molecular weights. However, the theoretical basis of the procedure is questionable. The diffusion coefficient procedure is supported by considerable data. Questions, however, remain regarding the exact dependence of the film coefficint on the diffusion coefficient. It is suggested that the diffusion coefficient procedure with a 0.68-power dependence be used when precise estimate of the gas-film coefficient are needed and that the molecular weight procedure be used when only approximate estimates are needed.
Thermal coefficients of the methyl groups within ubiquitin
Sabo, T Michael; Bakhtiari, Davood; Walter, Korvin F A; McFeeters, Robert L; Giller, Karin; Becker, Stefan; Griesinger, Christian; Lee, Donghan
2012-01-01
Physiological processes such as protein folding and molecular recognition are intricately linked to their dynamic signature, which is reflected in their thermal coefficient. In addition, the local conformational entropy is directly related to the degrees of freedom, which each residue possesses within its conformational space. Therefore, the temperature dependence of the local conformational entropy may provide insight into understanding how local dynamics may affect the stability of proteins. Here, we analyze the temperature dependence of internal methyl group dynamics derived from the cross-correlated relaxation between dipolar couplings of two CH bonds within ubiquitin. Spanning a temperature range from 275 to 308 K, internal methyl group dynamics tend to increase with increasing temperature, which translates to a general increase in local conformational entropy. With this data measured over multiple temperatures, the thermal coefficient of the methyl group order parameter, the characteristic thermal coefficient, and the local heat capacity were obtained. By analyzing the distribution of methyl group thermal coefficients within ubiquitin, we found that the N-terminal region has relatively high thermostability. These results indicate that methyl groups contribute quite appreciably to the total heat capacity of ubiquitin through the regulation of local conformational entropy. PMID:22334336
Changes in heart rate variability during the induction and decay of heat acclimation.
Flouris, Andreas D; Poirier, Martin P; Bravi, Andrea; Wright-Beatty, Heather E; Herry, Christophe; Seely, Andrew J; Kenny, Glen P
2014-10-01
We evaluated the changes in core temperature, heart rate, and heart rate variability (HRV) during the induction and decay of heat acclimation. Ten males (23 ± 3 years; 79.5 ± 3.5 kg; 15.2 ± 4.5 percent body fat; 51.13 ± 4.61 mLO(2)∙kg(-1)∙min(-1) peak oxygen uptake) underwent a 14-day heat acclimation protocol comprising of 90-min cycling at ~50 % peak oxygen uptake at 40 °C and ~20 % relative humidity. Core temperature, heart rate, and 102 HRV measures were recorded during a heat tolerance test conducted at baseline (day 0) and at the end of the induction (day 14) and decay (day 28) phases. Heat acclimation resulted in significantly reduced core temperature [rectal (χ (2) = 1298.14, p < 0.001); esophageal (χ (2) = 1069.88, p < 0.001)] and heart rate (χ (2) = 1230.17, p < 0.001). Following the decay phase, 26, 40, and 60 % of the heat acclimation-induced reductions in rectal temperature, esophageal temperature, and heart rate, respectively, were lost. Heat acclimation was accompanied by profound and broad changes in HRV: at the end of the induction phase, 75 of the 102 variability measures computed were significantly different (p < 0.001), compared to only 47 of the 102 at the end of the decay phase. Heat acclimation is accompanied by reduced core temperature, significant bradycardia, and marked alterations in HRV, which we interpret as being related to vagal dominance. The observed changes in core temperature persist for at least 2 weeks of non-exposure to heat, while the changes in heart rate and HRV decay faster and are only partly evident after 2 weeks of non-exposure to heat.
NASA Astrophysics Data System (ADS)
Sasnouski, I.; Kurylionak, A.
2018-03-01
For solving the problem of improving the powder coatings modified by nanostructure components obtained by induction surfacing method tribological characteristics it is necessary to study the kinetics of the powdered layer melting and define the minimum time of melting. For powdered layer predetermined temperature maintenance at sintering mode stage it is required to determine the temperature difference through blank thickness of the for one hundred-day of the define the warm-up swing on of the stocking up by solving the thermal conductivity stationary problem for quill (hollow) cylinder with internal heat source. Herewith, since in practice thickness of the cylinder wall is much less then its diameter and the temperature difference is comparatively small, the thermal conductivity dependence upon the temperature can be treated as negligible. As it was shown by our previous studies, in the induction heating process under powdered material centrifugal surfacing (i.e. before achieving the melting temperature) the temperature distribution in powdered layer thickness may be considered even. Hereinafter, considering the blank part induction heating process quasi-stationarity under Fo big values, it is possible to consider its internal surface heating as developing with constant velocity. As a result of development the melting front movement mathematical model in a powdered material with nanostructure modifiers the minimum surfacing time is defined. It allows to minimize negative impact of thermal influence on formation of applied coating structure, to raise productivity of the process, to lower power inputs and to ensure saving of nonferrous and high alloys by reducing the allowance for machining. The difference of developed mathematical model of melting front movement from previously known is that the surface temperature from which the heat transfer occures is a variable and varies with a time after the linear law.
NASA Astrophysics Data System (ADS)
Niu, Chun-Yang; Qi, Hong; Huang, Xing; Ruan, Li-Ming; Tan, He-Ping
2016-11-01
A rapid computational method called generalized sourced multi-flux method (GSMFM) was developed to simulate outgoing radiative intensities in arbitrary directions at the boundary surfaces of absorbing, emitting, and scattering media which were served as input for the inverse analysis. A hybrid least-square QR decomposition-stochastic particle swarm optimization (LSQR-SPSO) algorithm based on the forward GSMFM solution was developed to simultaneously reconstruct multi-dimensional temperature distribution and absorption and scattering coefficients of the cylindrical participating media. The retrieval results for axisymmetric temperature distribution and non-axisymmetric temperature distribution indicated that the temperature distribution and scattering and absorption coefficients could be retrieved accurately using the LSQR-SPSO algorithm even with noisy data. Moreover, the influences of extinction coefficient and scattering albedo on the accuracy of the estimation were investigated, and the results suggested that the reconstruction accuracy decreased with the increase of extinction coefficient and the scattering albedo. Finally, a non-contact measurement platform of flame temperature field based on the light field imaging was set up to validate the reconstruction model experimentally.
Rate Coefficients for the OH + (CHO)2 (Glyoxal) Reaction Between 240 and 400 K
NASA Astrophysics Data System (ADS)
Feierabend, K. J.; Talukdar, R. K.; Zhu, L.; Ravishankara, A. R.; Burkholder, J. B.
2006-12-01
Glyoxal (CHO)2, the simplest dialdehyde, is an end product formed in the atmospheric oxidation of biogenic hydrocarbons, for example, isoprene. As such, glyoxal plays a role in regional air quality and ozone production in certain locations. Glyoxal is lost in the atmosphere via UV photolysis and reaction with OH. However, the currently available rate coefficient data for the OH + glyoxal reaction is limited to a single room- temperature measurement made using the relative rate method. A determination of the rate coefficient temperature dependence is therefore needed for a more complete interpretation of the atmospheric processing of glyoxal. This study reports the rate coefficient for the OH + (CHO)2 reaction measured under pseudo- first-order conditions in OH ([(CHO)2] > 1000 [OH]0). OH radicals were produced using 248 nm pulsed laser photolysis of H2O2 or HNO3 and detected by pulsed laser induced fluorescence. The concentration of glyoxal in the reactor was determined using three independent techniques; gas flow rates as well as in situ UV and IR absorption. The total pressure in the reactor was varied from 40 to 300 Torr (He), and the rate coefficient was found to be independent of pressure over the temperature range studied. The rate coefficient exhibits a negative temperature dependence between 240 and 400 K consistent with the dependence previously observed for many other aldehydes. Our room-temperature rate coefficient is smaller than the relative rate value that is currently recommended for use in atmospheric model calculations. Our measured rate coefficients are discussed with respect to those for other aldehydes. The atmospheric implications of our work will also be discussed.
Lu, Wanjun; Guo, Huirong; Chou, I.-Ming; Burruss, R.C.; Li, Lanlan
2013-01-01
Accurate values of diffusion coefficients for carbon dioxide in water and brine at reservoir conditions are essential to our understanding of transport behavior of carbon dioxide in subsurface pore space. However, the experimental data are limited to conditions at low temperatures and pressures. In this study, diffusive transfer of carbon dioxide in water at pressures up to 45 MPa and temperatures from 268 to 473 K was observed within an optical capillary cell via time-dependent Raman spectroscopy. Diffusion coefficients were estimated by the least-squares method for the measured variations in carbon dioxide concentration in the cell at various sample positions and time. At the constant pressure of 20 MPa, the measured diffusion coefficients of carbon dioxide in water increase with increasing temperature from 268 to 473 K. The relationship between diffusion coefficient of carbon dioxide in water [D(CO2) in m2/s] and temperature (T in K) was derived with Speedy–Angell power-law approach as: D(CO2)=D0[T/Ts-1]m where D0 = 13.942 × 10−9 m2/s, Ts = 227.0 K, and m = 1.7094. At constant temperature, diffusion coefficients of carbon dioxide in water decrease with pressure increase. However, this pressure effect is rather small (within a few percent).
Outdoor Performance of a Thin-Film Gallium-Arsenide Photovoltaic Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silverman, T. J.; Deceglie, M. G.; Marion, B.
2013-06-01
We deployed a 855 cm2 thin-film, single-junction gallium arsenide (GaAs) photovoltaic (PV) module outdoors. Due to its fundamentally different cell technology compared to silicon (Si), the module responds differently to outdoor conditions. On average during the test, the GaAs module produced more power when its temperature was higher. We show that its maximum-power temperature coefficient, while actually negative, is several times smaller in magnitude than that of a Si module used for comparison. The positive correlation of power with temperature in GaAs is due to temperature-correlated changes in the incident spectrum. We show that a simple correction based on precipitablemore » water vapor (PWV) brings the photocurrent temperature coefficient into agreement with that measured by other methods and predicted by theory. The low operating temperature and small temperature coefficient of GaAs give it an energy production advantage in warm weather.« less
Temperature and neuronal circuit function: compensation, tuning and tolerance.
Robertson, R Meldrum; Money, Tomas G A
2012-08-01
Temperature has widespread and diverse effects on different subcellular components of neuronal circuits making it difficult to predict precisely the overall influence on output. Increases in temperature generally increase the output rate in either an exponential or a linear manner. Circuits with a slow output tend to respond exponentially with relatively high Q(10)s, whereas those with faster outputs tend to respond in a linear fashion with relatively low temperature coefficients. Different attributes of the circuit output can be compensated by virtue of opposing processes with similar temperature coefficients. At the extremes of the temperature range, differences in the temperature coefficients of circuit mechanisms cannot be compensated and the circuit fails, often with a reversible loss of ion homeostasis. Prior experience of temperature extremes activates conserved processes of phenotypic plasticity that tune neuronal circuits to be better able to withstand the effects of temperature and to recover more rapidly from failure. Copyright © 2012 Elsevier Ltd. All rights reserved.
Alfven waves associated with long cylindrical satellites
NASA Technical Reports Server (NTRS)
Venkataraman, N. S.; Gustafson, W. A.
1973-01-01
The Alfven wave excited by a long cylindrical satellite moving with a constant velocity at an angle relative to a uniform magnetic field has been calculated. Assuming a plasma with infinite conductivity, the linearized momentum equation and Maxwell's equations are applied to a cylindrical satellite carrying a variable current. The induced magnetic field is determined, and it is shown that the Alfven disturbance zone is of limited extent, depending on the satellite shape. The wave drag coefficient is calculated and shown to be small compared to the induction drag coefficient at all altitudes considered.
Hall effect of copper nitride thin films
NASA Astrophysics Data System (ADS)
Yue, G. H.; Liu, J. Z.; Li, M.; Yuan, X. M.; Yan, P. X.; Liu, J. L.
2005-08-01
The Hall effect of copper nitride (Cu3N) thin films was investigated in our work. Cu3N films were deposited on glass substrates by radio-frequency (RF) magnetron sputtering at different temperatures using pure copper as the sputtering target. The Hall coefficients of the films are demonstrated to be dependent on the deposition gas flow rate and the measuring temperature. Both the Hall coefficient and resistance of the Cu3N films increase with the nitrogen gas flow rate at room temperature, while the Hall mobility and the carrier density of the films decrease. As the temperature changed from 100 K to 300 K, the Hall coefficient and the resistivity of the films decreased, while the carrier density increased and Hall mobility shows no great change. The energy band gap of the Cu3N films deduced from the curve of the common logarithm of the Hall coefficient against 1/T is 1.17-1.31 eV.
Modeling induction heater temperature distribution in polymeric material
NASA Astrophysics Data System (ADS)
Sorokin, A. G.; Filimonova, O. V.
2017-10-01
An induction heating system has a number of inherent benefits compared to traditional heating systems due to a non-contact heating process. The main interesting area of the induction heating process is the efficiency of the usage of energy, choice of the plate material and different coil configurations based on application. Correctly designed, manufactured and maintained induction coils are critical to the overall efficiency of induction heating solutions. The paper describes how the induction heating system in plastic injection molding is designed. The use of numerical simulation in order to get the optimum design of the induction coil is shown. The purpose of this work is to consider various coil configurations used in the induction heating process, which is widely used in plastic molding. Correctly designed, manufactured and maintained induction coils are critical to the overall efficiency of induction heating solutions. The results of calculation are in the numerical model.
Temperature dependence of single-crystal elastic constants of flux-grown alpha-GaPO(4).
Armand, P; Beaurain, M; Rufflé, B; Menaert, B; Papet, P
2009-06-01
The lattice parameter change with respect to temperature (T) has been measured using high-temperature powder X-ray diffraction techniques for high-temperature flux-grown GaPO(4) single crystals with the alpha-quartz structure. The lattice and the volume linear thermal expansion coefficients in the temperature range 303-1173 K were computed from the X-ray data. The percentage linear thermal expansions along the a and c axes at 1173 K are 1.5 and 0.51, respectively. The temperature dependence of the mass density rho of flux-grown GaPO(4) single crystals was evaluated using the volume thermal expansion coefficient alpha(V)(T) = 3.291 x 10(-5) - 2.786 x 10(-8) [T] + 4.598 x 10(-11)[T](2). Single-crystal high-resolution Brillouin spectroscopy measurements have been carried out at ambient pressure from 303 to 1123 K to determine the elastic constants C(IJ) of high-temperature flux-grown GaPO(4) material. The single-crystal elastic moduli were calculated using the sound velocities via the measured Brillouin frequency shifts Deltanu(B). These are, to our knowledge, the highest temperatures at which single-crystal elastic constants of alpha-GaPO(4) have been measured. Most of the room-temperature elastic constant values measured on flux-grown GaPO(4) material are higher than the ones found for hydrothermally grown GaPO(4) single crystals. The fourth-order temperature coefficients of both the Brillouin frequency shifts T(nuB)((n)) and the single-crystal elastic moduli T(C(IJ))((n)) were obtained. The first-order temperature coefficients of the C(IJ) are in excellent agreement with previous reports on low-temperature hydrothermally grown alpha-GaPO(4) single crystals, while small discrepancies in the higher-order temperature coefficients are observed. This is explained in terms of the OH content in the GaPO(4) network, which is an important parameter in the crystal thermal behavior.
Mapping Pesticide Partition Coefficients By Electromagnetic Induction
USDA-ARS?s Scientific Manuscript database
A potential method for reducing pesticide leaching is to base application rates on the leaching potential of a specific chemical and soil combination. However, leaching is determined in part by the partitioning of the chemical between the soil and soil solution, which varies across a field. Standard...
NASA Astrophysics Data System (ADS)
Miller, Nicholas A. T.; Daivis, Peter J.; Snook, Ian K.; Todd, B. D.
2013-10-01
Thermophoresis is the movement of molecules caused by a temperature gradient. Here we report the results of a study of thermophoresis using non-equilibrium molecular dynamics simulations of a confined argon-krypton fluid subject to two different temperatures at thermostated walls. The resulting temperature profile between the walls is used along with the Soret coefficient to predict the concentration profile that develops across the channel. We obtain the Soret coefficient by calculating the mutual diffusion and thermal diffusion coefficients. We report an appropriate method for calculating the transport coefficients for binary systems, using the Green-Kubo integrals and radial distribution functions obtained from equilibrium molecular dynamics simulations of the bulk fluid. Our method has the unique advantage of separating the mutual diffusion and thermal diffusion coefficients, and calculating the sign and magnitude of their individual contributions to thermophoresis in binary mixtures.
Reshchikov, M. A.; McNamara, J. D.; Toporkov, M.; Avrutin, V.; Morkoç, H.; Usikov, A.; Helava, H.; Makarov, Yu.
2016-01-01
Point defects in high-purity GaN layers grown by hydride vapor phase epitaxy are studied by steady-state and time-resolved photoluminescence (PL). The electron-capture coefficients for defects responsible for the dominant defect-related PL bands in this material are found. The capture coefficients for all the defects, except for the green luminescence (GL1) band, are independent of temperature. The electron-capture coefficient for the GL1 band significantly changes with temperature because the GL1 band is caused by an internal transition in the related defect, involving an excited state acting as a giant trap for electrons. By using the determined electron-capture coefficients, the concentration of free electrons can be found at different temperatures by a contactless method. A new classification system is suggested for defect-related PL bands in undoped GaN. PMID:27901025
Temperature dependence of the hydrogen-broadening coefficient for the nu 9 fundamental of ethane
NASA Technical Reports Server (NTRS)
Halsey, G. W.; Hillman, J. J.; Nadler, Shacher; Jennings, D. E.
1988-01-01
Experimental results for the temperature dependence of the H2-broadening coefficient for the nu 9 fundamental of ethane are reported. Measurements were made over the temperature range 95-300 K using a novel low-temperature absorption cell. These spectra were recorded with the Doppler-limited diode laser spectrometer at NASA Goddard. The results are compared with recent measurements and model predictions.
Closed loop control of the induction heating process using miniature magnetic sensors
Bentley, Anthony E.; Kelley, John Bruce; Zutavern, Fred J.
2003-05-20
A method and system for providing real-time, closed-loop control of the induction hardening process. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).
Use of miniature magnetic sensors for real-time control of the induction heating process
Bentley, Anthony E.; Kelley, John Bruce; Zutavern, Fred J.
2002-01-01
A method of monitoring the process of induction heating a workpiece. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can also be used to measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).
NASA Astrophysics Data System (ADS)
Ozawa, S.; Suzuki, S.; Hibiya, T.; Fukuyama, H.
2011-01-01
Influences of oxygen partial pressure, PO2, of ambient atmosphere and temperature on surface tension and its temperature coefficient for molten iron were experimentally investigated by an oscillating droplet method using an electromagnetic levitation furnace. We successfully measured the surface tension of molten iron over a very wide temperature range of 780 K including undercooling condition in a well controlled PO2 atmosphere. When PO2 is fixed at 10-2 Pa at the inlet of the chamber, a "boomerang shape" temperature dependence of surface tension was experimentally observed; surface tension increased and then decreased with increasing temperature. The pure surface tension of molten iron was deduced from the negative temperature coefficient in the boomerang shape temperature dependence. When the surface tension was measured under the H2-containing gas atmosphere, surface tension did not show a linear relationship against temperature. The temperature dependence of the surface tension shows anomalous kink at around 1850 K due to competition between the temperature dependence of PO2 and that of the equilibrium constant of oxygen adsorption.
Tian, Jing; Yam, Caleb; Balasundaram, Gayathri; Wang, Hui; Gore, Aniket; Sampath, Karuna
2003-07-01
The floor plate, a specialized group of cells in the ventral midline of the neural tube of vertebrates, plays crucial roles in patterning the central nervous system. Recent work from zebrafish, chick, chick-quail chimeras and mice to investigate the development of the floor plate have led to several models of floor-plate induction. One model suggests that the floor plate is formed by inductive signalling from the notochord to the overlying neural tube. The induction is thought to be mediated by notochord-derived Sonic hedgehog (Shh), a secreted protein, and requires direct cellular contact between the notochord and the neural tube. Another model proposes a role for the organizer in generating midline precursor cells that produce floor plate cells independent of notochord specification, and proposes that floor plate specification occurs early, during gastrulation. We describe a temperature-sensitive mutation that affects the zebrafish Nodal-related secreted signalling factor, Cyclops, and use it to address the issue of when the floor plate is induced in zebrafish. Zebrafish cyclops regulates the expression of shh in the ventral neural tube. Although null mutations in cyclops result in the lack of the medial floor plate, embryos homozygous for the temperature-sensitive mutation have floor plate cells at the permissive temperature and lack floor plate cells at the restrictive temperature. We use this mutant allele in temperature shift-up and shift-down experiments to answer a central question pertaining to the timing of vertebrate floor plate induction. Abrogation of Cyc/Nodal signalling in the temperature-sensitive mutant embryos at various stages indicates that the floor plate in zebrafish is induced early in development, during gastrulation. In addition, continuous Cyclops signalling is required through gastrulation for a complete ventral neural tube throughout the length of the neuraxis. Finally, by modulation of Nodal signalling levels in mutants and in ectopic overexpression experiments, we show that, similar to the requirements for prechordal plate mesendoderm fates, uninterrupted and high levels of Cyclops signalling are required for induction and specification of a complete ventral neural tube.
NASA Technical Reports Server (NTRS)
Savin, D. W.; Gwinner, G.; Schwalm, D.; Wolf, A.; Mueller, A.; Schippers, S.
2002-01-01
Low temperature dielectronic recombination (DR) is the dominant recombination mechanism for most ions in X-ray photoionized cosmic plasmas. Reliably modeling and interpreting spectra from these plasmas requires accurate low temperature DR rate Coefficients. Of particular importance are the DR rate coefficients for the iron L-shell ions (Fe XVII-Fe XXIV). These ions are predicted to play an important role in determining the thermal structure and line emission of X-ray photoionized plasmas, which form in the media surrounding accretion powered sources such as X-ray binaries (XRBs), active galactic nuclei (AGN), and cataclysmic variables (Savin et al., 2000). The need for reliable DR data of iron L-shell ions has become particularly urgent after the launches of Chandra and XMM-Newton. These satellites are now providing high-resolution X-ray spectra from a wide range of X-ray photoionized sources. Interpreting the spectra from these sources requires reliable DR rate coefficients. However, at the temperatures relevant, for X-ray photoionized plasmas, existing theoretical DR rate coefficients can differ from one another by factors of two to orders of magnitudes.
NASA Astrophysics Data System (ADS)
Matsui, Y.; Watanabe, T.; Satani, T.; Muramatsu, M.; Tanaka, K.; Kitagawa, A.; Yoshida, Y.; Sato, F.; Kato, Y.; Iida, T.
2008-11-01
Multiply charged iron ions are produced from solid pure material in an electron cyclotron resonance (ECR) ion source. We develop an evaporator by using induction heating with the induction coil which is made from bare molybdenum wire and surrounding the pure iron rod. We optimize the shape of induction heating coil and operation of rf power supply. We conduct experiment to investigate reproducibility and stability in the operation and heating efficiency. Induction heating evaporator produces pure material vapor, because materials directly heated by eddy currents have non-contact with insulated materials which are impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10-4 to 10-3 Pa. We measure temperature of iron rod and film deposition rate by depositing iron vapor to crystal oscillator. We confirm stability and reproducibility of evaporator enough to conduct experiment in ECR ion source. We can obtain required temperature of iron under maximum power of power supply. We are aiming the evaporator higher melting point material than iron.
Thermoelectricity near Anderson localization transitions
NASA Astrophysics Data System (ADS)
Yamamoto, Kaoru; Aharony, Amnon; Entin-Wohlman, Ora; Hatano, Naomichi
2017-10-01
The electronic thermoelectric coefficients are analyzed in the vicinity of one and two Anderson localization thresholds in three dimensions. For a single mobility edge, we correct and extend previous studies and find universal approximants which allow us to deduce the critical exponent for the zero-temperature conductivity from thermoelectric measurements. In particular, we find that at nonzero low temperatures the Seebeck coefficient and the thermoelectric efficiency can be very large on the "insulating" side, for chemical potentials below the (zero-temperature) localization threshold. Corrections to the leading power-law singularity in the zero-temperature conductivity are shown to introduce nonuniversal temperature-dependent corrections to the otherwise universal functions which describe the Seebeck coefficient, the figure of merit, and the Wiedemann-Franz ratio. Next, the thermoelectric coefficients are shown to have interesting dependences on the system size. While the Seebeck coefficient decreases with decreasing size, the figure of merit first decreases but then increases, while the Wiedemann-Franz ratio first increases but then decreases as the size decreases. Small (but finite) samples may thus have larger thermoelectric efficiencies. In the last part we study thermoelectricity in systems with a pair of localization edges, the ubiquitous situation in random systems near the centers of electronic energy bands. As the disorder increases, the two thresholds approach each other, and then the Seebeck coefficient and the figure of merit increase significantly, as expected from the general arguments of Mahan and Sofo [J. D. Mahan and J. O. Sofo, Proc. Natl. Acad. Sci. USA 93, 7436 (1996), 10.1073/pnas.93.15.7436] for a narrow energy range of the zero-temperature metallic behavior.
Arrays of membrane isolated yttrium-barium-copper-oxide kinetic inductance bolometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindeman, M. A., E-mail: mark.a.lindeman@jpl.nasa.gov; Bonetti, J. A.; Bumble, B.
We are developing of arrays of membrane isolated resonator-bolometers, each with a kinetic inductance device (KID) to measure the temperature of the membrane. The KIDs are fabricated out of the high temperature superconductor YBCO to allow operation at relatively high temperatures. The bolometers are designed to offer higher sensitivity than sensors operating at 300 K, but they require less expensive and lighter weight cooling than even more sensitive conventional superconducting detectors operating at lower temperatures. The bolometer arrays are applicable as focal planes in infrared imaging spectrometers, such as for planetary science missions or earth observing satellites. We describe the devicesmore » and present measurements of their sensitivity.« less
Temperature and Strain Coefficient of Velocity for Langasite SAW Devices
NASA Technical Reports Server (NTRS)
Wilson, W. C.; Atkinson, G. M.
2013-01-01
Surface Acoustic Wave sensors on Langasite substrates are being investigated for aerospace applications. Characterization of the Langasite material properties must be performed before sensors can be installed in research vehicles. The coefficients of velocity for both strain and temperature have been determined. These values have also been used to perform temperature compensation of the strain measurements.
Science and software support for spacecraft solar occultation experiments
NASA Technical Reports Server (NTRS)
Hessameddin, G.; Becher, J.
1982-01-01
The temperature dependence of absorption coefficients of ozone was studied between 7567 A and 3630 A. When the gas was cooled from room temperature to -108 C, an overall increase in the absorption coefficients was noticed. The maximum increase of 5% occurred at lambda = 6020 A. In general, the absorption is linearly dependent on temperature.
Ramu, Ashok T; Mages, Phillip; Zhang, Chong; Imamura, Jeffrey T; Bowers, John E
2012-09-01
The Seebeck coefficient of a typical thermoelectric material, silicon-doped InGaAs lattice-matched to InP, is measured over a temperature range from 300 K to 550 K. By depositing and patterning a thermometric reference bar of silicon-doped InP adjacent to a bar of the material under test, temperature differences are measured directly. This is in contrast to conventional two-thermocouple techniques that subtract two large temperatures to yield a small temperature difference, a procedure prone to errors. The proposed technique retains the simple instrumentation of two-thermocouple techniques while eliminating the critical dependence of the latter on good thermal contact. The repeatability of the proposed technique is demonstrated to be ±2.6% over three temperature sweeps, while the repeatability of two-thermocouple measurements is about ±5%. The improved repeatability is significant for reliable reporting of the ZT figure of merit, which is proportional to the square of the Seebeck coefficient. The accuracy of the proposed technique depends on the accuracy with which the high-temperature Seebeck coefficient of the reference material may be computed or measured. In this work, the Seebeck coefficient of the reference material, n+ InP, is computed by rigorous solution of the Boltzmann transport equation. The accuracy and repeatability of the proposed technique can be systematically improved by scaling, and the method is easily extensible to other material systems currently being investigated for high thermoelectric energy conversion efficiency.
Recombination of electrons with NH4/+/-/NH3/n-series ions
NASA Technical Reports Server (NTRS)
Huang, C.-M.; Biondi, M. A.; Johnsen, R.
1976-01-01
The paper examines the recombination of electrons with ammonium-series cluster ions, NH4(+)-(NH3)n, for two reasons: (1) NH4(+) may be a significant ion in the lower atmospheres of the earth and the outer planets, and (2) to investigate the weak temperature dependence of the cluster ion's recombination coefficient. A microwave afterglow mass spectrometer was used to determine the recombination coefficients for the first five members of the ammonium series, (18+) through (86+), at temperatures between 200 and 410 K. The electron temperature dependence of the recombination coefficient was determined for (35+) and (52+), the n = 1 and 2 cluster ions, over the temperature range 300-3000 K.
Ion plating with an induction heating source
NASA Technical Reports Server (NTRS)
Spalvins, T.; Brainard, W. A.
1976-01-01
Induction heating is introduced as an evaporation heat source in ion plating. A bare induction coil without shielding can be directly used in the glow discharge region with no arcing. The only requirement is to utilize an rf inductive generator with low operating frequency of 75 kHz. Mechanical simplicity of the ion plating apparatus and ease of operation is a great asset for industrial applications; practically any metal such as nickel, iron, and the high temperature refractories can be evaporated and ion plated.
NASA Astrophysics Data System (ADS)
Entler, S.; Duran, I.; Kocan, M.; Vayakis, G.
2017-07-01
Three vacuum vessel sectors in ITER will be instrumented by the outer vessel steady-state magnetic field sensors. Each sensor unit features a pair of metallic Hall sensors with a sensing layer made of bismuth to measure tangential and normal components of the local magnetic field. The influence of temperature and magnetic field on the Hall coefficient was tested for the temperature range from 25 to 250 oC and the magnetic field range from 0 to 0.5 T. A fit of the Hall coefficient normalized temperature function independent of magnetic field was found, and a model of the Hall coefficient functional dependence at a wide range of temperature and magnetic field was built with the purpose to simplify the calibration procedure.
A study of increasing radical density and etch rate using remote plasma generator system
NASA Astrophysics Data System (ADS)
Lee, Jaewon; Kim, Kyunghyun; Cho, Sung-Won; Chung, Chin-Wook
2013-09-01
To improve radical density without changing electron temperature, remote plasma generator (RPG) is applied. Multistep dissociation of the polyatomic molecule was performed using RPG system. RPG is installed to inductively coupled type processing reactor; electrons, positive ions, radicals and polyatomic molecule generated in RPG and they diffused to processing reactor. The processing reactor dissociates the polyatomic molecules with inductively coupled power. The polyatomic molecules are dissociated by the processing reactor that is operated by inductively coupled power. Therefore, the multistep dissociation system generates more radicals than single-step system. The RPG was composed with two cylinder type inductively coupled plasma (ICP) using 400 kHz RF power and nitrogen gas. The processing reactor composed with two turn antenna with 13.56 MHz RF power. Plasma density, electron temperature and radical density were measured with electrical probe and optical methods.
NASA Astrophysics Data System (ADS)
Fu, Qiang; Xiong, Yucheng; Zhang, Wenhua; Xu, Dongyan
2017-09-01
This paper presents a setup for measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials. The sample holder was designed to have a compact structure and can be directly mounted in a standard cryostat system for temperature-dependent measurements. For the Seebeck coefficient measurement, a thin bar-shaped sample is mounted bridging two copper bases; and two ceramic heaters are used to generate a temperature gradient along the sample. Two type T thermocouples are used to determine both temperature and voltage differences between two widely separated points on the sample. The thermocouple junction is flattened into a disk and pressed onto the sample surface by using a spring load. The flexible fixation method we adopted not only simplifies the sample mounting process but also prevents thermal contact deterioration due to the mismatch of thermal expansion coefficients between the sample and other parts. With certain modifications, the sample holder can also be used for four-probe electrical resistivity measurements. High temperature measurements are essential for thermoelectric power generation. The experimental system we developed is capable of measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials in a wide temperature range from 80 to 500 K, which can be further extended to even higher temperatures. Measurements on two standard materials, constantan and nickel, confirmed the accuracy and the reliability of the system.
Checking the statistical theory of liquids by ultraacoustic measurements
NASA Technical Reports Server (NTRS)
Dima, V. N.
1974-01-01
The manner of theoretically obtaining radial distribution functions 9(r) for n-hexane as a function of temperature is described. With the aid of function g(r) the coefficient of dynamic viscosity and the coefficient of volumetric viscosity for temperatures ranging from 213 K to 273 K were calculated. With the aid of the two coefficients of viscosity the coefficient of absorption of ultrasounds in n-hexane referred to the square of the frequency was determined. The same values were measured experimentally. Comparison of theory with experiments resulted in satisfactory agreement.
NASA Astrophysics Data System (ADS)
Ganbavale, G.; Zuend, A.; Marcolli, C.; Peter, T.
2015-01-01
This study presents a new, improved parameterisation of the temperature dependence of activity coefficients in the AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) model applicable for aqueous as well as water-free organic solutions. For electrolyte-free organic and organic-water mixtures the AIOMFAC model uses a group-contribution approach based on UNIFAC (UNIversal quasi-chemical Functional-group Activity Coefficients). This group-contribution approach explicitly accounts for interactions among organic functional groups and between organic functional groups and water. The previous AIOMFAC version uses a simple parameterisation of the temperature dependence of activity coefficients, aimed to be applicable in the temperature range from ~ 275 to ~ 400 K. With the goal to improve the description of a wide variety of organic compounds found in atmospheric aerosols, we extend the AIOMFAC parameterisation for the functional groups carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkyl, aromatic carbon-alcohol, and aromatic hydrocarbon to atmospherically relevant low temperatures. To this end we introduce a new parameterisation for the temperature dependence. The improved temperature dependence parameterisation is derived from classical thermodynamic theory by describing effects from changes in molar enthalpy and heat capacity of a multi-component system. Thermodynamic equilibrium data of aqueous organic and water-free organic mixtures from the literature are carefully assessed and complemented with new measurements to establish a comprehensive database, covering a wide temperature range (~ 190 to ~ 440 K) for many of the functional group combinations considered. Different experimental data types and their processing for the estimation of AIOMFAC model parameters are discussed. The new AIOMFAC parameterisation for the temperature dependence of activity coefficients from low to high temperatures shows an overall improvement of 28% in comparison to the previous model version, when both versions are compared to our database of experimentally determined activity coefficients and related thermodynamic data. When comparing the previous and new AIOMFAC model parameterisations to the subsets of experimental data with all temperatures below 274 K or all temperatures above 322 K (i.e. outside a 25 K margin of the reference temperature of 298 K), applying the new parameterisation leads to 37% improvement in each of the two temperature ranges considered. The new parameterisation of AIOMFAC agrees well with a large number of experimental data sets. Larger model-measurement discrepancies were found particularly for some of the systems containing multi-functional organic compounds. The affected systems were typically also poorly represented at room temperature and further improvements will be necessary to achieve better performance of AIOMFAC in these cases (assuming the experimental data are reliable). The performance of the AIOMFAC parameterisation is typically better for systems containing relatively small organic compounds and larger deviations may occur in mixtures where molecules of high structural complexity such as highly oxygenated compounds or molecules of high molecular mass (e.g. oligomers) prevail. Nevertheless, the new parameterisation enables the calculation of activity coefficients for a wide variety of different aqueous/water-free organic solutions down to the low temperatures present in the upper troposphere.
Magnetic induction of hyperthermia by a modified self-learning fuzzy temperature controller
NASA Astrophysics Data System (ADS)
Wang, Wei-Cheng; Tai, Cheng-Chi
2017-07-01
The aim of this study involved developing a temperature controller for magnetic induction hyperthermia (MIH). A closed-loop controller was applied to track a reference model to guarantee a desired temperature response. The MIH system generated an alternating magnetic field to heat a high magnetic permeability material. This wireless induction heating had few side effects when it was extensively applied to cancer treatment. The effects of hyperthermia strongly depend on the precise control of temperature. However, during the treatment process, the control performance is degraded due to severe perturbations and parameter variations. In this study, a modified self-learning fuzzy logic controller (SLFLC) with a gain tuning mechanism was implemented to obtain high control performance in a wide range of treatment situations. This implementation was performed by appropriately altering the output scaling factor of a fuzzy inverse model to adjust the control rules. In this study, the proposed SLFLC was compared to the classical self-tuning fuzzy logic controller and fuzzy model reference learning control. Additionally, the proposed SLFLC was verified by conducting in vitro experiments with porcine liver. The experimental results indicated that the proposed controller showed greater robustness and excellent adaptability with respect to the temperature control of the MIH system.
NASA Astrophysics Data System (ADS)
Fehrenbacher, J. S.; Russell, A. D.; Davis, C. V.; Spero, H. J.; Chu, E.
2015-12-01
The Ba/Ca ratio in several spinose planktic foraminifer species varies as a function of the Ba/Ca concentration of seawater and is not affected by other parameters such as the seawater salinity, temperature and pH (Honisch et al., 2011). Since seawater Ba concentration is linearly related to Ba in nearshore environments, Ba/Ca ratios in spinose species shows promise as an indicator of past changes in monsoon strength and river runoff (e. g. Weldeab et al. 2007). In contrast, the non-spinose foraminifers often have intrashell variability in Ba/Ca, with Ba/Ca ratios much higher than expected for the range of Ba concentrations observed in the ocean. Furthermore, the Ba/Ca ratio can vary by over a factor of 10 within a single specimen. This suggests either 1) the partition coefficient for Ba in non-spinose species differs from that determined for spinose species, or 2) non-spinose species calcify in a micro-environment that is enriched in Ba. We conducted experiments on live specimens to determine the partition coefficient for Ba in the non-spinose foraminifer N. dutertrei. Specimens were collected via plankton net from the Southern California Bight and cultured at the Wrigley Marine Science Center, Santa Catalina Island during the summer of 2013-2015. We use isotopically labeled seawater (87Sr) to identify discrete portions of calcite that grew in culture. We use laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for trace element analyses and to identify ocean grown vs. culture grown calcite. We show that the partition coefficient is similar to the spinose species: N. dutertrei incorporates Ba as a function of seawater chemistry. We conclude from these observations that N. dutertrei forms its calcite from fluids enriched in Ba, and hypothesize that this process occurs via attachment to organic-rich particles such as marine snow.
Petrowsky, Matt; Frech, Roger
2010-07-08
Self-diffusion coefficients are measured from -5 to 80 degrees C in a series of linear alcohols using pulsed field gradient NMR. The temperature dependence of these data is studied using a compensated Arrhenius formalism that assumes an Arrhenius-like expression for the diffusion coefficient; however, this expression includes a dielectric constant dependence in the exponential prefactor. Scaling temperature-dependent diffusion coefficients to isothermal diffusion coefficients so that the exponential prefactors cancel results in calculated energies of activation E(a). The exponential prefactor is determined by dividing the temperature-dependent diffusion coefficients by the Boltzmann term exp(-E(a)/RT). Plotting the prefactors versus the dielectric constant places the data on a single master curve. This procedure is identical to that previously used to study the temperature dependence of ionic conductivities and dielectric relaxation rate constants. The energies of activation determined from self-diffusion coefficients in the series of alcohols are strikingly similar to those calculated for the same series of alcohols from both dielectric relaxation rate constants and ionic conductivities of dilute electrolytes. The experimental results are described in terms of an activated transport mechanism that is mediated by relaxation of the solution molecules. This microscopic picture of transport is postulated to be common to diffusion, dielectric relaxation, and ionic transport.
Joshi, A; Haynes, N D; Zelmon, D E; Stafsudd, O; Shori, R
2012-02-13
The refractive indices and thermo-optic coefficients for varying concentrations of Er3+ doped polycrystalline yttria were measured at a variety of wavelengths and temperatures. A Lorenz oscillator model was employed to model the room temperature indices and thermo-optic coefficients were calculated based on temperature dependent index measurements from 0.45 to 1.064 microns. Some consequences relating to thermal lensing are discussed.
Control of bootstrap current in the pedestal region of tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaing, K. C.; Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53796; Lai, A. L.
2013-12-15
The high confinement mode (H-mode) plasmas in the pedestal region of tokamaks are characterized by steep gradient of the radial electric field, and sonic poloidal U{sub p,m} flow that consists of poloidal components of the E×B flow and the plasma flow velocity that is parallel to the magnetic field B. Here, E is the electric field. The bootstrap current that is important for the equilibrium, and stability of the pedestal of H-mode plasmas is shown to have an expression different from that in the conventional theory. In the limit where ‖U{sub p,m}‖≫ 1, the bootstrap current is driven by themore » electron temperature gradient and inductive electric field fundamentally different from that in the conventional theory. The bootstrap current in the pedestal region can be controlled through manipulating U{sub p,m} and the gradient of the radial electric. This, in turn, can control plasma stability such as edge-localized modes. Quantitative evaluations of various coefficients are shown to illustrate that the bootstrap current remains finite when ‖U{sub p,m}‖ approaches infinite and to provide indications how to control the bootstrap current. Approximate analytic expressions for viscous coefficients that join results in the banana and plateau-Pfirsch-Schluter regimes are presented to facilitate bootstrap and neoclassical transport simulations in the pedestal region.« less
Asymmetrical flow field-flow fractionation for the analysis of PEG-asparaginase.
John, C; Herz, T; Boos, J; Langer, K; Hempel, G
2016-01-01
Monomethoxypolyethylene glycol L-asparaginase (PEG-ASNASE) is the PEGylated version of the enzyme L-asparaginase (ASNASE). Both are used for remission induction in acute lymphoblastic leukemia (ALL) and non-Hodgkin's lymphoma (NHL). The treatment control is generally carried out by performing activity assays, though methods to determine the actual enzyme rather than its activity are rare. Using asymmetrical flow field-flow fractionation (AF4) offered the chance to develop a method capable of simultaneously measuring PEG-ASNASE and PEG. A method validation was performed in accordance with FDA guidelines for PEG-ASNASE from non-biological solutions. The method unfolded a linearity of 15-750 U/mL with coefficients of correlation of r(2)>0.99. The coefficients of variation (CV) for within-run and between-run variability were 1.18-10.15% and 2.43-8.73%, respectively. Furthermore, the method was used to perform stability tests of the product Oncaspar® (PEG-ASNASE) and estimation of the molecular weight by multi-angle light scattering (MALS) of stressed samples to correlate them with the corresponding activity. The findings indicate that Oncaspar® stock solution should not be stored any longer than 24 h at room temperature and cannot be frozen in pure aqueous media. The validated method might be useful for the pharmaceutical industry and its quality control of PEG-ASNASE production. Copyright © 2015 Elsevier B.V. All rights reserved.
