Science.gov

Sample records for temperature measurement device

  1. High temperature measuring device

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  2. Temperature measuring device

    SciTech Connect

    Lauf, R.J.; Bible, D.W.; Sohns, C.W.

    1999-10-19

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  3. Temperature measuring device

    DOEpatents

    Lauf, Robert J.; Bible, Don W.; Sohns, Carl W.

    1999-01-01

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  4. High-temperature-measuring device

    DOEpatents

    Not Available

    1981-01-27

    A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  5. Pressure and temperature measurement devices - liquid

    SciTech Connect

    Ahmed, S.

    1995-12-01

    The need to measure temperature and pressure has become a fundamental and essential requirement in the process industry. This paper reviews the various pressure and temperature measurement devices used for liquid service. It looks at the principles of measurement, the types of instruments available, selection and suitability of each and also at the broad applications of these measurements for liquid service. Finally, this paper briefly discusses the future trend in instrumentation for measurements of this kind.

  6. 46 CFR 154.1340 - Temperature measuring devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Instrumentation § 154.1340 Temperature measuring devices. (a) Each cargo tank must have devices that measure the temperature: (1) At the bottom of the tank; and (2) Near the top of the tank and below the maximum liquid... 46 Shipping 5 2012-10-01 2012-10-01 false Temperature measuring devices. 154.1340 Section...

  7. 46 CFR 154.1340 - Temperature measuring devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Instrumentation § 154.1340 Temperature measuring devices. (a) Each cargo tank must have devices that measure the temperature: (1) At the bottom of the tank; and (2) Near the top of the tank and below the maximum liquid... 46 Shipping 5 2010-10-01 2010-10-01 false Temperature measuring devices. 154.1340 Section...

  8. 46 CFR 154.1340 - Temperature measuring devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Temperature measuring devices. 154.1340 Section 154.1340... Instrumentation § 154.1340 Temperature measuring devices. (a) Each cargo tank must have devices that measure the temperature: (1) At the bottom of the tank; and (2) Near the top of the tank and below the maximum...

  9. 46 CFR 154.1340 - Temperature measuring devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Temperature measuring devices. 154.1340 Section 154.1340... Instrumentation § 154.1340 Temperature measuring devices. (a) Each cargo tank must have devices that measure the temperature: (1) At the bottom of the tank; and (2) Near the top of the tank and below the maximum...

  10. 46 CFR 154.1340 - Temperature measuring devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Temperature measuring devices. 154.1340 Section 154.1340... Instrumentation § 154.1340 Temperature measuring devices. (a) Each cargo tank must have devices that measure the temperature: (1) At the bottom of the tank; and (2) Near the top of the tank and below the maximum...

  11. Miniature ingestible telemeter devices to measure deep-body temperature

    NASA Technical Reports Server (NTRS)

    Pope, J. M.; Fryer, T. B. (Inventor)

    1976-01-01

    A telemetry device comprised of a pill-size ingestible transmitter developed to obtain deep body temperature measurements of a human is described. The device has particular utility in the medical field where deep body temperatures provide an indication of general health.

  12. Silicon device performance measurements to support temperature range enhancement

    NASA Technical Reports Server (NTRS)

    Bromstead, James; Weir, Bennett; Nelms, R. Mark; Johnson, R. Wayne; Askew, Ray

    1994-01-01

    Silicon based power devices can be used at 200 C. The device measurements made during this program show a predictable shift in device parameters with increasing temperature. No catastrophic or abrupt changes occurred in the parameters over the temperature range. As expected, the most dramatic change was the increase in leakage currents with increasing temperature. At 200 C the leakage current was in the milliAmp range but was still several orders of magnitude lower than the on-state current capabilities of the devices under test. This increase must be considered in the design of circuits using power transistors at elevated temperature. Three circuit topologies have been prototyped using MOSFET's and IGBT's. The circuits were designed using zero current or zero voltage switching techniques to eliminate or minimize hard switching of the power transistors. These circuits have functioned properly over the temperature range. One thousand hour life data have been collected for two power supplies with no failures and no significant change in operating efficiency. While additional reliability testing should be conducted, the feasibility of designing soft switched circuits for operation at 200 C has been successfully demonstrated.

  13. Improvement of the operation rate of medical temperature measuring devices

    NASA Astrophysics Data System (ADS)

    Hotra, O.; Boyko, O.; Zyska, T.

    2014-08-01

    A method of reducing measuring time of temperature measurements of biological objects based on preheating the resistance temperature detector (RTD) up to the temperature close to the temperature to be measured, is proposed. It has been found that at the same measuring time, the preheating allows to decrease the measurement error by a factor of 5 to 45 over the temperature range of 35-41°С. The measurement time is reduced by 1.6-4 times over this range, keeping the same value of the measurement error.

  14. Device for self-verifying temperature measurement and control

    DOEpatents

    Watkins, Arthur D.; Cannon, Collins P.; Tolle, Charles R.

    2004-08-03

    A measuring instrument includes a first temperature sensor, a second temperature sensor and circuitry. The first and second temperature sensors each generate a signal indicative of the temperature of a medium being detected. The circuitry is configured to activate verification of temperature being sensed with the first sensor. According to one construction, the first temperature sensor comprises at least one thermocouple temperature sensor and the second temperature sensor comprises an optical temperature sensor, each sensor measuring temperature over the same range of temperature, but using a different physical phenomena. Also according to one construction, the circuitry comprises a computer configured to detect failure of one of the thermocouples by comparing temperature of the optical temperature sensor with each of the thermocouple temperature sensors. Even further, an output control signal is generated via a fuzzy inference machine and control apparatus.

  15. 21 CFR 882.1570 - Powered direct-contact temperature measurement device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Powered direct-contact temperature measurement....1570 Powered direct-contact temperature measurement device. (a) Identification. A powered direct-contact temperature measurement device is a device which contains a power source and is used to...

  16. 46 CFR 154.1375 - Readout for temperature measuring device: Marking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Readout for temperature measuring device: Marking. 154..., Construction and Equipment Instrumentation § 154.1375 Readout for temperature measuring device: Marking. Each readout under § 154.1340 for a device that measures temperature in a cargo tank must be marked with...

  17. 46 CFR 154.1375 - Readout for temperature measuring device: Marking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Readout for temperature measuring device: Marking. 154..., Construction and Equipment Instrumentation § 154.1375 Readout for temperature measuring device: Marking. Each readout under § 154.1340 for a device that measures temperature in a cargo tank must be marked with...

  18. 46 CFR 154.1375 - Readout for temperature measuring device: Marking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Readout for temperature measuring device: Marking. 154..., Construction and Equipment Instrumentation § 154.1375 Readout for temperature measuring device: Marking. Each readout under § 154.1340 for a device that measures temperature in a cargo tank must be marked with...

  19. 21 CFR 882.1570 - Powered direct-contact temperature measurement device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Powered direct-contact temperature measurement....1570 Powered direct-contact temperature measurement device. (a) Identification. A powered direct-contact temperature measurement device is a device which contains a power source and is used to...

  20. 46 CFR 154.1375 - Readout for temperature measuring device: Marking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Readout for temperature measuring device: Marking. 154..., Construction and Equipment Instrumentation § 154.1375 Readout for temperature measuring device: Marking. Each readout under § 154.1340 for a device that measures temperature in a cargo tank must be marked with...

  1. 46 CFR 154.1375 - Readout for temperature measuring device: Marking.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Readout for temperature measuring device: Marking. 154..., Construction and Equipment Instrumentation § 154.1375 Readout for temperature measuring device: Marking. Each readout under § 154.1340 for a device that measures temperature in a cargo tank must be marked with...

  2. 21 CFR 882.1570 - Powered direct-contact temperature measurement device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Powered direct-contact temperature measurement....1570 Powered direct-contact temperature measurement device. (a) Identification. A powered direct-contact temperature measurement device is a device which contains a power source and is used to...

  3. 21 CFR 882.1570 - Powered direct-contact temperature measurement device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered direct-contact temperature measurement....1570 Powered direct-contact temperature measurement device. (a) Identification. A powered direct-contact temperature measurement device is a device which contains a power source and is used to...

  4. 21 CFR 882.1570 - Powered direct-contact temperature measurement device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Powered direct-contact temperature measurement....1570 Powered direct-contact temperature measurement device. (a) Identification. A powered direct-contact temperature measurement device is a device which contains a power source and is used to...

  5. Fiber - Optic Devices as Temperature Sensors for Temperature Measurements in AC Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Rablau, Corneliu; Lafrance, Joseph; Sala, Anca

    2007-10-01

    We report on the investigation of several fiber-optic devices as potential sensors for temperature measurements in AC magnetic fields. Common temperature sensors, such as thermocouples, thermistors or diodes, will create random and/or systematic errors when placed in a magnetic field. A DC magnetic field is susceptible to create a systematic offset to the measurement, while in an AC magnetic field of variable frequency random errors which cannot be corrected for can also be introduced. Fiber-Bragg-gratings and thin film filters have an inherent temperature dependence. Detrimental for their primary applications, the same dependence allows one to use such devices as temperature sensors. In an AC magnetic field, they present the advantage of being immune to electromagnetic interference. Moreover, for fiber-Bragg-gratings, the shape factor and small mass of the bare-fiber device make it convenient for temperature measurements on small samples. We studied several thin-film filters and fiber-Bragg-gratings and compared their temperature measurement capabilities in AC magnetic fields of 0 to 150 Gauss, 0 to 20 KHz to the results provided by off-the-shelf thermocouples and thermistor-based temperature measurement systems.

  6. Quantitative temperature measurement of multi-layered semiconductor devices using spectroscopic thermoreflectance microscopy.

    PubMed

    Kim, Dong Uk; Park, Kwan Seob; Jeong, Chan Bae; Kim, Geon Hee; Chang, Ki Soo

    2016-06-27

    Thermoreflectance microscopy is essential in understanding the unpredictable local heating generation that occurs during microelectronic device operation. However, temperature measurements of multi-layered semiconductor devices represent a challenge because the thermoreflectance coefficient is quite small and is dramatically changed by the optical interference inside transparent layers of the device. Therefore, we propose a spectroscopic thermoreflectance microscopy system using a systematic approach for improving the quantitative temperature measurement of multi-layered semiconductor devices. We demonstrate the quantitative measurement of the temperature profile for physical defects on thin-film polycrystalline silicon resistors via thermoreflectance coefficient calibration and effective coefficient κ estimation.

  7. Quantitative temperature measurement of multi-layered semiconductor devices using spectroscopic thermoreflectance microscopy.

    PubMed

    Kim, Dong Uk; Park, Kwan Seob; Jeong, Chan Bae; Kim, Geon Hee; Chang, Ki Soo

    2016-06-27

    Thermoreflectance microscopy is essential in understanding the unpredictable local heating generation that occurs during microelectronic device operation. However, temperature measurements of multi-layered semiconductor devices represent a challenge because the thermoreflectance coefficient is quite small and is dramatically changed by the optical interference inside transparent layers of the device. Therefore, we propose a spectroscopic thermoreflectance microscopy system using a systematic approach for improving the quantitative temperature measurement of multi-layered semiconductor devices. We demonstrate the quantitative measurement of the temperature profile for physical defects on thin-film polycrystalline silicon resistors via thermoreflectance coefficient calibration and effective coefficient κ estimation. PMID:27410553

  8. Temperature measurement by IR camera of heated device to high temperature during a short time

    NASA Astrophysics Data System (ADS)

    Sonneck-Museux, Nathanaëlle; Vergé, Philippe; Judic, Jean-Pierre; Edard, Pierrick

    2015-04-01

    A device allowing heating a liquid to high temperatures during a very short time has been conceived in our laboratory. The goal of this survey is to find the suitable experimental configurations, so that tested material affected by the temperatures coved between 200 and 750°C. This study is achieved to the Solar Furnace of the DGA in Odeillo. The cavity containing the liquid is a thermocouple sleeve (capillary) in Inconel 600. Its extremity is closed tightly by a removable steel plug permitting the tightness after replenishment. An electromagnet associated to a generator of delay permit to make fall the whole after the solar irradiation in liquid nitrogen in order to stop the reaction of "deterioration" of the tested product. According to capillary dimensions and to heating time, the temperature measurement using a pyrometer is not possible. A second possibility is using thermocouple, but it is not easy to join this captor on Inconel 600. Using by infrared camera allows observing the presence or the absence of inflammation during the solar irradiation and the sleeve fall too. The measures of temperatures by thermocouple show a lot of variability. The measures comparison with those by infrared camera shows a phenomenon of "heat well". Several score of tests to the solar furnace have been achieved in different experimental configurations. Nine experimental configurations have been validated, for variable flux of 100 to 500W/cm². The observation by infrared camera permitted to validate the conceived system and to verify the homogeneity of the sleeve heated.

  9. Use of carbon micro-particles for improved infrared temperature measurement of CMOS MEMS devices

    NASA Astrophysics Data System (ADS)

    Hopper, Richard H.; Haneef, Ibraheem; Zeeshan Ali, Syed; Udrea, Florin; Oxley, Christopher H.

    2010-04-01

    We report a technique which can be used to improve the accuracy of infrared (IR) surface temperature measurements made on micro-electro-mechanical systems (MEMS). In this work, a silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) MEMS thermal flow sensor was studied. The device consists of a meander-shaped resistive heater element that was fabricated using CMOS aluminum metallization and embedded in an SOI silicon oxide (SiO2) membrane. Conventional IR temperature measurements, made on the active device, were shown to give significant surface temperature errors—a consequence of the optical transparency of the SiO2 membrane and low emissivity of the metalized areas. Radiative carbon micro-particles were used to improve the measurement accuracy. By making IR measurements on carbon micro-particles placed in isothermal contact with parts of the MEMS sensor's structure, the accuracy of the surface temperature determination was significantly improved. The peak device operating temperatures measured using the 'IR micro-particle' technique were found to be in good agreement with those obtained from thermoelectric characterization. The work shows how wide area surface temperature profiles can be quickly built up by imaging multiple micro-particles using an IR charge-coupled device (CCD) detector array. The IR micro-particle technique removes the problems associated with coating MEMS sensors with a uniform high emissivity layer, which may cause damage to such devices and/or affect their thermal performance due to additional heat spreading.

  10. Surface-Temperature Measurement and Submicron Defect Isolation for Microelectronic Devices Using Thermoreflectance Microscopy

    NASA Astrophysics Data System (ADS)

    Ryu, Seon Young; Kim, Dong Uk; Kim, Jun Ki; Choi, Hae Young; Kim, Geon Hee; Chang, Ki Soo

    2015-06-01

    Thermal analysis of small defects becomes essential for understanding the influence of hotspots, which affect the device performance, such as the operating speed and reliability. In this paper, we demonstrate a CCD-based thermoreflectance microscopy (TRM) system as a noncontact thermal analysis technique especially for submicron defects on microelectronic devices. By employing a lock-in detection technique and temperature calibration process, the surface temperature distribution of a polysilicon microresistor and submicron defects that are not distinguishable in conventional optical microscope images can be quantitatively measured with high thermal (up to 13 mK) and spatial (670 nm) resolution. In addition, the accuracy of quantitative temperature measurement and small defect isolation by the TRM system is compared with that obtained from an infrared thermography (IRT) system.

  11. Laser scanning thermoreflectance imaging system using galvanometric mirrors for temperature measurements of microelectronic devices.

    PubMed

    Grauby, S; Salhi, A; Rampnoux, J-M; Michel, H; Claeys, W; Dilhaire, S

    2007-07-01

    We present a thermoreflectance imaging system using a focused laser sweeping the device under test with a scanner made of galvanometric mirrors. We first show that the spatial resolution of this setup is submicrometric, which makes it adapted to microelectronic thermal measurements. Then, we studied qualitative temperature variations on two dissipative structures constituted of thin (0.35 microm) dissipative resistors, the distance between two resistors being equal to 0.8 or 10 microm. This technique combines sensitivity and speed: it is faster than a point classical thermoreflectance technique and, in addition, more sensitive than a charge-coupled device thermoreflectance imaging technique.

  12. Sublimation measurements and analysis of high temperature thermoelectric materials and devices

    NASA Technical Reports Server (NTRS)

    Shields, V.; Noon, L.

    1983-01-01

    High temperature thermoelectric device sublimation effects are compared for rare earth sulfides, selenides, and state-of-the-art Si-Ge alloys. Although rare earth calcogenides can potentially exhibit superior sublimation characteristics, the state-of-the-art Si-Ge alloy with silicon nitride sublimation-inhibitive coating has been tested to 1000 C. Attention is given to the ceramic electrolyte cells, forming within electrical and thermal insulation, which affect leakage conductance measurements in Si-Ge thermoelectric generators.

  13. Temporal and Spatial Temperature Measurement in Insulator-Based Dielectrophoretic Devices

    PubMed Central

    2015-01-01

    Insulator-based dielectrophoresis is a relatively new analytical technique with a large potential for a number of applications, such as sorting, separation, purification, fractionation, and preconcentration. The application of insulator-based dielectrophoresis (iDEP) for biological samples, however, requires the precise control of the microenvironment with temporal and spatial resolution. Temperature variations during an iDEP experiment are a critical aspect in iDEP since Joule heating could lead to various detrimental effects hampering reproducibility. Additionally, Joule heating can potentially induce thermal flow and more importantly can degrade biomolecules and other biological species. Here, we investigate temperature variations in iDEP devices experimentally employing the thermosensitive dye Rhodamin B (RhB) and compare the measured results with numerical simulations. We performed the temperature measurement experiments at a relevant buffer conductivity range commonly used for iDEP applications under applied electric potentials. To this aim, we employed an in-channel measurement method and an alternative method employing a thin film located slightly below the iDEP channel. We found that the temperature does not deviate significantly from room temperature at 100 μS/cm up to 3000 V applied such as in protein iDEP experiments. At a conductivity of 300 μS/cm, such as previously used for mitochondria iDEP experiments at 3000 V, the temperature never exceeds 34 °C. This observation suggests that temperature effects for iDEP of proteins and mitochondria under these conditions are marginal. However, at larger conductivities (1 mS/cm) and only at 3000 V applied, temperature increases were significant, reaching a regime in which degradation is likely to occur. Moreover, the thin layer method resulted in lower temperature enhancement which was also confirmed with numerical simulations. We thus conclude that the thin film method is preferable providing closer

  14. Temporal and spatial temperature measurement in insulator-based dielectrophoretic devices.

    PubMed

    Nakano, Asuka; Luo, Jinghui; Ros, Alexandra

    2014-07-01

    Insulator-based dielectrophoresis is a relatively new analytical technique with a large potential for a number of applications, such as sorting, separation, purification, fractionation, and preconcentration. The application of insulator-based dielectrophoresis (iDEP) for biological samples, however, requires the precise control of the microenvironment with temporal and spatial resolution. Temperature variations during an iDEP experiment are a critical aspect in iDEP since Joule heating could lead to various detrimental effects hampering reproducibility. Additionally, Joule heating can potentially induce thermal flow and more importantly can degrade biomolecules and other biological species. Here, we investigate temperature variations in iDEP devices experimentally employing the thermosensitive dye Rhodamin B (RhB) and compare the measured results with numerical simulations. We performed the temperature measurement experiments at a relevant buffer conductivity range commonly used for iDEP applications under applied electric potentials. To this aim, we employed an in-channel measurement method and an alternative method employing a thin film located slightly below the iDEP channel. We found that the temperature does not deviate significantly from room temperature at 100 μS/cm up to 3000 V applied such as in protein iDEP experiments. At a conductivity of 300 μS/cm, such as previously used for mitochondria iDEP experiments at 3000 V, the temperature never exceeds 34 °C. This observation suggests that temperature effects for iDEP of proteins and mitochondria under these conditions are marginal. However, at larger conductivities (1 mS/cm) and only at 3000 V applied, temperature increases were significant, reaching a regime in which degradation is likely to occur. Moreover, the thin layer method resulted in lower temperature enhancement which was also confirmed with numerical simulations. We thus conclude that the thin film method is preferable providing closer

  15. Device and method for self-verifying temperature measurement and control

    DOEpatents

    Watkins, Arthur D.; Cannon, Collins P.; Tolle, Charles R.

    2002-10-29

    A measuring instrument includes a first temperature sensor, a second temperature sensor and circuitry. The first and second temperature sensors each generate a signal indicative of the temperature of a medium being detected. The circuitry is configured to activate verification of temperature being sensed with the first sensor. According to one construction, the first temperature sensor comprises at least one thermocouple temperature sensor and the second temperature sensor comprises an optical temperature sensor, each sensor measuring temperature over the same range of temperature, but using a different physical phenomena. Also according to one construction, the circuitry comprises a computer configured to detect failure of one of the thermocouples by comparing temperature of the optical temperature sensor with each of the thermocouple temperature sensors. Even further, an output control signal is generated via a fuzzy inference machine and control apparatus.

  16. A robust and well shielded thermal conductivity device for low temperature measurements

    SciTech Connect

    Toews, W. H.; Hill, R. W.

    2014-04-15

    We present a compact mechanically robust thermal conductivity measurement apparatus for measurements at low temperatures (<1 K) and high magnetic fields on small high-purity single crystal samples. A high-conductivity copper box is used to enclose the sample and all the components. The box provides protection for the thermometers, heater, and most importantly the sample increasing the portability of the mount. In addition to physical protection, the copper box is also effective at shielding radio frequency electromagnetic interference and thermal radiation, which is essential for low temperature measurements. A printed circuit board in conjunction with a braided ribbon cable is used to organize the delicate wiring and provide mechanical robustness.

  17. A robust and well shielded thermal conductivity device for low temperature measurements.

    PubMed

    Toews, W H; Hill, R W

    2014-04-01

    We present a compact mechanically robust thermal conductivity measurement apparatus for measurements at low temperatures (<1 K) and high magnetic fields on small high-purity single crystal samples. A high-conductivity copper box is used to enclose the sample and all the components. The box provides protection for the thermometers, heater, and most importantly the sample increasing the portability of the mount. In addition to physical protection, the copper box is also effective at shielding radio frequency electromagnetic interference and thermal radiation, which is essential for low temperature measurements. A printed circuit board in conjunction with a braided ribbon cable is used to organize the delicate wiring and provide mechanical robustness.

  18. A new device for high precision in situ sediment temperature profile measurements at the seafloor

    NASA Astrophysics Data System (ADS)

    Feseker, T.; Wetzel, G.; Heesemann, B.

    2012-04-01

    In situ sediment temperature profile measurements at the seafloor provide valuable information on fluid seepage, hydrate stability, and ambient temperature of samples. In addition, it can be convenient to approximate other parameters such as concentrations of porewater constituents from temperature or temperature gradient using transfer functions if their distribution is controlled by the same processes and direct quantification involves time-consuming sampling and laboratory analyses. We present a new instrument that can be used to obtain precisely positioned sediment temperature profile measurements from the seafloor during ROV dives. Consisting of a 0.4 m-long sensor rod equipped with eight temperature sensors and a standard data logger, the new T-Stick can be operated by an ROV in a fully autonomous mode. The temperature range of the instrument is -5 °C to 35 °C and it can withstand pressures of up to 600 bar. Compared to previously used instruments, the smaller diameter of the new T-Stick reduces the thermal inertia of the lance and results in shorter equilibration times. Virtual measurements generated by a numerical model showed that the T-Stick provides highly accurate temperature profile measurements with a root mean square error of 0.0027 K for a wide range of thermal sediment properties. Modeled temperature gradients are representative of both normal deep sea settings and cold seep environments with elevated temperature gradients of up to three orders of magnitude above normal background values, which are the primary target areas for T-Stick measurements. Deviations from the true in situ temperature profiles are caused by disturbance of the temperature field by the probe itself and may lead to underestimation of gradients and curvature in the profiles. A first field test of the T-Stick was conducted at the Håkon Mosby mud volcano at 1250 m water depth on the Barents Sea slope, where the new instrument provided useful information about the origin and

  19. Temperature differential detection device

    DOEpatents

    Girling, P.M.

    1986-04-22

    A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions. 2 figs.

  20. Temperature differential detection device

    DOEpatents

    Girling, Peter M.

    1986-01-01

    A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions.

  1. Portable emittance measurement device

    SciTech Connect

    Liakin, D.; Seleznev, D.; Orlov, A.; Kuibeda, R.; Kropachev, G.; Kulevoy, T.; Yakushin, P.

    2010-02-15

    In Institute for Theoretical and Experimental Physics (ITEP) the portable emittance measurements device is developed. It provides emittance measurements both with ''pepper-pot'' and ''two slits'' methods. Depending on the method of measurements, either slits or pepper-pot mask with scintillator are mounted on the two activators and are installed in two standard Balzer's cross chamber with CF-100 flanges. To match the angle resolution for measured beam, the length of the stainless steel pipe between two crosses changes is adjusted. The description of the device and results of emittance measurements at the ITEP ion source test bench are presented.

  2. Emission rate measuring device

    NASA Astrophysics Data System (ADS)

    Luckat, S.

    1980-09-01

    The development and application of an emission rate measuring device for gaseous components is explored. The device contains absorption fluid from a supply container that moistens a cylindrical paper sleeve. A newer model is provided with a direct current motor requiring less electricity than an older model. The hose pump is modified to avoid changing it and the filter sleeve is fastened more securely to the distributor head. Application of the measuring devices is discussed, particularly at the Cologne Cathedral, where damage to the stone is observed.

  3. Human performance measuring device

    NASA Technical Reports Server (NTRS)

    Michael, J.; Scow, J.

    1970-01-01

    Complex coordinator, consisting of operator control console, recorder, subject display panel, and limb controls, measures human performance by testing perceptual and motor skills. Device measures psychophysiological functions in drug and environmental studies, and is applicable to early detection of psychophysiological body changes.

  4. High temperature superconductor micro-superconducting-quantum-interference-device magnetometer for magnetization measurement of a microscale magnet

    SciTech Connect

    Takeda, Keiji; Mori, Hatsumi; Yamaguchi, Akira; Ishimoto, Hidehiko; Nakamura, Takayoshi; Kuriki, Shinya; Hozumi, Toshiya; Ohkoshi, Shin-ichi

    2008-03-15

    We have developed a high temperature superconductor (HTS) micrometer-sized dc superconducting quantum interference device (SQUID) magnetometer for high field and high temperature operation. It was fabricated from YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} of 92 nm in thickness with photolithography techniques to have a hole of 4x9 {mu}m{sup 2} and 2 {mu}m wide grain boundary Josephson junctions. Combined with a three dimensional magnetic field coil system, the modulation patterns of critical current I{sub c} were observed for three different field directions. They were successfully used to measure the magnetic properties of a molecular ferrimagnetic microcrystal (23x17x13 {mu}m{sup 3}), [Mn{sub 2}(H{sub 2}O){sub 2}(CH{sub 3}COO)][W(CN){sub 8}]{center_dot}2H{sub 2}O. The magnetization curve was obtained in magnetic field up to 0.12 T between 30 and 70 K. This is the first to measure the anisotropy of hysteresis curve in the field above 0.1 T with an accuracy of 10{sup -12} J T{sup -1} (10{sup -9} emu) with a HTS micro-SQUID magnetometer.

  5. Temperature measurement

    MedlinePlus

    ... the body. Wait for 5 minutes before reading. Plastic strip thermometers change color to show the temperature. ... 1 minute while the strip is in place. Plastic strip thermometers for the mouth are also available. ...

  6. Temperature Measurement Aid

    NASA Technical Reports Server (NTRS)

    1979-01-01

    NASA's Ames Research Center has designed a simple but medically important device--one which holds temperature probes, called thermistors, to a person's skin without affecting the characteristics of the skin segment being measured. The device improves the accuracy of skin surface temperature measurements, valuable data in health evaluation. The need for such a device was recognized in the course of life science experiments at Ames. In earlier methods, the sensing head of the temperature probe was affixed to the patient's skin by tape or elastic bands. This created a heat variance which altered skin temperature readings. The Ames-developed thermistor holder is a plastic ring with tab extensions, shown in the upper photo on the chest, arm and leg of the patient undergoing examination. The ring holds the sensing head of the temperature probe and provides firm, constant pressure between the skin and the probe. The tabs help stabilize the ring and provide attachment points for the fastening tape or bands, which do not directly touch the sensor. With this new tool, it is possible to determine more accurately the physiological effects of strenuous exercise, particularly on the treadmill. The holder is commercially available from Yellow Springs Instrument Company, Inc., Yellow Springs, Ohio, which is producing the device under a NASA patent license.

  7. Temperature dependence of polymer photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Nakazawa, Yuko

    One of many steps to develop a sustainable society is to reduce the use of fossil fuels by replacing them with renewable energy sources, such as solar energy. This dissertation concerns one of the most contemporary methods to harvest solar radiation and covert it to electricity, using thin polymer films. The photovoltaic devices in this study consisted of a thin layer of p-phenylenevinylene (PPV) based semiconducting polymer sandwiched between two metals (semi-transparent ITO and evaporated metal electrode). Two modified device structures were studied, an interfacial heterojunction device, which includes an additional layer of inorganic n-type semiconductor (Ti-oxides) and a bulk heterojunction device, which is formed by blending electron-attracting materials. Both modifications resulted in higher device performances under ambient conditions due to an increased number of dissociation sites. From studies of inorganic solar cells, it is well known that temperature has a large effect on device performance. However, there are only a few studies on organic Solar cells, concerning the temperature dependence. This thesis focuses on understanding the temperature dependent behaviors of polymer photovoltaic devices. Temperature dependence study allows us to examine how the device parameters such as short circuit current (Isc) and open circuit voltage (Voc) are affected by the material properties and the device architectures. The current-voltage relationships were measured in a temperature controlled OXFORD cryostat operating between 150K and 404K. From the dark current-voltage measurements, the field-independent hole mobility (mu0) was extracted, using a space charge limited current analysis. From the photocurrent-voltage measurements, the temperature dependence on Isc, Voc, and fill factor were studied. The temperature characteristics of Isc (T) were compared to that of mu0(T), and two different dependencies were obtained for different device architectures. The temperature

  8. Laser induced fluorescence measurements of axial velocity, velocity shear, and parallel ion temperature profiles during the route to plasma turbulence in a linear magnetized plasma device

    NASA Astrophysics Data System (ADS)

    Chakraborty Thakur, S.; Adriany, K.; Gosselin, J. J.; McKee, J.; Scime, E. E.; Sears, S. H.; Tynan, G. R.

    2016-11-01

    We report experimental measurements of the axial plasma flow and the parallel ion temperature in a magnetized linear plasma device. We used laser induced fluorescence to measure Doppler resolved ion velocity distribution functions in argon plasma to obtain spatially resolved axial velocities and parallel ion temperatures. We also show changes in the parallel velocity profiles during the transition from resistive drift wave dominated plasma to a state of weak turbulence driven by multiple plasma instabilities.

  9. Capacitance measuring device

    DOEpatents

    Andrews, W.H. Jr.

    1984-08-01

    A capacitance measuring circuit is provided in which an unknown capacitance is measured by comparing the charge stored in the unknown capacitor with that stored in a known capacitance. Equal and opposite voltages are repetitively simultaneously switched onto the capacitors through an electronic switch driven by a pulse generator to charge the capacitors during the ''on'' portion of the cycle. The stored charge is compared by summing discharge currents flowing through matched resistors at the input of a current sensor during the ''off'' portion of the switching cycle. The net current measured is thus proportional to the difference in value of the two capacitances. The circuit is capable of providing much needed accuracy and stability to a great variety of capacitance-based measurement devices at a relatively low cost.

  10. Device for calorimetric measurement

    DOEpatents

    King, William P; Lee, Jungchul

    2015-01-13

    In one aspect, provided herein is a single crystal silicon microcalorimeter, for example useful for high temperature operation and long-term stability of calorimetric measurements. Microcalorimeters described herein include microcalorimeter embodiments having a suspended structure and comprising single crystal silicon. Also provided herein are methods for making calorimetric measurements, for example, on small quantities of materials or for determining the energy content of combustible material having an unknown composition.

  11. High temperature electronic gain device

    DOEpatents

    McCormick, J. Byron; Depp, Steven W.; Hamilton, Douglas J.; Kerwin, William J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube.

  12. RADIATION MEASURING DEVICES

    DOEpatents

    Bouricius, G.M.B.; Rusch, G.K.

    1960-03-22

    A radiation-measuring device is described having an a-c output. The apparatus has a high-energy particle source responsive to radiation flux disposed within a housing having a pair of collector plates. A potential gradient between the source and collector plates causes ions to flow to the plates. By means of electrostatic or magnetic deflection elements connected to an alternating potential, the ions are caused to flow alternately to each of the collector plates causing an a-c signal thereon.

  13. Electronic measurement correction devices

    SciTech Connect

    Mahns, R.R.

    1984-04-01

    The electronics semi-conductor revolution has touched every industry and home in the nation. The gas industry is no exception. Sophisticated gas measurement instrumentation has been with us for several decades now, but only in the last 10 years or so has it really begun to boom. First marketed were the flow computers dedicated to orifice meter measurement; but with steadily decreasing manufacturing costs, electronic instrumentation is now moving into the area of base volume, pressure and temperature correction previously handled almost solely by mechanical integrating instruments. This paper takes a brief look at some of the features of the newcomers on the market and how they stack up against the old standby mechanical base volume/pressure/temperature correctors.

  14. A Comparison between Conductive and Infrared Devices for Measuring Mean Skin Temperature at Rest, during Exercise in the Heat, and Recovery

    PubMed Central

    Bach, Aaron J. E.; Stewart, Ian B.; Disher, Alice E.; Costello, Joseph T.

    2015-01-01

    Purpose Skin temperature assessment has historically been undertaken with conductive devices affixed to the skin. With the development of technology, infrared devices are increasingly utilised in the measurement of skin temperature. Therefore, our purpose was to evaluate the agreement between four skin temperature devices at rest, during exercise in the heat, and recovery. Methods Mean skin temperature (T-sk) was assessed in thirty healthy males during 30 min rest (24.0 ± 1.2°C, 56 ± 8%), 30 min cycle in the heat (38.0 ± 0.5°C, 41 ± 2%), and 45 min recovery (24.0 ± 1.3°C, 56 ± 9%). T-sk was assessed at four sites using two conductive devices (thermistors, iButtons) and two infrared devices (infrared thermometer, infrared camera). Results Bland–Altman plots demonstrated mean bias ± limits of agreement between the thermistors and iButtons as follows (rest, exercise, recovery): -0.01 ± 0.04, 0.26 ± 0.85, -0.37 ± 0.98°C; thermistors and infrared thermometer: 0.34 ± 0.44, -0.44 ± 1.23, -1.04 ± 1.75°C; thermistors and infrared camera (rest, recovery): 0.83 ± 0.77, 1.88 ± 1.87°C. Pairwise comparisons of T-sk found significant differences (p < 0.05) between thermistors and both infrared devices during resting conditions, and significant differences between the thermistors and all other devices tested during exercise in the heat and recovery. Conclusions These results indicate poor agreement between conductive and infrared devices at rest, during exercise in the heat, and subsequent recovery. Infrared devices may not be suitable for monitoring T-sk in the presence of, or following, metabolic and environmental induced heat stress. PMID:25659140

  15. Temperature monitoring device and thermocouple assembly therefor

    DOEpatents

    Grimm, Noel P.; Bauer, Frank I.; Bengel, Thomas G.; Kothmann, Richard E.; Mavretish, Robert S.; Miller, Phillip E.; Nath, Raymond J.; Salton, Robert B.

    1991-01-01

    A temperature monitoring device for measuring the temperature at a surface of a body, composed of: at least one first thermocouple and a second thermocouple; support members supporting the thermocouples for placing the first thermocouple in contact with the body surface and for maintaining the second thermocouple at a defined spacing from the body surface; and a calculating circuit connected to the thermocouples for receiving individual signals each representative of the temperature reading produced by a respective one of the first and second thermocouples and for producing a corrected temperature signal having a value which represents the temperature of the body surface and is a function of the difference between the temperature reading produced by the first thermocouple and a selected fraction of the temperature reading provided by the second thermocouple.

  16. Development of core ion temperature gradients and edge sheared flows in a helicon plasma device investigated by laser induced fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Thakur, S. C.; Gosselin, J. J.; McKee, J.; Scime, E. E.; Sears, S. H.; Tynan, G. R.

    2016-08-01

    We report experimental observation of ion heating and subsequent development of a prominent ion temperature gradient in the core of a linear magnetized plasma device, and the controlled shear de-correlation experiment. Simultaneously, we also observe the development of strong sheared flows at the edge of the device. Both the ion temperature and the azimuthal velocity profiles are quite flat at low magnetic fields. As the magnetic field is increased, the core ion temperature increases, producing centrally peaked ion temperature profiles and therefore strong radial gradients in the ion temperature. Similarly, we observe the development of large azimuthal flows at the edge, with increasing magnetic field, leading to strong radially sheared plasma flows. The ion velocities and temperatures are derived from laser induced fluorescence measurements of Doppler resolved velocity distribution functions of argon ions. These features are consistent with the previous observations of simultaneously existing radially separated multiple plasma instabilities that exhibit complex plasma dynamics in a very simple plasma system. The ion temperature gradients in the core and the radially sheared azimuthal velocities at the edge point to mechanisms that can drive the multiple plasma instabilities, that were reported earlier.

  17. Optical device for straightness measurement

    NASA Astrophysics Data System (ADS)

    Vekteris, Vladas; Jurevicius, Mindaugas; Turla, Vytautas

    2015-11-01

    The present paper describes the research of the optical device for two-dimensional straightness measurement of technological machines. Mathematical study of an optical device, operating on the phase principle and measuring transversal displacements of machine parts in two directions ( X and Y) during their linear longitudinal motion in a machine (alongside the Z axis), is presented. How to estimate the range of travel along the Z axis is analytically shown. At this range, the measurer gives correct measurements of transverse displacement. The necessary distance from the objective focus to the image plane was defined mathematically. The sample results of measuring the displacement of the table of a technological machine by using the optical device are presented in the paper. This optical device for non-contact straightness measurement can be used for measurement straightness in turning, milling, drilling, grinding machines and other technological machines, also in geodesy and cartography, and for moving accuracy testing of mechatronic devices, robotics and others.

  18. A novel portable device to measure the temperature of both the inner and the outer tubes of a parabolic receiver in the field

    NASA Astrophysics Data System (ADS)

    Hermoso, J. L. Navarro; Espinosa-Rueda, Guillermo; Martinez, Noelia; Heras, Carlos; Osta, Marta

    2016-05-01

    The performance of parabolic trough (PT) receiver tubes (RT) has a direct impact on Solar Thermal Energy (STE) plant production. As a result, one major need of operation and maintenance (O&M) in STE plants is to monitor the state of the receiver tube as a key element in the solar field. However the lack of specific devices so far has limited the proper evaluation of operating receiver tubés thermal performance. As a consequence non-accurate approximations have been accepted until now using infrared thermal images of the glass outer tube. In order to fulfill this need, Abengoa has developed a unique portable device for evaluating the thermal performance and vacuum state of parabolic trough receiver tubes placed in the field. The novel device described in this paper, simultaneously provides the temperature of both the inner steel tube and the outer glass tube enabling a check on manufacturers specifications. The on-field evaluation of any receiver tube at any operating temperature has become possible thanks to this new measuring device. The features and usability of this new measurement system as a workable portable device in operating solar fields provide a very useful tool for all companies in the sector contributing to technology progress. The originality of the device, patent pending P201431969, is not limited to the CSP sector, also having scientific significance in the general measuring instruments field. This paper presents the work carried out to develop and validate the device, also detailing its functioning properties and including the excellent results obtained in the laboratory to determine its accuracy and standard deviation. This information was validated with data collected by O&M teams using this instrument in a commercial CSP plant. The relevance of the device has been evidenced by evaluating a wide sample of RT and the results are discussed in this paper. Finally, all the on field collected data is used to demonstrate the high impact that using

  19. Measurements of ion temperature and flow of pulsed plasmas produced by a magnetized coaxial plasma gun device using an ion Doppler spectrometer

    NASA Astrophysics Data System (ADS)

    Kitagawa, Y.; Sakuma, I.; Iwamoto, D.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    It is important to know surface damage characteristics of plasma-facing component materials during transient heat and particle loads such as type I ELMs. A magnetized coaxial plasma gun (MCPG) device has been used as transient heat and particle source in ELM simulation experiments. Characteristics of pulsed plasmas produced by the MCPG device play an important role for the plasma material interaction. In this study, ion temperature and flow velocity of pulsed He plasmas were measured by an ion Doppler spectrometer (IDS). The IDS system consists of a light collection system including optical fibers, 1m-spectrometer and a 16 channel photomultiplier tube (PMT) detector. The IDS system measures the width and Doppler shift of HeII (468.58 nm) emission line with the time resolution of 1 μs. The Doppler broadened and shifted spectra were measured with 45 and 135 degree angles with respect to the plasmoid traveling direction. The observed emission line profile was represented by sum of two Gaussian components to determine the temperature and flow velocity. The minor component at around the wavelength of zero-velocity was produced by the stationary plasma. As the results, the ion velocity and temperature were 68 km/s and 19 eV, respectively. Thus, the He ion flow energy is 97 eV. The observed flow velocity agrees with that measured by a time of flight technique.

  20. Metal Resistivity Measuring Device

    DOEpatents

    Renken, Jr, C. J.; Myers, R. G.

    1960-12-20

    An eddy current device is designed for detecting discontinuities in metal samples. Alternate short and long duration pulses are inductively applied to a metal sample via the outer coil of a probe. The lorg pulses give a resultant signal from the metal sample responsive to probe-tosample spacing and discontinuities with the sample, and the short pulses give a resultant signal responsive only to probe-to-sample spacing. The inner coil of the probe detects the two resultant signals and transmits them to a separation network where the two signals are separated. The two separated signals are then transmitted to a compensation network where the detected signals due to the short pulses are used to compensate for variations due to probeto-sample spacing contained in the detected signals from the long pulses. Thus a resultant signal is obtained responsive to discontinuities within the sample and independent of probe-to- sample spacing.

  1. METAL RESISTIVITY MEASURING DEVICE

    DOEpatents

    Renken, J. Jr.; Myers, R.G.

    1960-12-20

    An eddy current device is offered for detecting discontinuities in metal samples. Alternate short and long duration pulses are inductively applied to a metal sample via the outer coil of a probe. The long pulses give a resultant signal from the metal sample responsive to probe-tosample spacing and discontinuities within the sample and the shont pulses give a resultant signal responsive only to probe -to-sample spacing. The inner coil of the probe detects the two resultant signals and transmits them to a separation network where the two signals are separated. The two separated signals are then transmitted to a compensation network where the detected signals due to the short pulses are used to compensate for variations due to probe-to-sample spacing contained in the detected signals from the long pulses. Thus, a resultant signal is obtained responsive to discontinuities within the sample and independent of probe-to- sample spacing.

  2. A new developed velocity of sound measurement device for characterization of multi-component gas mixtures under elevated temperatures and pressures.

    PubMed

    Seibel, C; Suedmeyer, J; Fieback, T M

    2014-07-01

    Inline process control by measurement of velocity of sound of fluids is a direct and comprehensive technique [J. D. N. Cheeke and Z. Wang, "Acoustic wave gas sensors," Sens. Actuators B 59, 146-153 (1999); J. W. Grate, S. J. Martin, and R. M. White, "Acoustic wave microsensors," Anal. Chem. 65, 1868 (1993)]. Depending on the varying conditions of measuring fluid(s), temperatures and pressures, it is a challenging task to find the best possible acoustic setup. Taking this background into account, a velocity of sound measurement device for temperatures up to 475 K and pressures up to 24 MPa was designed and assembled that is to be used for testing different resonator types. Two bulk acoustic wave resonators out of the commonly used lead zirconatetitanate compound (PZT) were tested at different test fluids under temperatures up to 423.15 K and pressures up to 24 MPa [S. Gebhardt, L. Seffner, F. Schlenkirch, and A. Schönecker, "PZT thick films for sensor and actuator applications," J. Eur. Ceram. Soc. 27, 4177-4180 (2007)]. Initially the pure gases methane, ethane, carbon dioxide, nitrogen, and helium were measured, followed by multi-component gas mixtures. Beside methane-based binary and ternary gas mixtures, a quaternary gas mixture comprising methane, ethane, carbon dioxide, and helium was analyzed. Results for all measurement fluids in a broad temperature and pressure range show a relative deviation to theoretical values derived from GERG-2008 smaller than 0.5%.

  3. Vestibular Function Measurement Devices

    PubMed Central

    Miles, Richard D.; Zapala, David A.

    2015-01-01

    Vestibular function laboratories utilize a multitude of diagnostic instruments to evaluate a dizzy patient. Caloric irrigators, oculomotor stimuli, and rotational chairs produce a stimulus whose accuracy is required for the patient response to be accurate. Careful attention to everything from cleanliness of equipment to threshold adjustments determine on a daily basis if patient data are going to be correct and useful. Instrumentation specifications that change with time such as speed and temperature must periodically be checked using calibrated instruments. PMID:27516710

  4. Mirror Measurement Device

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A Small Business Innovation Research (SBIR) contract led to a commercially available instrument used to measure the shape profile of mirror surfaces in scientific instruments. Bauer Associates, Inc.'s Bauer Model 200 Profilometer is based upon a different measurement concept. The local curvature of the mirror's surface is measured at many points, and the collection of data is computer processed to yield the desired shape profile. (Earlier profilometers are based on the principle of interferometry.) The system is accurate and immune to problems like vibration and turbulence. Two profilometers are currently marketed, and a third will soon be commercialized.