Molecular Insight into the Slipperiness of Ice.
Weber, Bart; Nagata, Yuki; Ketzetzi, Stefania; Tang, Fujie; Smit, Wilbert J; Bakker, Huib J; Backus, Ellen H G; Bonn, Mischa; Bonn, Daniel
2018-05-16
Measurements of the friction coefficient of steel-on-ice over a large temperature range reveal very high friction at low temperatures (-100 °C) and a steep decrease in the friction coefficient with increasing temperature. Very low friction is only found over the limited temperature range typical for ice skating. The strong decrease in the friction coefficient with increasing temperature exhibits Arrhenius behavior with an activation energy of E a ≈ 11.5 kJ mol -1 . Remarkably, molecular dynamics simulations of the ice-air interface reveal a very similar activation energy for the mobility of surface molecules. Weakly hydrogen-bonded surface molecules diffuse over the surface in a rolling motion, their number and mobility increasing with increasing temperature. This correlation between macroscopic friction and microscopic molecular mobility indicates that slippery ice arises from the high mobility of its surface molecules, making the ice surface smooth and the shearing of the weakly bonded surface molecules easy.
Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure.
Ran, Zengling; Liu, Shan; Liu, Qin; Huang, Ya; Bao, Haihong; Wang, Yanjun; Luo, Shucheng; Yang, Huiqin; Rao, Yunjiang
2014-08-07
Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.
Garcia-Ratés, Miquel; de Hemptinne, Jean-Charles; Bonet Avalos, Josep; Nieto-Draghi, Carlos
2012-03-08
Mass diffusion coefficients of CO(2)/brine mixtures under thermodynamic conditions of deep saline aquifers have been investigated by molecular simulation. The objective of this work is to provide estimates of the diffusion coefficient of CO(2) in salty water to compensate the lack of experimental data on this property. We analyzed the influence of temperature, CO(2) concentration,and salinity on the diffusion coefficient, the rotational diffusion, as well as the electrical conductivity. We observe an increase of the mass diffusion coefficient with the temperature, but no clear dependence is identified with the salinity or with the CO(2) mole fraction, if the system is overall dilute. In this case, we notice an important dispersion on the values of the diffusion coefficient which impairs any conclusive statement about the effect of the gas concentration on the mobility of CO(2) molecules. Rotational relaxation times for water and CO(2) increase by decreasing temperature or increasing the salt concentration. We propose a correlation for the self-diffusion coefficient of CO(2) in terms of the rotational relaxation time which can ultimately be used to estimate the mutual diffusion coefficient of CO(2) in brine. The electrical conductivity of the CO(2)-brine mixtures was also calculated under different thermodynamic conditions. Electrical conductivity tends to increase with the temperature and salt concentration. However, we do not observe any influence of this property with the CO(2) concentration at the studied regimes. Our results give a first evaluation of the variation of the CO(2)-brine mass diffusion coefficient, rotational relaxation times, and electrical conductivity under the thermodynamic conditions typically encountered in deep saline aquifers.
NASA Astrophysics Data System (ADS)
Zhou, Hao-Miao; Li, Meng-Han; Liu, Hui; Cui, Xiao-Le
2015-12-01
For the converse magnetoelectric coupling effect of the piezoelectric/magnetostrictive/piezoelectric tri-layer symmetric magnetoelectric laminates, based on the nonlinear thermo-magneto-mechanical constitutive equations of the giant magnetostrictive materials and the thermo-electro-mechanical constitutive equations of the piezoelectric materials, according to Newton's second law and the magnetic circuit theorem, an equivalent circuit is established. Then an expression of the converse magnetoelectric coefficient describing nonlinear thermo-magneto-electro-mechanical coupling is established. The curve of the nonlinear converse magnetoelectric coefficient versus the bias magnetic field, is predicted effectively by the expression, and the predictions are in good agreement with the experimental result both qualitatively and quantitatively. Furthermore, the model can predict the complex influences of the bias magnetic field, the stress and the ambient temperature on the converse magnetoelectric coefficient. It can be found from these predictions that the converse magnetoelectric coefficient decreases with the increasing temperature and increases with the increasing tensile stress. Under the common effect of the ambient temperature and the stress, it is also found that the converse magnetoelectric coefficient changes sharply with the ambient temperature when the tensile stress is applied on the laminates, but it has a good stability of temperature when a large compressive stress is applied. Therefore, this work contributes to the researches on the giant converse magnetoelectric coefficient and the designs of magnetoelectric devices based on the converse magnetoelectric coupling.
Caldron For High-Temperature Alloys
NASA Technical Reports Server (NTRS)
Geringer, Henry J.
1989-01-01
Induction-heated caldron melts high-temperature alloys. Prevents sort of contamination of melts occurring during arc melting in ceramic crucibles. Liquefies 200 grams of solid metal components of alloy like niobium aluminum and makes alloy homogeneous in less than 3 minutes. Plugged sleeve constitutes main body of caldron. Coolant flows through sleeve to prevent it from melting. Mandrel-wound induction coils adjusted to tune source of power. Also serves as mold for casting alloys into such shapes as bars.
A Method for Reducing the Temperature of Exhaust Manifolds
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Young, Alfred W
1931-01-01
This report describes tests conducted at the Langley Memorial Aeronautical Laboratory on an "air-inducting" exhaust manifold for aircraft engines. The exhaust gases from each cylinder port are discharged into the throat of an exhaust pipe which has a frontal bellmouth. Cooling air is drawn into the pipe, where it surrounds and mixes with the exhaust gases. Temperatures of the manifold shell and of the exhaust gases were obtained in flight for both a conventional manifold and the air-inducting manifold. The air-inducting manifold was installed on an engine which was placed on a test stand. Different fuels were sprayed on and into the manifold to determine whether the use of this manifold reduced the fire hazard. The flight tests showed reductions in manifold temperatures of several hundred degrees, to values below the ignition point of aviation gasoline. On the test stand when the engine was run at idling speeds fuels sprayed into the manifold ignited. It is believed that at low engine speeds the fuel remained in the manifold long enough to become thoroughly heated, and was then ignited by the exhaust gas which had not mixed with cooling air. The use of the air-inducting exhaust manifold must reduce the fire hazard by virtue of its lower operating temperature, but it is not a completely satisfactory solution of the problem.
Kobayashi, Atsuki; Ikeda, Kei; Ogawa, Yudai; Kai, Hiroyuki; Nishizawa, Matsuhiko; Nakazato, Kazuo; Niitsu, Kiichi
2017-12-01
In this paper, we present a self-powered bio-sensing system with the capability of proximity inductive-coupling communication for supply sensing and temperature monitoring. The proposed bio-sensing system includes a biofuel cell as a power source and a sensing frontend that is associated with the CMOS integrated supply-sensing sensor. The sensor consists of a digital-based gate leakage timer, a supply-insensitive time-domain temperature sensor, and a current-driven inductive-coupling transmitter and achieves low-voltage operation. The timer converts the output voltage from a biofuel cell to frequency. The temperature sensor provides a pulse width modulation (PWM) output that is not dependent on the supply voltage, and the associated inductive-coupling transmitter enables proximity communication. A test chip was fabricated in 65 nm CMOS technology and consumed 53 μW with a supply voltage of 190 mV. The low-voltage-friendly design satisfied the performance targets of each integrated sensor without any trimming. The chips allowed us to successfully demonstrate proximity communication with an asynchronous receiver, and the measurement results show the potential for self-powered operation using biofuel cells. The analysis and experimental verification of the system confirmed their robustness.
Thermal analysis of turbulent flow of a supercritical fluid
NASA Technical Reports Server (NTRS)
Yamane, E.
1979-01-01
The influence of the large variation of thermodynamics and transport properties near the pseudocritical temperature on the heat transfer coefficient of supercritical fluid in turbulent flow was studied. The formation of the characteristics peak in the heat transfer coefficient vs. bulk temperature curve is described, and the necessity of the fluid element at pseudocritical temperature located in the buffer layer is discussed.
Cuprate diamagnetism in the presence of a pseudogap: Beyond the standard fluctuation formalism
NASA Astrophysics Data System (ADS)
Boyack, Rufus; Chen, Qijin; Varlamov, A. A.; Levin, K.
2018-02-01
It is often claimed that among the strongest evidence for preformed-pair physics in the cuprates are the experimentally observed large values for the diamagnetic susceptibility and Nernst coefficient. These findings are most apparent in the underdoped regime, where a pseudogap is also evident. While the conventional (Gaussian) fluctuation picture has been applied to address these results, this preformed-pair approach omits the crucial effects of a pseudogap. In this paper we remedy this omission by computing the diamagnetic susceptibility and Nernst coefficient in the presence of a normal state gap. We find a large diamagnetic response for a range of temperatures much higher than the transition temperature. In particular, we report semiquantitative agreement with the measured diamagnetic susceptibility onset temperatures, over the entire range of hole dopings. Notable is the fact that at the lower critical doping of the superconducting dome, where the transition temperature vanishes and the pseudogap onset temperature remains large, the onset temperature for both diamagnetic and transverse thermoelectric transport coefficients tends to zero. Due to the importance attributed to the cuprate diamagnetic susceptibility and Nernst coefficient, this work helps to clarify the extent to which pairing fluctuations are a component of the cuprate pseudogap.
Shi, Xuejia; Xie, Jingcong; Liao, Shiyong; Wu, Tao; Zhao, Lin-Guo; Ding, Gang; Wang, Zhenzhong; Xiao, Wei
2017-10-01
In the fermentation progress, fermentation parameters including the feed rate, induction temperature, and induction pH evidently regulate the accumulation of acetic acid generated by recombinant E. coli in the medium. The production of thermostable β-glucosidase (Tpebgl3) was increased by optimizing the parameters mentioned step by step. The optimal conditions were obtained with the highest enzyme expression (560.4U/mL) and the maximum DCW (65g/L) at the pre-induction specific growth rate of 0.2h -1 followed by a post-induction specific growth rate (0.18h -1 ); induction temperature is 39°C; the pH is 7.2; the concentration of acetic acid was maintained all along below 0.9g/L. Results show it is necessary for the synthesis of Tpebgl3 to regulate the accumulation of acetic acid at the premise of feeding to meet the normal growth of E. coli. The production of Tpebgl3 by recombinant E. coli is the highest reported to date. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Chun Ge; Wang, Hui; Chen, Hong Ju; Zhao, Yan; Fu, Pei Sheng; Ji, Xiang Shan
2014-01-01
Nowadays, high temperature effects on the molecular pathways during sex differentiation in teleosts need to be deciphered. In this study, a systematic differential expression analysis of genes involved in high temperature-induced sex differentiation was done in the Nile tilapia gonad and brain. Our results showed that high temperature caused significant down-regulation of CYP19A1A in the gonad of both sexes in induction group, and FOXL2 in the ovary of the induction group. The expressions of GTHα, LHβ and ERα were also significantly down-regulated in the brain of both sexes in the induction and recovery groups. On the contrary, the expression of CYP11B2 was significantly up-regulated in the ovary, but not in the testis in both groups. Spearman rank correlation analysis showed that there are significant correlations between the expressions of CYP19A1A, FOXL2, or DMRT1 in the gonads and the expression of some genes in the brain. Another result in this study showed that high temperature up-regulated the expression level of DNMT1 in the testis of the induction group, and DNMT1 and DNMT3A in the female brain of both groups. The expression and correlation analysis of HSPs showed that high temperature action on tilapia HSPs might indirectly induce the expression changes of sex differentiation genes in the gonads. These findings provide new insights on TSD and suggest that sex differentiation related genes, heat shock proteins, and DNA methylation genes are new candidates for studying TSD in fish species. Copyright © 2014 Elsevier Inc. All rights reserved.
Impact of Electromagnetic Field upon Temperature Measurement of Induction Heated Charges
NASA Astrophysics Data System (ADS)
Smalcerz, A.; Przylucki, R.
2013-04-01
The use of thermoelements is a commonly applied method in industry and engineering. It provides a wide measurement range of temperature, a direct voltage signal from the transducer, low cost of the thermoelement, and its resistance to many unfavorable factors which occur in an industrial environment. Unfortunately, thermoelements may not be resistant to interferences of a strong electromagnetic field because of the nature and design of a transducer. Induction heating is the most commonly used type of heating, at present, for metals. In order to guarantee the correctness of the carried out heating process, it is essential to control the temperature of the heated element. The impact of a strong electromagnetic field upon the thermocouple temperature measurement of the inductively heated elements has been analyzed in this paper. The experiment includes dozens of measurements where the following parameters have been varied: frequency of the current which feeds the heating inductor, power supplied to the heating system, geometry of heat inductor, and the charge material and its geometrical dimensions. Interferences of the power-line frequency have been eliminated in part of the carried out measurements.
Tuning the transition temperature of WSi$$_{x}$$ alloys for use in cryogenic microcalorimeters
Cecil, T.; Gades, L.; Madden, T.; ...
2016-03-10
Here, microwave kinetic inductance detectors (MKID) provide a pathway to highly multiplexed, high-resolution, detectors. Over the past several years we have introduced the concept of the Thermal Kinetic Inductance Detector (TKID), which operates as a microcalorimeter. As with other microcalorimeters, the thermal noise of a TKID is reduced when the operating temperature is decreased. However, because the sensitivity of a TKID decreases as the operating temperature drops below 20% of T C, the T C of the resonator material must be tuned to match the desired operating temperature. We have investigated the WSimore » $$_{x}$$ alloy system as a material for these detectors. By co-sputtering from a Si andW2Si target, we have deposited WSi$$_{x}$$ films with a tunable T C that ranges from 5 K down to 500 mK. These films provide a large kinetic inductance fraction and relatively low noise levels. We provide results of these studies showing the T C, resistivity, quality factors, and noise as a function of deposition conditions. These results show that WSi$$_{x}$$ is a good candidate for TKIDs.« less
NASA Astrophysics Data System (ADS)
Haupt, Sebastian; Edler, Frank
2018-06-01
The characterization of thermoelectric materials as reference materials for Seebeck coefficients at the Physikalisch-Technische Bundesanstalt (PTB) is based on the usage of gold/platinum differential thermocouples. In the case of thermoelectric materials containing silicon, the gold/platinum thermocouples are insufficient due to reactions with the silicon when the samples are at higher temperatures. To overcome this limitation and to expand the temperature range for the certification process, platinum/palladium thermocouples were incorporated in the measurement setup. This paper discusses the influence of the different differential thermocouples used for the measurement of the Seebeck coefficients. Results of a comparative investigation of Seebeck coefficient measurements of a metallic and two semiconducting reference materials in the temperature range from 300 K to 870 K are presented.
NASA Technical Reports Server (NTRS)
Wan, Zhengming; Dozier, Jeff
1992-01-01
The effect of temperature-dependent molecular absorption coefficients on thermal infrared spectral signatures measured from satellite sensors is investigated by comparing results from the atmospheric transmission and radiance codes LOWTRAN and MODTRAN and the accurate multiple scattering radiative transfer model ATRAD for different atmospheric profiles. The sensors considered include the operational NOAA AVHRR and two research instruments planned for NASA's Earth Observing System (EOS): MODIS-N (Moderate Resolution Imaging Spectrometer-Nadir-Mode) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer). The difference in band transmittance is as large as 6 percent for some thermal bands within atmospheric windows and more than 30 percent near the edges of these atmospheric windows. The effect of temperature-dependent molecular absorption coefficients on satellite measurements of sea-surface temperature can exceed 0.6 K. Quantitative comparison and factor analysis indicate that more accurate measurements of molecular absorption coefficients and better radiative transfer simulation methods are needed to achieve SST accuracy of 0.3 K, as required for global numerical models of climate, and to develop land-surface temperature algorithms at the 1-K accuracy level.
Cryogenic Refractive Index and Coefficient of Thermal Expansion for the S-TIH1 Glass
NASA Technical Reports Server (NTRS)
Quijada, Manuel A.; Leviton, Douglas; Content, David
2013-01-01
Using the CHARMS facility at NASA GSFC, we have measured the cryogenic refractive index of the Ohara S-TIH1 glass from 0.40 to 2.53 micrometers and from 120 to 300 K. We have also examined the spectral dispersion and thermo-optic coefficients (dn/dT). We also derived temperature-dependent Sellmeier models from which refractive index may be calculated for any wavelength and temperature within the stated ranges of each model. The S-TIH1 glass we tested exhibited unusual behavior in the thermo-optic coefficient. We found that for delta < 0.5 micrometers, the index of refraction decrease with a decrease in temperature (positive dn/dT). However, the situation was reversed for delta larger than 0.63 micrometers, where the index will increase with a decrease in temperature (negative dn/dT). We also measured the coefficient of thermal expansion (CTE) for the similar batch of S-TIH1 glass in order to understand its thermal properties. The CTE showed a monotonic change with a decrease in temperature.
Thermal diffusion behavior of hard-sphere suspensions.
Ning, Hui; Buitenhuis, Johan; Dhont, Jan K G; Wiegand, Simone
2006-11-28
We studied the thermal diffusion behavior of octadecyl coated silica particles (R(h)=27 nm) in toluene between 15.0 and 50.0 degrees C in a volume fraction range of 1%-30% by means of thermal diffusion forced Rayleigh scattering. The colloidal particles behave like hard spheres at high temperatures and as sticky spheres at low temperatures. With increasing temperature, the obtained Soret coefficient S(T) of the silica particles changed sign from negative to positive, which implies that the colloidal particles move to the warm side at low temperatures, whereas they move to the cold side at high temperatures. Additionally, we observed also a sign change of the Soret coefficient from positive to negative with increasing volume fraction. This is the first colloidal system for which a sign change with temperature and volume fraction has been observed. The concentration dependence of the thermal diffusion coefficient of the colloidal spheres is related to the colloid-colloid interactions, and will be compared with an existing theoretical description for interacting spherical particles. To characterize the particle-particle interaction parameters, we performed static and dynamic light scattering experiments. The temperature dependence of the thermal diffusion coefficient is predominantly determined by single colloidal particle properties, which are related to colloid-solvent molecule interactions.
NASA Astrophysics Data System (ADS)
Shekaari, Hemayat; Mousavi, Sedighehnaz S.; Mansoori, Yagoub
2009-04-01
Osmotic coefficients, {φ}, electrical conductance data, Λ, and refractive indices, n D, of aqueous solutions of the ionic liquid, 1-pentyl-3-methylimidazolium chloride [PnMIm]Cl have been measured at T = (298.15, 308.15, 318.15, and 328.15) K. Measurements of osmotic coefficients were carried out by the vapor-pressure osmometry method (VPO). Osmotic coefficient values show that ion-solvent interactions are stronger at lower temperature. The osmotic coefficients were correlated to the Pitzer-ion interaction and modified NRTL (MNRTL) models. From these data, mean molal activity coefficients, γ±, and excess Gibbs free energies, G E, have been calculated. Electrical conductance data have been applied for determination of association constants, K a, and limiting molar conductances, Λ 0, using the low concentration chemical model (lcCM). Calculated ion-association constant, K a, values show that ion-association effects increase at high temperatures which is in agreement with osmotic coefficient results. Experimental results of refractive indices for the binary system are reported, and have been fitted by a polynomial expansion.
Modeling turbulent/chemistry interactions using assumed pdf methods
NASA Technical Reports Server (NTRS)
Gaffney, R. L, Jr.; White, J. A.; Girimaji, S. S.; Drummond, J. P.
1992-01-01
Two assumed probability density functions (pdfs) are employed for computing the effect of temperature fluctuations on chemical reaction. The pdfs assumed for this purpose are the Gaussian and the beta densities of the first kind. The pdfs are first used in a parametric study to determine the influence of temperature fluctuations on the mean reaction-rate coefficients. Results indicate that temperature fluctuations significantly affect the magnitude of the mean reaction-rate coefficients of some reactions depending on the mean temperature and the intensity of the fluctuations. The pdfs are then tested on a high-speed turbulent reacting mixing layer. Results clearly show a decrease in the ignition delay time due to increases in the magnitude of most of the mean reaction rate coefficients.
Covarrubias-Cervantes, Marco; Champion, Dominique; Debeaufort, Frédéric; Voilley, Andrée
2005-08-24
Translational diffusion coefficients (D(12)) of volatile compounds were measured in model media with the profile concentration method. The influence of sample temperature (from 25 to -10 degrees C) was studied on translational diffusion in sucrose or maltodextrin solutions at various concentrations. Results show that diffusivity of volatile compounds in sucrose solutions is controlled by temperature, molecule size, and the viscosity of the liquid phase as expected with the Stokes-Einstein equation; moreover, physicochemical interactions between volatile compounds and the medium are determinant for diffusion estimation. At negative temperature, the winding path induced by an ice crystal content of >70% lowered volatile compound diffusion. On the contrary, no influence on translational diffusion coefficients was observed for lower ice content.
Thermal expansion and elastic anisotropy in single crystal Al2O3 and SiC reinforcements
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.; Li, Zhuang; Bradt, Richard C.
1994-01-01
In single crystal form, SiC and Al2O3 are attractive reinforcing components for high temperature composites. In this study, the axial coefficients of thermal expansion and single crystal elastic constants of SiC and Al2O3 were used to determine their coefficients of thermal expansion and Young's moduli as a function of crystallographic orientation and temperature. SiC and Al2O3 exhibit a strong variation of Young's modulus with orientation; however, their moduli and anisotropies are weak functions of temperature below 1000 C. The coefficients of thermal expansion exhibit significant temperature dependence, and that of the non-cubic Al2O3 is also a function of crystallographic orientation.
NASA Technical Reports Server (NTRS)
Obenschain, A. F.; Faith, T. J.
1973-01-01
Emperical equations have been derived from measurements of solar cell photovoltaic characteristics relating light generated current, IL, and open circuit voltage, VO, to cell temperature, T, intensity of illumination, W, and 1 Mev electron fluence, phi both 2 ohm-cm and 10 ohm-cm cells were tested. The temperature dependency of IL is similar for both resistivities at 140mw/sq cm; at high temperature the coefficient varies with fluence as phi 0.18, while at low temperatures the coefficient is relatively independent of fluence. Fluence dependent degration causes a decrease in IL at a rate proportional to phi 0.153 for both resistivities. At all intensities other than 560 mw/sq cm, a linear dependence of IL on illumination was found. The temperature coefficient of voltage was, to a good approximation, independent of both temperature and illumination for both resistivities. Illumination dependence of VOC was logarithmic, while the decrease with fluence of VOC varied as phi 0.25 for both resistivities.
Effects of preoperative oral carbohydrate solution intake on thermoregulation.
Ozer, Ayse B; Demirel, Ismail; Kavak, Burcin S; Gurbuz, Oguz; Unlu, Serap; Bayar, Mustafa K; Erhan, Ömer L
2013-07-31
We aimed to investigate the oral carbohydrate solution administered preoperatively on thermoregulation. The study included 40 female patients under general anesthesia. Patients were randomly divided into 2 groups: Group CONT (stopped oral implementation 8 h before the operation) and Group CHO (800ml oral carbohydrate fluid 8 h before the operation and 400ml oral carbohydrate fluid 2 h before the operation). Patients were monitored as standard and temperature probes were placed. Temperatures were recorded immediately before anesthetics induction, 5 min after the anesthetics induction, and in the post-anesthesia care unit (PACU) every 10 min. Mean skin temperature (Tsk), mean body temperature (Tb), and vasoconstriction threshold were estimated. In general, we observed a decrease in tympanic temperature and Tb following anesthetic administration in groups, and increase in Tsk, and an increase in all 3 of these levels in the recovery unit. Tympanic temperature was significantly higher at 25, 55, 65, and 95 min after induction in Group CONT compared to Group CHO (p<0.05). Tsk was found to be lower in Group CONT compared to Group CHO in almost all periods. In PACU, it was found that the tympanic temperature was higher in Group CONT compared to Group CHO at 60 min (p<0.05). Postoperative shivering score was found to be significantly higher in Group C (p<0.01). Vasoconstriction threshold was higher in Group CONT than Group CHO. Oral carbohydrate solution administered was established to have effects thought to be negative on tympanic temperature, vasoconstriction, and vasoconstriction threshold.
Tungsten insulated susceptor cup for high temperature induction furnace eliminates contamination
NASA Technical Reports Server (NTRS)
Geringer, H. J.
1966-01-01
METILUR /Materials Experimental Tungsten Induction Laboratory Unit Replacement/ is an improved, unitized design of a susceptor cup and shielding that uses only one type of construction material /tungsten/ which eliminates contamination. Cycling runs can be accomplished with METILUR.
NASA Astrophysics Data System (ADS)
Kato, Y.; Takenaka, T.; Yano, K.; Kiriyama, R.; Kurisu, Y.; Nozaki, D.; Muramatsu, M.; Kitagawa, A.; Uchida, T.; Yoshida, Y.; Sato, F.; Iida, T.
2012-11-01
Multiply charged ions to be used prospectively are produced from solid pure material in an electron cyclotron resonance ion source (ECRIS). Recently a pure iron source is also required for the production of caged iron ions in the fullerene in order to control cells in vivo in bio-nano science and technology. We adopt directly heating iron rod by induction heating (IH) because it has non-contact with insulated materials which are impurity gas sources. We choose molybdenum wire for the IH coils because it doesn't need water cooling. To improve power efficiency and temperature control, we propose to the new circuit without previously using the serial and parallel dummy coils (SPD) for matching and safety. We made the circuit consisted of inductively coupled coils which are thin-flat and helix shape, and which insulates the IH power source from the evaporator. This coupling coils circuit, i.e. insulated induction heating coil transformer (IHCT), can be move mechanically. The secondary current can be adjusted precisely and continuously. Heating efficiency by using the IHCT is much higher than those of previous experiments by using the SPD, because leakage flux is decreased and matching is improved simultaneously. We are able to adjust the temperature in heating the vapor source around melting point. And then the vapor pressure can be controlled precisely by using the IHCT. We can control ±10K around 1500°C by this method, and also recognize to controlling iron vapor flux experimentally in the extreme low pressures. Now we come into next stage of developing induction heating vapor source for materials with furthermore high temperature melting points above 2000K with the IHCT, and then apply it in our ECRIS.
NASA Astrophysics Data System (ADS)
Mahdavi, Amirhossein; McDonald, André
2018-02-01
The final quality of cold-sprayed coatings can be significantly influenced by gas-substrate heat exchange, due to the dependence of the deposition efficiency of the particles on the substrate temperature distribution. In this study, the effect of the air temperature and pressure, as process parameters, and surface roughness and thickness, as substrate parameters, on the convective heat transfer coefficient of the impinging air jet was investigated. A low-pressure cold spraying unit was used to generate a compressed air jet that impinged on a flat substrate. A comprehensive mathematical model was developed and coupled with experimental data to estimate the heat transfer coefficient and the surface temperature of the substrate. The effect of the air total temperature and pressure on the heat transfer coefficient was studied. It was found that increasing the total pressure would increase the Nusselt number of the impinging air jet, while total temperature of the air jet had negligible effect on the Nusslet number. It was further found that increasing the roughness of the substrate enhanced the heat exchange between the impinging air jet and the substrate. As a result, higher surface temperatures on the rough substrate were measured. The study of the effect of the substrate thickness on the heat transfer coefficient showed that the Nusselt number that was predicted by the model was independent of the thickness of the substrate. The surface temperature profile, however, decreased in increasing radial distances from the stagnation point of the impinging jet as the thickness of the substrate increased. The results of the current study were aimed to inform on the influence and effect of substrate and process parameters on the gas-substrate heat exchange and the surface temperature of the substrate on the final quality of cold-sprayed coatings.
NASA Technical Reports Server (NTRS)
Devi, V. Malathy; Benner, D. Chris; Smith, M. A. H.; Mantz, A. W.; Sung, K.; Brown, L. R.; Predoi-Cross, A.
2012-01-01
Temperature dependences of pressure-broadened half-width and pressure-induced shift coefficients along with accurate positions and intensities have been determined for transitions in the 2<--0 band of C-12 O-16 from analyzing high-resolution and high signal-to-noise spectra recorded with two different Fourier transform spectrometers. A total of 28 spectra, 16 self-broadened and 12 air-broadened, recorded using high- purity (greater than or equal to 99.5% C-12-enriched) CO samples and CO diluted with dry air(research grade) at different temperatures and pressures, were analyzed simultaneously to maximize the accuracy of the retrieved parameters. The sample temperatures ranged from 150 to 298K and the total pressures varied between 5 and 700 Torr. A multispectrum nonlinear least squares spectrum fitting technique was used to adjust the rovibrational constants (G, B, D, etc.) and intensity parameters (including Herman-Wallis coefficients), rather than determining individual line positions and intensities. Self-and air-broadened Lorentz half-width coefficients, their temperature dependence exponents, self- and air-pressure-induced shift coefficients, their temperature dependences, self- and air-line mixing coefficients, their temperature dependences and speed dependence have been retrieved from the analysis. Speed-dependent line shapes with line mixing employing off-diagonal relaxation matrix element formalism were needed to minimize the fit residuals. This study presents a precise and complete set of spectral line parameters that consistently reproduce the spectrum of carbon monoxide over terrestrial atmospheric conditions.
NASA Astrophysics Data System (ADS)
Zuhair; Suwoto; Setiadipura, T.; Bakhri, S.; Sunaryo, G. R.
2018-02-01
As a part of the solution searching for possibility to control the plutonium, a current effort is focused on mechanisms to maximize consumption of plutonium. Plutonium core solution is a unique case in the high temperature reactor which is intended to reduce the accumulation of plutonium. However, the safety performance of the plutonium core which tends to produce a positive temperature coefficient of reactivity should be examined. The pebble bed inherent safety features which are characterized by a negative temperature coefficient of reactivity must be maintained under any circumstances. The purpose of this study is to investigate the characteristic of temperature coefficient of reactivity for plutonium core of pebble bed reactor. A series of calculations with plutonium loading varied from 0.5 g to 1.5 g per fuel pebble were performed by the MCNPX code and ENDF/B-VII library. The calculation results show that the k eff curve of 0.5 g Pu/pebble declines sharply with the increase in fuel burnup while the greater Pu loading per pebble yields k eff curve declines slighter. The fuel with high Pu content per pebble may reach long burnup cycle. From the temperature coefficient point of view, it is concluded that the reactor containing 0.5 g-1.25 g Pu/pebble at high burnup has less favorable safety features if it is operated at high temperature. The use of fuel with Pu content of 1.5 g/pebble at high burnup should be considered carefully from core safety aspect because it could affect transient behavior into a fatal accident situation.
FORGE Milford Digitized Geophysical Logs from Acord 1
Jones, Clay G.; Moore, Joseph N.
2016-03-31
This submission includes digitalized versions of the following: McCulloch Geothermal Corp Acord 1-26 Cover Letter McCulloch Geothermal Corp Acord 1-26 Drilling Plan McCulloch Geothermal Corp Acord 1-26 Bond Documents Division of Water Rights Permission to Drill Drillers Log Geothermal Data (Mud) Log Compensated Densilog - Neutron Log Dual Induction Focused Log BHC Acoustilog Differential Temperature Log Dual Induction Focused Log Gamma Ray Neutron Log Temperature Log Caliper Temperature Log (Run 3) Densilog Gamma Ray Neutron Log Temperature Log (Run 4) Compensated Densilog Sample Log (Page 1 of 2) Report of Well Driller Stratigraphic Report (J.E. Welsh) Photographs and Negatives of Acord 1-26 Well Site (7) Petrography Report (M.J. Sweeney) Cuttings Samples (21 Boxes at Utah Core Research Center)
Induction hardening treatment and simulation for a grey cast iron used in engine cylinder liners
NASA Astrophysics Data System (ADS)
Castellanos-Leal, E. L.; Miranda, D. A.; Coy, A. E.; Barrero, J. G.; González, J. A.; Vesga Rueda, O. P.
2017-01-01
In this research, a technical study of induction hardening in a grey cast iron used in engine cylinder liners manufactured by LAVCO Ltda., a Colombian foundry company, was carried out. Metallurgical parameters such as austenitization temperature, cooling rate, and quenching severity were determined. These factors are exclusively dependent on chemical composition and initial microstructure of grey cast iron. Simulations of induction heating through finite elements method were performed and, the most appropriate experimental conditions to achieve the critical transformation temperature was evaluated to reach a proper surface hardening on the piece. Preliminary results revealed an excellent approximation between simulation and heating test performed with a full bridge inverter voltage adapted with local technology.
Experimental study of mass diffusion coefficients of hydrogen in dimethyl phosphate and n-heptane
NASA Astrophysics Data System (ADS)
Guo, Y.; Zhu, L. K.; Zhang, Y. P.; Liu, J.; Guo, J. S.
2017-11-01
In this study, a laser holographic interferometer experimental system was developed for studying the gas-liquid mass diffusion coefficient. Then the experimental system’s uncertainty was analyzed to be at most ±0.2% therefore, this system was reliable. The mass diffusion coefficient of hydrogen in dimethyl phosphate and n-heptane was measured at atmospheric pressure in the temperature range of 273.15-338.15 K. Then, the experimental data were used to fit the correlations of the mass diffusion coefficient of hydrogen in dimethyl phosphate and n-heptane with temperature.
Piezoelectric shear wave resonator and method of making same
Wang, Jin S.; Lakin, Kenneth M.; Landin, Allen R.
1988-01-01
An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppm/.degree.C.
Method of making a piezoelectric shear wave resonator
Wang, Jin S.; Lakin, Kenneth M.; Landin, Allen R.
1987-02-03
An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppm/.degree.C.
Maxwell boundary condition and velocity dependent accommodation coefficient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Struchtrup, Henning, E-mail: struchtr@uvic.ca
2013-11-15
A modification of Maxwell's boundary condition for the Boltzmann equation is developed that allows to incorporate velocity dependent accommodation coefficients into the microscopic description. As a first example, it is suggested to consider the wall-particle interaction as a thermally activated process with three parameters. A simplified averaging procedure leads to jump and slip boundary conditions for hydrodynamics. Coefficients for velocity slip, temperature jump, and thermal transpiration flow are identified and compared with those resulting from the original Maxwell model and the Cercignani-Lampis model. An extension of the model leads to temperature dependent slip and jump coefficients.
A FEM simulation study of the solid state hydrostatic extrusion of PMMA
NASA Astrophysics Data System (ADS)
Costa, André L. M.; Riffel, Douglas B.; Misiolek, Wojciech Z.; Valberg, Henry S.
2018-05-01
Solid state hydrostatic extrusion (SSHE) of polymers below glass transition temperature is used to obtain highly oriented structures. Experimental studies on the SSHE of polymethyl-methacrylate (PMMA) have been made since early eighties but there is no information on internal temperature, stress and strain distribution. In this work we have made 3D FEM simulations of SSHE of PMMA by using the commercial DEFORM package with experimental flow curves and thermal properties from literature. The initial temperature of tooling and workpiece was 90°C, ram speeds were 1.0 and 10.0 mm/min with extrusion ratio R = 3.0. For a comparative analysis, SSHE simulation of the AA7108 aluminum alloy at 400°C was also performed. These ranges of parameters were chosen in order to encompass the parameters found in previously mentioned experiments. The best correlation with experimental hydrostatic pressure was verified for a shear friction coefficient at the material-conical die interface m = 0.50. Force-displacement curve for PMMA presented a constitutive and thermal softening in contrast to a constant force curve for aluminum. The internal temperature in the deformation zone increased in a characteristic "owl's face" profile in contrast to quasi-constant profile of aluminum alloy. In both PMMA and aluminum the stress is hydrostatic inside the container, but the stress profiles are significantly different inside the deformation zone. As expected, the strain and strain-rate profiles are practically the same for the two materials, but the temperature profile has promoted slightly differences in material flow. The velocity gradient from center to surface is higher in PMMA than aluminum. It's supposed that during hydrostatic extrusion solid PMMA has a characteristic thermally-inducted mechanical behavior.
NASA Technical Reports Server (NTRS)
Corsetti, James A.; Green, William E.; Ellis, Jonathan D.; Schmidt, Greg R.; Moore, Duncan T.
2017-01-01
A system combining an interferometer with an environmental chamber for measuring both coefficient of thermal expansion (CTE) and temperature-dependent refractive index (dn/dT) simultaneously is presented. The operation and measurement results of this instrument are discussed.
H2/O2 three-body rates at high temperatures
NASA Technical Reports Server (NTRS)
Marinelli, William J.; Kessler, William J.; Carleton, Karen L.
1991-01-01
Hydrogen atoms are produced in the presence of excess O2, and the first-order decay are studied as a function of temperature and pressure in order to obtain the rate coefficient for the three-body reaction between H-atoms and O2. Attention is focused on the kinetic scheme employed as well as the reaction cell and photolysis and probe laser system. A two-photon laser-induced fluorescence technique is employed to detect H-atoms without optical-thickness or O2-absorption problems. Results confirm measurements reported previously for the H + O2 + N2 reaction at 300 K and extend these measurements to higher temperatures. Preliminary data indicate non-Arrehenius-type behavior of this reaction rate coefficient as a function of temperature. Measurements of the rate coefficient for H + O2 + Ar reaction at 300 K give a rate coefficient of 2.1 +/- 0.1 x 10 to the -32nd cm exp 6/molecule sec.
NASA Astrophysics Data System (ADS)
Shrivastava, Komal Chandra; Kulkarni, A. S.; Ramanjaneyulu, P. S.; Sunil, Saurav; Saxena, M. K.; Singh, R. N.; Tomar, B. S.; Ramakumar, K. L.
2015-06-01
The diffusion coefficients of hydrogen and deuterium in Zr-2.5%Nb alloy were measured in the temperature range 523 to 673 K, employing hot vacuum extraction-quadrupole mass spectrometry (HVE-QMS). One end of the Zr-2.5%Nb alloy specimens was charged electrolytically with the desired hydrogen isotope. After annealing at different temperatures for a predetermined time, the specimens were cut into thin slices, which were analyzed for their H2/D2 content using the HVE-QMS technique. The depth profile data were fitted into the equation representing the solution of Fick's second law of diffusion. The activation energy of hydrogen/deuterium diffusion was obtained from the Arrhenius relation between the diffusion coefficient and temperature. The temperature dependent diffusion coefficient can be represented as DH = 1.41 × 10-7 exp(-36,000/RT) and DD = 6.16 × 10-8 exp(-35,262/RT) for hydrogen and deuterium, respectively.
Posa, Mihalj; Pilipović, Ana; Lalić, Mladena; Popović, Jovan
2011-02-15
Linear dependence between temperature (t) and retention coefficient (k, reversed phase HPLC) of bile acids is obtained. Parameters (a, intercept and b, slope) of the linear function k=f(t) highly correlate with bile acids' structures. Investigated bile acids form linear congeneric groups on a principal component (calculated from k=f(t)) score plot that are in accordance with conformations of the hydroxyl and oxo groups in a bile acid steroid skeleton. Partition coefficient (K(p)) of nitrazepam in bile acids' micelles is investigated. Nitrazepam molecules incorporated in micelles show modified bioavailability (depo effect, higher permeability, etc.). Using multiple linear regression method QSAR models of nitrazepams' partition coefficient, K(p) are derived on the temperatures of 25°C and 37°C. For deriving linear regression models on both temperatures experimentally obtained lipophilicity parameters are included (PC1 from data k=f(t)) and in silico descriptors of the shape of a molecule while on the higher temperature molecular polarisation is introduced. This indicates the fact that the incorporation mechanism of nitrazepam in BA micelles changes on the higher temperatures. QSAR models are derived using partial least squares method as well. Experimental parameters k=f(t) are shown to be significant predictive variables. Both QSAR models are validated using cross validation and internal validation method. PLS models have slightly higher predictive capability than MLR models. Copyright © 2010 Elsevier B.V. All rights reserved.
Mean absorption coefficients of He/Ar/N2/(C1-x-y , Ni x , Co y ) thermal plasmas for CNT synthesis
NASA Astrophysics Data System (ADS)
Salem, D.; Hannachi, R.; Cressault, Y.; Teulet, Ph; Béji, L.
2017-01-01
In this paper, we present the mean absorption coefficients (MACs) calculated for plasma mixtures of argon-helium-nitrogen-carbon-nickel-cobalt at 60 kPa and in a temperature range from 1 kK to 20 kK. These coefficients have been computed under the assumption of a local thermodynamic equilibrium (LTE), isothermal plasma, including atomic and molecular continuum, molecular bands and lines radiation splitted into nine spectral intervals. The results show that the continuum absorption coefficients strongly depend on photodissociation and photoionization processes of the molecular species N2, CN and C2, with a significant effect on photodetachment processes of C- in a frequency interval lower than 1 × 1015 Hz and for low temperature (<6 kK). While at high temperature, the main contribution in continuum absorption coefficient comes from radiative recombination processes except in the infrared region (<0.5 × 1015 Hz) where the inverse bremsstrahlung represents the most important component in continuum processes for all temperature values. On the other hand, the calculation of MAC shows that the role of molecular continuum, molecular bands and line absorption of the neutral catalysis species Ni/Co are only important in a small range of temperature and in a few spectral bands located in visible and infrared regions, while at high temperature and in UV and visible regions, the foremost contributions to MAC come from atomic continuum and line absorption.
Temperature-dependent spectral mismatch corrections
Osterwald, Carl R.; Campanelli, Mark; Moriarty, Tom; ...
2015-11-01
This study develops the mathematical foundation for a translation of solar cell short-circuit current from one thermal and spectral irradiance operating condition to another without the use of ill-defined and error-prone temperature coefficients typically employed in solar cell metrology. Using the partial derivative of quantum efficiency with respect to temperature, the conventional isothermal expression for spectral mismatch corrections is modified to account for changes of current due to temperature; this modification completely eliminates the need for short-circuit-current temperature coefficients. An example calculation is provided to demonstrate use of the new translation.
2011-01-01
Batch anaerobic digestion experiments using dairy manure as feedstocks were performed at moderate (25°C), mesophilic (37°C), and thermophilic (52.5°C) temperatures to understand E. coli, an indicator organism for pathogens, inactivation in dairy manure. Incubation periods at 25, 37, and 52.5°C, were 61, 41, and 28 days respectively. Results were used to develop models for predicting E. coli inactivation and survival in anaerobic digestion. For modeling we used the decay of E. coli at each temperature to calculate the first-order inactivation rate coefficients, and these rates were used to formulate the time - temperature - E. coli survival relationships. We found the inactivation rate coefficient at 52.5°C was 17 and 15 times larger than the inactivation rate coefficients at 25 and 37°C, respectively. Decimal reduction times (D10; time to achieve one log removal) at 25, 37, and 52.5°C, were 9 -10, 7 - 8 days, and < 1 day, respectively. The Arrhenius correlation between inactivation rate coefficients and temperatures over the range 25 -52.5°C was developed to understand the impacts of temperature on E. coli inactivation rate. Using this correlation, the time - temperature - E. coli survival relationships were derived. Besides E. coli inactivation, impacts of temperature on biogas production, methane content, pH change, ORP, and solid reduction were also studied. At higher temperatures, biogas production and methane content was greater than that at low temperatures. While at thermophilic temperature pH was increased, at mesophilic and moderate temperatures pH were reduced over the incubation period. These results can be used to understand pathogen inactivation during anaerobic digestion of dairy manure, and impacts of temperatures on performance of anaerobic digesters treating dairy manure. PMID:21906374
Effect of neutral gas heating in argon radio frequency inductively coupled plasma
NASA Astrophysics Data System (ADS)
Chin, O. H.; Jayapalan, K. K.; Wong, C. S.
2014-08-01
Heating of neutral gas in inductively coupled plasma (ICP) is known to result in neutral gas depletion. In this work, this effect is considered in the simulation of the magnetic field distribution of a 13.56 MHz planar coil ICP. Measured electron temperatures and densities at argon pressures of 0.03, 0.07 and 0.2 mbar were used in the simulation whilst neutral gas temperatures were heuristically fitted. The simulated results showed reasonable agreement with the measured magnetic field profile.
Eberle, Melissa M.; Hsu, Mike S.; Rodriguez, Carissa L.; Szu, Jenny I.; Oliveira, Michael C.; Binder, Devin K.; Park, B. Hyle
2015-01-01
Optical coherence tomography (OCT) is a high resolution, minimally invasive imaging technique, which can produce depth-resolved cross-sectional images. In this study, OCT was used to detect changes in the optical properties of cortical tissue in vivo in mice during the induction of global (pentylenetetrazol) and focal (4-aminopyridine) seizures. Through the use of a confidence interval statistical method on depth-resolved volumes of attenuation coefficient, we demonstrated localization of regions exhibiting both significant positive and negative changes in attenuation coefficient, as well as differentiating between global and focal seizure propagation. PMID:26137382
Theoretical calculation of CH3F/N2-broadening coefficients and their temperature dependence
NASA Astrophysics Data System (ADS)
Jellali, C.; Maaroufi, N.; Aroui, H.
2018-07-01
Using Robert and Bonamy formalism (with parabolic and exact trajectories) based on the semi-classical impact theory, N2-broadening coefficients of methyl fluoride CH3F were calculated for transitions belonging to the PP-, PQ-, PR-, RP-, RQ- and RR- sub-branches of the ν6 perpendicular band near 8.5 μm. The calculations showed the predominance of the dipole-quadruple interaction. The J and K rotational quantum numbers dependencies of the computed coefficients that are consistent with previous measurements were clearly observed in this study. For a fixed value of J, we noticed a decrease in the broadening coefficients, which was more significant at lower J values. In order to deduce the temperature exponent, the N2-broadening coefficients of CH3F were calculated at various temperatures of atmospheric interest between 183 and 296 K with J ≤ 60 and K ≤ 10. These exponents were, in general, J-dependent and K-independent, except for K close to J.
Röttgers, Rüdiger; McKee, David; Utschig, Christian
2014-10-20
The light absorption coefficient of water is dependent on temperature and concentration of ions, i.e. the salinity in seawater. Accurate knowledge of the water absorption coefficient, a, and/or its temperature and salinity correction coefficients, Ψ(T) and Ψ(S), respectively, is essential for a wide range of optical applications. Values are available from published data only at specific narrow wavelength ranges or at single wavelengths in the visible and infrared regions. Ψ(T) and Ψ(S) were therefore spectrophotometrically measured throughout the visible, near, and short wavelength infrared spectral region (400 to ~2700 nm). Additionally, they were derived from more precise measurements with a point-source integrating-cavity absorption meter (PSICAM) for 400 to 700 nm. When combined with earlier measurements from the literature in the range of 2600 - 14000 nm (wavenumber: 3800 - 700 cm(-1)), the coefficients are provided for 400 to 14000 nm (wavenumber: 25000 to 700 cm(-1)).
A parametric heat transfer study for cryogenic ball bearings in SSME HPOTP
NASA Technical Reports Server (NTRS)
Chyu, Mingking K.
1989-01-01
A numerical modeling is to examine the effects of coolant convective heat transfer coefficient and frictional heating on the local temperature characteristics of a ball element in Space Shuttle Main Engine (SSME) High Pressure Oxidizer Turbopump (HPOTP) bearing. The present modeling uses a control-volume based, finite-difference method to solve the non-dimensionalized heat conduction equation in spherical coordinate system. The dimensionless temperature is found as a function of Biot number, heat flux ratio between the two race contacts, and location in the ball. The current results show that, for a given cooling capability, the ball temperature generally increases almost linearly with the heat input from the race-contacts. This increase is always very high at one of the two contacts. An increase in heat transfer coefficient generally reduces the ball temperature and alleviates the temperature gradient, except for the regions very close to the race contacts. For a 10-fold increase of heat transfer coefficient, temperature decrease is 35 percent for the average over entire ball, and 10 percent at the inner-race contact. The corresponding change of temperature gradient displays opposing trends between the regions immediately adjacent to the contacts and the remaining portion of the ball. The average temperature gradient in the vicinity of both contacts increases approximately 70 to 100 percent. A higher temperature gradient produces excessive thermal stress locally which may be detrimental to the material integrity. This, however, is the only unfavorable issue for an increase of heat transfer coefficient.
DYNAMIC AND STATIC PARAMETERS OF THE AQUEOUS HOMOGENEOUS ARMOUR RESEARCH REACTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terrell, C.W.; McElroy, W.N.
1959-06-01
A brief description of the aqueous homogeneous Armour Research Reactor is given. The negative reactivity coefficient resulting from a temperature increase was determined over a fuel temperature range of 37 to 150 deg F. Possession of an accurately calibrated rod and temperature coefficient permitted a direct measurement of the void coefficient. The reactor was taken to different power levels, and from the calibrated rod the total reduction in excess reactivity was obtained. During the power increase program additional U/sup 235/ and water were added to the core to determine the worth of U/sup 235/ and water. (W.D.M.)
Thermodynamic properties of α-uranium
NASA Astrophysics Data System (ADS)
Ren, Zhiyong; Wu, Jun; Ma, Rong; Hu, Guichao; Luo, Chao
2016-11-01
The lattice constants and equilibrium atomic volume of α-uranium were calculated by Density Functional Theory (DFT). The first principles calculation results of the lattice for α-uranium are in agreement with the experimental results well. The thermodynamic properties of α-uranium from 0 to 900 K and 0-100 GPa were calculated with the quasi-harmonic Debye model. Volume, bulk modulus, entropy, Debye temperature, thermal expansion coefficient and the heat capacity of α-uranium were calculated. The calculated results show that the bulk modulus and Debye temperature increase with the increasing pressure at a given temperature while decreasing with the increasing temperature at a given pressure. Volume, entropy, thermal expansion coefficient and the heat capacity decrease with the increasing pressure while increasing with the increasing temperature. The theoretical results of entropy, Debye temperature, thermal expansion coefficient and the heat capacity show good agreement with the general trends of the experimental values. The constant-volume heat capacity shows typical Debye T3 power-law behavior at low temperature limit and approaches to the classical asymptotic Dulong-Petit limit at high temperature limit.
Temperature dependence of electron impact ionization coefficient in bulk silicon
NASA Astrophysics Data System (ADS)
Ahmed, Mowfaq Jalil
2017-09-01
This work exhibits a modified procedure to compute the electron impact ionization coefficient of silicon for temperatures between 77 and 800K and electric fields ranging from 70 to 400 kV/cm. The ionization coefficients are computed from the electron momentum distribution function through solving the Boltzmann transport equation (BTE). The arrangement is acquired by joining Legendre polynomial extension with BTE. The resulting BTE is solved by differences-differential method using MATLAB®. Six (X) equivalent ellipsoidal and non-parabolic valleys of the conduction band of silicon are taken into account. Concerning the scattering mechanisms, the interval acoustic scattering, non-polar optical scattering and II scattering are taken into consideration. This investigation showed that the ionization coefficients decrease with increasing temperature. The overall results are in good agreement with previous experimental and theoretical reported data predominantly at high electric fields.
NASA Astrophysics Data System (ADS)
Jha, Pankaj; Sands, Timothy D.; Cassels, Laura; Jackson, Philip; Favaloro, Tela; Kirk, Benjamin; Zide, Joshua; Xu, Xianfan; Shakouri, Ali
2012-09-01
Lanthanum strontium manganate (La0.67Sr0.33MnO3, i.e., LSMO)/lanthanum manganate (LaMnO3, i.e., LMO) perovskite oxide metal/semiconductor superlattices were investigated as a potential p-type thermoelectric material. Growth was performed using pulsed laser deposition to achieve epitaxial LSMO (metal)/LMO (p-type semiconductor) superlattices on (100)-strontium titanate (STO) substrates. The magnitude of the in-plane Seebeck coefficient of LSMO thin films (<20 μV/K) is consistent with metallic behavior, while LMO thin films were p-type with a room temperature Seebeck coefficient of 140 μV/K. Thermal conductivity measurements via the photo-acoustic (PA) technique showed that LSMO/LMO superlattices exhibit a room temperature cross-plane thermal conductivity (0.89 W/m.K) that is significantly lower than the thermal conductivity of individual thin films of either LSMO (1.60 W/m.K) or LMO (1.29 W/m.K). The lower thermal conductivity of LSMO/LMO superlattices may help overcome one of the major limitations of oxides as thermoelectrics. In addition to a low cross-plane thermal conductivity, a high ZT requires a high power factor (S2σ). Cross-plane electrical transport measurements were carried out on cylindrical pillars etched in LSMO/LMO superlattices via inductively coupled plasma reactive ion etching. Cross-plane electrical resistivity data for LSMO/LMO superlattices showed a magnetic phase transition temperature (TP) or metal-semiconductor transition at ˜330 K, which is ˜80 K higher than the TP observed for in-plane resistivity of LSMO, LMO, or LSMO/LMO thin films. The room temperature cross-plane resistivity (ρc) was found to be greater than the in-plane resistivity by about three orders of magnitude. The magnitude and temperature dependence of the cross-plane conductivity of LSMO/LMO superlattices suggests the presence of a barrier with the effective barrier height of ˜300 meV. Although the magnitude of the cross-plane power factor is too low for thermoelectric applications by a factor of approximately 10-4—in part because the growth conditions chosen for this study yielded relatively high resistivity films—the temperature dependence of the resistivity and the potential for tuning the power factor by engineering strain, oxygen stoichiometry, and electronic band structure suggest that these epitaxial metal/semiconductor superlattices are deserving of further investigation.
Seebeck Coefficient Metrology: Do Contemporary Protocols Measure Up?
NASA Astrophysics Data System (ADS)
Martin, Joshua; Wong-Ng, Winnie; Green, Martin L.
2015-06-01
Comparative measurements of the Seebeck coefficient are challenging due to the diversity of instrumentation and measurement protocols. With the implementation of standardized measurement protocols and the use of Standard Reference Materials (SRMs®), for example, the recently certified National Institute of Standards and Technology (NIST) SRM® 3451 ``Low Temperature Seebeck Coefficient Standard (10-390 K)'', researchers can reliably analyze and compare data, both intra- and inter-laboratory, thereby accelerating the development of more efficient thermoelectric materials and devices. We present a comparative overview of commonly adopted Seebeck coefficient measurement practices. First, we examine the influence of asynchronous temporal and spatial measurement of electric potential and temperature. Temporal asynchronicity introduces error in the absolute Seebeck coefficient of the order of ≈10%, whereas spatial asynchronicity introduces error of the order of a few percent. Second, we examine the influence of poor thermal contact between the measurement probes and the sample. This is especially critical at high temperature, wherein the prevalent mode of measuring surface temperature is facilitated by pressure contact. Each topic will include the comparison of data measured using different measurement techniques and using different probe arrangements. We demonstrate that the probe arrangement is the primary limit to high accuracy, wherein the Seebeck coefficients measured by the 2-probe arrangement and those measured by the 4-probe arrangement diverge with the increase in temperature, approaching ≈14% at 900 K. Using these analyses, we provide recommended measurement protocols to guide members of the thermoelectric materials community in performing more accurate measurements and in evaluating more comprehensive uncertainty limits.
Temperature compensated photovoltaic array
Mosher, D.M.
1997-11-18
A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.
NASA Technical Reports Server (NTRS)
Schwenke, David W.; Jaffe, Richard L.; Chaban, Galina M.
2016-01-01
We have generated accurate global potential energy surfaces for CO+Ar and CO+O that correlate with atom-diatom pairs in their ground electronic states based on extensive ab initio electronic structure calculations and used these potentials in quasi-classical trajectory nuclear dynamics calculations to predict the thermal dissociation rate coefficients over 5000- 35000 K. Our results are not compatible with the 20-45 year old experimental results. For CO + Ar we obtain fairly good agreement with the experimental rate coefficients of Appleton et al. (1970) and Mick and Roth (1993), but our computed rate coefficients exhibit a stronger temperature dependence. For CO + O our dissociation rate coefficient is in close agreement with the value from the Park model, which is an empirical adjustment of older experimental results. However, we find the rate coefficient for CO + O is only 1.5 to 3.3 times larger than CO + Ar over the temperature range of the shock tube experiments (8000-15,000 K). The previously accepted value for this rate coefficient ratio is 15, independent of temperature. We also computed the rate coefficient for the CO + O ex- change reaction which forms C + O2. We find this reaction is much faster than previously believed and is the dominant process in the removal of CO at temperatures up to 16,000 K. As a result, the dissociation of CO is accomplished in two steps (react to form C+O2 and then O2 dissociates) that are endothermic by 6.1 and 5.1 eV, instead of one step that requires 11.2 eV to break the CO bond.
NASA Astrophysics Data System (ADS)
Ilia Anisa, Nor; Azian, Noor; Sharizan, Mohd; Iwai, Yoshio
2014-04-01
6-gingerol and 6-shogaol are the main constituents as anti-inflammatory or bioactive compounds from zingiber officinale Roscoe. These bioactive compounds have been proven for inflammatory disease, antioxidatives and anticancer. The effect of temperature on diffusion coefficient for 6-gingerol and 6-shogaol were studied in subcritical water extraction. The diffusion coefficient was determined by Fick's second law. By neglecting external mass transfer and solid particle in spherical form, a linear portion of Ln (1-(Ct/Co)) versus time was plotted in determining the diffusion coefficient. 6-gingerol obtained the higher yield at 130°C with diffusion coefficient of 8.582x10-11 m2/s whilst for 6-shogaol, the higher yield and diffusion coefficient at 170°C and 19.417 × 10-11 m2/s.
NASA Astrophysics Data System (ADS)
Rezania, Hamed; Azizi, Farshad
2018-02-01
We study the effects of a transverse magnetic field and electron doping on the thermoelectric properties of monolayer graphene in the context of Hubbard model at the antiferromagnetic sector. In particular, the temperature dependence of thermal conductivity and Seebeck coefficient has been investigated. Mean field approximation has been employed in order to obtain the electronic spectrum of the system in the presence of local electron-electron interaction. Our results show the peak in thermal conductivity moves to higher temperatures with increase of both chemical potential and Hubbard parameter. Moreover the increase of magnetic field leads to shift of peak in temperature dependence of thermal conductivity to higher temperatures. Finally the behavior of Seebeck coefficient in terms of temperature has been studied and the effects of magnetic field and Hubbard parameter on this coefficient have been investigated in details.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Hieu T., E-mail: hieu.nguyen@anu.edu.au; Macdonald, Daniel; Baker-Finch, Simeon C.
2014-03-17
The radiative recombination coefficient B(T) in crystalline silicon is determined for the temperature range 90–363 K, and in particular from 270 to 350 K with an interval of 10 K, where only sparse data are available at present. The band-band absorption coefficient established recently by Nguyen et al. [J. Appl. Phys. 115, 043710 (2014)] via photoluminescence spectrum measurements is employed to compute the values of B(T) at various temperatures. The results agree very well with literature data from Trupke et al. [J. Appl. Phys. 94, 4930 (2003).] We present a polynomial parameterization describing the temperature dependence of the product of B(T) and themore » square of the intrinsic carrier density. We also find that B(T) saturates at a near constant value at room temperature and above for silicon samples with relatively low free carrier densities.« less
Deviations from LTE in a stellar atmosphere
NASA Technical Reports Server (NTRS)
Kalkofen, W.; Klein, R. I.; Stein, R. F.
1979-01-01
Deviations for LTE are investigated in an atmosphere of hydrogen atoms with one bound level, satisfying the equations of radiative, hydrostatic, and statistical equilibrium. The departure coefficient and the kinetic temperature as functions of the frequency dependence of the radiative cross section are studied analytically and numerically. Near the outer boundary of the atmosphere, the departure coefficient is smaller than unity when the radiative cross section grows with frequency faster than with the square of frequency; it exceeds unity otherwise. Far from the boundary the departure coefficient tends to exceed unity for any frequency dependence of the radiative cross section. Overpopulation always implies that the kinetic temperature in the statistical-equilibrium atmosphere is higher than the temperature in the corresponding LTE atmosphere. Upper and lower bounds on the kinetic temperature are given for an atmosphere with deviations from LTE only in the optically shallow layers when the emergent intensity can be described by a radiation temperature.
Nonlinear effects on composite laminate thermal expansion
NASA Technical Reports Server (NTRS)
Hashin, Z.; Rosen, B. W.; Pipes, R. B.
1979-01-01
Analyses of Graphite/Polyimide laminates shown that the thermomechanical strains cannot be separated into mechanical strain and free thermal expansion strain. Elastic properties and thermal expansion coefficients of unidirectional Graphite/Polyimide specimens were measured as a function of temperature to provide inputs for the analysis. The + or - 45 degrees symmetric Graphite/Polyimide laminates were tested to obtain free thermal expansion coefficients and thermal expansion coefficients under various uniaxial loads. The experimental results demonstrated the effects predicted by the analysis, namely dependence of thermal expansion coefficients on load, and anisotropy of thermal expansion under load. The significance of time dependence on thermal expansion was demonstrated by comparison of measured laminate free expansion coefficients with and without 15 day delay at intermediate temperature.
NASA Astrophysics Data System (ADS)
Goraj, R.
2015-12-01
In order to estimate the inductive power set in the armature of the high-speed solenoid valve (HSV) during the open loop control (OLC) using pulse width modulation (PWM) an analytical explicit formula has been derived. The simplifications taken both in the geometry and in the physical behavior of the HSV were described. The inductive power was calculated for different boundary conditions and shown as a function of the frequency of the coil current. The power set in the armature was used as an input to the thermal calculation. The thermal calculation had an objective to estimate the time dependent temperature distribution in the armature of the HSV. All the derivation steps were presented and the influence of different boundary conditions was shown and discussed. The increase of the temperature during the heating with inductive power has been evaluated both in the core and on the side surface of the HSV.
Cr13Ni5Si2-Based Composite Coating on Copper Deposited Using Pulse Laser Induction Cladding
Wang, Ke; Wang, Hailin; Zhu, Guangzhi; Zhu, Xiao
2017-01-01
A Cr13Ni5Si2-based composite coating was successfully deposited on copper by pulse laser induction hybrid cladding (PLIC), and its high-temperature wear behavior was investigated. Temperature evolutions associated with crack behaviors in PLIC were analyzed and compared with pulse laser cladding (PLC) using the finite element method. The microstructure and present phases were analyzed using scanning electron microscopy and X-ray diffraction. Compared with continuous laser induction cladding, the higher peak power offered by PLIC ensures metallurgical bonding between highly reflective copper substrate and coating. Compared with a wear test at room temperature, at 500 °C the wear volume of the Cr13Ni5Si2-based composite coating increased by 21%, and increased by 225% for a NiCr/Cr3C2 coating deposited by plasma spray. This novel technology has good prospects for application with respect to the extended service life of copper mold plates for slab continuous casting. PMID:28772519
Cr13Ni5Si2-Based Composite Coating on Copper Deposited Using Pulse Laser Induction Cladding.
Wang, Ke; Wang, Hailin; Zhu, Guangzhi; Zhu, Xiao
2017-02-10
A Cr13Ni5Si2-based composite coating was successfully deposited on copper by pulse laser induction hybrid cladding (PLIC), and its high-temperature wear behavior was investigated. Temperature evolutions associated with crack behaviors in PLIC were analyzed and compared with pulse laser cladding (PLC) using the finite element method. The microstructure and present phases were analyzed using scanning electron microscopy and X-ray diffraction. Compared with continuous laser induction cladding, the higher peak power offered by PLIC ensures metallurgical bonding between highly reflective copper substrate and coating. Compared with a wear test at room temperature, at 500 °C the wear volume of the Cr13Ni5Si2-based composite coating increased by 21%, and increased by 225% for a NiCr/Cr3C2 coating deposited by plasma spray. This novel technology has good prospects for application with respect to the extended service life of copper mold plates for slab continuous casting.
Sturtevant, Blake T; Davulis, Peter M; da Cunha, Mauricio Pereira
2009-04-01
This work reports on the determination of langatate elastic and piezoelectric constants and their associated temperature coefficients employing 2 independent methods, the pulse echo overlap (PEO) and a combined resonance technique (CRT) to measure bulk acoustic wave (BAW) phase velocities. Details on the measurement techniques are provided and discussed, including the analysis of the couplant material in the PEO technique used to couple signal to the sample, which showed to be an order of magnitude more relevant than the experimental errors involved in the data extraction. At room temperature, elastic and piezoelectric constants were extracted by the PEO and the CRT methods and showed results consistent to within a few percent for the elastic constants. Both raw acquired data and optimized constants, based on minimization routines applied to all the modes involved in the measurements, are provided and discussed. Comparison between the elastic constants and their temperature behavior with the literature reveals the recent efforts toward the consistent growth and characterization of LGT, in spite of significant variations (between 1 and 30%) among the constants extracted by different groups at room temperature. The density, dielectric permittivity constants, and respective temperature coefficients used in this work have also been independently determined based on samples from the same crystal boule. The temperature behavior of the BAW modes was extracted using the CRT technique, which has the advantage of not relying on temperature dependent acoustic couplants. Finally, the extracted temperature coefficients for the elastic and piezoelectric constants between room temperature and 120 degrees C are reported and discussed in this work.
14 CFR 29.1049 - Hovering cooling test procedures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... minutes after the occurrence of the highest temperature recorded; and (b) With maximum continuous power... five minutes after the occurrence of the highest temperature recorded. Induction System ...
14 CFR 29.1049 - Hovering cooling test procedures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... minutes after the occurrence of the highest temperature recorded; and (b) With maximum continuous power... five minutes after the occurrence of the highest temperature recorded. Induction System ...
14 CFR 29.1049 - Hovering cooling test procedures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... minutes after the occurrence of the highest temperature recorded; and (b) With maximum continuous power... five minutes after the occurrence of the highest temperature recorded. Induction System ...
14 CFR 29.1049 - Hovering cooling test procedures.
Code of Federal Regulations, 2011 CFR
2011-01-01
... minutes after the occurrence of the highest temperature recorded; and (b) With maximum continuous power... five minutes after the occurrence of the highest temperature recorded. Induction System ...
14 CFR 29.1049 - Hovering cooling test procedures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... minutes after the occurrence of the highest temperature recorded; and (b) With maximum continuous power... five minutes after the occurrence of the highest temperature recorded. Induction System ...
Park, Sooyong; Yoon, Seok-Hwa; Youn, Ann Misun; Song, Seung Hyun; Hwang, Ja Gyung
2017-12-01
Intraoperative hypothermia is common in patients undergoing general anesthesia during arthroscopic hip surgery. In the present study, we assessed the effect of heating and humidifying the airway with a heated wire humidification circuit (HHC) to attenuate the decrease of core temperature and prevent hypothermia in patients undergoing arthroscopic hip surgery under general anesthesia. Fifty-six patients scheduled for arthroscopic hip surgery were randomly assigned to either a control group using a breathing circuit connected with a heat and moisture exchanger (HME) (n = 28) or an HHC group using a heated wire humidification circuit (n = 28). The decrease in core temperature was measured from anesthetic induction and every 15 minutes thereafter using an esophageal stethoscope. Decrease in core temperature from anesthetic induction to 120 minutes after induction was lower in the HHC group (-0.60 ± 0.27℃) compared to the control group (-0.86 ± 0.29℃) (P = 0.001). However, there was no statistically significant difference in the incidence of intraoperative hypothermia or the incidence of shivering in the postanesthetic care unit. The use of HHC may be considered as a method to attenuate intraoperative decrease in core temperature during arthroscopic hip surgery performed under general anesthesia and exceeding 2 hours in duration.
Liu, Jun; Yin, Da-Chuan; Guo, Yun-Zhu; Wang, Xi-Kai; Xie, Si-Xiao; Lu, Qin-Qin; Liu, Yong-Ming
2011-01-01
Protein crystals usually grow at a preferable temperature which is however not known for a new protein. This paper reports a new approach for determination of favorable crystallization temperature, which can be adopted to facilitate the crystallization screening process. By taking advantage of the correlation between the temperature dependence of the second virial coefficient (B 22) and the solubility of protein, we measured the temperature dependence of B 22 to predict the temperature dependence of the solubility. Using information about solubility versus temperature, a preferred crystallization temperature can be proposed. If B 22 is a positive function of the temperature, a lower crystallization temperature is recommended; if B 22 shows opposite behavior with respect to the temperature, a higher crystallization temperature is preferred. Otherwise, any temperature in the tested range can be used. PMID:21479212
ASD-1000: High-resolution, high-temperature acetylene spectroscopic databank
NASA Astrophysics Data System (ADS)
Lyulin, O. M.; Perevalov, V. I.
2017-11-01
We present a high-resolution, high-temperature version of the Acetylene Spectroscopic Databank called ASD-1000. The databank contains the line parameters (position, intensity, Einstein coefficient for spontaneous emission, term value of the lower states, self- and air-broadening coefficients, temperature dependence exponents of the self- and air-broadening coefficients) of the principal isotopologue of C2H2. The reference temperature for line intensity is 296 K and the intensity cutoff is 10-27 cm-1/(molecule cm-2) at 1000 K. The databank has 33,890,981 entries and covers the 3-10,000 cm-1 spectral range. The databank is based on the global modeling of the line positions and intensities performed within the framework of the method of effective operators. The parameters of the effective Hamiltonian and the effective dipole moment operator have been fitted to the observed values of the line positions and intensities collected from the literature. The broadening coefficients as well as their temperature dependence exponents were calculated using the empirical equations. The databank is useful for studying high-temperature radiative properties of C2H2. ASD-1000 is freely accessible via the Internet site of V.E. Zuev Institute of Atmospheric Optics SB RAS ftp://ftp.iao.ru/pub/ASD1000/.
Shehzad, Khurram; Xu, Yang; Gao, Chao; Li, Hanying; Dang, Zhi-Min; Hasan, Tawfique; Luo, Jack; Duan, Xiangfeng
2017-03-01
Polymer dielectrics offer key advantages over their ceramic counterparts such as flexibility, scalability, low cost, and high breakdown voltages. However, a major drawback that limits more widespread application of polymer dielectrics is their temperature-dependent dielectric properties. Achieving dielectric constants with low/zero-temperature coefficient (L/0TC) over a broad temperature range is essential for applications in diverse technologies. Here, we report a hybrid filler strategy to produce polymer composites with an ultrawide L/0TC window of dielectric constant, as well as a significantly enhanced dielectric value, maximum energy storage density, thermal conductivity, and stability. By creating a series of percolative polymer composites, we demonstrated hybrid carbon filler based composites can exhibit a zero-temperature coefficient window of 200 °C (from -50 to 150 °C), the widest 0TC window for all polymer composite dielectrics reported to date. We further show the electric and dielectric temperature coefficient of the composites is highly stable against stretching and bending, even under AC electric field with frequency up to 1 MHz. We envision that our method will push the functional limits of polymer dielectrics for flexible electronics in extreme conditions such as in hybrid vehicles, aerospace, power electronics, and oil/gas exploration.
Xiong, Jijun; Li, Chen; Jia, Pinggang; Chen, Xiaoyong; Zhang, Wendong; Liu, Jun; Xue, Chenyang; Tan, Qiulin
2015-08-31
Pressure measurements in high-temperature applications, including compressors, turbines, and others, have become increasingly critical. This paper proposes an implantable passive LC pressure sensor based on an alumina ceramic material for in situ pressure sensing in high-temperature environments. The inductance and capacitance elements of the sensor were designed independently and separated by a thermally insulating material, which is conducive to reducing the influence of the temperature on the inductance element and improving the quality factor of the sensor. In addition, the sensor was fabricated using thick film integrated technology from high-temperature materials that ensure stable operation of the sensor in high-temperature environments. Experimental results showed that the sensor accurately monitored pressures from 0 bar to 2 bar at temperatures up to 800 °C. The sensitivity, linearity, repeatability error, and hysteretic error of the sensor were 0.225 MHz/bar, 95.3%, 5.5%, and 6.2%, respectively.
Xiong, Jijun; Li, Chen; Jia, Pinggang; Chen, Xiaoyong; Zhang, Wendong; Liu, Jun; Xue, Chenyang; Tan, Qiulin
2015-01-01
Pressure measurements in high-temperature applications, including compressors, turbines, and others, have become increasingly critical. This paper proposes an implantable passive LC pressure sensor based on an alumina ceramic material for in situ pressure sensing in high-temperature environments. The inductance and capacitance elements of the sensor were designed independently and separated by a thermally insulating material, which is conducive to reducing the influence of the temperature on the inductance element and improving the quality factor of the sensor. In addition, the sensor was fabricated using thick film integrated technology from high-temperature materials that ensure stable operation of the sensor in high-temperature environments. Experimental results showed that the sensor accurately monitored pressures from 0 bar to 2 bar at temperatures up to 800 °C. The sensitivity, linearity, repeatability error, and hysteretic error of the sensor were 0.225 MHz/bar, 95.3%, 5.5%, and 6.2%, respectively. PMID:26334279
NASA Astrophysics Data System (ADS)
Valeri, Guillermo; Koohbor, Behrad; Kidane, Addis; Sutton, Michael A.
2017-04-01
An experimental approach based on Digital Image Correlation (DIC) is successfully applied to predict the uniaxial stress-strain response of 304 stainless steel specimens subjected to nominally uniform temperatures ranging from room temperature to 900 °C. A portable induction heating device equipped with custom made water-cooled copper coils is used to heat the specimen. The induction heater is used in conjunction with a conventional tensile frame to enable high temperature tension experiments. A stereovision camera system equipped with appropriate band pass filters is employed to facilitate the study of full-field deformation response of the material at elevated temperatures. Using the temperature and load histories along with the full-field strain data, a Virtual Fields Method (VFM) based approach is implemented to identify constitutive parameters governing the plastic deformation of the material at high temperature conditions. Results from these experiments confirm that the proposed method can be used to measure the full field deformation of materials subjected to thermo-mechanical loading.
Effective temperatures and the breakdown of the Stokes-Einstein relation for particle suspensions.
Mendoza, Carlos I; Santamaría-Holek, I; Pérez-Madrid, A
2015-09-14
The short- and long-time breakdown of the classical Stokes-Einstein relation for colloidal suspensions at arbitrary volume fractions is explained here by examining the role that confinement and attractive interactions play in the intra- and inter-cage dynamics executed by the colloidal particles. We show that the measured short-time diffusion coefficient is larger than the one predicted by the classical Stokes-Einstein relation due to a non-equilibrated energy transfer between kinetic and configuration degrees of freedom. This transfer can be incorporated in an effective kinetic temperature that is higher than the temperature of the heat bath. We propose a Generalized Stokes-Einstein relation (GSER) in which the effective temperature replaces the temperature of the heat bath. This relation then allows to obtain the diffusion coefficient once the viscosity and the effective temperature are known. On the other hand, the temporary cluster formation induced by confinement and attractive interactions of hydrodynamic nature makes the long-time diffusion coefficient to be smaller than the corresponding one obtained from the classical Stokes-Einstein relation. Then, the use of the GSER allows to obtain an effective temperature that is smaller than the temperature of the heat bath. Additionally, we provide a simple expression based on a differential effective medium theory that allows to calculate the diffusion coefficient at short and long times. Comparison of our results with experiments and simulations for suspensions of hard and porous spheres shows an excellent agreement in all cases.
Piezoelectric shear wave resonator and method of making same
Wang, J.S.; Lakin, K.M.; Landin, A.R.
1985-05-20
An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppM//sup 0/C.
Piezoelectric shear wave resonator and method of making same
Wang, J.S.; Lakin, K.M.; Landin, A.R.
1983-10-25
An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppM//sup 0/C.
Analysis, design, and control of a transcutaneous power regulator for artificial hearts.
Qianhong Chen; Siu Chung Wong; Tse, C K; Xinbo Ruan
2009-02-01
Based on a generic transcutaneous transformer model, a remote power supply using a resonant topology for use in artificial hearts is analyzed and designed for easy controllability and high efficiency. The primary and secondary windings of the transcutaneous transformer are positioned outside and inside the human body, respectively. In such a transformer, the alignment and gap may change with external positioning. As a result, the coupling coefficient of the transcutaneous transformer is also varying, and so are the two large leakage inductances and the mutual inductance. Resonant-tank circuits with varying resonant-frequency are formed from the transformer inductors and external capacitors. For a given range of coupling coefficients, an operating frequency corresponding to a particular coupling coefficient can be found, for which the voltage transfer function is insensitive to load. Prior works have used frequency modulation to regulate the output voltage under varying load and transformer coupling. The use of frequency modulation may require a wide control frequency range which may extend well above the load insensitive frequency. In this paper, study of the input-to-output voltage transfer function is carried out, and a control method is proposed to lock the switching frequency at just above the load insensitive frequency for optimized efficiency at heavy loads. Specifically, operation at above resonant of the resonant circuits is maintained under varying coupling-coefficient. Using a digital-phase-lock-loop (PLL), zero-voltage switching is achieved in a full-bridge converter which is also programmed to provide output voltage regulation via pulsewidth modulation (PWM). A prototype transcutaneous power regulator is built and found to to perform excellently with high efficiency and tight regulation under variations of the alignment or gap of the transcutaneous transformer, load and input voltage.
NASA Astrophysics Data System (ADS)
Mialdun, A.; Ryzhkov, I.; Khlybov, O.; Lyubimova, T.; Shevtsova, V.
2018-01-01
We report on the measurement of Soret (ST) coefficients in the ternary system toluene (T)-methanol (M)-cyclohexane (Ch) onboard the International Space Station in the experiment selectable optical diagnostic instrument/DCMIX2 (Diffusion Coefficients Measurement in ternary mIXtures). Nine experiments were conducted in the range of mean temperatures between 298.15 K and 306.15 K in the mixture with composition 0.62 (T)-0.31 (M)-0.07 (Ch) in mass fractions. A linear dependence of the Soret coefficients on temperature was established for the ternary mixture. It has also been found that, over considered range of mean temperatures, the Soret coefficients of toluene are small and positive, while the Soret coefficients for methanol are negative and, at least, two times larger. The present work also presents a comprehensive study of possible methodologies to process raw data from the Soret experiment in ternary mixtures. All the experiments were processed by seven different schemes and two of them were identified as the most reliable. We also investigate the error propagation and explain the reasons for the discrepancy of the results obtained by different schemes.
The induction of hyperthermia in rabbit liver by means of duplex stainless steel thermoseeds.
Park, Byeong Ho; Koo, Bong Sig; Kim, Young Kon; Kim, Moon Kon
2002-01-01
To determine the heating characteristics of needle-shaped duplex stainless steel thermoseeds, and to evaluate their effectiveness in the induction of hyperthermia in rabbit liver. Thermoseeds of the two different shapes, L-shaped for single doses of hyperthermia and I-shaped for in-vitro study and repeated hyperthermic induction, were prepared. For the in-vitro study, an I-shaped thermoseed 0.23 mm in diameter and 25 mm long was placed inside a plastic tube filled with water. Heat was applied for 30 minutes within an induction magnetic field, and during this time changes in temperature were recorded using three thermocouples. For the in-vivo study, fifteen New Zealand white rabbits were divided into five equal groups. An I-shaped or L-shaped thermoseed was inserted in each rabbit's liver, and then placed within the center of the magnetic induction coil during a 30-minute period of hyperthermia. The rabbits in the first group were sacrificed immediately after hyperthermia was induced once, while those in the other groups were sacrificed at 1, 3, and 7 days, respectively, also after one induction. The remaining three rabbits were sacrificed 4 days after three consecutive daily treatment sessions. The resected segments of liver were subsequently evaluated histopathologically for the extent of coagulation necrosis caused by heating of the thermoseed. The in-vitro study demonstrated that the temperature in the thermoseed, which was 25.9 degrees C before heating and 54.8 degrees C after heating, rose rapidly at first but progressively less rapidly as time elapsed. Light microscopic examination of the rabbits' livers revealed coagulation necrosis and infiltration by inflammatory cells around the insertion site of the thermoseed. The maximum diameter of coagulation necrosis was 2.81+/-1.68 mm, and this occurred in the rabbits that were sacrificed 7 days after heat induction. Needle-shaped duplex stainless steel thermoseeds show temperature-dependent-type heating characteristics, and in rabbit liver, induced coagulation necrosis of surrounding tissues after heat is applied for 30 minutes. These thermoseeds may thus be useful for the induction of interstitial hyperthermia.
The Induction of Hyperthermia in Rabbit Liver by means of Duplex Stainless Steel Thermoseeds
Koo, Bong Sig; Kim, Young Kon; Kim, Moon Kon
2002-01-01
Objective To determine the heating characteristics of needle-shaped duplex stainless steel thermoseeds, and to evaluate their effectiveness in the induction of hyperthermia in rabbit liver. Materials and Methods Thermoseeds of the two different shapes, L-shaped for single doses of hyperthermia and I-shaped for in-vitro study and repeated hyperthermic induction, were prepared. For the in-vitro study, an I-shaped thermoseed 0.23 mm in diameter and 25 mm long was placed inside a plastic tube filled with water. Heat was applied for 30 minutes within an induction magnetic field, and during this time changes in temperature were recorded using three thermocouples. For the in-vivo study, fifteen New Zealand white rabbits were divided into five equal groups. An I-shaped or L-shaped thermoseed was inserted in each rabbit's liver, and then placed within the center of the magnetic induction coil during a 30-minute period of hyperthermia. The rabbits in the first group were sacrificed immediately after hyperthermia was induced once, while those in the other groups were sacrificed at 1, 3, and 7 days, respectively, also after one induction. The remaining three rabbits were sacrificed 4 days after three consecutive daily treatment sessions. The resected segments of liver were subsequently evaluated histopathologically for the extent of coagulation necrosis caused by heating of the thermoseed. Results The in-vitro study demonstrated that the temperature in the thermoseed, which was 25.9℃ before heating and 54.8℃ after heating, rose rapidly at first but progressively less rapidly as time elapsed. Light microscopic examination of the rabbits' livers revealed coagulation necrosis and infiltration by inflammatory cells around the insertion site of the thermoseed. The maximum diameter of coagulation necrosis was 2.81 ± 1.68 mm, and this occurred in the rabbits that were sacrificed 7 days after heat induction. Conclusion Needle-shaped duplex stainless steel thermoseeds show temperature-dependent-type heating characteristics, and in rabbit liver, induced coagulation necrosis of surrounding tissues after heat is applied for 30 minutes. These thermoseeds may thus be useful for the induction of interstitial hyperthermia. PMID:12087199
NASA Astrophysics Data System (ADS)
Mr., J. Ravi Kumar; Banakara, Basavaraja, Dr.
2017-08-01
This paper presents electromagnetic and thermal behavior of Induction Motor (IM) through the modeling and analysis by applying multiphysics coupled Finite Element Analysis (FEA). Therefore prediction of the magnetic flux, electromagnetic torque, stator and rotor losses and temperature distribution inside an operating electric motor are the most important issues during its design. Prediction and estimation of these parameters allows design engineers to decide capability of the machine for the proposed load, temperature rating and its application for which it is being designed ensuring normal motor operation at rated conditions. In this work, multiphysics coupled electromagnetic - thermal modeling and analysis of induction motor at rated and high frequency has carried out applying Arkkio’s torque method. COMSOL Multiphysics software is used for modeling and finite element analysis of IM. Transient electromagnetic torque, magnetic field distribution, speed-torque characteristics of IM were plotted and studied at different frequencies. This proposed work helps in the design and prediction of accurate performance of induction motor specific to various industrial drive applications. Results obtained are also validated with experimental analysis. The main purpose of this model is to use it as an integral part of the design aiming to system optimization of Variable Speed Drive (VSD) and its components using coupled simulations.
Model 'zero-age' lunar thermal profiles resulting from electrical induction
NASA Technical Reports Server (NTRS)
Herbert, F.; Sonett, C. P.; Wiskerchen, M. J.
1977-01-01
Thermal profiles for the moon are calculated under the assumption that a pre-main-sequence T-Tauri-like solar wind excites both transverse magnetic and transverse electric induction while the moon is accreting. A substantial initial temperature rise occurs, possibly of sufficient magnitude to cause subsequent early extensive melting throughout the moon in conjunction with nominal long-lived radioactives. In these models, accretion is an unimportant direct source of thermal energy but is important because even small temperature rises from accretion cause significant changes in bulk electrical conductivity. Induction depends upon the radius of the moon, which we take to be accumulating while it is being heated electrically. The 'zero-age' profiles calculated in this paper are proposed as initial conditions for long-term thermal evolution of the moon.