  5. Evaluation and improvement in the accuracy of a charge-coupled-device-based pyrometer for temperature field measurements of continuous casting billets.

    PubMed

    Bai, Haicheng; Xie, Zhi; Zhang, Yuzhong; Hu, Zhenwei

    2013-06-01

    This paper presents a radiometric high-temperature field measurement model based on a charge-coupled-device (CCD). According to the model, an intelligent CCD pyrometer with a digital signal processor as the core is developed and its non-uniformity correction algorithm for reducing the differences in accuracy between individual pixel sensors is established. By means of self-adaptive adjustment for the light-integration time, the dynamic range of the CCD is extended and its accuracy in low-temperature range is improved. The non-uniformity correction algorithm effectively reduces the accuracy differences between different pixel sensors. The performance of the system is evaluated through a blackbody furnace and an integrating sphere, the results of which show that the dynamic range of 400 K is obtained and the accuracy in low temperature range is increased by 7 times compared with the traditional method based on the fixed light-integration time. In addition, the differences of accuracy between the on-axis pixel and the most peripheral pixels are decreased from 19.1 K to 2.8 K. Therefore, this CCD pyrometer ensures that the measuring results of all pixels tend to be equal-accuracy distribution across the entire measuring ranges. This pyrometric system has been successfully applied to the temperature field measurements in continuous casting billets.

  6. Evaluation and improvement in the accuracy of a charge-coupled-device-based pyrometer for temperature field measurements of continuous casting billets.

    PubMed

    Bai, Haicheng; Xie, Zhi; Zhang, Yuzhong; Hu, Zhenwei

    2013-06-01

    This paper presents a radiometric high-temperature field measurement model based on a charge-coupled-device (CCD). According to the model, an intelligent CCD pyrometer with a digital signal processor as the core is developed and its non-uniformity correction algorithm for reducing the differences in accuracy between individual pixel sensors is established. By means of self-adaptive adjustment for the light-integration time, the dynamic range of the CCD is extended and its accuracy in low-temperature range is improved. The non-uniformity correction algorithm effectively reduces the accuracy differences between different pixel sensors. The performance of the system is evaluated through a blackbody furnace and an integrating sphere, the results of which show that the dynamic range of 400 K is obtained and the accuracy in low temperature range is increased by 7 times compared with the traditional method based on the fixed light-integration time. In addition, the differences of accuracy between the on-axis pixel and the most peripheral pixels are decreased from 19.1 K to 2.8 K. Therefore, this CCD pyrometer ensures that the measuring results of all pixels tend to be equal-accuracy distribution across the entire measuring ranges. This pyrometric system has been successfully applied to the temperature field measurements in continuous casting billets. PMID:23822369

  7. Optoelectronic device for hematocrit measurements

    NASA Astrophysics Data System (ADS)

    Pluta, M.; Milewska, D.; Mazikowski, A.

    2015-09-01

    An optoelectronic system for measurements of hematocrit level (HCT) in the whole human blood is presented. Proposed system integrates a dedicated optoelectronic sensor, a microcontroller and a small LCD display in a low cost, battery-powered, handheld device. Chosen method for determining blood hematocrit level is based on optical properties of whole blood in visible and NIR wavelength range. Measurements with the use of proposed system require blood samples (small drop in the range of microliters) which is placed in the micro cuvette. Then, absorption of the sample is measured at wavelengths of 570 nm and 880 nm. Prototype of the device was build and tested. Test results confirmed proper operation of the device with correct metrological parameters in application to HCT level measurements. Such a portable device can be used as a tool of bedside diagnosis, which becomes interesting alternative to full laboratory tests.

  8. Semiautomatic measuring device for sheets

    NASA Astrophysics Data System (ADS)

    Naumann, G.; Kupsch, H.; Kleine, H.; Hantschke, J.

    1984-02-01

    A measuring device for testing electrical steel sheets within the frequency range 0 ≤ f ≤ 400 Hz is described. The hysteresis loop and the magnetization curve are recorded by an X-Y graphical recorder, the digitized measured values concerning the range of magnetizing force, flux density and losses (Wm -3) are displayed and printed out. The principle of data acquisition, a new-type digitizing method for dynamic hysteresis loops and the principle for measuring quasi-static characteristics are described. The configuration and reliability of the measuring device have turned out well in an in-plant research laboratory during an 18 month period.

  9. Nanoscale temperature mapping in operating microelectronic devices

    SciTech Connect

    Mecklenburg, Matthew; Hubbard, William A.; White, E. R.; Dhall, Rohan; Cronin, Stephen B.; Aloni, Shaul; Regan, B. C.

    2015-02-05

    We report that modern microelectronic devices have nanoscale features that dissipate power nonuniformly, but fundamental physical limits frustrate efforts to detect the resulting temperature gradients. Contact thermometers disturb the temperature of a small system, while radiation thermometers struggle to beat the diffraction limit. Exploiting the same physics as Fahrenheit’s glass-bulb thermometer, we mapped the thermal expansion of Joule-heated, 80-nanometer-thick aluminum wires by precisely measuring changes in density. With a scanning transmission electron microscope (STEM) and electron energy loss spectroscopy (EELS), we quantified the local density via the energy of aluminum’s bulk plasmon. Rescaling density to temperature yields maps with a statistical precision of 3 kelvin/hertz₋1/2, an accuracy of 10%, and nanometer-scale resolution. Lastly, many common metals and semiconductors have sufficiently sharp plasmon resonances to serve as their own thermometers.

  10. Nanoscale temperature mapping in operating microelectronic devices

    DOE PAGES

    Mecklenburg, Matthew; Hubbard, William A.; White, E. R.; Dhall, Rohan; Cronin, Stephen B.; Aloni, Shaul; Regan, B. C.

    2015-02-05

    We report that modern microelectronic devices have nanoscale features that dissipate power nonuniformly, but fundamental physical limits frustrate efforts to detect the resulting temperature gradients. Contact thermometers disturb the temperature of a small system, while radiation thermometers struggle to beat the diffraction limit. Exploiting the same physics as Fahrenheit’s glass-bulb thermometer, we mapped the thermal expansion of Joule-heated, 80-nanometer-thick aluminum wires by precisely measuring changes in density. With a scanning transmission electron microscope (STEM) and electron energy loss spectroscopy (EELS), we quantified the local density via the energy of aluminum’s bulk plasmon. Rescaling density to temperature yields maps with amore » statistical precision of 3 kelvin/hertz₋1/2, an accuracy of 10%, and nanometer-scale resolution. Lastly, many common metals and semiconductors have sufficiently sharp plasmon resonances to serve as their own thermometers.« less

  11. Direct temperature mapping of nanoscale plasmonic devices.

    PubMed

    Desiatov, Boris; Goykhman, Ilya; Levy, Uriel

    2014-02-12

    Side by side with the great advantages of plasmonics in nanoscale light confinement, the inevitable ohmic loss results in significant joule heating in plasmonic devices. Therefore, understanding optical-induced heat generation and heat transport in integrated on-chip plasmonic devices is of major importance. Specifically, there is a need for in situ visualization of electromagnetic induced thermal energy distribution with high spatial resolution. This paper studies the heat distribution in silicon plasmonic nanotips. Light is coupled to the plasmonic nanotips from a silicon nanowaveguide that is integrated with the tip on chip. Heat is generated by light absorption in the metal surrounding the silicon nanotip. The steady-state thermal distribution is studied numerically and measured experimentally using the approach of scanning thermal microscopy. It is shown that following the nanoscale heat generation by a 10 mW light source within a silicon photonic waveguide the temperature in the region of the nanotip is increased by ∼ 15 °C compared with the ambient temperature. Furthermore, we also perform a numerical study of the dynamics of the heat transport. Given the nanoscale dimensions of the structure, significant heating is expected to occur within the time frame of picoseconds. The capability of measuring temperature distribution of plasmonic structures at the nanoscale is shown to be a powerful tool and may be used in future applications related to thermal plasmonic applications such as control heating of liquids, thermal photovoltaic, nanochemistry, medicine, heat-assisted magnetic memories, and nanolithography.

  12. TIME-INTERVAL MEASURING DEVICE

    DOEpatents

    Gross, J.E.

    1958-04-15

    An electronic device for measuring the time interval between two control pulses is presented. The device incorporates part of a previous approach for time measurement, in that pulses from a constant-frequency oscillator are counted during the interval between the control pulses. To reduce the possible error in counting caused by the operation of the counter gating circuit at various points in the pulse cycle, the described device provides means for successively delaying the pulses for a fraction of the pulse period so that a final delay of one period is obtained and means for counting the pulses before and after each stage of delay during the time interval whereby a plurality of totals is obtained which may be averaged and multplied by the pulse period to obtain an accurate time- Interval measurement.

  13. Beta ray flux measuring device

    DOEpatents

    Impink, Jr., Albert J.; Goldstein, Norman P.

    1990-01-01

    A beta ray flux measuring device in an activated member in-core instrumentation system for pressurized water reactors. The device includes collector rings positioned about an axis in the reactor's pressure boundary. Activated members such as hydroballs are positioned within respective ones of the collector rings. A response characteristic such as the current from or charge on a collector ring indicates the beta ray flux from the corresponding hydroball and is therefore a measure of the relative nuclear power level in the region of the reactor core corresponding to the specific exposed hydroball within the collector ring.

  14. Devices and methods to measure H2 and CO2 concentrations in gases released from soils and low temperature fumaroles in volcanic areas

    NASA Astrophysics Data System (ADS)

    di Martino, R. M. R.; Camarda, M.; Gurrieri, S.; Valenza, M.

    2009-04-01

    Hydrogen solubility and diffusion have a great relevance to change the redox state of magmas, usually expressed by oxygen fugacity. This influences many chemical and physical properties, such as oxidation state of multivalent elements, kind and abundance of minerals and gas species. These processes change the phase ratios into the volcanic system and so the magma movement capability toward the earth surface and the eruptive dynamics. In past studies several authors (Carapezza et al., 1980; Sato et al., 1982; Sato and McGee, 1985; Wakita et al., 1980) proposed the application of the fuel cells in order to measure reducing capacity of volcanic gases. Their found some clear correlations between variation peaks and volcanic activity but a few reducing capacity changes showed no correlation with it. In this study we characterize a fuel cell device designed to measure hydrogen concentration in a gas mixture. We present test results obtained in laboratory and in field trip, carried out to verify the major interferences of others reducing gas species, commonly present in volcanic emissions, in the measurement carried out with a hydrogen fuel cell sensor. Tests were performed at controlled temperature ad pressure conditions and at air saturated pressure vapour in the cell cathode. A new device to measure simultaneously hydrogen (H2) and carbon dioxide (CO2) concentrations in soil and in low temperature fumaroles in volcanic areas was proposed. The H2-detector is a hydrogen fuel cell, whereas CO2 is measured using an I.R. spectrometer. To build a continuous monitoring station of volcanic activity both sensors were put in a case together with a data logger. Our device has 0.2 mV ppm-1 sensitivity, accuracy of ± 5 ppm and about 10 ppm resolution whit respect to the hydrogen concentration. These instrumental characteristics were obtained applying a 500 ohm resistor to the external circuit that represents the best compromise between sensitivity, resolution, instrumental

  15. Temperature-controlled fluidic device A concept

    NASA Technical Reports Server (NTRS)

    Rehsteiner, F. H.

    1970-01-01

    Symmetrical fluidic device directly converts electrical signals to mechanical signals in the form of a fluid-flow parameter. This device eliminates or reduces effects of all undesirable parameters on the departure angle, leaving it a function of the controlled wall and jet temperatures.

  16. New electronic measurement, control devices

    NASA Astrophysics Data System (ADS)

    1985-04-01

    The electronic control device serves to measure the capacitance of the loss factor tg delta and the leakage current of tantalum and electrolytic capacitors. During the measurement of the leakage current, the capacitor can be polarized from an internal source with constant voltage regulated continuously from 0 to 100 V, or with a voltage of up to 500 V from an external source. The instrument has a system signalizing the loading state of the capacitor and a system for unloading it. The meter has two readout fields with LED display indicators: 3 and 5-digit for measuring the capacitance and the leakage current; 3-digit for measurement of tg delta and polarization intensity. The choice of the range for capacitance measurement can be done manually or from outside. The capacitance measurement is performed by the four-point technique in a serial replacement system. The meter with the corresponding interface block can operate in measurement systems according to IEC/ISP II standard.

  17. Development of a Low-Temperature Insert for Precise Magnetization Measurement below T = 2 K with a Superconducting Quantum Interference Device Magnetometer

    NASA Astrophysics Data System (ADS)

    Sato, Yoshiaki; Makiyama, Shun; Sakamoto, Yasutaka; Hasuo, Tadahiko; Inagaki, Yuji; Fujiwara, Tetsuya; Suzuki, Hiroyuki S.; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Kawae, Tatsuya

    2013-10-01

    We have developed a 9-mm-diameter 3He insert for precise magnetization measurements below T = 2 K that is attachable to a commercial superconducting quantum interference device magnetometer. The insert is made from a thin-walled stainless steel pipe with an inner diameter of 6.2 mm, which determines the maximum sample size. 3He gas is condensed in the pipe, which is liquefied by 4He gas at T ˜1.8 K generated by the magnetometer via the heat exchanger of a Cu vacuum jacket with an outer diameter of 8.6 mm soldered to the stainless steel pipe. The temperature of the insert is decreased to T ˜0.5 K by evacuating liquid 3He using a rotary pump and then to T = 0.36 K with a sorption pump. From the diamagnetization signal of a superconducting Al chip with a mass below 0.1 mg, the magnetization resolution with the insert is confirmed to be less than 10-7 emu. To examine the performance of the insert, we measured the temperature dependence of the magnetic susceptibility and magnetization for Pr0.6La0.4Ag2In down to T = 0.4 K.

  18. Measuring Temperature Reading

    NASA Technical Reports Server (NTRS)

    2003-01-01

    There are two requirements for taking a measurement of something. The first is a tool for taking a measurement. The second is scale for making sense of the numbers of the measurement. For example, a ruler is often used to measure short lengths. It is the tool for measurement. On the ruler are one or more number scales with equally spaced numbers. These numbers can be compared with numbers from any other ruler that is accurately set to the same scale. Measuring length is far simpler than measuring temperature. While there is evidence of tools for measuring length at various times in human history, tools and scales for measuring temperature do not appear until more recent human history. Early thermometers, called thermoscopes, first appear in the 1500's. They were crude instruments that were not at all accurate. Most did not even have a number scale associated with them. This made them useless for most practical purposes. Gabriel Fahrenheit created the first accurate thermometer in 1714, and the Fahrenheit temperature scale followed it in 1724. The thermometer s accuracy was based on its use of mercury, a silver colored substance that remains liquid over a wide range of temperatures but expands or contracts in a standard, predictable way with changes in temperature. To set the scale, Fahrenheit created the coldest temperature that he could. He mixed equal parts of ice, water, and salt, and then used this as the zero point, 0 degrees, of his scale. He intended to make 30 degrees the freezing point of water and 90 degrees the temperature of the human body, but he had to later revise these temperatures to be 32 degrees and 96 degrees. In the final version of the scale, the temperature of the human body became 98.6 degrees. 19th century thermoscope

  19. Finger-Circumference-Measuring Device

    NASA Technical Reports Server (NTRS)

    Le, Suy

    1995-01-01

    Easy-to-use device quickly measures circumference of finger (including thumb) on human hand. Includes polytetrafluoroethylene band 1/8 in. wide, bent into loop and attached to tab that slides on scale graduated in millimeters. Sliding tab preloaded with constant-force tension spring, which pulls tab toward closure of loop. Designed to facilitate measurements at various points along fingers to obtain data for studies of volumetric changes of fingers in microgravity. Also used in normal Earth gravity studies of growth and in assessment of diseases like arthritis.

  20. Quantum interferometric measurements of temperature

    NASA Astrophysics Data System (ADS)

    Jarzyna, Marcin; Zwierz, Marcin

    2015-09-01

    We provide a detailed description of the quantum interferometric thermometer, which is a device that estimates the temperature of a sample from the measurements of the optical phase. We rigorously analyze the operation of such a device by studying the interaction of the optical probe system prepared in a single-mode Gaussian state with a heated sample modeled as a dissipative thermal reservoir. We find that this approach to thermometry is capable of measuring the temperature of a sample in the nanokelvin regime. Furthermore, we compare the fundamental precision of quantum interferometric thermometers with the theoretical precision offered by the classical idealized pyrometers, which infer the temperature from a measurement of the total thermal radiation emitted by the sample. We find that the interferometric thermometer provides a superior performance in temperature sensing even when compared with this idealized pyrometer. We predict that interferometric thermometers will prove useful for ultraprecise temperature sensing and stabilization of quantum optical experiments based on the nonlinear crystals and atomic vapors.

  1. Noncontact Temperature Measurement

    NASA Technical Reports Server (NTRS)

    Lee, Mark C. (Editor)

    1988-01-01

    Noncontact temperature measurement has been identified as one of the eight advanced technology development (ATD) areas to support the effort of the Microgravity Science and Applications Division in developing six Space Station flight experiment facilities. This two-day workshop was an opportunity for all six disciplines to present their requirements on noncontact temperature measurement and to discuss state-of-the-art developments. Multi-color pyrometry, laser pyrometry and radiometric imaging techniques are addressed.

  2. High temperature aqueous stress corrosion testing device

    DOEpatents

    Bornstein, A.N.; Indig, M.E.

    1975-12-01

    A description is given of a device for stressing tensile samples contained within a high temperature, high pressure aqueous environment, thereby permitting determination of stress corrosion susceptibility of materials in a simple way. The stressing device couples an external piston to an internal tensile sample via a pull rod, with stresses being applied to the sample by pressurizing the piston. The device contains a fitting/seal arrangement including Teflon and weld seals which allow sealing of the internal system pressure and the external piston pressure. The fitting/seal arrangement allows free movement of the pull rod and the piston.

  3. The Kelvin and Temperature Measurements

    PubMed Central

    Mangum, B. W.; Furukawa, G. T.; Kreider, K. G.; Meyer, C. W.; Ripple, D. C.; Strouse, G. F.; Tew, W. L.; Moldover, M. R.; Johnson, B. Carol; Yoon, H. W.; Gibson, C. E.; Saunders, R. D.

    2001-01-01

    The International Temperature Scale of 1990 (ITS-90) is defined from 0.65 K upwards to the highest temperature measurable by spectral radiation thermometry, the radiation thermometry being based on the Planck radiation law. When it was developed, the ITS-90 represented thermodynamic temperatures as closely as possible. Part I of this paper describes the realization of contact thermometry up to 1234.93 K, the temperature range in which the ITS-90 is defined in terms of calibration of thermometers at 15 fixed points and vapor pressure/temperature relations which are phase equilibrium states of pure substances. The realization is accomplished by using fixed-point devices, containing samples of the highest available purity, and suitable temperature-controlled environments. All components are constructed to achieve the defining equilibrium states of the samples for the calibration of thermometers. The high quality of the temperature realization and measurements is well documented. Various research efforts are described, including research to improve the uncertainty in thermodynamic temperatures by measuring the velocity of sound in gas up to 800 K, research in applying noise thermometry techniques, and research on thermocouples. Thermometer calibration services and high-purity samples and devices suitable for “on-site” thermometer calibration that are available to the thermometry community are described. Part II of the paper describes the realization of temperature above 1234.93 K for which the ITS-90 is defined in terms of the calibration of spectroradiometers using reference blackbody sources that are at the temperature of the equilibrium liquid-solid phase transition of pure silver, gold, or copper. The realization of temperature from absolute spectral or total radiometry over the temperature range from about 60 K to 3000 K is also described. The dissemination of the temperature scale using radiation thermometry from NIST to the customer is achieved by

  4. [Body temperature measurement in daily practice].

    PubMed

    Sermet-Gaudelus, I; Chadelat, I; Lenoir, G

    2005-08-01

    The use of rectal mercury thermometer has long been the standard method for measurement of body temperature. The restriction of mercury use since 1996 has led to development of other devices. The liquid crystal strip thermometer held against the forehead has a low sensitivity. The single-use chemical thermometer measures oral temperature. Its accuracy must be evaluated. Infrared ear thermometers are routinely used because it is convenient and fast to use. However, numerous studies have shown that it does not show sufficient correlation with rectal temperature, leading to the risk to miss cases of true fever. Rectal temperature remains the gold standard in case of fever. Rectal temperature measurement with an electronic device is well correlated with the glass mercury standard. Galistan thermometer accuracy must be evaluated because of sterilization of the whole device, which is not the case for the electronic thermometer. A pediatric study is necessary to evaluate the performance of this device in comparison with the electronic thermometer.

  5. Temperature standards, what and where: resources for effective temperature measurements

    SciTech Connect

    Johnston, W.W. Jr.

    1982-01-01

    Many standards have been published to describe devices, methods, and other topics. How they are developed and by whom are briefly described, and an attempt is made to extract most of those relating to temperature measurements. A directory of temperature standards and their sources is provided.

  6. Nonvisual Adaptive Devices for Measuring Insulin.

    ERIC Educational Resources Information Center

    Cleary, M. E.; Hamilton, J. E.

    1993-01-01

    This article presents information on nonvisual adaptive devices for measuring insulin and offers some suggestions for rehabilitation professionals who instruct and supervise clients with diabetes and visual impairment in the use of these devices. (Author)

  7. Microwave-induced adjustable nonlinear temperature gradients in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Shah, Jayna J.; Geist, Jon; Gaitan, Michael

    2010-10-01

    We describe on-chip microwave generation of spatial temperature gradients in a polymeric microfluidic device that includes an integrated microstrip transmission line. The transmission line was fabricated photolithographically on commercially available adhesive copper tape. The fluid temperature during microwave heating was measured by observing the temperature-dependent fluorescence intensity of a dye solution in the microchannel. Large interference effects, which were produced by superposition of a sinusoidal and two exponential temperature distributions, were measured at 12 GHz and 19 GHz. Temperature extremes of 31 °C and 53 °C at the minimum and maximum of the sinusoid were established within 1 s. The sinusoid also produced a quasilinear temperature gradient along a 2 mm distance with a slope of 7.3 °C mm-1. This technique has the potential to benefit many biological, chemical and physical applications requiring rapid temperature gradients.

  8. Indirect Blood Pressure Measuring Device

    NASA Technical Reports Server (NTRS)

    Hum, L.; Cole, C. E.

    1973-01-01

    Design and performance of a blood pressure recording device for pediatric use are reported. A strain gage transducer with a copper-beryllium strip as force sensing element is used to monitor skin movements and to convert them into electrical signals proportional to those displacements. Experimental tests with this device in recording of force developed above the left femoral artery of a dog accurately produced a blood pressure curve.

  9. Device-Independent Certification of Entangled Measurements

    NASA Astrophysics Data System (ADS)

    Rabelo, Rafael; Ho, Melvyn; Cavalcanti, Daniel; Brunner, Nicolas; Scarani, Valerio

    2011-07-01

    We present a device-independent protocol to test if a given black-box measurement device is entangled, that is, has entangled eigenstates. Our scheme involves three parties and is inspired by entanglement swapping; the test uses the Clauser-Horne-Shimony-Holt Bell inequality, checked between each pair of parties. In the case where all particles are qubits, we characterize quantitatively the deviation of the measurement device from a perfect Bell-state measurement.

  10. Flow rate measuring devices for gas flows

    NASA Astrophysics Data System (ADS)

    Bonfig, K. W.

    1985-07-01

    Flowrate measuring devices are described: volume meter with fixed or mobile walls; turbine meter; throttling procedure; ultrasonic and Doppler methods; vortex method; rotary flowmeter; and swinging body flow measuring procedure. Flowrate can also be measured from the force exerted on bodies immersed in a fluid or based on thermodynamical principles. The characteristics and operating envelope of each device/method are given.

  11. A Portable, High Resolution, Surface Measurement Device

    NASA Technical Reports Server (NTRS)

    Ihlefeld, Curtis M.; Burns, Bradley M.; Youngquist, Robert C.

    2012-01-01

    A high resolution, portable, surface measurement device has been demonstrated to provide micron-resolution topographical plots. This device was specifically developed to allow in-situ measurements of defects on the Space Shuttle Orbiter windows, but is versatile enough to be used on a wide variety of surfaces. This paper discusses the choice of an optical sensor and then the decisions required to convert a lab bench optical measurement device into an ergonomic portable system. The necessary trade-offs between performance and portability are presented along with a description of the device developed to measure Orbiter window defects.

  12. Ambulatory blood pressure measuring devices.

    PubMed

    Krönig, B

    1996-01-01

    During the last 6 years ABPM has become a widely used method in the diagnosis and treatment of hypertensive patients as well as in correlating the disease to prognosis. Up to January 1995, the international market offered 43 devices from 31 manufacturers. In Germany there are 18 devices available on the market from 10 different manufactures. Mainly, two different techniques are applied, ausculation and oscillometry, each having some advantages and disadvantages: The oscillometric technique may be preferable in patients with hyperkinetic circulation (e.g., pregnancy), with ausculatory gap and when surrounding noises are interfering, whereas the auscultatory technique, being the original method, has some advantages in patients with dysrhythmias and atrial fibrillation, as well as in dynamic (bicycle) exercise. The auscultatory method may be optimized by using ECG-, respectively oscillometric gating. The future development, which has already been realized in seven international recorders, offers the opportunity of either using auscultatory and/or oscillometric techniques during the same recording. To estimate the "true" sleeping interval more precisely a "day-night-button" at the recorder side is helpful. Furthermore, an uniform computer printout of the mean values of day- and night-time intervals, together with the widely approved limits of normotension should be achieved; last, but not least, an important factor for the widespread use of ABPM in general practice, as well as in the hospital, will be the prices of the recorders. Which have been reduced to about DM 3000-6000 in Germany (January 1996).

  13. [Development and application of new temperature control moxibustion device].

    PubMed

    Yang, Liu; Jiang, Hao; Wang, Lifang; Ma, Haili

    2015-07-01

    To develop a new temperature control moxibustion device so as to improve the clinical therapeutic effect of moxibustion. According to the thermal effect of moxibustion, with the designs such as the modern electronic equipment (temperature control system) adopted and in combination of smoke filtration device and oxygen mask device, a new temperature control moxibustion device was developed. The new temperature control moxibustion device may achieve the automatic regulation of temperature and distance and avoid the pollution and irritation of smoke and flavor, etc. As a result, the traditional moxibustion therapy can better play its efficacy and display its safety and convenience in practice.

  14. High temperature solder device for flat cables

    NASA Technical Reports Server (NTRS)

    Haehner, Carl L. (Inventor)

    1992-01-01

    A high temperature solder device for flat cables includes a microwelder, an anvil which acts as a heat sink and supports a flexible flat ribbon cable that is to be connected to a multiple pin connector. The microwelder is made from a modified commercially available resistance welding machine such as the Split Tip Electrode microwelder by Weltek, which consists of two separate electrode halves with a removable dielectric spacer in between. The microwelder is not used to weld the items together, but to provide a controlled compressive force on, and energy pulse to, a solder preform placed between a pin of the connector and a conductor of the flexible flat ribbon cable. When the microwelder is operated, an electric pulse will flow down one electrode, through the solder preform and back up the other electrode. This pulse of electrical energy will cause the solder preform to heat up and melt, joining the pin and conductor.

  15. DIMENSION MEASURING OPTICAL SIGHTING DEVICE

    DOEpatents

    Kerr, G.E.

    1959-08-01

    A sighting device to check the uniformity of thickness of a lining applied to a container is presented. The sighting devlce comprises two tubular members having their ends in threaded connection with one another and a lens lying within the outer end of one of the tubular members. A ground glass inscribed with two concentric circles is located at the outer end of the other tubular section so that the image of the circular junctures, with and without the lining at the closed end of the container, can be focused on the proper circle inscribed in the ground glass so as to determine whether the lining has uniformity and whether there are thin spots.

  16. Neutron ion temperature measurement

    SciTech Connect

    Strachan, J.D.; Hendel, H.W.; Lovberg, J.; Nieschmidt, E.B.

    1986-11-01

    One important use of fusion product diagnostics is in the determination of the deuterium ion temperature from the magnitude of the 2.5 MeV d(d,n)/sup 3/He neutron emission. The detectors, calibration methods, and limitations of this technique are reviewed here with emphasis on procedures used at PPPL. In most tokamaks, the ion temperature deduced from neutrons is in reasonable agreement with the ion temperature deduced by other techniques.

  17. Nanoscopic voltage distribution of operating cascade laser devices in cryogenic temperature.

    PubMed

    Dhar, R S; Ban, D

    2016-06-01

    A nanoscopic exploratory measurement technique to measure voltage distribution across an operating semiconductor device in cryogenic temperature has been developed and established. The cross-section surface of the terahertz (THz) quantum cascade laser (QCL) has been measured that resolves the voltage distribution at nanometer scales. The electric field dissemination across the active region of the device has been attained under the device's lasing conditions at cryogenic temperature of 77 K.

  18. Device and method for detecting sulfur dioxide at high temperatures

    DOEpatents

    West, David L.; Montgomery, Frederick C.; Armstrong, Timothy R.

    2011-11-01

    The present invention relates to a method for selectively detecting and/or measuring gaseous SO.sub.2 at a temperature of at least 500.degree. C., the method involving: (i) providing a SO.sub.2-detecting device including an oxygen ion-conducting substrate having on its surface at least three electrodes comprising a first, second, and third electrode; (ii) driving a starting current of specified magnitude and temporal variation between the first and second electrodes; (iii) contacting the SO.sub.2-detecting device with the SO.sub.2-containing sample while maintaining the magnitude and any temporal variation of the starting current, wherein said SO.sub.2-containing sample causes a change in the electrical conductance of said device; and (iv) detecting the change in electrical conductance of the device based on measuring an electrical property related to or indicative of the conductance of the device between the first and third electrodes, or between the second and third electrodes, and detecting SO.sub.2 in the SO.sub.2-containing sample based on the measured change in electrical conductance.

  19. Simple device measures solar radiation

    NASA Technical Reports Server (NTRS)

    Humphries, W. R.

    1977-01-01

    Simple inexpensive thermometer, insolated from surroundings by transparent glass or plastic encasement, measures intensities of solar radiation, or radiation from other sources such as furnaces or ovens. Unit can be further modified to accomplish readings from remote locations.

  20. Device for measuring the total concentration of oxygen in gases

    DOEpatents

    Isaacs, Hugh S.; Romano, Anthony J.

    1977-01-01

    This invention provides a CO equilibrium in a device for measuring the total concentration of oxygen impurities in a fluid stream. To this end, the CO equilibrium is produced in an electrochemical measuring cell by the interaction of a carbon element in the cell with the chemically combined and uncombined oxygen in the fluid stream at an elevated temperature.

  1. Line spectrum and ion temperature measurements from tungsten ions at low ionization stages in large helical device based on vacuum ultraviolet spectroscopy in wavelength range of 500–2200 Å

    SciTech Connect

    Oishi, T. Morita, S.; Goto, M.; Huang, X. L.; Zhang, H. M.

    2014-11-15

    Vacuum ultraviolet spectra of emissions released from tungsten ions at lower ionization stages were measured in the Large Helical Device (LHD) in the wavelength range of 500–2200 Å using a 3 m normal incidence spectrometer. Tungsten ions were distributed in the LHD plasma by injecting a pellet consisting of a small piece of tungsten metal and polyethylene tube. Many lines having different wavelengths from intrinsic impurity ions were observed just after the tungsten pellet injection. Doppler broadening of a tungsten candidate line was successfully measured and the ion temperature was obtained.

  2. 21 CFR 886.1450 - Corneal radius measuring device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Corneal radius measuring device. 886.1450 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1450 Corneal radius measuring device. (a) Identification. A corneal radius measuring device is an AC-powered device intended to...

  3. 21 CFR 886.1450 - Corneal radius measuring device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Corneal radius measuring device. 886.1450 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1450 Corneal radius measuring device. (a) Identification. A corneal radius measuring device is an AC-powered device intended to...

  4. Portable Device Measures Perpendicularity Of Threaded Hole

    NASA Technical Reports Server (NTRS)

    Scarpelli, August R.; Buttler, Daniel W.

    1995-01-01

    Simple portable device gives quantitative information on amount by which axis of threaded hole in workpiece deviates from perpendicularity to adjacent exterior surface of workpiece. Measurements made easily in factory, shop, or field.

  5. Electrolyte measurement device and measurement procedure

    DOEpatents

    Cooper, Kevin R.; Scribner, Louie L.

    2010-01-26

    A method and apparatus for measuring the through-thickness resistance or conductance of a thin electrolyte is provided. The method and apparatus includes positioning a first source electrode on a first side of an electrolyte to be tested, positioning a second source electrode on a second side of the electrolyte, positioning a first sense electrode on the second side of the electrolyte, and positioning a second sense electrode on the first side of the electrolyte. current is then passed between the first and second source electrodes and the voltage between the first and second sense electrodes is measured.

  6. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-12-31

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with super-heated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200{degrees}C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220{degrees}C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: (1) At relative pressures over 0.6 the capillarity forces are very important. (2) There is no significant temperature effect. (3) Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. (4) Pores smaller than 15 {Angstrom} do not contribute to the adsorbed mass.

  7. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-01-24

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with superheated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200 °C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220 °C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: 1. At relative pressures over 0.6 the capillarity forces are very important. 2. There is no significant temperature effect. 3. Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. 4. Pores smaller than 15 Å do not contribute to the adsorbed mass.

  8. Temperature correction in conductivity measurements

    USGS Publications Warehouse

    Smith, Stanford H.

    1962-01-01

    Electrical conductivity has been widely used in freshwater research but usual methods employed by limnologists for converting measurements to conductance at a given temperature have not given uniformly accurate results. The temperature coefficient used to adjust conductivity of natural waters to a given temperature varies depending on the kinds and concentrations of electrolytes, the temperature at the time of measurement, and the temperature to which measurements are being adjusted. The temperature coefficient was found to differ for various lake and stream waters, and showed seasonal changes. High precision can be obtained only by determining temperature coefficients for each water studied. Mean temperature coefficients are given for various temperature ranges that may be used where less precision is required.

  9. Measuring Temperature: The Thermometer

    ERIC Educational Resources Information Center

    Chamoun, Mirvette

    2005-01-01

    The author discusses the historical development of the thermometer with the view of helping children understand the role that mathematics plays in society. A model thermometer that is divided into three sections, each displaying one of the three temperature scales used today (Fahrenheit, Celsius and Kelvin) is highlighted as a project to allow…

  10. Transient (lightning) protection for electronic measurement devices

    SciTech Connect

    Black, L.L.

    1995-12-01

    Electronic measurement devices have become a major part of the oil and gas business today. All of these devices operate on an electrical voltage. Any voltage introduced into the system that is beyond the predetermined tolerance will cause degradation of performance or in some cases failure of the device. The extent of the damage depends upon the dielectric strength of the circuit in question and upon the available energy. As electronic measurement devices are further developed to incorporate more solid state circuitry and operate at lower voltage levels the more susceptible they become to transients. Along with transient protection, the user must also be concerned with intrinsic safety requirements of the device to be protected. The devices and techniques used to protect the equipment from transients do not, in all cases, guarantee the user certification for use in hazardous environments. As a note of reference, some of the techniques listed in this paper as examples would not be allowed in hazardous areas without the addition of other devices to further isolate or clamp the available energy to a safe level. In other words, as the industry moves forward to improve the overall accuracy of the measurement system and adds data availability via communication networks, the transient protection scheme must become more sophisticated.

  11. Going Places No Infrared Temperature Devices Have Gone Before

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Exergen's IRt/c is a self-powered sensor that matches a thermocouple within specified temperature ranges and provides a predictable and repeatable signal outside of this specified range. Possessing an extremely fast time constant, the infrared technology allows users to measure product temperature without touching the product. The IRt/c uses a device called a thermopile to measure temperature and generate current. Traditionally, these devices are not available in a size that would be compatible with the Exergen IRt/c, based on NASA s quarterinch specifications. After going through five circuit designs to find a thermopile that would suit the IRt/c design and match the signal needed for output, Exergen maintains that it developed a model that totaled just 20 percent of the volume of the previous smallest detector in the world. Following completion of the project with Glenn, Exergen continued development of the IRt/c for other customers, spinning off a new product line called the micro IRt/c. This latest development has broadened applications for industries that previously could not use infrared thermometers due to size constraints. The first commercial use of the micro IRt/c involved an original equipment manufacturer that makes laminating machinery consisting of heated rollers in very tight spots. Accurate temperature measurement for this application requires close proximity to the heated rollers. With the micro IRt/c s 50-millisecond time constant, the manufacturer is able to gain closer access to the intended temperature targets for exact readings, thereby increasing productivity and staying ahead of competition.In a separate application, the infrared temperature sensor is being utilized for avalanche warnings in Switzerland. The IRt/c is mounted about 5 meters above the ground to measure the snow cover throughout the mountainous regions of the country.

  12. Wireless device for monitoring the temperature - moisture regime in situ

    NASA Astrophysics Data System (ADS)

    Hudec, Ján; Štofanik, Vladimír; Vretenár, Viliam; Kubičár, Ľudovít

    2014-05-01

    This contribution presents the wireless device for monitoring the temperature - moisture regime in situ. For the monitoring so called moisture sensor is used. Principle of moisture sensor is based on measuring the thermal conductivity. Moisture sensor has cylindrical shape with about 20 mm diameter and 20 mm length. It is made of porous material identical to the monitored object. The thermal conductivity is measured by hot-ball method. Hot-ball method is patented invention of the Institute of Physic SAS. It utilizes a small ball, diameter up to 2 mm, in which sensing elements are incorporated. The ball produces heat spreading into surrounding material, in our case into body of the moisture sensor. Temperature of the ball is measured simultaneously. Then change of the temperature, in steady state, is inversely proportional to the thermal conductivity. Such moisture sensor is inserted into monitored wall. Thermophysical properties of porous material are function of moisture. Moisture sensors are calibrated for dry and water saturated state. Whole the system is primarily intended to do long-term monitoring. Design of a new electronic device was needed for this innovative method. It covers all needed operations for measurement. For example energizing hot-ball sensor, measuring its response, storing the measured data and wireless data transmission. The unit is able to set parameters of measurement via wireless access as well. This contribution also includes the description of construction and another features of the wireless measurement system dedicated for this task. Possibilities and functionality of the system is demonstrated by actual monitoring of the tower of St. Martin's Cathedral in Bratislava. Correlations with surrounding meteorological conditions are presented. Some of them can be also measured by our system, right in the monitoring place.

  13. Temperature Measurements in the Magnetic Measurement Facility

    SciTech Connect

    Wolf, Zachary

    2010-12-13

    Several key LCLS undulator parameter values depend strongly on temperature primarily because of the permanent magnet material the undulators are constructed with. The undulators will be tuned to have specific parameter values in the Magnetic Measurement Facility (MMF). Consequently, it is necessary for the temperature of the MMF to remain fairly constant. Requirements on undulator temperature have been established. When in use, the undulator temperature will be in the range 20.0 {+-} 0.2 C. In the MMF, the undulator tuning will be done at 20.0 {+-} 0.1 C. For special studies, the MMF temperature set point can be changed to a value between 18 C and 23 C with stability of {+-}0.1 C. In order to ensure that the MMF temperature requirements are met, the MMF must have a system to measure temperatures. The accuracy of the MMF temperature measurement system must be better than the {+-}0.1 C undulator tuning temperature tolerance, and is taken to be {+-}0.01 C. The temperature measurement system for the MMF is under construction. It is similar to a prototype system we built two years ago in the Sector 10 alignment lab at SLAC. At that time, our goal was to measure the lab temperature to {+-}0.1 C. The system has worked well for two years and has maintained its accuracy. For the MMF system, we propose better sensors and a more extensive calibration program to achieve the factor of 10 increase in accuracy. In this note we describe the measurement system under construction. We motivate our choice of system components and give an overview of the system. Most of the software for the system has been written and will be discussed. We discuss error sources in temperature measurements and show how these errors have been dealt with. The calibration system is described in detail. All the LCLS undulators must be tuned in the Magnetic Measurement Facility at the same temperature to within {+-}0.1 C. In order to ensure this, we are building a system to measure the temperature of the

  14. High-Sensitivity Temperature Measurement

    ERIC Educational Resources Information Center

    Leadstone, G. S.

    1978-01-01

    Describes a method of measuring small temperature differences that amount to a .01K, using an arrangement of a copper-constantan thermocouple, a microamplifier and a galvanometer, as an indirect way of measuring heat energy. (GA)

  15. 21 CFR 886.4280 - Intraocular pressure measuring device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intraocular pressure measuring device. 886.4280... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4280 Intraocular pressure measuring device. (a) Identification. An intraocular pressure measuring device is a manual or AC-powered...

  16. 21 CFR 886.4280 - Intraocular pressure measuring device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Intraocular pressure measuring device. 886.4280... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4280 Intraocular pressure measuring device. (a) Identification. An intraocular pressure measuring device is a manual or AC-powered...

  17. 21 CFR 886.4280 - Intraocular pressure measuring device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Intraocular pressure measuring device. 886.4280... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4280 Intraocular pressure measuring device. (a) Identification. An intraocular pressure measuring device is a manual or AC-powered...

  18. 21 CFR 886.4280 - Intraocular pressure measuring device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraocular pressure measuring device. 886.4280... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4280 Intraocular pressure measuring device. (a) Identification. An intraocular pressure measuring device is a manual or AC-powered...

  19. 21 CFR 882.1560 - Skin potential measurement device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Skin potential measurement device. 882.1560... (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1560 Skin potential measurement device. (a) Identification. A skin potential measurement device is a general diagnostic...

  20. 21 CFR 882.1560 - Skin potential measurement device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Skin potential measurement device. 882.1560... (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1560 Skin potential measurement device. (a) Identification. A skin potential measurement device is a general diagnostic...

  1. 21 CFR 882.1560 - Skin potential measurement device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Skin potential measurement device. 882.1560... (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1560 Skin potential measurement device. (a) Identification. A skin potential measurement device is a general diagnostic...

  2. 21 CFR 882.1560 - Skin potential measurement device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Skin potential measurement device. 882.1560... (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1560 Skin potential measurement device. (a) Identification. A skin potential measurement device is a general diagnostic...

  3. Acoustical Measurement Of Furnace Temperatures

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Shakkottai; Venkateshan, Shakkottai P.

    1989-01-01

    Simple probes withstand severe conditions, yet give spatially-resolved temperature readings. Prototype acoustical system developed to measure temperatures from ambient to 1,800 degree F in such structures as large industrial lime kilns and recovery-boiler furnaces. Pulses of sound reflected from obstructions in sensing tube. Speed of sound and temperature in each segment deduced from travel times of pulses.

  4. Electromagnetic pulse-induced current measurement device

    NASA Astrophysics Data System (ADS)

    Gandhi, Om P.; Chen, Jin Y.

    1991-08-01

    To develop safety guidelines for exposure to high fields associated with an electromagnetic pulse (EMP), it is necessary to devise techniques that would measure the peak current induced in the human body. The main focus of this project was to design, fabricate, and test a portable, self-contained stand-on device that would measure and hold the peak current and the integrated change Q. The design specifications of the EMP-Induced Current Measurement Device are as follows: rise time of the current pulse, 5 ns; peak current, 20-600 A; charge Q, 0-20 microcoulombs. The device uses a stand-on parallel-plate bilayer sensor and fast high-frequency circuit that are well-shielded against spurious responses to high incident fields. Since the polarity of the incident peak electric field of the EMP may be either positive or negative, the induced peak current can also be positive or negative. Therefore, the device is designed to respond to either of these polarities and measure and hold both the peak current and the integrated charge which are simultaneously displayed on two separate 3-1/2 digit displays. The prototype device has been preliminarily tested with the EMP's generated at the Air Force Weapons Laboratory (ALECS facility) at Kirtland AFB, New Mexico.

  5. Experimental measurement-device-independent entanglement detection.

    PubMed

    Nawareg, Mohamed; Muhammad, Sadiq; Amselem, Elias; Bourennane, Mohamed

    2015-01-01

    Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. The determination whether a given state is entangled or not is one of the most challenging open problems of the field. Here we report on the experimental demonstration of measurement-device-independent (MDI) entanglement detection using witness method for general two qubits photon polarization systems. In the MDI settings, there is no requirement to assume perfect implementations or neither to trust the measurement devices. This experimental demonstration can be generalized for the investigation of properties of quantum systems and for the realization of cryptography and communication protocols. PMID:25649664

  6. Printable Graphene-based Thermoelectric Device with High Temperature Capability

    NASA Astrophysics Data System (ADS)

    Li, Tian; Chen, Yanan; Drew, Dennis; Hu, Liangbing; NanomaterialsEmerging Devices Collaboration

    Thermoelectric devices are of particular interest due to their capability to convert heat into electrical power. We demonstrate the use of a Graphene-based thermoelectric device that can generate output voltages of hundreds of millivolts with an illuminating Graphene strip as the blackbody source. Our proposed device is superior for thermoelectric conversion mainly due to its high temperature capability that yields a maximum Carnot efficiency limit of 90% (referenced to room temperature) and a high Seebeck coefficient. Our device is also macroscopic with good mechanical strength and stabilized performance, making it attractive for large scale and reliable thermoelectric devices.

  7. Accurate measurement of unsteady state fluid temperature

    NASA Astrophysics Data System (ADS)

    Jaremkiewicz, Magdalena

    2016-07-01

    In this paper, two accurate methods for determining the transient fluid temperature were presented. Measurements were conducted for boiling water since its temperature is known. At the beginning the thermometers are at the ambient temperature and next they are immediately immersed into saturated water. The measurements were carried out with two thermometers of different construction but with the same housing outer diameter equal to 15 mm. One of them is a K-type industrial thermometer widely available commercially. The temperature indicated by the thermometer was corrected considering the thermometers as the first or second order inertia devices. The new design of a thermometer was proposed and also used to measure the temperature of boiling water. Its characteristic feature is a cylinder-shaped housing with the sheath thermocouple located in its center. The temperature of the fluid was determined based on measurements taken in the axis of the solid cylindrical element (housing) using the inverse space marching method. Measurements of the transient temperature of the air flowing through the wind tunnel using the same thermometers were also carried out. The proposed measurement technique provides more accurate results compared with measurements using industrial thermometers in conjunction with simple temperature correction using the inertial thermometer model of the first or second order. By comparing the results, it was demonstrated that the new thermometer allows obtaining the fluid temperature much faster and with higher accuracy in comparison to the industrial thermometer. Accurate measurements of the fast changing fluid temperature are possible due to the low inertia thermometer and fast space marching method applied for solving the inverse heat conduction problem.

  8. Presentation of a new BRDF measurement device

    NASA Astrophysics Data System (ADS)

    Serrot, Gerard; Bodilis, Madeleine; Briottet, Xavier; Cosnefroy, Helene

    1998-12-01

    The bi-directional reflectance distribution function (BRDF) plays a major role to evaluate or analyze signals reflected by Earth in the solar spectrum. A BRDF measurement device that covers a large spectral and directional domain was recently developed by ONERA/DOTA. It was designed to allow both laboratory and outside measurements. Its main characteristics are a spectral domain: 0.42-0.95 micrometers ; a geometrical domain: 0-60 degrees for zenith angle, 0-180 degrees for azimuth; a maximum target size for nadir measurements: 22 cm. For a given zenith angle of the source, the BRDF device needs about seven minutes to take measurements for a viewing zenith angle varying from 0-60 degrees and relative azimuth angle varying from 0-180 degrees. The performances, imperfections and properties of each component of the measurement chain are studied. A part of the work was devoted to characterize precisely the source, and particularly the spatial variability of the irradiance at the target level, the temporal stability and the spectral profile of the lamp. Some of these imperfections are modeled and taken into account in corrections of BRDF measurements. Concerning the sensor, a calibration in wavelength was done. Measurements of bi- directional reflectance of which is well known. A software was developed to convert all the raw data acquired automatically into BRDF values. To illustrate measurements taken by this device, some results are also presented here. They are taken over sand and short grass, for different wavelengths and geometrical conditions.

  9. Measurement-device-independent quantum key distribution.

    PubMed

    Lo, Hoi-Kwong; Curty, Marcos; Qi, Bing

    2012-03-30

    How to remove detector side channel attacks has been a notoriously hard problem in quantum cryptography. Here, we propose a simple solution to this problem--measurement-device-independent quantum key distribution (QKD). It not only removes all detector side channels, but also doubles the secure distance with conventional lasers. Our proposal can be implemented with standard optical components with low detection efficiency and highly lossy channels. In contrast to the previous solution of full device independent QKD, the realization of our idea does not require detectors of near unity detection efficiency in combination with a qubit amplifier (based on teleportation) or a quantum nondemolition measurement of the number of photons in a pulse. Furthermore, its key generation rate is many orders of magnitude higher than that based on full device independent QKD. The results show that long-distance quantum cryptography over say 200 km will remain secure even with seriously flawed detectors.

  10. Measurement-device-independent quantum key distribution.

    PubMed

    Lo, Hoi-Kwong; Curty, Marcos; Qi, Bing

    2012-03-30

    How to remove detector side channel attacks has been a notoriously hard problem in quantum cryptography. Here, we propose a simple solution to this problem--measurement-device-independent quantum key distribution (QKD). It not only removes all detector side channels, but also doubles the secure distance with conventional lasers. Our proposal can be implemented with standard optical components with low detection efficiency and highly lossy channels. In contrast to the previous solution of full device independent QKD, the realization of our idea does not require detectors of near unity detection efficiency in combination with a qubit amplifier (based on teleportation) or a quantum nondemolition measurement of the number of photons in a pulse. Furthermore, its key generation rate is many orders of magnitude higher than that based on full device independent QKD. The results show that long-distance quantum cryptography over say 200 km will remain secure even with seriously flawed detectors. PMID:22540686

  11. Wireless sensor for temperature and humidity measurement

    NASA Astrophysics Data System (ADS)

    Drumea, Andrei; Svasta, Paul

    2010-11-01

    Temperature and humidity sensors have a broad range of applications, from heating and ventilation of houses to controlled drying of fruits, vegetables or meat in food industry. Modern sensors are integrated devices, usually MEMS, factory-calibrated and with digital output of measured parameters. They can have power down modes for reduced energy consumption. Such an integrated device allows the implementation of a battery powered wireless sensor when coupled with a low power microcontroller and a radio subsystem. A radio sensor can work independently or together with others in a radio network. Presented paper focuses mainly on measurement and construction aspects of sensors for temperature and humidity designed and implemented by authors; network aspects (communication between two or more sensors) are not analyzed.

  12. Measuring ionizing radiation with a mobile device

    NASA Astrophysics Data System (ADS)

    Michelsburg, Matthias; Fehrenbach, Thomas; Puente León, Fernando

    2012-02-01

    In cases of nuclear disasters it is desirable to know one's personal exposure to radioactivity and the related health risk. Usually, Geiger-Mueller tubes are used to assess the situation. Equipping everyone with such a device in a short period of time is very expensive. We propose a method to detect ionizing radiation using the integrated camera of a mobile consumer device, e.g., a cell phone. In emergency cases, millions of existing mobile devices could then be used to monitor the exposure of its owners. In combination with internet access and GPS, measured data can be collected by a central server to get an overview of the situation. During a measurement, the CMOS sensor of a mobile device is shielded from surrounding light by an attachment in front of the lens or an internal shutter. The high-energy radiation produces free electrons on the sensor chip resulting in an image signal. By image analysis by means of the mobile device, signal components due to incident ionizing radiation are separated from the sensor noise. With radioactive sources present significant increases in detected pixels can be seen. Furthermore, the cell phone application can make a preliminary estimate on the collected dose of an individual and the associated health risks.

  13. A noncontact temperature measurement method in polymerase chain reaction reactors

    NASA Astrophysics Data System (ADS)

    Sochivko, D. G.; Varlamov, D. A.; Fedorov, A. A.; Kurochkin, V. E.

    2016-04-01

    A new noncontact method for measuring temperatures of liquids, which is based on the fluorescent probes, is proposed. The method is intended for measuring temperatures of reaction media in reactors of devices for polymerase chain reactions in real time and can be used for determining dynamic temperature parameters.

  14. Coherence measurement with digital micromirror device.

    PubMed

    Partanen, Henri; Turunen, Jari; Tervo, Jani

    2014-02-15

    We measure the complex-valued spatial coherence function of a multimode broad-area laser diode using Young's classical double slit experiment realized with a digital micromirror device. We use this data to construct the coherent modes of the beam and to simulate its propagation before and after the measurement plane. When comparing the results to directly measured intensity profiles, we find excellent correspondence to the extent that even small details of the beam can be predicted. We also consider the number of measurement points required to model the beam with sufficient accuracy.

  15. An evaluation of strain measuring devices for ceramic composites

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Bartolotta, Paul A.

    1991-01-01

    A series of tensile tests was conducted on SiC/reaction bonded silicon nitrides (RBSN) composites using different methods of strain measurement. The tests were used to find the optimum strain sensing device for use with continuous fiber reinforced ceramic matrix composites in ambient and high temperature environments. Bonded resistance gages were found to offer excellent performance for room temperature tests. The clip-on gage offers the same performance, but less time is required for mounting it to the specimen. Low contact force extensometers track the strain with acceptable results at high specimen temperatures. Silicon carbide rods with knife edges are preferred. The edges must be kept sharp. The strain measuring devices should be mounted on the flat side of the specimen. This is in contrast to mounting on the rough thickness side.

  16. Integrated Emissivity And Temperature Measurement

    DOEpatents

    Poulsen, Peter

    2005-11-08

    A multi-channel spectrometer and a light source are used to measure both the emitted and the reflected light from a surface which is at an elevated temperature relative to its environment. In a first method, the temperature of the surface and emissivity in each wavelength is calculated from a knowledge of the spectrum and the measurement of the incident and reflected light. In the second method, the reflected light is measured from a reference surface having a known reflectivity and the same geometry as the surface of interest and the emitted and the reflected light are measured for the surface of interest. These measurements permit the computation of the emissivity in each channel of the spectrometer and the temperature of the surface of interest.

  17. Shock temperature measurements in ammonia

    SciTech Connect

    Radousky, H.B.; Mitchell, A.C.; Nellis, W.J.; Ross, M.

    1985-07-01

    Our first shock temperature measurements on a cryogenic target are reported for NH/sub 3/. A new fast optical pyrometer and a cryogenic specimen holder for liquid NH/sub 3/ were developed to measure shock temperatures of 4400 and 3600 K at pressures of 61 and 48 GPa. These conditions correspond to those in the ice layers in Uranus and Neptune. The shock temperature data are in reasonable agreement with an equation of state based on an intermolecular potential derived from NH/sub 3/ Hugoniot data.

  18. Precision of Four Acoustic Bone Measurement Devices

    NASA Technical Reports Server (NTRS)

    Miller, Christopher; Feiveson, Alan H.; Shackelford, Linda; Rianon, Nahida; LeBlanc, Adrian

    2000-01-01

    Though many studies have quantified the precision of various acoustic bone measurement devices, it is difficult to directly compare the results among the studies, because they used disparate subject pools, did not specify the estimation methodology, or did not use consistent definitions for various precision characteristics. In this study, we used a repeated measures design protocol to directly determine the precision characteristics of four acoustic bone measurement devices: the Mechanical Response Tissue Analyzer (MRTA), the UBA-575+, the SoundScan 2000 (S2000), and the Sahara Ultrasound Done Analyzer. Ten men and ten women were scanned on all four devices by two different operators at five discrete time points: Week 1, Week 2, Week 3, Month 3 and Month 6. The percent coefficient of variation (%CV) and standardized coefficient of variation were computed for the following precision characteristics: interoperator effect, operator-subject interaction, short-term error variance, and long-term drift, The MRTA had high interoperator errors for its ulnar and tibial stiffness measures and a large long-term drift in its tibial stiffness measurement. The UBA-575+ exhibited large short-term error variances and long-term drift for all three of its measurements. The S2000's tibial speed of sound measurement showed a high short-term error variance and a significant operator-subject interaction but very good values ( < 1%) for the other precision characteristics. The Sahara seemed to have the best overall performance, but was hampered by a large %CV for short-term error variance in its broadband ultrasound attenuation measure.

  19. Real-time precision measuring device of tree diameter growth

    NASA Astrophysics Data System (ADS)

    Guo, Mingming; Chen, Aijun; Li, Dongsheng; Liu, Nan; Yao, Jingyuan

    2016-01-01

    DBH(diameter at breast height) is an important factor to reflect of the quality of plant growth, also an important parameter indispensable in forest resources inventory and forest carbon sink, the accurate measurement of DBH or not is directly related to the research of forest resources inventory and forest carbon sink. In this paper, the principle and the mathematical model of DBH measurement device were introduced, the fixture measuring device and the hardware circuit for this tree diameter were designed, the measurement software programs were compiled, and the precision measuring device of tree diameter growth was developed. Some experiments with Australia fir were conducted. Based on experiment data, the correlations among the DBH variation of Australian fir, the environment temperature, air humility and PAR(photosynthetically active radiation) were obtained. The effects of environmental parameters (environment temperature, air humility and PAR) on tree diameter were analyzed. Experimental results show that there is a positive correlation between DBH variation of Australian fir and environment temperature, a negative correlation between DBH variation of Australian fir and air humility , so is PAR.

  20. 21 CFR 886.1450 - Corneal radius measuring device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Corneal radius measuring device. 886.1450 Section 886.1450 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1450 Corneal radius measuring device. (a) Identification. A corneal radius...

  1. Method for measuring surface temperature

    DOEpatents

    Baker, Gary A.; Baker, Sheila N.; McCleskey, T. Mark

    2009-07-28

    The present invention relates to a method for measuring a surface temperature using is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  2. An underwater blood pressure measuring device.

    PubMed

    Sieber, Arne; Kuch, Benjamin; L'abbate, Antonio; Wagner, Matthias; Dario, Paolo; Bedini, Remo

    2008-09-01

    Measurement of arterial blood pressure is an important vital sign for monitoring the circulation. However, up to now no instrument has been available that enables the measurement of blood pressure underwater. The present paper details a novel, oscillometric, automatic digital blood pressure (BP) measurement device especially designed for this purpose. It consists mainly of analogue and digital electronics in a lexan housing that is rated to a depth of up to 200 metres' sea water, a cuff and a solenoid for inflation of the cuff with air supplied from a scuba tank. An integrated differential pressure sensor, exposed to the same ambient pressure as the cuff, allows accurate BP measurement. Calculation of systolic and diastolic pressures is based on the analysis of pressure oscillations recorded during the deflation. In hyperbaric chamber tests to pressures up to 405 kPa, BP measurements taken with the prototype were comparable to those obtained with established manual and automated methods. Swimming pool tests confirmed the correct functioning of the system underwater. The quality of the recorded pressure oscillations was very good even at 10 metres' fresh water, and allowed determination of diastolic and systolic pressure values. Based on these results we envisage that this device will lead to a better understanding of human cardiovascular physiology in underwater and hyperbaric environments.

  3. Accelerated life testing and temperature dependence of device characteristics in GaAs CHFET devices

    NASA Technical Reports Server (NTRS)

    Gallegos, M.; Leon, R.; Vu, D. T.; Okuno, J.; Johnson, A. S.

    2002-01-01

    Accelerated life testing of GaAs complementary heterojunction field effect transistors (CHFET) was carried out. Temperature dependence of single and synchronous rectifier CHFET device characteristics were also obtained.

  4. Devices for flow measurement and control -- 1993

    SciTech Connect

    Blechinger, C.J. ); Sherif, S.A. )

    1993-01-01

    This conference focuses on a small aspect of technological progress, specifically on the devices for flow measurement and control. Papers have been contributed from industry, academia, and government, providing a very broad view of the state of the art and needs for improvement of research. The number of international contributions at this symposium is particularly gratifying to the organizers. There are authors from Great Britain, France, Norway, Germany, and Korea as well as from the US. This implies that flow measurement and control is a topic of significant interest to the international community. It is the editors hope that this symposium volume will serve as a reference for future exchange of ideas and as a catalyst for furthering the state of the art of flow measurement and control. Papers have been processed separately for inclusion on the data base.

  5. Colloidal-gold electrosensor measuring device

    DOEpatents

    Wegner, Steven; Harpold, Michael A.; McCaffrey, Terence M.; Morris, Susan E.; Wojciechowski, Marek; Zhao, Junguo; Henkens, Robert W.; Naser, Najih; O'Daly, John P.

    1995-01-01

    The present invention provides a new device for use in measuring lead levels in biological and environmental samples. Using square wave coulometry and colloidal gold particles impregnated on carbon electrodes, the present invention provides a rapid, reliable, portable and inexpensive means of detecting low lead levels. The colloidal gold modified electrodes have microelectrode array characteristics and produce significantly higher stripping detection signals for lead than are produced at bulk gold electrode surfaces. The method is effective in determining levels of lead down to at least 5 .mu.g/dL in blood samples as small as 10 .mu.L.

  6. Colloidal-gold electrosensor measuring device

    DOEpatents

    Wegner, S.; Harpold, M.A.; McCaffrey, T.M.; Morris, S.E.; Wojciechowski, M.; Zhao, J.; Henkens, R.W.; Naser, N.; O`Daly, J.P.

    1995-11-21

    The present invention provides a new device for use in measuring lead levels in biological and environmental samples. Using square wave coulometry and colloidal gold particles impregnated on carbon electrodes, the present invention provides a rapid, reliable, portable and inexpensive means of detecting low lead levels. The colloidal gold modified electrodes have microelectrode array characteristics and produce significantly higher stripping detection signals for lead than are produced at bulk gold electrode surfaces. The method is effective in determining levels of lead down to at least 5 {micro}g/dL in blood samples as small as 10 {micro}L. 9 figs.

  7. Junction Temperature Measurement of IGBTs Using Short Circuit Current

    SciTech Connect

    Wang, Fei; Xu, Zhuxian; Ning, Puqi

    2012-01-01

    In this paper, a method is proposed to measure the junction temperatures of IGBT discrete devices and modules using short circuit current. Experimental results show that the short circuit current has good sensitivity, linearity and selectivity, which is suitable to be used as temperature sensitive electrical parameters (TSEP). Test circuit and hardware design are proposed for junction temperature measurement in single phase and three phase convertes. By connecting a temperature measurement unit to the converter and giving a short circuit pulse, the IGBT junction temperature can be measured.

  8. Development of an Ultrasonic Airflow Measurement Device for Ducted Air

    PubMed Central

    Raine, Andrew B.; Aslam, Nauman; Underwood, Christopher P.; Danaher, Sean

    2015-01-01

    In this study, an in-duct ultrasonic airflow measurement device has been designed, developed and tested. The airflow measurement results for a small range of airflow velocities and temperatures show that the accuracy was better than 3.5% root mean square (RMS) when it was tested within a round or square duct compared to the in-line Venturi tube airflow meter used for reference. This proof of concept device has provided evidence that with further development it could be a low-cost alternative to pressure differential devices such as the orifice plate airflow meter for monitoring energy efficiency performance and reliability of ventilation systems. The design uses a number of techniques and design choices to provide solutions to lower the implementation cost of the device compared to traditional airflow meters. The design choices that were found to work well are the single sided transducer arrangement for a “V” shaped reflective path and the use of square wave transmitter pulses ending with the necessary 180° phase changed pulse train to suppress transducer ringing. The device is also designed so that it does not have to rely on high-speed analogue to digital converters (ADC) and intensive digital signal processing, so could be implemented using voltage comparators and low-cost microcontrollers. PMID:25954952

  9. Development of an ultrasonic airflow measurement device for ducted air.

    PubMed

    Raine, Andrew B; Aslam, Nauman; Underwood, Christopher P; Danaher, Sean

    2015-01-01

    In this study, an in-duct ultrasonic airflow measurement device has been designed, developed and tested. The airflow measurement results for a small range of airflow velocities and temperatures show that the accuracy was better than 3.5% root mean square (RMS) when it was tested within a round or square duct compared to the in-line Venturi tube airflow meter used for reference. This proof of concept device has provided evidence that with further development it could be a low-cost alternative to pressure differential devices such as the orifice plate airflow meter for monitoring energy efficiency performance and reliability of ventilation systems. The design uses a number of techniques and design choices to provide solutions to lower the implementation cost of the device compared to traditional airflow meters. The design choices that were found to work well are the single sided transducer arrangement for a "V" shaped reflective path and the use of square wave transmitter pulses ending with the necessary 180° phase changed pulse train to suppress transducer ringing. The device is also designed so that it does not have to rely on high-speed analogue to digital converters (ADC) and intensive digital signal processing, so could be implemented using voltage comparators and low-cost microcontrollers. PMID:25954952

  10. Measurement-device-independent quantum digital signatures

    NASA Astrophysics Data System (ADS)

    Puthoor, Ittoop Vergheese; Amiri, Ryan; Wallden, Petros; Curty, Marcos; Andersson, Erika

    2016-08-01

    Digital signatures play an important role in software distribution, modern communication, and financial transactions, where it is important to detect forgery and tampering. Signatures are a cryptographic technique for validating the authenticity and integrity of messages, software, or digital documents. The security of currently used classical schemes relies on computational assumptions. Quantum digital signatures (QDS), on the other hand, provide information-theoretic security based on the laws of quantum physics. Recent work on QDS Amiri et al., Phys. Rev. A 93, 032325 (2016);, 10.1103/PhysRevA.93.032325 Yin, Fu, and Zeng-Bing, Phys. Rev. A 93, 032316 (2016), 10.1103/PhysRevA.93.032316 shows that such schemes do not require trusted quantum channels and are unconditionally secure against general coherent attacks. However, in practical QDS, just as in quantum key distribution (QKD), the detectors can be subjected to side-channel attacks, which can make the actual implementations insecure. Motivated by the idea of measurement-device-independent quantum key distribution (MDI-QKD), we present a measurement-device-independent QDS (MDI-QDS) scheme, which is secure against all detector side-channel attacks. Based on the rapid development of practical MDI-QKD, our MDI-QDS protocol could also be experimentally implemented, since it requires a similar experimental setup.

  11. Measurement-device-independent quantum cryptography

    SciTech Connect

    Xu, Feihu; Curty, Marcos; Qi, Bing; Lo, Hoi-Kwong

    2014-12-18

    In theory, quantum key distribution (QKD) provides information-theoretic security based on the laws of physics. Owing to the imperfections of real-life implementations, however, there is a big gap between the theory and practice of QKD, which has been recently exploited by several quantum hacking activities. To fill this gap, a novel approach, called measurement-device-independent QKD (mdiQKD), has been proposed. In addition, it can remove all side-channels from the measurement unit, arguably the most vulnerable part in QKD systems, thus offering a clear avenue toward secure QKD realisations. In this study, we review the latest developments in the framework of mdiQKD, together with its assumptions, strengths, and weaknesses.

  12. Measurement-device-independent quantum cryptography

    DOE PAGES

    Xu, Feihu; Curty, Marcos; Qi, Bing; Lo, Hoi-Kwong

    2014-12-18

    In theory, quantum key distribution (QKD) provides information-theoretic security based on the laws of physics. Owing to the imperfections of real-life implementations, however, there is a big gap between the theory and practice of QKD, which has been recently exploited by several quantum hacking activities. To fill this gap, a novel approach, called measurement-device-independent QKD (mdiQKD), has been proposed. In addition, it can remove all side-channels from the measurement unit, arguably the most vulnerable part in QKD systems, thus offering a clear avenue toward secure QKD realisations. In this study, we review the latest developments in the framework of mdiQKD,more » together with its assumptions, strengths, and weaknesses.« less

  13. Temperature measurement during microwave cooking.

    PubMed

    Mullin, J; Bows, J

    1993-01-01

    Product development of microwavable foods originally suffered from a high degree of non-uniform heating which is generic in microwave heating. Typically, foods have suffered from either overheated edges or under heated centres. This was compounded by short reheat times which allowed little opportunity for temperature equilibration. A crucial step in overcoming this problem has been the understanding provided from time-temperature data. Conventional temperature measurements by thermocouple, etc. are inappropriate in microwave cooking due to the high electric fields which are present (ca 15 kV/m). The result is either very significant interference, or even failure of the sensor. Therefore, alternative methods were developed to meet the need, some of which are discussed in this paper. One such measurement system is the now commonplace fibre optic probe, originally from Luxtron. The discrete data provided from this system are compared with the surface imaging data delivered by thermal imaging. These techniques are discussed in the context of microwave packaging materials heated in situ in a microwave oven and the need for temperature data as a basis for establishing testing regimes.

  14. Temperature measurement methods during direct heat arterial tissue fusion.

    PubMed

    Cezo, James D; Kramer, Eric; Taylor, Kenneth D; Ferguson, Virginia; Rentschler, Mark E

    2013-09-01

    Fusion of biological tissues through direct and indirect heating is a growing area of medical research, yet there are still major gaps in understanding this procedure. Several companies have developed devices which fuse blood vessels, but little is known about the tissue's response to the stimuli. The need for accurate measurements of tissue behavior during tissue fusion is essential for the continued development and improvement of energy delivery devices. An experimental study was performed to measure the temperatures experienced during tissue fusion and the resulting burst pressure of the fused arteries. An array of thermocouples was placed in the lumen of a porcine splenic artery segment and sealed using a ConMed Altrus thermal fusion device. The temperatures within the tissue, in the device, and at the tissue-device interface were recorded. These measurements were then analyzed to calculate the temperature profile in the lumen of the artery. The temperature in the artery at the site of tissue fusion was measured to range from 142 to 163 °C using the ConMed Altrus. The corresponding burst pressure for arteries fused at this temperature was measured as 416 ± 79 mmHg. This study represents the first known experimental measurement of temperature at the site of vessel sealing found in the literature.

  15. Verilog-A Device Models for Cryogenic Temperature Operation of Bulk Silicon CMOS Devices

    NASA Technical Reports Server (NTRS)

    Akturk, Akin; Potbhare, Siddharth; Goldsman, Neil; Holloway, Michael

    2012-01-01

    Verilog-A based cryogenic bulk CMOS (complementary metal oxide semiconductor) compact models are built for state-of-the-art silicon CMOS processes. These models accurately predict device operation at cryogenic temperatures down to 4 K. The models are compatible with commercial circuit simulators. The models extend the standard BSIM4 [Berkeley Short-channel IGFET (insulated-gate field-effect transistor ) Model] type compact models by re-parameterizing existing equations, as well as adding new equations that capture the physics of device operation at cryogenic temperatures. These models will allow circuit designers to create optimized, reliable, and robust circuits operating at cryogenic temperatures.

  16. High-Temperature RF Probe Station For Device Characterization Through 500 deg C and 50 GHz

    NASA Technical Reports Server (NTRS)

    Schwartz, Zachary D.; Downey, Alan N.; Alterovitz, Samuel A.; Ponchak, George E.; Williams, W. D. (Technical Monitor)

    2003-01-01

    A high-temperature measurement system capable of performing on-wafer microwave testing of semiconductor devices has been developed. This high temperature probe station can characterize active and passive devices and circuits at temperatures ranging from room temperature to above 500 C. The heating system uses a ceramic heater mounted on an insulating block of NASA shuttle tile material. The temperature is adjusted by a graphical computer interface and is controlled by the software-based feedback loop. The system is used with a Hewlett-Packard 8510C Network Analyzer to measure scattering parameters over a frequency range of 1 to 50 GHz. The microwave probes, cables, and inspection microscope are all shielded to protect from heat damage. The high temperature probe station has been successfully used to characterize gold transmission lines on silicon carbide at temperatures up to 540 C.

  17. 21 CFR 882.1560 - Skin potential measurement device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Skin potential measurement device. 882.1560 Section 882.1560 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... measurement device. (a) Identification. A skin potential measurement device is a general diagnostic...

  18. 21 CFR 864.5950 - Blood volume measuring device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood volume measuring device. 864.5950 Section... § 864.5950 Blood volume measuring device. (a) Identification. A blood volume measuring device is a..., and total blood volume. (b) Classification. Class II (performance standards)....

  19. 21 CFR 864.5950 - Blood volume measuring device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Blood volume measuring device. 864.5950 Section... § 864.5950 Blood volume measuring device. (a) Identification. A blood volume measuring device is a..., and total blood volume. (b) Classification. Class II (performance standards)....

  20. 21 CFR 864.5950 - Blood volume measuring device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Blood volume measuring device. 864.5950 Section... § 864.5950 Blood volume measuring device. (a) Identification. A blood volume measuring device is a..., and total blood volume. (b) Classification. Class II (performance standards)....

  1. 21 CFR 864.5950 - Blood volume measuring device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Blood volume measuring device. 864.5950 Section... § 864.5950 Blood volume measuring device. (a) Identification. A blood volume measuring device is a..., and total blood volume. (b) Classification. Class II (performance standards)....

  2. 21 CFR 864.5950 - Blood volume measuring device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Blood volume measuring device. 864.5950 Section... § 864.5950 Blood volume measuring device. (a) Identification. A blood volume measuring device is a..., and total blood volume. (b) Classification. Class II (performance standards)....

  3. 32 CFR 634.27 - Speed-measuring devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Speed-measuring devices. 634.27 Section 634.27... CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Traffic Supervision § 634.27 Speed-measuring devices. Speed-measuring devices will be used in traffic control studies and enforcement programs....

  4. 32 CFR 634.27 - Speed-measuring devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Speed-measuring devices. 634.27 Section 634.27... CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Traffic Supervision § 634.27 Speed-measuring devices. Speed-measuring devices will be used in traffic control studies and enforcement programs....

  5. 32 CFR 634.27 - Speed-measuring devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Speed-measuring devices. 634.27 Section 634.27... CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Traffic Supervision § 634.27 Speed-measuring devices. Speed-measuring devices will be used in traffic control studies and enforcement programs....

  6. 32 CFR 634.27 - Speed-measuring devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Speed-measuring devices. 634.27 Section 634.27... CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Traffic Supervision § 634.27 Speed-measuring devices. Speed-measuring devices will be used in traffic control studies and enforcement programs....

  7. 32 CFR 634.27 - Speed-measuring devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Speed-measuring devices. 634.27 Section 634.27... CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Traffic Supervision § 634.27 Speed-measuring devices. Speed-measuring devices will be used in traffic control studies and enforcement programs....

  8. 21 CFR 882.1540 - Galvanic skin response measurement device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Galvanic skin response measurement device. 882... Galvanic skin response measurement device. (a) Identification. A galvanic skin response measurement device... electrical resistance of the skin and the tissue path between two electrodes applied to the skin....

  9. 21 CFR 882.1540 - Galvanic skin response measurement device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Galvanic skin response measurement device. 882... Galvanic skin response measurement device. (a) Identification. A galvanic skin response measurement device... electrical resistance of the skin and the tissue path between two electrodes applied to the skin....

  10. 21 CFR 882.1540 - Galvanic skin response measurement device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Galvanic skin response measurement device. 882... Galvanic skin response measurement device. (a) Identification. A galvanic skin response measurement device... electrical resistance of the skin and the tissue path between two electrodes applied to the skin....

  11. 21 CFR 882.1540 - Galvanic skin response measurement device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Galvanic skin response measurement device. 882... Galvanic skin response measurement device. (a) Identification. A galvanic skin response measurement device... electrical resistance of the skin and the tissue path between two electrodes applied to the skin....

  12. 21 CFR 882.1540 - Galvanic skin response measurement device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Galvanic skin response measurement device. 882... Galvanic skin response measurement device. (a) Identification. A galvanic skin response measurement device... electrical resistance of the skin and the tissue path between two electrodes applied to the skin....

  13. 21 CFR 882.1550 - Nerve conduction velocity measurement device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nerve conduction velocity measurement device. 882.1550 Section 882.1550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... conduction velocity measurement device. (a) Identification. A nerve conduction velocity measurement device...

  14. 21 CFR 882.1550 - Nerve conduction velocity measurement device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nerve conduction velocity measurement device. 882.1550 Section 882.1550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... conduction velocity measurement device. (a) Identification. A nerve conduction velocity measurement device...

  15. 21 CFR 882.1550 - Nerve conduction velocity measurement device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nerve conduction velocity measurement device. 882.1550 Section 882.1550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... conduction velocity measurement device. (a) Identification. A nerve conduction velocity measurement device...

  16. 21 CFR 882.1550 - Nerve conduction velocity measurement device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nerve conduction velocity measurement device. 882.1550 Section 882.1550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... conduction velocity measurement device. (a) Identification. A nerve conduction velocity measurement device...

  17. 21 CFR 882.1550 - Nerve conduction velocity measurement device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nerve conduction velocity measurement device. 882.1550 Section 882.1550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... conduction velocity measurement device. (a) Identification. A nerve conduction velocity measurement device...

  18. Ultrasonic device for measuring periodontal attachment levels

    NASA Astrophysics Data System (ADS)

    Lynch, J. E.; Hinders, M. K.

    2002-07-01

    Periodontal disease is manifested clinically by a degradation of the ligament that attaches the tooth to the bone. The most widely used diagnostic tool for assessment of periodontal diseases, measurement of periodontal attachment loss with a manual probe, may overestimate attachment loss by as much as 2 mm in untreated sites, while underestimating attachment loss by an even greater margin following treatment. Manual probing is also invasive, which causes patient discomfort. This work describes the development and testing of an ultrasonographic periodontal probe designed to replace manual probing. It uses a thin stream of water to project an ultrasonic beam into the periodontal pocket, and then measures echoes off features within the pocket. To do so, the ultrasonic beam must be narrowed from 2 (the diameter of the transducer) to 0.5 mm (the approximate width of the periodontal pocket at the gingival margin). The proper choice of transducer frequency, the proper method for controlling water flow from the probe, and a model for interpreting these echoes are also addressed. Initial results indicate that the device measures echoes from the hard tissue of the tooth surface, and that the periodontal attachment level can be inferred from these echoes.

  19. Development of silicon carbide semiconductor devices for high temperature applications

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Powell, J. Anthony; Petit, Jeremy B.

    1991-01-01

    The semiconducting properties of electronic grade silicon carbide crystals, such as wide energy bandgap, make it particularly attractive for high temperature applications. Applications for high temperature electronic devices include instrumentation for engines under development, engine control and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Discrete prototype SiC devices were fabricated and tested at elevated temperatures. Grown p-n junction diodes demonstrated very good rectification characteristics at 870 K. A depletion-mode metal-oxide-semiconductor field-effect transistor was also successfully fabricated and tested at 770 K. While optimization of SiC fabrication processes remain, it is believed that SiC is an enabling high temperature electronic technology.

  20. 21 CFR 864.6400 - Hematocrit measuring device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hematocrit measuring device. 864.6400 Section 864.6400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6400 Hematocrit...

  1. 21 CFR 864.6400 - Hematocrit measuring device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hematocrit measuring device. 864.6400 Section 864.6400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6400 Hematocrit...

  2. 21 CFR 864.6400 - Hematocrit measuring device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hematocrit measuring device. 864.6400 Section 864.6400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6400 Hematocrit...

  3. 21 CFR 864.6400 - Hematocrit measuring device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hematocrit measuring device. 864.6400 Section 864.6400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6400 Hematocrit...

  4. 21 CFR 864.6400 - Hematocrit measuring device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hematocrit measuring device. 864.6400 Section 864.6400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6400 Hematocrit...

  5. Cooling device featuring thermoelectric and diamond materials for temperature control of heat-dissipating devices

    NASA Technical Reports Server (NTRS)

    Vandersande, Ian W. (Inventor); Ewell, Richard (Inventor); Fleurial, Jean-Pierre (Inventor); Lyon, Hylan B. (Inventor)

    1998-01-01

    A cooling device for lowering the temperature of a heat-dissipating device. The cooling device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with the heat-dissipating device. During operation, heat flows from the heat-dissipating device into the heat-conducting substrate, where it is spread out over a relatively large area. A thermoelectric cooling material (e.g., a Bi.sub.2 Te.sub.3 -based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. Application of electrical power to the thermoelectric material drives the thermoelectric material to pump heat into a second heat-conducting substrate which, in turn, is attached to a heat sink.

  6. Ultimate Diagnostics for the Measurement of Turbulence in Toroidal Devices

    NASA Astrophysics Data System (ADS)

    Park, H.; Mazzucato, E.; Hahm, T. S.; Lee, W. W.; Rewoldt, G.; Synakowski, E.; Domier, C. W.; Luhmann, N. C., Jr.

    1998-11-01

    Relentless efforts in plasma diagnostics concepts (E. Mazzucato, Rev. Sci. Instrum. 69, 1691 (1998), H. Hase, H. Hartfuss,12th HTPD conference, F-16, June 1998.) and technology (R.P. Hsia et al., Rev. Sci. Instrum. 68, 488 (1997).) R&D enable us to design a system capable of simultaneous 3-D imaging of the temperature and density turbulence spectrum in toroidal devices such as tokamak and stellarator. Measurement of multi-dimensional correlation between Te and ne turbulence is extremely important in understanding the current transport model. In this paper, the details of the concept design such as accessibility, machine parameters, detection system and relevant frequencies will be discussed for a various devices. Special attention will be given to obtain ω and k spectra with sufficient spatial resolution so that the results can be readily compared with remarkable visual results produced by gyro-kinetic (GK) and/or gyro-fluid (GF) simulations.

  7. Advanced devices and systems for radiation measurements

    SciTech Connect

    Knoll, G.F.; Wehe, D.K.; He, Z.; Barrett, C.; Miyamoto, J.

    1996-06-01

    The authors` most recent work continues their long-standing efforts to develop semiconductor detectors based on the collection of only a single type of charge carrier. Their best results are an extension of the principle of coplanar electrodes first described by Paul Luke of Lawrence Berkeley Laboratory 18 months ago. This technique, described in past progress reports, has the effect of deriving an output signal from detectors that depends only on the motion of carriers close to one surface. Since nearly all of these carriers are of one type (electrons) that are attracted to that electrode, the net effect is to nearly eliminate the influence of hole motion on the properties of the output signal. The result is that the much better mobility of electrons in compound semiconductors materials such as CZT can now be exploited without the concurrent penalty of poor hole collection. They have also developed new techniques in conjunction with the coplanar electrode principle that extends the technique into a new dimension. By proper processing of signals from the opposite electrode (the cathode) from the coplanar surface, they are able to derive a signal that is a good indication of the depth of interaction at which the charge carriers were initially formed. They have been the first group to demonstrate this technique, and examples of separate pulse height spectra recorded at a variety of different depths of interaction are shown in several of the figures that follow. Obtaining depth information is one step in the direction of obtaining volumetric point-of-interaction information from the detector. If one could known the coordinates of each specific interaction, then corrections could be applied to account for the inhomogeneities that currently plague many room-temperature devices.

  8. Organic Materials for Time-Temperature Integrator Devices.

    PubMed

    Cavallini, Massimiliano; Melucci, Manuela

    2015-08-12

    Time-temperature integrators (TTIs) are devices capable of recording the thermal history of a system. They have an enormous impact in the food and pharmaceutical industries. TTIs exploit several irreversible thermally activated transitions such as recrystallization, dewetting, smoothening, chemical decomposition, and polymorphic transitions, usually considered drawbacks for many technological applications. The aim of this article is to sensitize research groups working in organic synthesis and surface science toward TTI devices, enlarging the prospects of many new materials. We reviewed the principal applications highlighting the need and criticisms of TTIs, which offer a new opportunity for the development of many materials.

  9. Infrared Emissivity Measurements of Building and Civil Engineering Materials: A New Device for Measuring Emissivity

    NASA Astrophysics Data System (ADS)

    Monchau, Jean-Pierre; Marchetti, Mario; Ibos, Laurent; Dumoulin, Jean; Feuillet, Vincent; Candau, Yves

    2014-10-01

    The knowledge of the infrared emissivity of materials used in buildings and civil engineering structures is useful for two specific approaches. First, quantitative diagnosis of buildings or civil engineering infrastructures by infrared thermography requires emissivity values in the spectral bandwidth of the camera used for measurements, in order to obtain accurate surface temperatures; for instance, emissivity in the band III domain is required when using cameras with uncooled detectors (such as micro-bolometer arrays). Second, setting up accurate thermal balances by numerical modeling requires the total emissivity value for a large wavelength domain; this is, for instance, the case for computing the road surface temperature to predict ice occurrence. Furthermore, periodical surveys of emissivity variations due to aging or soiling of surfaces could be useful in many situations such as thermal mapping of roads or building insulation diagnosis. The use of portable emissivity measurement devices is required for that purpose. A device using an indirect measurement method was previously developed in our lab; the method uses measurement of the reflectivity from a modulated IR source and requires calibration with a highly reflective surface. However, that device uses a low-frequency, thermal modulation well adapted to laboratory measurements but unfit for fast and in situ measurements. Therefore, a new, portable system which retains the principle of an indirect measurement but uses a faster-frequency, mechanical modulation more appropriate to outdoor measurements was developed. Both devices allow measurements in the broad m to m) and narrow m to m) bands. Experiments were performed on a large number of materials commonly used in buildings and civil engineering structures. The final objective of this work is to build a database of emissivity of these materials. A comparison of laboratory and on-site measurements of emissivity values obtained in both spectral bands will be

  10. 27 CFR 24.36 - Instruments and measuring devices.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Instruments and measuring... § 24.36 Instruments and measuring devices. All instruments and measuring devices required by this part to be furnished by the proprietor for the purpose of testing and measuring wine, spirits,...

  11. 27 CFR 24.36 - Instruments and measuring devices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Instruments and measuring... § 24.36 Instruments and measuring devices. All instruments and measuring devices required by this part to be furnished by the proprietor for the purpose of testing and measuring wine, spirits,...

  12. Application of inverse heat conduction problem on temperature measurement

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhou, G.; Dong, B.; Li, Q.; Liu, L. Q.

    2013-09-01

    For regenerative cooling devices, such as G-M refrigerator, pulse tube cooler or thermoacoustic cooler, the gas oscillating bring about temperature fluctuations inevitably, which is harmful in many applications requiring high stable temperatures. To find out the oscillating mechanism of the cooling temperature and improve the temperature stability of cooler, the inner temperature of the cold head has to be measured. However, it is difficult to measure the inner oscillating temperature of the cold head directly because the invasive temperature detectors may disturb the oscillating flow. Fortunately, the outer surface temperature of the cold head can be measured accurately by invasive temperature measurement techniques. In this paper, a mathematical model of inverse heat conduction problem is presented to identify the inner surface oscillating temperature of cold head according to the measured temperature of the outer surface in a GM cryocooler. Inverse heat conduction problem will be solved using control volume approach. Outer surface oscillating temperature could be used as input conditions of inverse problem and the inner surface oscillating temperature of cold head can be inversely obtained. A simple uncertainty analysis of the oscillating temperature measurement also will be provided.

  13. Optimal color temperature adjustment for mobile devices under varying illuminants

    NASA Astrophysics Data System (ADS)

    Choi, Kyungah; Suk, Hyeon-Jeong

    2014-01-01

    With the wide use of mobile devices, display color reproduction has become extremely important. The purpose of this study is to investigate the optimal color temperature for mobile displays under varying illuminants. The effect of the color temperature and the illuminance of ambient lighting on user preferences were observed. For a visual examination, a total of 19 nuanced whites were examined under 20 illuminants. A total of 19 display stimuli with different color temperatures (2,500 K ~ 19,600 K) were presented on an iPad3 (New iPad). The ambient illuminants ranged in color temperature from 2,500 K to 19,800 K and from 0 lx to 3,000 lx in illuminance. Supporting previous studies of color reproduction, there was found to be a positive correlation between the color temperature of illuminants and that of optimal whites. However, the relationship was not linear. Based on assessments by 56 subjects, a regression equation was derived to predict the optimal color temperature adjustment under varying illuminants, as follows: [Display Tcp = 5138.93 log(Illuminant Tcp) - 11956.59, p<.001, R2=0.94]. Moreover, the influence of an illuminant was positively correlated with the illuminance level, confirming the findings of previous studies. It is expected that the findings of this study can be used as the theoretical basis when designing a color strategy for mobile display devices.

  14. On-chip temperature-compensated Love mode surface acoustic wave device for gravimetric sensing

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Flewitt, A. J.

    2014-11-01

    Love mode surface acoustic wave (SAW) sensors have been recognized as one of the most sensitive devices for gravimetric sensors in liquid environments such as bio sensors. Device operation is based upon measuring changes in the transmitted (S21) frequency and phase of the first-order Love wave resonance associated with the device upon on attachment of mass. However, temperature variations also cause a change in the first order S21 parameters. In this work, shallow grooved reflectors and a "dotted" single phase unidirectional interdigitated transducer (D-SPUDT) have been added to the basic SAW structure, which promote unidirectional Love wave propagation from the device's input interdigitated transducers. Not only does this enhance the first-order S21 signal but also it allows propagation of a third-order Love wave. The attenuation coefficient of the third-order wave is sufficiently great that, whilst there is a clear reflected S11 signal, the third-order wave does not propagate into the gravimetric sensing area of the device. As a result, whilst the third-order S11 signal is affected by temperature changes, it is unaffected by mass attachment in the sensing area. It is shown that this signal can be used to remove temperature effects from the first-order S21 signal in real time. This allows gravimetric sensing to take place in an environment without the need for any other temperature measurement or temperature control; this is a particular requirement of gravimetric biosensors.

  15. Compensated vibrating optical fiber pressure measuring device

    DOEpatents

    Fasching, George E.; Goff, David R.