Kutsumi, Osamu; Kato, Yushi; Matsui, Yuuki; Kitagawa, Atsushi; Muramatsu, Masayuki; Uchida, Takashi; Yoshida, Yoshikazu; Sato, Fuminobu; Iida, Toshiyuki
2010-02-01
Multicharged ions that are needed are produced from solid pure material with high melting point in an electron cyclotron resonance ion source. We develop an evaporator by using induction heating (IH) with multilayer induction coil, which is made from bare molybdenum or tungsten wire without water cooling and surrounding the pure vaporized material. We optimize the shapes of induction coil and vaporized materials and operation of rf power supply. We conduct experiment to investigate the reproducibility and stability in the operation and heating efficiency. IH evaporator produces pure material vapor because materials directly heated by eddy currents have no contact with insulated materials, which are usually impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10(-4)-10(-3) Pa. We measure the temperature of the vaporized materials with different shapes, and compare them with the result of modeling. We estimate the efficiency of the IH vapor source. We are aiming at the evaporator's higher melting point material than that of iron.
NASA Astrophysics Data System (ADS)
Kutsumi, Osamu; Kato, Yushi; Matsui, Yuuki; Kitagawa, Atsushi; Muramatsu, Masayuki; Uchida, Takashi; Yoshida, Yoshikazu; Sato, Fuminobu; Iida, Toshiyuki
2010-02-01
Multicharged ions that are needed are produced from solid pure material with high melting point in an electron cyclotron resonance ion source. We develop an evaporator by using induction heating (IH) with multilayer induction coil, which is made from bare molybdenum or tungsten wire without water cooling and surrounding the pure vaporized material. We optimize the shapes of induction coil and vaporized materials and operation of rf power supply. We conduct experiment to investigate the reproducibility and stability in the operation and heating efficiency. IH evaporator produces pure material vapor because materials directly heated by eddy currents have no contact with insulated materials, which are usually impurity gas sources. The power and the frequency of the induction currents range from 100to900W and from 48to23kHz, respectively. The working pressure is about 10-4-10-3Pa. We measure the temperature of the vaporized materials with different shapes, and compare them with the result of modeling. We estimate the efficiency of the IH vapor source. We are aiming at the evaporator's higher melting point material than that of iron.
Jeong, Cheol Won; Ju, Jin; Lee, Dae Wook; Lee, Seong Heon
2012-01-01
Purpose Anesthesia and surgery commonly cause hypothermia, and this caused by a combination of anesthetic-induced impairment of thermoregulatory control, a cold operation room environment and other factors that promote heat loss. All the general anesthetics markedly impair normal autonomic thermoregulatory control. The aim of this study is to evaluate the effect of two different types of propofol versus inhalation anesthetic on the body temperature. Materials and Methods In this randomized controlled study, 36 patients scheduled for elective laparoscopic gastrectomy were allocated into three groups; group S (sevoflurane, n=12), group L (lipid-emulsion propofol, n=12) and group M (micro-emulsion propofol, n=12). Anesthesia was maintained with typical doses of the study drugs and all the groups received continuous remifentanil infusion. The body temperature was continuously monitored after the induction of general anesthesia until the end of surgery. Results The body temperature was decreased in all the groups. The temperature gradient of each group (group S, group L and group M) at 180 minutes from induction of anesthesia was 2.5±0.6℃, 1.6±0.5℃ and 2.3±0.6℃, respectively. The body temperature of group L was significantly higher than that of group S and group M at 30 minutes and 75 minute after induction of anesthesia, respectively. There were no temperature differences between group S and group M. Conclusion The body temperature is maintained at a higher level in elderly patients anesthetized with lipid-emulsion propofol. PMID:22187253
Jeong, Cheol Won; Ju, Jin; Lee, Dae Wook; Lee, Seong Heon; Yoon, Myung Ha
2012-01-01
Anesthesia and surgery commonly cause hypothermia, and this caused by a combination of anesthetic-induced impairment of thermoregulatory control, a cold operation room environment and other factors that promote heat loss. All the general anesthetics markedly impair normal autonomic thermoregulatory control. The aim of this study is to evaluate the effect of two different types of propofol versus inhalation anesthetic on the body temperature. In this randomized controlled study, 36 patients scheduled for elective laparoscopic gastrectomy were allocated into three groups; group S (sevoflurane, n=12), group L (lipid-emulsion propofol, n=12) and group M (micro-emulsion propofol, n=12). Anesthesia was maintained with typical doses of the study drugs and all the groups received continuous remifentanil infusion. The body temperature was continuously monitored after the induction of general anesthesia until the end of surgery. The body temperature was decreased in all the groups. The temperature gradient of each group (group S, group L and group M) at 180 minutes from induction of anesthesia was 2.5 ± 0.6°C, 1.6 ± 0.5°C and 2.3 ± 0.6°C, respectively. The body temperature of group L was significantly higher than that of group S and group M at 30 minutes and 75 minute after induction of anesthesia, respectively. There were no temperature differences between group S and group M. The body temperature is maintained at a higher level in elderly patients anesthetized with lipid-emulsion propofol.
SHORT VEGETATIVE PHASE Up-Regulates TEMPRANILLO2 Floral Repressor at Low Ambient Temperatures1[OPEN
Marín-González, Esther; Matías-Hernández, Luis; Aguilar-Jaramillo, Andrea E.; Lee, Jeong Hwan; Ahn, Ji Hoon; Suárez-López, Paula; Pelaz, Soraya
2015-01-01
Plants integrate day length and ambient temperature to determine the optimal timing for developmental transitions. In Arabidopsis (Arabidopsis thaliana), the floral integrator FLOWERING LOCUS T (FT) and its closest homolog TWIN SISTER OF FT promote flowering in response to their activator CONSTANS under long-day inductive conditions. Low ambient temperature (16°C) delays flowering, even under inductive photoperiods, through repression of FT, revealing the importance of floral repressors acting at low temperatures. Previously, we have reported that the floral repressors TEMPRANILLO (TEM; TEM1 and TEM2) control flowering time through direct regulation of FT at 22°C. Here, we show that tem mutants are less sensitive than the wild type to changes in ambient growth temperature, indicating that TEM genes may play a role in floral repression at 16°C. Moreover, we have found that TEM2 directly represses the expression of FT and TWIN SISTER OF FT at 16°C. In addition, the floral repressor SHORT VEGETATIVE PHASE (SVP) directly regulates TEM2 but not TEM1 expression at 16°C. Flowering time analyses of svp tem mutants indicate that TEM may act in the same genetic pathway as SVP to repress flowering at 22°C but that SVP and TEM are partially independent at 16°C. Thus, TEM2 partially mediates the temperature-dependent function of SVP at low temperatures. Taken together, our results indicate that TEM genes are also able to repress flowering at low ambient temperatures under inductive long-day conditions. PMID:26243615
Optical temperature compensation schemes of spectral modulation sensors for aircraft engine control
NASA Astrophysics Data System (ADS)
Berkcan, Ertugrul
1993-02-01
Optical temperature compensation schemes for the ratiometric interrogation of spectral modulation sensors for source temperature robustness are presented. We have obtained better than 50 - 100X decrease of the temperature coefficient of the sensitivity using these types of compensation. We have also developed a spectrographic interrogation scheme that provides increased source temperature robustness; this affords a significantly improved accuracy over FADEC temperature ranges as well as temperature coefficient of the sensitivity that is substantially and further reduced. This latter compensation scheme can be integrated in a small E/O package including the detection, analog and digital signal processing. We find that these interrogation schemes can be used within a detector spatially multiplexed architecture.
Many-body Effects in a Laterally Inhomogeneous Semiconductor Quantum Well
NASA Technical Reports Server (NTRS)
Ning, Cun-Zheng; Li, Jian-Zhong; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Many body effects on conduction and diffusion of electrons and holes in a semiconductor quantum well are studied using a microscopic theory. The roles played by the screened Hartree-Fock (SHE) terms and the scattering terms are examined. It is found that the electron and hole conductivities depend only on the scattering terms, while the two-component electron-hole diffusion coefficients depend on both the SHE part and the scattering part. We show that, in the limit of the ambipolax diffusion approximation, however, the diffusion coefficients for carrier density and temperature are independent of electron-hole scattering. In particular, we found that the SHE terms lead to a reduction of density-diffusion coefficients and an increase in temperature-diffusion coefficients. Such a reduction or increase is explained in terms of a density-and temperature dependent energy landscape created by the bandgap renormalization.
Dix, James A.; Diamond, Jared M.; Kivelson, Daniel
1974-01-01
The translational diffusion coefficient and the partition coefficient of a spin-labeled solute, di-t-butyl nitroxide, in an aqueous suspension of dipalmitoyl lecithin vesicles have been studied by electron spin resonance spectroscopy. When the lecithin is cooled through its phase transition temperature near 41°C, some solute is “frozen out” of the bilayer, and the standard partial molar enthalpy and entropy of partition go more positive by a factor of 8 and 6, respectively. However, the apparent diffusion constant in the lecithin phase is only slightly smaller than that in water, both above and below the transition temperature. The fraction of bilayer volume within which solute is distributed may increase with temperature, contributing to the positive enthalpy of partition. Comparison of time constants suggests that there is a permeability barrier to this solute in the periphery of the bilayer. PMID:4360944
The 23 to 300 C demagnetization resistance of samarium-cobalt permanent magnets
NASA Technical Reports Server (NTRS)
Niedra, Janis M.; Overton, Eric
1991-01-01
The influence of temperature on knee point and squareness of the M-H demagnetization characteristic of permanent magnets is important information for the full utilization of the capabilities of samarium-cobalt magnets at high temperature in demagnetization resistent permanent magnet devices. Composite plots of the knee field and the demagnetizing field required to produce a given magnetic induction swing below remanence were obtained for several commercial Sm2Co17 type magnet samples in the temperature range of 23 to 300 C. Using the knee point to define the limits of operation safe against irreversible demagnetization, such plots are shown to provide an effective overview of the useable regions in the space of temperature-induction swing parameters. The observed second quadrant M-H characteristic squareness is shown, by two measures, to increase gradually with temperature, reaching a peak in the interval 200 to 300 C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasirabadi, P. Shojaee; Jabbari, M.; Hattel, J. H.
2016-06-08
Nowadays, many electronic systems are exposed to harsh conditions of relative humidity and temperature. Mass transport properties of electronic packaging materials are needed in order to investigate the influence of moisture and temperature on reliability of electronic devices. Polycarbonate (PC) is widely used in the electronics industry. Thus, in this work the water diffusion coefficient into PC is investigated. Furthermore, numerical methods used for estimation of the diffusion coefficient and their assumptions are discussed. 1D and 3D numerical solutions are compared and based on this, it is shown how the estimated value can be different depending on the choice ofmore » dimensionality in the model.« less
A review of reaction rates in high temperature air
NASA Technical Reports Server (NTRS)
Park, Chul
1989-01-01
The existing experimental data on the rate coefficients for the chemical reactions in nonequilibrium high temperature air are reviewed and collated, and a selected set of such values is recommended for use in hypersonic flow calculations. For the reactions of neutral species, the recommended values are chosen from the experimental data that existed mostly prior to 1970, and are slightly different from those used previously. For the reactions involving ions, the recommended rate coefficients are newly chosen from the experimental data obtained more recently. The reacting environment is assumed to lack thermal equilibrium, and the rate coefficients are expressed as a function of the controlling temperature, incorporating the recent multitemperature reaction concept.
Diffusion-mediated dephasing in the dipole field around a single spherical magnetic object.
Buschle, Lukas R; Kurz, Felix T; Kampf, Thomas; Triphan, Simon M F; Schlemmer, Heinz-Peter; Ziener, Christian Herbert
2015-11-01
In this work, the time evolution of the free induction decay caused by the local dipole field of a spherical magnetic perturber is analyzed. The complicated treatment of the diffusion process is replaced by the strong-collision-approximation that allows a determination of the free induction decay in dependence of the underlying microscopic tissue parameters such as diffusion coefficient, sphere radius and susceptibility difference. The interplay between susceptibility- and diffusion-mediated effects yields several dephasing regimes of which, so far, only the classical regimes of motional narrowing and static dephasing for dominant and negligible diffusion, respectively, were extensively examined. Due to the asymmetric form of the dipole field for spherical objects, the free induction decay exhibits a complex component in contradiction to the cylindrical case, where the symmetric local dipole field only causes a purely real induction decay. Knowledge of the shape of the corresponding frequency distribution is necessary for the evaluation of more sophisticated pulse sequences and a detailed understanding of the off-resonance distribution allows improved quantification of transverse relaxation. Copyright © 2015 Elsevier Inc. All rights reserved.
TEMPERATURE COEFFICIENTS OF HETEROGENEOUS U-238-U-235 FUELED REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Astley, E.R.; Mansius, C.A.
1958-05-14
An analytical method of determining the effective reactivity coefficient from fundamental cross sections using the four factor formula is presented. Values of the coefficient obtained by this method compare well with experiment. (A.C.)
In-situ measurement of electroosmotic drag coefficient in Nafion membrane for the PEMFC.
Peng, Zhe; Morin, Arnaud; Huguet, Patrice; Schott, Pascal; Pauchet, Joël
2011-11-10
A new method based on hydrogen pump has been developed to measure the electroosmotic drag coefficient in representative PEMFC operating conditions. It allows eliminating the back-flow of water which leads to some errors in the calculation of this coefficient with previously reported electrochemical methods. Measurements have been performed on 50 μm thick Nafion membranes both extruded and recast. Contrary to what has been described in most of previous published works, the electroosmotic drag coefficient decreases as the membrane water content increases. The same trend is observed for temperatures between 25 and 80 °C. For the same membrane water content, the electroosmotic drag coefficient increases with temperature. In the same condition, there is no difference in drag coefficient for extruded Nafion N112 and recast Nafion NRE212. These results are discussed on the basis of the two commonly accepted proton transport mechanisms, namely, Grotthus and vehicular.
Vardevanian, P O; Davtian, A M; Tiratsuian, S G; Vardevanian, A O
1990-01-01
A highly active fraction of rat liver oligonucleosome DNA has been isolated and studied by means of thermal denaturation after induction by amino acid mixture or hydrocortisone. A considerable redistribution of DNA content has been shown in sucrose gradient fractions during these forms of induction. The changes are revealed in melting temperature, differential melting profile of DNA, isolated from actively transcribed chromatine fractions. Analysis of melting profiles shows changes of GC content of oligonucleosome DNA, suggesting that there are differences in activation during two studied forms of induction.
Temperature compensated photovoltaic array
Mosher, Dan Michael
1997-11-18
A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.
NASA Astrophysics Data System (ADS)
Tkatch, V. I.; Svyrydova, K. A.; Vasiliev, S. V.; Kovalenko, O. V.
2017-08-01
Using the results of differential scanning calorimetry and X-ray diffractometry, an analysis has been carried out of the initial stages of the eutectic and primary mechanisms of crystallization of a series of metallic glasses based on Fe and Al with the established temperature dependences of the effective diffusion coefficients. Analytical relationships, which relate the volume density of crystallites formed in the glasses at the temperatures of the onset of crystallization with the values of the effective diffusion coefficients at these temperatures have been proposed. It has been established that, in the glasses, the crystallization of which begins at the lower boundary of the threshold values of the effective diffusion coefficients ( 10-20 m2/s), structures are formed with the volume density of crystallites on the order of 1023-1024 m-3 and, at the upper boundary (10-18 m2/s), of the order of 1018 and 1020 m-3 in the glasses that are crystallized via the eutectic and primary mechanisms, respectively. Good agreement between the calculated and experimental estimates indicates that the threshold values of the effective diffusion coefficients are the main factors that determine the structure of glasses at the initial stages of crystallization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yaqin; Sun, Zhigang, E-mail: zsun@dicp.ac.cn, E-mail: dawesr@mst.edu, E-mail: hguo@unm.edu; Center for Advanced Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026
2014-08-28
The kinetics and dynamics of several O + O{sub 2} isotope exchange reactions have been investigated on a recently determined accurate global O{sub 3} potential energy surface using a time-dependent wave packet method. The agreement between calculated and measured rate coefficients is significantly improved over previous work. More importantly, the experimentally observed negative temperature dependence of the rate coefficients is for the first time rigorously reproduced theoretically. This negative temperature dependence can be attributed to the absence in the new potential energy surface of a submerged “reef” structure, which was present in all previous potential energy surfaces. In addition, contributionsmore » of rotational excited states of the diatomic reactant further accentuate the negative temperature dependence.« less
Temperature effect on affinity chromatography of two lectins from the seeds of Ricinus communis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, H.W.; Davis, D.S.; Wei, C.H.
1976-06-01
Specific adsorption capacity of Sepharose 4B in affinity chromatography for two purified galactose-binding lectins, designated as III/sub L/ and III/sub H/, from the seed of Ricinus communis (castor bean) was measured from 7 to 24/sup 0/C. The adsorption coefficients for these two protein fractions as a function of temperature were also obtained. It was found that there is a characteristic transition of adsorption coefficient at 18/sup 0/C for both lectins. Adsorption coefficients between Sepharose 4B and these two lectins were also expressed in terms of ..delta..G, ..delta..H, and ..delta..S. It is suggested that the difference in the temperature dependence ofmore » the binding energy of these two lectins may be used for their separation at selected temperature.« less
NASA Technical Reports Server (NTRS)
Chaudhuri, Dilip K.; Slifka, Andrew J.; Siegwarth, James D.
1993-01-01
Unlubricated sliding friction and wear of 440C steels in an oxygen environment have been studied under a variety of load, speed, and temperature ranging from approximately -185 to 675 deg C. A specially designed test apparatus with a ball-on-flat geometry has been used for this purpose. The observed dependencies of the initial coefficient of friction, the average dynamic coefficient of friction, and the wear rate on load, speed, and test temperatures have been examined from the standpoint of existing theories of friction and wear. High contact temperatures are generated during the sliding friction, causing rapid oxidation and localized surface melting. A combination of fatigue, delamination, and loss of hardness due to tempering of the martensitic structure is responsible for the high wear rate observed and the coefficient of friction.
NASA Technical Reports Server (NTRS)
Sliney, Harold E.
1962-01-01
The endurance life and the friction coefficient of ceramic-bonded calcium fluoride (CaF2) coatings on nickel-base alloys were determined at temperatures from 75 F to 1900 F. The specimen configuration consisted of a hemispherical rider (3/16-in. rad.) sliding against the flat surface of a rotating disk. Increasing the ambient temperature (up to 1500 F) or the sliding velocity generally reduced the friction coefficient and improved coating life. Base-metal selection was critical above 1500 F. For instance, cast Inconel sliding against coated Inconel X was lubricated effectively to 1500 F, but at 1600 F severe blistering of the coatings occurred. However, good lubrication and adherence were obtained for Rene 41 sliding against coated Rene 41 at temperatures up to 1900 F; no blisters developed, coating wear life was fairly good, and the rider wear rate was significantly lower than for the unlubricated metals. Friction coefficients were 0.12 at 1500 F, 0.15 at 1700 F, and 0.17 at 1800 F and 1900 F. Because of its ready availability, Inconel X appears to be the preferred substrate alloy for applications in which the temperature does not exceed 1500 F. Rene 41 would have to be used in applications involving higher temperatures. Improved coating life was derived by either preoxidizing the substrate metals prior to the coating application or by applying a very thin (less than 0.0002 in.) burnished and sintered overlay to the surface of the coating. Preoxidation did not affect the friction coefficient. The overlay generally resulted in a higher friction coefficient than that obtained without the overlay. The combination of both modifications resulted in longer coating life and in friction coefficients intermediate between those obtained with either modification alone.
Lubricating Properties of Some Bonded Fluoride and Oxide Coatings for Temperature to 1500 F
NASA Technical Reports Server (NTRS)
Sliney, Harold E.
1960-01-01
The lubricating properties of some experimental ceramic coatings, diffusion-bonded fluoride coatings, and ceramic-bonded fluoride coatings were determined. The experiments were conducted in an air atmosphere at a sliding velocity of 430 feet per minute and at temperatures from 75 to 1500 F. Several ceramic coatings provided substantial reductions in friction coefficient and rider wear (compared with the unlubricated metals). For example, a cobaltous oxide (CoO) base coating gave friction coefficients of 0.24 to 0.36 within the temperature range of 75 to 1400 F; serious galling and welding of the metal surfaces were prevented. The friction coefficients were higher than the arbitrary maximum (0.2) usually considered for effective boundary lubrication. However, when a moderately high friction coefficient can be tolerated, this type of coating may be a useful antiwear composition. Diffusion-bonded calcium fluoride (CaF2) on Haynes Stellite 21 and on Inconel X gave friction coefficients of 0.1 to 0.2 at 1500 F. Endurance life was dependent on the thermal history of the coating; life improved with increased exposure time at elevated temperatures prior to running. Promising results were obtained with ceramic-bonded CaF2 on Inconel X. Effective lubrication and good adherence were obtained with a 3 to 1 ratio of CaF2 to ceramic. A very thin sintered and burnished film of CaF2 applied to the surface of this coating further improved lubrication, particularly above 1350 F. The friction coefficient was 0.2 at 500 F and decreased with increasing temperature to 0.06-at 1500 F. It was 0.25 at 75 F and 0.22 at 250 F.
Tao, Yang; Zhang, Zhihang; Sun, Da-Wen
2014-07-01
The effects of acoustic energy density (6.8-47.4 W/L) and temperature (20-50 °C) on the extraction yields of total phenolics and tartaric esters during ultrasound-assisted extraction from grape marc were investigated in this study. The ultrasound treatment was performed in a 25-kHz ultrasound bath system and the 50% aqueous ethanol was used as the solvent. The initial extraction rate and final extraction yield increased with the increase of acoustic energy density and temperature. The two site kinetic model was used to simulate the kinetics of extraction process and the diffusion model based on the Fick's second law was employed to determine the effective diffusion coefficient of phenolics in grape marc. Both models gave satisfactory quality of data fit. The diffusion process was divided into one fast stage and one slow stage and the diffusion coefficients in both stages were calculated. Within the current experimental range, the diffusion coefficients of total phenolics and tartaric esters for both diffusion stages increased with acoustic energy density. Meanwhile, the rise of temperature also resulted in the increase of diffusion coefficients of phenolics except the diffusion coefficient of total phenolics in the fast stage, the value of which being the highest at 40 °C. Moreover, an empirical equation was suggested to correlate the effective diffusion coefficient of phenolics in grape marc with acoustic energy density and temperature. In addition, the performance comparison of ultrasound-assisted extraction and convention methods demonstrates that ultrasound is an effective and promising technology to extract bioactive substances from grape marc. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Engelhard, Carsten; Scheffer, Andy; Maue, Thomas; Hieftje, Gary M.; Buscher, Wolfgang
2007-10-01
Inductively coupled plasma (ICP) sources typically used for trace elemental determination and speciation were investigated with infrared (IR) thermography to obtain spatially resolved torch temperature distributions. Infrared thermographic imaging is an excellent tool for the monitoring of temperatures in a fast and non-destructive way. This paper presents the first application of IR thermography to inductively coupled plasma torches and the possibility to investigate temperatures and thermal patterns while the ICP is operating and despite background emission from the plasma itself. A fast and easy method is presented for the determination of temperature distributions and stress features within ICP torches. Two different ICP operating torches were studied: a commercially available Fassel-type ICP unit with 14 L min - 1 total Ar consumption and a SHIP torch with the unusually low Ar flow of 0.6 L min - 1 . Spatially resolved infrared images of both torches were obtained and laterally resolved temperature profiles were extracted. After temperature-resolved calibration of the emissivity (between 0.5 and 0.35 at 873-1323 K) and transmission (20% between 3.75 and 4.02 μm) of the fused quartz used in the torch construction, an image correction was applied. Inhomogeneous temperature distributions with locally defined stress areas in the conventional Fassel-type torch were revealed. As a general trend, it was found that the SHIP torch exhibited higher temperatures ( Tmax = 1580 K) than the conventional torch ( Tmax = 730 K). In the former case, torch sites with efficient and inefficient cooling were discovered and the external flow of cooling air (24-48 m s - 1 ) was identified as the limiting factor.
Strain characteristics of the silica-based fiber Bragg gratings for 30-273 K
NASA Astrophysics Data System (ADS)
Li, Litong; Lv, Dajuan; Yang, Minghong; Xiong, Liangming; Luo, Jie; Tan, Lu
2018-06-01
This work studied the strain coefficient of silica-based fiber Bragg grating (FBG) at cryogenic temperatures. A dynamic temperature test with an oxygen-free copper specimen in the temperature range of 30-273 K was designed. The relationship between the strain coefficient and temperature could be characterized by three-order polynomial. A static tensile test was carried out in liquid nitrogen environment verified the effectiveness of the dynamic results. Good correlation was obtained from the two experiment results. Finally, the factors affecting the measurement error were discussed.
Thermomagnetic phenomena in the mixed state of high temperature superconductors
NASA Technical Reports Server (NTRS)
Meilikhov, E. Z.
1995-01-01
Galvano- and thermomagnetic-phenomena in high temperature superconductors, based on kinetic coefficients, are discussed, along with a connection between the electric field and the heat flow in superconductor mixed state. The relationship that determines the transport coefficients of high temperature superconductors in the mixed state based on Seebeck and Nernst effects is developed. It is shown that this relationship is true for a whole transition region of the resistive mixed state of a superconductor. Peltier, Ettingshausen and Righi-Leduc effects associated with heat conductivity as related to high temperature superconductors are also addressed.
DNA based thin solid films and its application to optical fiber temperature sensor
NASA Astrophysics Data System (ADS)
Hong, Seongjin; Jung, Woohyun; Kim, Taeoh; Oh, Kyunghwan
2017-04-01
Temperature dependent refractive index of DNA-cetyltrimethylammonium chloride (CTMA) thin-solid-film was measured 20 to 90° to obtain its thermo-optic coefficient of -3.6×10-4 (dn/dT). DNA- CTMA film has high thermosoptic coefficient than other polymers. The film was deposited on coreless silica fiber (CSF) to serve as a multimode interferometer optical fiber temperature sensor. It is immersed in a water that changed temperature from 40 to 90°. It has sensitivity of 0.25nm/℃.
Method and apparatus for simultaneously measuring temperature and pressure
Hirschfeld, Tomas B.; Haugen, Gilbert R.
1988-01-01
Method and apparatus are provided for simultaneously measuring temperature and pressure in a class of crystalline materials having anisotropic thermal coefficients and having a coefficient of linear compression along the crystalline c-axis substantially the same as those perpendicular thereto. Temperature is determined by monitoring the fluorescence half life of a probe of such crystalline material, e.g., ruby. Pressure is determined by monitoring at least one other fluorescent property of the probe that depends on pressure and/or temperature, e.g., absolute fluorescent intensity or frequency shifts of fluorescent emission lines.
NASA Astrophysics Data System (ADS)
Li, Chaoyue; Feng, Shiyu; Shao, Lei; Pan, Jun; Liu, Weihua
2018-04-01
The diffusion coefficient of water in jet fuel was measured employing double-exposure digital holographic interferometry to clarify the diffusion process and make the aircraft fuel system safe. The experimental method and apparatus are introduced in detail, and the digital image processing program is coded in MATLAB according to the theory of the Fourier transform. At temperatures ranging from 278.15 K to 333.15 K in intervals of 5 K, the diffusion coefficient of water in RP-3 and RP-5 jet fuels ranges from 2.6967 × 10 -10 m2·s-1 to 8.7332 × 10 -10 m2·s-1 and from 2.3517 × 10 -10 m2·s-1 to 8.0099 × 10-10 m2·s-1, respectively. The relationship between the measured diffusion coefficient and temperature can be well fitted by the Arrhenius law. The diffusion coefficient of water in RP-3 jet fuel is higher than that of water in RP-5 jet fuel at the same temperature. Furthermore, the viscosities of the two jet fuels were measured and found to be expressible in the form of the Arrhenius equation. The relationship among the diffusion coefficient, viscosity and temperature is analyzed according to the classic prediction model, namely the Stokes-Einstein correlation, and this correlation is further revised via experimental data to obtain a more accurate predication result.
Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J
BACKGROUND: Dry ice-ethanol bath (-78 degree C) have been widely used in low temperature biological research to attain rapid cooling of samples below freezing temperature. The prediction of cooling rates of biological samples immersed in dry ice-ethanol bath is of practical interest in cryopreservation. The cooling rate can be obtained using mathematical models representing the heat conduction equation in transient state. Additionally, at the solid cryogenic-fluid interface, the knowledge of the surface heat transfer coefficient (h) is necessary for the convective boundary condition in order to correctly establish the mathematical problem. The study was to apply numerical modeling to obtain the surface heat transfer coefficient of a dry ice-ethanol bath. A numerical finite element solution of heat conduction equation was used to obtain surface heat transfer coefficients from measured temperatures at the center of polytetrafluoroethylene and polymethylmetacrylate cylinders immersed in a dry ice-ethanol cooling bath. The numerical model considered the temperature dependence of thermophysical properties of plastic materials used. A negative linear relationship is observed between cylinder diameter and heat transfer coefficient in the liquid bath, the calculated h values were 308, 135 and 62.5 W/(m 2 K) for PMMA 1.3, PTFE 2.59 and 3.14 cm in diameter, respectively. The calculated heat transfer coefficients were consistent among several replicates; h in dry ice-ethanol showed an inverse relationship with cylinder diameter.
NASA Technical Reports Server (NTRS)
Blackaby, James R.; Lyman, E. Gene; Altermann, John A., III
1959-01-01
Inlet-performance and external-drag-coefficient characteristics are presented without analysis. Effects are shown of variations of fuselage boundary-layer diverter profile, bleed-surface porosity, bleed-exit area, and inlet ramp, and lip angle.
Line shape parameters of air-broadened water vapor transitions in the ν 1 and ν 3 spectral region
Malathy Devi, V.; Gamache, Robert R.; Vispoel, Bastien; ...
2017-11-26
A Bruker IFS-120HR Fourier transform spectrometer located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington was used to record a series of spectra of pure H 2O and air-broadened H 2O in the regions of the ν 1 and ν 3 bands (3450–4000 cm -1) at different pressures, temperatures and volume mixing ratios of H 2O in air. Eighteen high-resolution, high signal-to-noise (S/N) ratio absorption spectra were recorded at T = 268, 296 and 353 K using two temperature-controlled absorption cells with path lengths of 9.906(1) and 19.95(1) cm. Furthermore, the resolution of the spectra recorded with themore » 9.906 cm and 19.95 cm absorption cells was 0.006 and 0.008 cm -1, respectively. A multispectrum nonlinear least squares fitting technique was employed to fit all the eighteen spectra simultaneously to retrieve 313 accurate line positions, 315 intensities, 229 Lorentz air-broadened half-width and 213 air-shift coefficients and their temperature dependences (136 for air-broadened width and 128 for air-shift coefficients, respectively). Room temperature self-broadened half-width coefficients for 209 transitions and self-shift coefficients for 106 transitions were also measured. Line mixing coefficients were experimentally determined for isolated sets of 10 transition pairs for H 2O-air and 8 transition pairs for H 2O-H 2O using the off-diagonal relaxation matrix element formalism, and 85 quadratic speed dependence parameters were measured. Modified Complex Robert-Bonamy (MCRB) calculations of self-, and air-broadened (from N 2- and O 2-broadening) half-width and air-shift coefficients, and temperature dependence exponents of air-broadened half-width coefficients are made. Finally, the measurements and calculations are compared with each other and with similar parameters reported in the literature.« less
Model for Increasing the Power Obtained from a Thermoelectric Generator Module
NASA Astrophysics Data System (ADS)
Huang, Gia-Yeh; Hsu, Cheng-Ting; Yao, Da-Jeng
2014-06-01
We have developed a model for finding the most efficient way of increasing the power obtained from a thermoelectric generator (TEG) module with a variety of operating conditions and limitations. The model is based on both thermoelectric principles and thermal resistance circuits, because a TEG converts heat into electricity consistent with these two theories. It is essential to take into account thermal contact resistance when estimating power generation. Thermal contact resistance causes overestimation of the measured temperature difference between the hot and cold sides of a TEG in calculation of the theoretical power generated, i.e. the theoretical power is larger than the experimental power. The ratio of the experimental open-loop voltage to the measured temperature difference, the effective Seebeck coefficient, can be used to estimate the thermal contact resistance in the model. The ratio of the effective Seebeck coefficient to the theoretical Seebeck coefficient, the Seebeck coefficient ratio, represents the contact conditions. From this ratio, a relationship between performance and different variables can be developed. The measured power generated by a TEG module (TMH400302055; Wise Life Technology, Taiwan) is consistent with the result obtained by use of the model; the relative deviation is 10%. Use of this model to evaluate the most efficient means of increasing the generated power reveals that the TEG module generates 0.14 W when the temperature difference is 25°C and the Seebeck coefficient ratio is 0.4. Several methods can be used triple the amount of power generated. For example, increasing the temperature difference to 43°C generates 0.41 W power; improving the Seebeck coefficient ratio to 0.65 increases the power to 0.39 W; simultaneously increasing the temperature difference to 34°C and improving the Seebeck coefficient ratio to 0.5 increases the power to 0.41 W. Choice of the appropriate method depends on the limitations of system, the cost, and the environment.
Line shape parameters of air-broadened water vapor transitions in the ν1 and ν3 spectral region
NASA Astrophysics Data System (ADS)
Malathy Devi, V.; Gamache, Robert R.; Vispoel, Bastien; Renaud, Candice L.; Chris Benner, D.; Smith, Mary Ann H.; Blake, Thomas A.; Sams, Robert L.
2018-06-01
A Bruker IFS-120HR Fourier transform spectrometer located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington was used to record a series of spectra of pure H2O and air-broadened H2O in the regions of the ν1 and ν3 bands (3450-4000 cm-1) at different pressures, temperatures and volume mixing ratios of H2O in air. Eighteen high-resolution, high signal-to-noise (S/N) ratio absorption spectra were recorded at T = 268, 296 and 353 K using two temperature-controlled absorption cells with path lengths of 9.906(1) and 19.95(1) cm. The resolution of the spectra recorded with the 9.906 cm and 19.95 cm absorption cells was 0.006 and 0.008 cm-1, respectively. A multispectrum nonlinear least squares fitting technique was employed to fit all the eighteen spectra simultaneously to retrieve 313 accurate line positions, 315 intensities, 229 Lorentz air-broadened half-width and 213 air-shift coefficients and their temperature dependences (136 for air-broadened width and 128 for air-shift coefficients, respectively). Room temperature self-broadened half-width coefficients for 209 transitions and self-shift coefficients for 106 transitions were also measured. Line mixing coefficients were experimentally determined for isolated sets of 10 transition pairs for H2O-air and 8 transition pairs for H2O-H2O using the off-diagonal relaxation matrix element formalism, and 85 quadratic speed dependence parameters were measured. Modified Complex Robert-Bonamy (MCRB) calculations of self-, and air-broadened (from N2- and O2-broadening) half-width and air-shift coefficients, and temperature dependence exponents of air-broadened half-width coefficients are made. The measurements and calculations are compared with each other and with similar parameters reported in the literature.
Line shape parameters of air-broadened water vapor transitions in the ν 1 and ν 3 spectral region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malathy Devi, V.; Gamache, Robert R.; Vispoel, Bastien
A Bruker IFS-120HR Fourier transform spectrometer located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington was used to record a series of spectra of pure H 2O and air-broadened H 2O in the regions of the ν 1 and ν 3 bands (3450–4000 cm -1) at different pressures, temperatures and volume mixing ratios of H 2O in air. Eighteen high-resolution, high signal-to-noise (S/N) ratio absorption spectra were recorded at T = 268, 296 and 353 K using two temperature-controlled absorption cells with path lengths of 9.906(1) and 19.95(1) cm. Furthermore, the resolution of the spectra recorded with themore » 9.906 cm and 19.95 cm absorption cells was 0.006 and 0.008 cm -1, respectively. A multispectrum nonlinear least squares fitting technique was employed to fit all the eighteen spectra simultaneously to retrieve 313 accurate line positions, 315 intensities, 229 Lorentz air-broadened half-width and 213 air-shift coefficients and their temperature dependences (136 for air-broadened width and 128 for air-shift coefficients, respectively). Room temperature self-broadened half-width coefficients for 209 transitions and self-shift coefficients for 106 transitions were also measured. Line mixing coefficients were experimentally determined for isolated sets of 10 transition pairs for H 2O-air and 8 transition pairs for H 2O-H 2O using the off-diagonal relaxation matrix element formalism, and 85 quadratic speed dependence parameters were measured. Modified Complex Robert-Bonamy (MCRB) calculations of self-, and air-broadened (from N 2- and O 2-broadening) half-width and air-shift coefficients, and temperature dependence exponents of air-broadened half-width coefficients are made. Finally, the measurements and calculations are compared with each other and with similar parameters reported in the literature.« less
High-Temperature Thermoelectric Properties of Perovskite-Type Pr0.9Sr0.1Mn1- x Fe x O3 (0 ≤ x ≤ 1)
NASA Astrophysics Data System (ADS)
Nakatsugawa, H.; Saito, M.; Okamoto, Y.
2017-05-01
Polycrystalline samples of Pr0.9Sr0.1Mn1- x Fe x O3 (0 ≤ x ≤ 1) have been synthesized using a conventional solid-state reaction method, and the crystal structure studied at room temperature. The magnetic susceptibility was measured from 5 K to 350 K. The electrical resistivity, Seebeck coefficient, and thermal conductivity were investigated as functions of temperature below 850 K. For all samples, the perovskite structure at room temperature exhibited orthorhombic Pbnm phase. While the Pr0.9Sr0.1MnO3 ( x = 0) sample exhibited ferromagnetic-like ground state below T C = 145 K (Curie temperature), the ferromagnetic transition temperature T C decreased with increasing x. The Seebeck coefficient of the samples with 0 ≤ x ≤ 0.8 decreased with increasing temperature because of double-exchange interaction of Mn ions. In fact, the carrier type for x = 0 changed from hole-like to electron-like behavior above 800 K. On the other hand, the samples with x ≥ 0.9 showed large positive Seebeck coefficient over the entire temperature range, indicating that the low-spin state of Fe ions dominated the electronic structure for this x range. In particular, the sample with x = 1 exhibited p-type thermoelectric properties with relatively high Seebeck coefficient, moderate electrical resistivity, and low thermal conductivity. Thus, the sample with x = 1 showed power factor of 20 μW m-1 K-2 at 850 K leading to ZT of 0.024 at this temperature, indicating that hole-doped perovskite-type iron oxide is a good candidate high-temperature thermoelectric p-type oxide.
SQUID position sensor development
NASA Astrophysics Data System (ADS)
Torii, Rodney
1996-11-01
I describe the development of an inductance position sensor for the STEP (satellite test of the equivalence principle) accelerometer. I have measured the inductance (with an experimental error of 0.5%) of a single-turn thin-film niobium pick-up coil as a function of the distance from a thin-film niobium disc (both at 4.2 K and superconducting). The circular pick-up coil had a diameter of 4 cm with a track width of 0264-9381/13/11A/022/img1. The disc (mock test mass) had a diameter of 4 cm. The distance range between the coil and disc was set by the range of a low-temperature differential capacitance sensor: 0 - 2 mm with a resolution of 0264-9381/13/11A/022/img2. The full range of the low-temperature translation stage was 0 - 4 mm. The inductance was measured using an LCR meter in a four-wire configuration. The measured inductance was compared to the inductance of a circular loop above a superconducting plane. Due to the fact that the thin-film disc is of finite size, the calculation differed from experiment by as much as 12%. I have also calculated the inductance by segmenting the thin-film niobium disc into 500 concentric rings (each with a width of 0264-9381/13/11A/022/img3). A discrepancy between calculation and experiment of approximately 3% was found.
Genes critical for the induction of cold acclimation in wheat (Triticum aestivum L.)
USDA-ARS?s Scientific Manuscript database
Phenotypic studies have shown that cold acclimation in wheat and its relatives start at different temperatures. To gain insight into the underlying mechanisms that regulate the induction of cold-acclimation process in cereals we compared the expression of genes in winter-habit (winter Norstar and w...
Thermal requirements of Dermanyssus gallinae (De Geer, 1778) (Acari: Dermanyssidae).
Tucci, Edna Clara; do Prado, Angelo P; de Araújo, Raquel Pires
2008-01-01
The thermal requirements for development of Dermanyssus gallinae were studied under laboratory conditions at 15, 20, 25, 30 and 35 degrees C, a 12h photoperiod and 60-85% RH. The thermal requirements for D. gallinae were as follows. Preoviposition: base temperature 3.4 degrees C, thermal constant (k) 562.85 degree-hours, determination coefficient (R(2)) 0.59, regression equation: Y= -0.006035 + 0.001777x. Egg: base temperature 10.60 degrees C, thermal constant (k) 689.65 degree-hours, determination coefficient (R(2)) 0.94, regression equation: Y= -0.015367 + 0.001450x. Larva: base temperature 9.82 degrees C, thermal constant (k) 464.91 degree-hours, determination coefficient (R(2)) 0.87, regression equation: Y= -0.021123 + 0.002151x. Protonymph: base temperature 10.17 degrees C, thermal constant (k) 504.49 degree-hours, determination coefficient (R(2)) 0.90, regression equation: Y= -0.020152 + 0.001982x. Deutonymph: base temperature 11.80 degrees C, thermal constant (k) 501.11 degree-hours, determination coefficient (R(2)) 0.99, regression equation: Y= -0.023555 + 0.001996x. The results obtained showed that 15 to 42 generations of Dermanyssus gallinae may occur during the year in the State of São Paulo, as estimated based on isotherm charts. Dermanyssus gallinae may develop continually in the State of São Paulo, with a population decrease in the winter. There were differences between the developmental stages of D. gallinae in relation to thermal requirements.
NASA Astrophysics Data System (ADS)
Kinoshita, M.; Kawamura, K.; Lin, W.