    1987-01-01

    A microbending optical fiber is attached under tension to a diaphragm to se a differential pressure applied across the diaphragm which it causes it to deflect. The fiber is attached to the diaphragm so that one portion of the fiber, attached to a central portion of the diaphragm, undergoes a change in tension; proportional to the differential pressure applied to the diaphragm while a second portion attached at the periphery of the diaphragm remains at a reference tension. Both portions of the fiber are caused to vibrate at their natural frequencies. Light transmitted through the fiber is attenuated by both portions of the tensioned sections of the fiber by an amount which increases with the curvature of fiber bending so that the light signal is modulated by both portions of the fiber at separate frequencies. The modulated light signal is transduced into a electrical signal. The separate modulation signals are detected to generate separate signals having frequencies corresponding to the reference and measuring vibrating sections of the continuous fiber, respectively. A signal proportional to the difference between these signals is generated which is indicative of the measured pressure differential across the diaphragm. The reference portion of the fiber is used to compensate the pressure signal for zero and span changes resulting from ambient temperature and humidity effects upon the fiber and the transducer fixture.

  16. Measurement of relative permittivity of LTCC ceramic at different temperatures

    NASA Astrophysics Data System (ADS)

    Tan, Qiulin; Kang, Hao; Qin, Li; Xiong, Jijun; Zhou, Zhaoying; Zhang, Wendong; Luo, Tao; Xue, Chenyang; Liu, Jun

    2014-03-01

    Devices based on LTCC (low-temperature co-fired ceramic) technology are more widely applied in high temperature environments, and the temperature-dependent properties of the LTCC material play an important role in measurements of the characteristics of these devices at high temperature. In this paper, the temperature-dependence of the relative permittivity of DuPont 951 LTCC ceramic is studied from room temperature to 500 °C. An expression for relative permittivity is obtained, which relates the relative permittivity to the resonant frequency, inductance, parasitic capacitance and electrode capacitance of the LTCC sample. Of these properties, the electrode capacitance is the most strongly temperature-dependent. The LTCC sample resonant frequency, inductance and parasitic capacitance were measured (from room temperature to 500 °C) with a high temperature measurement system comprising a muffle furnace and network analyzer. We found that the resonant frequency reduced and the inductance and parasitic capacitance increased slightly as the temperature increases. The relative permittivity can be calculated from experimental frequency, inductance and parasitic capacitance measurements. Calculating results show that the relative permittivity of DuPont 951 LTCC ceramic ceramic increases to 8.21 from room temperature to 500 °C.

  17. Home blood pressure measurement with oscillometric upper-arm devices.

    PubMed

    Braam, R L; Thien, Th

    2003-10-01

    The market for automated blood pressure measuring devices is growing rapidly. Many patients want to buy a device for blood pressure measurement at home and ask their physician for advice about which one to choose. In this article an overview is given of the different devices available for blood pressure measurement and possible pitfalls in the interpretation of measurements taken at home are pointed out. A second article will specifically address those devices that are used to take blood pressure measurements at the wrist.

  18. Electrical Devices and Circuits for Low Temperature Space Applications

    NASA Technical Reports Server (NTRS)

    Patterson, R. L.; Hammond, A.; Dickman, J. E.; Gerber, S.; Overton, E.; Elbuluk, M.

    2003-01-01

    The environmental temperature in many NASA missions, such as deep space probes and outer planetary exploration, is significantly below the range for which conventional commercial-off-the-shelf electronics is designed. Presently, spacecraft operating in the cold environment of such deep space missions carry a large number of radioisotope or other heating units in order to maintain the surrounding temperature of the on-board electronics at approximately 20 C. Electronic devices and circuits capable of operation at cryogenic temperatures will not only tolerate the harsh environment of deep space but also will reduce system size and weight by eliminating or reducing the heating units and their associate structures; thereby reducing system development cost as well as launch costs. In addition, power electronic circuits designed for operation at low temperatures are expected to result in more efficient systems than those at room temperature. This improvement results from better behavior in the electrical and thermal properties of some semiconductor and dielectric materials at low temperatures. An on-going research and development program on low temperature electronics at the NASA Glenn Research Center focuses on the development of efficient electrical systems and circuits capable of surviving and exploiting the advantages of low temperature environments. An overview of the program will be presented in this paper. A description of the low temperature test facilities along with selected data obtained from in-house component testing will also be discussed. On-going research activities that are being performed in collaboration with various organizations will also be presented.

  19. Temperature-dependent liquid metal flowrate control device

    DOEpatents

    Carlson, Roger D.

    1978-01-01

    A temperature-dependent liquid metal flowrate control device includes a magnet and a ferromagnetic member defining therebetween a flow path for liquid metal, the ferromagnetic member being formed of a material having a curie temperature at which a change in the flow rate of the liquid metal is desired. According to the preferred embodiment the magnet is a cylindrical rod magnet axially disposed within a cylindrical member formed of a curie material and having iron pole pieces at the ends. A cylindrical iron shunt and a thin wall stainless steel barrier are disposed in the annulus between magnet and curie material. Below the curie temperature flow between steel barrier and curie material is impeded and above the curie temperature flow impedance is reduced.

  20. Catalytic CVD of SWCNTs at Low Temperatures and SWCNT Devices

    NASA Astrophysics Data System (ADS)

    Seidel, Robert; Liebau, Maik; Unger, Eugen; Graham, Andrew P.; Duesberg, Georg S.; Kreupl, Franz; Hoenlein, Wolfgang; Pompe, Wolfgang

    2004-09-01

    New results on the planar growth of single-walled carbon nanotubes (SWCNTs) by catalytic chemical vapor deposition (CVD) at low temperatures will be reported. Optimizing catalyst, catalyst support, and growth parameters yields SWCNTs at temperatures as low as 600 °C. Growth at such low temperatures largely affects the diameter distribution since coalescence of the catalyst is suppressed. A phenomenological growth model will be suggested for CVD growth at low temperatures. The model takes into account surface diffusion and is an alternative to the bulk diffusion based vapor-liquid-solid (VLS) model. Furthermore, carbon nanotubes field effect transistors based on substrate grown SWCNTs will be presented. In these devices good contact resistances could be achieved by electroless metal deposition or metal evaporation of the contacts.

  1. Evaluation of Advanced COTS Passive Devices for Extreme Temperature Operation

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Dones, Keishla R.

    2009-01-01

    Electronic sensors and circuits are often exposed to extreme temperatures in many of NASA deep space and planetary surface exploration missions. Electronics capable of operation in harsh environments would be beneficial as they simplify overall system design, relax thermal management constraints, and meet operational requirements. For example, cryogenic operation of electronic parts will improve reliability, increase energy density, and extend the operational lifetimes of space-based electronic systems. Similarly, electronic parts that are able to withstand and operate efficiently in high temperature environments will negate the need for thermal control elements and their associated structures, thereby reducing system size and weight, enhancing its reliability, improving its efficiency, and reducing cost. Passive devices play a critical role in the design of almost all electronic circuitry. To address the needs of systems for extreme temperature operation, some of the advanced and most recently introduced commercial-off-the-shelf (COTS) passive devices, which included resistors and capacitors, were examined for operation under a wide temperature regime. The types of resistors investigated included high temperature precision film, general purpose metal oxide, and wirewound.

  2. Assessment of SOI Devices and Circuits at Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik; Hammoud, Ahmad; Patterson, Richard L.

    2007-01-01

    Electronics designed for use in future NASA space exploration missions are expected to encounter extreme temperatures and wide thermal swings. Such missions include planetary surface exploration, bases, rovers, landers, orbiters, and satellites. Electronics designed for such applications must, therefore, be able to withstand exposure to extreme temperatures and to perform properly for the duration of mission. The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical devices, circuits, and systems suitable for applications in deep space exploration missions and aerospace environment. Silicon-On-Insulator (SOI) technology has been under active consideration in the electronics industry for many years due to the advantages that it can provide in integrated circuit (IC) chips and computer processors. Faster switching, less power, radiationtolerance, reduced leakage, and high temp-erature capability are some of the benefits that are offered by using SOI-based devices. A few SOI circuits are available commercially. However, there is a noticeable interest in SOI technology for different applications. Very little data, however, exist on the performance of such circuits under cryogenic temperatures. In this work, the performance of SOI integrated circuits, evaluated under low temperature and thermal cycling, are reported. In particular, three examples of SOI circuits that have been tested for operation at low at temperatures are given. These circuits are SOI operational amplifiers, timers and power MOSFET drivers. The investigations were carried out to establish a baseline on the functionality and to determine suitability of these circuits for use in space exploration missions at cryogenic temperatures. The findings are useful to mission planners and circuit designers so that proper selection of electronic parts can be made, and risk assessment can be established for such circuits for use in space missions.

  3. 27 CFR 25.42 - Testing of measuring devices.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Measurement of Beer § 25.42 Testing of measuring devices... beer, the brewer shall periodically test the measuring device and adjust or repair it, if necessary... test; and (4) Corrective action taken, if necessary. (b) Requirements for beer meters. The...

  4. 27 CFR 25.42 - Testing of measuring devices.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Measurement of Beer § 25.42 Testing of measuring devices... beer, the brewer shall periodically test the measuring device and adjust or repair it, if necessary... test; and (4) Corrective action taken, if necessary. (b) Requirements for beer meters. The...

  5. 27 CFR 25.42 - Testing of measuring devices.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL BEER Measurement of Beer § 25.42 Testing of measuring devices... beer, the brewer shall periodically test the measuring device and adjust or repair it, if necessary... test; and (4) Corrective action taken, if necessary. (b) Requirements for beer meters. The...

  6. 27 CFR 25.42 - Testing of measuring devices.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL BEER Measurement of Beer § 25.42 Testing of measuring devices... beer, the brewer shall periodically test the measuring device and adjust or repair it, if necessary... test; and (4) Corrective action taken, if necessary. (b) Requirements for beer meters. The...

  7. 27 CFR 25.42 - Testing of measuring devices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Measurement of Beer § 25.42 Testing of measuring devices... beer, the brewer shall periodically test the measuring device and adjust or repair it, if necessary... test; and (4) Corrective action taken, if necessary. (b) Requirements for beer meters. The...

  8. 121. Man with temperature probe aimed at armature measuring temperature ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    121. Man with temperature probe aimed at armature measuring temperature as armature heats up between the two electrodes. March 27, 1985 - Statue of Liberty, Liberty Island, Manhattan, New York County, NY

  9. Electron cyclotron beam measurement system in the Large Helical Device

    SciTech Connect

    Kamio, S. Takahashi, H.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Osakabe, M.; Mutoh, T.

    2014-11-15

    In order to evaluate the electron cyclotron (EC) heating power inside the Large Helical Device vacuum vessel and to investigate the physics of the interaction between the EC beam and the plasma, a direct measurement system for the EC beam transmitted through the plasma column was developed. The system consists of an EC beam target plate, which is made of isotropic graphite and faces against the EC beam through the plasma, and an IR camera for measuring the target plate temperature increase by the transmitted EC beam. This system is applicable to the high magnetic field (up to 2.75 T) and plasma density (up to 0.8 × 10{sup 19} m{sup −3}). This system successfully evaluated the transmitted EC beam profile and the refraction.

  10. Temperature and Strain Coefficient of Velocity for Langasite SAW Devices

    NASA Technical Reports Server (NTRS)

    Wilson, W. C.; Atkinson, G. M.

    2013-01-01

    Surface Acoustic Wave sensors on Langasite substrates are being investigated for aerospace applications. Characterization of the Langasite material properties must be performed before sensors can be installed in research vehicles. The coefficients of velocity for both strain and temperature have been determined. These values have also been used to perform temperature compensation of the strain measurements.

  11. Measuring Specific Heats at High Temperatures

    NASA Technical Reports Server (NTRS)

    Vandersande, Jan W.; Zoltan, Andrew; Wood, Charles

    1987-01-01

    Flash apparatus for measuring thermal diffusivities at temperatures from 300 to 1,000 degrees C modified; measures specific heats of samples to accuracy of 4 to 5 percent. Specific heat and thermal diffusivity of sample measured. Xenon flash emits pulse of radiation, absorbed by sputtered graphite coating on sample. Sample temperature measured with thermocouple, and temperature rise due to pulse measured by InSb detector.

  12. [Measurement and management of body temperature].

    PubMed

    Iwashita, Hironobu; Matsukawa, Takashi

    2012-01-01

    Body temperature regulation is at the basis of life maintenance and for humans to maintain the central body temperature within the range of 37 +/- 0.2 degrees Celsius. In the case of anesthesia, a patient would have a high possibility of lower body temperature and also could have more complications with low body temperature. In addition, it would generate more complications and extend a period of hospitalization. For that reason, anesthetists must pay full attention to body temperature management during surgery. Measurement for central body temperature is necessary as a monitor for body temperature measurement and the measurement for nasopharyngeal temperature, tympanic temperature, and lung artery temperature is effective for this purpose. Therapeutic hypothermia for brain injury is receiving attention recently as a preventive method for brain disorder and the method is utilized in hospital facilities. In future, it is expected to attain the most suitable treatment method by clinical studies on low body temperature.

  13. Temperature mapping of operating nanoscale devices by scanning probe thermometry.

    PubMed

    Menges, Fabian; Mensch, Philipp; Schmid, Heinz; Riel, Heike; Stemmer, Andreas; Gotsmann, Bernd

    2016-01-01

    Imaging temperature fields at the nanoscale is a central challenge in various areas of science and technology. Nanoscopic hotspots, such as those observed in integrated circuits or plasmonic nanostructures, can be used to modify the local properties of matter, govern physical processes, activate chemical reactions and trigger biological mechanisms in living organisms. The development of high-resolution thermometry techniques is essential for understanding local thermal non-equilibrium processes during the operation of numerous nanoscale devices. Here we present a technique to map temperature fields using a scanning thermal microscope. Our method permits the elimination of tip-sample contact-related artefacts, a major hurdle that so far has limited the use of scanning probe microscopy for nanoscale thermometry. We map local Peltier effects at the metal-semiconductor contacts to an indium arsenide nanowire and self-heating of a metal interconnect with 7 mK and sub-10 nm spatial temperature resolution. PMID:26936427

  14. Temperature mapping of operating nanoscale devices by scanning probe thermometry

    PubMed Central

    Menges, Fabian; Mensch, Philipp; Schmid, Heinz; Riel, Heike; Stemmer, Andreas; Gotsmann, Bernd

    2016-01-01

    Imaging temperature fields at the nanoscale is a central challenge in various areas of science and technology. Nanoscopic hotspots, such as those observed in integrated circuits or plasmonic nanostructures, can be used to modify the local properties of matter, govern physical processes, activate chemical reactions and trigger biological mechanisms in living organisms. The development of high-resolution thermometry techniques is essential for understanding local thermal non-equilibrium processes during the operation of numerous nanoscale devices. Here we present a technique to map temperature fields using a scanning thermal microscope. Our method permits the elimination of tip–sample contact-related artefacts, a major hurdle that so far has limited the use of scanning probe microscopy for nanoscale thermometry. We map local Peltier effects at the metal–semiconductor contacts to an indium arsenide nanowire and self-heating of a metal interconnect with 7 mK and sub-10 nm spatial temperature resolution. PMID:26936427

  15. Temperature mapping of operating nanoscale devices by scanning probe thermometry

    NASA Astrophysics Data System (ADS)

    Menges, Fabian; Mensch, Philipp; Schmid, Heinz; Riel, Heike; Stemmer, Andreas; Gotsmann, Bernd

    2016-03-01

    Imaging temperature fields at the nanoscale is a central challenge in various areas of science and technology. Nanoscopic hotspots, such as those observed in integrated circuits or plasmonic nanostructures, can be used to modify the local properties of matter, govern physical processes, activate chemical reactions and trigger biological mechanisms in living organisms. The development of high-resolution thermometry techniques is essential for understanding local thermal non-equilibrium processes during the operation of numerous nanoscale devices. Here we present a technique to map temperature fields using a scanning thermal microscope. Our method permits the elimination of tip-sample contact-related artefacts, a major hurdle that so far has limited the use of scanning probe microscopy for nanoscale thermometry. We map local Peltier effects at the metal-semiconductor contacts to an indium arsenide nanowire and self-heating of a metal interconnect with 7 mK and sub-10 nm spatial temperature resolution.

  16. Device and method for measuring thermal conductivity of thin films

    NASA Technical Reports Server (NTRS)

    Amer, Tahani R. (Inventor); Subramanian, Chelakara (Inventor); Upchurch, Billy T. (Inventor); Alderfer, David W. (Inventor); Sealey, Bradley S. (Inventor); Burkett, Jr., Cecil G. (Inventor)

    2001-01-01

    A device and method are provided for measuring the thermal conductivity of rigid or flexible, homogeneous or heterogeneous, thin films between 50 .mu.m and 150 .mu.m thick with relative standard deviations of less than five percent. The specimen is sandwiched between like material, highly conductive upper and lower slabs. Each slab is instrumented with six thermocouples embedded within the slab and flush with their corresponding surfaces. A heat source heats the lower slab and a heat sink cools the upper slab. The heat sink also provides sufficient contact pressure onto the specimen. Testing is performed within a vacuum environment (bell-jar) between 10.sup.-3 to 10.sup.-6 Torr. An anti-radiant shield on the interior surface of the bell-jar is used to avoid radiation heat losses. Insulation is placed adjacent to the heat source and adjacent to the heat sink to prevent conduction losses. A temperature controlled water circulator circulates water from a constant temperature bath through the heat sink. Fourier's one-dimensional law of heat conduction is the governing equation. Data, including temperatures, are measured with a multi-channel data acquisition system. On-line computer processing is used for thermal conductivity calculations.

  17. State of the market for devices for blood pressure measurement.

    PubMed

    O'Brien, E

    2001-12-01

    There is a large market for blood pressure measuring devices, not only in clinical medicine, but also with the public where the demand for self-measurement of blood pressure is growing rapidly. For the consumer, whether medical or lay, device accuracy should be of prime importance in selecting a blood pressure measuring device. However, the majority of devices available have not been evaluated independently for accuracy. In this paper the published evidence for independent validation is reviewed and it is recommended that such reviews should be undertaken regularly by international bodies, such as the European Society of Hypertension. PMID:12055402

  18. Development of a wireless blood pressure measuring device with smart mobile device.

    PubMed

    İlhan, İlhan; Yıldız, İbrahim; Kayrak, Mehmet

    2016-03-01

    Today, smart mobile devices (telephones and tablets) are very commonly used due to their powerful hardware and useful features. According to an eMarketer report, in 2014 there were 1.76 billion smartphone users (excluding users of tablets) in the world; it is predicted that this number will rise by 15.9% to 2.04 billion in 2015. It is thought that these devices can be used successfully in biomedical applications. A wireless blood pressure measuring device used together with a smart mobile device was developed in this study. By means of an interface developed for smart mobile devices with Android and iOS operating systems, a smart mobile device was used both as an indicator and as a control device. The cuff communicating with this device through Bluetooth was designed to measure blood pressure via the arm. A digital filter was used on the cuff instead of the traditional analog signal processing and filtering circuit. The newly developed blood pressure measuring device was tested on 18 patients and 20 healthy individuals of different ages under a physician's supervision. When the test results were compared with the measurements made using a sphygmomanometer, it was shown that an average 93.52% accuracy in sick individuals and 94.53% accuracy in healthy individuals could be achieved with the new device. PMID:26626086

  19. Development of a wireless blood pressure measuring device with smart mobile device.

    PubMed

    İlhan, İlhan; Yıldız, İbrahim; Kayrak, Mehmet

    2016-03-01

    Today, smart mobile devices (telephones and tablets) are very commonly used due to their powerful hardware and useful features. According to an eMarketer report, in 2014 there were 1.76 billion smartphone users (excluding users of tablets) in the world; it is predicted that this number will rise by 15.9% to 2.04 billion in 2015. It is thought that these devices can be used successfully in biomedical applications. A wireless blood pressure measuring device used together with a smart mobile device was developed in this study. By means of an interface developed for smart mobile devices with Android and iOS operating systems, a smart mobile device was used both as an indicator and as a control device. The cuff communicating with this device through Bluetooth was designed to measure blood pressure via the arm. A digital filter was used on the cuff instead of the traditional analog signal processing and filtering circuit. The newly developed blood pressure measuring device was tested on 18 patients and 20 healthy individuals of different ages under a physician's supervision. When the test results were compared with the measurements made using a sphygmomanometer, it was shown that an average 93.52% accuracy in sick individuals and 94.53% accuracy in healthy individuals could be achieved with the new device.

  20. Lidar measurements of stratospheric temperature during STOIC

    SciTech Connect

    Ferrare, R.A. ||; McGhee, T.J.; Burris, J.

    1995-05-20

    This paper presents stratospheric temperature measurements made by ground based lidar during the Stratospheric Ozone Intercomparison Campaign experiment. These measurements are correlated with complementary measurements made from sondes, satellite platforms, and National Meteorological Center analyses. Over the altitude range 30 to 65 km, the lidar derived temperatures were within 2 to 3 K of the temperatures derived from the other measurement systems. Specific differences are discussed in the paper.

  1. Pyrometric Gas and Surface Temperature Measurements

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave; Ng, Daniel

    1999-01-01

    A multiwavelength pyrometer possessing advantages over the one- and two-wavelength designs is described. Results of its application to surface temperature measurements of ceramics is presented. Also described is a probe suitable for gas temperature measurements to temperatures > 2600 K. The design of the probe includes a multiwavelength pyrometer with fiber optic input.

  2. Surface Temperature Measurement Using Hematite Coating

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J. (Inventor)

    2015-01-01

    Systems and methods that are capable of measuring temperature via spectrophotometry principles are discussed herein. These systems and methods are based on the temperature dependence of the reflection spectrum of hematite. Light reflected from these sensors can be measured to determine a temperature, based on changes in the reflection spectrum discussed herein.

  3. Measurement of thermodynamic temperature of high temperature fixed points

    SciTech Connect

    Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I.

    2013-09-11

    The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 'Radiation Thermometry'. The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

  4. Suspension Device for Use with Low Temperature Refrigerator

    NASA Technical Reports Server (NTRS)

    Wegel, Donald C. (Inventor)

    2015-01-01

    A suspension device for use with a low temperature refrigeration system, such as an adiabatic demagnetization refrigerator is provided. A support ring is provided with three spring-loaded tension assemblies equally spaced about the periphery of the support ring. The tension assemblies each have a pulley, about which is entrained a band of material. Connected to this band is a ring that laterally supports a cylindrical salt pill. Undesired variations in the amount of slack in the band as the salt pill cools are compensated for by the spring loading of the tension assemblies.

  5. Temperature measurement inside metallic cables using distributed temperature system

    NASA Astrophysics Data System (ADS)

    Jaros, Jakub; Papes, Martin; Liner, Andrej; Vasinek, Vladimir; Mach, Veleslav; Hruby, David; Kajnar, Tomas; Perecar, Frantisek

    2015-07-01

    Nowadays, metallic cables are produced so as to avoid the maximum allowable temperature of the cable by the normal operation and the maximum allowable temperature for short-circuit the exceeding the maximum allowable internal temperature. The temperature increase is an unwanted phenomena causing losses in the cable and its abrasion. Longterm overload can lead to damaging of the cable or to the risk of fire in extreme cases. In our work, we present the temperature distribution measurement inside the metallic cables using distributed temperature system. Within the cooperation with manufacturer of the metallic cables, optical fibers were implemented into these cables. The cables are double coated and the fibers are allocated between these coatings and also in the centre of the cable. Thus we are able to measure the temperature inside the cable and also on the surface temperature along the whole cable length with spatial resolution 1 m during the cable heating. This measurement method can be also used for short-circuit prediction and detection, because this phenomena is always accompanied with temperature increase. Distributed temperature systems are already successfully implemented in temperature measurements in industry environment, such as construction, sewer systems, caliducts etc. The main advantage of these systems is electromagnetic resistance, low application price and the possibility of monitoring several kilometers long distances.

  6. Temperature measurements in noctilucent clouds.

    PubMed

    Theon, J S; Nordberg, W; Smith, W S

    1967-07-28

    Results of ten rocket soundings conducted from Kronogard, Sweden, and Barrow, Alaska, during the summers of 1963 through 1965 indicate that a temperature of 150 degrees K or less is a necessary but not sufficient condition for the existence of noctilucent clouds. Water vapor appears to be a critical ingredient in the occurrence of these clouds.

  7. MEMS Device Being Developed for Active Cooling and Temperature Control

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2001-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) is currently under development at the NASA Glenn Research Center to meet this need. It uses a thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface. The device can be used strictly in the cooling mode, or it can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly are accomplished by wet etching and wafer bonding techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces and limited failure modes, and minimal induced vibration.

  8. High Density And High Temperature Plasmas In Large Helical Device

    NASA Astrophysics Data System (ADS)

    Komori, A.

    2010-07-01

    For the realization of the fusion reactor, it is necessary to confine high density and high temperature plasma for a time, which is well known as the Lawson criterion. To improve the plasma or confinement performance, vigorous experiments have been performed in the Large Helical Device (LHD) in National Institute for Fusion Science, which is the largest superconducting heliotron device with R = 3.9 m r = 0.6 m, Bt = 3 T. Recently a promising confinement regime called Super Dense Core (SDC) mode was discovered. An extremely high density core region with more than ~ 1 × 10^20 m-3 is obtained with the formation of an Internal Diffusion Barrier (IDB). The density gradient at the IDB (? = 0.6) is very high and the particle confinement in the core region is ~ 0.2 s. It is expected, for the future reactor, that the IDB-SDC mode has a possibility to achieve the self-ignition condition with lower temperature than expected before. The IDB-SDC mode is also favorable from the engineering point of view since one can moderate demands for heating devices and plasma facing components. In order to achieve the IDB-SDC mode, the central fuelling with the pellet injection and the low recycling condition are essential. A repetitive pellet injector was newly developed to continuously feed the particle source to the central region. For the recycling control, the effective divertor system should be employed to control the edge plasma. Conventional approaches to increase the temperature have also been tried in LHD. For the ion heating, the perpendicular neutral beam injection effectively increased the ion temperature more than 10 keV with the formation of the internal transport barrier (ITB). In the core region, the heat conductivity is improved to the neoclassical level, while no clear ITB for electron was seen. Another interesting phenomenon called "impurity hole" was observed inside the ITB. During the high ion temperature discharge, the im- purity density in the core region becomes

  9. An all optical method for lab-on-a-chip temperature measurements

    NASA Astrophysics Data System (ADS)

    Goering, Adam; Adams, Dan; Squier, Jeff; Durfee, Charles; Williams, Kim

    2009-10-01

    We demonstrate the use of Spatially and Spectrally Resolved Interferometry (SSRI) to measure minute temperature changes in picoliter volumes. The SSRI technique allows the measurement of refractive index changes as a function of temperature, frequency, and one spatial dimension within a microfluidic device. Integration of optical fibers and inexpensive light sources facilitate the progress of this method toward ``lab on a chip'' applications. Additionally, careful construction of microfluidic devices, in combination with SSRI will enable in-situ control of thermal gradients across the channel. Broad applications of this technology could include the measurements of reaction enthalpies, development of accurate temperature measurements in microfluidic devices, and precise characterization of temperature gradients.

  10. Development of a device to measure human hair luster.

    PubMed

    Tango, Y; Shimmoto, K

    2001-01-01

    Evaluating human hair luster is important in developing effective hair care products. Many methods of measuring human hair luster have been proposed, but most have major disadvantages: some require cutting the subject's hair, some utilize bulky equipment, and some take much time. A device that does not impose excessive burden on the subject and hair, but can easily and conveniently measure human hair luster, has not yet been developed. Overcoming the disadvantages of the traditional method, our new device can measure luster accurately without cutting the hair. Neither the subject's hairstyle nor its color influences the measurements. The device is small, and the time required for measurement is only 0.2 sec. The hair of 84 subjects was evaluated using this device, and there was a high correlation between the sensory score and the measurements obtained.

  11. Finger temperature controller for non-invasive blood glucose measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Xiqin; Ting, Choon Meng; Yeo, Joon Hock

    2010-11-01

    Blood glucose level is an important parameter for doctors to diagnose and treat diabetes. The Near-Infra-Red (NIR) spectroscopy method is the most promising approach and this involves measurement on the body skin. However it is noted that the skin temperature does fluctuate with the environmental and physiological conditions and we found that temperature has important influences on the glucose measurement. In-vitro and in-vivo investigations on the temperature influence on blood glucose measurement have been carried out. The in-vitro results show that water temperature has significant influence on water absorption. Since 90% of blood components are water, skin temperature of measurement site has significant influence on blood glucose measurement. Also the skin temperature is related to the blood volume, blood volume inside capillary vessels changes with skin temperature. In this paper the relationship of skin temperature and signal from the skin and inside tissue was studied at different finger temperatures. Our OGTT (oral glucose tolerance test) trials results show the laser signals follow the skin temperature trend and the correlation of signal and skin temperature is much stronger than the correlation of signal and glucose concentration. A finger heater device is designed to heat and maintain the skin temperature of measurement site. The heater is controlled by an electronic circuit according to the skin temperature sensed by a thermocouple that is put close to the measurement site. In vivo trials were carried out and the results show that the skin temperature significantly influences the signal fluctuations caused by pulsate blood and the average signal value.

  12. Temperature Correction in Probe Measurements

    NASA Astrophysics Data System (ADS)

    Gutsev, S. A.

    2015-09-01

    This work is devoted to experimental investigations of a decaying plasma using Langmuir probes. The gas pressure, the discharge current, and the moment of afterglow were selected to obtain probe characteristics in collisionless, intermediate, and drifting regimes of motion of charged particles. The manner in which the shape of the volt- ampere characteristics changes on passage from the collisionless motion to diffusion motion has been shown. A detailed analysis has been made of the source of errors arising when orbital-motion formulas or the logarithmic-operation method are applied to processing of the probe curves. It has been shown that neglect of collisions of charged particles in the probe layer leads to an ion-density value overstated more than three times, an electron-temperature value overstated two times, and an ion temperature overstated three to nine times. A model of interaction of charged particles in the probe layer has been proposed for correction of the procedure of determining temperature. Such an approach makes it possible to determine the space-charge layer in the probe, and also the value of the self-consistent field. The use of the developed procedures gives good agreement between experimental and theoretical results.

  13. Test device for measuring permeability of a barrier material

    SciTech Connect

    Reese, Matthew; Dameron, Arrelaine; Kempe, Michael

    2014-03-04

    A test device for measuring permeability of a barrier material. An exemplary device comprises a test card having a thin-film conductor-pattern formed thereon and an edge seal which seals the test card to the barrier material. Another exemplary embodiment is an electrical calcium test device comprising: a test card an impermeable spacer, an edge seal which seals the test card to the spacer and an edge seal which seals the spacer to the barrier material.

  14. Method and apparatus for optical temperature measurements

    DOEpatents

    Angel, S.M.; Hirschfeld, T.B.

    1986-04-22

    A method and apparatus are provided for remotely monitoring temperature. Both method and apparatus employ a temperature probe material having an excitation-dependent emission line whose fluorescence intensity varies directly with temperature whenever excited by light having a first wavelength and whose fluorescence intensity varies inversely with temperature whenever excited by light having a second wavelength. Temperature is measured by alternatively illiminating the temperature probe material with light having the first wavelength and light having the second wavelength, monitoring the intensity of the successive emissions of the excitation-dependent emission line, and relating the intensity ratio of successive emissions to temperature. 3 figs.

  15. Method and apparatus for optical temperature measurements

    DOEpatents

    Angel, S. Michael; Hirschfeld, Tomas B.

    1988-01-01

    A method and apparatus are provided for remotely monitoring temperature. Both method and apparatus employ a temperature probe material having an excitation-dependent emission line whose fluorescence intensity varies directly with temperature whenever excited by light having a first wavelength and whose fluorescence intensity varies inversely with temperature whenever excited by light having a second wavelength. Temperature is measured by alternatively illuminating the temperature probe material with light having the first wavelength and light having the second wavelength, monitoring the intensity of the successive emissions of the excitation-dependent emission line, and relating the intensity ratio of successive emissions to temperature.

  16. Optical distance measurement device and method thereof

    DOEpatents

    Bowers, Mark W.

    2003-05-27

    A system and method of efficiently obtaining distance measurements of a target. A modulated optical beam may be used to determine the distance to the target. A first beam splitter may be used to split the optical beam and a second beam splitter may be used to recombine a reference beam with a return ranging beam. An optical mixing detector may be used in a receiver to efficiently detect distance measurement information.

  17. Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices.

    PubMed

    Grosse, Kyle L; Pop, Eric; King, William P

    2014-09-01

    This paper reports a technique for independent observation of nanometer-scale Joule heating and thermoelectric effects, using atomic force microscopy (AFM) based measurements of nanometer-scale temperature fields. When electrical current flows through nanoscale devices and contacts the temperature distribution is governed by both Joule and thermoelectric effects. When the device is driven by an electrical current that is both periodic and bipolar, the temperature rise due to the Joule effect is at a different harmonic than the temperature rise due to the Peltier effect. An AFM tip scanning over the device can simultaneously measure all of the relevant harmonic responses, such that the Joule effect and the Peltier effect can be independently measured. Here we demonstrate the efficacy of the technique by measuring Joule and Peltier effects in phase change memory devices. By comparing the observed temperature responses of these working devices, we measure the device thermopower, which is in the range of 30 ± 3 to 250 ± 10 μV K(-1). This technique could facilitate improved measurements of thermoelectric phenomena and properties at the nanometer-scale. PMID:25273761

  18. Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices

    SciTech Connect

    Grosse, Kyle L.; Pop, Eric; King, William P.

    2014-09-15

    This paper reports a technique for independent observation of nanometer-scale Joule heating and thermoelectric effects, using atomic force microscopy (AFM) based measurements of nanometer-scale temperature fields. When electrical current flows through nanoscale devices and contacts the temperature distribution is governed by both Joule and thermoelectric effects. When the device is driven by an electrical current that is both periodic and bipolar, the temperature rise due to the Joule effect is at a different harmonic than the temperature rise due to the Peltier effect. An AFM tip scanning over the device can simultaneously measure all of the relevant harmonic responses, such that the Joule effect and the Peltier effect can be independently measured. Here we demonstrate the efficacy of the technique by measuring Joule and Peltier effects in phase change memory devices. By comparing the observed temperature responses of these working devices, we measure the device thermopower, which is in the range of 30 ± 3 to 250 ± 10 μV K{sup −1}. This technique could facilitate improved measurements of thermoelectric phenomena and properties at the nanometer-scale.

  19. Method and apparatus for optical temperature measurement

    DOEpatents

    O'Rourke, Patrick E.; Livingston, Ronald R.; Prather, William S.

    1994-01-01

    A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped boresilicate glass, accurate to .+-.0.5.degree. C. over an operating temperature range of about -196.degree. C. to 400.degree. C.; and a mixture of D.sub.2 O and H.sub.2 O, accurate to .+-.0.1.degree. C. over an operating range of about 5.degree. C. to 90.degree. C.

  20. Method and apparatus for optical temperature measurement

    DOEpatents

    O'Rourke, P.E.; Livingston, R.R.; Prather, W.S.

    1994-09-20

    A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe are disclosed. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped borosilicate glass, accurate to [+-]0.5 C over an operating temperature range of about [minus]196 C to 400 C; and a mixture of D[sub 2]O and H[sub 2]O, accurate to [+-]0.1 C over an operating range of about 5 C to 90 C. 13 figs.

  1. A device to investigate the delamination strength in laminates at room and cryogenic temperature.

    PubMed

    Zhang, Xingyi; Liu, Wei; Zhou, Jun; Zhou, You-He

    2014-12-01

    We construct an instrument to study the behavior of delamination strength in laminates which can be defined as the critical transverse stress at which an actual delamination occurs. The device allows the anvil measurements at room temperature or the liquid nitrogen temperature. For the electro-magnetic laminated materials (e.g., a superconducting YaBa2Cu3O(7-x) coated conductor which has a typical laminated structure), the delamination strength was measured while the properties of transport current were also recorded. Moreover, the influences of external magnetic field on the delamination strength were presented. PMID:25554334

  2. Measuring Moduli Of Elasticity At High Temperatures

    NASA Technical Reports Server (NTRS)

    Wolfenden, Alan

    1993-01-01

    Shorter, squatter specimens and higher frequencies used in ultrasonic measurement technique. Improved version of piezo-electric ultrasonic composite oscillator technique used to measure moduli of elasticity of solid materials at high temperatures.

  3. Optical Distance Measurement Device And Method Thereof

    DOEpatents

    Bowers, Mark W.

    2004-06-15

    A system and method of efficiently obtaining distance measurements of a target by scanning the target. An optical beam is provided by a light source and modulated by a frequency source. The modulated optical beam is transmitted to an acousto-optical deflector capable of changing the angle of the optical beam in a predetermined manner to produce an output for scanning the target. In operation, reflected or diffused light from the target may be received by a detector and transmitted to a controller configured to calculate the distance to the target as well as the measurement uncertainty in calculating the distance to the target.

  4. [Methods available for measuring temperature (author's transl)].

    PubMed

    Robert, J; Escanyé, J M; Thouvenot, P

    1979-11-01

    Numerous techniques are in use in medicine for temperature determination either from thermal conduction phenomena, or from hot body radiations. These are essentially thermometry, radiometry and thermography. During attempts to treat cancer by hyperthermia, temperature knowledge, at the level of the target volume and the adjoining parts, is essential. These deep temperature measurements are yet a problem and certainly need new sensor technologies.

  5. Temperature Measurements Taken by Phoenix Spacecraft

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This chart plots the minimum daily atmospheric temperature measured by NASA's Phoenix Mars Lander spacecraft since landing on Mars. As the temperature increased through the summer season, the atmospheric humidity also increased. Clouds, ground fog, and frost were observed each night after the temperature started dropping.

  6. Proton irradiation of a swept charge device at cryogenic temperature and the subsequent annealing

    NASA Astrophysics Data System (ADS)

    Gow, J. P. D.; Smith, P. H.; Pool, P.; Hall, D. J.; Holland, A. D.; Murray, N. J.

    2015-01-01

    A number of studies have demonstrated that a room temperature proton irradiation may not be sufficient to provide an accurate estimation of the impact of the space radiation environment on detector performance. This is a result of the relationship between defect mobility and temperature, causing the performance to vary subject to the temperature history of the device from the point at which it was irradiated. Results measured using Charge Coupled Devices (CCD) irradiated at room temperature therefore tend to differ from those taken when the device was irradiated at a cryogenic temperature, more appropriate considering the operating conditions in space, impacting the prediction of in-flight performance. This paper describes the cryogenic irradiation, and subsequent annealing of an e2v technologies Swept Charge Device (SCD) CCD236 irradiated at -35.4°C with a 10 MeV equivalent proton fluence of 5.0 × 108 protons · cm-2. The CCD236 is a large area (4.4 cm2) X-ray detector that will be flown on-board the Chandrayaan-2 and Hard X-ray Modulation Telescope spacecraft, in the Chandrayaan-2 Large Area Soft X-ray Spectrometer and the Soft X-ray Detector respectively. The SCD is readout continually in order to benefit from intrinsic dither mode clocking, leading to suppression of the surface component of the dark current and allowing the detector to be operated at warmer temperatures than a conventional CCD. The SCD is therefore an excellent choice to test and demonstrate the variation in the impact of irradiation at cryogenic temperatures in comparison to a more typical room temperature irradiation.

  7. Nanocalorimetry: Using Si-micromachined Devices for Thermodynamic Measurements of Thin Films and Tiny Crystals

    NASA Astrophysics Data System (ADS)

    Hellman, Frances

    2006-03-01

    We have used Si micromachining to fabricate membrane-based calorimeters for measuring thermodynamic properties of microgram-quantity samples over a temperature range from 1.7 to 550K in magnetic fields to 8T. Prototype scaled down devices have been made which allow precise measurements of nanogram quantities. Different types of thermometers are used for different purposes and in different temperature ranges. Current development efforts are extending the temperature range to 0.3 - 800K, and we are collaborating with the national high magnetic field lab to extend the field range to 65T in pulsed magnets. These devices are particularly useful for specific heat measurements of thin film samples (100-400 nm thick) deposited directly onto the membrane through a Si micromachined evaporation mask. They have also been used for small bulk samples attached by conducting paint or In, and for powder samples dissolved in a solvent and dropped onto devices. The measurement technique used (relaxation method) is particularly suited to high fields because thermal conductance is measured in zero field and is field independent, while the relaxation time constant does not depend on thermometer calibration. The devices have been used with little modification for thermal conductivity and thermopower measurements, and are well suited to measurements of calorimetric signals such as those occurring at phase transitions or under irreversible thermal behavior. I will discuss device fabrication and thermal analysis which allow us to precisely identify heat flow in the devices and consequent limits on the absolute accuracy, as well as possible future directions for device development. I will also briefly discuss examples of measurements on several materials of current interest: 1) amorphous Si and its alloys, 2) high precision critical temperature studies of La1-xSrxMnO3 and La1-xCaxMnO3, 3) antiferromagnetic CoO nanoparticles and thin layers, 4) Fe/Cr giant magnetoresistance multilayers.

  8. An improved device to measure cottonseed strength

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During processing, seeds of cotton cultivars with fragile seeds often break and produce seed coat fragments that can cause processing problems at textile mills. A cottonseed shear tester, previously developed to measure cottonseed strength, was modified with enhancements to the drive system to provi...

  9. Non-intrusive temperature measurement using microscale visualization techniques

    NASA Astrophysics Data System (ADS)

    Chamarthy, Pramod; Garimella, Suresh V.; Wereley, Steven T.

    2009-07-01

    μPIV is a widely accepted tool for making accurate measurements in microscale flows. The particles that are used to seed the flow, due to their small size, undergo Brownian motion which adds a random noise component to the measurements. Brownian motion introduces an undesirable error in the velocity measurements, but also contains valuable temperature information. A PIV algorithm which detects both the location and broadening of the correlation peak can measure velocity as well as temperature simultaneously using the same set of images. The approach presented in this work eliminates the use of the calibration constant used in the literature (Hohreiter et al. in Meas Sci Technol 13(7):1072-1078, 2002), making the method system-independent, and reducing the uncertainty involved in the technique. The temperature in a stationary fluid was experimentally measured using this technique and compared to that obtained using the particle tracking thermometry method and a novel method, low image density PIV. The method of cross-correlation PIV was modified to measure the temperature of a moving fluid. A standard epi-fluorescence μPIV system was used for all the measurements. The experiments were conducted using spherical fluorescent polystyrene-latex particles suspended in water. Temperatures ranging from 20 to 80°C were measured. This method allows simultaneous non-intrusive temperature and velocity measurements in integrated cooling systems and lab-on-a-chip devices.

  10. High temperature hall effect measurement system design, measurement and analysis

    NASA Astrophysics Data System (ADS)

    Berkun, Isil

    A reliable knowledge of the transport properties of semiconductor materials is essential for the development and understanding of a number of electronic devices. In this thesis, the work on developing a Hall Effect measurement system with software based data acqui- sition and control for a temperature range of 300K-700K will be described. A system was developed for high temperature measurements of materials including single crystal diamond, poly-crystalline diamond, and thermoelectric compounds. An added capability for monitor- ing the current versus voltage behavior of the contacts was used for studying the influence of ohmic and non-ohmic contacts on Hall Effect measurements. The system has been primar- ily used for testing the transport properties of boron-doped single crystal diamond (SCD) deposited in a microwave plasma-assisted chemical vapor deposition (MPCVD) reactor [1]. Diamond has several outstanding properties that are of high interest for its development as an electronic material. These include a relatively wide band gap of 5.5 (eV), high thermal conductivity, high mobility, high saturation velocity, and a high breakdown voltage. For a temperature range of 300K-700K, IV curves, Hall mobilities and carrier concentrations are shown. Temperature dependent Hall effect measurements have shown carrier concentrations from below 1017cm --3 to approximately 1021 cm--3 with mobilities ranging from 763( cm2/V s) to 0.15(cm 2/V s) respectively. Simulation results have shown the effects of single and mixed carrier models, activation energies, effective mass and doping concentrations. These studies have been helpful in the development of single crystal diamond for diode applications. Reference materials of Ge and GaAs were used to test the Hall Effect system. The system was also used to characterize polycrystalline diamond deposited on glass for electrochemical applications, and Mg2(Si,Sn) compounds which are promising candidates of low-cost, light weight and non

  11. A Temperature-Monitoring Vaginal Ring for Measuring Adherence

    PubMed Central

    Boyd, Peter; Desjardins, Delphine; Kumar, Sandeep; Fetherston, Susan M.; Le-Grand, Roger; Dereuddre-Bosquet, Nathalie; Helgadóttir, Berglind; Bjarnason, Ásgeir; Narasimhan, Manjula; Malcolm, R. Karl

    2015-01-01

    Background Product adherence is a pivotal issue in the development of effective vaginal microbicides to reduce sexual transmission of HIV. To date, the six Phase III studies of vaginal gel products have relied primarily on self-reporting of adherence. Accurate and reliable methods for monitoring user adherence to microbicide-releasing vaginal rings have yet to be established. Methods A silicone elastomer vaginal ring prototype containing an embedded, miniature temperature logger has been developed and tested in vitro and in cynomolgus macaques for its potential to continuously monitor environmental temperature and accurately determine episodes of ring insertion and removal. Results In vitro studies demonstrated that DST nano-T temperature loggers encapsulated in medical grade silicone elastomer were able to accurately and continuously measure environmental temperature. The devices responded quickly to temperature changes despite being embedded in different thickness of silicone elastomer. Prototype vaginal rings measured higher temperatures compared with a subcutaneously implanted device, showed high sensitivity to diurnal fluctuations in vaginal temperature, and accurately detected periods of ring removal when tested in macaques. Conclusions Vaginal rings containing embedded temperature loggers may be useful in the assessment of product adherence in late-stage clinical trials. PMID:25965956

  12. Quantitative shearography in axisymmetric gas temperature measurements

    NASA Astrophysics Data System (ADS)

    VanDerWege, Brad A.; O'Brien, Christopher J.; Hochgreb, Simone

    1999-06-01

    This paper describes the use of shearing interferometry (shearography) for the quantitative measurement of gas temperatures in axisymmetric systems in which vibration and shock are substantial, and measurement time is limited. The setup and principle of operation of the interferometer are described, as well as Fourier-transform-based fringe pattern analysis, Abel transform, and sensitivity of the phase lead to temperature calculation. A helium jet and a Bunsen burner flame are shown as verification of the diagnostic. The accuracy of the measured temperature profile is shown to be limited by the Abel transform and is critically dependent on the reference temperature used.

  13. Temperature measurement systems in wearable electronics

    NASA Astrophysics Data System (ADS)

    Walczak, S.; Gołebiowski, J.

    2014-08-01

    The aim of this paper is to present the concept of temperature measurement system, adapted to wearable electronics applications. Temperature is one of the most commonly monitored factor in smart textiles, especially in sportswear, medical and rescue products. Depending on the application, measured temperature could be used as an initial value of alert, heating, lifesaving or analysis system. The concept of the temperature measurement multi-point system, which consists of flexible screen-printed resistive sensors, placed on the T-shirt connected with the central unit and the power supply is elaborated in the paper.

  14. Ultrasonic temperature measurements with fiber optic system

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Wu, Nan; Zhou, Jingcheng; Ma, Tong; Liu, Yuqian; Cao, Chengyu; Wang, Xingwei

    2016-04-01

    Ultrasonic temperature measurements have been developed and widely applied in non-contact temperature tests in many industries. However, using optical fibers to build ultrasound generators are novel. This paper reports this new fiber optic ultrasonic system based on the generator of gold nanoparticles/polydimethylsiloxane (PDMS) composites. The optical acoustic system was designed to test the change of temperature on the aluminum plate and the temperature of the torch in the air. This paper explores the relationship between the ultrasonic transmission and the change of temperature. From the experimental results, the trend of ultrasonic speed was different in the aluminum plate and air with the change of temperature. Since the system can measure the average temperature of the transmission path, it will have significant influence on simulating the temperature distribution.

  15. 33. BENTZEL TUBE. A CURRENT VELOCITY MEASURING DEVICE DEVELOPED AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. BENTZEL TUBE. A CURRENT VELOCITY MEASURING DEVICE DEVELOPED AT WES IN 1932 BY CARL E. BENTZEL. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  16. 29. HAWSER DEVICE, DEVELOPED AT WES FOR MEASURING LONGITUDINAL AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. HAWSER DEVICE, DEVELOPED AT WES FOR MEASURING LONGITUDINAL AND TRANSVERSE STRESS OF BARGES IN CANAL LOCKS. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  17. Survey and Experimental Testing of Nongravimetric Mass Measurement Devices

    NASA Technical Reports Server (NTRS)

    Oakey, W. E.; Lorenz, R.

    1977-01-01

    Documentation presented describes the design, testing, and evaluation of an accelerated gravimetric balance, a low mass air bearing oscillator of the spring-mass type, and a centrifugal device for liquid mass measurement. A direct mass readout method was developed to replace the oscillation period readout method which required manual calculations to determine mass. A protoype 25 gram capacity micro mass measurement device was developed and tested.

  18. Experimental device for measuring the momentum of disperse granular materials

    SciTech Connect

    Watling, H.E.; Griffiths, S.K.

    1982-02-10

    An experimental device for measuring the time averaged momentum associated with a steady stream of a disperse granular material has been developed. The mathematical basis for the device is presented including a discussion of using the momentum measurement to compute the local mass or energy fluxes. The analysis considers both nonuniform particle mass and nonuniform velocities for the various constituents of an aggregate material. The results of calibration experiments conducted with a prototype transducer are shown with theoretical predictions of these results.

  19. Dynamics of a finite temperature Bose gas in atomtronic devices

    NASA Astrophysics Data System (ADS)

    Colussi, Victor; Holland, Murray; Anderson, Dana Z.

    2014-05-01

    We investigate the problem of modeling atomtronic devices that utilize the nonequilibrium dynamics of a finite temperature Bose-condensed gas placed underneath an atom chip to mimic the properties of classical circuit elements. Our model consists of the full dynamics of the condensate and thermal cloud. The thermal cloud is treated semiclassically, in the spirit of the ZNG method (Zaremba, Nikuni and Griffin.) However, we develop a novel procedure to account for collisions between the condensate and thermal cloud which evaluates collision rates directly. We present the results of this model compared to two experiments: the atomtronic battery and transistor [arXiv:1208.3109v2]. Also presented are predictions for more complex circuit elements. This work is funded by the NSF Physics Frontier Center at JILA and by the Air Force Office of Scientific Research.

  20. Accuracy of portable devices in measuring peak cough flow.

    PubMed

    Kulnik, Stefan Tino; MacBean, Victoria; Birring, Surinder Singh; Moxham, John; Rafferty, Gerrard Francis; Kalra, Lalit

    2015-02-01

    Peak cough flow (PCF) measurements can be used as indicators of cough effectiveness. Portable peak flow meters and spirometers have been used to measure PCF, but little is known about their accuracy compared to pneumotachograph systems. The aim of this study was to compare the accuracy of four portable devices (Mini-Wright and Assess peak flow meters, SpiroUSB and Microlab spirometers) in measuring PCF with a calibrated laboratory based pneumotachograph system. Twenty healthy volunteers (mean (SD) age 45 (16) years) coughed through a pneumotachograph connected in series with each portable device in turn, and the differences in PCF readings were analysed. In addition, mechanically generated flow waves of constant peak flow were delivered through each device both independently and when connected in series with the pneumotachograph. Agreement between PCF readings obtained with the pneumotachograph and the portable devices was poor. Peak flow readings were on average lower by approximately 50 L min(-1) when measured using the portable devices; 95% limits of agreement spanned approximately 150 L min(-1). The findings highlight the potential for inaccuracy when using portable devices for the measurement of PCF. Depending on the measurement instrument used, absolute values of PCF reported in the literature may not be directly comparable. PMID:25582526

  1. Ultraflexible, large-area, physiological temperature sensors for multipoint measurements

    PubMed Central

    Yokota, Tomoyuki; Inoue, Yusuke; Terakawa, Yuki; Reeder, Jonathan; Kaltenbrunner, Martin; Ware, Taylor; Yang, Kejia; Mabuchi, Kunihiko; Murakawa, Tomohiro; Sekino, Masaki; Voit, Walter; Sekitani, Tsuyoshi; Someya, Takao

    2015-01-01

    We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 µm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature. PMID:26554008

  2. 40 CFR 60.1815 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false How do I monitor the temperature of... I monitor the temperature of flue gases at the inlet of my particulate matter control device? You must install, calibrate, maintain, and operate a device to continuously measure the temperature of...

  3. 40 CFR 60.1815 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false How do I monitor the temperature of... I monitor the temperature of flue gases at the inlet of my particulate matter control device? You must install, calibrate, maintain, and operate a device to continuously measure the temperature of...

  4. 40 CFR 60.1815 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false How do I monitor the temperature of... I monitor the temperature of flue gases at the inlet of my particulate matter control device? You must install, calibrate, maintain, and operate a device to continuously measure the temperature of...

  5. 40 CFR 60.1815 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false How do I monitor the temperature of... I monitor the temperature of flue gases at the inlet of my particulate matter control device? You must install, calibrate, maintain, and operate a device to continuously measure the temperature of...

  6. 40 CFR 60.1815 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false How do I monitor the temperature of... I monitor the temperature of flue gases at the inlet of my particulate matter control device? You must install, calibrate, maintain, and operate a device to continuously measure the temperature of...

  7. Application of vaginal temperature measurement in bitches.

    PubMed

    Maeder, B; Arlt, S; Burfeind, O; Heuwieser, W

    2012-12-01

    Finding innovative, non-invasive methods for continuously measuring body temperature minimizing human interference is important for accurate data collection. The objective of this study was to assess feasibility and accuracy of continuous body temperature measurements with loggers placed in the vaginal cavity of bitches. First, an in vitro experiment was performed to compare values obtained by temperature loggers (n = 26) to a calibrated liquid-in-glass thermometer. The mean differences between the two methods were low. Next, an in vivo experiment was performed using five healthy bitches, and values obtained by the vaginal loggers were compared to measurements collected rectally with digital thermometers. The results show that rectal and vaginal temperatures were correlated. The mean differences between rectal and vaginal temperatures were negligible. We conclude that the utilized temperature loggers provide accurate and reliable data.

  8. Measurement of the hematocrit using paper-based microfluidic devices.

    PubMed

    Berry, Samuel B; Fernandes, Syrena C; Rajaratnam, Anjali; DeChiara, Nicholas S; Mace, Charles R

    2016-10-01

    The quantification of blood cells provides critical information about a patient's health status. Sophisticated analytical equipment, such as hematology analyzers, have been developed to perform these measurements, but limited-resource settings often lack the infrastructure required to purchase, operate, and maintain instrumentation. To address these practical challenges, paper-based microfluidic devices have emerged as a platform to develop diagnostic assays specifically for use at the point-of-care. To date, paper-based microfluidic devices have been used broadly in diagnostic assays that apply immunoassay, clinical chemistry, and electrochemistry techniques. The analysis of cells, however, has been largely overlooked. In this communication, we demonstrate a paper-based microfluidic device that enables the controlled transport of red blood cells (RBCs) and the measurement of the hematocrit-the ratio of RBC packed cell volume to total volume of whole blood. The properties of paper, device treatment, and device geometry affect the overall extent and reproducibility of transport of RBCs. Ultimately, we developed an inexpensive (US$0.03 per device) thermometer-styled device where the distance traveled by RBCs is proportional to the hematocrit. These results provide a foundation for the design of paper-based microfluidic devices that enable the separation and detection of cells in limited-resource settings. PMID:27604182

  9. Measurement of the hematocrit using paper-based microfluidic devices.

    PubMed

    Berry, Samuel B; Fernandes, Syrena C; Rajaratnam, Anjali; DeChiara, Nicholas S; Mace, Charles R

    2016-10-01

    The quantification of blood cells provides critical information about a patient's health status. Sophisticated analytical equipment, such as hematology analyzers, have been developed to perform these measurements, but limited-resource settings often lack the infrastructure required to purchase, operate, and maintain instrumentation. To address these practical challenges, paper-based microfluidic devices have emerged as a platform to develop diagnostic assays specifically for use at the point-of-care. To date, paper-based microfluidic devices have been used broadly in diagnostic assays that apply immunoassay, clinical chemistry, and electrochemistry techniques. The analysis of cells, however, has been largely overlooked. In this communication, we demonstrate a paper-based microfluidic device that enables the controlled transport of red blood cells (RBCs) and the measurement of the hematocrit-the ratio of RBC packed cell volume to total volume of whole blood. The properties of paper, device treatment, and device geometry affect the overall extent and reproducibility of transport of RBCs. Ultimately, we developed an inexpensive (US$0.03 per device) thermometer-styled device where the distance traveled by RBCs is proportional to the hematocrit. These results provide a foundation for the design of paper-based microfluidic devices that enable the separation and detection of cells in limited-resource settings.

  10. Increased operational temperature of Cr2O3-based spintronic devices

    NASA Astrophysics Data System (ADS)

    Street, Michael; Echtenkamp, Will; Komesu, Takashi; Cao, Shi; Wang, Jian; Dowben, Peter; Binek, Christian

    Spintronic devices have been considered a promising path to revolutionizing the current data storage and memory technologies. This work is an effort to utilize voltage-controlled boundary magnetization of the magnetoelectric chromia (Cr2O3) to be implemented into a spintronic device. The electric switchable boundary magnetization of chromia can be used to voltage-control the magnetic states of an adjacent ferromagnetic layer. For this technique to be utilized in a spintronic device, the antiferromagnetic ordering temperature of chromia must be enhanced above the bulk value of TN = 307K. Previously, based on first principle calculations, boron doped chromia thin films were fabricated via pulsed laser deposition showing boundary magnetization at elevated temperatures. Measurements of the boundary magnetization were also corroborated by spin polarized inverse photoemission spectroscopy. Exchange bias of B-doped chromia was also investigated using magneto-optical Kerr effect, showing an increased blocking temperature from 307K. Further boundary magnetization measurements and spin polarized inverse photoemission measurements indicate the surface magnetization to an in-plane orientation from the standard perpendicular orientation. This project was supported by the SRC through CNFD, an SRC-NRI Center under Task ID (2398.001) and by C-SPIN, part of STARnet, sponsored by MARCO and DARPA (No. SRC 2381.001).

  11. Nonintrusive temperature measurements on advanced turbomachinery components

    SciTech Connect

    Noel, B.W.; Turley, W.D.; Lewis, W.

    1992-12-31

    A nonintrusive, noncontacting method we developed for temperature measurements in hostile environments is well-suited for measurements on advanced turbine components. The method is not only superior to thermocouples in sufficiently difficult environments, but also is the only known method for making measurements in situations where no form of pyrometry works. We demonstrated the method, which uses laser-induced fluorescence of thermographic phosphors bonded to the component surfaces, on turbine blades and vanes in developmental turbine engines. The method is extendable to the much-higher temperatures expected inside advanced turbomachinery. Of particular note is the adaptability of the method to surface-temperature measurements on ceramics operating at high temperatures. In this temperature range, the ceramics become translucent, and surface emissivity becomes meaningless. We shall discuss the method, its advantages and limitations, recent test results on operating turbine engines, and the extension to ceramic components.

  12. Nulling Infrared Radiometer for Measuring Temperature

    NASA Technical Reports Server (NTRS)

    Ryan, Robert

    2003-01-01

    A nulling, self-calibrating infrared radiometer is being developed for use in noncontact measurement of temperature in any of a variety of industrial and scientific applications. This instrument is expected to be especially well-suited to measurement of ambient or near-ambient temperature and, even more specifically, for measuring the surface temperature of a natural body of water. Although this radiometer would utilize the long-wavelength infrared (LWIR) portion of the spectrum (wavelengths of 8 to 12 m), its basic principle of operation could also be applied to other spectral bands (corresponding to other temperature ranges) in which the atmosphere is transparent and in which design requirements for sensitivity and temperature-measurement accuracy could be satisfied.

  13. Cryocup - Compact spherical neutron polarimetry device for small angle measurement

    NASA Astrophysics Data System (ADS)

    Wang, Tianhao

    In my thesis I describe my research work of developing a compact device for Spherical Neutron Polarimetry (SNP) measurements at small neutron scattering angles. The thesis first introduced the purpose of this research project, which is developing an easy to use and maintain version of an advanced neutron experiment technique (SNP). After the introduction, the design principle and construction detail of the prototype device is demonstrated. The design principle is based on our finite element simulation of the device's magnetic field profile, and is later verified by the performance test experiment. The prototype device is tested at the SESAME neutron beamline at Indiana University and the HB-2D beamline at Oak Ridge National laboratory. The performance test data are analyzed and proof that the design is successful and the prototype is capable of perform accurate SNP measurement. Based on the test result, the prototype device is utilized to perform SNP measurement on two types of magnetic film sample: Permalloy and Metglas. Combined with other characterization method such as SQUID and MFM, I study the magnetization of these two samples both at zero magnetic field environment and in external field. The SNP data provided by the prototype device is discussed in the thesis and provide detailed information about the magnetization, which is also not accessible through other method. In the end, the possible improvement and the future application of the device is discussed.

  14. Design, Qualification and Integration Testing of the High-Temperature Resistance Temperature Device for Stirling Power System

    NASA Technical Reports Server (NTRS)

    Chan, Jack; Hill, Dennis H.; Elisii, Remo; White, Jonathan R.; Lewandowski, Edward J.; Oriti, Salvatore M.

    2015-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), developed from 2006 to 2013 under the joint sponsorship of the United States Department of Energy (DOE) and National Aeronautics and Space Administration (NASA) to provide a high-efficiency power system for future deep space missions, employed Sunpower Incorporated's Advanced Stirling Convertors (ASCs) with operating temperature up to 840 C. High-temperature operation was made possible by advanced heater head materials developed to increase reliability and thermal-to-mechanical conversion efficiency. During a mission, it is desirable to monitor the Stirling hot-end temperature as a measure of convertor health status and assist in making appropriate operating parameter adjustments to maintain the desired hot-end temperature as the radioisotope fuel decays. To facilitate these operations, a Resistance Temperature Device (RTD) that is capable of high-temperature, continuous long-life service was designed, developed and qualified for use in the ASRG. A thermal bridge was also implemented to reduce the RTD temperature exposure while still allowing an accurate projection of the ASC hot-end temperature. NASA integrated two flight-design RTDs on the ASCs and assembled into the high-fidelity Engineering Unit, the ASRG EU2, at Glenn Research Center (GRC) for extended operation and system characterization. This paper presents the design implementation and qualification of the RTD, and its performance characteristics and calibration in the ASRG EU2 testing.

  15. Measuring optical temperature coefficients of Intralipid.

    PubMed

    McGlone, V Andrew; Martinsen, Paul; Künnemeyer, Rainer; Jordan, Bob; Cletus, Biju

    2007-05-01

    The temperature sensitivities of absorption and reduced scattering coefficients in the range 700-1000 nm are determined for the liquid phantom Intralipid using spatially resolved continuous wave measurements. The measurements were conducted on a 10 L heated volume of 1% Intralipid subjected to a 40-30 degrees C cooling regime. The temperature sensitivities of the absorbance coefficients are similar to that expected for pure water. However, the reduced scattering coefficients are more sensitive than can be explained by temperature related density changes, and show an unexpected relationship with wavelength. We have also found that temperature perturbations provide a useful means to evaluate instrument model performance. PMID:17440240

  16. Efficient measurement-device-independent detection of multipartite entanglement structure

    NASA Astrophysics Data System (ADS)

    Zhao, Qi; Yuan, Xiao; Ma, Xiongfeng

    2016-07-01

    Witnessing entanglement is crucial in quantum information processing. With properly preparing ancillary states, it has been shown previously that genuine entanglement can be witnessed without trusting measurement devices. In this work we generalize the scenario and show that generic multipartite entanglement structures, including entanglement of subsystems and entanglement depth, can be witnessed via measurement-device-independent means. As the original measurement-device-independent entanglement witness scheme exploits only one out of four Bell measurement outcomes for each party, a direct generalization to multipartite quantum states will inevitably cause inefficiency in entanglement detection after taking account of statistical fluctuations. To resolve this problem, we also present a way to utilize all the measurement outcomes. The scheme is efficient for multipartite entanglement detection and can be realized with state-of-the-art technologies.

  17. Non-Invasive Tension Measurement Devices for Parachute Cordage

    NASA Technical Reports Server (NTRS)

    Litteken, Douglas A.; Daum, Jared S.

    2016-01-01

    The need for lightweight and non-intrusive tension measurements has arisen alongside the development of high-fidelity computer models of textile and fluid dynamics. In order to validate these computer models, data must be gathered in the operational environment without altering the design, construction, or performance of the test article. Current measurement device designs rely on severing a cord and breaking the load path to introduce a load cell. These load cells are very reliable, but introduce an area of high stiffness in the load path, directly affecting the structural response, adding excessive weight, and possibly altering the dynamics of the parachute during a test. To capture the required data for analysis validation without affecting the response of the system, non-invasive measurement devices have been developed and tested by NASA. These tension measurement devices offer minimal impact to the mass, form, fit, and function of the test article, while providing reliable, axial tension measurements for parachute cordage.

  18. [Temperature Measurement with Bluetooth under Android Platform].

    PubMed

    Wang, Shuai; Shen, Hao; Luo, Changze

    2015-03-01

    To realize the real-time transmission of temperature data and display using the platform of intelligent mobile phone and bluetooth. Application of Arduino Uno R3 in temperature data acquisition of digital temperature sensor DS18B20 acquisition, through the HC-05 bluetooth transmits the data to the intelligent smart phone Android system, realizes transmission of temperature data. Using Java language to write applications program under Android development environment, can achieve real-time temperature data display, storage and drawing temperature fluctuations drawn graphics. Temperature sensor is experimentally tested to meet the body temperature measurement precision and accuracy. This paper can provide a reference for other smart phone mobile medical product development. PMID:26524781

  19. [Temperature Measurement with Bluetooth under Android Platform].

    PubMed

    Wang, Shuai; Shen, Hao; Luo, Changze

    2015-03-01

    To realize the real-time transmission of temperature data and display using the platform of intelligent mobile phone and bluetooth. Application of Arduino Uno R3 in temperature data acquisition of digital temperature sensor DS18B20 acquisition, through the HC-05 bluetooth transmits the data to the intelligent smart phone Android system, realizes transmission of temperature data. Using Java language to write applications program under Android development environment, can achieve real-time temperature data display, storage and drawing temperature fluctuations drawn graphics. Temperature sensor is experimentally tested to meet the body temperature measurement precision and accuracy. This paper can provide a reference for other smart phone mobile medical product development.

  20. Thermistor holder for skin-temperature measurements

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Williams, B. A.

    1974-01-01

    Sensing head of thermistor probe is supported in center area of plastic ring which has tabs so that it can be anchored in place by rubber bands or adhesive tapes. Device attaches probes to human subjects practically, reliably, and without affecting characteristics of skin segment being measured.

  1. Atmospheric temperature measurements, using Raman lidar

    NASA Technical Reports Server (NTRS)

    Salzman, J. A.; Coney, T. A.

    1974-01-01

    The Raman-shifted return of a lidar system had been used to make atmospheric temperature measurements. The measurements were made along a horizontal path at temperatures ranging from -30 to 30 C and at ranges of about 100 meters. The temperature data were acquired by recording the intensity ratio of two portions of the rotational Raman spectrum, which were simultaneously sampled from a preset range. These tests verified that the theoretical predictions formulated in the design of the system were adequate. Measurements were made to an accuracy of + or - 4 C with 1-minute temporal resolution.

  2. Solar absorber material reflectivity measurements at temperature

    SciTech Connect

    Bonometti, J.A.; Hawk, C.W.

    1999-07-01

    Assessment of absorber shell material properties at high operating temperatures is essential to the full understanding of the solar energy absorption process in a solar thermal rocket. A review of these properties, their application and a new experimental methodology to measure them at high temperatures is presented. The direct application for the research is absorber cavity development for a Solar Thermal Upper Stage (STUS). High temperature measurements, greater than 1,000 Kelvin, are difficult to obtain for incident radiation upon a solid surface that forms an absorber cavity in a solar thermal engine. The basic material properties determine the amount of solar energy that is absorbed, transmitted or reflected and are dependent upon the material's temperature. This investigation developed a new approach to evaluate the material properties (i.e., reflectivity, absorptive) of the absorber wall and experimentally determined them for rhenium and niobium sample coupons. The secular reflectivity was measured both at room temperature and at temperatures near 1,000 Kelvin over a range of angles from 0 to 90 degrees. The same experimental measurements were used to calculate the total reflectivity of the sample by integrating the recorded intensities over a hemisphere. The test methodology used the incident solar energy as the heating source while directly measuring the reflected light (an integrated value over all visible wavelengths). Temperature dependence on total reflectivity was found to follow an inverse power function of the material's temperature.

  3. In situ high-temperature characterization of AlN-based surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Aubert, Thierry; Bardong, Jochen; Legrani, Ouarda; Elmazria, Omar; Badreddine Assouar, M.; Bruckner, Gudrun; Talbi, Abdelkrim

    2013-07-01

    We report on in situ electrical measurements of surface acoustic wave delay lines based on AlN/sapphire structure and iridium interdigital transducers between 20 °C and 1050 °C under vacuum conditions. The devices show a great potential for temperature sensing applications. Burnout is only observed after 60 h at 1050 °C and is mainly attributed to the agglomeration phenomena undergone by the Ir transducers. However, despite the vacuum conditions, a significant oxidation of the AlN film is observed, pointing out the limitation of the considered structure at least at such extreme temperatures. Original structures overcoming this limitation are then proposed and discussed.

  4. Radiation effects at cryogenic temperatures in Si-JEFT, GaAs MESFET, and MOSFET devices

    SciTech Connect

    Citterio, M.; Rescia, S.; Radeka, V.

    1995-12-01

    Front-end electronics for liquid ionization chamber calorimetry at hadron collider experiments may be exposed to substantial levels of ionizing radiation and neutron fluences in a cryogenic environment. Measurements of devices built with rad-hard technologies have shown that devices able to operate in these conditions exist. Several families of devices (Si-JFET`s, rad-hard MOSFET`s, and GaAs MESFET`s) have been irradiated and tested at a stable cryogenic temperature up to doses of 55 Mrad of ionizing radiation and up to neutron fluences of 4 {times} 10{sup 14} n/cm{sup 2}. Radiation effects on dc characteristics and on noise will be presented.

  5. Dynamic temperature measurements with embedded optical sensors.

    SciTech Connect

    Dolan, Daniel H.,; Seagle, Christopher T; Ao, Tommy

    2013-10-01

    This report summarizes LDRD project number 151365, \\Dynamic Temperature Measurements with Embedded Optical Sensors". The purpose of this project was to develop an optical sensor capable of detecting modest temperature states (<1000 K) with nanosecond time resolution, a recurring diagnostic need in dynamic compression experiments at the Sandia Z machine. Gold sensors were selected because the visible re ectance spectrum of gold varies strongly with temperature. A variety of static and dynamic measurements were performed to assess re ectance changes at di erent temperatures and pressures. Using a minimal optical model for gold, a plausible connection between static calibrations and dynamic measurements was found. With re nements to the model and diagnostic upgrades, embedded gold sensors seem capable of detecting minor (<50 K) temperature changes under dynamic compression.

  6. Electron Temperature and Potential Measurements in a Helicon Plasma

    NASA Astrophysics Data System (ADS)

    Plank, J.; Hayes, T. R.; Gilmore, M.

    2013-10-01

    Measurements of plasma potential, floating potential, and electron temperature, Te, are notoriously difficult in RF-produced plasmas such as helicons. This work presents comparisons of potential and Te measurements made via swept and stepped compensated and uncompensated single and double Langmuir probes, emissive probes, and static triple probes. These measurements have been made in the HelCat (Helicon-Cathode) linear plasma device at the University of New Mexico using HelCat's helicon source. HelCat is a 4 m long, 0.5 m diameter device with magnetic field, B0 <2.2 kG, and typical densities n ~ 1018 - 1020 m-3. Comparisons between the measurements and expected theoretical differences will be presented. Supported by US National Science Foundation Award 1201995.

  7. Techniques for measuring radiation induced effects of acousto optic devices

    SciTech Connect

    Taylor, E.W.

    1995-08-01

    Innovative measurement techniques for determining radiation induced changes in acousto optic devices are briefly discussed. Measurements of acousto optic operational parameters such as signal transmission efficiency, diffraction efficiency, spatial intensity and bandwidth responses during electron irradiations are described. During exposure to pulsed electrons, only transient perturbations to the acousto optic operational parameters were experienced. Examples of new measurement procedures and typical data resulting from the measurements are presented.

  8. Novel High Temperature Materials for In-Situ Sensing Devices

    SciTech Connect

    Florian Solzbacher; Anil Virkar; Loren Rieth; Srinivasan Kannan; Xiaoxin Chen; Hannwelm Steinebach

    2009-12-31

    The overriding goal of this project was to develop gas sensor materials and systems compatible with operation at temperatures from 500 to 700 C. Gas sensors operating at these temperatures would be compatible with placement in fossil-energy exhaust streams close to the combustion chamber, and therefore have advantages for process regulation, and feedback for emissions controls. The three thrusts of our work included investigating thin film gas sensor materials based on metal oxide materials and electroceramic materials, and also development of microhotplate devices to support the gas sensing films. The metal oxide materials NiO, In{sub 2}O{sub 3}, and Ga{sub 2}O{sub 3} were investigated for their sensitivity to H{sub 2}, NO{sub x}, and CO{sub 2}, respectively, at high temperatures (T > 500 C), where the sensing properties of these materials have received little attention. New ground was broken in achieving excellent gas sensor responses (>10) for temperatures up to 600 C for NiO and In{sub 2}O{sub 3} materials. The gas sensitivity of these materials was decreasing as temperatures increased above 500 C, which indicates that achieving strong sensitivities with these materials at very high temperatures (T {ge} 650 C) will be a further challenge. The sensitivity, selectivity, stability, and reliability of these materials were investigated across a wide range of deposition conditions, temperatures, film thickness, as using surface active promoter materials. We also proposed to study the electroceramic materials BaZr{sub (1-x)}Y{sub x}O{sub (3-x/2)} and BaCe{sub (2-x)}Ca{sub x}S{sub (4-x/2)} for their ability to detect H{sub 2}O and H{sub 2}S, respectively. This report focuses on the properties and gas sensing characteristics of BaZr{sub (1-x)}Y{sub x}O{sub (3-x/2)} (Y-doped BaZrO{sub 3}), as significant difficulties were encounter in generating BaCe{sub (2-x)}Ca{sub x}S{sub (4-x/2)} sensors. Significant new results were achieved for Y-doped BaZrO{sub 3}, including

  9. Lidar measurements of stratospheric temperature during STOIC

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; McGee, T. J.; Whiteman, D.; Burris, J.; Owens, M.; Butler, J.; Barnes, R. A.; Schmidlin, F.; Komhyr, W.; Wang, P. H.; McCormick, M. P.; Miller, A. J.

    1995-05-01

    Measurements of stratospheric temperature and density were acquired by the NASA/GSFC lidar during the Stratospheric Ozone Intercomparison Campaign (STOIC) experiment at the Jet Propulsion Laboratory Table Mountain Facility (TMF) (34.4°N, 117.7°W) in July and August 1989. Lidar temperatures, obtained on 21 nights preceding and during this experiment, are compared with temperatures derived by radiosondes, datasondes, Stratospheric Aerosol and Gas Experiment (SAGE II) satellite experiment, and National Meteorological Center (NMC) analyses. Radiosondes were flown from the TMF site as well as from San Nicholas Island (33.2°N, 119.5°W) located about 225 km southwest of TMF. Datasondes were deployed from Super-Loki rockets also launched at San Nicholas Island. SAGE II satellite temperature measurements were made within 1000 km of the Table Mountain site. NMC temperature analyses derived from the NOAA satellite measurements were interpolated to coincide in space and time with the lidar measurements. The lidar temperatures, which were derived for altitudes between 30 and 65 km, were within 2-3 K of the temperatures measured by the other sensors in the altitude range 30-45 km. Between 30 and 35 km, lidar temperatures were about 2 K cooler than those obtained from the datasondes and the NMC analyses but were about 1-2 K warmer than those obtained from the radiosonde. These differences may be due to the time difference between the measurements as well as possible nonnegligible aerosol scattering near 30 km. Near and above the stratopause the temperature differences increased to 3-8 K. Lidar temperature profiles also show small-scale variations possibly caused by wave activity.

  10. Two-wavelength Raman imaging for non-intrusive monitoring of transient temperature in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Kuriyama, Reiko; Sato, Yohei

    2014-09-01

    The present study proposes a non-intrusive visualization technique based on two-wavelength Raman imaging for in-situ monitoring of the unsteady temperature field in microfluidic systems. The measurement principle relies on the contrasting temperature dependencies of hydrogen-bonded and non-hydrogen-bonded OH stretching modes of the water Raman band, whose intensities were simultaneously captured by two cameras equipped with corresponding bandpass filters. The temperature distributions were then determined from the intensity ratio of the simultaneously-obtained Raman images, which enables compensation for temporal fluctuation and spatial inhomogeneity of the excitation laser intensity. A calibration experiment exhibited a linear relationship between the temperature and the intensity ratio in the range 293-343 K and least-regression analysis gave an uncertainty of 1.43 K at 95% confidence level. By applying the calibration data, time series temperature distributions were quantitatively visualized in a Y-shaped milli-channel at a spatial resolution of 6.0  ×  6.0 µm2 with an acquisition time of 16.5 s. The measurement result clearly exhibited the temporal evolution of the temperature field and was compared with the values obtained by thermocouples. This paper therefore demonstrates the viability of employing the two-wavelength Raman imaging technique for temperature measurements in microfluidic devices.

  11. High-temperature capacitive strain measurement system

    NASA Technical Reports Server (NTRS)

    Wilson, E. J.; Egger, R. L.

    1975-01-01

    Capacitive strain gage and signal conditioning system measures stress-induced strain and cancels thermal expansion strain at temperatures to 1,500 F (815 C). Gage does not significantly restrain or reinforce specimen.

  12. Human body temperature - Its measurement and regulation

    SciTech Connect

    Houdas, Y.; Ring, E.F.J.

    1982-01-01

    The terminology used in thermal physiology is examined, and principles of heat transfer are discussed, taking into account heat quantity, heat flux, temperature, pressure, quantities used in physiology, a number of common definitions, the equivalence between different forms of energy, the release of potential energy in living tissues, heat transfer without change of state, and heat transfer with change of state. Temperature and humidity measurement are considered along with man and his environment, the temperature distribution in the systems and tracts of the human body, physiological changes affecting the temperature distribution, problems of temperature regulation, questions of heat loss and conservation, acclimatization to heat and cold, and disorders of thermoregulation. Attention is given to possible thermal imaging applications, causes of temperature irregularities in the head and neck, common causes of increased temperatures of upper limbs, and thermography in disease. 193 references.

  13. 21 CFR 886.1430 - Ophthalmic contact lens radius measuring device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ophthalmic contact lens radius measuring device... SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1430 Ophthalmic contact lens radius measuring device. (a) Identification. An ophthalmic contact lens radius measuring device...

  14. 21 CFR 886.1430 - Ophthalmic contact lens radius measuring device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic contact lens radius measuring device... SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1430 Ophthalmic contact lens radius measuring device. (a) Identification. An ophthalmic contact lens radius measuring device...

  15. Surface temperature measurement in semitransparent media

    SciTech Connect

    Roissac, F.Z.; Osman, T.T.; Sacadura, J.F. )

    1993-12-01

    The surface temperature of a semitransparent wall, placed in a convective medium and exposed to external radiation (e.g., building window glasses) can be well approached using a remote sensing technique associated with a correction model. Radiometric measurement is first carried out on an opaque small size black target, which is glued on the concerned surface. This measurement can then be corrected to get the 'real' temperature through a model solving a combined conduction-radiation heat transfer problem. 13 refs.

  16. Microwave radiometry for cement kiln temperature measurements.

    PubMed

    Stephan, Karl D; Wang, Lingyun; Ryza, Eric

    2007-01-01

    The maximum temperature inside a cement kiln is a critical operating parameter, but is often difficult or impossible to measure. We present here the first data that show a correlation between cement kiln temperature measured using a microwave radiometer and product chemistry over an eight-hour period. The microwave radiometer senses radiation in the 12-13 GHz range and has been described previously [Stephan and Pearce (2002), JMPEE 37: 112-124].

  17. A fluidic device for measuring constituent masses of a flowing binary gas mixture

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.

    1973-01-01

    A continuous reading mass flow device was developed to measure the component flow of a binary gas mixture. The basic components of the device are a fluidic humidity sensor and a specially designed flow calorimeter. These components provide readings of gas mixture ratio, mixture heat capacity, heat dissipated by the calorimeter and the gas temperature rise across the calorimeter. These parameter values, applied in the general definitions of specific heat capacity and the heat capacity of a gas mixture, produce calculated component flow rates of the mixture being metered. A test program was conducted to evaluate both the steady state and dynamic performance of the device.

  18. Sensorless battery temperature measurements based on electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Raijmakers, L. H. J.; Danilov, D. L.; van Lammeren, J. P. M.; Lammers, M. J. G.; Notten, P. H. L.

    2014-02-01

    A new method is proposed to measure the internal temperature of (Li-ion) batteries. Based on electrochemical impedance spectroscopy measurements, an intercept frequency (f0) can be determined which is exclusively related to the internal battery temperature. The intercept frequency is defined as the frequency at which the imaginary part of the impedance is zero (Zim = 0), i.e. where the phase shift between the battery current and voltage is absent. The advantage of the proposed method is twofold: (i) no hardware temperature sensors are required anymore to monitor the battery temperature and (ii) the method does not suffer from heat transfer delays. Mathematical analysis of the equivalent electrical-circuit, representing the battery performance, confirms that the intercept frequency decreases with rising temperatures. Impedance measurements on rechargeable Li-ion cells of various chemistries were conducted to verify the proposed method. These experiments reveal that the intercept frequency is clearly dependent on the temperature and does not depend on State-of-Charge (SoC) and aging. These impedance-based sensorless temperature measurements are therefore simple and convenient for application in a wide range of stationary, mobile and high-power devices, such as hybrid- and full electric vehicles.

  19. Wideband filter radiometers for blackbody temperature measurements

    NASA Astrophysics Data System (ADS)

    Boivin, L. P.; Bamber, C.; Gaertner, A. A.; Gerson, R. K.; Woods, D. J.; Woolliams, E. R.

    2010-10-01

    The use of high-temperature blackbody (HTBB) radiators to realize primary spectral irradiance scales requires that the operating temperature of the HTBB be accurately determined. We have developed five filter radiometers (FRs) to measure the temperature of the National Research Council of Canada's HTBB. The FRs are designed to minimize sensitivity to ambient temperature fluctuations. They incorporate air-spaced colored glass filters and a Si photodiode detector that are housed in a cell whose temperature is controlled to ±0.1°C by means of annular thermoelectric elements at the front and rear of the cell. These wideband filter radiometers operate in four different wavelength bands. The spectral responsivity measurements were performed in an underfill geometry for a power-mode calibration that is traceable to NRC's cryogenic radiometer. The spectral temperature sensitivity of each of these FRs has been measured. The apertures for these FRs were cold-formed by swaging machine-cut apertures onto precision dowel pins. A description of the filter radiometer design, fabrication and testing, together with a detailed uncertainty analysis, is presented. We derive the equations that relate the spectral irradiance measured by the FRs to the spectral radiance and temperature of the HTBB, and deal specifically with the change of index of refraction over the path of the radiation from the interior of the HTBB to the FRs. We believe these equations are more accurate than recently published derivations. Our measurements of the operating temperature of our HTBB working at temperatures near 2500 K, 2700 K and 2900 K, together with measurements using a pyrometer, show agreement between the five filter radiometers and with the pyrometer to within the estimated uncertainties.

  20. Temperature dependence of the properties of DBR mirrors used in surface normal optoelectronic devices

    NASA Technical Reports Server (NTRS)

    Dudley, J. J.; Crawford, D. L.; Bowers, J. E.

    1992-01-01

    The variation in the center wavelength of distributed Bragg reflectors used in optoelectronic devices, such as surface emitting lasers and Fabry-Perot modulators, is measured as the temperature of the mirrors changes over the range 25 C to 105 C. An analytic expression for the shift in center wavelength with temperature is presented. The mirrors measured are made of InP/InGaAsP, GaAs/AlAs, and Si/SiN(x). The linear shifts in center wavelength are 0.110 +/- 0.003 nm/C, 0.087 +/- 0.003 nm/C, and 0.067 +/- 0.007 nm/C for the InP/InGaAsP, GaAs/AlAs, and Si/SiN mirrors, respectively. Based on these data, the change in penetration depth with temperature is calculated.

  1. Shock temperature measurement using neutron resonance spectroscopy.

    PubMed

    Yuan, V W; Bowman, J David; Funk, D J; Morgan, G L; Rabie, R L; Ragan, C E; Quintana, J P; Stacy, H L

    2005-04-01

    We report a direct measurement of temperature in a shocked metal using Doppler broadening of neutron resonances. The 21.1-eV resonance in 182W was used to measure the temperature in molybdenum shocked to approximately 63 GPa. An explosively launched aluminum flyer produced a planar shock in a molybdenum target that contained a 1-mm thick layer doped with 1.7 at. %(182)W. A single neutron pulse, containing resonant neutrons of less than 1 mus duration, probed the shocked material. Fits to the neutron time-of-flight data were used to determine the temperature of the shocked molybdenum.

  2. Measurement-device-independent entanglement-based quantum key distribution

    NASA Astrophysics Data System (ADS)

    Yang, Xiuqing; Wei, Kejin; Ma, Haiqiang; Sun, Shihai; Liu, Hongwei; Yin, Zhenqiang; Li, Zuohan; Lian, Shibin; Du, Yungang; Wu, Lingan

    2016-05-01

    We present a quantum key distribution protocol in a model in which the legitimate users gather statistics as in the measurement-device-independent entanglement witness to certify the sources and the measurement devices. We show that the task of measurement-device-independent quantum communication can be accomplished based on monogamy of entanglement, and it is fairly loss tolerate including source and detector flaws. We derive a tight bound for collective attacks on the Holevo information between the authorized parties and the eavesdropper. Then with this bound, the final secret key rate with the source flaws can be obtained. The results show that long-distance quantum cryptography over 144 km can be made secure using only standard threshold detectors.

  3. Methods of Measurement for Semiconductor Materials, Process Control, and Devices

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1973-01-01

    The development of methods of measurement for semiconductor materials, process control, and devices is reported. Significant accomplishments include: (1) Completion of an initial identification of the more important problems in process control for integrated circuit fabrication and assembly; (2) preparations for making silicon bulk resistivity wafer standards available to the industry; and (3) establishment of the relationship between carrier mobility and impurity density in silicon. Work is continuing on measurement of resistivity of semiconductor crystals; characterization of generation-recombination-trapping centers, including gold, in silicon; evaluation of wire bonds and die attachment; study of scanning electron microscopy for wafer inspection and test; measurement of thermal properties of semiconductor devices; determination of S-parameters and delay time in junction devices; and characterization of noise and conversion loss of microwave detector diodes.

  4. MISSE 1 and 2 Tray Temperature Measurements

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Kinard, William H.

    2006-01-01

    The Materials International Space Station Experiment (MISSE 1 & 2) was deployed August 10,2001 and retrieved July 30,2005. This experiment is a co-operative endeavor by NASA-LaRC. NASA-GRC, NASA-MSFC, NASA-JSC, the Materials Laboratory at the Air Force Research Laboratory, and the Boeing Phantom Works. The objective of the experiment is to evaluate performance, stability, and long term survivability of materials and components planned for use by NASA and DOD on future LEO, synchronous orbit, and interplanetary space missions. Temperature is an important parameter in the evaluation of space environmental effects on materials. The MISSE 1 & 2 had autonomous temperature data loggers to measure the temperature of each of the four experiment trays. The MISSE tray-temperature data loggers have one external thermistor data channel, and a 12 bit digital converter. The MISSE experiment trays were exposed to the ISS space environment for nearly four times the nominal design lifetime for this experiment. Nevertheless, all of the data loggers provided useful temperature measurements of MISSE. The temperature measurement system has been discussed in a previous paper. This paper presents temperature measurements of MISSE payload experiment carriers (PECs) 1 and 2 experiment trays.

  5. The anatomy of a pipe bomb explosion: the effect of explosive filler, container material and ambient temperature on device fragmentation.

    PubMed

    Bors, Dana; Cummins, Josh; Goodpaster, John

    2014-01-01

    Understanding the mechanical properties of different piping material under various conditions is important to predicting the behavior of pipe bombs. In this study, the effect of temperature on pipe bomb containers (i.e., PVC, black steel and galvanized steel) containing low explosive fillers (i.e., Pyrodex and double-base smokeless powder (DBSP)) was investigated. Measurements of fragment velocity and mass were compared for similar devices exploded in the spring (low/high temperature was 8°C/21°C) and winter (low/high temperature range was -9°C/-3°C). The explosions were captured using high speed filmography and fragment velocities were plotted as particle vector velocity maps (PVVM). The time that elapsed between the initiation of the winter devices containing double-base smokeless powder (DBSP) and the failure of their pipe containers ranged from 5.4 to 8.1 ms. The maximum fragment velocities for these devices ranged from 332 to 567 m/s. The steel devices ruptured and exploded more quickly than the PVC device. The steel devices also generated fragments with higher top speeds. Distributions of fragment masses were plotted as histograms and fragment weight distribution maps (FWDM). As expected, steel devices generated fewer, larger fragments than did the PVC devices. Comparison to devices exploded in the spring revealed several pieces of evidence for temperature effects on pipe bombs. For example, the mean fragment velocities for the winter devices were at or above those observed in the spring. The maximum fragment velocity was also higher for the winter steel devices. Although there were no significant differences in mean relative fragment mass, the fragment weight distribution maps (FWDMs) for two winter devices had anomalous slopes, where lower energy filler caused more severe fragmentation than higher energy filler. PMID:24378308

  6. The anatomy of a pipe bomb explosion: the effect of explosive filler, container material and ambient temperature on device fragmentation.