2015-12-01
During the Nankai Trough Seismogenic Zone Experiments (NanTroSEIZE) of the Integrated Ocean Drilling Program (IODP), the advanced piston corer temperature (APC-T) tool was used to determine in situ formation temperatures while piston coring down to ~200 m below sea floor. When the corer is fired into the formation, temperature around the shoe abruptly increases due to the frictional heating. The temperature rise due to the frictional heat at the time of penetration is 10 K or larger. We found that the frictional temperature rise (=maximum temperature) increases with increasing depth, and that its intersection at the seafloor seems non-zero. Frictional heat energy is proportional to the maximum temperature rise, which is confirmed by a FEM numerical simulation of 2D cylindrical system. Here we use the result of numerical simulation to convert the observed temperature rise into the frictional heat energy. The frictional heat energy is represented as the product of the shooting length D and the shear stress (τ) between the pipe and the sediment. Assuming a coulomb slip regime, the shear stress is shows as: τ= τ0 + μ*(Sv-Pp), where τ0 is the cohesive stress, μ the dynamic frictional coefficient between the pipe and the sediment, Sv the normal stress at the pipe, and Pp the pore pressure. This can explain the non-zero intersection as well as depth-dependent increase for the frictional heating observed in the APC-T data. Assuming a hydrostatic state and by using the downhole bulk density data, we estimated the friction coefficient for each APC-T measurement. For comparison, we used the vane-shear strength measured on core samples to estimate the friction coefficients. The frictional coefficients μ were estimated as ranging 0.01 - 0.06, anomalously lower than expected for shallow marine sediments. They were lower than those estimated from vane-shear data, which range 0.05 to 0.2. Still, both estimates exhibit a significant increase in the friction coefficient at Site C0012, which dominates in the hemipelagic sediment in the Shikoku Basin. The anomalously low values suggest either fluid injection between the pipe and the sediment during the measurement, or some other uncertainties in converting the observed temperature rise to the frictional heat generation.
NASA Astrophysics Data System (ADS)
Chatterjee, R. S.; Singh, Narendra; Thapa, Shailaja; Sharma, Dravneeta; Kumar, Dheeraj
2017-06-01
The present study proposes land surface temperature (LST) retrieval from satellite-based thermal IR data by single channel radiative transfer algorithm using atmospheric correction parameters derived from satellite-based and in-situ data and land surface emissivity (LSE) derived by a hybrid LSE model. For example, atmospheric transmittance (τ) was derived from Terra MODIS spectral radiance in atmospheric window and absorption bands, whereas the atmospheric path radiance and sky radiance were estimated using satellite- and ground-based in-situ solar radiation, geographic location and observation conditions. The hybrid LSE model which is coupled with ground-based emissivity measurements is more versatile than the previous LSE models and yields improved emissivity values by knowledge-based approach. It uses NDVI-based and NDVI Threshold method (NDVITHM) based algorithms and field-measured emissivity values. The model is applicable for dense vegetation cover, mixed vegetation cover, bare earth including coal mining related land surface classes. The study was conducted in a coalfield of India badly affected by coal fire for decades. In a coal fire affected coalfield, LST would provide precise temperature difference between thermally anomalous coal fire pixels and background pixels to facilitate coal fire detection and monitoring. The derived LST products of the present study were compared with radiant temperature images across some of the prominent coal fire locations in the study area by graphical means and by some standard mathematical dispersion coefficients such as coefficient of variation, coefficient of quartile deviation, coefficient of quartile deviation for 3rd quartile vs. maximum temperature, coefficient of mean deviation (about median) indicating significant increase in the temperature difference among the pixels. The average temperature slope between adjacent pixels, which increases the potential of coal fire pixel detection from background pixels, is significantly larger in the derived LST products than the corresponding radiant temperature images.
Thermal diffusion behavior of nonionic surfactants in water.
Ning, Hui; Kita, Rio; Kriegs, Hartmut; Luettmer-Strathmann, Jutta; Wiegand, Simone
2006-06-08
We studied the thermal diffusion behavior of hexaethylene glycol monododecyl ether (C12E6) in water by means of thermal diffusion forced Rayleigh scattering (TDFRS) and determined Soret coefficients, thermal diffusion coefficients, and diffusion constants at different temperatures and concentrations. At low surfactant concentrations, the measured Soret coefficient is positive, which implies that surfactant micelles move toward the cold region in a temperature gradient. For C12E6/water at a high surfactant concentration of w1 = 90 wt % and a temperature of T = 25 degrees C, however, a negative Soret coefficient S(T) was observed. Because the concentration part of the TDFRS diffraction signal for binary systems is expected to consist of a single mode, we were surprised to find a second, slow mode for C12E6/water system in a certain temperature and concentration range. To clarify the origin of this second mode, we investigated also, tetraethylene glycol monohexyl ether (C6E4), tetraethylene glycol monooctyl ether (C8E4), pentaethylene glycol monododecyl ether (C12E5), and octaethylene glycol monohexadecyl ether (C16E8) and compared the results with the previous results for octaethylene glycol monodecyl ether (C10E8). Except for C6E4 and C10E8, a second slow mode was observed in all systems usually for state points close to the phase boundary. The diffusion coefficient and Soret coefficient derived from the fast mode can be identified as the typical mutual diffusion and Soret coefficients of the micellar solutions and compare well with the independently determined diffusion coefficients in a dynamic light scattering experiment. Experiments with added salt show that the slow mode is suppressed by the addition of w(NaCl) = 0.02 mol/L sodium chloride. This suggests that the slow mode is related to the small amount of absorbing ionic dye, less than 10(-5) by weight, which is added in TDFRS experiments to create a temperature grating. The origin of the slow mode of the TDFRS signal will be tentatively interpreted in terms of a ternary mixture of neutral micelles, dye-charged micelles, and water.
NASA Astrophysics Data System (ADS)
Gonzales, Matthew Alejandro
The calculation of the thermal neutron Doppler temperature reactivity feedback co-efficient, a key parameter in the design and safe operation of advanced reactors, using first order perturbation theory in continuous energy Monte Carlo codes is challenging as the continuous energy adjoint flux is not readily available. Traditional approaches of obtaining the adjoint flux attempt to invert the random walk process as well as require data corresponding to all temperatures and their respective temperature derivatives within the system in order to accurately calculate the Doppler temperature feedback. A new method has been developed using adjoint-weighted tallies and On-The-Fly (OTF) generated continuous energy cross sections within the Monte Carlo N-Particle (MCNP6) transport code. The adjoint-weighted tallies are generated during the continuous energy k-eigenvalue Monte Carlo calculation. The weighting is based upon the iterated fission probability interpretation of the adjoint flux, which is the steady state population in a critical nuclear reactor caused by a neutron introduced at that point in phase space. The adjoint-weighted tallies are produced in a forward calculation and do not require an inversion of the random walk. The OTF cross section database uses a high order functional expansion between points on a user-defined energy-temperature mesh in which the coefficients with respect to a polynomial fitting in temperature are stored. The coefficients of the fits are generated before run- time and called upon during the simulation to produce cross sections at any given energy and temperature. The polynomial form of the OTF cross sections allows the possibility of obtaining temperature derivatives of the cross sections on-the-fly. The use of Monte Carlo sampling of adjoint-weighted tallies and the capability of computing derivatives of continuous energy cross sections with respect to temperature are used to calculate the Doppler temperature coefficient in a research version of MCNP6. Temperature feedback results from the cross sections themselves, changes in the probability density functions, as well as changes in the density of the materials. The focus of this work is specific to the Doppler temperature feedback which result from Doppler broadening of cross sections as well as changes in the probability density function within the scattering kernel. This method is compared against published results using Mosteller's numerical benchmark to show accurate evaluations of the Doppler temperature coefficient, fuel assembly calculations, and a benchmark solution based on the heavy gas model for free-gas elastic scattering. An infinite medium benchmark for neutron free gas elastic scattering for large scattering ratios and constant absorption cross section has been developed using the heavy gas model. An exact closed form solution for the neutron energy spectrum is obtained in terms of the confluent hypergeometric function and compared against spectra for the free gas scattering model in MCNP6. Results show a quick increase in convergence of the analytic energy spectrum to the MCNP6 code with increasing target size, showing absolute relative differences of less than 5% for neutrons scattering with carbon. The analytic solution has been generalized to accommodate piecewise constant in energy absorption cross section to produce temperature feedback. Results reinforce the constraints in which heavy gas theory may be applied resulting in a significant target size to accommodate increasing cross section structure. The energy dependent piecewise constant cross section heavy gas model was used to produce a benchmark calculation of the Doppler temperature coefficient to show accurate calculations when using the adjoint-weighted method. Results show the Doppler temperature coefficient using adjoint weighting and cross section derivatives accurately obtains the correct solution within statistics as well as reduce computer runtimes by a factor of 50.
Comparison of tympanic and rectal temperature in febrile patients.
Sehgal, Arvind; Dubey, N K; Jyothi, M C; Jain, Shilpa
2002-04-01
To compare tympanic membrane temperature and rectal temperature in febrile pediatric patients. Sixty febrile children were enrolled as continuous enrollment at initial triage. Two readings of ear temperature were taken in each child with Thermoscan infrared thermometer. Rectal temperature was recorded by a digital electronic thermometer. Comparison of both the techniques was done and co-relation co-efficients calculated. Parental preference for both techniques was assessed. It was observed that mean ear temperature was 38.9+/-0.90 C and that for rectal temperature was 38.8+/-0.80 degrees C. The correlation coefficient between the two was 0.994 (p < 0.01). Coefficients for both sites were comparable over a wide age range. The difference between readings taken from two ears was not significant. Temperature ranges over which readings were recorded were quite wide for both techniques. Parental preference for tympanic thermometry over rectal thermometry was noticed. Tympanic thermometry utilizes pyro-electric sensors, to detect infra-red rays emitted from the surface of tympanic membrane. Ear temperatures correlates well with rectal temperatures which have long been considered as "core" temperatures. Parents prefer the technique of ear thermometry which is quick (2 sec), safe and non-invasive and patient resistance for this is also less. A non-invasive, non-mucous device which is accurate over a wide range of temperature could be very useful.
NASA Astrophysics Data System (ADS)
Dulitz, Katrin; Amedro, Damien; Dillon, Terry J.; Pozzer, Andrea; Crowley, John N.
2018-02-01
Rate coefficients (k5) for the title reaction were obtained using pulsed laser photolytic generation of OH coupled to its detection by laser-induced fluorescence (PLP-LIF). More than 80 determinations of k5 were carried out in nitrogen or air bath gas at various temperatures and pressures. The accuracy of the rate coefficients obtained was enhanced by in situ measurement of the concentrations of both HNO3 reactant and NO2 impurity. The rate coefficients show both temperature and pressure dependence with a rapid increase in k5 at low temperatures. The pressure dependence was weak at room temperature but increased significantly at low temperatures. The entire data set was combined with selected literature values of k5 and parameterised using a combination of pressure-dependent and -independent terms to give an expression that covers the relevant pressure and temperature range for the atmosphere. A global model, using the new parameterisation for k5 rather than those presently accepted, indicated small but significant latitude- and altitude-dependent changes in the HNO3 / NOx ratio of between -6 and +6 %. Effective HNO3 absorption cross sections (184.95 and 213.86 nm, units of cm2 molecule-1) were obtained as part of this work: σ213.86 = 4.52-0.12+0.23 × 10-19 and σ184.95 = 1.61-0.04+0.08 × 10-17.
Modification of Einstein A Coefficient in Dissipative Gas Medium
NASA Technical Reports Server (NTRS)
Cao, Chang-Qi; Cao, Hui; Qin, Ke-Cheng
1996-01-01
Spontaneous radiation in dissipative gas medium such as plasmas is investigated by Langevin equations and the modified Weisskopf-Wigner approximation. Since the refractive index of gas medium is expected to be nearly unity, we shall first neglect the medium polarization effect. We show that absorption in plasmas may in certain case modify the Einstein A coefficient significantly and cause a pit in the A coefficient-density curves for relatively low temperature plasmas and also a pit in the A coefficient-temperature curves. In the next, the effect of medium polarization is taken into account in addition. To our surprise, its effect in certain case is quite significant. The dispersive curves show different behaviors in different region of parameters.
NASA Astrophysics Data System (ADS)
Dai, Zhaoyi; Kan, Amy T.; Shi, Wei; Zhang, Nan; Zhang, Fangfu; Yan, Fei; Bhandari, Narayan; Zhang, Zhang; Liu, Ya; Ruan, Gedeng; Tomson, Mason B.
2017-02-01
Today's oil and gas production from deep reservoirs permits exploitation of more oil and gas reserves but increases risks due to conditions of high temperature and high pressure. Predicting mineral solubility under such extreme conditions is critical for mitigating scaling risks, a common and costly problem. Solubility predictions use solubility products and activity coefficients, commonly from Pitzer theory virial coefficients. However, inaccurate activity coefficients and solubility data have limited accurate mineral solubility predictions and applications of the Pitzer theory. This study measured gypsum solubility under its stable phase conditions up to 1400 bar; it also confirmed the anhydrite solubility reported in the literature. Using a novel method, the virial coefficients for Ca2+ and {{SO}}4^{2 - } (i.e., β_{{{{CaSO}}4 }}^{(0)} ,β_{{{{CaSO}}4 }}^{(2)} ,C_{{{{CaSO}}4 }}^{φ }) were calculated over wide ranges of temperature and pressure (0-250 °C and 1-1400 bar). The determination of this set of virial coefficients widely extends the applicable temperature and pressure ranges of the Pitzer theory in Ca2+ and SO 4 2- systems. These coefficients can be applied to improve the prediction of calcite solubility in the presence of high concentrations of Ca2+ and SO 4 2- ions. These new virial coefficients can also be used to predict the solubilities of gypsum and anhydrite accurately. Moreover, based on the derived β_{{{{CaSO}}4 }}^{(2)} values in this study, the association constants of {{CaSO}}4^{( 0 )} at 1 bar and 25 °C can be estimated by K_{{assoc}} = - 2β_{{{{CaSO}}4 }}^{(2)}. These values match very well with those reported in the literature based on other methods.
2005-03-01
Reference Strength as a Function of Temperature ........................... Figure 77: Exponent of Reference Strength as a Function of Temperature...relationship in terms of moisture content for the coefficient and/or the exponent in the 104 area fraction of embrittlement equation developed by Morscher...appears in almost all of the terms of Equations 35 and 37 either as a coefficient, an exponent , or both. This variable is a fitting parameter that
NASA Astrophysics Data System (ADS)
Maaßdorf, A.; Zeimer, U.; Grenzer, J.; Weyers, M.
2013-07-01
AlxGa1-xAs grown on GaAs is known to be almost perfectly lattice matched with a maximum lattice mismatch of 0.14% at room temperature and even less at temperatures of 700 °C-800 °C. However, as layer structures for edge-emitting diode lasers exhibit an increasing overall thickness of several microns of AlxGa1-xAs, e.g., diode lasers comprising a super-large optical cavity, the accumulated elastic strain energy increases as well. Depending on the growth temperature the formation energy of dislocations can be reached, which is limiting the pseudomorphic growth. In this regard, the thermal expansion coefficient difference between layer and substrate is an important parameter. We utilize in situ curvature measurements during growth of AlxGa1-xAs by metal-organic vapour phase epitaxy to determine the thermal expansion coefficient α. The curvature change with increasing layer thickness, as well as with wafer temperature at constant layer thickness is used to assess α. This is compared to ex situ temperature dependent X-ray diffraction measurements to obtain α. All determined values for α are in good agreement, yielding αAlAs=4.1×10-6 K-1 for a given GaAs linear thermal expansion coefficient of αGaAs=5.73×10-6 K-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosoda, Hideki; Mishima, Yoshinao; Suzuki, Tomoo
Yield stress and work hardening coefficient of B2-stabilized NiTi alloys are investigated using compression tests. Compositions of NiTi alloys are based on Ni-49mol.%Ti, to which Cr, Co and Al are chosen as ternary elements which reduce martensitic transformation temperatures of the B2 phase. Mechanical tests are carried out in liquid nitrogen at 77 K, air at room temperature (R.T.) and in an argon atmosphere between 473 K and 873 K. Only at 77 K, some alloys show characteristic stress-strain curves which indicate stress induced martensitic transformation (SIMT), but the others do not. Work hardening coefficient is found to be betweenmore » 2 and 11GPa in all the test temperature range. The values are extremely high compared with Young`s modulus of B2 NiTi. Yield stress and work hardening coefficient increase with test temperature between R.T. and about 650 K in most alloys. The anomalous temperature dependence of mechanical properties is not related to SIMT but to precipitation hardening and/or anomalous dislocation motion similar to B2-type CoTi. Solution hardening by adding ternary elements is evaluated to be small for Cr and Co additions, and large for Al addition, depending on difference in atomic size of the ternary element with respect to Ni or Ti.« less
NASA Astrophysics Data System (ADS)
Guo, Zhichao; Li, Liye; Han, Wenxiang; Li, Jiawei; Wang, Baodong; Xiao, Yongfeng
2017-10-01
The effects of microwave on the induction time of CaSO4 are studied experimentally and theoretically. In the experiments, calcium sulfate is precipitated by mixing aqueous CaCl2 solution and Na2SO4 solution. The induction time is measured by recording the change of turbidity in solution. Various energy inputs are used to investigate the effect of energy input on nucleation. The results show that the induction time decreases with increasing supersaturation and increasing energy input. Employing the classical nucleation theory, the interfacial tension is estimated. In addition, the microwave effects on nucleation order (n) and nucleation coefficient (kN) are also investigated, and the corresponding values of homogeneous nucleation are compared with the values of heterogeneous nucleation in the microwave field. A cluster coagulation model, which brings together the classic nucleation models and the theories describing the behavior of colloidal suspension, was applied to estimate the induction time under various energy inputs. It is found that when nucleation is prominently homogeneous, the microwave energy input does not change the number of monomers in dominating clusters. And when nucleation is prominently heterogeneous, although the dominating cluster size increases with supersaturation increasing, at the same supersaturation level, the dominating cluster size remains constant in the microwave field.
Kinetically-Defined Component Actions in Gene Repression
Chow, Carson C.; Finn, Kelsey K.; Storchan, Geoffery B.; Lu, Xinping; Sheng, Xiaoyan; Simons, S. Stoney
2015-01-01
Gene repression by transcription factors, and glucocorticoid receptors (GR) in particular, is a critical, but poorly understood, physiological response. Among the many unresolved questions is the difference between GR regulated induction and repression, and whether transcription cofactor action is the same in both. Because activity classifications based on changes in gene product level are mechanistically uninformative, we present a theory for gene repression in which the mechanisms of factor action are defined kinetically and are consistent for both gene repression and induction. The theory is generally applicable and amenable to predictions if the dose-response curve for gene repression is non-cooperative with a unit Hill coefficient, which is observed for GR-regulated repression of AP1LUC reporter induction by phorbol myristate acetate. The theory predicts the mechanism of GR and cofactors, and where they act with respect to each other, based on how each cofactor alters the plots of various kinetic parameters vs. cofactor. We show that the kinetically-defined mechanism of action of each of four factors (reporter gene, p160 coactivator TIF2, and two pharmaceuticals [NU6027 and phenanthroline]) is the same in GR-regulated repression and induction. What differs is the position of GR action. This insight should simplify clinical efforts to differentially modulate factor actions in gene induction vs. gene repression. PMID:25816223
Sabale, Sandip; Jadhav, Vidhya; Khot, Vishwajeet; Zhu, Xiaoli; Xin, Meiling; Chen, Hongxia
2015-03-01
Superparamagnetic nanoferrites are prepared by simple and one step refluxing in polyol synthesis. The ferrite nanoparticles prepared by this method exhibit particle sizes below 10 nm and high degree of crystallinity. These ferrite nanoparticles are compared by means of their magnetic properties, induction heating and cell viability studies for its application in magnetic fluid hyperthermia. Out of all studied nanoparticles in present work, only ZnFe2O4 and CoFe2O4 MNPs are able to produce threshold hyperthermia temperature. This rise in temperature is discussed in detail in view of their magneto-structural properties. Therefore ZnFe2O4 and CoFe2O4 MNPs with improved stability, magnetic induction heating and cell viability are suitable candidates for magnetic hyperthermia.
Lu, Ping; Harris, Jeremie; Xu, Yanping; Lu, Yuangang; Chen, Liang; Bao, Xiaoyi
2012-11-15
Simultaneous measurements of refractive index (RI) and temperature are proposed and experimentally demonstrated by using a tapered bend-resistant fiber interferometer. Different phase shifts of an inner and outer cladding mode of the fiber interferometer are measured to determine the temperature compensated RI of a glycerol solution. The temperature coefficients of the inner and outer cladding modes are -0.0253 rad/°C and -0.0523 rad/°C, and the RI coefficients are 4.0403 rad/RIU and 44.823 rad/RIU, respectively. The minimum errors of temperature and RI are 0.6°C and 0.001 RIU, respectively.
Evaluation of thermograph data for California streams
Limerinos, J.T.
1978-01-01
Statistical analysis of water-temperature data from California streams indicates that, for most purposes, long-term operation of thermographs (automatic water-temperature recording instruments) does not provide a more useful record than either short-term operation of such instruments or periodic measurements. Harmonic analyses were made of thermograph records 5 to 14 years in length from 82 stations. More than 80 percent of the annual variation in water temperature is explained by the harmonic function for 77 of the 82 stations. Harmonic coefficients based on 8 years of thermograph record at 12 stations varied only slightly from coefficients computed using two equally split 4-year records. At five stations where both thermograph and periodic (10 to 23 measurements per year) data were collected concurrently, harmonic coefficients for periodic data were defined nearly as well as those for thermograph data. Results of this analysis indicate that, except where detailed surveillance of water temperatures is required or where there is a chance of temporal change, thermograph operations can be reduced substantially without affecting the usefulness of temperature records.
Shannon, R J; Gómez Martín, J C; Caravan, R L; Blitz, M A; Plane, J M C; Heard, D E; Antiñolo, M; Agúndez, M; Jiménez, E; Ballesteros, B; Canosa, A; El Dib, G; Albaladejo, J; Cernicharo, J
2018-03-28
The article "Methanol dimer formation drastically enhances hydrogen abstraction from methanol by OH at low temperature" proposes a dimer mediated mechanism in order to explain the large low temperature rate coefficients for the OH + methanol reaction measured by several groups. It is demonstrated here theoretically that under the conditions of these low temperature experiments, there are insufficient dimers formed for the proposed new mechanism to apply. Experimental evidence is also presented to show that dimerization of the methanol reagent does not influence the rate coefficients reported under the conditions of methanol concentration used for the kinetics studies. It is also emphasised that the low temperature experiments have been performed using both the Laval nozzle expansion and flow-tube methods, with good agreement found for the rate coefficients measured using these two distinct techniques.
Modeling temperature variations in a pilot plant thermophilic anaerobic digester.
Valle-Guadarrama, Salvador; Espinosa-Solares, Teodoro; López-Cruz, Irineo L; Domaschko, Max
2011-05-01
A model that predicts temperature changes in a pilot plant thermophilic anaerobic digester was developed based on fundamental thermodynamic laws. The methodology utilized two simulation strategies. In the first, model equations were solved through a searching routine based on a minimal square optimization criterion, from which the overall heat transfer coefficient values, for both biodigester and heat exchanger, were determined. In the second, the simulation was performed with variable values of these overall coefficients. The prediction with both strategies allowed reproducing experimental data within 5% of the temperature span permitted in the equipment by the system control, which validated the model. The temperature variation was affected by the heterogeneity of the feeding and extraction processes, by the heterogeneity of the digestate recirculation through the heating system and by the lack of a perfect mixing inside the biodigester tank. The use of variable overall heat transfer coefficients improved the temperature change prediction and reduced the effect of a non-ideal performance of the pilot plant modeled.
Comparison of kinetic models for atom recombination on high-temperature reusable surface insulation
NASA Technical Reports Server (NTRS)
Willey, Ronald J.
1993-01-01
Five kinetic models are compared for their ability to predict recombination coefficients for oxygen and nitrogen atoms over high-temperature reusable surface insulation (HRSI). Four of the models are derived using Rideal-Eley or Langmuir-Hinshelwood catalytic mechanisms to describe the reaction sequence. The fifth model is an empirical expression that offers certain features unattainable through mechanistic description. The results showed that a four-parameter model, with temperature as the only variable, works best with data currently available. The model describes recombination coefficients for oxygen and nitrogen atoms for temperatures from 300 to 1800 K. Kinetic models, with atom concentrations, demonstrate the influence of atom concentration on recombination coefficients. These models can be used for the prediction of heating rates due to catalytic recombination during re-entry or aerobraking maneuvers. The work further demonstrates a requirement for more recombination experiments in the temperature ranges of 300-1000 K, and 1500-1850 K, with deliberate concentration variation to verify model requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saripalli, Ravi Kiran, E-mail: rksaripalli@physics.iisc.ernet.in; Sanath Kumar, R.; Elizabeth, Suja
2016-05-06
Large single crystals of Sodium D-isoacsorbate monohydrate and Lithium L-ascorbate dehydrate were grown using solution growth technique. Dielectric constant and dielectric loss were monitored as a function of frequency at different temperatures. These are typically characterized by strong resonance peaks. The piezoelectric coefficients d{sub 31}, elastic coefficient (S{sub 11}) and electromechanical coupling coefficient (k{sub 31}) were estimated by resonance-antiresonance method. The temperature dependence of the resonance-peaks frequencies was studied.
Viscosity and thermal conductivity coefficients of gaseous and liquid oxygen
NASA Technical Reports Server (NTRS)
Hanley, H. J. M.; Mccarty, R. D.; Sengers, J. V.
1974-01-01
Equations and tables are presented for the viscosity and thermal conductivity coefficients of gaseous and liquid oxygen at temperatures between 80 K and 400 K for pressures up to 200 atm. and at temperatures between 80 K and 2000 K for the dilute gas. A description of the anomalous behavior of the thermal conductivity in the critical region is included. The tabulated coefficients are reliable to within about 15% except for a region in the immediate vicinity of the critical point. Some possibilities for future improvements of this reliability are discussed.
Park, Sooyong; Song, Seung Hyun; Hwang, Ja Gyung
2017-01-01
Background Intraoperative hypothermia is common in patients undergoing general anesthesia during arthroscopic hip surgery. In the present study, we assessed the effect of heating and humidifying the airway with a heated wire humidification circuit (HHC) to attenuate the decrease of core temperature and prevent hypothermia in patients undergoing arthroscopic hip surgery under general anesthesia. Methods Fifty-six patients scheduled for arthroscopic hip surgery were randomly assigned to either a control group using a breathing circuit connected with a heat and moisture exchanger (HME) (n = 28) or an HHC group using a heated wire humidification circuit (n = 28). The decrease in core temperature was measured from anesthetic induction and every 15 minutes thereafter using an esophageal stethoscope. Results Decrease in core temperature from anesthetic induction to 120 minutes after induction was lower in the HHC group (–0.60 ± 0.27℃) compared to the control group (–0.86 ± 0.29℃) (P = 0.001). However, there was no statistically significant difference in the incidence of intraoperative hypothermia or the incidence of shivering in the postanesthetic care unit. Conclusions The use of HHC may be considered as a method to attenuate intraoperative decrease in core temperature during arthroscopic hip surgery performed under general anesthesia and exceeding 2 hours in duration. PMID:29225745
NASA Astrophysics Data System (ADS)
Aheyeva, Viktoryia; Gruzdev, Aleksandr; Grishaev, Mikhail
Data of ground-based measurements of NO2 column contents are analyzed to study winter-spring NO2 anomalies associated with negative anomalies in column ozone and stratospheric temperature. Episodes of significant decrease in column NO2 contents in the winter-spring period of 2011 in the northern hemisphere (NH) were detected at European and Siberian stations of Zvenigorod (55.7°N, Moscow Region) and Tomsk (56.5°N, West Siberia) in the middle latitudes, Harestua (60.2°N), Sodankyla (67.4°N, both in North Europe), and Zhigansk (66.8°N, East Siberia) in the high latitudes, and at the Arctic station of Scoresbysund (70.5°N, Greenland). All the stations, except Tomsk, are a part of the Network of the Detection of Atmospheric Composition Change (NDACC), and the data are accesses at http://ndacc.org. The decrease in NO2 is generally accompanied by total ozone and stratospheric temperature decrease and is shown to be caused by the transport of stratospheric air from the region of the ozone hole observed that season in the Arctic. Overpass total ozone data from Giovanni service and radiosonde data were used for the analysis. Although negative NO2 anomalies due to the transport from the Arctic were also observed in some other years, the anomalies in 2011 reached record magnitudes. A significant positive correlation has been found between variations in NO2 and ozone columns as well as NO2 column and stratospheric temperature during the winter-spring period of 2011, whereas the correlation is much weaker in years without Arctic ozone depletion. The correlation becomes even stronger if only episodes with significant NO2 decrease are considered. For example the correlation coefficients between NO2 and ozone columns deviations are about 0.9 for Zvenigorod and Scoresbysund. Correlation coefficients between variations in column NO2 and total ozone and stratospheric temperature as well as coefficients of regression of NO2 on ozone and temperature in the winter-spring period of 2011 for the Siberian stations are less than those for European stations. For comparison analysis, data of column NO2, total ozone and stratospheric temperature at the southern hemisphere (SH) stations of Dumont D’Urville (66.7°S, the Antarctic), Macquarie Island (54.5°S) and Kerguelen Island (49.3°S) (all stations are NDACC stations) were used. Correlation and regression coefficients between variations in column NO2 and total ozone as well as in column NO2 and stratospheric temperature for the winter-spring periods at the SH stations depend on the phase of the quasi-biennial oscillation (QBO) in the 30 hPa equatorial wind velocity. The correlation coefficients and the coefficients of regression of NO2 on ozone and temperature for the west QBO phase are large compared to those for the east phase. The 2011 Arctic ozone hole was observed during the west phase of the 30 hPa QBO. The calculated correlation coefficients at the NH stations for the winter-spring period of 2011 associated with the Arctic ozone hole are close to similar coefficients at the SH stations in winter-spring periods for the west QBO phase. The regression coefficients at the NH stations are less than those at the SH stations for the west QBO phase but greater than similar coefficients for the east phase. We can conclude that physico-chemical processes specific for ozone hole conditions cause spatial correlation between distribution of stratospheric NO2 and distributions of total ozone and temperature in polar and adjacent regions, which is generally stronger for stronger ozone deficit in a polar region. This results in significant time correlation between NO2, ozone and temperature at observation sites due to transport processes.
Line parameters for CO2 broadening in the ν2 band of HD16O
NASA Astrophysics Data System (ADS)
Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Crawford, Timothy J.; Gamache, Robert R.; Renaud, Candice L.; Smith, Mary Ann H.; Mantz, Arlan W.; Villanueva, Geronimo L.
2017-01-01
CO2-rich planetary atmospheres such as those of Mars and Venus require accurate knowledge of CO2 broadened HDO half-width coefficients and their temperature dependence exponents for reliable abundance determination. Although a few calculated line lists have recently been published on HDO-CO2 line shapes and their temperature dependences, laboratory measurements of those parameters are thus far non-existent. In this work, we report the first measurements of CO2-broadened half-width and pressure-shift coefficients and their temperature dependences for over 220 transitions in the ν2 band. First measurements of self-broadened half-width and self-shift coefficients at room temperature are also obtained for majority of these transitions. In addition, the first experimental determination of collisional line mixing has been reported for 11 transition pairs for HDO-CO2 and HDO-HDO systems. These results were obtained by analyzing ten high-resolution spectra of HDO and HDO-CO2 mixtures at various sample temperatures and pressures recorded with the Bruker IFS-125HR Fourier transform spectrometer at the Jet Propulsion Laboratory (JPL). Two coolable absorption cells with path lengths of 20.38 cm and 20.941 m were used to record the spectra. The various line parameters were retrieved by fitting all ten spectra simultaneously using a multispectrum nonlinear least squares fitting algorithm. The HDO transitions in the 1100-4100 cm-1 range were extracted from the HITRAN2012 database. For the ν2 and 2ν2 -ν2 bands there were 2245 and 435 transitions, respectively. Modified Complex Robert-Bonamy formalism (MCRB) calculations were made for the half-width coefficients, their temperature dependence and the pressure shift coefficients for the HDO-CO2 and HDO-HDO collision systems. MCRB calculations are compared with the measured values.
Dynamical behavior of the correlation between meteorological factors
NASA Astrophysics Data System (ADS)
You, Cheol-Hwan; Chang, Ki-Ho; Lee, Jun-Ho; Kim, Kyungsik
2017-12-01
We study the temporal and spatial variation characteristics of meteorological factors (temperature, humidity, and wind velocity) at a meteorological tower located on Bosung-gun of South Korea. We employ the detrended cross-correlation analysis (DCCA) method to extract the overall tendency of the hourly variation from data of meteorological factors. The relationships between meteorological factors are identified and quantified by using DCCA coefficients. From our results, we ascertain that the DCCA coefficient between temperature and humidity at time lag m = 24 has the smallest value at the height of 10 m of the measuring tower. Particularly, the DCCA coefficient between temperature and wind speed at time lag m = 24 has the largest value at a height of 10 m of the measuring tower
NASA Technical Reports Server (NTRS)
Bogan, Denis
1999-01-01
Laboratory measurements have been carried out to determine low temperature chemical rate coefficients of ethynyl radical (C2H) for the atmospheres of the outer planets and their satellites. This effort is directly related to the Cassini mission which will explore Saturn and Titan. A laser-based photolysis/infrared laser probe setup was used to measure the temperature dependence of kinetic rate coefficients from approx. equal to 150 to 350 K for C2H radicals with H2, C2H2, CH4, CD4, C2H4, C2H6, C3H8, n-C4H10, i-C4H10, neo-C5H12, C3H4 (methylacetylene and allene), HCN, and CH3CN. The results revealed discrepancies of an order of magnitude or more compared with the low temperature rate coefficients used in present models. A new Laval nozzle, low Mach number supersonic expansion kinetics apparatus has been constructed, resulting in the first measurements of neutral C2H radical kinetics at 90 K and permitting studies on condensable gases with insufficient vapor pressure at low temperatures. New studies of C 2H with acetylene have been completed.
The effect of core configuration on temperature coefficient of reactivity in IRR-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bettan, M.; Silverman, I.; Shapira, M.
1997-08-01
Experiments designed to measure the effect of coolant moderator temperature on core reactivity in an HEU swimming pool type reactor were performed. The moderator temperature coefficient of reactivity ({alpha}{sub {omega}}) was obtained and found to be different in two core loadings. The measured {alpha}{sub {omega}} of one core loading was {minus}13 pcm/{degrees}C at the temperature range of 23-30{degrees}C. This value of {alpha}{sub {omega}} is comparable to the data published by the IAEA. The {alpha}{sub {omega}} measured in the second core loading was found to be {minus}8 pcm/{degrees}C at the same temperature range. Another phenomenon considered in this study is coremore » behavior during reactivity insertion transient. The results were compared to a core simulation using the Dynamic Simulator for Nuclear Power Plants. It was found that in the second core loading factors other than the moderator temperature influence the core reactivity more than expected. These effects proved to be extremely dependent on core configuration and may in certain core loadings render the reactor`s reactivity coefficient undesirable.« less
CFD simulation of simultaneous monotonic cooling and surface heat transfer coefficient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihálka, Peter, E-mail: usarmipe@savba.sk; Matiašovský, Peter, E-mail: usarmat@savba.sk
The monotonic heating regime method for determination of thermal diffusivity is based on the analysis of an unsteady-state (stabilised) thermal process characterised by an independence of the space-time temperature distribution on initial conditions. At the first kind of the monotonic regime a sample of simple geometry is heated / cooled at constant ambient temperature. The determination of thermal diffusivity requires the determination rate of a temperature change and simultaneous determination of the first eigenvalue. According to a characteristic equation the first eigenvalue is a function of the Biot number defined by a surface heat transfer coefficient and thermal conductivity ofmore » an analysed material. Knowing the surface heat transfer coefficient and the first eigenvalue the thermal conductivity can be determined. The surface heat transport coefficient during the monotonic regime can be determined by the continuous measurement of long-wave radiation heat flow and the photoelectric measurement of the air refractive index gradient in a boundary layer. CFD simulation of the cooling process was carried out to analyse local convective and radiative heat transfer coefficients more in detail. Influence of ambient air flow was analysed. The obtained eigenvalues and corresponding surface heat transfer coefficient values enable to determine thermal conductivity of the analysed specimen together with its thermal diffusivity during a monotonic heating regime.« less
NASA Astrophysics Data System (ADS)
Zohravi, Elnaz; Shirani, Ebrahim; Pishevar, Ahmadreza; Karimpour, Hossein
2018-07-01
This research focuses on numerically investigating the self-diffusion coefficient and velocity autocorrelation function (VACF) of a dissipative particle dynamics (DPD) fluid as a function of the conservative interaction strength. Analytic solutions to VACF and self-diffusion coefficients in DPD were obtained by many researchers in some restricted cases including ideal gases, without the account of conservative force. As departure from the ideal gas conditions are accentuated with increasing the relative proportion of conservative force, it is anticipated that the VACF should gradually deviate from its normally expected exponentially decay. This trend is confirmed through numerical simulations and an expression in terms of the conservative force parameter, density and temperature is proposed for the self-diffusion coefficient. As it concerned the VACF, the equivalent Langevin equation describing Brownian motion of particles with a harmonic potential is adapted to the problem and reveals an exponentially decaying oscillatory pattern influenced by the conservative force parameter, dissipative parameter and temperature. Although the proposed model for obtaining the self-diffusion coefficient with consideration of the conservative force could not be verified due to computational complexities, nonetheless the Arrhenius dependency of the self-diffusion coefficient to temperature and pressure permits to certify our model over a definite range of DPD parameters.
Quantitative Analysis of Temperature Dependence of Raman shift of monolayer WS2
NASA Astrophysics Data System (ADS)
Huang, Xiaoting; Gao, Yang; Yang, Tianqi; Ren, Wencai; Cheng, Hui-Ming; Lai, Tianshu
2016-08-01
We report the temperature-dependent evolution of Raman spectra of monolayer WS2 directly CVD-grown on a gold foil and then transferred onto quartz substrates over a wide temperature range from 84 to 543 K. The nonlinear temperature dependence of Raman shifts for both and A1g modes has been observed. The first-order temperature coefficients of Raman shifts are obtained to be -0.0093 (cm-1/K) and -0.0122 (cm-1/K) for and A1g peaks, respectively. A physical model, including thermal expansion and three- and four-phonon anharmonic effects, is used quantitatively to analyze the observed nonlinear temperature dependence. Thermal expansion coefficient (TEC) of monolayer WS2 is extracted from the experimental data for the first time. It is found that thermal expansion coefficient of out-plane mode is larger than one of in-plane mode, and TECs of and A1g modes are temperature-dependent weakly and strongly, respectively. It is also found that the nonlinear temperature dependence of Raman shift of mode mainly originates from the anharmonic effect of three-phonon process, whereas one of A1g mode is mainly contributed by thermal expansion effect in high temperature region, revealing that thermal expansion effect cannot be ignored.
NASA Astrophysics Data System (ADS)
Lizarraga, Ion; Bou-Ali, M. Mounir; Santamaría, C.
2018-03-01
In this study, the thermodiffusion coefficient of n-dodecane/n-hexane binary mixture at 25 ∘C mean temperature was determined for several pressure conditions and mass fractions. The experimental technique used to determine the thermodiffusion coefficient was the thermograviational column of cylindrical configuration. In turn, thermophysical properties, such as density, thermal expansion, mass expansion and dynamic viscosity up to 10 MPa were also determined. The results obtained in this work showed a linear relation between the thermophysical properties and the pressure. Thermodiffusion coefficient values confirm a linear effect when the pressure increases. Additionally, a new correlation based on the thermodiffusion coefficient for n C12/n C6 binary mixture at 25 ∘C temperature for any mass fraction and pressures, which reproduces the data within the experimental error, was proposed.
Li, Hongqiang; Yang, Haijing; Li, Enbang; Liu, Zhihui; Wei, Kejia
2012-05-21
Measuring body temperature is considerably important to physiological studies as well as clinical investigations. In recent years, numerous observations have been reported and various methods of measurement have been employed. The present paper introduces a novel wearable sensor in intelligent clothing for human body temperature measurement. The objective is the integration of optical fiber Bragg grating (FBG)-based sensors into functional textiles to extend the capabilities of wearable solutions for body temperature monitoring. In addition, the temperature sensitivity is 150 pm/°C, which is almost 15 times higher than that of a bare FBG. This study combines large and small pipes during fabrication to implant FBG sensors into the fabric. The law of energy conservation of the human body is considered in determining heat transfer between the body and its clothing. The mathematical model of heat transmission between the body and clothed FBG sensors is studied, and the steady-state thermal analysis is presented. The simulation results show the capability of the material to correct the actual body temperature. Based on the skin temperature obtained by the weighted average method, this paper presents the five points weighted coefficients model using both sides of the chest, armpits, and the upper back for the intelligent clothing. The weighted coefficients of 0.0826 for the left chest, 0.3706 for the left armpit, 0.3706 for the right armpit, 0.0936 for the upper back, and 0.0826 for the right chest were obtained using Cramer's Rule. Using the weighting coefficient, the deviation of the experimental result was ± 0.18 °C, which favors the use for clinical armpit temperature monitoring. Moreover, in special cases when several FBG sensors are broken, the weighted coefficients of the other sensors could be changed to obtain accurate body temperature.
Application of Temperature Sensitivities During Iterative Strain-Gage Balance Calibration Analysis
NASA Technical Reports Server (NTRS)
Ulbrich, N.
2011-01-01
A new method is discussed that may be used to correct wind tunnel strain-gage balance load predictions for the influence of residual temperature effects at the location of the strain-gages. The method was designed for the iterative analysis technique that is used in the aerospace testing community to predict balance loads from strain-gage outputs during a wind tunnel test. The new method implicitly applies temperature corrections to the gage outputs during the load iteration process. Therefore, it can use uncorrected gage outputs directly as input for the load calculations. The new method is applied in several steps. First, balance calibration data is analyzed in the usual manner assuming that the balance temperature was kept constant during the calibration. Then, the temperature difference relative to the calibration temperature is introduced as a new independent variable for each strain--gage output. Therefore, sensors must exist near the strain--gages so that the required temperature differences can be measured during the wind tunnel test. In addition, the format of the regression coefficient matrix needs to be extended so that it can support the new independent variables. In the next step, the extended regression coefficient matrix of the original calibration data is modified by using the manufacturer specified temperature sensitivity of each strain--gage as the regression coefficient of the corresponding temperature difference variable. Finally, the modified regression coefficient matrix is converted to a data reduction matrix that the iterative analysis technique needs for the calculation of balance loads. Original calibration data and modified check load data of NASA's MC60D balance are used to illustrate the new method.