    PubMed

    Bors, Dana; Cummins, Josh; Goodpaster, John

    2014-01-01

    Understanding the mechanical properties of different piping material under various conditions is important to predicting the behavior of pipe bombs. In this study, the effect of temperature on pipe bomb containers (i.e., PVC, black steel and galvanized steel) containing low explosive fillers (i.e., Pyrodex and double-base smokeless powder (DBSP)) was investigated. Measurements of fragment velocity and mass were compared for similar devices exploded in the spring (low/high temperature was 8°C/21°C) and winter (low/high temperature range was -9°C/-3°C). The explosions were captured using high speed filmography and fragment velocities were plotted as particle vector velocity maps (PVVM). The time that elapsed between the initiation of the winter devices containing double-base smokeless powder (DBSP) and the failure of their pipe containers ranged from 5.4 to 8.1 ms. The maximum fragment velocities for these devices ranged from 332 to 567 m/s. The steel devices ruptured and exploded more quickly than the PVC device. The steel devices also generated fragments with higher top speeds. Distributions of fragment masses were plotted as histograms and fragment weight distribution maps (FWDM). As expected, steel devices generated fewer, larger fragments than did the PVC devices. Comparison to devices exploded in the spring revealed several pieces of evidence for temperature effects on pipe bombs. For example, the mean fragment velocities for the winter devices were at or above those observed in the spring. The maximum fragment velocity was also higher for the winter steel devices. Although there were no significant differences in mean relative fragment mass, the fragment weight distribution maps (FWDMs) for two winter devices had anomalous slopes, where lower energy filler caused more severe fragmentation than higher energy filler.

  7. Chip Implementation with a Combined Wireless Temperature Sensor and Reference Devices Based on the DZTC Principle

    PubMed Central

    Chang, Ming-Hui; Huang, Yu-Jie; Huang, Han-Pang; Lu, Shey-Shi

    2011-01-01

    This paper presents a novel CMOS wireless temperature sensor design in order to improve the sensitivity and linearity of our previous work on such devices. Based on the principle of CMOS double zero temperature coefficient (DZTC) points, a combined device is first created at the chip level with two voltage references, one current reference, and one temperature sensor. It was successfully fabricated using the 0.35 μm CMOS process. According to the chip results in a wide temperature range from −20 °C to 120 °C, two voltage references can provide temperature-stable outputs of 823 mV and 1,265 mV with maximum deviations of 0.2 mV and 8.9 mV, respectively. The result for the current reference gives a measurement of 23.5 μA, with a maximum deviation of 1.2 μA. The measurements also show that the wireless temperature sensor has good sensitivity of 9.55 mV/°C and high linearity of 97%. The proposed temperature sensor has 4.15-times better sensitivity than the previous design. Moreover, to facilitate temperature data collection, standard wireless data transmission is chosen; therefore, an 8-bit successive-approximation-register (SAR) analog-to-digital converter (ADC) and a 433 MHz wireless transmitter are also integrated in this chip. Sensing data from different places can be collected remotely avoiding the need for complex wire lines. PMID:22346644

  8. Azimuthal radiometric temperature measurements of wheat canopies

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.

    1981-01-01

    The effects of azimuthal view angle on the radiometric temperature of wheat canopies at various stages of development are investigated. Measurements of plant height, total leaf area index, green leaf area index and Feeks growth stage together with infrared radiometric temperature measurements at 12 azimuth intervals with respect to solar azimuth and at different solar zenith angles were obtained for four wheat canopies at various heights. Results reveal a difference on the order of 2 C between the temperatures measured at azimuths of 0 and 180 deg under calm wind conditions, which is attributed to the time-dependent transfer of heat between canopy component surfaces. The azimuthal dependence must thus be taken into account in the determination of radiometric temperatures.

  9. IR temperature measurements in microwave heating

    NASA Astrophysics Data System (ADS)

    Cuccurullo, G.; Berardi, P. G.; Carfagna, R.; Pierro, V.

    2002-06-01

    In this paper a technique for the evaluation of the dielectric constant of a sample placed inside a microwave oven and confined in a cylindrical box is proposed. The box acts as a waveguide so that a simple model for the propagating wave can be assumed. Since traditional techniques for temperature measurements cannot be applied in microwave heating, the IR thermography shows to be an useful tool for measuring the sample surface temperature. The measure of the surface temperature evolution in the sample along with application of a simple analytical model allows to obtain the dielectric constant of the sample as a function of chemical composition, temperature and frequency. Preliminary results are presented and discussed with reference to pure water.

  10. Experimental measurement-device-independent quantum key distribution.

    PubMed

    Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S; Fejer, M M; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei

    2013-09-27

    Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices. PMID:24116758

  11. Experimental Measurement-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S.; Fejer, M. M.; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei

    2013-09-01

    Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices.

  12. Ways to measure body temperature in the field.

    PubMed

    Langer, Franz; Fietz, Joanna

    2014-05-01

    Body temperature (Tb) represents one of the key parameters in ecophysiological studies with focus on energy saving strategies. In this study we therefore comparatively evaluated the usefulness of two types of temperature-sensitive passive transponders (LifeChips and IPTT-300) and one data logger (iButton, DS1922L) mounted onto a collar to measure Tb in the field. First we tested the accuracy of all three devices in a water bath with water temperature ranging from 0 to 40°C. Second, we evaluated the usefulness of the LifeChips and the modified iButtons for measuring Tb of small heterothermic mammals under field conditions. For this work we subcutaneously implanted 14 male edible dormice (Glis glis) with transponders, and equipped another 14 males with data loggers to simultaneously record Tb and oxygen consumption with a portable oxygen analyzer (Oxbox). In one individual we recorded Tb with both devices and analyzed recorded Tb patterns. LifeChips are able to measure temperature within the smallest range from 25 to 40°C with an accuracy of 0.07±0.12°C. IPTT-300 transponders measured temperature between 10 and 40°C, but accuracy decreased considerably at values below 30°C, with maximal deviations of nearly 7°C. An individual calibration of each transponder is therefore needed, before using it at low Tbs. The accuracy of the data logger was comparatively good (0.12±0.25°C) and stable over the whole temperature range tested (0-40°C). In all three devices, the repeatability of measurements was high. LifeChip transponders as well as modified iButtons measured Tb reliably under field conditions. Simultaneous Tb-recordings in one edible dormouse with an implanted LifeChip and a collar-mounted iButton revealed that values of both measurements were closely correlated. Taken together, we conclude that implanted temperature-sensitive transponders represent an appropriate and largely non-invasive method to measure Tb also under field conditions. PMID:24802148

  13. Ways to measure body temperature in the field.

    PubMed

    Langer, Franz; Fietz, Joanna

    2014-05-01

    Body temperature (Tb) represents one of the key parameters in ecophysiological studies with focus on energy saving strategies. In this study we therefore comparatively evaluated the usefulness of two types of temperature-sensitive passive transponders (LifeChips and IPTT-300) and one data logger (iButton, DS1922L) mounted onto a collar to measure Tb in the field. First we tested the accuracy of all three devices in a water bath with water temperature ranging from 0 to 40°C. Second, we evaluated the usefulness of the LifeChips and the modified iButtons for measuring Tb of small heterothermic mammals under field conditions. For this work we subcutaneously implanted 14 male edible dormice (Glis glis) with transponders, and equipped another 14 males with data loggers to simultaneously record Tb and oxygen consumption with a portable oxygen analyzer (Oxbox). In one individual we recorded Tb with both devices and analyzed recorded Tb patterns. LifeChips are able to measure temperature within the smallest range from 25 to 40°C with an accuracy of 0.07±0.12°C. IPTT-300 transponders measured temperature between 10 and 40°C, but accuracy decreased considerably at values below 30°C, with maximal deviations of nearly 7°C. An individual calibration of each transponder is therefore needed, before using it at low Tbs. The accuracy of the data logger was comparatively good (0.12±0.25°C) and stable over the whole temperature range tested (0-40°C). In all three devices, the repeatability of measurements was high. LifeChip transponders as well as modified iButtons measured Tb reliably under field conditions. Simultaneous Tb-recordings in one edible dormouse with an implanted LifeChip and a collar-mounted iButton revealed that values of both measurements were closely correlated. Taken together, we conclude that implanted temperature-sensitive transponders represent an appropriate and largely non-invasive method to measure Tb also under field conditions.

  14. Use of piezoelectric multicomponent force measuring devices in fluid mechanics

    NASA Technical Reports Server (NTRS)

    Richter, A.; Stefan, K.

    1979-01-01

    The characterisitics of piezoelectric multicomponent transducers are discussed, giving attention to the advantages of quartz over other materials. The main advantage of piezoelectric devices in aerodynamic studies is their ability to indicate rapid changes in the values of physical parameters. Problems in the accuracy of measurments by piezoelectric devices can be overcome by suitable design approaches. A practical example is given of how such can be utilized to measure rapid fluctuations of fluid forces exerted on a circular cylinder mounted in a water channel.

  15. Large Conductance Switching in a Single-Molecule Device through Room Temperature Spin-Dependent Transport.

    PubMed

    Aragonès, Albert C; Aravena, Daniel; Cerdá, Jorge I; Acís-Castillo, Zulema; Li, Haipeng; Real, José Antonio; Sanz, Fausto; Hihath, Josh; Ruiz, Eliseo; Díez-Pérez, Ismael

    2016-01-13

    Controlling the spin of electrons in nanoscale electronic devices is one of the most promising topics aiming at developing devices with rapid and high density information storage capabilities. The interface magnetism or spinterface resulting from the interaction between a magnetic molecule and a metal surface, or vice versa, has become a key ingredient in creating nanoscale molecular devices with novel functionalities. Here, we present a single-molecule wire that displays large (>10000%) conductance switching by controlling the spin-dependent transport under ambient conditions (room temperature in a liquid cell). The molecular wire is built by trapping individual spin crossover Fe(II) complexes between one Au electrode and one ferromagnetic Ni electrode in an organic liquid medium. Large changes in the single-molecule conductance (>100-fold) are measured when the electrons flow from the Au electrode to either an α-up or a β-down spin-polarized Ni electrode. Our calculations show that the current flowing through such an interface appears to be strongly spin-polarized, thus resulting in the observed switching of the single-molecule wire conductance. The observation of such a high spin-dependent conductance switching in a single-molecule wire opens up a new door for the design and control of spin-polarized transport in nanoscale molecular devices at room temperature. PMID:26675052

  16. Containerless measurements on liquids at high temperatures

    NASA Technical Reports Server (NTRS)

    Weber, Richard

    1993-01-01

    The application of containerless techniques for measurements of the thermophysical properties of high temperature liquids is reviewed. Recent results obtained in the materials research laboratories at Intersonics are also presented. Work to measure high temperature liquid properties is motivated by both the need for reliable property data for modeling of industrial processes involving molten materials and generation of data form basic modeling of materials behavior. The motivation for this work and examples of variations in thermophysical property values from the literature are presented. The variations may be attributed to changes in the specimen properties caused by chemical changes in the specimen and/or to measurement errors. The two methods used to achieve containerless conditions were aeroacoustic levitation and electromagnetic levitation. Their qualities are presented. The accompanying slides show the layout of levitation equipment and present examples of levitated metallic and ceramic specimens. Containerless techniques provide a high degree of control over specimen chemistry, nucleation and allow precise control of liquid composition to be achieved. Effects of minor additions can thus be measured in a systematic way. Operation in reduced gravity enables enhanced control of liquid motion which can allow measurement of liquid transport properties. Examples of nucleation control, the thermodynamics of oxide contamination removal, and control of the chromium content of liquid aluminum oxide by high temperature containerless processes are presented. The feasibility of measuring temperature, emissivity, liquidus temperature, enthalpy, surface tension, density, viscosity, and thermal diffusivity are discussed in the final section of the paper.

  17. Whistle Gauge Measures Flow And Temperature

    NASA Technical Reports Server (NTRS)

    Shakkottai, Parthasarathy; Kwack, Eug Y.

    1989-01-01

    Simple, rugged gauge used to measure speed of flow and temperature of steam or other gas flowing through pipes of arbitrary diameter, from 1 to 28 in. or larger. Specially designed, instrumented whistle - has no moving parts, small, nonobstruction, operates at high temperature and pressure, and cleans itself. Does not operate at zero flow, but at moderate flows (tens of meters per second) generates intense sound for use in measurements. Consists of slanted ring groove of depth D and pressure taps in wall of pipe carrying flow to be measured. Resonant wavelength of sound generated by ring groove depends primarily on size and shape of groove and approximately equal to 4D.

  18. Performance measurements of multilayer insulation at variable cold temperature

    NASA Astrophysics Data System (ADS)

    Funke, Thomas; Haberstroh, Christoph

    2012-06-01

    Multilayer insulation (MLI) is commonly used in most cryogenic devices such as LHe-cryostats or superconductive cables. Typically thermal performance measurements have been carried out using bath cryostats. Inherent to all this devices is a fixed cold temperature at the boiling point of the particular cryogenic liquid. A recent approach for cryogenic pressure vessels covers a broad temperature range, i.e. hydrogen storage from 20 K to ambient temperature. Thus, a new calorimeter cryostat has been designed at TU Dresden to meet these requirements. The design as a flow cryostat allows the measurement of the thermal performance with variable cold temperature between 20 K and 300 K. It can be operated in vertical as well as in horizontal orientation. The insulation material is wrapped around a nearly isothermal cylinder which is held at the desired temperature by a cooling fluid. Preferably LHe respectively helium cold gas is used. Several design features reduce undesired interference errors. It is reported about design and equipment of this cryostat plus first experiences in operation

  19. Floating Probe Assembly for Measuring Temperature of Water

    NASA Technical Reports Server (NTRS)

    Stewart, Randy; Ruffin, Clyde

    2002-01-01

    A floating apparatus denoted a temperature probe aquatic suspension system (TPASS) has been developed for measuring the temperature of an ocean, lake, or other natural body of water at predetermined depths. Prior instruments built for the same purpose were found to give inaccurate readings because the apparatuses themselves significantly affected the temperatures of the water in their vicinities. The design of the TPASS is intended to satisfy a requirement to minimize the perturbation of the temperatures to be measured. The TPASS includes a square-cross-section aluminum rod 28 in. (=71 cm) long with floats attached at both ends. Each float includes five polystyrene foam disks about 3/4 in.(=1.9 cm) thick and 2.5 in. (=6.4 cm) in diameter. The disks are stacked to form cylinders, bolted to the rod, and covered with hollow plastic sleeves. A metal sleeve is clamped to the middle of the aluminum rod, from whence it hangs down into the water. Temperature probes (which can be thermocouples, thermistors, or resistance temperature devices) are placed within the sleeve at the desired measurement depths. Wires from the temperature probes are routed to the input terminals of a data logger.

  20. Floating Probe Assembly for Measuring Temperature of Water

    NASA Technical Reports Server (NTRS)

    Selinsky, T.; Stewart, Randy; Ruffin, Clyde

    2002-01-01

    A floating apparatus denoted a temperature probe aquatic suspension system (TPASS) has been developed for measuring the temperature of an ocean, lake, or other natural body of water at predetermined depths. Prior instruments built for the same purpose were found to give inaccurate readings because the apparatuses themselves significantly affected the temperatures of the water in their vicinities. The design of the TPASS is intended to satisfy a requirement to minimize the perturbation of the temperatures to be measured. The TPASS includes a square-cross-section aluminum rod 28 in. (approx. = 71 cm) long with floats attached at both ends. Each float includes five polystyrene foam disks about 3/4 in. (approx. = 1.9 cm) thick and 2.5 in. (approx. = 6.4 cm) in diameter. The disks are stacked to form cylinders, bolted to the rod, and covered with hollow plastic sleeves. A metal sleeve is clamped to the middle of the aluminum rod, from whence it hangs down into the water. Temperature probes (which can be thermocouples, thermistors, or resistance temperature devices) are placed within the sleeve at the desired measurement depths. Wires from the temperature probes are routed to the input terminals of a data logger. This work was done by Randy

  1. Assessment of body temperature measurement options.

    PubMed

    Sund-Levander, Märtha; Grodzinsky, Ewa

    Assessment of body temperature is important for decisions in nursing care, medical diagnosis, treatment and the need of laboratory tests. The definition of normal body temperature as 37°C was established in the middle of the 19th century. Since then the technical design and the accuracy of thermometers has been much improved. Knowledge of physical influence on the individual body temperature, such as thermoregulation and hormones, are still not taken into consideration in body temperature assessment. It is time for a change; the unadjusted mode should be used, without adjusting to another site and the same site of measurement should be used as far as possible. Peripheral sites, such as the axillary and the forehead site, are not recommended as an assessment of core body temperature in adults. Frail elderly individuals might have a low normal body temperature and therefore be at risk of being assessed as non-febrile. As the ear site is close to the hypothalamus and quickly responds to changes in the set point temperature, it is a preferable and recommendable site for measurement of body temperature.

  2. Assessment of body temperature measurement options.

    PubMed

    Sund-Levander, Märtha; Grodzinsky, Ewa

    Assessment of body temperature is important for decisions in nursing care, medical diagnosis, treatment and the need of laboratory tests. The definition of normal body temperature as 37°C was established in the middle of the 19th century. Since then the technical design and the accuracy of thermometers has been much improved. Knowledge of physical influence on the individual body temperature, such as thermoregulation and hormones, are still not taken into consideration in body temperature assessment. It is time for a change; the unadjusted mode should be used, without adjusting to another site and the same site of measurement should be used as far as possible. Peripheral sites, such as the axillary and the forehead site, are not recommended as an assessment of core body temperature in adults. Frail elderly individuals might have a low normal body temperature and therefore be at risk of being assessed as non-febrile. As the ear site is close to the hypothalamus and quickly responds to changes in the set point temperature, it is a preferable and recommendable site for measurement of body temperature. PMID:24037397

  3. Evaluation of advanced cooling therapy's esophageal cooling device for core temperature control.

    PubMed

    Naiman, Melissa; Shanley, Patrick; Garrett, Frank; Kulstad, Erik

    2016-05-01

    Managing core temperature is critical to patient outcomes in a wide range of clinical scenarios. Previous devices designed to perform temperature management required a trade-off between invasiveness and temperature modulation efficiency. The Esophageal Cooling Device, made by Advanced Cooling Therapy (Chicago, IL), was developed to optimize warming and cooling efficiency through an easy and low risk procedure that leverages heat transfer through convection and conduction. Clinical data from cardiac arrest, fever, and critical burn patients indicate that the Esophageal Cooling Device performs very well both in terms of temperature modulation (cooling rates of approximately 1.3°C/hour, warming of up to 0.5°C/hour) and maintaining temperature stability (variation around goal temperature ± 0.3°C). Physicians have reported that device performance is comparable to the performance of intravascular temperature management techniques and superior to the performance of surface devices, while avoiding the downsides associated with both. PMID:27043177

  4. A Microthermal Device for Measuring the Spatial Power Spectrum of Atmospheric Optical Turbulence

    NASA Astrophysics Data System (ADS)

    Turner, Jonathan; McGraw, J.; Zimmer, P.; Williams, T.; Claver, C.; Krabbendam, V.; Wiecha, O.; Andrew, J.; Warner, M.

    2010-01-01

    The Measurement Astrophysics group at UNM designed and built a novel microthermal device for characterizing atmospheric optical turbulence at astronomical observatories. This instrument is based on a Wheatstone bridge circuit and uses fine tungsten filaments as resistance temperature detectors. The device makes differential temperature measurements which are directly related to the index of refraction structure constant, Cn2, which quantifies the strength of optical turbulence. The device is designed to work in two modes. In horizontal mode temperature differentials are measured between adjacent sensors. Measurements are combined to recover the differences over all pairwise sensor baselines. These measurements result in a spatial spectrum of turbulence. Measured turbulent spectra are then fit to standard turbulence models which yield estimates of the outer scale of turbulence and the slope of the power spectra. In vertical mode the device operates with pairs of microthermal sensors distributed vertically, each pair being separated horizontally by approximately one meter. Sensor pairs are suspended at multiple heights above the ground allowing measurement of atmospheric turbulence power as a function of altitude. This device was used to monitor optical turbulence during a site testing campaign at the future LSST site on Cerro Pachón. We present preliminary results from operation in both vertical and horizontal modes from October 2008 to December 2009. The microthermal array remains in operation on Cerro Pachón, and continues to produce valuable atmospheric measurements. Our results support the conclusion that Cerro Pachón is an excellent observatory site. The vertical turbulence profile decreases monotonically with height as expected, and the surface layer does not contribute a significant amount to the overall seeing measured at the site. This work was supported by Air Force Grant No. FA9451-04-2-0355. Instrumentation and travel support was provided in part by

  5. A Microwave Radiometer for Internal Body Temperature Measurement

    NASA Astrophysics Data System (ADS)

    Scheeler, Robert Patterson

    This thesis presents the analysis and design of a microwave radiometer for internal body temperature measurements. There is currently no available method for non-invasive temperature measurement inside the human body. However, knowledge of both relative and absolute temperature variations over time is important to a number of medical applications. The research presented in this thesis details a proof-of-concept near-field microwave radiometer demonstrating relative thermometry of a multi-layer phantom. There are a number of technical challenges addressed in this thesis for radiometric determination of sub-degree temperature variations in the human body. A theoretical approach is developed for determining sensing depth from known complex layered tissues, which is defined as a figure of merit, and is shown to be dependent on frequency, electrical properties of the tissues, and the near-field probe. In order to obtain depth resolution, multiple frequency operation can be used, so multi-frequency probes are designed and demonstrated in this work. The choice of frequencies is determined not only by the tissue material properties, but also by the ever increasing radio interference in the environment. In this work, quiet bands allocated to radio astronomy are investigated. The radiometer and probe need to be compact to be wearable, and several advancements are made towards a fully wearable device: multi-frequency low-profile probes are designed and fabricated on a flexible substrate and the process of on-chip integration is demonstrated by a GaAs MMIC cold noise source for radiometer calibration. The implemented proof-of-concept device consists of two radiometers at 1.4 GHz and 2.7 GHz, designed with commercial inexpensive devices that can enable sufficient sensitivity. The device is tested on a phantom with two water layers whose temperatures are varied in a controlled manner, and focused on the human body temperature range. Measured results are discussed qualitatively

  6. A survey of gas-side fouling measuring devices

    NASA Technical Reports Server (NTRS)

    Marner, W. J.; Henslee, S. P.

    1984-01-01

    A survey of measuring devices or probes, which were used to investigate gas side fouling, was carried out. Five different types of measuring devices are identified and discussed including: heat flux meters, mass accumulation probes, optical devices, deposition probes, and acid condensation probes. A total of 32 different probes are described in detail and summarized in matrix or tabular form. The important considerations of combustion gas characterization and deposit analysis are also given a significant amount of attention. The results show that considerable work was done in the development of gas side fouling probes. However, it is clear that the design, construction, and testing of a durable, versatile probe - capable of monitoring on-line fouling resistances - remains a formidable task.

  7. A survey of gas-side fouling measuring devices

    NASA Astrophysics Data System (ADS)

    Marner, W. J.; Henslee, S. P.

    1984-03-01

    A survey of measuring devices or probes, which were used to investigate gas side fouling, was carried out. Five different types of measuring devices are identified and discussed including: heat flux meters, mass accumulation probes, optical devices, deposition probes, and acid condensation probes. A total of 32 different probes are described in detail and summarized in matrix or tabular form. The important considerations of combustion gas characterization and deposit analysis are also given a significant amount of attention. The results show that considerable work was done in the development of gas side fouling probes. However, it is clear that the design, construction, and testing of a durable, versatile probe - capable of monitoring on-line fouling resistances - remains a formidable task.

  8. Survey of gas-side fouling measuring devices

    SciTech Connect

    Marner, W.J.; Henslee, S.P.

    1984-03-01

    A survey of measuring devices or probes, which have been used to investigate gas-side fouling, has been carried out. Five different types of measuring devices are identified and discussed including: heat flux meters, mass accumulation probes, optical devices, deposition probes, and acid condensation probes. A total of 32 different probes are described in detail and summarized in matrix or tabular form. The important considerations of combustion gas characterization and deposit analysis are also given a significant amount of attention. The results of this study show that considerable work has been done in the development of gas-side fouling probes. However, it is clear that the design, construction, and testing of a durable versatile probe - capable of monitoring on-line fouling resistances - remains a formidable task.

  9. Magnetic Resonance Flow Velocity and Temperature Mapping of a Shape Memory Polymer Foam Device

    SciTech Connect

    Small IV, W; Gjersing, E; Herberg, J L; Wilson, T S; Maitland, D J

    2008-10-29

    Interventional medical devices based on thermally responsive shape memory polymer (SMP) are under development to treat stroke victims. The goals of these catheter-delivered devices include re-establishing blood flow in occluded arteries and preventing aneurysm rupture. Because these devices alter the hemodynamics and dissipate thermal energy during the therapeutic procedure, a first step in the device development process is to investigate fluid velocity and temperature changes following device deployment. A laser-heated SMP foam device was deployed in a simplified in vitro vascular model. Magnetic resonance imaging (MRI) techniques were used to assess the fluid dynamics and thermal changes associated with device deployment. Spatial maps of the steady-state fluid velocity and temperature change inside and outside the laser-heated SMP foam device were acquired. Though non-physiological conditions were used in this initial study, the utility of MRI in the development of a thermally-activated SMP foam device has been demonstrated.

  10. Turbine gas temperature measurement and control system

    NASA Technical Reports Server (NTRS)

    Webb, W. L.

    1973-01-01

    A fluidic Turbine Inlet Gas Temperature (TIGIT) Measurement and Control System was developed for use on a Pratt and Whitney Aircraft J58 engine. Based on engine operating requirements, criteria for high temperature materials selection, system design, and system performance were established. To minimize development and operational risk, the TIGT control system was designed to interface with an existing Exhaust Gas Temperature (EGT) Trim System and thereby modulate steady-state fuel flow to maintain a desired TIGT level. Extensive component and system testing was conducted including heated (2300F) vibration tests for the fluidic sensor and gas sampling probe, temperature and vibration tests on the system electronics, burner rig testing of the TIGT measurement system, and in excess of 100 hours of system testing on a J58 engine. (Modified author abstract)

  11. High-accuracy direct ZT and intrinsic properties measurement of thermoelectric couple devices.

    PubMed

    Kraemer, D; Chen, G

    2014-04-01

    Advances in thermoelectric materials in recent years have led to significant improvements in thermoelectric device performance and thus, give rise to many new potential applications. In order to optimize a thermoelectric device for specific applications and to accurately predict its performance ideally the material's figure of merit ZT as well as the individual intrinsic properties (Seebeck coefficient, electrical resistivity, and thermal conductivity) should be known with high accuracy. For that matter, we developed two experimental methods in which the first directly obtains the ZT and the second directly measures the individual intrinsic leg properties of the same p/n-type thermoelectric couple device. This has the advantage that all material properties are measured in the same sample direction after the thermoelectric legs have been mounted in the final device. Therefore, possible effects from crystal anisotropy and from the device fabrication process are accounted for. The Seebeck coefficients, electrical resistivities, and thermal conductivities are measured with differential methods to minimize measurement uncertainties to below 3%. The thermoelectric couple ZT is directly measured with a differential Harman method which is in excellent agreement with the calculated ZT from the individual leg properties. The errors in both the directly measured and calculated thermoelectric couple ZT are below 5% which is significantly lower than typical uncertainties using commercial methods. Thus, the developed technique is ideal for characterizing assembled couple devices and individual thermoelectric materials and enables accurate device optimization and performance predictions. We demonstrate the methods by measuring a p/n-type thermoelectric couple device assembled from commercial bulk thermoelectric Bi2Te3 elements in the temperature range of 30 °C-150 °C and discuss the performance of the couple thermoelectric generator in terms of its efficiency and materials

  12. Capacitance-voltage measurement in memory devices using ferroelectric polymer

    NASA Astrophysics Data System (ADS)

    Nguyen, Chien A.; Lee, Pooi See

    2006-01-01

    Application of thin polymer film as storing mean for non-volatile memory devices is investigated. Capacitance-voltage (C-V) measurement of metal-ferroelectric-metal device using ferroelectric copolymer P(VDF-TrFE) as dielectric layer shows stable 'butter-fly' curve. The two peaks in C-V measurement corresponding to the largest capacitance are coincidental at the coercive voltages that give rise to zero polarization in the polarization hysteresis measurement. By comparing data of C-V and P-E measurement, a correlation between two types of hysteresis is established in which it reveals simultaneous electrical processes occurring inside the device. These processes are caused by the response of irreversible and reversible polarization to the applied electric field that can be used to present a memory window. The memory effect of ferroelectric copolymer is further demonstrated for fabricating polymeric non-volatile memory devices using metal-ferroelectric-insulator-semiconductor structure (MFIS). By applying different sweeping voltages at the gate, bidirectional flat-band voltage shift is observed in the ferroelectric capacitor. The asymmetrical shift after negative sweeping is resulted from charge accumulation at the surface of Si substrate caused by the dipole direction in the polymer layer. The effect is reversed for positive voltage sweeping.

  13. Apparatus and method for high temperature viscosity and temperature measurements

    DOEpatents

    Balasubramaniam, Krishnan; Shah, Vimal; Costley, R. Daniel; Singh, Jagdish P.

    2001-01-01

    A probe for measuring the viscosity and/or temperature of high temperature liquids, such as molten metals, glass and similar materials comprises a rod which is an acoustical waveguide through which a transducer emits an ultrasonic signal through one end of the probe, and which is reflected from (a) a notch or slit or an interface between two materials of the probe and (b) from the other end of the probe which is in contact with the hot liquid or hot melt, and is detected by the same transducer at the signal emission end. To avoid the harmful effects of introducing a thermally conductive heat sink into the melt, the probe is made of relatively thermally insulative (non-heat-conductive) refractory material. The time between signal emission and reflection, and the amplitude of reflections, are compared against calibration curves to obtain temperature and viscosity values.

  14. Device and method for the measurement of gas permeability through membranes

    DOEpatents

    Agarwal, Pradeep K.; Ackerman, John; Borgialli, Ron; Hamann, Jerry; Muknahalliptna, Suresh

    2006-08-08

    A device for the measuring membrane permeability in electrical/electrochemical/photo-electrochemical fields is provided. The device is a permeation cell and a tube mounted within the cell. An electrode is mounted at one end of the tube. A membrane is mounted within the cell wherein a corona is discharged from the electrode in a general direction toward the membrane thereby generating heated hydrogen atoms adjacent the membrane. A method for measuring the effects of temperature and pressure on membrane permeability and selectivity is also provided.

  15. [Temperature measurement of DC argon plasma jet].

    PubMed

    Yan, Jian-Hua; Pan, Xin-Chao; Ma, Zeng-Yi; Tu, Xin; Cen, Ke-Fa

    2008-01-01

    The electron temperature of DC arc plasma jet is an important parameter, which determines the characteristics of plasma jet. The measurement of emission spectrum was performed to obtain the spectral intensities of some Ar lines and the method of diagrammatic view of Boltzmann was adopted to calculate the electron temperature. The results indicated that the electron temperature dropped at different speed along with the axes of the plasma jet and rose rapidly when the current was increased, and it also rose when the flowrate of argon was increased.

  16. [Flame temperature distribution measurement of solid propellants].

    PubMed

    Zhao, Wen-hua; Zhu, Shu-guang; Li, Yan; Fang, Zhong-yan; Yang, Rong-jie; Li, Yu-ping; Zhang, Jie; Liu, Yun-fei

    2004-09-01

    Many high temperature bodies such as flame, in which chemical reactions are very complex, emit their own spectra. These emission spectra usually consist of the spectral lines, spectral bands and the continuous spectra. In some cases, the spectral lines gather together. It is very difficult to find the right single spectral line when the spectral line intensity method is used. To deal with this problem, the idea that the single spectral line intensity is replaced by the total intensity of many spectral lines to measure the temperature is mentioned. And the relative intensity method is also changed to deal with this idea. The measurement of the temperature distribution based on this improved method is successful, and the measurement results are compared with the results of the thermocouple method.

  17. Boron Arsenide and Boron Phosphide for High Temperature and Luminescent Devices. [semiconductor devices - crystal growth/crystal structure

    NASA Technical Reports Server (NTRS)

    Chu, T. L.

    1975-01-01

    The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.

  18. Measurements of fluid viscosity using a miniature ball drop device

    NASA Astrophysics Data System (ADS)

    Tang, Jay X.

    2016-05-01

    This paper describes measurement of fluid viscosity using a small ball drop device. It requires as little as 100 μl of fluid. Each measurement can be performed in seconds. The experiment is designed to yield reliable viscosity values by operating at properly chosen tilt angles and with calibration using well-characterized Newtonian fluids such as mixtures of glycerol and water. It also yields dynamical viscosity of non-Newtonian fluids at moderate shear rates. The device is easy to assemble and it allows for the measurement of viscosity even when the fluid samples are too small to measure using most commercial viscometers or rheometers. Therefore, the technique is particularly useful in characterizing biological fluids such as solutions of proteins, DNA, and polymers frequently used in biomaterial applications.

  19. Temperature-controlled autocollimator with ultrahigh angular measuring precision

    SciTech Connect

    Yuan Jie; Long Xingwu; Yang Kaiyong

    2005-12-15

    A temperature-controlled autocollimator with ultrahigh angular measuring precision is proposed in this article, which is different from our previous publication [J. Yuan and X. W. Long, Rev. Sci. Instrum. 74, 1362 (2003)]. The autocollimator consists of a zoom lens illuminating a charge-coupled device (CCD). This design provides a compact size and increased stability without compromising precision. Moreover, this design makes it possible to detect a target mirror with either plane reflectors or spherical reflectors. Devices for shock absorption and heat insulation were implemented to diminish external interferences. A special temperature-control system for the autocollimator is designed to control the temperature of the autocollimator. The temperature of the autocollimator fluctuates less than {+-}0.01 deg. C. The CCD camera's noise is a fatal obstacle that prevents us from achieving an ultrahigh angular measuring precision. In this article, the influence of the CCD camera's noise on the measuring resolution is analyzed theoretically in detail. Based on the analysis, some special noise-suppressing methods to eliminate the influence of the CCD camera's noise are proposed. Both the influence of the CCD camera's noise and the noise-suppressing methods have not been discussed in our previous publication [J. Yuan and X. W. Long, Rev. Sci. Instrum. 74, 1362 (2003)]. By using the methods mentioned above, the measuring precision of the autocollimator has been greatly improved and the requirements on the external condition have been greatly reduced. The method is proved to be reliable by a prototype experiment. Two-axis angular displacement can be measured simultaneously and a measuring precision of 0.005 arcsec has been achieved, which is currently the highest measuring precision in the world.

  20. Microcontroller-based portable device for seeds moisture measurements

    NASA Astrophysics Data System (ADS)

    Iwaszko, Roman; Tarapata, Grzegorz; Weremczuk, Jerzy

    2006-10-01

    The paper describes construction of a new specialized hygrometer and dedicated applications for data acquisition and analyzing that can be used for seeds moisture measurements. To find the correlation between seeds water content and measurements results obtained from the device the weight method was applied. This paper shows preliminary results from tests of fully functional system allowing estimation in a very easy end fast way of the water content in germinating seeds without seeds destruction.

  1. Constant frequency pulsed phase-locked loop measuring device

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Kushnick, Peter W. (Inventor); Cantrell, John H. (Inventor)

    1993-01-01

    A measuring apparatus is presented that uses a fixed frequency oscillator to measure small changes in the phase velocity ultrasonic sound when a sample is exposed to environmental changes such as changes in pressure, temperature, etc. The invention automatically balances electrical phase shifts against the acoustical phase shifts in order to obtain an accurate measurement of electrical phase shifts.

  2. A Method of Measuring Piston Temperatures

    NASA Technical Reports Server (NTRS)

    Pinkel, Benjamin; Mangniello, Eugene J

    1940-01-01

    A method that makes use of thermocouples has been developed to measure the temperature of engine pistons operating at high speeds. The thermocouples installed on the moving piston are connected with a potentiometer outside the engine by means of pneumatically operated plungers, which make contact with the piston thermocouples for about 10 crankshaft degrees at the bottom of the piston stroke. The equipment is operated satisfactory at engine speeds of 2,400 r.p.m. and shows promise of successful operation at higher engine speeds. Measurements of piston temperatures in a liquid-cooled compression-ignition engine and in an air-cooled spark-ignition are presented.

  3. Non-contact temperature measurement requirements

    NASA Technical Reports Server (NTRS)

    Higgins, D. B.; Witherow, W. K.

    1989-01-01

    The Marshall Space Flight Center is involved with levitation experiments for Spacelab, Space Station, and drop tube/tower operations. These experiments have temperature measurement requirements, that of course must be non-contact in nature. The experiment modules involved are the Acoustic Levitator Furnace (ALF), and the Modular Electromagnetic Levitator (MEL). User requirements of the ALF and drop tube are presented. The center also has temperature measurement needs that are not microgravity experiment oriented, but rather are related to the propulsion system for the STS. This requirement will also be discussed.

  4. Two-temperature method for measuring emissivity

    USGS Publications Warehouse

    Watson, K.

    1992-01-01

    Spectral emissivity can be uniquely determined from radiance measurements if the object can be observed at two different temperatures. The advantage of this approach is that the spectral emissivity is determined without a priori assumptions about spectral shape. Because the different temperatures are obtained by observing the scene at two times in the diurnal cycle (optimally after midday and midnight), the method assumes that emissivity is temporally invariant. This is valid for rocks and dry soils, not well established for vegetation, and not true when changes in soil moisture occur between the measurements. Accurate image registration and satisfactory signal:noise are critical factors that limit extensive use of this method. ?? 1992.

  5. Dual neutron flux/temperature measurement sensor

    DOEpatents

    Mihalczo, John T.; Simpson, Marc L.; McElhaney, Stephanie A.

    1994-01-01

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination.

  6. Assembly for electrical conductivity measurements in the piston cylinder device

    DOEpatents

    Watson, Heather Christine; Roberts, Jeffrey James

    2012-06-05

    An assembly apparatus for measurement of electrical conductivity or other properties of a sample in a piston cylinder device wherein pressure and heat are applied to the sample by the piston cylinder device. The assembly apparatus includes a body, a first electrode in the body, the first electrode operatively connected to the sample, a first electrical conductor connected to the first electrode, a washer constructed of a hard conducting material, the washer surrounding the first electrical conductor in the body, a second electrode in the body, the second electrode operatively connected to the sample, and a second electrical conductor connected to the second electrode.

  7. Ion temperature measurements in the Maryland Spheromak

    SciTech Connect

    Gauvreau, J.L.

    1992-12-31

    Initial spectroscopic data from MS showed evidence of ion heating as deduced from the line widths of different ion species. Detailed measurements of OIV spectral emission line profiles in space and time revealed that heating takes place at early time, before spheromak formation and is occurring within the current discharge. The measured ion temperature is several times the electron temperature and cannot be explained by classical (Spitzer) resistivity. Classically, ions are expected to have lower temperatures than the electrons and therefore, lower temperatures than observed. High ion temperatures have been observed in different RFP`s and Spheromaks but are usually associated with relaxation to the Taylor state and occur in the sustainment phase. During formation, the current delivered to start the discharge is not axisymmetric and as a consequence, X-points appear in the magnetic flux. A two dimensional analysis predicts that magnetic reconnection occurring at an X-point can give rise to high ion heating rates. A simple 0-dimensional calculation showed that within the first 20 {mu}s, a conversion of mass flow kinetic energy into ion temperature could take place due to viscosity.

  8. Preliminary design of a new device to measure muscle function.

    PubMed

    Lind, Jeffrey; Durfee, William

    2015-08-01

    A description and early results are presented for a novel device to estimate the torque-angle and torque-angular velocity properties of the quadriceps muscle group using electrical stimulation. The device straps to the shin and is moved by the operator while pulses of stimulation are applied to the motor point of the quadriceps. During stimulation, the operator raises and lowers the leg to the desired angle, and also can oscillate the leg to generate a rich velocity profile. The resulting muscle force is measured by a load cell contained in the device. In a preliminary study using 11 healthy subjects, normalized torque-angle and torque-velocity data for the quadriceps were consistent with literature results that used maximum voluntary contraction methods. PMID:26737540

  9. Implementation of a measurement-device-independent entanglement witness.

    PubMed

    Xu, Ping; Yuan, Xiao; Chen, Luo-Kan; Lu, He; Yao, Xing-Can; Ma, Xiongfeng; Chen, Yu-Ao; Pan, Jian-Wei

    2014-04-11

    Entanglement, the essential resource in quantum information processing, should be witnessed in many tasks such as quantum computing and quantum communication. The conventional entanglement witness method, relying on an idealized implementation of measurements, could wrongly conclude a separable state to be entangled due to imperfect detections. Inspired by the idea of a time-shift attack, we construct an attack on the conventional entanglement witness process and demonstrate that a separable state can be falsely identified to be entangled. To close such detection loopholes, based on a recently proposed measurement-device-independent entanglement witness method, we design and experimentally demonstrate a measurement-device-independent entanglement witness for a variety of two-qubit states. By the new scheme, we show that an entanglement witness can be realized without detection loopholes.

  10. Advanced Measurement Devices for the Microgravity Electromagnetic Levitation Facility EML

    NASA Technical Reports Server (NTRS)

    Brillo, Jurgen; Fritze, Holger; Lohofer, Georg; Schulz, Michal; Stenzel, Christian

    2012-01-01

    This paper reports on two advanced measurement devices for the microgravity electromagnetic levitation facility (EML), which is currently under construction for the use onboard the "International Space Station (ISS)": the "Sample Coupling Electronics (SCE)" and the "Oxygen Sensing and Control Unit (OSC)". The SCE measures by a contactless, inductive method the electrical resistivity and the diameter of a spherical levitated metallic droplet by evaluating the voltage and electrical current applied to the levitation coil. The necessity of the OSC comes from the insight that properties like surface tension or, eventually, viscosity cannot seriously be determined by the oscillating drop method in the EML facility without knowing the conditions of the surrounding atmosphere. In the following both measurement devices are explained and laboratory test results are presented.

  11. Methods of measurement for semiconductor materials, process control, and devices

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1972-01-01

    Significant accomplishments include development of a procedure to correct for the substantial differences of transistor delay time as measured with different instruments or with the same instrument at different frequencies; association of infrared response spectra of poor quality germanium gamma ray detectors with spectra of detectors fabricated from portions of a good crystal that had been degraded in known ways; and confirmation of the excellent quality and cosmetic appearance of ultrasonic bonds made with aluminum ribbon wire. Work is continuing on measurement of resistivity of semiconductor crystals; study of gold-doped silicon, development of the infrared response technique; evaluation of wire bonds and die attachment; and measurement of thermal properties of semiconductor devices, delay time and related carrier transport properties in junction devices, and noise properties of microwave diodes.

  12. Effective ultraviolet irradiance measurements from artificial tanning devices in Greece.

    PubMed

    Petri, Aspasia; Karabetsos, Efthymios

    2015-12-01

    Artificial tanning remains very popular worldwide, despite the International Agency for Research on Cancer classification of ultraviolet (UV) radiation from sunbeds as 'carcinogenic to humans'. Greek Atomic Energy Commission has initiated a surveillance action of the artificial tanning devices in Greece in order to record the effective irradiance levels from the sunbeds and to inform and synchronise the domestic artificial tanning business sector with the requirements of the European Standard EN 60335-2-27:2010. In this direction, in situ measurements of UV emissions from sunbeds in solaria businesses all over Greece were performed from October 2013 until July 2014, with a radiometer and a portable single-monochromator spectrophotometer. Analysis of the measurements' results revealed that effective irradiance in ∼60 % of the measured sunbeds exceeded the 0.3 W m(-2) limit value set by EN 60335-2-27:2010 and only 20 % of the devices could be categorised as UV type 3.

  13. Resource-Efficient Measurement-Device-Independent Entanglement Witness

    DOE PAGES

    Verbanis, E.; Martin, A.; Rosset, D.; Lim, C. C. W.; Thew, R. T.; Zbinden, H.

    2016-05-09

    Imperfections in experimental measurement schemes can lead to falsely identifying, or over estimating, entanglement in a quantum system. A recent solution to this is to define schemes that are robust to measurement imperfections—measurement-device-independent entanglement witness (MDI-EW). This approach can be adapted to witness all entangled qubit states for a wide range of physical systems and does not depend on detection efficiencies or classical communication between devices. In this paper, we extend the theory to remove the necessity of prior knowledge about the two-qubit states to be witnessed. Moreover, we tested this model via a novel experimental implementation for MDI-EW thatmore » significantly reduces the experimental complexity. Finally, by applying it to a bipartite Werner state, we demonstrate the robustness of this approach against noise by witnessing entanglement down to an entangled state fraction close to 0.4.« less

  14. Improving the accuracy of smart devices to measure noise exposure.

    PubMed

    Roberts, Benjamin; Kardous, Chucri; Neitzel, Richard

    2016-11-01

    Occupational noise exposure is one of the most frequent hazards present in the workplace; up to 22 million workers have potentially hazardous noise exposures in the U.S. As a result, noise-induced hearing loss is one of the most common occupational injuries in the U.S. Workers in manufacturing, construction, and the military are at the highest risk for hearing loss. Despite the large number of people exposed to high levels of noise at work, many occupations have not been adequately evaluated for noise exposure. The objective of this experiment was to investigate whether or not iOS smartphones and other smart devices (Apple iPhones and iPods) could be used as reliable instruments to measure noise exposures. For this experiment three different types of microphones were tested with a single model of iPod and three generations of iPhones: the internal microphones on the device, a low-end lapel microphone, and a high-end lapel microphone marketed as being compliant with the International Electrotechnical Commission's (IEC) standard for a Class 2-microphone. All possible combinations of microphones and noise measurement applications were tested in a controlled environment using several different levels of pink noise ranging from 60-100 dBA. Results were compared to simultaneous measurements made using a Type 1 sound level measurement system. Analysis of variance and Tukey's honest significant difference (HSD) test were used to determine if the results differed by microphone or noise measurement application. Levels measured with external microphones combined with certain noise measurement applications did not differ significantly from levels measured with the Type 1 sound measurement system. Results showed that it may be possible to use iOS smartphones and smart devices, with specific combinations of measurement applications and calibrated external microphones, to collect reliable, occupational noise exposure data under certain conditions and within the limitations of the

  15. NaOH-based high temperature heat-of-fusion thermal energy storage device

    NASA Technical Reports Server (NTRS)

    Cohen, B. M.; Rice, R. E.

    1978-01-01

    A material called Thermkeep, developed as a low-cost method for the storage of thermal energy for solar electric power generating systems is discussed. The storage device consists of an insulated cylinder containing Thermkeep in which coiled tubular heat exchangers are immersed. A one-tenth scale model of the design contains 25 heat-exchanger tubes and 1500 kg of Thermkeep. Its instrumentation includes thermocouples to measure internal Thermkeep temperatures, vessel surface, heated shroud surface, and pressure gauges to indicate heat-exchanger pressure drops. The test-circuit design is presented and experimental results are discussed.

  16. Post-Shock Temperature Measurements of Aluminum

    SciTech Connect

    Seifter, A.; Furlanetto, M. R.; Payton, J. R.; Obst, A. W.; Stewart, S. T.; Kennedy, G. B.

    2006-07-28

    Post-shock temperature is an important quantity in shock physics experiments for constraining the dynamic equations of state of materials. A high-speed, infrared, multi-wavelength pyrometer has been developed at Los Alamos National Laboratory (LANL) for measurements in the temperature range from 400 to 1200 K. With customized front end optics, permitting concurrent VISAR measurements in the same optical path, validation experiments on aluminum have been conducted at the new Shock Compression Laboratory at Harvard University. Under <1 millitorr vacuum, a post-shock temperature of 495 K {+-} 30 K was recorded from a polished free surface of aluminum 2024-T4 subject to a peak shock pressure of 34.8{+-}0.8 GPa, in excellent agreement with the equation of state and previous experiments.

  17. Dynamic gas temperature measurement system, volume 1

    NASA Technical Reports Server (NTRS)

    Elmore, D. L.; Robinson, W. W.; Watkins, W. B.

    1983-01-01

    A gas temperature measurement system with compensated frequency response of 1 kHz and capability to operate in the exhaust of a gas turbine engine combustor was developed. A review of available technologies which could attain this objective was done. The most promising method was identified as a two wire thermocouple, with a compensation method based on the responses of the two different diameter thermocouples to the fluctuating gas temperature field. In a detailed design of the probe, transient conduction effects were identified as significant. A compensation scheme was derived to include the effects of gas convection and wire conduction. The two wire thermocouple concept was tested in a laboratory burner exhaust to temperatures of about 3000 F and in a gas turbine engine to combustor exhaust temperatures of about 2400 F. Uncompensated and compensated waveforms and compensation spectra are presented.

  18. Biomechanical Measurement of Rabbit Cornea by a Modified Scheimpflug Device.

    PubMed

    Zhang, Bo; Gu, Jianjun; Zhang, Xiaoxiao; Yang, Bin; Wang, Zheng; Zheng, Danying

    2016-01-01

    Purpose. To explore the probability and variation in biomechanical measurements of rabbit cornea by a modified Scheimpflug device. Methods. A modified Scheimpflug device was developed by imaging anterior segment of the model imitating the intact eye at various posterior pressures. The eight isolated rabbit corneas were mounted on the Barron artificial chamber and images of the anterior segment were taken at posterior pressures of 15, 30, 45, 60, and 75 mmHg by the device. The repeatability and reliability of the parameters including CCT, ACD, ACV, and CV were evaluated at each posterior pressure. All the variations of the parameters at the different posterior pressures were calculated. Results. All parameters showed good intraobserver reliability (Cronbach's alpha; intraclass correlation coefficient, α, ICC > 0.96) and repeatability in the modified Scheimpflug device. With the increase of posterior pressures, the ratio of CCT decreased linearly and the bulk modulus gradually reduced to a platform. The increase of ACD was almost linear with the posterior pressures elevated. Conclusions. The modified Scheimpflug device was a valuable tool to investigate the biomechanics of the cornea. The posterior pressure 15-75 mmHg range produced small viscoelastic deformations and nearly linear pressure-deformation response in the rabbit cornea. PMID:27446608

  19. Biomechanical Measurement of Rabbit Cornea by a Modified Scheimpflug Device

    PubMed Central

    Zhang, Bo; Gu, Jianjun; Zhang, Xiaoxiao; Yang, Bin

    2016-01-01

    Purpose. To explore the probability and variation in biomechanical measurements of rabbit cornea by a modified Scheimpflug device. Methods. A modified Scheimpflug device was developed by imaging anterior segment of the model imitating the intact eye at various posterior pressures. The eight isolated rabbit corneas were mounted on the Barron artificial chamber and images of the anterior segment were taken at posterior pressures of 15, 30, 45, 60, and 75 mmHg by the device. The repeatability and reliability of the parameters including CCT, ACD, ACV, and CV were evaluated at each posterior pressure. All the variations of the parameters at the different posterior pressures were calculated. Results. All parameters showed good intraobserver reliability (Cronbach's alpha; intraclass correlation coefficient, α, ICC > 0.96) and repeatability in the modified Scheimpflug device. With the increase of posterior pressures, the ratio of CCT decreased linearly and the bulk modulus gradually reduced to a platform. The increase of ACD was almost linear with the posterior pressures elevated. Conclusions. The modified Scheimpflug device was a valuable tool to investigate the biomechanics of the cornea. The posterior pressure 15–75 mmHg range produced small viscoelastic deformations and nearly linear pressure-deformation response in the rabbit cornea. PMID:27446608

  20. Validation of a Laser-Assisted Wound Measurement Device for Measuring Wound Volume

    PubMed Central

    Davis, Kathryn E.; Constantine, Fadi C.; MacAslan, Elaine C.; Bills, Jessica D.; Noble, Debby L.; Lavery, Lawrence A.

    2013-01-01

    Background Accurate and precise wound measurement is an essential part of the medical record when monitoring a patient with a chronic wound. This study was designed to determine if a new device, a laser-assisted wound measurement (LAWM) device, provides valid measurements for wound area, depth, and volume. Methods We compared four methods to evaluate the area and volume of 12 wounds of differing size and depth that were created on the dorsum of a sacrificed pig. We evaluated the LAWM device, digital photograph assessment with National Institutes of Health ImageJ software, measurements of depth with a ruler, and weight-to-volume assessment with dental paste. We then sought to cross validate this data with further analyses obtained from these measurements using a Play-Doh®-based wound as a model for constant area with different depths. Results We demonstrate that the LAWM device measures wound area accurately. Depth (and therefore volume) measurements, however, are artificially low. This inaccuracy is the same for shallow and deep wounds. Conclusions The inaccuracy in the depth and volume measurements with the LAWM device results in an artificially low measurement. However, this may not affect percentage difference measurements. Further studies will need to be performed to determine if this device can accurately determine wound changes in the clinical setting. J Diabetes Sci Technol 2013;7(4):1161–1166 PMID:24124941

  1. Computer-aided monitoring and operation of continuous measuring devices.

    PubMed

    Rieger, L; Thomann, M; Joss, A; Gujer, W; Siegrist, H

    2004-01-01

    Extended studies of measuring and control systems in activated sludge plants at EAWAG revealed that the measuring devices remain the weakest point in control applications. To overcome this problem, a software package was developed which analyses and evaluates the residuals between a reference measurement and the sensor and collects the information in a database. The underlying monitoring concept is based on a two-step evaluation of the residuals by means of statistical evaluations using control charts with two different sets of criteria. The first step is a warning phase in which hints on probable errors trigger an increase in the monitoring frequency. In the second step, the alarm phase, the error hypothesis has to be validated and should allow immediate and targeted reactions from the operator. This procedure enables an optimized and flexible monitoring effort combined with an increased probability of early detection of systematic measuring errors. Beside the monitoring concept, information about the measuring device, the performed servicing actions and the responsibilities is stored. Statistical values for the quantitative characterization of the measuring system during operation will be given. They are needed to parameterise controllers or to guarantee the accuracy of the instrument in order to allow reliable calculations of effluent tax. In contrast to other concepts, not only is the measuring device examined under standard conditions, but so is the entire measuring chain from the liquid to be analysed to the value stored in the database of the supervisory system. The knowledge of the response time of the measuring system is then required in order to allow a comparison of the corresponding values.

  2. Calibrating X-ray Imaging Devices for Accurate Intensity Measurement

    SciTech Connect

    Haugh, M. J.

    2011-07-28

    The purpose of the project presented is to develop methods to accurately calibrate X-ray imaging devices. The approach was to develop X-ray source systems suitable for this endeavor and to develop methods to calibrate solid state detectors to measure source intensity. NSTec X-ray sources used for the absolute calibration of cameras are described, as well as the method of calibrating the source by calibrating the detectors. The work resulted in calibration measurements for several types of X-ray cameras. X-ray camera calibration measured efficiency and efficiency variation over the CCD. Camera types calibrated include: CCD, CID, back thinned (back illuminated), front illuminated.

  3. Fractional exhaled nitric oxide-measuring devices: technology update

    PubMed Central

    Maniscalco, Mauro; Vitale, Carolina; Vatrella, Alessandro; Molino, Antonio; Bianco, Andrea; Mazzarella, Gennaro

    2016-01-01

    The measurement of exhaled nitric oxide (NO) has been employed in the diagnosis of specific types of airway inflammation, guiding treatment monitoring by predicting and assessing response to anti-inflammatory therapy and monitoring for compliance and detecting relapse. Various techniques are currently used to analyze exhaled NO concentrations under a range of conditions for both health and disease. These include chemiluminescence and electrochemical sensor devices. The cost effectiveness and ability to achieve adequate flexibility in sensitivity and selectivity of NO measurement for these methods are evaluated alongside the potential for use of laser-based technology. This review explores the technologies involved in the measurement of exhaled NO. PMID:27382340

  4. Temperature measurements of shocked silica aerogel foam

    NASA Astrophysics Data System (ADS)

    Falk, K.; McCoy, C. A.; Fryer, C. L.; Greeff, C. W.; Hungerford, A. L.; Montgomery, D. S.; Schmidt, D. W.; Sheppard, D. G.; Williams, J. R.; Boehly, T. R.; Benage, J. F.

    2014-09-01

    We present recent results of equation-of-state (EOS) measurements of shocked silica (SiO2) aerogel foam at the OMEGA laser facility. Silica aerogel is an important low-density pressure standard used in many high energy density experiments, including the novel technique of shock and release. Due to its many applications, it has been a heavily studied material and has a well-known Hugoniot curve. This work then complements the velocity and pressure measurements with additional temperature data providing the full EOS information within the warm dense matter regime for the temperature interval of 1-15 eV and shock velocities between 10 and 40 km/s corresponding to shock pressures of 0.3-2 Mbar. The experimental results were compared with hydrodynamic simulations and EOS models. We found that the measured temperature was systematically lower than suggested by theoretical calculations. Simulations provide a possible explanation that the emission measured by optical pyrometry comes from a radiative precursor rather than from the shock front, which could have important implications for such measurements.

  5. Temperature measurements of shocked silica aerogel foam.

    PubMed

    Falk, K; McCoy, C A; Fryer, C L; Greeff, C W; Hungerford, A L; Montgomery, D S; Schmidt, D W; Sheppard, D G; Williams, J R; Boehly, T R; Benage, J F

    2014-09-01

    We present recent results of equation-of-state (EOS) measurements of shocked silica (SiO_{2}) aerogel foam at the OMEGA laser facility. Silica aerogel is an important low-density pressure standard used in many high energy density experiments, including the novel technique of shock and release. Due to its many applications, it has been a heavily studied material and has a well-known Hugoniot curve. This work then complements the velocity and pressure measurements with additional temperature data providing the full EOS information within the warm dense matter regime for the temperature interval of 1-15 eV and shock velocities between 10 and 40 km/s corresponding to shock pressures of 0.3-2 Mbar. The experimental results were compared with hydrodynamic simulations and EOS models. We found that the measured temperature was systematically lower than suggested by theoretical calculations. Simulations provide a possible explanation that the emission measured by optical pyrometry comes from a radiative precursor rather than from the shock front, which could have important implications for such measurements.

  6. Temperature measurements of shocked silica aerogel foam

    SciTech Connect

    Falk, K.; McCoy, C. A.; Fryer, C. L.; Greeff, C. W.; Hungerford, A. L.; Montgomery, D. S.; Schmidt, D. W.; Sheppard, D. G.; Williams, J. R.; Boehly, T. R.; Benage, J. F.

    2014-09-12

    We present recent results of equation-of-state (EOS) measurements of shocked silica (SiO2) aerogel foam at the OMEGA laser facility. Silica aerogel is an important low-density pressure standard used in many high energy density experiments, including the novel technique of shock and release. Due to its many applications, it has been a heavily studied material and has a well-known Hugoniot curve. This work then complements the velocity and pressure measurements with additional temperature data providing the full EOS information within the warm dense matter regime for the temperature interval of 1–15 eV and shock velocities between 10 and 40 km/s corresponding to shock pressures of 0.3–2 Mbar. The experimental results were compared with hydrodynamic simulations and EOS models. We found that the measured temperature was systematically lower than suggested by theoretical calculations. As a result, simulations provide a possible explanation that the emission measured by optical pyrometry comes from a radiative precursor rather than from the shock front, which could have important implications for such measurements.

  7. Temperature measurements of shocked silica aerogel foam

    DOE PAGES

    Falk, K.; McCoy, C. A.; Fryer, C. L.; Greeff, C. W.; Hungerford, A. L.; Montgomery, D. S.; Schmidt, D. W.; Sheppard, D. G.; Williams, J. R.; Boehly, T. R.; et al

    2014-09-12

    We present recent results of equation-of-state (EOS) measurements of shocked silica (SiO2) aerogel foam at the OMEGA laser facility. Silica aerogel is an important low-density pressure standard used in many high energy density experiments, including the novel technique of shock and release. Due to its many applications, it has been a heavily studied material and has a well-known Hugoniot curve. This work then complements the velocity and pressure measurements with additional temperature data providing the full EOS information within the warm dense matter regime for the temperature interval of 1–15 eV and shock velocities between 10 and 40 km/s correspondingmore » to shock pressures of 0.3–2 Mbar. The experimental results were compared with hydrodynamic simulations and EOS models. We found that the measured temperature was systematically lower than suggested by theoretical calculations. As a result, simulations provide a possible explanation that the emission measured by optical pyrometry comes from a radiative precursor rather than from the shock front, which could have important implications for such measurements.« less

  8. Variable-Temperature Critical-Current Measurements

    SciTech Connect

    L. F. Goodrich; T. C. Stauffer

    2009-05-19

    This is the final report of a three year contract that covered 09/19/2005 to 07/14/2008. We requested and received a no cost time extension for the third year, 07/15/2007 to 07/14/2008, to allow DoE to send us funds if they became available during that year. It turned out that we did not receive any funding for the third year. The following paper covers our variable-temperature critical-current measurements. We made transport critical-current (Ic) measurements on commercial multifilamentary Nb3Sn strands at temperatures (T) from 4 to 17 K and magnetic fields (H) from 0 to 14 T. One of the unique features of our measurements is that we can cover a wide range of critical currents from less than 0.1 A to over 700 A.

  9. High Accuracy Temperature Measurements Using RTDs with Current Loop Conditioning

    NASA Technical Reports Server (NTRS)

    Hill, Gerald M.

    1997-01-01

    To measure temperatures with a greater degree of accuracy than is possible with thermocouples, RTDs (Resistive Temperature Detectors) are typically used. Calibration standards use specialized high precision RTD probes with accuracies approaching 0.001 F. These are extremely delicate devices, and far too costly to be used in test facility instrumentation. Less costly sensors which are designed for aeronautical wind tunnel testing are available and can be readily adapted to probes, rakes, and test rigs. With proper signal conditioning of the sensor, temperature accuracies of 0.1 F is obtainable. For reasons that will be explored in this paper, the Anderson current loop is the preferred method used for signal conditioning. This scheme has been used in NASA Lewis Research Center's 9 x 15 Low Speed Wind Tunnel, and is detailed.

  10. PIV as a temperature measurement tool

    NASA Astrophysics Data System (ADS)

    Oweis, Ghanem F.

    2015-11-01

    In particle image velocimetry (PIV), a camera records time-lapse snapshot images of the positions of particles embedded in a fluid, which faithfully trace the flow path. Cross correlating sequential particle image pairs results in 2D maps of the particle displacement and velocity fields. Here, the same PIV method is extended to temperature measurements in viscoelastic material. The motivation originates in a need for tissue temperature measurements in hyperthermia therapies such as laser ablation eye surgery and high intensity focused ultrasound (HIFU) tumor ablation. Micron sized particles are embedded in an optically clear tissue mimicking phantom, illuminated with a laser sheet, and imaged with a CCD camera. When the phantom is subjected to heating from a focused ultrasound beam, the particles remain stationary, but not their spatial distribution in the recorded images. The images manifest particle displacements commensurate with alterations in the temperature distribution from heating. The underlying principle behind the thermometric capability of PIV is discussed. Temperature changes can be detected with high sensitivity, and the method works best with spatially localized temperature distributions.

  11. Measuring Thermal Conductivity at LH2 Temperatures

    NASA Technical Reports Server (NTRS)

    Selvidge, Shawn; Watwood, Michael C.

    2004-01-01

    For many years, the National Institute of Standards and Technology (NIST) produced reference materials for materials testing. One such reference material was intended for use with a guarded hot plate apparatus designed to meet the requirements of ASTM C177-97, "Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus." This apparatus can be used to test materials in various gaseous environments from atmospheric pressure to a vacuum. It allows the thermal transmission properties of insulating materials to be measured from just above ambient temperature down to temperatures below liquid hydrogen. However, NIST did not generate data below 77 K temperature for the reference material in question. This paper describes a test method used at NASA's Marshall Space Flight Center (MSFC) to optimize thermal conductivity measurements during the development of thermal protection systems. The test method extends the usability range of this reference material by generating data at temperatures lower than 77 K. Information provided by this test is discussed, as are the capabilities of the MSFC Hydrogen Test Facility, where advanced methods for materials testing are routinely developed and optimized in support of aerospace applications.

  12. High temperature measurement of water vapor absorption

    NASA Technical Reports Server (NTRS)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  13. Temperature measurement on and inside lamps

    SciTech Connect

    Wallin, B.

    1994-12-31

    The use of thermography within the lamp manufacturing industry can improve the quality of many types of lamps ranging from normal incandescent lamps to highly specialized lamps for sports arenas, airports or small lamps for cars. There is a strong demand for more light for the same energy input. Specialized lamps for all possible purposes are developed. But it also forces the lamp manufacturers to utilize the available materials to their extremes. The exact control of the temperatures inside or on the lamp shell has therefore become increasingly necessary as temperatures in lamps can be rather extreme. In plasma lamps for example, the plasma can have a temperature of 6,000 C, the bulk around 700 C and the electrodes inside the bulb can have temperatures in excess of 2,000 C. Thermographic methods have shown their applicability for a large number of measurement cases. Some of these methods and measurement cases are described. As these applications put very special demands on the measurement equipment, these demands are explained in more detail.

  14. The insertion device magnetic measurement facility: Prototype and operational procedures

    SciTech Connect

    Burkel, L.; Dejus, R.; Maines, J.; O'Brien, J.; Vasserman, I. . Advanced Photon Source Accelerator Systems Div.); Pfleuger, J. , Hamburg . Hamburger Synchrotronstrahlungslabor)

    1993-03-01

    This report is a description of the current status of the magnetic measurement facility and is a basic instructional manual for the operation of the facility and its components. Please refer to the appendices for more detailed information about specific components and procedures. The purpose of the magnetic measurement facility is to take accurate measurements of the magnetic field in the gay of the IDs in order to determine the effect of the ID on the stored particle beam and the emitted radiation. The facility will also play an important role when evaluating new ideas, novel devices, and inhouse prototypes as part of the ongoing research and development program at the APS. The measurements will be performed with both moving search coils and moving Hall probes. The IDs will be evaluated by computer modeling of the emitted radiation for any given (measured) magnetic field map. The quality of the magnetic field will be described in terms of integrated multipoles for the effect on Storage Ring performance and in terms of the derived trajectories for the emitted radiation. Before being installed on the Storage Ring, every device will be measured and characterized to assure that it is compatible with Storage Ring requirements and radiation specifications. The accuracy that the APS needs to achieve for magnetic measurements will be based on these specifications.

  15. INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION

    SciTech Connect

    Seong W. Lee

    2004-04-01

    The systematic tests of the gasifier simulator were conducted in this reporting period. In the systematic test, two (2) factors were considered as the experimental parameters, including air injection rate and water injection rate. Each experimental factor had two (2) levels, respectively. A special water-feeding device was designed and installed to the gasifier simulator. Analysis of Variances (ANOVA) was applied to the results of the systematic tests. The ANOVA shows that the air injection rate did have the significant impact to the temperature measurement in the gasifier simulator. The ANOVA also shows that the water injection rate did not have the significant impact to the temperature measurements in the gasifier simulator. The ANOVA analysis also proves that the thermocouple assembly we proposed was immune to the moisture environment, the temperature measurement remained accurate in moisture environment. Within this reporting period, the vibration application for cleaning purpose was explored. Both ultrasonic and sub-sonic vibrations were considered. A feasibility test was conducted to prove that the thermocouple vibration did not have the significant impact to the temperature measurements in the gasifier simulator. This feasibility test was a 2{sup 2} factorial design. Two factors including temperature levels and motor speeds were set to two levels respectively. The sub-sonic vibration tests were applied to the thermocouple to remove the concrete cover layer (used to simulate the solid condensate in gasifiers) on the thermocouple tip. It was found that both frequency and amplitude had significant impacts on removal performance of the concrete cover layer.

  16. Surface photovoltage measurements and finite element modeling of SAW devices.

    SciTech Connect

    Donnelly, Christine

    2012-03-01

    Over the course of a Summer 2011 internship with the MEMS department of Sandia National Laboratories, work was completed on two major projects. The first and main project of the summer involved taking surface photovoltage measurements for silicon samples, and using these measurements to determine surface recombination velocities and minority carrier diffusion lengths of the materials. The SPV method was used to fill gaps in the knowledge of material parameters that had not been determined successfully by other characterization methods. The second project involved creating a 2D finite element model of a surface acoustic wave device. A basic form of the model with the expected impedance response curve was completed, and the model is ready to be further developed for analysis of MEMS photonic resonator devices.

  17. Note: Zeeman splitting measurements in a high-temperature plasma.

    PubMed

    Golingo, R P; Shumlak, U; Den Hartog, D J

    2010-12-01

    The Zeeman effect has been used for measurement of magnetic fields in low-temperature plasma, but the diagnostic technique is difficult to implement in a high-temperature plasma. This paper describes new instrumentation and methodology for simultaneous measurement of the entire Doppler-broadened left and right circularly polarized Zeeman spectra in high-temperature plasmas. Measurements are made using spectra emitted parallel to the magnetic field by carbon impurities in high-temperature plasma. The Doppler-broadened width is much larger than the magnitude of the Zeeman splitting, thus simultaneous recording of the two circularly polarized Zeeman line profiles is key to accurate measurement of the magnetic field in the ZaP Z-pinch plasma device. Spectral data are collected along multiple chords on both sides of the symmetry axis of the plasma. This enables determination of the location of the current axis of the Z-pinch and of lower-bound estimates of the local magnetic field at specific radial locations in the plasma.

  18. Note: Zeeman splitting measurements in a high-temperature plasma

    SciTech Connect

    Golingo, R. P.; Shumlak, U.; Den Hartog, D. J.

    2010-12-15

    The Zeeman effect has been used for measurement of magnetic fields in low-temperature plasma, but the diagnostic technique is difficult to implement in a high-temperature plasma. This paper describes new instrumentation and methodology for simultaneous measurement of the entire Doppler-broadened left and right circularly polarized Zeeman spectra in high-temperature plasmas. Measurements are made using spectra emitted parallel to the magnetic field by carbon impurities in high-temperature plasma. The Doppler-broadened width is much larger than the magnitude of the Zeeman splitting, thus simultaneous recording of the two circularly polarized Zeeman line profiles is key to accurate measurement of the magnetic field in the ZaP Z-pinch plasma device. Spectral data are collected along multiple chords on both sides of the symmetry axis of the plasma. This enables determination of the location of the current axis of the Z-pinch and of lower-bound estimates of the local magnetic field at specific radial locations in the plasma.

  19. Integrated seal for high-temperature electrochemical device

    SciTech Connect

    Tucker, Michael C; Jacobson, Craig P

    2013-07-16

    The present invention provides electrochemical device structures having integrated seals, and methods of fabricating them. According to various embodiments the structures include a thin, supported electrolyte film with the electrolyte sealed to the support. The perimeter of the support is self-sealed during fabrication. The perimeter can then be independently sealed to a manifold or other device, e.g., via an external seal. According to various embodiments, the external seal does not contact the electrolyte, thereby eliminating the restrictions on the sealing method and materials imposed by sealing against the electrolyte.

  20. [Detonation temperature measurement of epoxypropane using instantaneous spectrum method].

    PubMed

    Li, Ying; Li, Ping; Xiao, Hai-Bo; Hu, Dong; Yuan, Chang-Ying

    2008-03-01

    After solving the problems of synchronization of the measuring system and the avoidance of false trigger signal, the instantaneous emission spectrum of epoxypropane with an exposure time of 2 micros and a resolution of 0.2 nm was acquired from a side window of a shock tube at the very moment when the epoxypropane transformed from deflagration to detonation. The measuring system consists of an advanced intensified charge-coupled-device spectroscopic detector, a digital delay generator DG535, an explosion shock tube and optical fibers. The DDT process was monitored by pressure transducers. After correcting the intensity of the spectrum obtained, the background curve of the heat radiation intensity of the detonation was given immediately. The detonation temperature of 2 416 K for epoxypropane was derived from fitting the curve with Planck blackbody formula by least squares principle. The detonation temperature of epoxypropane can provide an experimental datum for analyzing the microscopic mechanism of DDT process. PMID:18536396

  1. Measuring velocity and temperature profile sectional pipeline behind confuser

    NASA Astrophysics Data System (ADS)

    Siažik, Ján; Malcho, Milan; Lenhard, Richard; Novomestský, Marcel

    2016-06-01

    The article deals with the measuring of temperature and velocity profile in area behind confuser in real made scale model of bypass. For proper operation of the equipment it is necessary to know the actual flow in the pipe. Bypasses have wide application and can be also associated with devices for heat recovery, heat exchangers different designs in which may be used in certain circumstances. In the present case, the heat that would otherwise has not been used is used for heating of insulators, and heating the air in the spray-dryer. The measuring principle was verify how the above-mentioned temperature and velocity profile decomposition above confuser on real made scale model.

  2. [Detonation temperature measurement of epoxypropane using instantaneous spectrum method].

    PubMed

    Li, Ying; Li, Ping; Xiao, Hai-Bo; Hu, Dong; Yuan, Chang-Ying

    2008-03-01

    After solving the problems of synchronization of the measuring system and the avoidance of false trigger signal, the instantaneous emission spectrum of epoxypropane with an exposure time of 2 micros and a resolution of 0.2 nm was acquired from a side window of a shock tube at the very moment when the epoxypropane transformed from deflagration to detonation. The measuring system consists of an advanced intensified charge-coupled-device spectroscopic detector, a digital delay generator DG535, an explosion shock tube and optical fibers. The DDT process was monitored by pressure transducers. After correcting the intensity of the spectrum obtained, the background curve of the heat radiation intensity of the detonation was given immediately. The detonation temperature of 2 416 K for epoxypropane was derived from fitting the curve with Planck blackbody formula by least squares principle. The detonation temperature of epoxypropane can provide an experimental datum for analyzing the microscopic mechanism of DDT process.

  3. Electrothermal actuation of metal-insulator transition in SmNiO3 thin film devices above room temperature

    NASA Astrophysics Data System (ADS)

    Ha, Sieu D.; Viswanath, B.; Ramanathan, Shriram

    2012-06-01

    We demonstrate that a metal-insulator phase transition can be electrothermally actuated in the correlated complex oxide SmNiO3 (SNO) above room temperature from current-voltage measurements on thin film two-terminal devices. We simulate the internal temperature of SmNiO3 as a function of applied dc power by a Joule heating mechanism with substrate/electrode dissipation and find good agreement with experiment and device scaling. The results are relevant towards integrating correlated oxide phase transition functionality into semiconductor electronic/optoelectronic platforms.

  4. Accuracy analysis of the space shuttle solid rocket motor profile measuring device

    NASA Technical Reports Server (NTRS)

    Estler, W. Tyler

    1989-01-01

    The Profile Measuring Device (PMD) was developed at the George C. Marshall Space Flight Center following the loss of the Space Shuttle Challenger. It is a rotating gauge used to measure the absolute diameters of mating features of redesigned Solid Rocket Motor field joints. Diameter tolerance of these features are typically + or - 0.005 inches and it is required that the PMD absolute measurement uncertainty be within this tolerance. In this analysis, the absolute accuracy of these measurements were found to be + or - 0.00375 inches, worst case, with a potential accuracy of + or - 0.0021 inches achievable by improved temperature control.

  5. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin.

    PubMed

    Gao, Li; Zhang, Yihui; Malyarchuk, Viktor; Jia, Lin; Jang, Kyung-In; Webb, R Chad; Fu, Haoran; Shi, Yan; Zhou, Guoyan; Shi, Luke; Shah, Deesha; Huang, Xian; Xu, Baoxing; Yu, Cunjiang; Huang, Yonggang; Rogers, John A

    2014-01-01

    Characterization of temperature and thermal transport properties of the skin can yield important information of relevance to both clinical medicine and basic research in skin physiology. Here we introduce an ultrathin, compliant skin-like, or 'epidermal', photonic device that combines colorimetric temperature indicators with wireless stretchable electronics for thermal measurements when softly laminated on the skin surface. The sensors exploit thermochromic liquid crystals patterned into large-scale, pixelated arrays on thin elastomeric substrates; the electronics provide means for controlled, local heating by radio frequency signals. Algorithms for extracting patterns of colour recorded from these devices with a digital camera and computational tools for relating the results to underlying thermal processes near the skin surface lend quantitative value to the resulting data. Application examples include non-invasive spatial mapping of skin temperature with milli-Kelvin precision (±50 mK) and sub-millimetre spatial resolution. Demonstrations in reactive hyperaemia assessments of blood flow and hydration analysis establish relevance to cardiovascular health and skin care, respectively. PMID:25234839

  6. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin

    NASA Astrophysics Data System (ADS)

    Gao, Li; Zhang, Yihui; Malyarchuk, Viktor; Jia, Lin; Jang, Kyung-In; Chad Webb, R.; Fu, Haoran; Shi, Yan; Zhou, Guoyan; Shi, Luke; Shah, Deesha; Huang, Xian; Xu, Baoxing; Yu, Cunjiang; Huang, Yonggang; Rogers, John A.

    2014-09-01

    Characterization of temperature and thermal transport properties of the skin can yield important information of relevance to both clinical medicine and basic research in skin physiology. Here we introduce an ultrathin, compliant skin-like, or ‘epidermal’, photonic device that combines colorimetric temperature indicators with wireless stretchable electronics for thermal measurements when softly laminated on the skin surface. The sensors exploit thermochromic liquid crystals patterned into large-scale, pixelated arrays on thin elastomeric substrates; the electronics provide means for controlled, local heating by radio frequency signals. Algorithms for extracting patterns of colour recorded from these devices with a digital camera and computational tools for relating the results to underlying thermal processes near the skin surface lend quantitative value to the resulting data. Application examples include non-invasive spatial mapping of skin temperature with milli-Kelvin precision (±50 mK) and sub-millimetre spatial resolution. Demonstrations in reactive hyperaemia assessments of blood flow and hydration analysis establish relevance to cardiovascular health and skin care, respectively.

  7. A novel civilian granary temperature and humidity monitoring device based on C8051F020

    NASA Astrophysics Data System (ADS)

    Meng, Li; Li, Yuelong; Meng, Xiangjie

    The control to temperature and humidity of small civilian granary is great important to grain storage. In this paper, we propose a smart surveillance device to monitor temperature and humidity in real-time to ensure high quality food storage. This simple and small size device could achieve good anti-jamming at extremely low power consumption. It could automatically trigger the sound-light alarm when either temperature or humidity is higher than a preset threshold value.

  8. Microwave radiometer for subsurface temperature measurement

    NASA Technical Reports Server (NTRS)

    Porter, R. A.; Bechis, K. P.

    1976-01-01

    A UHF radiometer, operating at a frequency of 800 MHz, was modified to provide an integral, three frequency voltage standing wave ratio (VSWR) circuit in the radio frequency (RF) head. The VSWR circuit provides readings of power transmission at the antenna-material interface with an accuracy of plus or minus 5 percent. The power transmission readings are numerically equal to the emissivity of the material under observation. Knowledge of material emissivity is useful in the interpretation of subsurface apparent temperatures obtained on phantom models of biological tissue. The emissivities of phantom models consisting of lean beefsteak were found to lie in the range 0.623 to 0.779, depending on moisture content. Radiometric measurements performed on instrumented phantoms showed that the radiometer was capable of sensing small temperature changes occurring at depths of at least 19 to 30 mm. This is consistent with previously generated data which showed that the radiometer could sense temperatures at a depth of 38 mm.

  9. Measurement device for noise factor of microchannel plate.

    PubMed

    Lei, Liu; Zhijian, Huang; Tao, Pan; Yunsheng, Qian

    2012-03-01

    A new method for noise power factor determination of microchannel plates (MCPs) is described in this paper. The new measuring condition and specific measuring instrument are reported. The system consists of a vacuum chamber, an electron gun, a high-voltage supply, an imaging luminance meter, control units, a signal processing circuit, an A/D converter, a D/A converter, a communication unit, an industrial computer, and measurement software. This measuring method fills a void in measuring technology for the noise factor of MCPs, and it can make a scientific assessment of MCP noise characteristics and provide theoretical direction and technology support for the research and development of high-performance low light level (LLL) devices.

  10. Recommendations for blood pressure measuring devices for office/clinic use in low resource settings.

    PubMed

    Parati, Gianfranco; Mendis, Shanthi; Abegunde, Dele; Asmar, Ronald; Mieke, Stephan; Murray, Alan; Shengelia, Bakuti; Steenvoorden, Gijs; Van Montfrans, Gert; O'Brien, Eoin

    2005-02-01

    This paper, which summarizes the conclusions of a WHO Expert meeting, is aimed at proposing indications to develop technical specifications for an accurate and affordable blood pressure measuring device for office/clinic use in low resource settings. Blood pressure measuring devices to be used in low resource settings should be accurate, affordable, and easily available worldwide. Given the serious inherent inaccuracy of the auscultatory technique, validated and affordable electronic devices, that have the option to select manual readings, seem to be a suitable solution for low resource settings. The agreement on the technical specifications for automated blood pressure measuring devices for office/clinic use in low resource settings included the following features: high accuracy, adoption of electronic transducers and solar batteries for power supply, standard rates of cuff inflation and deflation, adequate cuff size, digital display powered by solar batteries, facilities for adequate calibration, environmental requirements, no need of memory function, resistance to shock and temperature changes, and low cost. Availability of a device with these features should be accompanied by adequate training of health care personnel, who should guarantee implementation of the procedures recommended in recent European and American Guidelines for accurate blood pressure measurement.

  11. Measuring Rocket Engine Temperatures with Hydrogen Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Wehrmeyer, Joseph A.; Osborne, Robin J.; Trinh, Huu P.; Turner, James (Technical Monitor)

    2001-01-01

    Optically accessible, high pressure, hot fire test articles are available at NASA Marshall for use in development of advanced rocket engine propellant injectors. Single laser-pulse ultraviolet (UV) Raman spectroscopy has been used in the past in these devices for analysis of high pressure H2- and CH4-fueled combustion, but relies on an independent pressure measurement in order to provide temperature information. A variation of UV Raman (High Resolution Hydrogen Raman Spectroscopy) is under development and will allow temperature measurement without the need for an independent pressure measurement, useful for flows where local pressure may not be accurately known. The technique involves the use of a spectrometer with good spectral resolution, requiring a small entrance slit for the spectrometer. The H2 Raman spectrum, when created by a narrow linewidth laser source and obtained from a good spectral resolution spectrograph, has a spectral shape related to temperature. By best-fit matching an experimental spectrum to theoretical spectra at various temperatures, a temperature measurement is obtained. The spectral model accounts for collisional narrowing, collisional broadening, Doppler broadening, and collisional line shifting of each Raman line making up the H2 Stokes vibrational Q-branch spectrum. At pressures from atmospheric up to those associated with advanced preburner components (5500 psia), collisional broadening though present does not cause significant overlap of the Raman lines, allowing high resolution H2 Raman to be used for temperature measurements in plumes and in high pressure test articles. Experimental demonstrations of the technique are performed for rich H2-air flames at atmospheric pressure and for high pressure, 300 K H2-He mixtures. Spectrometer imaging quality is identified as being critical for successful implementation of technique.

  12. Vibration measurement applications with an integrated vibrometer device

    NASA Astrophysics Data System (ADS)

    Boulanger, P.; Rebelle, J.; Fardeau, Pierrette

    1996-08-01

    This paper deals with the applications of Pressurized Water Reactor fuel assembly vibration measurements by laser vibrometry. Two laser vibrometers are compared in terms of accuracy and handiness. One of them is a high precision integrated low powered device. The comparison of signals issued from simple experiments is made. The results are analyzed by using three classical modal analysis methods (logarithmic decrement, frequency band width, PRONY's method). This study will find applications in measuring the damping factor of fuel assembly by new signal processing methods.

  13. Methods of measurement for semiconductor materials, process control, and devices

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1972-01-01

    Activities directed toward the development of methods of measurement for semiconductor materials, process control, and devices are described. Topics investigated include: measurements of transistor delay time; application of the infrared response technique to the study of radiation-damaged, lithium-drifted silicon detectors; and identification of a condition that minimizes wire flexure and reduces the failure rate of wire bonds in transistors and integrated circuits under slow thermal cycling conditions. Supplementary data concerning staff, standards committee activities, technical services, and publications are included as appendixes.

  14. Device for measuring oxygen activity in liquid sodium

    DOEpatents

    Roy, P.; Young, R.S.

    1973-12-01

    A composite ceramic electrolyte in a configuration (such as a closed end tube or a plate) suitable to separate liquid sodium from a reference electrode with a high impedance voltmeter connected to measure EMF between the sodium and the reference electrode as a measure of oxygen activity in the sodium is described. The composite electrolyte consists of zirconiacalcia with a bonded layer of thoria-yttria. The device is used with a gaseous reference electrode on the zirconia-calcia side and liquid sodium on the thoria-yttria side of the electrolyte. (Official Gazette)

  15. Improved Refractometer for Measuring Temperatures of Drops

    NASA Technical Reports Server (NTRS)

    Naqwi, Amir A.

    2004-01-01

    The Dual Rainbow refractometer is an enhanced version of the Rainbow refractometer, which is added to, and extends the capabilities of, a phase Doppler particle analyzer (PDPA). A PDPA utilizes pairs of laser beams to measure individual components of velocity and sizes of drops in a spray. The Rainbow-refractometer addition measures the temperatures of individual drops. The designs of prior versions of the Rainbow refractometer have required substantial modifications of PDPA transmitting optics, plus dedicated lasers as sources of illumination separate from, and in addition to, those needed for PDPA measurements. The enhancement embodied in the Dual Rainbow refractometer eliminates the need for a dedicated laser and confers other advantages as described below. A dedicated laser is no longer needed because the Dual Rainbow refractometer utilizes one of the pairs of laser beams already present in a PDPA. Hence, the design of the Dual Rainbow refractometer simplifies the task of upgrading PDPA hardware to enable measurement of temperature. Furthermore, in a PDPA/Dual Rainbow refractometer system, a single argon-ion laser with three main wavelengths can be used to measure the temperatures, sizes, and all three components of velocity (in contradistinction to only two components of velocity in a prior PDPA/Rainbow refractometer system). In order to enable the Dual Rainbow refractometer to utilize a pair of PDPA laser beams, it was necessary to (1) find a location for the refractometer receiver, such that the combined rainbow patterns of two laser beams amount to a pattern identical to that of a single beam, (2) adjust the polarization of the two beams to obtain the strongest rainbow pattern, and (3) find a location for the PDPA receiver to obtain a linear relationship between the measured phase shift and drop size.

  16. Measured Sun Noise Temperatures at 32 Gigahertz

    NASA Astrophysics Data System (ADS)

    Otoshi, T. Y.

    2001-01-01

    Sun experiments were performed to develop methods for accurately mapping the Sun noise temperatures over the entire solar disk at 32 GHz (Ka-band). High-resolution mapping of the Sun's noise temperatures was obtained through the use of the 34-m beam-waveguide (BWG) antenna and the Ka-band monopulse receiving system at DSS 13. Detailed mapping of the solar disk was possible because at 32 GHz the BWG antenna has a full 3-dB beamwidth that is only 17 mdeg compared to the angular Sun diameter of about 0.5 deg. Due to the expected high noise temperature of the Sun (> 10,000 K), methods had to be developed so that the incoming Sun noise-temperature power would not saturate the antenna receiving system. Of several methods investigated, only the absorber and waveguide attenuator methods were considered (1) to be easy and inexpensive to implement into any existing BWG receiving system and (2) to have the potential of giving accurate results. Both of these methods were used to measure the Sun noise temperatures presented in this article. Due to the high solar activity during the experiments, it was not possible to obtain repeatable results on different days and even on the same day. However, useful information has been obtained about the Sun's noise-temperature characteristics during the period of maximum solar activity that occurred in the year 2000. To this author's knowledge, this is the first time that a large (34-m) antenna was used to map the Sun's noise-temperature profile over its entire surface at 32 GHz.

  17. Thermoreflectance temperature measurement with millimeter wave.

    PubMed

    Pradere, C; Caumes, J-P; BenKhemis, S; Pernot, G; Palomo, E; Dilhaire, S; Batsale, J-C

    2014-06-01

    GigaHertz (GHz) thermoreflectance technique is developed to measure the transient temperature of metal and semiconductor materials located behind an opaque surface. The principle is based on the synchronous detection, using a commercial THz pyrometer, of a modulated millimeter wave (at 110 GHz) reflected by the sample hidden behind a shield layer. Measurements were performed on aluminum, copper, and silicon bulks hidden by a 5 cm thick Teflon plate. We report the first measurement of the thermoreflectance coefficient which exhibits a value 100 times higher at 2.8 mm radiation than those measured at visible wavelengths for both metallic and semiconductor materials. This giant thermoreflectance coefficient κ, close to 10(-3) K(-1) versus 10(-5) K(-1) for the visible domain, is very promising for future thermoreflectance applications.

  18. Thermoreflectance temperature measurement with millimeter wave

    SciTech Connect

    Pradere, C. Caumes, J.-P.; BenKhemis, S.; Palomo, E.; Batsale, J.-C.; Pernot, G.; Dilhaire, S.

    2014-06-15

    GigaHertz (GHz) thermoreflectance technique is developed to measure the transient temperature of metal and semiconductor materials located behind an opaque surface. The principle is based on the synchronous detection, using a commercial THz pyrometer, of a modulated millimeter wave (at 110 GHz) reflected by the sample hidden behind a shield layer. Measurements were performed on aluminum, copper, and silicon bulks hidden by a 5 cm thick Teflon plate. We report the first measurement of the thermoreflectance coefficient which exhibits a value 100 times higher at 2.8 mm radiation than those measured at visible wavelengths for both metallic and semiconductor materials. This giant thermoreflectance coefficient κ, close to 10{sup −3} K{sup −1} versus 10{sup −5} K{sup −1} for the visible domain, is very promising for future thermoreflectance applications.

  19. Thermoreflectance temperature measurement with millimeter wave

    NASA Astrophysics Data System (ADS)

    Pradere, C.; Caumes, J.-P.; BenKhemis, S.; Pernot, G.; Palomo, E.; Dilhaire, S.; Batsale, J.-C.