Closed inductively coupled plasma cell
Manning, Thomas J.; Palmer, Byron A.; Hof, Douglas E.
1990-01-01
A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy.
Xie, Ming; Lee, Chee Huei; Wang, Jiesheng; Yap, Yoke Khin; Bruno, Paola; Gruen, Dieter; Singh, Dileep; Routbort, Jules
2010-04-01
Boron-doped nanographite ensembles (NGEs) are interesting thermoelectric nanomaterials for high temperature applications. Rapid induction annealing and quenching has been applied to boron-doped NGEs using a relatively low-cost, highly reliable, laboratory built furnace to show that substantial improvements in thermoelectric power factors can be achieved using this methodology. Details of the design and performance of this compact induction furnace as well as results of the thermoelectric measurements will be reported here.
Dispersion-Engineered Traveling Wave Kinetic Inductance Parametric Amplifier
NASA Technical Reports Server (NTRS)
Zmuidzinas, Jonas (Inventor); Day, Peter K. (Inventor)
2014-01-01
A traveling wave kinetic inductance parametric amplifier comprises a superconducting transmission line and a dispersion control element. The transmission line can include periodic variations of its dimension along its length. The superconducting material can include a high normal state resistivity material. In some instances the high normal state resistivity material includes nitrogen and a metal selected from the group consisting of titanium, niobium and vanadium. The traveling wave kinetic inductance parametric amplifier is expected to exhibit a noise temperature below 100 mK/GHz.
Hofmeister, Erik H; Brainard, Benjamin M; Braun, Christina; Figueiredo, Juliana P
2011-12-15
To determine whether a heat and moisture exchange device (HME) prevents a decrease in body temperature in isoflurane-anesthetized dogs undergoing orthopedic procedures. Blinded randomized controlled clinical trial. 60 privately owned dogs weighing at least 15 kg (33 lb). Dogs were randomly assigned to 1 of 3 treatment groups (n = 20/group): HME placed immediately after anesthetic induction with isoflurane, after transfer to the operating room, or not at all. The device consisted of a hygroscopic filter placed between the endotracheal tube and the Y piece of the anesthesia circuit. Each dog was positioned on a circulating warm water blanket and had a forced-air warming blanket placed over its body. Body temperature was monitored after transfer to the operating room with a probe placed in the thoracic aspect of the esophagus. Study groups did not differ significantly with respect to body weight, body condition score, reproductive status, breed, surgical procedure, preoperative sedative and opioid administration, anesthetic induction drug, local nerve block technique, or operating room assignment. There were no significant differences among groups in esophageal temperature variables, interval between anesthetic induction and surgery, surgery duration, anesthesia duration, or oxygen flow rate. However, the relationship between temperature delta and body weight was significant and relevant (R(2) = 0.23), as was the association between temperature nadir and body weight (R(2)= 0.10). As body weight increased, the temperature delta decreased and temperature nadir increased. No other significant relationships were identified. Inclusion of an HME in healthy dogs undergoing anesthesia for an elective orthopedic surgery did not facilitate maintenance of body temperature throughout the procedure.
NASA Astrophysics Data System (ADS)
Nakano, Tohru; Shimazaki, Takeshi; Tamura, Osamu
2017-07-01
This study confirms reproducibility of the International Temperature Scale of 1990 (ITS-90) realized by interpolation using the constant-volume gas thermometer (CVGT) of National Metrology Institute of Japan (NMIJ)/AIST with 3He as the working gas from 3 K to 24.5561 K by comparing the newly obtained results and those of earlier reports, indicating that the CVGT has retained its capability after renovation undertaken since strong earthquakes struck Japan. The thermodynamic temperature T is also obtained using the single-isotherm fit to four working gas densities (127 mol\\cdot m^{-3}, 145 mol\\cdot m^{-3}, 171 mol\\cdot m^{-3} and 278 mol\\cdot m^{-3}) down to 1.9 K, using the triple point temperature of Ne as a reference temperature. In this study, only the second virial coefficient is taken into account for the single-isotherm fit. Differences between T and the ITS-90 temperature, T-T_{90}, reported in earlier works down to 3 K were confirmed in this study. At the temperatures below 3 K down to 2.5 K, T-T_{90} is much smaller than the standard combined uncertainty of thermodynamic temperature measurement. However, T- T_{90} seems to increase with decreasing temperature below 2.5 K down to 1.9 K, although still within the standard combined uncertainty of thermodynamic temperature measurement. In this study, T is obtained also from the CVGT with a single gas density of 278 mol\\cdot m^{-3} using the triple-point temperature of Ne as a reference temperature by making correction for the deviation from the ideal gas using theoretical values of the second and third virial coefficients down to 2.6 K, which is the lowest temperature of the theoretical values of the third virial coefficient. T values obtained using this method agree well with those obtained from the single-isotherm fit. We also found that the second virial coefficient obtained by the single-isotherm fit to experimental results agrees well with that obtained by the single-isotherm fit to the theoretically expected behavior of 3He gas with the theoretical second and third virial coefficients at four gas densities used in the present work.
Critical heat flux test apparatus
Welsh, Robert E.; Doman, Marvin J.; Wilson, Edward C.
1992-01-01
An apparatus for testing, in situ, highly irradiated specimens at high temperature transients is provided. A specimen, which has a thermocouple device attached thereto, is manipulated into test position in a sealed quartz heating tube by a robot. An induction coil around a heating portion of the tube is powered by a radio frequency generator to heat the specimen. Sensors are connected to monitor the temperatures of the specimen and the induction coil. A quench chamber is located below the heating portion to permit rapid cooling of the specimen which is moved into this quench chamber once it is heated to a critical temperature. A vacuum pump is connected to the apparatus to collect any released fission gases which are analyzed at a remote location.
NASA Astrophysics Data System (ADS)
Ben Shabat, Yael; Shitzer, Avraham
2012-07-01
Facial heat exchange convection coefficients were estimated from experimental data in cold and windy ambient conditions applicable to wind chill calculations. Measured facial temperature datasets, that were made available to this study, originated from 3 separate studies involving 18 male and 6 female subjects. Most of these data were for a -10°C ambient environment and wind speeds in the range of 0.2 to 6 m s-1. Additional single experiments were for -5°C, 0°C and 10°C environments and wind speeds in the same range. Convection coefficients were estimated for all these conditions by means of a numerical facial heat exchange model, applying properties of biological tissues and a typical facial diameter of 0.18 m. Estimation was performed by adjusting the guessed convection coefficients in the computed facial temperatures, while comparing them to measured data, to obtain a satisfactory fit ( r 2 > 0.98, in most cases). In one of the studies, heat flux meters were additionally used. Convection coefficients derived from these meters closely approached the estimated values for only the male subjects. They differed significantly, by about 50%, when compared to the estimated female subjects' data. Regression analysis was performed for just the -10°C ambient temperature, and the range of experimental wind speeds, due to the limited availability of data for other ambient temperatures. The regressed equation was assumed in the form of the equation underlying the "new" wind chill chart. Regressed convection coefficients, which closely duplicated the measured data, were consistently higher than those calculated by this equation, except for one single case. The estimated and currently used convection coefficients are shown to diverge exponentially from each other, as wind speed increases. This finding casts considerable doubts on the validity of the convection coefficients that are used in the computation of the "new" wind chill chart and their applicability to humans in cold and windy environments.
Ben Shabat, Yael; Shitzer, Avraham
2012-07-01
Facial heat exchange convection coefficients were estimated from experimental data in cold and windy ambient conditions applicable to wind chill calculations. Measured facial temperature datasets, that were made available to this study, originated from 3 separate studies involving 18 male and 6 female subjects. Most of these data were for a -10°C ambient environment and wind speeds in the range of 0.2 to 6 m s(-1). Additional single experiments were for -5°C, 0°C and 10°C environments and wind speeds in the same range. Convection coefficients were estimated for all these conditions by means of a numerical facial heat exchange model, applying properties of biological tissues and a typical facial diameter of 0.18 m. Estimation was performed by adjusting the guessed convection coefficients in the computed facial temperatures, while comparing them to measured data, to obtain a satisfactory fit (r(2) > 0.98, in most cases). In one of the studies, heat flux meters were additionally used. Convection coefficients derived from these meters closely approached the estimated values for only the male subjects. They differed significantly, by about 50%, when compared to the estimated female subjects' data. Regression analysis was performed for just the -10°C ambient temperature, and the range of experimental wind speeds, due to the limited availability of data for other ambient temperatures. The regressed equation was assumed in the form of the equation underlying the "new" wind chill chart. Regressed convection coefficients, which closely duplicated the measured data, were consistently higher than those calculated by this equation, except for one single case. The estimated and currently used convection coefficients are shown to diverge exponentially from each other, as wind speed increases. This finding casts considerable doubts on the validity of the convection coefficients that are used in the computation of the "new" wind chill chart and their applicability to humans in cold and windy environments.
Morita, Miyo Terao; Tanaka, Yoshiyuki; Kodama, Takashi S.; Kyogoku, Yoshimasa; Yanagi, Hideki; Yura, Takashi
1999-01-01
Induction of heat shock proteins in Escherichia coli is primarily caused by increased cellular levels of the heat shock σ-factor σ32 encoded by the rpoH gene. Increased σ32 levels result from both enhanced synthesis and stabilization. Previous work indicated that σ32 synthesis is induced at the translational level and is mediated by the mRNA secondary structure formed within the 5′-coding sequence of rpoH, including the translation initiation region. To understand the mechanism of heat induction of σ32 synthesis further, we analyzed expression of rpoH–lacZ gene fusions with altered stability of mRNA structure before and after heat shock. A clear correlation was found between the stability and expression or the extent of heat induction. Temperature-melting profiles of mRNAs with or without mutations correlated well with the expression patterns of fusion genes carrying the corresponding mutations in vivo. Furthermore, temperature dependence of mRNA–30S ribosome–tRNAfMet complex formation with wild-type or mutant mRNAs in vitro agreed well with that of the expression of gene fusions in vivo. Our results support a novel mechanism in which partial melting of mRNA secondary structure at high temperature enhances ribosome entry and translational initiation without involvement of other cellular components, that is, intrinsic mRNA stability controls synthesis of a transcriptional regulator. PMID:10090722
Zhang, Ziyi; Liu, Peiguo; Zhou, Dongming; Zhang, Liang; Ding, Liang
2015-01-01
This study investigates the radiation safety of a newly designed magnetic induction sensor. This novel magnetic induction sensor uses a two-arm Archimedean spiral coil (TAASC) as the exciter. A human head model with a real anatomical structure was used to calculate the specific absorption rate (SAR) and temperature change. Computer Simulation Technology (CST) was used to determine the values of the peak 10-g SAR under different operating parameters (current, frequency, horizontal distance between the excitation coil and the receiver coil, vertical distance between the top of the head model and the XOY plane, position of excitation coil, and volume of hemorrhage). Then, the highest response for the SAR and temperature rise was determined. The results showed that this new magnetic induction sensor is safe in the initial state; for safety reasons, the TAASC current should not exceed 4 A. The scalp tissue absorbed most of the electromagnetic energy. The TAASC's SAR/thermal performance was close to that of the circular coil.
NASA Astrophysics Data System (ADS)
Matl, Peter; Ong, N. P.; Gagnon, R.; Taillefer, L.
2002-06-01
The complex resistivity ρ^(ω) of the vortex lattice in an untwinned crystal of 93-K YBa2Cu3O7 has been measured at frequencies ω/2π from 100 kHz to 20 MHz in a 2-T field H||c, using a four-probe rf transmission technique that enables continuous measurements versus ω and temperature T. As T is increased, the inductance Ls(ω)=Imρ^(ω)/ω increases steeply to a cusp at the melting temperature Tm, and then undergoes a steep collapse consistent with vanishing of the shear modulus c66. We discuss in detail the separation of the vortex-lattice inductance from the ``volume'' inductance, and other skin-depth effects. To analyze the spectra, we consider a weakly disordered lattice with a low pin density. Close fits are obtained to ρ1(ω) over 2 decades in ω. Values of the pinning parameter κ and shear modulus c66 obtained show that c66 collapses by over 4 decades at Tm, whereas κ remains finite.
Arrhenius Rate: constant volume burn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menikoff, Ralph
A constant volume burn occurs for an idealized initial state in which a large volume of reactants at rest is suddenly raised to a high temperature and begins to burn. Due to the uniform spatial state, there is no fluid motion and no heat conduction. This reduces the time evolu tion to an ODE for the reaction progress variable. With an Arrhenius reaction rate, two characteristics of thermal ignition are illustrated: induction time and thermal runaway. The Frank-Kamenetskii approximation then leads to a simple expression for the adiabatic induction time. For a first order reaction, the analytic solution is derivedmore » and used to illustrate the effect of varying the activation temperature; in particular, on the induction time. In general, the ODE can be solved numerically. This is used to illustrate the effect of varying the reaction order. We note that for a first order reaction, the time evolution of the reaction progress variable has an exponential tail. In contrast, for a reaction order less than one, the reaction completes in a nite time. The reaction order also affects the induction time.« less
TORO II simulations of induction heating in ferromagnetic materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adkins, D.R.; Gartling, D.K.; Kelley, J.B.
TORO II is a finite element computer program that is used in the simulation of electric and magnetic fields. This code, which was developed at Sandia National Laboratories, has been coupled with a finite element thermal code, COYOTE II, to predict temperature profiles in inductively heated parts. The development of an effective technique to account for the nonlinear behavior of the magnetic permeability in ferromagnetic parts is one of the more difficult aspects of solving induction heating problems. In the TORO II code, nonlinear, spatially varying magnetic permeability is approximated by an effective permeability on an element-by-element basis that effectivelymore » provides the same energy deposition that is produced when the true permeability is used. This approximation has been found to give an accurate estimate of the volumetric heating distribution in the part, and predicted temperature distributions have been experimentally verified using a medium carbon steel and a 10kW industrial induction heating unit. Work on the model was funded through a Cooperative Research and Development Agreement (CRADA) between the Department of Energy and General Motors` Delphi Saginaw Steering Systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawakami, S.; Ohno, N.; Shibata, Y.
2013-11-15
According to an early work [Y. Shibata et al., Nucl. Fusion 50, 025015 (2010)] on the behavior of the plasma current decay in the JT-60U disruptive discharges caused by the radiative collapse with a massive neon-gas-puff, the increase of the internal inductance mainly determined the current decay time of plasma current during the initial phase of current quench. To investigate what determines the increase of the internal inductance, we focus attention on the relationship between the electron temperature (or the resistivity) profile and the time evolution of the current density profile and carry out numerical calculations. As a result, wemore » find the reason of the increase of the internal inductance: The current density profile at the start of the current quench is broader than an expected current density profile in the steady state, which is determined by the temperature (or resistivity) profile. The current density profile evolves into peaked one and the internal inductance is increasing.« less
Investigation of Non-Linear Optical Behavior of Semiconductors for Optical Switching. Volume 1.
1987-09-30
a ’ 0.001 0.0014 0.0018 0.00 2 0.0026 0.003 0.0034. Figure 36 Plot of average grain size versus heat treatment temperature . i .1...linearity. This NLO behavior. switches on and off in sub-picosecond times. However, the switching time, the NLO coefficient and the operating temperature are...in sub-picosecond times. However, the switching time, the . 9NLO coefficient and the operating temperature are affected by the microstruc- ture of the
Determination of emissivity coefficient of heat-resistant super alloys and cemented carbide
NASA Astrophysics Data System (ADS)
Kieruj, Piotr; Przestacki, Damian; Chwalczuk, Tadeusz
2016-12-01
This paper presents the analysis of emissivity engineering materials according to temperature. Experiment is concerned on difficult to machine materials, which may be turned with laser assisting. Cylindrical samples made of nickel-based alloys Inconel 625, Inconel 718, Waspaloy and tungsten-carbides based on cobalt matrix were analyzed. The samples' temperature in contact method was compared to the temperature measured by non-contact pyrometers. Based on this relative, the value of the emissivity coefficient was adjusted to the right indication of pyrometers.
Hoskinson, Christine; McCain, Stephanie; Allender, Matthew C
2014-01-01
Body temperature readings can be a useful diagnostic tool for identifying the presence of subclinical disease. Traditionally, rectal or cloacal thermometry has been used to obtain body temperatures. The use of implantable microchips to obtain these temperatures has been studied in a variety of animals, but not yet in avian species. Initially, timepoint one (T₁), nine lorikeets were anesthetized via facemask induction with 5% isoflurane and maintained at 2-3% for microchip placement and body temperature data collection. Body temperature was measured at 0 and 2 min post-anesthetic induction both cloacally, using a Cardell veterinary monitor and also via implantable microchip, utilizing a universal scanner. On two more occasions, timepoints two and three (T₂, T₃), the same nine lorikeets were manually restrained to obtain body temperature readings both cloacally and via microchip, again at minutes 0 and 2. There was no statistical difference between body temperatures, for both methods, at T₁. Microchip temperatures were statistically different than cloacal temperatures at T₂ and T₃. Body temperatures at T₁, were statistically different from those obtained at T₂ and T₃ for both methods. Additional studies are warranted to verify the accuracy of microchip core body temperature readings in avian species. © 2014 Wiley Periodicals, Inc.
Piezoresistive silicon pressure sensors in cryogenic environment
NASA Technical Reports Server (NTRS)
Kahng, Seun K.; Chapman, John J.
1989-01-01
This paper presents data on low-temperature measurements of silicon pressure sensors. It was found that both the piezoresistance coefficients and the charge-carrier mobility increase with decreasing temperature. For lightly doped semiconductor materials, the density of free charge carriers decreases with temperature and can freeze out eventually. However, the effect of carrier freeze-out can be minimized by increasing the impurity content to higher levels, at which the temperature dependency of piezoresistance coefficients is reduced. An impurity density of 1 x 10 to the 19th/cu cm was found to be optimal for cryogenic applications of pressure sensor dies.
NASA Astrophysics Data System (ADS)
Bodryakov, V. Yu.; Bykov, A. A.
2016-05-01
The correlation between the volumetric thermal expansion coefficient β( T) and the heat capacity C( T) of aluminum is considered in detail. It is shown that a clear correlation is observed in a significantly wider temperature range, up to the melting temperature of the metal, along with the low-temperature range where it is linear. The significant deviation of dependence β( C) from the low-temperature linear behavior is observed up to the point where the heat capacity achieves the classical Dulong-Petit limit of 3 R ( R is the universal gas constant).
Thermoelectric Properties of High-Doped Silicon from Room Temperature to 900 K
NASA Astrophysics Data System (ADS)
Stranz, A.; Kähler, J.; Waag, A.; Peiner, E.
2013-07-01
Silicon is investigated as a low-cost, Earth-abundant thermoelectric material for high-temperature applications up to 900 K. For the calculation of module design the Seebeck coefficient and the electrical as well as thermal properties of silicon in the high-temperature range are of great importance. In this study, we evaluate the thermoelectric properties of low-, medium-, and high-doped silicon from room temperature to 900 K. In so doing, the Seebeck coefficient, the electrical and thermal conductivities, as well as the resulting figure of merit ZT of silicon are determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipatova, Zh. O., E-mail: zluka-yo@mail.ru; Kolobkova, E. V.; Babkina, A. N.
2017-03-15
The temperature and size dependences of the energy gap in CdSe quantum dots with diameters of 2.4, 4.0, and 5.2 nm embedded in fluorophosphate glasses are investigated. It is shown that the temperature coefficient of the band gap dE{sub g}/dT in the quantum dots differs from the bulk value and depends strictly on the dot size. It is found that, furthermore, the energy of each transition in these quantum dots is characterized by an individual temperature coefficient dE/dT.
Wang, Jiang; Luo, Dongjiao; Sun, Aihua; Yan, Jie
2008-07-01
Lipoproteins LipL32 and LipL21 and transmembrane protein OMPL1 have been confirmed as the superficial genus-specific antigens of Leptospira interrogans, which can be used as antigens for developing a universal genetic engineering vaccine. In order to obtain high expression of an artificial fusion gene lipL32/1-lipL21-ompL1/2, we optimized prokaryotic expression conditions. We used surface response analysis based on the central composite design to optimize culture conditions of a new antigen protein by recombinant Escherichia coli DE3.The culture conditions included initial pH, induction start time, post-induction time, Isopropyl beta-D-thiogalactopyranoside (IPTG) concentration, and temperature. The maximal production of antigen protein was 37.78 mg/l. The optimal culture conditions for high recombinant fusion protein was determined: initial pH 7.9, induction start time 2.5 h, a post-induction time of 5.38 h, 0.20 mM IPTG, and a post-induction temperature of 31 degrees C. Surface response analysis based on CCD increased the target production. This statistical method reduced the number of experiments required for optimization and enabled rapid identification and integration of the key culture condition parameters for optimizing recombinant protein expression.
Warming of Monolithic Structures in Winter
NASA Astrophysics Data System (ADS)
Pikus, G. A.; Lebed, A. R.
2017-11-01
The present work attempts to develop a mathematical model for calculating the heat transfer coefficient of the fence of monolithic structures erected in winter. The urgency and, at the same time, the practical significance of the research lies in the fact that to date no simple, effective tool has been developed to ensure the elimination of the unfavorable thermally stressed state of a structure’s concrete from maximum equalization of temperatures across its cross-section. The main problem for concrete is a high temperature which leads to a sharp decrease in the quality of erected structures due to developing cracks. This paper based on the well-known Newton’s law and its differential equation demonstrates the formula of concrete cooling and the analysis of its proportionality coefficient. Based on the literature analysis, it is established that the proportionality coefficient is determined by the thermophysical properties of concrete, the size and shape of the structure, and the intensity of its heat exchange with the surrounding medium. A limitation was used on the temperature gradient over the section of the monolithic structure to derive a formula for calculating the reduced heat transfer coefficient of a concrete fence. All mathematical calculations are given for cooling monolithic constructions in the form of plates. At the end of the work an example is given for the calculation of the required reduced heat transfer coefficient for the fence ensuring compliance with the permissible concrete temperature gradient.
Ronco, Nicolás R; Menestrina, Fiorella; Romero, Lílian M; Castells, Cecilia B
2017-06-09
In this paper, we report gas-liquid partition constants for thirty-five volatile organic solutes in the room temperature ionic liquid trihexyl(tetradecyl)phosphonium bromide measured by gas-liquid chromatography using capillary columns. The relative contribution of gas-liquid partition and interfacial adsorption to retention was evaluated through the use of columns with different the phase ratio. Four capillary columns with exactly known phase ratios were constructed and employed to measure the solute retention factors at four temperatures between 313.15 and 343.15K. The partition coefficients were calculated from the slopes of the linear regression between solute retention factors and the reciprocal of phase ratio at a given temperature according to the gas-liquid chromatographic theory. Gas-liquid interfacial adsorption was detected for a few solutes and it has been considered for the calculations of partition coefficient. Reliable solute's infinite dilution activity coefficients can be obtained when retention data are determined by a unique partitioning mechanism. The partial molar excess enthalpies at infinite dilution have been estimated from the dependence of experimental values of solute activity coefficients with the column temperature. A thorough discussion of the uncertainties of the experimental measurements and the main advantages of the use of capillary columns to acquire the aforementioned relevant thermodynamic information was performed. Copyright © 2017 Elsevier B.V. All rights reserved.
Nonequilibrium kinetic boundary condition at the vapor-liquid interface of argon
NASA Astrophysics Data System (ADS)
Ishiyama, Tatsuya; Fujikawa, Shigeo; Kurz, Thomas; Lauterborn, Werner
2013-10-01
A boundary condition for the Boltzmann equation (kinetic boundary condition, KBC) at the vapor-liquid interface of argon is constructed with the help of molecular dynamics (MD) simulations. The KBC is examined at a constant liquid temperature of 85 K in a wide range of nonequilibrium states of vapor. The present investigation is an extension of a previous one by Ishiyama, Yano, and Fujikawa [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.95.084504 95, 084504 (2005)] and provides a more complete form of the KBC. The present KBC includes a thermal accommodation coefficient in addition to evaporation and condensation coefficients, and these coefficients are determined in MD simulations uniquely. The thermal accommodation coefficient shows an anisotropic behavior at the interface for molecular velocities normal versus tangential to the interface. It is also found that the evaporation and condensation coefficients are almost constant in a fairly wide range of nonequilibrium states. The thermal accommodation coefficient of the normal velocity component is almost unity, while that of the tangential component shows a decreasing function of the density of vapor incident on the interface, indicating that the tangential velocity distribution of molecules leaving the interface into the vapor phase may deviate from the tangential parts of the Maxwell velocity distribution at the liquid temperature. A mechanism for the deviation of the KBC from the isotropic Maxwell KBC at the liquid temperature is discussed in terms of anisotropic energy relaxation at the interface. The liquid-temperature dependence of the present KBC is also discussed.
Solubility and diffusion of oxygen in phospholipid membranes.
Möller, Matías N; Li, Qian; Chinnaraj, Mathivanan; Cheung, Herbert C; Lancaster, Jack R; Denicola, Ana
2016-11-01
The transport of oxygen and other nonelectrolytes across lipid membranes is known to depend on both diffusion and solubility in the bilayer, and to be affected by changes in the physical state and by the lipid composition, especially the content of cholesterol and unsaturated fatty acids. However, it is not known how these factors affect diffusion and solubility separately. Herein we measured the partition coefficient of oxygen in liposome membranes of dilauroyl-, dimiristoyl- and dipalmitoylphosphatidylcholine in buffer at different temperatures using the equilibrium-shift method with electrochemical detection. The apparent diffusion coefficient was measured following the fluorescence quenching of 1-pyrenedodecanoate inserted in the liposome bilayers under the same conditions. The partition coefficient varied with the temperature and the physical state of the membrane, from below 1 in the gel state to above 2.8 in the liquid-crystalline state in DMPC and DPPC membranes. The partition coefficient was directly proportional to the partial molar volume and was then associated to the increase in free-volume in the membrane as a function of temperature. The apparent diffusion coefficients were corrected by the partition coefficients and found to be nearly the same, with a null dependence on viscosity and physical state of the membrane, probably because the pyrene is disturbing the surrounding lipids and thus becoming insensitive to changes in membrane viscosity. Combining our results with those of others, it is apparent that both solubility and diffusion increase when increasing the temperature or when comparing a membrane in the gel to one in the fluid state. Copyright © 2016 Elsevier B.V. All rights reserved.
2010-12-27
Erosion Rates and Critical Shear Stress ......................... 45 Erosion Rate Ratio Analysis...inductively coupled plasma – mass spectrometry Kd – partition coefficient Meq – milliequivalents MNR – monitored natural recovery SRNL-STI-2010...186 Figure 82. Critical Shear Stress Comparison among Biopolymer Materials at 2, 10, and 175 Days. Each value is an average of
2011-08-01
Measurements of Sediment Erosion Rates and Critical Shear Stress ......................... 45 Erosion Rate Ratio Analysis...chromatography ICP-MS – inductively coupled plasma – mass spectrometry Kd – partition coefficient Meq – milliequivalents MNR – monitored natural...186 Figure 82. Critical Shear Stress Comparison among Biopolymer Materials at 2, 10, and 175 Days. Each
NASA Astrophysics Data System (ADS)
Ziolkowski, Pawel; Stiewe, Christian; de Boor, Johannes; Druschke, Ines; Zabrocki, Knud; Edler, Frank; Haupt, Sebastian; König, Jan; Mueller, Eckhard
2017-01-01
Thermoelectric generators (TEGs) convert heat to electrical energy by means of the Seebeck effect. The Seebeck coefficient is a central thermoelectric material property, measuring the magnitude of the thermovoltage generated in response to a temperature difference across a thermoelectric material. Precise determination of the Seebeck coefficient provides the basis for reliable performance assessment in materials development in the field of thermoelectrics. For several reasons, measurement uncertainties of up to 14% can often be observed in interlaboratory comparisons of temperature-dependent Seebeck coefficient or in error analyses on currently employed instruments. This is still too high for an industrial benchmark and insufficient for many scientific investigations and technological developments. The TESt (thermoelectric standardization) project was launched in 2011, funded by the German Federal Ministry of Education and Research (BMBF), to reduce measurement uncertainties, engineer traceable and precise thermoelectric measurement techniques for materials and TEGs, and develop reference materials (RMs) for temperature-dependent determination of the Seebeck coefficient. We report herein the successful development and qualification of cobalt-doped β-iron disilicide ( β-Fe0.95Co0.05Si2) as a RM for high-temperature thermoelectric metrology. A brief survey on technological processes for manufacturing and machining of samples is presented. Focus is placed on metrological qualification of the iron disilicide, results of an international round-robin test, and final certification as a reference material in accordance with ISO-Guide 35 and the "Guide to the expression of uncertainty in measurement" by the Physikalisch-Technische Bundesanstalt, the national metrology institute of Germany.
Thermodynamic properties and transport coefficients of two-temperature helium thermal plasmas
NASA Astrophysics Data System (ADS)
Guo, Xiaoxue; Murphy, Anthony B.; Li, Xingwen
2017-03-01
Helium thermal plasmas are in widespread use in arc welding and many other industrial applications. Simulation of these processes relies on accurate plasma property data, such as plasma composition, thermodynamic properties and transport coefficients. Departures from LTE (local thermodynamic equilibrium) generally occur in some regions of helium plasmas. In this paper, properties are calculated allowing for different values of the electron temperature, T e, and heavy-species temperature, T h, at atmospheric pressure from 300 K to 30 000 K. The plasma composition is first calculated using the mass action law, and the two-temperature thermodynamic properties are then derived. The viscosity, diffusion coefficients, electrical conductivity and thermal conductivity of the two-temperature helium thermal plasma are obtained using a recently-developed method that retains coupling between electrons and heavy species by including the electron-heavy-species collision term in the heavy-species Boltzmann equation. It is shown that the viscosity and the diffusion coefficients strongly depend on non-equilibrium ratio θ (θ ={{T}\\text{e}}/{{T}\\text{h}} ), through the plasma composition and the collision integrals. The electrical conductivity, which depends on the electron number density and ordinary diffusion coefficients, and the thermal conductivity have similar dependencies. The choice of definition of the Debye length is shown to affect the electrical conductivity significantly for θ > 1. By comparing with literature data, it is shown that the coupling between electrons and heavy species has a significant influence on the electrical conductivity, but not on the viscosity. Plasma properties are tabulated in the supplementary data.
A Hydrodynamic Theory for Spatially Inhomogeneous Semiconductor Lasers. 2; Numerical Results
NASA Technical Reports Server (NTRS)
Li, Jianzhong; Ning, C. Z.; Biegel, Bryan A. (Technical Monitor)
2001-01-01
We present numerical results of the diffusion coefficients (DCs) in the coupled diffusion model derived in the preceding paper for a semiconductor quantum well. These include self and mutual DCs in the general two-component case, as well as density- and temperature-related DCs under the single-component approximation. The results are analyzed from the viewpoint of free Fermi gas theory with many-body effects incorporated. We discuss in detail the dependence of these DCs on densities and temperatures in order to identify different roles played by the free carrier contributions including carrier statistics and carrier-LO phonon scattering, and many-body corrections including bandgap renormalization and electron-hole (e-h) scattering. In the general two-component case, it is found that the self- and mutual- diffusion coefficients are determined mainly by the free carrier contributions, but with significant many-body corrections near the critical density. Carrier-LO phonon scattering is dominant at low density, but e-h scattering becomes important in determining their density dependence above the critical electron density. In the single-component case, it is found that many-body effects suppress the density coefficients but enhance the temperature coefficients. The modification is of the order of 10% and reaches a maximum of over 20% for the density coefficients. Overall, temperature elevation enhances the diffusive capability or DCs of carriers linearly, and such an enhancement grows with density. Finally, the complete dataset of various DCs as functions of carrier densities and temperatures provides necessary ingredients for future applications of the model to various spatially inhomogeneous optoelectronic devices.
Pijls, B G; Sanders, I M J G; Kuijper, E J; Nelissen, R G H H
2017-05-01
Infection of implants is a major problem in elective and trauma surgery. Heating is an effective way to reduce the bacterial load in food preparation, and studies on hyperthermia treatment for cancer have shown that it is possible to heat metal objects with pulsed electromagnetic fields selectively (PEMF), also known as induction heating. We therefore set out to answer the following research question: is non-contact induction heating of metallic implants effective in reducing bacterial load in vitro ? Titanium alloy cylinders (Ti6Al4V) were exposed to PEMF from an induction heater with maximum 2000 watts at 27 kHz after being contaminated with five different types of micro-organisms: Staphylococcus epidermidis; Staphylococcus aureus; Pseudomonas aeruginosa ; spore-forming Bacillus cereus; and yeast Candida albicans . The cylinders were exposed to incremental target temperatures (35°C, 45°C, 50°C, 55°C, 60°C, 65°C, 70°C) for up to 3.5 minutes. There was an average linear heating rate of 0.39°C per second up to the target temperature, and thereafter the target temperature was maintained until the end of the experiment. At 60°C and higher (duration 3.5 minutes), there was a 6-log reduction or higher for every micro-organism tested. At 60°C, we found that the shortest duration of effective induction heating was 1.5 minutes. This resulted in a 5-log reduction or higher for every micro-organism tested. Non-contact induction heating of a titanium disk is effective in reducing bacterial load in vitro . These promising results can be further explored as a new treatment modality for infections of metal orthopaedic implants. Cite this article : B. G. Pijls, I. M. J. G. Sanders, E. J. Kuijper, R. G. H. H. Nelissen. Non-contact electromagnetic induction heating for eradicating bacteria and yeasts on biomaterials and possible relevance to orthopaedic implant infections: In vitro findings. Bone Joint Res 2017;6:323-330. DOI: 10.1302/2046-3758.65.BJR-2016-0308.R1. © 2017 Pijls et al.
Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale
NASA Astrophysics Data System (ADS)
Hu, Xuan; Yasaei, Poya; Jokisaari, Jacob; Öǧüt, Serdar; Salehi-Khojin, Amin; Klie, Robert F.
2018-02-01
Two-dimensional materials, including graphene, transition metal dichalcogenides and their heterostructures, exhibit great potential for a variety of applications, such as transistors, spintronics, and photovoltaics. While the miniaturization offers remarkable improvements in electrical performance, heat dissipation and thermal mismatch can be a problem in designing electronic devices based on two-dimensional materials. Quantifying the thermal expansion coefficient of 2D materials requires temperature measurements at nanometer scale. Here, we introduce a novel nanometer-scale thermometry approach to measure temperature and quantify the thermal expansion coefficients in 2D materials based on scanning transmission electron microscopy combined with electron energy-loss spectroscopy to determine the energy shift of the plasmon resonance peak of 2D materials as a function of sample temperature. By combining these measurements with first-principles modeling, the thermal expansion coefficients (TECs) of single-layer and freestanding graphene and bulk, as well as monolayer MoS2 , MoSe2 , WS2 , or WSe2 , are directly determined and mapped.
NASA Astrophysics Data System (ADS)
Dashevskaya, E. I.; Litvin, I.; Nikitin, E. E.; Troe, J.
2016-12-01
Rate coefficients for capture of H2(j = 0,1) by H2+ are calculated in perturbed rotor approximation, i.e., at collision energies considerably lower than Bhc (where B denotes the rotational constant of H2). The results are compared with the results from an axially nonadiabatic channel (ANC) approach, the latter providing a very good approximation from the low-temperature Bethe-Wigner to the high temperature Langevin limit. The classical ANC approximation performs satisfactorily at temperatures above 0.1 K. At 0.1 K, the rate coefficient for j =1 is about 25% higher than that for j = 0 while the latter is close to the Langevin rate coefficient. The Bethe-Wigner limit of the rate coefficient for j = 1 is about twice that for j = 0. The analysis of the relocking of the intrinsic angular momentum of H2 during the course of the collision illustrates the significance of relocking in capture dynamics in general.
Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale.
Hu, Xuan; Yasaei, Poya; Jokisaari, Jacob; Öğüt, Serdar; Salehi-Khojin, Amin; Klie, Robert F
2018-02-02
Two-dimensional materials, including graphene, transition metal dichalcogenides and their heterostructures, exhibit great potential for a variety of applications, such as transistors, spintronics, and photovoltaics. While the miniaturization offers remarkable improvements in electrical performance, heat dissipation and thermal mismatch can be a problem in designing electronic devices based on two-dimensional materials. Quantifying the thermal expansion coefficient of 2D materials requires temperature measurements at nanometer scale. Here, we introduce a novel nanometer-scale thermometry approach to measure temperature and quantify the thermal expansion coefficients in 2D materials based on scanning transmission electron microscopy combined with electron energy-loss spectroscopy to determine the energy shift of the plasmon resonance peak of 2D materials as a function of sample temperature. By combining these measurements with first-principles modeling, the thermal expansion coefficients (TECs) of single-layer and freestanding graphene and bulk, as well as monolayer MoS_{2}, MoSe_{2}, WS_{2}, or WSe_{2}, are directly determined and mapped.
Laboratory Studies of Chemical and Photochemical Processes Relevant to Stratospheric Ozone
NASA Technical Reports Server (NTRS)
Villalta, P. W.; Zahniser, M. S.; Nelson, D. D.; Kolb, C. E.
1998-01-01
This is the final report for this project. Its purpose is to reduce the uncertainty in rate coefficients for key gas-phase kinetic processes which impact our understanding of stratospheric ozone. The main emphasis of this work is on measuring the rate coefficients for the reactions of HO2 + O3, and HO2 + NO2 in the temperature range (200-240 K) relevant to the lower stratosphere. In order to accomplish this, a high pressure turbulent flow tube reactor was built and its flow characteristics were quantified. The instrument was coupled with tunable diode laser spectroscopy for HO2 detection. Room temperature measurements of the HO2 + NO2 rate coefficients over the pressure range of 50-300 torr agree well with previous measurements. Preliminary measurements of the HO2 + O, rate coefficients at 50 - 300 Torr over the temperature range of 208-294 K agree with the NASA evaluation from 294-225 K but deviate significantly (50 % higher) at approximately 210 K.
Determination of the Accomodation Coefficient Using Vapor/Gas Bubble Dynamics in an Acoustic Field
NASA Technical Reports Server (NTRS)
Gumerov, Nail A.
1999-01-01
Non-equilibrium liquid/vapor phase transformations can occur in superheated or subcooled liquids in fast processes such as in evaporation in a vacuum, in processing of molten metals, and in vapor explosions. The rate at which such a phase transformation occurs, Xi, can be described by the Hertz-Knudsen-Langmuir formula. More than one century of the history of the accommodation coefficient measurements shows many problems with its determination. This coefficient depends on the temperature, is sensitive to the conditions at the interface, and is influenced by small amounts of impurities. Even recent measurements of the accommodation coefficient for water (Hagen et al, 1989) showed a huge variation in Beta from 1 for 1 micron droplets to 0.006 for 15 micron droplets. Moreover, existing measurement techniques for the accommodation coefficient are complex and expensive. Thus development of a relatively inexpensive and reliable technique for measurement of the accommodation coefficient for a wide range of substances and temperatures is of great practical importance.
Heat Transfer of Nanofluid in a Double Pipe Heat Exchanger.
Aghayari, Reza; Maddah, Heydar; Zarei, Malihe; Dehghani, Mehdi; Kaskari Mahalle, Sahar Ghanbari
2014-01-01
This paper investigates the enhancement of heat transfer coefficient and Nusselt number of a nanofluid containing nanoparticles (γ-AL2O3) with a particle size of 20 nm and volume fraction of 0.1%-0.3% (V/V). Effects of temperature and concentration of nanoparticles on Nusselt number changes and heat transfer coefficient in a double pipe heat exchanger with counter turbulent flow are investigated. Comparison of experimental results with valid theoretical data based on semiempirical equations shows an acceptable agreement. Experimental results show a considerable increase in heat transfer coefficient and Nusselt number up to 19%-24%, respectively. Also, it has been observed that the heat transfer coefficient increases with the operating temperature and concentration of nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardiner, D; Mallory, R; Todesco, M
This report describes an experimental investigation of the potential for an enhanced ignition system to lower the cold-start emissions of a light-duty vehicle engine using fuel ethanol (commonly referred to as E85). Plasma jet ignition and conventional inductive ignition were compared for a General Motors 4-cylinder, alcohol-compatible engine. Emission and combustion stability measurements were made over a range of air/fuel ratios and spark timing settings using a steady-state, cold-idle experimental technique in which the engine coolant was maintained at 25 C to simulate cold-running conditions. These tests were aimed at identifying the degree to which calibration strategies such as mixturemore » enleanment and retarded spark timing could lower engine-out hydrocarbon emissions and raise exhaust temperatures, as well as determining how such calibration changes would affect the combustion stability of the engine (as quantified by the coefficient of variation, or COV, of indicated mean effective pressure calculated from successive cylinder pressure measurements). 44 refs., 39 figs.« less
NASA Technical Reports Server (NTRS)
Quinn, R. D.; Gong, L.
1978-01-01
Skin temperatures, shearing forces, surface static pressures, and boundary layer pitot pressures and total temperatures were measured on a hollow cylinder 3.04 meters long and 0.437 meter in diameter mounted beneath the fuselage of the YF-12A airplane. The data were obtained at a nominal free stream Mach number of 3.0 and at wall-to-recovery temperature ratios of 0.66 to 0.91. The free stream Reynolds number had a minimal value of 4.2 million per meter. Heat transfer coefficients and skin friction coefficients were derived from skin temperature time histories and shear force measurements, respectively. Boundary layer velocity profiles were derived from pitot pressure measurements, and a Reynolds analogy factor of 1.11 was obtained from the measured heat transfer and skin friction data. The skin friction coefficients predicted by the theory of van Driest were in excellent agreement with the measurements. Theoretical heat transfer coefficients, in the form of Stanton numbers calculated by using a modified Reynolds analogy between skin friction and heat transfer, were compared with measured values. The measured velocity profiles were compared to Coles' incompressible law-of-the-wall profile.
Evaporation heat transfer of carbon dioxide at low temperature inside a horizontal smooth tube
NASA Astrophysics Data System (ADS)
Yoon, Jung-In; Son, Chang-Hyo; Jung, Suk-Ho; Jeon, Min-Ju; Yang, Dong-Il
2017-05-01
In this paper, the evaporation heat transfer coefficient of carbon dioxide at low temperature of -30 to -20 °C in a horizontal smooth tube was investigated experimentally. The test devices consist of mass flowmeter, pre-heater, magnetic gear pump, test section (evaporator), condenser and liquid receiver. Test section is made of cooper tube. Inner and outer diameter of the test section is 8 and 9.52 mm, respectively. The experiment is conducted at mass fluxes from 100 to 300 kg/m2 s, saturation temperature from -30 to -20 °C. The main results are summarized as follows: In case that the mass flux of carbon dioxide is 100 kg/m2 s, the evaporation heat transfer coefficient is almost constant regardless of vapor quality. In case of 200 and 300 kg/m2 s, the evaporation heat transfer coefficient increases steadily with increasing vapor quality. For the same mass flux, the evaporation heat transfer coefficient increases as the evaporation temperature of the refrigerant decreases. In comparison of heat transfer correlations with the experimental result, the evaporation heat transfer correlations do not predict them exactly. Therefore, more accurate heat transfer correlation than the previous one is required.
Temperature-Dependent Rate Coefficients for the Reaction of CH2OO with Hydrogen Sulfide.
Smith, Mica C; Chao, Wen; Kumar, Manoj; Francisco, Joseph S; Takahashi, Kaito; Lin, Jim Jr-Min
2017-02-09
The reaction of the simplest Criegee intermediate CH 2 OO with hydrogen sulfide was measured with transient UV absorption spectroscopy in a temperature-controlled flow reactor, and bimolecular rate coefficients were obtained from 278 to 318 K and from 100 to 500 Torr. The average rate coefficient at 298 K and 100 Torr was (1.7 ± 0.2) × 10 -13 cm 3 s -1 . The reaction was found to be independent of pressure and exhibited a weak negative temperature dependence. Ab initio quantum chemistry calculations of the temperature-dependent reaction rate coefficient at the QCISD(T)/CBS level are in reasonable agreement with the experiment. The reaction of CH 2 OO with H 2 S is 2-3 orders of magnitude faster than the reaction with H 2 O monomer. Though rates of CH 2 OO scavenging by water vapor under atmospheric conditions are primarily controlled by the reaction with water dimer, the H 2 S loss pathway will be dominated by the reaction with monomer. The agreement between experiment and theory for the CH 2 OO + H 2 S reaction lends credence to theoretical descriptions of other Criegee intermediate reactions that cannot easily be probed experimentally.
NASA Astrophysics Data System (ADS)
Li, Dong; Wen, Yinghong; Li, Weili; Fang, Jin; Cao, Junci; Zhang, Xiaochen; Lv, Gang
2017-03-01
In the paper, the numerical method calculating asymmetric primary slot leakage inductances of Single-sided High-Temperature Superconducting (HTS) Linear Induction Motor (HTS LIM) is presented. The mathematical and geometric models of three-dimensional nonlinear transient electromagnetic field are established and the boundary conditions are also given. The established model is solved by time-stepping Finite Element Method (FEM). Then, the three-phase asymmetric primary slot leakage inductances under different operation conditions are calculated by using the obtained electromagnetic field distribution. The influences of the special effects such as longitudinal end effects, transversal edge effects, etc. on the primary slot leakage inductance are investigated. The presented numerical method is validated by experiments carried out on a 3.5 kW prototype with copper wires which has the same structures with the HTS LIM.
NASA Astrophysics Data System (ADS)
Sechin, A.; Kyrmakova, O.; Osipenko, S.
2016-01-01
In this article the research directed on development of a technique of definition of time of induction of the self-ignition of substances and materials which is an indicator of the beginning of development of an emergency is conducted. The experiment consisting in supervision over process of self-ignition of coal and oil deposits was the basis for research. On the basis of experimental data the curve expressing analytic - expected dependence of size of temperature of ignition on induction time was constructed. Proceeding from graphical representation of process, functional dependence of time of induction on a temperature indicator was received: y = 16920 • x0 537. By means of known indicators of such substances as bitumen oil oxidized (the combustible solid substance received by oxidation of residual product of oil refining) and tar oil (the combustible solid substance which is residual product of oil refining) and the received algorithm, verification of reliability of the received dependence and a technique of definition of time of induction of spontaneous ignition of deposits of oil in general was carried out. The practical importance of the conducted research is that having data on time of induction of process of self-ignition, by means of preventive measures becomes possible to avoid and prevent accidents in oil and oil processing branches, at the same time loss of property and loss of human life.
NDSD-1000: High-resolution, high-temperature Nitrogen Dioxide Spectroscopic Databank
NASA Astrophysics Data System (ADS)
Lukashevskaya, A. A.; Lavrentieva, N. N.; Dudaryonok, A. C.; Perevalov, V. I.
2016-11-01
We present a high-resolution, high-temperature version of the Nitrogen Dioxide Spectroscopic Databank called NDSD-1000. The databank contains the line parameters (positions, intensities, self- and air-broadening coefficients, exponents of the temperature dependence of self- and air-broadening coefficients) of the principal isotopologue of NO2. The reference temperature for line intensity is 296 K and the intensity cutoff is 10-25 cm-1/molecule cm-2 at 1000 K. The broadening parameters are presented for two reference temperatures 296 K and 1000 K. The databank has 1,046,808 entries, covers five spectral regions in the 466-4776 cm-1 spectral range and is designed for temperatures up to 1000 K. The databank is based on the global modeling of the line positions and intensities performed within the framework of the method of effective operators. The parameters of the effective Hamiltonian and the effective dipole moment operator have been fitted to the observed values of the line positions and intensities collected from the literature. The broadening coefficients as well as the temperature exponents are calculated using the semi-empirical approach. The databank is useful for studying high-temperature radiative properties of NO2. NDSD-1000 is freely accessible via the internet site of V.E. Zuev Institute of Atmospheric Optics SB RAS ftp://ftp.iao.ru/pub/NDSD/.
High temperature electrical resistivity and Seebeck coefficient of Ge2Sb2Te5 thin films
NASA Astrophysics Data System (ADS)
Adnane, L.; Dirisaglik, F.; Cywar, A.; Cil, K.; Zhu, Y.; Lam, C.; Anwar, A. F. M.; Gokirmak, A.; Silva, H.
2017-09-01
High-temperature characterization of the thermoelectric properties of chalcogenide Ge2Sb2Te5 (GST) is critical for phase change memory devices, which utilize self-heating to quickly switch between amorphous and crystalline states and experience significant thermoelectric effects. In this work, the electrical resistivity and Seebeck coefficient are measured simultaneously as a function of temperature, from room temperature to 600 °C, on 50 nm and 200 nm GST thin films deposited on silicon dioxide. Multiple heating and cooling cycles with increasingly maximum temperature allow temperature-dependent characterization of the material at each crystalline state; this is in contrast to continuous measurements which return the combined effects of the temperature dependence and changes in the material. The results show p-type conduction (S > 0), linear S(T), and a positive Thomson coefficient (dS/dT) up to melting temperature. The results also reveal an interesting linearity between dS/dT and the conduction activation energy for mixed amorphous-fcc GST, which can be used to estimate one parameter from the other. A percolation model, together with effective medium theory, is adopted to correlate the conductivity of the material with average grain sizes obtained from XRD measurements. XRD diffraction measurements show plane-dependent thermal expansion for the cubic and hexagonal phases.
NASA Astrophysics Data System (ADS)
Park, Jungmin; Choi, Yong-Sang
2018-04-01
Observationally constrained values of the global radiative response coefficient are pivotal to assess the reliability of modeled climate feedbacks. A widely used approach is to measure transient global radiative imbalance related to surface temperature changes. However, in this approach, a potential error in the estimate of radiative response coefficients may arise from surface inhomogeneity in the climate system. We examined this issue theoretically using a simple two-zone energy balance model. Here, we dealt with the potential error by subtracting the prescribed radiative response coefficient from those calculated within the two-zone framework. Each zone was characterized by the different magnitude of the radiative response coefficient and the surface heat capacity, and the dynamical heat transport in the atmosphere between the zones was parameterized as a linear function of the temperature difference between the zones. Then, the model system was forced by randomly generated monthly varying forcing mimicking time-varying forcing like an observation. The repeated simulations showed that inhomogeneous surface heat capacity causes considerable miscalculation (down to -1.4 W m-2 K-1 equivalent to 31.3% of the prescribed value) in the global radiative response coefficient. Also, the dynamical heat transport reduced this miscalculation driven by inhomogeneity of surface heat capacity. Therefore, the estimation of radiative response coefficients using the surface temperature-radiation relation is appropriate for homogeneous surface areas least affected by the exterior.
An, Chunju; Fei, Xiaodong; Chen, Wenfeng; Zhao, Zhangwu
2012-04-01
The wheat aphid Schizaphis graminum (Rondani) displays wing dimorphism with both winged and wingless adult morphs. The winged morph is an adaptive microevolutionary response to undesirable environmental conditions, including undesirable population density, photoperiod, temperature, and host plant. Here we studied the integrative effects of population density, photoperiod, temperature, and host plant on the induction of alate aphids in S. graminum. The present results show that these four factors all play roles in inducing alate aphids in S. graminum but population density is the most important under almost all circumstances. In importance, population density is followed by photoperiod, host plant, and temperature, in that order. These results indicate that ambient environmental factors are highly important to stimulation of alate aphids in S. graminum, especially when population density reaches 64 individuals per leaf. © 2012 Wiley Periodicals, Inc.
A 2D mechanical-magneto-thermal model for direction-dependent magnetoelectric effect in laminates
NASA Astrophysics Data System (ADS)
Zhang, Shunzu; Yao, Hong; Gao, Yuanwen
2017-04-01
A two dimensional (2D) mechanical-magneto-thermal model of direction-dependent magnetoelectric (ME) effect in Terfenol-D/PZT/Terfenol-D laminated composites is established. The expressions of ME coefficient at low and resonance frequencies are derived by the average field method, respectively. The prediction of theoretical model presents a good agreement with the experimental data. The combined effect of orientation-dependent stress and magnetic fields, as well as operating temperature on ME coefficient is discussed. It is shown that ME effect presents a significantly nonlinear change with the increasing pre-stress under different loading angles. There exists an optimal angle and value of pre-stress corresponding to the best ME effect, improving the angle of pre-stress can get more prominent ME coupling than in x axis state. Note that an optimal angle of magnetic field gradually increases with the rise of pre-stress, which can further lead to the enhancement of ME coefficient. Meanwhile, reducing the operating temperature can enhance ME coefficient. Furthermore, resonance frequency, affected by pre-stress, magnetic field and temperature via " ΔE effect", can enhance ME coefficient about 100 times than that at low frequency.
NASA Astrophysics Data System (ADS)
Pavlenko, D. V.; Tkach, D. V.; Danilova-Tret'yak, S. M.; Evseeva, L. E.
2017-05-01
The results of measurements of the thermal diffusivity, thermal conductivity, and heat capacity of VT1-0-grade titanium samples in as-cast, deformed submicrocrystalline, and sintered states are presented. It has been established that the decrease in the thermal conductivity and thermal diffusivity of titanium in the submicrocrystalline and sintered states is associated with the increase in the quantity of defects in the material volume, whereas the increase in the temperature of polymorphic transformation of titanium is connected with the dissolution of oxygen in its lattice. The results of investigation of the coefficient of thermal linear expansion of titanium in the macrocrystalline and submicrocrystalline states are presented. The decrease in the coefficient of thermal linear expansion of titanium of submicrocrystalline structure has been established, which may point to the decrease in its melting temperature. It is shown that annealing of samples in a submicrocrystalline state leads to the growth of the temperature coefficient of linear expansion, bringing its value closer to the temperature coefficient of linear expansion of titanium in the equilibrium state. Studies by the method of back reflection photography in a KROS chamber made it possible to estimate the temperature of the start of VT1-0-grade titanium recrystallization after intense plastic deformation by the twist extrusion method. The decrease in the temperature of the start of recrystallization for titanium in the deformed submicrocrystalline state has been established. Based on the trends revealed, optimum regimes of thermal treatment of VT1-0-grade titanium for removing internal stresses and preserving the submicrocrystalline structure have been established.
Measuring the human body's microclimate using a thermal manikin.
Voelker, C; Maempel, S; Kornadt, O
2014-12-01
The human body is surrounded by a microclimate, which results from its convective release of heat. In this study, the air temperature and flow velocity of this microclimate were measured in a climate chamber at various room temperatures, using a thermal manikin simulating the heat release of the human being. Different techniques (Particle Streak Tracking, thermography, anemometry, and thermistors) were used for measurement and visualization. The manikin surface temperature was adjusted to the particular indoor climate based on simulations with a thermoregulation model (UCBerkeley Thermal Comfort Model). We found that generally, the microclimate is thinner at the lower part of the torso, but expands going up. At the head, there is a relatively thick thermal layer, which results in an ascending plume above the head. However, the microclimate shape strongly depends not only on the body segment, but also on boundary conditions: The higher the temperature difference between the surface temperature of the manikin and the air temperature, the faster the airflow in the microclimate. Finally, convective heat transfer coefficients strongly increase with falling room temperature, while radiative heat transfer coefficients decrease. The type of body segment strongly influences the convective heat transfer coefficient, while only minimally influencing the radiative heat transfer coefficient. The findings of this study generate a better understanding of the human body’s microclimate, which is important in fields such as thermal comfort, HVAC, or indoor air quality. Additionally, the measurements can be used by CFD users for the validation of their simulations. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Quantification and clinical application of carboplatin in plasma ultrafiltrate.
Downing, Kim; Jensen, Berit Packert; Grant, Sue; Strother, Matthew; George, Peter
2017-05-10
Carboplatin is a chemotherapy drug used in a variety of cancers with the primary toxicity being exposure-dependant myelosuppression. We present the development and validation of a simple, robust inductively coupled plasma mass spectrometry (ICP-MS) method to measure carboplatin in plasma ultrafiltrate. Plasma ultrafiltrates samples were prepared using Amicon Ultra 30,000da cut-off filters and then diluted with ammonia EDTA before ICP-MS analysis. The assay was validated in the range 0.19-47.5mg/L carboplatin in ultrafiltrate. The assay was linear (r 2 >0.9999), accurate (<6% bias, 12% bias at LLOQ) and precise (intra- and inter-day precision of <3% coefficient of variation). No matrix effects were observed between plasma ultrafiltrate and aqueous platinum calibrators and recovery was complete. The assay was applied to 10 clinical samples from patients receiving carboplatin. Incurred sample reanalysis showed reproducible values over 3 analysis days (<6% CV). As plasma stability prior to ultrafiltration has been a major concern in previous clinical studies this was studied extensively at room temperature (22°C) over 24h. Carboplatin was found to be stable in both spiked plasma (n=3) and real patient samples (n=10) at room temperature for up to 8h before ultrafiltration. This makes routine measurement of carboplatin concentrations in clinical settings feasible. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gabitov, R. I.; Gaetani, G. A.; Watson, E. B.; Cohen, A. L.; Ehrlich, H. L.
2008-08-01
Results are reported from an experimental study in which the partitioning of U and Mg between aragonite and an aqueous solution were determined as a function of crystal growth rate. Crystals, identified as aragonite by X-ray diffractometry and micro-Raman spectroscopy, were grown by diffusion of CO 2 from an ammonium carbonate source into a calcium-bearing solution at temperatures of 22 and 53 °C. Hemispherical bundles (spherulites) of aragonite crystals were produced, the growth rates of which decreased monotonically from the spherulite interiors to the edges and thus provide the opportunity to examine the influence of growth rate on crystal composition. Element concentration ratios were measured using electron microprobe (EMP) and fluid composition was determined by inductively coupled plasma-mass spectrometry (ICP-MS) and atomic absorption (AA). Growth rates were determined directly by addition of a Dy spike to the fluid during the experiment that was subsequently located in an experimentally precipitated spherulite using secondary ion mass spectrometry (SIMS). At 22 °C both U/Ca and Mg/Ca partition coefficients exhibited a strong growth rate dependence when crystal growth rates were low, and became independent of growth rate when crystal growth rates were high. The U/Ca ratios in aragonite increase between 22 and 53 °C; in contrast Mg/Ca ratios show inverse dependence on temperature.
Electron-temperature dependence of dissociative recombination of electrons with N2/+/.N2 dimer ions
NASA Technical Reports Server (NTRS)
Whitaker, M.; Biondi, M. A.; Johnsen, R.
1981-01-01
The variation with electron temperature of the dissociative recombination of electrons with N2(+).N2 dimer ions is investigated in light of the importance of such ions in the lower ionosphere and in laser plasmas. Dissociative recombination coefficients were determined by means of a microwave afterglow mass spectrometer technique for electron temperatures from 300-5600 K and an ion and neutral temperature of 300 K. The recombination coefficient is found to be proportional to the -0.41 power of the electron temperature in this range, similar to that observed for the CO(+).CO dimer ion and consistent with the expected energy dependence for a fast dissociative process.
The ignition delay times of hydrogen/silan/air mixtures at low temperatures
NASA Astrophysics Data System (ADS)
Tropin, D. A.; Bochenkov, E. S.; Fedorov, A. V.
2018-03-01
In the paper the ignition delay times of hydrogen-silane-air mixtures at low pressures from 0.4 atm to 1 atm and mixture temperatures from 300 K to 900 K using the detailed kinetic mechanisms were calculated. It was shown that dependencies of ignition delay time on temperature are non-monotonic. In these dependences a region of "negative temperature coefficient" is presented. The effect of the mixture pressure and the silane concentration in the mixture on the length of this region was revealed. It was shown that the increasing of the silane concentration in the mixture, as well as the increasing the mixture pressure, leads to increasing of the "negative temperature coefficient" region length.
Kim, YongSig; Park, Sunchung; Gilmour, Sarah J; Thomashow, Michael F
2013-08-01
Previous studies in Arabidopsis thaliana established roles for CALMODULIN BINDING TRANSCRIPTION ACTIVATOR 3 (CAMTA3) in the rapid cold induction of CRT/DRE BINDING FACTOR (CBF) genes CBF1 and CBF2, and the repression of salicylic acid (SA) biosynthesis at warm temperature. Here we show that CAMTA1 and CAMTA2 work in concert with CAMTA3 at low temperature (4°C) to induce peak transcript levels of CBF1, CBF2 and CBF3 at 2 h, contribute to up-regulation of approximately 15% of the genes induced at 24 h, most of which fall outside the CBF pathway, and increase plant freezing tolerance. In addition, CAMTA1, CAMTA2 and CAMTA3 function together to inhibit SA biosynthesis at warm temperature (22°C). However, SA levels increase in Arabidopsis plants that are exposed to low temperature for more than 1 week. We show that this chilling-induced SA biosynthesis proceeds through the isochorismate synthase (ICS) pathway, with cold induction of ICS1 (which encodes ICS), and two genes encoding transcription factors that positively regulate ICS1 - CBP60g and SARD1 -, paralleling SA accumulation. The three CAMTA proteins effectively repress the accumulation of ICS1, CBP60g and SARD1 transcripts at warm temperature but not at low temperature. This impairment of CAMTA function may involve post-transcriptional regulation, as CAMTA transcript levels did not decrease at low temperature. Salicylic acid biosynthesis at low temperature did not contribute to freezing tolerance, but had a major role in configuring the transcriptome, including the induction of 'defense response' genes, suggesting the possible existence of a pre-emptive defense strategy programmed by prolonged chilling temperatures. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Neutronic safety parameters and transient analyses for Poland's MARIA research reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bretscher, M. M.; Hanan, N. A.; Matos, J. E.
1999-09-27
Reactor kinetic parameters, reactivity feedback coefficients, and control rod reactivity worths have been calculated for the MARIA Research Reactor (Swierk, Poland) for M6-type fuel assemblies with {sup 235}U enrichments of 80% and 19.7%. Kinetic parameters were evaluated for family-dependent effective delayed neutron fractions, decay constants, and prompt neutron lifetimes and neutron generation times. Reactivity feedback coefficients were determined for fuel Doppler coefficients, coolant (H{sub 2}O) void and temperature coefficients, and for in-core and ex-core beryllium temperature coefficients. Total and differential control rod worths and safety rod worths were calculated for each fuel type. These parameters were used to calculate genericmore » transients for fast and slow reactivity insertions with both HEU and LEU fuels. The analyses show that the HEU and LEU cores have very similar responses to these transients.« less
System to Measure Thermal Conductivity and Seebeck Coefficient for Thermoelectrics
NASA Technical Reports Server (NTRS)
Kim, Hyun-Jung; Skuza, Jonathan R.; Park, Yeonjoon; King, Glen C.; Choi, Sang H.; Nagavalli, Anita
2012-01-01
The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at elevated temperatures. This has led to the implementation of nonstandardized practices that have further complicated the confirmation of reported high ZT materials. The major objective of the procedure described is for the simultaneous measurement of the Seebeck coefficient and thermal diffusivity within a given temperature range. These thermoelectric measurements must be precise, accurate, and reproducible to ensure meaningful interlaboratory comparison of data. The custom-built thermal characterization system described in this NASA-TM is specifically designed to measure the inplane thermal diffusivity, and the Seebeck coefficient for materials in the ranging from 73 K through 373 K.
Myocardial correlates of helium-cold induction and maintenance of hypothermia.
NASA Technical Reports Server (NTRS)
Anderson, G. L.; Prewitt, R., Jr.; Musacchia, X. J.
1971-01-01
Hypothermia was induced in the golden hamster Mesocricetus auratus, using the helium-cold method. The first group of hamsters was sacrificed immediately after induction to rectal temperature 7 C, a second group was sacrificed after being maintained at a body temperature of 7 C for 18-24 hr, and a third group consisted of unexposed controls. The hearts were excised and the ventricles analyzed for hypoxic damage, glycogen, and catecholamines. In the short-term hypothermic animals, resting tension was increased while peak isometric tension, generated tension after 10 min of anoxic exposure, glycogen, and catecholamines were all reduced. All of the functional parameters recovered in the long-term hypothermic group, while glycogen and catecholamines showed a trend toward recovery. It is concluded that myocardial hypoxia develops during induction into hypothermia when using the helium-cold method. This effect is reversible and hypoxic damage does not increase as the hypothermic exposure is prolonged.
Rabadán, Adrián; Álvarez-Ortí, Manuel; Pardo, José Emilio; Alvarruiz, Andrés
2018-09-01
Chemical composition and stability parameters of three cold-pressed nut oils (almond, walnut and pistachio) were monitored for up to 16 months of storage at 5 °C, 10 °C, 20 °C and room temperature. Freshly pressed pistachio oil had lower peroxide value than almond oil and higher induction period than almond and walnut oils, indicating a higher stability. The peroxide values increased faster at room temperature than at lower temperatures during the storage time, and the highest increase was for pistachio oil stored at room temperature exposed to daylight. The induction period decreased for all three nut oils during the storage time, regardless of the storage conditions. Pistachio oil remained the most stable oil at the end of the storage time, followed by almond oil. The percentage of polyunsaturated fatty acids decreased slightly throughout the storage. Copyright © 2018 Elsevier Ltd. All rights reserved.
Holtmann, Gudrun; Brigulla, Matthias; Steil, Leif; Schütz, Alexandra; Barnekow, Karsta; Völker, Uwe; Bremer, Erhard
2004-01-01
General stress proteins protect Bacillus subtilis cells against a variety of environmental insults. This adaptive response is particularly important for nongrowing cells, to which it confers a multiple, nonspecific, and preemptive stress resistance. Induction of the general stress response relies on the alternative transcription factor, SigB, whose activity is controlled by a partner switching mechanism that also involves the anti-sigma factor, RsbW, and the antagonist protein, RsbV. Recently, the SigB regulon has been shown to be continuously induced and functionally important in cells actively growing at low temperature. With the exception of this chill induction, all SigB-activating stimuli identified so far trigger a transient expression of the SigB regulon that depends on RsbV. Through a proteome analysis and Northern blot and gene fusion experiments, we now show that the SigB regulon is continuously induced in cells growing actively at 51°C, close to the upper growth limit of B. subtilis. This heat induction of SigB-dependent genes requires the environmental stress-responsive phosphatase RsbU, but not the metabolic stress-responsive phosphatase RsbP. RsbU dependence of SigB activation by heat is overcome in mutants that lack RsbV. In addition, loss of RsbV alone or in combination with RsbU triggers a hyperactivation of the general stress regulon exclusively at high temperatures detrimental for cell growth. These new facets of heat induction of the SigB regulon indicate that the current view of the complex genetic and biochemical regulation of SigB activity is still incomplete and that SigB perceives signals independent of the RsbV-mediated signal transduction pathways under heat stress conditions. PMID:15342585
Electron and thermal transport via variable range hopping in MoSe2 single crystals
NASA Astrophysics Data System (ADS)
Suri, Dhavala; Patel, R. S.
2017-06-01
Bulk single crystal molybdenum diselenide has been studied for its electronic and thermal transport properties. We perform resistivity measurements with current in-plane (CIP) and current perpendicular to plane (CPP) as a function of temperature. The CIP measurements exhibit metal to semiconductor transition at ≃31 K. In the semiconducting phase (T > 31 K), the transport is best explained by the variable range hopping (VRH) model. Large magnitude of resistivity in the CPP mode indicates strong structural anisotropy. The Seebeck coefficient as a function of temperature measured in the range of 90-300 K also agrees well with the VRH model. The room temperature Seebeck coefficient is found to be 139 μV/K. VRH fittings of the resistivity and the Seebeck coefficient data indicate high degree of localization.
High-throughput screening for combinatorial thin-film library of thermoelectric materials.
Watanabe, Masaki; Kita, Takuji; Fukumura, Tomoteru; Ohtomo, Akira; Ueno, Kazunori; Kawasaki, Masashi
2008-01-01
A high-throughput method has been developed to evaluate the Seebeck coefficient and electrical resistivity of combinatorial thin-film libraries of thermoelectric materials from room temperature to 673 K. Thin-film samples several millimeters in size were deposited on an integrated Al2O3 substrate with embedded lead wires and local heaters for measurement of the thermopower under a controlled temperature gradient. An infrared camera was used for real-time observation of the temperature difference Delta T between two electrical contacts on the sample to obtain the Seebeck coefficient. The Seebeck coefficient and electrical resistivity of constantan thin films were shown to be almost identical to standard data for bulk constantan. High-throughput screening was demonstrated for a thermoelectric Mg-Si-Ge combinatorial library.
Heat transfer coefficient: Medivance Arctic Sun Temperature Management System vs. water immersion.
English, M J; Hemmerling, T M
2008-07-01
To improve heat transfer, the Medivance Arctic Sun Temperature Management System (Medivance, Inc., Louisville, CO, USA) features an adhesive, water-conditioned, highly conductive hydrogel pad for intimate skin contact. This study measured and compared the heat transfer coefficient (h), i.e. heat transfer efficiency, of this pad (hPAD), in a heated model and in nine volunteers' thighs; and of 10 degrees C water (hWATER) in 33 head-out immersions by 11 volunteers. Volunteer studies had ethical approval and written informed consent. Calibrated heat flux transducers measured heat flux (W m-2). Temperature gradient (DeltaT) was measured between skin and pad or water temperatures. Temperature gradient was changed through the pad's water temperature controller or by skin cooling on immersion. The heat transfer coefficient is the slope of W m-2/DeltaT: its unit is W m-2 degrees C-1. Average with (95% CI) was: model, hPAD = 110.4 (107.8-113.1), R2 = 0.99, n = 45; volunteers, hPAD = 109.8 (95.5-124.1), R2 = 0.83, n = 51; and water immersion, hWATER = 107.1 (98.1-116), R2 = 0.86, n = 94. The heat transfer coefficient for the pad was the same in the model and volunteers, and equivalent to hWATER. Therefore, for the same DeltaT and heat transfer area, the Arctic Sun's heat transfer rate would equal water immersion. This has important implications for body cooling/rewarming rates.
Viscosity induced non-uniform flow in laminar flow heat exchangers
NASA Astrophysics Data System (ADS)
Putnam, G. R.; Rohsenow, W. M.
1985-05-01
Laminar flow heat exchangers which cool oil in noninterconnected parallel passages can experience nonuniform flows and a reduction in the effective heat exchanger coefficient in a range of Reynolds number which varies with tube length and diameter, tube wall temperature and fluid inlet temperature. The method of predicting the reduction in effective heat transfer coefficient and the range of Reynolds number over which these instabilities exist is presented for a particular oil, Mobil aviation oil 120. Included, also, is the prediction of the effect of radial viscosity variation on the constant property magnitudes of friction and heat transfer coefficient.
Absorption coefficients for water vapor at 193 nm from 300 to 1073 K
NASA Technical Reports Server (NTRS)
Kessler, W. J.; Carleton, K. L.; Marinelli, W. J.
1993-01-01
Measurements of the water absorption coefficient at 193 nm from 300 to 1073 K are reported. The measurements were made using broadband VUV radiation and a monochromator-based detection system. The water vapor was generated by a saturator and metered into a flowing, 99 cm absorption cell via a water vapor mass flow meter. The 193 nm absorption coefficient measurements are compared to room temperature and high temperature shock tube measurements with good agreement. The absorption can be parameterized by a nu3 vibrational mode reaction coordinate and the thermal population of the nu3 mode.
Estimation of subsurface thermal structure using sea surface height and sea surface temperature
NASA Technical Reports Server (NTRS)
Kang, Yong Q. (Inventor); Jo, Young-Heon (Inventor); Yan, Xiao-Hai (Inventor)
2012-01-01
A method of determining a subsurface temperature in a body of water is disclosed. The method includes obtaining surface temperature anomaly data and surface height anomaly data of the body of water for a region of interest, and also obtaining subsurface temperature anomaly data for the region of interest at a plurality of depths. The method further includes regressing the obtained surface temperature anomaly data and surface height anomaly data for the region of interest with the obtained subsurface temperature anomaly data for the plurality of depths to generate regression coefficients, estimating a subsurface temperature at one or more other depths for the region of interest based on the generated regression coefficients and outputting the estimated subsurface temperature at the one or more other depths. Using the estimated subsurface temperature, signal propagation times and trajectories of marine life in the body of water are determined.
Global electromagnetic induction in the moon and planets. [poloidal eddy current transient response
NASA Technical Reports Server (NTRS)
Dyal, P.; Parkin, C. W.
1973-01-01
Experiments and analyses concerning electromagnetic induction in the moon and other extraterrestrial bodies are summarized. The theory of classical electromagnetic induction in a sphere is first considered, and this treatment is extended to the case of the moon, where poloidal eddy-current response has been found experimentally to dominate other induction modes. Analysis of lunar poloidal induction yields lunar internal electrical conductivity and temperature profiles. Two poloidal-induction analytical techniques are discussed: a transient-response method applied to time-series magnetometer data, and a harmonic-analysis method applied to data numerically Fourier-transformed to the frequency domain, with emphasis on the former technique. Attention is given to complicating effects of the solar wind interaction with both induced poloidal fields and remanent steady fields. The static magnetization field induction mode is described, from which are calculated bulk magnetic permeability profiles. Magnetic field measurements obtained from the moon and from fly-bys of Venus and Mars are studied to determine the feasibility of extending theoretical and experimental induction techniques to other bodies in the solar system.
Spatial and temporal stability of temperature in the first-level basins of China during 1951-2013
NASA Astrophysics Data System (ADS)
Cheng, Yuting; Li, Peng; Xu, Guoce; Li, Zhanbin; Cheng, Shengdong; Wang, Bin; Zhao, Binhua
2018-05-01
In recent years, global warming has attracted great attention around the world. Temperature change is not only involved in global climate change but also closely linked to economic development, the ecological environment, and agricultural production. In this study, based on temperature data recorded by 756 meteorological stations in China during 1951-2013, the spatial and temporal stability characteristics of annual temperature in China and its first-level basins were investigated using the rank correlation coefficient method, the relative difference method, rescaled range (R/S) analysis, and wavelet transforms. The results showed that during 1951-2013, the spatial variation of annual temperature belonged to moderate variability in the national level. Among the first-level basins, the largest variation coefficient was 114% in the Songhuajiang basin and the smallest variation coefficient was 10% in the Huaihe basin. During 1951-2013, the spatial distribution pattern of annual temperature presented extremely strong spatial and temporal stability characteristics in the national level. The variation range of Spearman's rank correlation coefficient was 0.97-0.99, and the spatial distribution pattern of annual temperature showed an increasing trend. In the national level, the Liaohe basin, the rivers in the southwestern region, the Haihe basin, the Yellow River basin, the Yangtze River basin, the Huaihe basin, the rivers in the southeastern region, and the Pearl River basin all had representative meteorological stations for annual temperature. In the Songhuajiang basin and the rivers in the northwestern region, there was no representative meteorological station. R/S analysis, the Mann-Kendall test, and the Morlet wavelet analysis of annual temperature showed that the best representative meteorological station could reflect the variation trend and the main periodic changes of annual temperature in the region. Therefore, strong temporal stability characteristics exist for annual temperature in China and its first-level basins. It was therefore feasible to estimate the annual average temperature by the annual temperature recorded by the representative meteorological station in the region. Moreover, it was of great significance to assess average temperature changes quickly and forecast future change tendencies in the region.
NASA Astrophysics Data System (ADS)
Gilev, S. D.; Prokopiev, V. S.
2017-07-01
A method of generation of electromagnetic energy and magnetic flux in a magnetic cumulation generator is proposed. The method is based on dynamic variation of the circuit coupling coefficient. This circuit is compared with other available circuits of magnetic energy generation with the help of magnetic cumulation (classical magnetic cumulation generator, generator with transformer coupling, and generator with a dynamic transformer). It is demonstrated that the proposed method allows obtaining high values of magnetic energy. The proposed circuit is found to be more effective than the known transformer circuit. Experiments on electromagnetic energy generation are performed, which demonstrate the efficiency of the proposed method.
Poole, Colin F
2004-05-28
Room temperature ionic liquids are novel solvents with favorable environmental and technical features. Synthetic routes to over 200 room temperature ionic liquids are known but for most ionic liquids physicochemical data are generally lacking or incomplete. Chromatographic and spectroscopic methods afford suitable tools for the study of solvation properties under conditions that approximate infinite dilution. Gas-liquid chromatography is suitable for the determination of gas-liquid partition coefficients and activity coefficients as well as thermodynamic constants derived from either of these parameters and their variation with temperature. The solvation parameter model can be used to define the contribution from individual intermolecular interactions to the gas-liquid partition coefficient. Application of chemometric procedures to a large database of system constants for ionic liquids indicates their unique solvent properties: low cohesion for ionic liquids with weakly associated ions compared with non-ionic liquids of similar polarity; greater hydrogen-bond basicity than typical polar non-ionic solvents; and a range of dipolarity/polarizability that encompasses the same range as occupied by the most polar non-ionic liquids. These properties can be crudely related to ion structures but further work is required to develop a comprehensive approach for the design of ionic liquids for specific applications. Data for liquid-liquid partition coefficients is scarce by comparison with gas-liquid partition coefficients. Preliminary studies indicate the possibility of using the solvation parameter model for interpretation of liquid-liquid partition coefficients determined by shake-flask procedures as well as the feasibility of using liquid-liquid chromatography for the convenient and rapid determination of liquid-liquid partition coefficients. Spectroscopic measurements of solvatochromic and fluorescent probe molecules in room temperature ionic liquids provide insights into solvent intermolecular interactions although interpretation of the different and generally uncorrelated "polarity" scales is sometimes ambiguous. All evidence points to the ionic liquids as a unique class of polar solvents suitable for technical development. In terms of designer solvents, however, further work is needed to fill the gaps in our knowledge of the relationship between ion structures and physicochemical properties.
Molecular Regulation of Temperature-Dependent Floral Induction in Tulipa gesneriana.
Leeggangers, Hendrika A C F; Nijveen, Harm; Bigas, Judit Nadal; Hilhorst, Henk W M; Immink, Richard G H
2017-03-01
The vegetative-to-reproductive phase change in tulip ( Tulipa gesneriana ) is promoted by increasing temperatures during spring. The warm winters of recent years interfere with this process and are calling for new adapted cultivars. A better understanding of the underlying molecular mechanisms would be of help, but unlike the model plant Arabidopsis ( Arabidopsis thaliana ), very little is known about floral induction in tulip. To shed light on the gene regulatory network controlling flowering in tulip, RNA sequencing was performed on meristem-enriched tissue collected under two contrasting temperature conditions, low and high. The start of reproductive development correlated with rounding of the shoot apical meristem and induction of TGSQA expression, a tulip gene with a high similarity to Arabidopsis APETALA1 Gene Ontology enrichment analysis of differentially expressed genes showed the overrepresentation of genes potentially involved in floral induction, bulb maturation, and dormancy establishment. Expression analysis revealed that TERMINAL FLOWER1 ( TgTFL1 ) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1-like1 ( TgSOC1-like1 ) might be repressors, whereas TgSOC1-like2 likely is an activator, of flowering. Subsequently, the flowering time-associated expression of eight potential flowering time genes was confirmed in three tulip cultivars grown in the field. Additionally, heterologous functional analyses in Arabidopsis resulted in flowering time phenotypes in line with TgTFL1 being a floral repressor and TgSOC1-like2 being a floral activator in tulip. Taken together, we have shown that long before morphological changes occur in the shoot apical meristem, the expression of floral repressors in tulip is suppressed by increased ambient temperatures, leading either directly or indirectly to the activation of potential flowering activators shortly before the commencement of the phase change. © 2017 American Society of Plant Biologists. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Gorder, Robert A., E-mail: rav@knights.ucf.edu
2014-11-15
In R. A. Van Gorder, “General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation,” Phys. Fluids 26, 065105 (2014) I discussed properties of generalized vortex filaments exhibiting purely rotational motion under the low-temperature Svistunov model of the local induction approximation. Such solutions are stationary in terms of translational motion. In the Comment [N. Hietala, “Comment on ‘General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation’ [Phys. Fluids 26, 065105 (2014)],” Phys. Fluids 26, 119101 (2014)], the author criticizes my paper for not including translational motion (although it wasmore » clearly stated that the filament motion was assumed rotational). As it turns out, if one is interested in studying the geometric structure of solutions (which was the point of my paper), one obtains the needed qualitative results on the structure of such solutions by studying the purely rotational case. Nevertheless, in this Response I shall discuss the vortex filaments that have both rotational and translational motions. I then briefly discuss why one might want to study such generalized rotating filament solutions, in contrast to simple the standard helical or planar examples (which are really special cases). I also discuss how one can study the time evolution of filaments which exhibit more complicated dynamics than pure translation and rotation. Doing this, one can study non-stationary solutions which initially appear purely rotational and gradually display other dynamics as the filaments evolve.« less
Molecular Regulation of Temperature-Dependent Floral Induction in Tulipa gesneriana1
Leeggangers, Hendrika A.C.F.; Bigas, Judit Nadal
2017-01-01
The vegetative-to-reproductive phase change in tulip (Tulipa gesneriana) is promoted by increasing temperatures during spring. The warm winters of recent years interfere with this process and are calling for new adapted cultivars. A better understanding of the underlying molecular mechanisms would be of help, but unlike the model plant Arabidopsis (Arabidopsis thaliana), very little is known about floral induction in tulip. To shed light on the gene regulatory network controlling flowering in tulip, RNA sequencing was performed on meristem-enriched tissue collected under two contrasting temperature conditions, low and high. The start of reproductive development correlated with rounding of the shoot apical meristem and induction of TGSQA expression, a tulip gene with a high similarity to Arabidopsis APETALA1. Gene Ontology enrichment analysis of differentially expressed genes showed the overrepresentation of genes potentially involved in floral induction, bulb maturation, and dormancy establishment. Expression analysis revealed that TERMINAL FLOWER1 (TgTFL1) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1-like1 (TgSOC1-like1) might be repressors, whereas TgSOC1-like2 likely is an activator, of flowering. Subsequently, the flowering time-associated expression of eight potential flowering time genes was confirmed in three tulip cultivars grown in the field. Additionally, heterologous functional analyses in Arabidopsis resulted in flowering time phenotypes in line with TgTFL1 being a floral repressor and TgSOC1-like2 being a floral activator in tulip. Taken together, we have shown that long before morphological changes occur in the shoot apical meristem, the expression of floral repressors in tulip is suppressed by increased ambient temperatures, leading either directly or indirectly to the activation of potential flowering activators shortly before the commencement of the phase change. PMID:28104719
NASA Technical Reports Server (NTRS)
Cruden, Brett A.; Rao, M. V. V. S.; Sharma, Surendra P.; Meyyappan, M.
2001-01-01
This work examines the accuracy of plasma neutral temperature estimates by fitting the rotational band envelope of different diatomic species in emission. Experiments are performed in an inductively coupled CF4 plasma generated in a Gaseous Electronics Conference reference cell. Visible and ultraviolet emission spectra are collected at a power of 300 W (approximately 0.7 W/cc) and pressure of 30 mtorr. The emission bands of several molecules (CF, CN, C2, CO, and SiF) are fit simultaneously for rotational and vibrational temperatures and compared. Four different rotational temperatures are obtained: 1250 K for CF and CN, 1600 K for CO, 1800 K for C2, and 2300 K for SiF. The vibrational temperatures obtained vary from 1750-5950 K, with the higher vibrational temperatures generally corresponding to the lower rotational temperatures. These results suggest that the different species have achieved different degrees of equilibration between the rotational and vibrational modes and may not be equilibrated with the translational temperatures. The different temperatures are also related to the likelihood that the species are produced by ion bombardment of the surface, with etch products like SiF, CO, and C2 having higher temperatures than species expected to have formed in the gas phase.
NASA Astrophysics Data System (ADS)
Mahdavi, Sahel; Maghsoudi, Yasser; Amani, Meisam
2017-07-01
Environmental conditions have considerable effects on synthetic aperture radar (SAR) imagery. Therefore, assessing these effects is important for obtaining accurate and reliable results. In this study, three series of RADARSAT-2 SAR images were evaluated. In each of these series, the sensor configuration was fixed, but the environmental conditions differed. The effects of variable environmental conditions were also investigated on co- and cross-polarized backscattering coefficients, Freeman-Durden scattering contributions, and the pedestal height in different classes of a forest area in Ottawa, Ontario. It was observed that the backscattering coefficient of wet snow was up to 2 dB more than that of dry snow. The absence of snow also caused a decrease of up to 3 dB in the surface scattering of ground and up to 5 dB in that of trees. In addition, the backscatter coefficients of ground vegetation, hardwood species, and softwood species were more similar at temperatures below 0°C than those at temperatures above 0°C. Moreover, the pedestal height was generally greater at temperatures above 0°C than at temperatures below 0°C. Finally, the highest class separability was observed when the temperature was at or above 0°C and there was no snow on the ground or trees.
NASA Astrophysics Data System (ADS)
Burkholder, J. B.; Feierabend, K.
2010-12-01
Halogen chemistry plays an important role in polar stratospheric ozone loss. The ClO dimer (Cl2O2) catalytic ozone destruction cycle accounts for the vast majority of winter/spring polar stratospheric ozone loss. A key step in the dimer catalytic cycle is the pressure and temperature dependent self-reaction of the ClO radical. The rate coefficient for the ClO self-reaction has been measured in previous laboratory studies but uncertainties persist, particularly at atmospherically relevant temperatures and pressures. In this laboratory study, rate coefficients for the ClO self-reaction were measured over a range of temperature (200 - 296 K) and pressure (50 - 600 Torr, He and N2 bath gases). ClO radicals were produced by pulsed laser photolysis of Cl2O at 248 nm. The ClO radical temporal profile was measured using dual wavelength cavity ring-down spectroscopy (CRDS) near 280 nm. The absolute ClO radical concentration was determined using the ClO UV absorption cross sections and their temperature dependence measured as part of this work. The results from this work will be compared with previous studies and the discrepancies discussed. Possible explanations for deviations of the reaction rate coefficient from the simple Falloff kinetic behavior currently recommended for use in atmospheric model calculations will be discussed.
Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies.
Danieli, E; Perlo, J; Blümich, B; Casanova, F
2013-05-03
Permanent magnetic materials are the only magnetic source that can be used to generate magnetic fields without power consumption or maintenance. Such stand-alone magnets are very attractive for many scientific and engineering areas, but they suffer from poor temporal field stability, which arises from the strong sensitivity of the magnetic materials and mechanical support to temperature variation. In this work, we describe a highly efficient method useful to cancel the temperature coefficient of permanent magnet assemblies in a passive and accurate way. It is based on the combination of at least two units made of magnetic materials with different temperature coefficients arranged in such a way that the ratio of the fields generated by each unit matches the ratio of their effective temperature coefficients defined by both the magnetic and mechanical contributions. Although typically available magnetic materials have negative temperature coefficients, the cancellation is achieved by aligning the fields generated by each unit in the opposite direction. We demonstrate the performance of this approach by stabilizing the field generated by a dipolar Halbach magnet, recently proposed to achieve high field homogeneity. Both the field drift and the homogeneity are monitored via nuclear magnetic resonance spectroscopy experiments. The results demonstrate the compatibility of the thermal compensation approach with existing strategies useful to fine-tune the spatial dependence of the field generated by permanent magnet arrays.
Huang, L; Fantke, P; Ernstoff, A; Jolliet, O
2017-11-01
Indoor releases of organic chemicals encapsulated in solid materials are major contributors to human exposures and are directly related to the internal diffusion coefficient in solid materials. Existing correlations to estimate the diffusion coefficient are only valid for a limited number of chemical-material combinations. This paper develops and evaluates a quantitative property-property relationship (QPPR) to predict diffusion coefficients for a wide range of organic chemicals and materials. We first compiled a training dataset of 1103 measured diffusion coefficients for 158 chemicals in 32 consolidated material types. Following a detailed analysis of the temperature influence, we developed a multiple linear regression model to predict diffusion coefficients as a function of chemical molecular weight (MW), temperature, and material type (adjusted R 2 of .93). The internal validations showed the model to be robust, stable and not a result of chance correlation. The external validation against two separate prediction datasets demonstrated the model has good predicting ability within its applicability domain (Rext2>.8), namely MW between 30 and 1178 g/mol and temperature between 4 and 180°C. By covering a much wider range of organic chemicals and materials, this QPPR facilitates high-throughput estimates of human exposures for chemicals encapsulated in solid materials. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Seismic Rheological Model and Reflection Coefficients of the Brittle-Ductile Transition
NASA Astrophysics Data System (ADS)
Carcione, José M.; Poletto, Flavio
2013-12-01
It is well established that the upper—cooler—part of the crust is brittle, while deeper zones present ductile behaviour. In some cases, this brittle-ductile transition is a single seismic reflector with an associated reflection coefficient. We first develop a stress-strain relation including the effects of crust anisotropy, seismic attenuation and ductility in which deformation takes place by shear plastic flow. Viscoelastic anisotropy is based on the eigenstrain model and the Zener and Burgers mechanical models are used to model the effects of seismic attenuation, velocity dispersion, and steady-state creep flow, respectively. The stiffness components of the brittle and ductile media depend on stress and temperature through the shear viscosity, which is obtained by the Arrhenius equation and the octahedral stress criterion. The P- and S-wave velocities decrease as depth and temperature increase due to the geothermal gradient, an effect which is more pronounced for shear waves. We then obtain the reflection and transmission coefficients of a single brittle-ductile interface and of a ductile thin layer. The PP scattering coefficient has a Brewster angle (a sign change) in both cases, and there is substantial PS conversion at intermediate angles. The PP coefficient is sensitive to the layer thickness, unlike the SS coefficient. Thick layers have a well-defined Brewster angle and show higher reflection amplitudes. Finally, we compute synthetic seismograms in a homogeneous medium as a function of temperature.
Field surveys of Penaeus duorarum have frequently observed co-occurrence of rising water temperatures, reproductive maturation and appearance of larval stages of the shrimp. This study investigated the use of water temperature changes, instead of eye enucleation, to induce matura...
Mizobe, Toshiki; Nakajima, Yasufumi; Ueno, Hiroshi; Sessler, Daniel I.
2006-01-01
Background We tested the hypothesis that intravenous fructose ameliorates intraoperative hypothermia both by increasing metabolic rate and the vasoconstriction threshold (triggering core temperature) Methods 40 patients scheduled for open abdominal surgery were divided into two equal groups and randomly assigned to intravenous fructose infusion (0.5 g·kg−1·h−1 for 4 h, starting 3 h before induction of anesthesia and continuing for 4 hours) or an equal volume of saline. Each treatment group was subdivided: esophageal core temperature, thermoregulatory vasoconstriction, and plasma concentrations were determined in half, and oxygen consumption was determined in the remainder. Patients were monitored for 3 h after induction of anesthesia. Results Patient characteristics, anesthetic management, and circulatory data were similar in the four groups. Mean final core temperature (3 h after induction of anesthesia) was 35.7±0.4°C (mean ± SD) in the fructose group and 35.1±0.4°C in the saline group (P=0.001). The vasoconstriction threshold was greater in the fructose (36.2±0.3°C) than in the saline group (35.6±0.3°C; P<0.001). Oxygen consumption immediately before anesthesia induction in the fructose group (214±18 ml/min) was significantly greater than in the saline group (181±8 ml/min, P<0.001). Oxygen consumption was 4.0 L greater in the fructose patients during 3 hours of anesthesia; the predicted difference in mean-body temperature based only on the difference in metabolic rates was thus only 0.4°C. Epinephrine, norepinephrine, and angiotensin II concentrations, and plasma renin activity were similar in each treatment group. Conclusions Preoperative fructose infusion helped maintain normothermia by augmenting both metabolic heat production and increasing the vasoconstriction threshold. PMID:16732081
NASA Technical Reports Server (NTRS)
Li, Jian-Zhong; Cheung, Samson H.; Ning, C. Z.
2001-01-01
Carrier diffusion and thermal conduction play a fundamental role in the operation of high-power, broad-area semiconductor lasers. Restricted geometry, high pumping level and dynamic instability lead to inhomogeneous spatial distribution of plasma density, temperature, as well as light field, due to strong light-matter interaction. Thus, modeling and simulation of such optoelectronic devices rely on detailed descriptions of carrier dynamics and energy transport in the system. A self-consistent description of lasing and heating in large-aperture, inhomogeneous edge- or surface-emitting lasers (VCSELs) require coupled diffusion equations for carrier density and temperature. In this paper, we derive such equations from the Boltzmann transport equation for the carrier distributions. The derived self- and mutual-diffusion coefficients are in general nonlinear functions of carrier density and temperature including many-body interactions. We study the effects of many-body interactions on these coefficients, as well as the nonlinearity of these coefficients for large-area VCSELs. The effects of mutual diffusions on carrier and temperature distributions in gain-guided VCSELs will be also presented.
NASA Astrophysics Data System (ADS)
Shandilya, Swati; Sreenivas, K.; Gupta, Vinay
2008-01-01
Theoretical studies on the surface acoustic wave (SAW) properties of c-axis oriented LiNbO3/IDT/diamond and diamond/IDT/128° rotated Y-X cut LiNbO3 multilayered structures have been considered. Both layered structures exhibit a positive temperature coefficient of delay (TCD) characteristic, and a zero TCD device is obtained after integrating with an over-layer of either tellurium dioxide (TeO2) or silicon dioxide (SiO2). The presence of a TeO2 over-layer enhanced the electromechanical coupling coefficients of both multilayered structures, which acts as a better temperature compensation layer than SiO2. The temperature stable TeO2/LiNbO3/IDT/diamond layered structure exhibits good electromechanical coefficient and higher phase velocity for SAW device applications. On the other hand, a high acousto-optical (AO) figure of merit (30-37) × 10-15 s3 kg-1 has been obtained for the temperature stable SiO2/diamond/IDT/LiNbO3 layered structure indicating a promising device structure for AO applications.
Dynamic and structural properties of room-temperature ionic liquids near silica and carbon surfaces.
Li, Song; Han, Kee Sung; Feng, Guang; Hagaman, Edward W; Vlcek, Lukas; Cummings, Peter T
2013-08-06
The dynamic and structural properties of a room-temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium(trifluoromethanesulfonimide) ([C4mim][Tf2N]) confined in silica and carbon mesopores were investigated by molecular dynamics (MD) simulations and nuclear magnetic resonance (NMR) experiments. The complex interfacial microstructures of confined [C4mim][Tf2N] are attributed to the distinctive surface features of the silica mesopore. The temperature-dependent diffusion coefficients of [C4mim][Tf2N] confined in the silica or carbon mesopore exhibit divergent behavior. The loading fraction (f = 1.0, 0.5, and 0.25) has a large effect on the magnitude of the diffusion coefficient in the silica pore and displays weaker temperature dependence as the loading fraction decreases. The diffusion coefficients of mesoporous carbon-confined [C4mim][Tf2N] are relatively insensitive to the loading faction and exhibit a temperature dependence that is similar to the bulk dependence at all loading levels. Such phenomena can be attributed to the unique surface heterogeneity, dissimilar interfacial microstructures, and interaction potential profile of RTILs near silica and carbon walls.
Apparatus for characterizing conductivity of superconducting materials
Doss, J.D.
1993-12-07
Apparatus and method for noncontact, radio-frequency shielding current characterization of materials. Self- or mutual inductance changes in one or more inductive elements, respectively, occur when materials capable of supporting shielding currents are placed in proximity thereto, or undergo change in resistivity while in place. Such changes can be observed by incorporating the inductor(s) in a resonant circuit and determining the frequency of oscillation or by measuring the voltage induced on a coupled inductive element. The present invention is useful for determining the critical temperature and superconducting transition width for superconducting samples. 10 figures.
Closed inductively coupled plasma cell
Manning, T.J.; Palmer, B.A.; Hof, D.E.
1990-11-06
A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies is disclosed. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy. 1 fig.
Apparatus and method for characterizing conductivity of materials
Doss, J.D.
1988-04-13
Apparatus and method for noncontact, radio-frequency shielding current characterization of materials. Self- or mutual inductance changes in one or more inductive elements, respectively, occur when materials capable of supporting shielding currents are placed in proximity thereto, or undergo change in resistivity while in place. Such changes can be observed by incorporating the inductor(s) in a resonant circuit and determining the frequency of oscillation or by measuring the voltage induced on a coupled inductive element. The present invention is useful for determining the critical temperature and superconducting transition width for superconducting samples. 8 figs.
Some optical properties of KTP, LiIO3, and LiNbO3
NASA Technical Reports Server (NTRS)
Gettemy, Donald J.; Harker, William C.; Lindholm, Glenn; Barnes, Norman P.
1988-01-01
Measurements of the absorption coefficient for KTP, LiIO3, and LiNbO3 are discussed. The variation of the refractive index with temperature has been measured for KTP and LiIO3. It is necessary to know both the absorption coefficient beta and the variation in the indexes of refraction with temperature change dn/dT to determine the average power limit of a nonlinear interaction. With the dn/dT information, it is also possible to estimate the temperature half width of any nonlinear interaction by calculating the variation of the phase-matching condition with temperature.
Fleshman, Allison M; Forsythe, Grant E; Petrowsky, Matt; Frech, Roger
2016-09-22
The location of the hydroxyl group in monohydroxy alcohols greatly affects the temperature dependence of the liquid structure due to hydrogen bonding. Temperature-dependent self-diffusion coefficients, fluidity (the inverse of viscosity), dielectric constant, and density have been measured for several 1-alcohols and 3-alcohols with varying alkyl chain lengths. The data are modeled using the compensated Arrhenius formalism (CAF). The CAF follows a modified transition state theory using an Arrhenius-like expression to describe the transport property, which consists of a Boltzmann factor containing an energy of activation, Ea, and an exponential prefactor containing the temperature-dependent solution dielectric constant, εs(T). Both 1- and 3-alcohols show the Ea of diffusion coefficients (approximately 43 kJ mol(-1)) is higher than the Ea of fluidity (approximately 35 kJ mol(-1)). The temperature dependence of the exponential prefactor in these associated liquids is explained using the dielectric constant and the Kirkwood-Frölich correlation factor, gk. It is argued that the dielectric constant must be used to account for the additional temperature dependence due to variations in the liquid structure (e.g., hydrogen bonding) for the CAF to accurately model the transport property.
Mathematical models for prediction of rheological parameters in vinasses derived from sugar cane
NASA Astrophysics Data System (ADS)
Chacua, Leidy M.; Ayala, Germán; Rojas, Hernán; Agudelo, Ana C.
2016-04-01
The rheological behaviour of vinasses derived from sugar cane was studied as a function of time (0 and 600 s), soluble solids content (44 and 60 °Brix), temperature (10 and 50°C), and shear rate (0.33 and 1.0 s-1). The results indicated that vinasses were time-independent at 25°C, where shear stress values ranged between 0.01 and 0.08 Pa. Flow curves showed a shear-thinning rheological behaviour in vinasses with a flow behaviour index between 0.69 and 0.89, for temperature between 10 and 20°C. With increasing temperature, the flow behaviour index was modified, reaching values close to 1.0. The Arrhenius model described well the thermal activation of shear stress and the consistency coefficient as a function of temperature. Activation energy from the Arrhenius model ranged between 31 and 45 kJ mol-1. Finally, the consistency coefficient as a function of the soluble solids content and temperature was well fitted using an exponential model (R2 = 0.951), showing that the soluble solids content and temperature have an opposite effect on consistency coefficient values.
NASA Astrophysics Data System (ADS)
Mashimo, S.; Nozaki, R.; Work, R. N.
1982-09-01
Mean square values of the dipole moments of poly(4-chlorostyrene) and copolymers of poly(4-chlorostyrene, 4-methylstyrene) have been determined at up to five different temperatures. There is a significant positive temperature coefficient of the mean square dipole moment. Curves of the dipole moments and of the slopes, normalized to unity at P4CS, have essentially the same shapes. The copolymers in benzene solutions lead to values of the mean square dipole moments that are about 20% larger than measurements in p-xylene.
Studies on temperature coefficient of resistivity of Cu2Se - V2O5 nanocomposite
NASA Astrophysics Data System (ADS)
Sairam, S.; Rai, Ranjan; Molli, Muralikrishna
2018-05-01
Nanocomposite of Copper Selenide in Vanadium Pentoxide (Cu2Se-V2O5) was prepared and characterized using XRD for phase analysis, SEM for morphology, and EDAX for elemental analysis. Electrical resistivity measurement was carried out using van der Pauw method as a function of temperature from 35 °C to 170 °C for 5 mol% Cu2Se - 95 mol%V2O5 composite. The temperature coefficient of resistivity was found to be -1.8% per °C.
Nasrabad, Afshin Eskandari; Laghaei, Rozita; Eu, Byung Chan
2005-04-28
In previous work on the density fluctuation theory of transport coefficients of liquids, it was necessary to use empirical self-diffusion coefficients to calculate the transport coefficients (e.g., shear viscosity of carbon dioxide). In this work, the necessity of empirical input of the self-diffusion coefficients in the calculation of shear viscosity is removed, and the theory is thus made a self-contained molecular theory of transport coefficients of liquids, albeit it contains an empirical parameter in the subcritical regime. The required self-diffusion coefficients of liquid carbon dioxide are calculated by using the modified free volume theory for which the generic van der Waals equation of state and Monte Carlo simulations are combined to accurately compute the mean free volume by means of statistical mechanics. They have been computed as a function of density along four different isotherms and isobars. A Lennard-Jones site-site interaction potential was used to model the molecular carbon dioxide interaction. The density and temperature dependence of the theoretical self-diffusion coefficients are shown to be in excellent agreement with experimental data when the minimum critical free volume is identified with the molecular volume. The self-diffusion coefficients thus computed are then used to compute the density and temperature dependence of the shear viscosity of liquid carbon dioxide by employing the density fluctuation theory formula for shear viscosity as reported in an earlier paper (J. Chem. Phys. 2000, 112, 7118). The theoretical shear viscosity is shown to be robust and yields excellent density and temperature dependence for carbon dioxide. The pair correlation function appearing in the theory has been computed by Monte Carlo simulations.
Combined temperature and density series for fluid-phase properties. I. Square-well spheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, J. Richard; Schultz, Andrew J.; Kofke, David A.
Cluster integrals are evaluated for the coefficients of the combined temperature- and density-expansion of pressure: Z = 1 + B{sub 2}(β) η + B{sub 3}(β) η{sup 2} + B{sub 4}(β) η{sup 3} + ⋯, where Z is the compressibility factor, η is the packing fraction, and the B{sub i}(β) coefficients are expanded as a power series in reciprocal temperature, β, about β = 0. The methodology is demonstrated for square-well spheres with λ = [1.2-2.0], where λ is the well diameter relative to the hard core. For this model, the B{sub i} coefficients can be expressed in closed form asmore » a function of β, and we develop appropriate expressions for i = 2-6; these expressions facilitate derivation of the coefficients of the β series. Expanding the B{sub i} coefficients in β provides a correspondence between the power series in density (typically called the virial series) and the power series in β (typically called thermodynamic perturbation theory, TPT). The coefficients of the β series result in expressions for the Helmholtz energy that can be compared to recent computations of TPT coefficients to fourth order in β. These comparisons show good agreement at first order in β, suggesting that the virial series converges for this term. Discrepancies for higher-order terms suggest that convergence of the density series depends on the order in β. With selection of an appropriate approximant, the treatment of Helmholtz energy that is second order in β appears to be stable and convergent at least to the critical density, but higher-order coefficients are needed to determine how far this behavior extends into the liquid.« less
Temperature-dependent rate coefficients and theoretical calculations for the OH+Cl2O reaction.
Riffault, Véronique; Clark, Jared M; Hansen, Jaron C; Ravishankara, A R; Burkholder, James B
2010-12-17
Rate coefficients k for the OH+Cl(2)O reaction are measured as a function of temperature (230-370 K) and pressure by using pulsed laser photolysis to produce OH radicals and laser-induced fluorescence to monitor their loss under pseudo-first-order conditions in OH. The reaction rate coefficient is found to be independent of pressure, within the precision of our measurements at 30-100 Torr (He) and 100 Torr (N(2)). The rate coefficients obtained at 100 Torr (He) showed a negative temperature dependence with a weak non-Arrhenius behavior. A room-temperature rate coefficient of k(1)(297 K)=(7.5±1.1)×10(-12) cm(3) molecule(-1) s(-1) is obtained, where the quoted uncertainties are 2σ and include estimated systematic errors. Theoretical methods are used to examine OH···OCl(2) and OH···ClOCl adduct formation and the potential-energy surfaces leading to the HOCl+ClO (1a) and Cl+HOOCl (1d) products in reaction (1) at the hybrid density functional UMPW1K/6-311++G(2df,p) level of theory. The OH···OCl(2) and OH···ClOCl adducts are found to have binding energies of about 0.2 kcal mol(-1). The reaction is calculated to proceed through weak pre-reactive complexes. Transition-state energies for channels (1a) and (1d) are calculated to be about 1.4 and about 3.3 kcal mol(-1) above the energy of the reactants. The results from the present study are compared with previously reported rate coefficients, and the interpretation of the possible non-Arrhenius behavior is discussed.
NASA Astrophysics Data System (ADS)
Malinowski, Z.; Telejko, T.; Cebo-Rudnicka, A.; Szajding, A.; Rywotycki, M.; Hadała, B.
2016-09-01
The industrial rolling mills are equipped with systems for controlled water cooling of hot steel products. A cooling rate affects the final mechanical properties of steel which are strongly dependent on microstructure evolution processes. In case of water jets cooling the heat transfer boundary condition can be defined by the heat transfer coefficient. In the present study one and three dimensional heat conduction models have been employed in the inverse solution to heat transfer coefficient. The inconel plate has been heated to about 900oC and then cooled by one, two and six water jets. The plate temperature has been measured by 30 thermocouples. The heat transfer coefficient distributions at plate surface have been determined in time of cooling.
Hasan, Yaser; Briggs, William; Matschegewski, Claudia; Ordon, Frank; Stützel, Hartmut; Zetzsche, Holger; Groen, Simon; Uptmoor, Ralf
2016-07-01
QTL regions on chromosomes C06 and C09 are involved in temperature dependent time to curd induction in cauliflower. Temperature is the main environmental factor influencing curding time of cauliflower (Brassica oleracea var. botrytis). Temperatures above 20-22 °C inhibit development towards curding even in many summer cultivars. To identify quantitative trait loci (QTL) controlling curding time and its related traits in a wide range of different temperature regimes from 12 to 27 °C, a doubled haploid (DH) mapping population segregating for curding time was developed and days to curd initiation (DCI), leaf appearance rate (LAR), and final leaf number (FLN) were measured. The population was genotyped with 176 single nucleotide polymorphism (SNP) markers. Composite interval mapping (CIM) revealed repeatedly detected QTL for DCI on C06 and C09. The estimated additive effect increased at high temperatures. Significant QTL × environment interactions (Q × E) for FLN and DCI on C06 and C09 suggest that these hotspot regions have major influences on temperature mediated curd induction. 25 % of the DH lines did not induce curds at temperatures higher than 22 °C. Applying a binary model revealed a QTL with LOD >15 on C06. Nearly all lines carrying the allele of the reliable early maturing parental line (PL) on that locus induced curds at high temperatures while only half of the DH lines carrying the allele of the unreliable PL reached the generative phase during the experiment. Large variation in LAR was observed. QTL for LAR were detected repeatedly in several environments on C01, C04 and C06. Negative correlations between LAR and DCI and QTL co-localizations on C04 and C06 suggest that LAR has also effects on development towards curd induction.
ERIC Educational Resources Information Center
Hattori, Masasi; Oaksford, Mike
2007-01-01
In this article, 41 models of covariation detection from 2 x 2 contingency tables were evaluated against past data in the literature and against data from new experiments. A new model was also included based on a limiting case of the normative phi-coefficient under an extreme rarity assumption, which has been shown to be an important factor in…
NASA Technical Reports Server (NTRS)
Capobianco, Christopher J.; Jones, John H.; Drake, Michael J.
1993-01-01
Low-temperature metal-silicate partition coefficients are extrapolated to magma ocean temperatures. If the low-temperature chemistry data is found to be applicable at high temperatures, an important assumption, then the results indicate that high temperature alone cannot account for the excess siderophile element problem of the upper mantle. For most elements, a rise in temperature will result in a modest increase in siderophile behavior if an iron-wuestite redox buffer is paralleled. However, long-range extrapolation of experimental data is hazardous when the data contains even modest experimental errors. For a given element, extrapolated high-temperature partition coefficients can differ by orders of magnitude, even when data from independent studies is consistent within quoted errors. In order to accurately assess siderophile element behavior in a magma ocean, it will be necessary to obtain direct experimental measurements for at least some of the siderophile elements.
Body temperature measurements in pigs during general anaesthesia.
Musk, G C; Costa, R S; Tuke, J
2016-04-01
The aim was to compare rectal, pharyngeal and oesophageal temperature measurements in anaesthetized pigs. Data were compared using the Bland-Altman method, and correlation coefficients and error measures were calculated. Sixty-six sets of data were collected from 16 pigs weighing 16.2 ± 4.2 kg. The bias (and 95% limit of agreement) for rectal and pharyngeal compared with oesophageal temperature were 0.69 (-1.18 to 2.57) ℃ and 0.22 (-0.84 to 1.28) ℃, respectively. The correlation coefficients for rectal and pharyngeal compared with oesophageal temperature were 0.47 and 0.87, respectively. The absolute error for rectal and pharyngeal compared with oesophageal temperature was 0.7 ± 0.9℃ and 0.2 ± 0.5℃, respectively. Pharyngeal temperature measurement may be more suitable than rectal temperature measurement for estimation of oesophageal temperature during general anaesthesia of pigs. © The Author(s) 2015.
NASA Technical Reports Server (NTRS)
Hall, R. M.
1976-01-01
The minimum operating temperature which avoids adverse low temperature effects, such as condensation, has been determined at a free stream Mach number of 0.85 for flow over a 0.137 meter airfoil mounted at zero incidence in the Langley 1/3 meter transonic cryogenic tunnel. The onset of low temperature effects is established by comparing the pressure coefficient measured at a given orifice for a particular temperature with those measured at temperatures sufficiently above where low temperature effects might be expected to occur. The pressure distributions over the airfoil are presented in tabular form. In addition, the comparisons of the pressure coefficient as a function of total temperature are presented graphically for chord locations of 0, 25, 50, and 75 percent. Over the 1.2 to 4.5 atmosphere total pressure range investigated, low temperature effects are not detected until total temperatures are 2 K, or more, below free stream saturation temperatures.
NASA Astrophysics Data System (ADS)
Zheng, Peng; Zhang, Rui-zhi; Chen, Hao-ying; Hao, Wen-tao
2014-06-01
The Seebeck coefficient and electrical conductivity of CaCu3Ti4O12 (CCTO) ceramics were measured and analyzed in the high temperature range of 300°C to 800°C, and then the electrical conduction mechanism was investigated by using a combination of experimental data fitting and first-principles calculations. The Seebeck coefficient of the CCTO ceramic sintered at 1050°C is negative with largest absolute value of ˜650 μV/K at 300°C, and the electrical conductivity is 2-3 orders greater than the value reported previously by other researchers. With increasing sintering temperature, the Seebeck coefficient decreases while the electrical conductivity increases. The temperature dependence of the electrical conductivity follows the rule of adiabatic hopping conduction of small polarons. The calculated density of states of CCTO indicates that the conduction band is mainly contributed by the antibonding states of Cu 3 d electrons, therefore small-polaron hopping between CuO4 square planar clusters was proposed. Possible ways to further improve the thermoelectric properties of CCTO are also discussed.
A modified thermal conductivity for low density plasma magnetic flux tubes
NASA Technical Reports Server (NTRS)
Comfort, R. H.; Craven, P. D.; Richards, P. G.
1995-01-01
In response to inconsistencies which have arisen in results from a hydrodynamic model in simulation of high ion temperature (1-2 eV) observed in low density, outer plasmasphere flux tubes, we postulate a reduced thermal conductivity coefficient in which only particles in the loss cone of the quasi-collisionless plasma contribute to the thermal conduction. Other particles are assumed to magnetically mirror before they reach the topside ionosphere and therefore not to remove thermal energy from the plasmasphere. This concept is used to formulate a mathematically simple, but physically limiting model for a modified thermal conductivity coefficient. When this modified coefficient is employed in the hydrodynamic model in a case study, the inconsistencies between simulation results and observations are largely resolved. The high simulated ion temperatures are achieved with significantly lower ion temperatures in the topside ionosphere. We suggest that this mechanism may be operative under the limited low density, refilling conditions in which high ion temperatures are observed.
Core body temperature control by total liquid ventilation using a virtual lung temperature sensor.
Nadeau, Mathieu; Micheau, Philippe; Robert, Raymond; Avoine, Olivier; Tissier, Renaud; Germim, Pamela Samanta; Vandamme, Jonathan; Praud, Jean-Paul; Walti, Herve
2014-12-01
In total liquid ventilation (TLV), the lungs are filled with a breathable liquid perfluorocarbon (PFC) while a liquid ventilator ensures proper gas exchange by renewal of a tidal volume of oxygenated and temperature-controlled PFC. Given the rapid changes in core body temperature generated by TLV using the lung has a heat exchanger, it is crucial to have accurate and reliable core body temperature monitoring and control. This study presents the design of a virtual lung temperature sensor to control core temperature. In the first step, the virtual sensor, using expired PFC to estimate lung temperature noninvasively, was validated both in vitro and in vivo. The virtual lung temperature was then used to rapidly and automatically control core temperature. Experimentations were performed using the Inolivent-5.0 liquid ventilator with a feedback controller to modulate inspired PFC temperature thereby controlling lung temperature. The in vivo experimental protocol was conducted on seven newborn lambs instrumented with temperature sensors at the femoral artery, pulmonary artery, oesophagus, right ear drum, and rectum. After stabilization in conventional mechanical ventilation, TLV was initiated with fast hypothermia induction, followed by slow posthypothermic rewarming for 1 h, then by fast rewarming to normothermia and finally a second fast hypothermia induction phase. Results showed that the virtual lung temperature was able to provide an accurate estimation of systemic arterial temperature. Results also demonstrate that TLV can precisely control core body temperature and can be favorably compared to extracorporeal circulation in terms of speed.
NASA Astrophysics Data System (ADS)
Romanov, I. S.; Prudaev, I. A.; Brudnyi, V. N.
2018-05-01
The results of an investigation of Mg diffusion in blue LED structures with InGaN/GaN quantum wells are presented for various growth temperatures of the p-GaN layer. The values of the diffusion coefficient estimated for true growth temperatures of 860, 910, and 980°C were 7.5·10-17, 2.8·10-16, and 1.2·10-15 cm2/s, respectively. The temperature values given in the work were measured on the surface of the growing layer in situ using a pyrometer. The calculated activation energy for the temperature dependence of the diffusion coefficient was 2.8 eV.
Boudys, M
1991-01-01
Variations of temperature coefficients of permittivity epsilon(33)(T), elastic compliances at constant electric fields s(11)(E), and constant polarization s(11)(P) with a Zr/Ti ratio of Pb(Zr(x)Ti(1-x))O(3) and Pb[(Sb(1/3)Mn(2/3))(0.05)Zr(x)Ti (0.95-x)]O(3) solid solutions, were investigated. Relations between temperature coefficients of epsilon(33)(T ), S(11)(E), and S(11) (P) were theoretically derived; a discrepancy was found between theoretical relations and experimental results. On the basis of the observed discrepancy, it is proposed that some extrinsic effects arising from the motion of interphase boundaries between the tetragonal and the rhombohedral phases which exist in grains contribute to values of both elastic compliances.
Friction and wear behaviour of ion beam modified ceramics
NASA Technical Reports Server (NTRS)
Lankford, J.; Wei, W.; Kossowsky, R.
1987-01-01
In the present study, the sliding friction coefficients and wear rates of carbide, oxide, and nitride materials for potential use as sliding seals (ring/liner) were measured under temperature, environmental, velocity, and loading conditions representative of a diesel engine. In addition, silicon nitride and partially stabilized zirconia discs were modified by ion mixing with TiNi, nickel, cobalt and chromium, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. However, the coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implantation of TiNi or cobalt. This beneficial effect was found to derive from lubricious titanium, nickel, and cobalt oxides.
Ionic and electronic transport properties in dense plasmas by orbital-free density functional theory
Sjostrom, Travis; Daligault, Jérôme
2015-12-09
We validate the application of our recent orbital-free density functional theory (DFT) approach, [Phys. Rev. Lett. 113, 155006 (2014)], for the calculation of ionic and electronic transport properties of dense plasmas. To this end, we calculate the self-diffusion coefficient, the viscosity coefficient, the electrical and thermal conductivities, and the reflectivity coefficient of hydrogen and aluminum plasmas. Very good agreement is found with orbital-based Kohn-Sham DFT calculations at lower temperatures. Because the computational costs of the method do not increase with temperature, we can produce results at much higher temperatures than is accessible by the Kohn-Sham method. Our results for warmmore » dense aluminum at solid density are inconsistent with the recent experimental results reported by Sperling et al. [Phys. Rev. Lett. 115, 115001 (2015)].« less
NASA Astrophysics Data System (ADS)
Statnic, Eugen; Tanach, Valentin
2006-08-01
The inductively coupled fluorescent lamp with a cored induction coil placed in a re-entrant cavity is in fact a coaxial transformer operated in the radiofrequency range between 100 kHz and a few MHz. The magnetic coupling coefficient k between the primary coil and the plasma ring is relatively low because of the open magnetic circuit. The acting mutual inductance M enables us to quantify the interaction between the magnetic field produced by the primary coil current I1 and the opposing magnetic field produced by the powerful plasma current I2. A contra-electromotive force jωMI2 is induced in the induction coil L1, defining the primary voltage V1 = I1(R1 + jω L1) - jωMI2. The current I1 induces in the secondary conductive plasma the driving electromotive force jωMI1 supplying the secondary load consisting of the average plasma resistance R2 and the secondary inductance L2, according to the equation jωMI2 = I2(R2 + jωL2). It is the aim of this paper to find a model to determine k on the basis of the measured primary parameters V1, I1, P1, L1, R1 and finally all electrical inaccessible parameters, such as M, V2, I2, phiv2, L2, R2, in order to optimize the discharge and lamp efficacy. The complex characteristic of plasma inductance for this type of lamp is analysed and clarified. Some reflexive basic relations verifying the correctness of the inferred plasma parameters are also developed. The described experiments are related to a lamp working at about 2.6 MHz.
An inductively powered telemetry system for temperature, EKG, and activity monitoring
NASA Technical Reports Server (NTRS)
Fryer, T. B.; Lund, G. F.; Williams, B. A.
1978-01-01
An implant telemetry system for the simultaneous monitoring of temperature, activity, and EKG from small animals, such as rats, was designed with the feature that instead of a battery the system is energized by an inductive field. A 250 kHz resonant coil surrounds the cage (30 x 30 x 20 cm) and provides the approximately 100 microns of power required to operate the implant transmitter while allowing the animal unrestrained movement in the cage. The implant can also be battery operated if desired. RF transmission is in the 8-10 MHz band, which allows the use of a simple, essentially single IC chip, receiver.
An inductively powered telemetry system for temperature, EKG, and activity monitoring
NASA Technical Reports Server (NTRS)
Fryer, T. B.; Lund, G. F.; Williams, B. A.
1978-01-01
An implant telemetry system for the simultaneous monitoring of temperature, activity, and EKG from small animals, such as rats, has recently been designed with the novel feature that instead of a battery the system is energized by an inductive field. A 250 kHz resonant coil surrounds the cage (30 x 30 x 20 cm) and provides the approximately 100 microwatt of power required to operate the implant transmitter while allowing the animal unrestrained movement in the cage. The implant can also be battery operated if desired. RF transmission is in the 8-10 MHz band, which allows the use of a simple, essentially single IC chip, receiver.
Directly susceptible, noncarbon metal ceramic composite crucible
Holcombe, Jr., Cressie E.; Kiggans, Jr., James O.; Morrow, S. Marvin; Rexford, Donald
1999-01-01
A sintered metal ceramic crucible suitable for high temperature induction melting of reactive metals without appreciable carbon or silicon contamination of the melt. The crucible comprises a cast matrix of a thermally conductive ceramic material; a perforated metal sleeve, which serves as a susceptor for induction heating of the crucible, embedded within the ceramic cast matrix; and a thermal-shock-absorber barrier interposed between the metal sleeve and the ceramic cast matrix to allow for differential thermal expansions between the matrix and the metal sleeve and to act as a thermal-shock-absorber which moderates the effects of rapid changes of sleeve temperature on the matrix.
Empirical constraints on closure temperatures from a single diffusion coefficient
NASA Astrophysics Data System (ADS)
Lee, J. K. W.
The elucidation of thermal histories by geochronological and isotopic means is based fundamentally on solid-state diffusion and the concept of closure temperatures. Because diffusion is thermally activated, an analytical solution of the closure temperature (Tc*) can only be obtained if the diffusion coefficient D of the diffusion process is measured at two or more different temperatures. If the diffusion coefficient is known at only one temperature, however, the true closure temperature (Tc*) cannot be calculated analytically because there exist an infinite number of possible (apparent) closure temperatures (Tc) which can be generated by this single datum. By introducing further empirical constraints to limit the range of possible closure temperatures, however, mathematical analysis of a modified form of the closure temperature equation shows that it is possible to make both qualitative and quantitative estimates of Tc* given knowledge of only one diffusion coefficient DM measured at one temperature TM. Qualitative constraints of the true closure temperature Tc* are obtained from the shapes of curves on a graph of the apparent Tc (Tc) vs. activation energy E, in which each curve is based on a single diffusion coefficient measurement DM at temperature TM. Using a realistic range of E, the concavity of the curve shows whether TM is less than, approximately equal to, or greater than Tc*. Quantitative estimates are obtained by considering two dimensionless parameters [
NASA Astrophysics Data System (ADS)
Liu, Huawei; Zheng, Shu; Zhou, Huaichun; Qi, Chaobo
2016-02-01
A generalized method to estimate a two-dimensional (2D) distribution of temperature and wavelength-dependent emissivity in a sooty flame with spectroscopic radiation intensities is proposed in this paper. The method adopts a Newton-type iterative method to solve the unknown coefficients in the polynomial relationship between the emissivity and the wavelength, as well as the unknown temperature. Polynomial functions with increasing order are examined, and final results are determined as the result converges. Numerical simulation on a fictitious flame with wavelength-dependent absorption coefficients shows a good performance with relative errors less than 0.5% in the average temperature. What’s more, a hyper-spectral imaging device is introduced to measure an ethylene/air laminar diffusion flame with the proposed method. The proper order for the polynomial function is selected to be 2, because every one order increase in the polynomial function will only bring in a temperature variation smaller than 20 K. For the ethylene laminar diffusion flame with 194 ml min-1 C2H4 and 284 L min-1 air studied in this paper, the 2D distribution of average temperature estimated along the line of sight is similar to, but smoother than that of the local temperature given in references, and the 2D distribution of emissivity shows a cumulative effect of the absorption coefficient along the line of sight. It also shows that emissivity of the flame decreases as the wavelength increases. The emissivity under wavelength 400 nm is about 2.5 times as much as that under wavelength 1000 nm for a typical line-of-sight in the flame, with the same trend for the absorption coefficient of soot varied with the wavelength.
Takesue, R.K.; VanGeen, A.
2004-01-01
This study explores the potential of intertidal Protothaca staminea shells as high-resolution geochemical archives of environmental change in a coastal upwelling region. Mg/Ca and Sr/Ca ratios were analyzed by excimer laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) at sub-weekly temporal resolution in shells growing ???1 mm per month. Growth patterns of a modern P. staminea shell from Humboldt Bay, California, collected in December 1999 made it possible to infer a lifespan from 1993 to 1998. Growth hiatuses in the shell may have excluded records of extreme events. Mg/Ca ratios appeared to be partly controlled by water temperature; the correlation coefficient between temperature and Mg/Ca was r = 0.71 in one of four growth increments. Significant year-to-year differences in the sensitivity of Mg/Ca to temperature in P. staminea could not be explained, however. Sr/Ca ratios appeared to be more closely related to shell growth rate. Oxygen isotopes, measured at 2-week temporal resolution in the same shell, did not show a clear relation to local temperature in summer, possibly because temperatures were higher and less variable at the King Salmon mudflat, where the shell was collected, than in the main channel of Humboldt Bay, where water properties were monitored. Negative shell ??13C values (<-0.5???) marked spring and summer coastal upwelling events. The Mg contents of P. staminea midden shells dated to ???3 ka and ???9 ka were significantly lower than in the modern shell. This may have resulted from degradation of a Mg-rich shell organic matrix and precluded quantitative interpretation of the older high-resolution records. Elevated ??13C values in the ???3 ka shell suggested that the individual grew in highly productive or stratified environment, such as a shallow coastal embayment or lagoon. Copyright ?? 2004 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Cai, Chunpei
2013-10-01
In this paper, we investigate highly rarefied gaseous jet flows out of a planar exit and impinging at a normally set flat plate. Especially, we concentrate on the plate center stagnation point pressure and heat flux coefficients. For a specular reflective plate, the stagnation point pressure coefficient can be represented using two non-dimensional factors: the characteristic gas exit speed ratio S0 and the geometry ratio of H/L, where H is the planar exit semi-height and L is the center-to-center distance from the exit to the plate. For a diffuse reflective plate, the stagnation point pressure and heat flux coefficients involve an extra factor of T0/Tw, i.e., the ratio of exit gas temperature to the plate wall temperature. These results allow us to develop four diagrams, from which we can conveniently obtain the pressure and heat flux coefficients for the stagnation impingement point, at the collisionless flow limit. After normalization with these maximum coefficients, the pressure and heat flux coefficient distributions along the surface essentially degenerate to almost identical curves. As a result, with known plate surface pressure coefficient distributions and these diagrams, we can conveniently construct the heat flux coefficient distributions along the plate surface, and vice versa.