    2014-06-01

    GigaHertz (GHz) thermoreflectance technique is developed to measure the transient temperature of metal and semiconductor materials located behind an opaque surface. The principle is based on the synchronous detection, using a commercial THz pyrometer, of a modulated millimeter wave (at 110 GHz) reflected by the sample hidden behind a shield layer. Measurements were performed on aluminum, copper, and silicon bulks hidden by a 5 cm thick Teflon plate. We report the first measurement of the thermoreflectance coefficient which exhibits a value 100 times higher at 2.8 mm radiation than those measured at visible wavelengths for both metallic and semiconductor materials. This giant thermoreflectance coefficient κ, close to 10-3 K-1 versus 10-5 K-1 for the visible domain, is very promising for future thermoreflectance applications.

  20. Thermoreflectance temperature measurement with millimeter wave.

    PubMed

    Pradere, C; Caumes, J-P; BenKhemis, S; Pernot, G; Palomo, E; Dilhaire, S; Batsale, J-C

    2014-06-01

    GigaHertz (GHz) thermoreflectance technique is developed to measure the transient temperature of metal and semiconductor materials located behind an opaque surface. The principle is based on the synchronous detection, using a commercial THz pyrometer, of a modulated millimeter wave (at 110 GHz) reflected by the sample hidden behind a shield layer. Measurements were performed on aluminum, copper, and silicon bulks hidden by a 5 cm thick Teflon plate. We report the first measurement of the thermoreflectance coefficient which exhibits a value 100 times higher at 2.8 mm radiation than those measured at visible wavelengths for both metallic and semiconductor materials. This giant thermoreflectance coefficient κ, close to 10(-3) K(-1) versus 10(-5) K(-1) for the visible domain, is very promising for future thermoreflectance applications. PMID:24985839

  1. A Novel Method for Measuring the Temperature in the Active Region of Semiconductor Modules

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Feng, Shi-Wei; Zhang, Guang-Chen; Zhu, Hui; Guo, Chun-Sheng; Qiao, Yan-Bin; Li, Jing-Wan

    2012-04-01

    The temperature in the active region of semiconductor modules can be measured by a vacuum system method. The test device is positioned on a vacuum test platform and heated in two ways, from the chip and from the case, to identify the required heat to establish stable temperature gradients for the two processes, respectively. A complementary relationship between the temperatures under the two heating methods is found. By injecting the total heat into the device, the resulting uniform temperature can be derived from the temperature curves of the chip and case. It is demonstrated that the temperature obtained from this vacuum system method is equivalent to the normal operating temperature of the device in the atmosphere. Further comparison of our result with that of the electrical method also shows good agreement.

  2. High voltage design structure for high temperature superconducting device

    DOEpatents

    Tekletsadik, Kasegn D.

    2008-05-20

    In accordance with the present invention, modular corona shields are employed in a HTS device to reduce the electric field surrounding the HTS device. In a exemplary embodiment a fault current limiter module in the insulation region of a cryogenic cooling system has at least one fault current limiter set which employs a first corona shield disposed along the top portion of the fault current limiter set and is electrically coupled to the fault current limiter set. A second corona shield is disposed along the bottom portion of the fault current limiter set and is electrically coupled to the fault current limiter set. An insulation barrier is disposed within the insulation region along at least one side of the fault current limiter set. The first corona shield and the second corona shield act together to reduce the electric field surrounding the fault limiter set when voltage is applied to the fault limiter set.

  3. Ultrasonic measurement device for the characterization of microbiological and biochemical processes in liquid media

    NASA Astrophysics Data System (ADS)

    Elvira, L.; Durán, C.; Sierra, C.; Resa, P.; Montero de Espinosa, F.

    2007-07-01

    A measuring device for the characterization of liquid media based on the propagation of ultrasonic waves is presented. It is a four-channel system especially designed for monitoring microbiological and biochemical processes. The liquid samples are placed in commercial glass bottles which can be sterilized. The bottles have inlet and outlet tubes, which can be used for adding substances or extracting samples during the measuring process without interruption. Magnetic stirring can be used to keep the liquid agitated for homogenization purposes. Thermal control elements assure the temperature stability during the measurement. The liquid characterization is based on the detection of amplitude and time-of-flight changes in the sample under study. The main features, operation and performance of this ultrasonic device are analysed in this work, and some measurements and preliminary results are shown.

  4. Graphene, a material for high temperature devices – intrinsic carrier density, carrier drift velocity, and lattice energy

    PubMed Central

    Yin, Yan; Cheng, Zengguang; Wang, Li; Jin, Kuijuan; Wang, Wenzhong

    2014-01-01

    Heat has always been a killing matter for traditional semiconductor machines. The underlining physical reason is that the intrinsic carrier density of a device made from a traditional semiconductor material increases very fast with a rising temperature. Once reaching a temperature, the density surpasses the chemical doping or gating effect, any p-n junction or transistor made from the semiconductor will fail to function. Here, we measure the intrinsic Fermi level (|EF| = 2.93 kBT) or intrinsic carrier density (nin = 3.87 × 106 cm−2K−2·T2), carrier drift velocity, and G mode phonon energy of graphene devices and their temperature dependencies up to 2400 K. Our results show intrinsic carrier density of graphene is an order of magnitude less sensitive to temperature than those of Si or Ge, and reveal the great potentials of graphene as a material for high temperature devices. We also observe a linear decline of saturation drift velocity with increasing temperature, and identify the temperature coefficients of the intrinsic G mode phonon energy. Above knowledge is vital in understanding the physical phenomena of graphene under high power or high temperature. PMID:25044003

  5. A simple measuring device for laboratory indentation tests on cartilage.

    PubMed

    Koeller, Wolfgang; Kunow, Julius; Ostermeyer, Oliver; Stomberg, Peter; Boos, Carsten; Russlies, Martin

    2008-04-01

    Mechanical testing of articular cartilage and repair tissue enables judgment of their capacity in withstanding mechanical loading. In the past, different methods have been developed requiring a complex technical setup and extensive data analysis. Therefore, the aim of the present project was to build up a simple measuring apparatus for laboratory indentation tests. The device consists of an incremental optical displacement transducer with a sleeve bearing guided plunger and a spherical tip made of polished steel (radius: 0.75 or 1.5 mm), a sensitive load cell and a stiff frame. The indentation force results from the plunger's gravity plus the force of the spring inside the displacement transducer and levels at 0.170 N or 0.765 N. The displacement transducer is fixed to the frame via the load cell that enables one to detect the initial contact of the tip with the tissue. The load cell has a standard uncertainty of 2 mN and the displacement transducer of 1 microm. From indentation-creep tests, a "0.25-s elastic modulus" is calculated. Measurements on thin rubber sheets were carried out to determine the quality of the measuring device. Compression tests on cylinders made of these rubber sheets yielded control data, and a good agreement with the "0.25-s elastic modulus" was found. Indentation tests on cartilage at different sites of sheep femoral condyles yielded a very good repeatability of the measurement results (+/-7.5%). PMID:18979621

  6. Apparatus for gas sorption measurement with integrated gas composition measurement device and gas mixing

    SciTech Connect

    Micklash. II, Kenneth James; Dutton, Justin James; Kaye, Steven

    2014-06-03

    An apparatus for testing of multiple material samples includes a gas delivery control system operatively connectable to the multiple material samples and configured to provide gas to the multiple material samples. Both a gas composition measurement device and pressure measurement devices are included in the apparatus. The apparatus includes multiple selectively openable and closable valves and a series of conduits configured to selectively connect the multiple material samples individually to the gas composition device and the pressure measurement devices by operation of the valves. A mixing system is selectively connectable to the series of conduits and is operable to cause forced mixing of the gas within the series of conduits to achieve a predetermined uniformity of gas composition within the series of conduits and passages.

  7. A flux extraction device to measure the magnetic moment of large samples; application to bulk superconductors.

    PubMed

    Egan, R; Philippe, M; Wera, L; Fagnard, J F; Vanderheyden, B; Dennis, A; Shi, Y; Cardwell, D A; Vanderbemden, P

    2015-02-01

    We report the design and construction of a flux extraction device to measure the DC magnetic moment of large samples (i.e., several cm(3)) at cryogenic temperature. The signal is constructed by integrating the electromotive force generated by two coils wound in series-opposition that move around the sample. We show that an octupole expansion of the magnetic vector potential can be used conveniently to treat near-field effects for this geometrical configuration. The resulting expansion is tested for the case of a large, permanently magnetized, type-II superconducting sample. The dimensions of the sensing coils are determined in such a way that the measurement is influenced by the dipole magnetic moment of the sample and not by moments of higher order, within user-determined upper bounds. The device, which is able to measure magnetic moments in excess of 1 A m(2) (1000 emu), is validated by (i) a direct calibration experiment using a small coil driven by a known current and (ii) by comparison with the results of numerical calculations obtained previously using a flux measurement technique. The sensitivity of the device is demonstrated by the measurement of flux-creep relaxation of the magnetization in a large bulk superconductor sample at liquid nitrogen temperature (77 K). PMID:25725888

  8. A flux extraction device to measure the magnetic moment of large samples; application to bulk superconductors

    NASA Astrophysics Data System (ADS)

    Egan, R.; Philippe, M.; Wera, L.; Fagnard, J. F.; Vanderheyden, B.; Dennis, A.; Shi, Y.; Cardwell, D. A.; Vanderbemden, P.

    2015-02-01

    We report the design and construction of a flux extraction device to measure the DC magnetic moment of large samples (i.e., several cm3) at cryogenic temperature. The signal is constructed by integrating the electromotive force generated by two coils wound in series-opposition that move around the sample. We show that an octupole expansion of the magnetic vector potential can be used conveniently to treat near-field effects for this geometrical configuration. The resulting expansion is tested for the case of a large, permanently magnetized, type-II superconducting sample. The dimensions of the sensing coils are determined in such a way that the measurement is influenced by the dipole magnetic moment of the sample and not by moments of higher order, within user-determined upper bounds. The device, which is able to measure magnetic moments in excess of 1 A m2 (1000 emu), is validated by (i) a direct calibration experiment using a small coil driven by a known current and (ii) by comparison with the results of numerical calculations obtained previously using a flux measurement technique. The sensitivity of the device is demonstrated by the measurement of flux-creep relaxation of the magnetization in a large bulk superconductor sample at liquid nitrogen temperature (77 K).

  9. The display of portable infrared measuring temperature

    NASA Astrophysics Data System (ADS)

    Qian, Yitao; Gu, Guohua; Sui, Xiubao

    2014-11-01

    In recent years based on security, quality supervision, inspection and medical for the urgent need of infrared temperature measurement and infrared display technology, coupled with embedded system to achieve rapid development, which is widely used in the electronic products and the field of intelligent instruments and industrial control, this paper has designed a kind of more comprehensive, more efficient and more intuitive infrared thermometer. Unlike previous handheld infrared thermometer, we regard an embedded Linux system as the system, with its open source code, support most mainstream hardware platforms, unified peripheral interface and can be customized, to build an embedded infrared system that has provided strong system support; the pseudocolor techniques and Qt interface display technology make the image more colorful and the picture function more diverse; With ARM microprocessor as the display and temperature measuring platform, it costs reduction and reduce volume and power consumption; the FrameBuffer interface technology and multithreading technology realize the smooth real-time display. And ultimately the display size of real-time infrared image is 640 * 480 at a speed of 25 frames / sec. What is more, display is equipped with the menu option so that thermometer can be required to complete the operation through the button. The temperature display system aims at small volume, easy to use and flexible. I believe this thermometer will have a good application prospect.

  10. Electro-Mechanical Properties of Metal-Insulator-Metal Device Fabricated on Polymer Substrate Using Low-Temperature Process

    NASA Astrophysics Data System (ADS)

    Park, Sung Kyu; Han, Jeong In; Kim, Won Keun; Hong, Sung Jei; Kwak, Min Gi; Lee, Myung Jae; Chung, Kwan Soo

    2002-02-01

    High-performance metal-insulator-metal (MIM) devices on flexible polymer substrates were successfully fabricated without any defects such as cracks, delamination and blistering. This work examines the mechanical and electrical properties of MIM devices constructed using anodic Ta2O5 films. Using newly developed methods including stepped heating process and low-temperature post-annealing below 180°C, we obtained high-performances MIM devices on polymer substrates. Here, we propose the use of stacked bottom electrode and water barrier layer in order to enhance the ductility of the Ta electrode and to prevent blistering problems, respectively. Rutherford backscattering spectroscopy (RBS), auger electron spectroscopy (AES) and transmission electronic microscope (TEM) observations were performed for the structural investigation of the MIM devices on polymer substrates. Electrical measurements were also carried out for as-deposited and thermally treated MIM devices including Al/Ta/Ta2O5/Cr or Ti structures. They exhibit a low leakage current (below 10-7 A/cm2 at 2 MV) and reasonable breakdown voltage (5-7 MV/cm) with a uniformity of 92%. Finally, under low-temperature post-annealing conditions, The Current-Voltage (I-V) behaviors and conduction mechanisms of MIM devices on polymer substrates are discussed based on the results of electrical measurements, structural investigations and conduction band modeling.

  11. 40 CFR 60.1325 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false How do I monitor the temperature of... June 6, 2001 Other Monitoring Requirements § 60.1325 How do I monitor the temperature of flue gases at... a device to continuously measure the temperature of the flue gas stream at the inlet of...

  12. 40 CFR 60.1325 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false How do I monitor the temperature of... June 6, 2001 Other Monitoring Requirements § 60.1325 How do I monitor the temperature of flue gases at... a device to continuously measure the temperature of the flue gas stream at the inlet of...

  13. 40 CFR 60.1325 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false How do I monitor the temperature of... June 6, 2001 Other Monitoring Requirements § 60.1325 How do I monitor the temperature of flue gases at... a device to continuously measure the temperature of the flue gas stream at the inlet of...

  14. 40 CFR 60.1325 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false How do I monitor the temperature of... June 6, 2001 Other Monitoring Requirements § 60.1325 How do I monitor the temperature of flue gases at... a device to continuously measure the temperature of the flue gas stream at the inlet of...

  15. 40 CFR 60.1325 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false How do I monitor the temperature of... June 6, 2001 Other Monitoring Requirements § 60.1325 How do I monitor the temperature of flue gases at... a device to continuously measure the temperature of the flue gas stream at the inlet of...

  16. Adaptive Blood Glucose Monitoring and Insulin Measurement Devices for Visually Impaired Persons.

    ERIC Educational Resources Information Center

    Petzinger, R. A.

    1993-01-01

    This article describes devices that people with visual impairments and diabetes can use to monitor blood glucose levels and measure insulin. A table lists devices, their manufacturers (including address and telephone number), and comments about the devices. (DB)

  17. Determination of the physical properties of room temperature ionic liquids using a Love wave device.

    PubMed

    Ouali, F Fouzia; Doy, Nicola; McHale, Glen; Hardacre, Christopher; Ge, Rile; Allen, Ray W K; MacInnes, Jordan M; Newton, Michael I

    2011-09-01

    In this work, we have shown that a 100 MHz Love wave device can be used to determine whether room temperature ionic liquids (RTILs) are Newtonian fluids and have developed a technique that allows the determination of the density-viscosity product, ρη, of a Newtonian RTIL. In addition, a test for a Newtonian response was established by relating the phase change to insertion loss change. Five concentrations of a water-miscible RTIL and seven pure RTILs were measured. The changes in phase and insertion loss were found to vary linearly with the square root of the density-viscosity product for values up to (ρη)(1/2) ~ 10 kg m(-2) s(-1/2). The square root of the density-viscosity product was deduced from the changes in either phase or insertion loss using glycerol as a calibration liquid. In both cases, the deduced values of ρη agree well with those measured using viscosity and density meters. Miniaturization of the device, beyond that achievable with the lower-frequency quartz crystal microbalance approach, to measure smaller volumes is possible. The ability to fabricate Love wave and other surface acoustic wave sensors using planar metallization technologies gives potential for future integration into lab-on-a-chip analytical systems for characterizing ionic liquids.

  18. Optical pyrometer measurer`s combustion turbine blades temperature

    SciTech Connect

    Broeker, L.; Epstein, M.; Schafer, M.

    1995-12-31

    The design, installation and use of a digital optical pyrometer system to measure an advanced combustion turbine`s first, second and third stack of rotor blade temperatures is discussed in this paper. The combustion turbine is fueled by synthetic gas (syngas) made from coal in a gasifier. The optical pyrometer system is being used on PSI Energy`s Wabash River Coal Gasification Repowering Project. The system was installed in March, 1995.

  19. Device accurately measures and records low gas-flow rates

    NASA Technical Reports Server (NTRS)

    Branum, L. W.

    1966-01-01

    Free-floating piston in a vertical column accurately measures and records low gas-flow rates. The system may be calibrated, using an adjustable flow-rate gas supply, a low pressure gage, and a sequence recorder. From the calibration rates, a nomograph may be made for easy reduction. Temperature correction may be added for further accuracy.

  20. Headset Bluetooth and cell phone based continuous central body temperature measurement system.

    PubMed

    Sanches, J Miguel; Pereira, Bruno; Paiva, Teresa

    2010-01-01

    The accurate measure of the central temperature is a very important physiologic indicator in several clinical applications, namely, in the characterization and diagnosis of sleep disorders. In this paper a simple system is described to continuously measure the body temperature at the ear. An electronic temperature sensor is coupled to the microphone of a common commercial auricular Bluetooth device that sends the temperature measurements to a mobile phone to which is paired. The measurements are stored at the mobile phone and periodically sent to a medical facility by email or SMS (short messaging service).

  1. New simulation and measurement results on gateable DEPFET devices

    NASA Astrophysics Data System (ADS)

    Bähr, Alexander; Aschauer, Stefan; Hermenau, Katrin; Herrmann, Sven; Lechner, Peter H.; Lutz, Gerhard; Majewski, Petra; Miessner, Danilo; Porro, Matteo; Richter, Rainer H.; Schaller, Gerhard; Sandow, Christian; Schnecke, Martina; Schopper, Florian; Stefanescu, Alexander; Strüder, Lothar; Treis, Johannes

    2012-07-01

    To improve the signal to noise level, devices for optical and x-ray astronomy use techniques to suppress background events. Well known examples are e.g. shutters or frame-store Charge Coupled Devices (CCDs). Based on the DEpleted P-channel Field Effect Transistor (DEPFET) principle a so-called Gatebale DEPFET detector can be built. Those devices combine the DEPFET principle with a fast built-in electronic shutter usable for optical and x-ray applications. The DEPFET itself is the basic cell of an active pixel sensor build on a fully depleted bulk. It combines internal amplification, readout on demand, analog storage of the signal charge and a low readout noise with full sensitivity over the whole bulk thickness. A Gatebale DEPFET has all these benefits and obviates the need for an external shutter. Two concepts of Gatebale DEPFET layouts providing a built-in shutter will be introduced. Furthermore proof of principle measurements for both concepts are presented. Using recently produced prototypes a shielding of the collection anode up to 1 • 10-4 was achieved. Predicted by simulations, an optimized geometry should result in values of 1 • 10-5 and better. With the switching electronic currently in use a timing evaluation of the shutter opening and closing resulted in rise and fall times of 100ns.

  2. PARduino: A Simple Device Measuring and Logging Photosynthetically Active Radiation

    NASA Astrophysics Data System (ADS)

    Barnard, H. R.; Findley, M. C.

    2013-12-01

    Photosynthetically Active Radiation (PAR, 400 to 700 nm) is one of the primary controls of forest carbon and water relations. In complex terrain, PAR has high spatial-variability. Given the high cost of commercial datalogging equipment, spatially-distributed measurements of PAR have been typically modeled using geographic coordinates and terrain indices. Here, we present a design for a low cost, field-deployable device for measuring and logging PAR built around an Arduino microcontroller (we named it PARduino). PARduino provides for widely distributed sensor arrays and tests the feasibility of using hobbyist-grade electronics for collecting scientific data. PARduino components include a LiCor quantum sensor, EME Systems signal converter/amplifier, and Sparkfun's Arduino Pro Mini microcontroller. Additional components include a real time clock, a microSD flash memory card, and a custom printed circuit board (PCB). We selected the components with an eye towards ease of assembly. Everything can be connected to the PCB using through-hole soldering techniques. Since the device will be deployed in remote research plots that lack easy access to line power, battery life was also a consideration in the design. Extended deployment is possible because PARduino's software keeps it in a low-power sleep mode until ready to make a measurement. PARduino will be open-source hardware for use and improvement by others.

  3. Modeling and Evaluation of Canted Coil Springs as High Temperature Seal Preloading Devices

    NASA Technical Reports Server (NTRS)

    Oswald, Jay J.; Mullen, Robert L.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2004-01-01

    Future reusable launch vehicles will require advanced structural seals. This includes propulsion seals along edges and hinge lines in hypersonic engines, and control surface seals for movable flaps and elevons on proposed reentry vehicles. Seals must remain in sealing engagement with opposing surfaces, for multiple missions, even though the seal gap may be opening and closing due to thermal and structural loads. To meet this requirement either the seals themselves must be resilient or there must be a resilient structural element behind the seals. Case Western Reserve University is working with NASA s Glenn Research Center to develop more resilient high temperature seal components and preloading devices. Results are presented for a finite element analysis of a canted coil spring that is being considered as a high temperature seal preloading device. This type of spring is a leading candidate due to its ability to provide nearly constant force over a large deflection. The finite element analyses were verified by comparing them to experimental results of canted coil springs of three different stiffnesses, measured at Glenn Research Center. Once validated the parameterized model was combined with a scripting algorithm to assess the effects of key spring design variables (wire diameter, coils per inch, cant amplitude, eccentricity, and spring width) on spring stiffness and maximum Von Mises stress to aid in subsequent design.

  4. Long-distance measurement-device-independent multiparty quantum communication.

    PubMed

    Fu, Yao; Yin, Hua-Lei; Chen, Teng-Yun; Chen, Zeng-Bing

    2015-03-01

    The Greenberger-Horne-Zeilinger (GHZ) entanglement, originally introduced to uncover the extreme violation of local realism against quantum mechanics, is an important resource for multiparty quantum communication tasks. But the low intensity and fragility of the GHZ entanglement source in current conditions have made the practical applications of these multiparty tasks an experimental challenge. Here we propose a feasible scheme for practically distributing the postselected GHZ entanglement over a distance of more than 100 km for experimentally accessible parameter regimes. Combining the decoy-state and measurement-device-independent protocols for quantum key distribution, we anticipate that our proposal suggests an important avenue for practical multiparty quantum communication.

  5. Method and device for measuring single-shot transient signals

    DOEpatents

    Yin, Yan

    2004-05-18

    Methods, apparatus, and systems, including computer program products, implementing and using techniques for measuring multi-channel single-shot transient signals. A signal acquisition unit receives one or more single-shot pulses from a multi-channel source. An optical-fiber recirculating loop reproduces the one or more received single-shot optical pulses to form a first multi-channel pulse train for circulation in the recirculating loop, and a second multi-channel pulse train for display on a display device. The optical-fiber recirculating loop also optically amplifies the first circulating pulse train to compensate for signal losses and performs optical multi-channel noise filtration.

  6. Methods of measurement for semiconductor materials, process control, and devices

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1971-01-01

    The development of methods of measurement for semiconductor materials, process control, and devices is discussed. The following subjects are also presented: (1) demonstration of the high sensitivity of the infrared response technique by the identification of gold in a germanium diode, (2) verification that transient thermal response is significantly more sensitive to the presence of voids in die attachment than steady-state thermal resistance, and (3) development of equipment for determining susceptibility of transistors to hot spot formation by the current-gain technique.

  7. Instrument for Measuring Temperature of Water

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Nixon, Thomas; Pagnutti, Mary; Zanoni, Vicki

    2002-01-01

    A pseudo-Brewster angle infrared radiometer has been proposed for use in noncontact measurement of the surface temperature of a large body of water (e.g., a lake or ocean). This radiometer could be situated on a waterborne, airborne, or spaceborne platform. The design of the pseudo-Brewster angle radiometer would exploit the spectral emissivity and polarization characteristics of water to minimize errors attributable to the emissivity of water and to the reflection of downwelling (e.g., Solar and cloud-reflected) infrared radiation.

  8. Wafer temperature measurement: Status utilizing optical fibers

    SciTech Connect

    Schietinger, C.; Jensen, E.

    1996-12-01

    This paper reviews the current status and problems of optical fiber temperature measurements for RTP and single wafer processing. Included is a discussion of a range of fiber based options available and currently being utilized today. The advantages and disadvantages of the options are presented. In addition new data from the use of the Ripple Technique pyrometer is presented. Included are data from AT and T (Lucent Technologies) ripple pyrometer development. Lucent Technologies is evaluating and improving the ripple pyrometer on a number of different style production RTP furnaces. Recent advances in signal processing for very low level photo diode currents in the range of 10 e-14 amps, also is presented.

  9. Newborns' temperature submitted to radiant heat and to the Top Maternal device at birth

    PubMed Central

    de Albuquerque, Rosemeire Sartori; Mariani, Corintio; Bersusa, Ana Aparecida Sanches; Dias, Vanessa Macedo; da Silva, Maria Izabel Mota

    2016-01-01

    ABSTRACT Objective: to compare the axillar temperatures of newborns that are put immediately after birth in skin-to-skin contact under the Top Maternal device, as compared to those in a radiant heat crib. Methods: comparatives observational study of the case-control type about temperature of 60 babies born at the Obstetric Center and Normal Delivery Center of a public hospital of the municipality of Sao Paulo, being them: 29 receiving assistance in heated crib and 31 in skin-to skin contact, shielded by a cotton tissue placed on mother's thorax, called Top Maternal. Results: the temperature of the babies of the skin-to-skin contact group presented higher values in a larger share of the time measures verified, as compared to those that were placed in radiant heat crib, independently from the place of birth. Differences between the two groups were not statistically significant. Conclusion: the study contributes to generate new knowledge, supporting the idea of keeping babies with their mothers immediately after birth protected with the Maternal Top, without harming their wellbeing, as it keeps the axillar temperature in recommendable levels. PMID:27508912

  10. Noninvasive liver iron measurements with a room-temperature susceptometer

    PubMed Central

    Avrin, W F; Kumar, S

    2011-01-01

    Magnetic susceptibility measurements on the liver can quantify iron overload accurately and noninvasively. However, established susceptometer designs, using Superconducting QUantum Interference Devices (SQUIDs) that work in liquid helium, have been too expensive for widespread use. This paper presents a less expensive liver susceptometer that works at room temperature. This system uses oscillating magnetic fields, which are produced and detected by copper coils. The coil design cancels the signal from the applied field, eliminating noise from fluctuations of the source-coil current and sensor gain. The coil unit moves toward and away from the patient at 1 Hz, cancelling drifts due to thermal expansion of the coils. Measurements on a water phantom indicated instrumental errors less than 30 μg of iron per gram of wet liver tissue, which is small compared with other errors due to the response of the patient’s body. Liver iron measurements on eight thalassemia patients yielded a correlation coefficient r=0.98 between the room-temperature susceptometer and an existing SQUID. These results indicate that the fundamental accuracy limits of the room-temperature susceptometer are similar to those of the SQUID. PMID:17395991

  11. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  12. Characterization of structural defects in GST based nano-PCM devices through resistance drift measurements

    NASA Astrophysics Data System (ADS)

    Cinar, Ibrahim; Cogulu, Egecan; Gokce, Aisha; Stipe, Barry; Katine, Jordan; Aktas, Gulen; Ozatay, Ozhan

    2015-03-01

    Phase change memory (PCM) is a promising nonvolatile data storage technology with its high signal to noise ratio and superior scalability. Resistance drift in amorphous phase of the phase change material poses a crucial reliability problem, especially in multiple-bit-per cell PCM devices. The resistance of the amorphous phase uncontrollably increases with time after a reset operation which alters the read/write conditions of the device. Structural relaxation (SR) through a defect annihilation process is considered to be the underlying physical mechanism for resistance drift. Here, we report on our measurements of the resistance drift in a phase change memory device with a single layer Ge2Sb2Te5 (GST) material not only in the amorphous state but also in the intermediate resistance state in devices with square top contact geometry which enables us to assess the reliability of multiple-bit per cell PCM memory devices. Through an analysis of electrical measurements as a function of time and temperature for increasing annealing times, we estimate a rate of change in trap density for both amorphous and mixed phases of the GST material after a switching operation. Our study allows engineering the phase change materials and optimizing programing conditions for future PCM applications. TUBITAK under Contract Number 113F385, Bogazici University Research Fund, 12B03M1, and European Union FP7 Marie Curie International Re-integration Grant PCM-256281.

  13. Device for measuring hole elongation in a bolted joint

    NASA Technical Reports Server (NTRS)

    Wichorek, Gregory R. (Inventor)

    1987-01-01

    A device to determine the operable failure mode of mechanically fastened lightweight composite joints by measuring the hole elongation of a bolted joint is disclosed. The double-lap joint test apparatus comprises a stud, a test specimen having a hole, two load transfer plates, and linear displacement measuring instruments. The test specimen is sandwiched between the two load transfer plates and clamped together with the stud. Spacer washers are placed between the test specimen and each load transfer plate to provide a known, controllable area for the determination of clamping forces around the hole of the specimen attributable to bolt torque. The spacer washers also provide a gap for the mounting of reference angles on each side of the test specimen. Under tensile loading, elongation of the hole of the test specimen causes the stud to move away from the reference angles. This displacement is measured by the voltage output of two linear displacement measuring instruments that are attached to the stud and remain in contact with the reference angles throughout the tensile loading. The present invention obviates previous problems in obtaining specimen deformation measurements by monitoring the reference angles to the test specimen and the linear displacement measuring instruments to the stud.

  14. Development of a continuous aerosol mass concentration measurement device.

    PubMed

    Bémer, D; Thomas, D; Contal, P; Subra, I

    2003-08-01

    A dynamic aerosol mass concentration measurement device has been developed for personal sampling. Its principle consists in sampling the aerosol on a filter and monitoring the change of pressure drop over time (Delta P). Ensuring that the linearity of the Delta P = f(mass of particles per unit area of filter) relationship has been well established, the change of concentration can be deduced. The response of the system was validated in the laboratory with a 3.5 microm alumina aerosol (mass median diameter) generated inside a 1-m(3) ventilated enclosure. As the theory predicted that the mass sensitivity of the system would vary inversely with the square of the particle diameter, only sufficiently fine aerosols were able to be measured. The system was tested in the field in a mechanical workshop in the vicinity of an arc-welding station. The aerosol produced by welding is indeed particularly well-adapted due to the sub-micronic size of the particles. The device developed, despite this limitation, has numerous advantages over other techniques: robustness, compactness, reliability of calibration, and ease of use.

  15. Design of a Device for Sky Light Polarization Measurements

    PubMed Central

    Wang, Yujie; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Xian, Zhiwen; Ma, Tao

    2014-01-01

    Sky polarization patterns can be used both as indicators of atmospheric turbidity and as a sun compass for navigation. The objective of this study is to improve the precision of sky light polarization measurements by optimal design of the device used. The central part of the system is composed of a Charge Coupled Device (CCD) camera; a fish-eye lens and a linear polarizer. Algorithms for estimating parameters of the polarized light based on three images are derived and the optimal alignments of the polarizer are analyzed. The least-squares estimation is introduced for sky light polarization pattern measurement. The polarization patterns of sky light are obtained using the designed system and they follow almost the same patterns of the single-scattering Rayleigh model. Deviations of polarization angles between observation and the theory are analyzed. The largest deviations occur near the sun and anti-sun directions. Ninety percent of the deviations are less than 5° and 40% percent of them are less than 1°. The deviations decrease evidently as the degree of polarization increases. It also shows that the polarization pattern of the cloudy sky is almost identical as in the blue sky. PMID:25196003

  16. Density Profile Measurement in the TS-4 Merging Device

    NASA Astrophysics Data System (ADS)

    Hayashiya, Hitoshi; Ono, Yasushi; Katsurai, Makoto

    1999-11-01

    A CO2 laser interferometer system is being developed to measure density profiles of merging plasmas in new-built plasma merging device, TS-4 (university of Tokyo Spherical torus-4). The TS-4 merging device introduces a flux-core method to produce compact toroid whose major and minor radii are 0.50m, 0.42m, and its electron density will be ranging from 5× 10^19 to 5 × 10^20, respectively. Its main experimental subjects are to investigate (1) merging formation of field-reversed configuration (FRC), (2) ultra-high-beta spherical tokamak (ST) formation by use of FRC, (3) comparative study of ST, spheromak, FRC and reversed-field pinches (RFP) and (4) laboratory experiment of magnetic reconnection. The multi-cannel Michelson interferometer with heterodyne modulator has from 5 to 10 beam paths of 60W CO2 laser (10.6μm) to measure radial profile of electron density on the midplane. The electron density profile of merging toroids especially around the ``X-point'' will be studied in detail and its physical properties will be discussed.

  17. Design of a device for sky light polarization measurements.

    PubMed

    Wang, Yujie; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Xian, Zhiwen; Ma, Tao

    2014-01-01

    Sky polarization patterns can be used both as indicators of atmospheric turbidity and as a sun compass for navigation. The objective of this study is to improve the precision of sky light polarization measurements by optimal design of the device used. The central part of the system is composed of a Charge Coupled Device (CCD) camera; a fish-eye lens and a linear polarizer. Algorithms for estimating parameters of the polarized light based on three images are derived and the optimal alignments of the polarizer are analyzed. The least-squares estimation is introduced for sky light polarization pattern measurement. The polarization patterns of sky light are obtained using the designed system and they follow almost the same patterns of the single-scattering Rayleigh model. Deviations of polarization angles between observation and the theory are analyzed. The largest deviations occur near the sun and anti-sun directions. Ninety percent of the deviations are less than 5° and 40% percent of them are less than 1°. The deviations decrease evidently as the degree of polarization increases. It also shows that the polarization pattern of the cloudy sky is almost identical as in the blue sky. PMID:25196003

  18. High-rate measurement-device-independent quantum cryptography

    NASA Astrophysics Data System (ADS)

    Pirandola, Stefano; Ottaviani, Carlo; Spedalieri, Gaetana; Weedbrook, Christian; Braunstein, Samuel L.; Lloyd, Seth; Gehring, Tobias; Jacobsen, Christian S.; Andersen, Ulrik L.

    2015-06-01

    Quantum cryptography achieves a formidable task—the remote distribution of secret keys by exploiting the fundamental laws of physics. Quantum cryptography is now headed towards solving the practical problem of constructing scalable and secure quantum networks. A significant step in this direction has been the introduction of measurement-device independence, where the secret key between two parties is established by the measurement of an untrusted relay. Unfortunately, although qubit-implemented protocols can reach long distances, their key rates are typically very low, unsuitable for the demands of a metropolitan network. Here we show, theoretically and experimentally, that a solution can come from the use of continuous-variable systems. We design a coherent-state network protocol able to achieve remarkably high key rates at metropolitan distances, in fact three orders of magnitude higher than those currently achieved. Our protocol could be employed to build high-rate quantum networks where devices securely connect to nearby access points or proxy servers.

  19. Experimental measurement and mathematical calculation evaporator temperatures of closed loop thermosyphon

    NASA Astrophysics Data System (ADS)

    Nemec, Patrik; Malcho, Milan; Jandačka, Jozef

    2013-10-01

    The closed loop thermoshypon is device operate with working fluid phase change principle. It is a simple and reliable device providing heat transfer. This device utilizes the thermodynamic pressure difference and gravitation to circulate working fluid and has extremely high effective thermal conductivity. Usually is used to cooling of electronic components. The paper describes a design and construction of this device. As a working fluid was used fluorinert FC-72. Next the paper deal with dependences measurement of evaporator temperatures on waste heat of the electronic component and their verification by means of a mathematic calculation based on physical phenomena of boiling, condensation and heat transfer.

  20. Multilayer compressive seal for sealing in high temperature devices

    SciTech Connect

    Chou, Yeong-Shyung; Stevenson, Jeffry W.

    2007-08-21

    A mica based compressive seal has been developed exhibiting superior thermal cycle stability when compared to other compressive seals known in the art. The seal is composed of compliant glass or metal interlayers and a sealing (gasket) member layer composed of mica that is infiltrated with a glass forming material, which effectively reduces leaks within the seal. The compressive seal shows approximately a 100-fold reduction in leak rates compared with previously developed hybrid seals after from 10 to about 40 thermal cycles under a compressive stress of from 50 psi to 100 psi at temperatures in the range from 600.degree. C. to about 850.degree. C.

  1. Skin friction measurements in high temperature high speed flows

    NASA Technical Reports Server (NTRS)

    Schetz, J. A.; Diller, Thomas E.; Wicks, A. L.

    1992-01-01

    An experimental investigation was conducted to measure skin friction along the chamber walls of supersonic combustors. A direct force measurement device was used to simultaneously measure an axial and transverse component of the small tangential shear force passing over a non-intrusive floating element. The floating head is mounted to a stiff cantilever beam arrangement with deflection due to the flow on the order of 0.00254 mm (0.0001 in.). This allowed the instrument to be a non-nulling type. A second gauge was designed with active cooling of the floating sensor head to eliminate non-uniform temperature effects between the sensor head and the surrounding wall. Samples of measurements made in combustor test facilities at NASA Langley Research Center and at the General Applied Science Laboratory (GASL) are presented. Skin friction coefficients between 0.001 - 0.005 were measured dependent on the facility and measurement location. Analysis of the measurement uncertainties indicate an accuracy to within +/- 10-15 percent of the streamwise component.

  2. Description of a Portable Wireless Device for High-Frequency Body Temperature Acquisition and Analysis

    PubMed Central

    Cuesta-Frau, David; Varela, Manuel; Aboy, Mateo; Miró-Martínez, Pau

    2009-01-01

    We describe a device for dual channel body temperature monitoring. The device can operate as a real time monitor or as a data logger, and has Bluetooth capabilities to enable for wireless data download to the computer used for data analysis. The proposed device is capable of sampling temperature at a rate of 1 sample per minute with a resolution of 0.01 °C . The internal memory allows for stand-alone data logging of up to 10 days. The device has a battery life of 50 hours in continuous real-time mode. In addition to describing the proposed device in detail, we report the results of a statistical analysis conducted to assess its accuracy and reproducibility. PMID:22408473

  3. Portable measurement, analysis device can calculate GLE/SRE

    SciTech Connect

    Hary, D.; Miller, M.R.

    1995-05-01

    In today`s natural gas market environment it is particularly important for buyers to receive exact flow measurement data. However, it is difficult to receive accurate measurement data because of pulsation problems within the pipe line system. Pulsation, which can be caused by compressors, flow control valves, regulators and some pipe configurations, can alter gas flow measurement. To receive exact measurements, many gas buyers require a pulsation clause, guaranteeing that suppliers maintain a pulsation level in their lines within specifications. To this end, customers often insist that suppliers provide a square root error (SRE) measurement that indicates the amount of pulsation a pipe line experiences and that it is within specified limits. Measuring GLE and SRE errors can be a time consuming, troublesome task. The PGI GLE/SRE tester is a portable measurement and analysis device designed to solve this problem. It can quickly and accurately calculate GLE and SRE and other errors, and stores real-time flow data on disk. This data portability enables engineers to study and analyze the data at a later time. Developed for Precision General by Integrated Scientific Resources, the GLE/SRE tester accurately measures those primary-element and secondary-element errors identified by The Pipeline and Compressor Research Council (PCRC) of the Southern Gas Association (SGA), and the Southwest Research Institute (SWI). The unit includes a Twinhead 486DX/33 laptop computer, a Keithley MetraByte DAS-1200 and DAStation expansion chassis for notebook computers, two Rosemount 3051C differential pressure transmitters, A Validyne P305D differential pressure transducer, and PipePeer software. The laptop compatible has a 33 MHz clock, 200 MBytes of hard drive storage and an LCD display.

  4. Instrument for Measuring Temperature of Water

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Nixon, Thomas; Pagnutti, Mary; Zanoni, Vicki

    2003-01-01

    A pseudo-Brewster-angle infrared radiometer has been proposed for use in noncontact measurement of the surface temperature of a large body of water (e.g., a lake or ocean). This radiometer could be situated on a waterborne, airborne, or spaceborne platform. The design of the pseudo-Brewster-angle radiometer would exploit the spectral-emissivity and polarization characteristics of water to minimize errors attributable to the emissivity of water and to the reflection of downwelling (e.g., Solar and cloud-reflected) infrared radiation. The relevant emissivity and polarization characteristics are the following: . The Brewster angle is the angle at which light polarized parallel to the plane of incidence on a purely dielectric material is not reflected. The pseudo-Brewster angle, defined for a lossy dielectric (somewhat electrically conductive) material, is the angle for which the reflectivity for parallel-polarized light is minimized. For pure water, the reflectivity for parallel-polarized light is only 2.2 x 10(exp -4) at its pseudo- Brewster angle of 51deg. The reflectivity remains near zero, several degrees off from the 51deg optimum, allowing this angle of incidence requirement to be easily achieved. . The wavelength range of interest for measuring water temperatures is 8 to 12 microns. The emissivity of water for parallel- polarized light at the pseudo-Brewster angle is greater than 0.999 in this wavelength range. The radiometer would be sensitive in the wavelength range of 8 to 12 microns, would be equipped with a polarizer to discriminate against infrared light polarized perpendicular to the plane of incidence, and would be aimed toward a body of water at the pseudo- Brewster angle (see figure). Because the infrared radiation entering the radiometer would be polarized parallel to the plane of incidence and because very little downwelling parallel-polarized radiation would be reflected into the radiometer on account of the pseudo-Brewster arrangement, the

  5. Comparison of nickel silicide and aluminium ohmic contact metallizations for low-temperature quantum transport measurements

    PubMed Central

    2011-01-01

    We examine nickel silicide as a viable ohmic contact metallization for low-temperature, low-magnetic-field transport measurements of atomic-scale devices in silicon. In particular, we compare a nickel silicide metallization with aluminium, a common ohmic contact for silicon devices. Nickel silicide can be formed at the low temperatures (<400°C) required for maintaining atomic precision placement in donor-based devices, and it avoids the complications found with aluminium contacts which become superconducting at cryogenic measurement temperatures. Importantly, we show that the use of nickel silicide as an ohmic contact at low temperatures does not affect the thermal equilibration of carriers nor contribute to hysteresis in a magnetic field. PMID:21968083

  6. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  7. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  8. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  9. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  10. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  11. High-temperature 434 Mhz surface acoustic wave devices based on GaPO4.

    PubMed

    Hamidon, Mohd Nizar; Skarda, Vlad; White, Neil M; Krispel, Ferdinand; Krempl, Peter; Binhack, Michael; Buff, Werner

    2006-12-01

    Research into surface acoustic wave (SAW) devices began in the early 1970s and led to the development of high performance, small size, and high reproducibility devices. Much research has now been done on the application of such devices to consumer electronics, process monitoring, and communication systems. The use of novel materials, such as gallium phosphate (GaPO4), extends the operating temperature of the elements. SAW devices based on this material operating at 434 MHz and up 800 degrees C, can be used for passive wireless sensor applications. Interdigital transducer (IDT) devices with platinum/zirconium metallization and 1.4 microm finger-gap ratio of 1:1 have been fabricated using direct write e-beam lithography and a lift-off process. The performance and long-term stability of these devices has been studied, and the results are reported in this paper. PMID:17186928

  12. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, James O.; Remenyik, Carl J.

    1994-01-01

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel.

  13. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, J.O.; Remenyik, C.J.

    1994-08-09

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure is disclosed. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel. 5 figs.

  14. Crack Offset Measurement With the Projected Laser Target Device

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The device and associated analysis methodology summarized in this report were developed for the purpose of estimating the size of discontinuities in the surface of the foam that covers the Space Shuttle External Tank. These surface offsets are thought to be due to subsurface cracks in the foam insulation. The mathematical analysis and procedure described here provide a method to quantity the dimensions of the crack offset in a direction perpendicular to the surface, making use of the projected laser target device (PLTD) tool and a laser line projector. The keys to the construction and use of the PLTD are the following geometrical design requirements: Laser dots are on a square grid: length on a side. Laser beams are perpendicular to projected surface. Beams are parallel out to the distance being projected. The PLTD can be used to (1) calibrate fixed cameras of unknown magnification and orientation (far-field solution); (2) provide equivalent calibration to multiple cameras, previously achieved only by the use of known target points, for example, in 3.D foreign-object debris tracking on a fixed launch platform; (3) compute scaling for conventional 2.D images, and depth of field for 3.D images (near-field solution); and (4) in conjunction with a laser line projector, achieve accurate measurements of surface discontinuity (cracks) in a direction perpendicular to the surface.

  15. An ultrasonic device for source to skin surface distance measurement in patient setup

    SciTech Connect

    Feng Yuanming . E-mail: yfeng002@umaryland.edu; Allison, Ron; Hu Xinhua; Mota, Helvecio; Jenkins, Todd; Wolfe, Melodee L.; Sibata, Claudio

    2005-04-01

    Purpose: To develop an ultrasound-based source to skin surface distance (SSD) measurement technique and device for patient setup and test its feasibility and accuracy. Methods and materials: The ultrasonic SSD measurement device (USD) prototype consists of two main parts: a probe plate with an ultrasonic transducer in the center and a control unit that displays the SSD in millimeters. The probe plate can be slid into the block tray accessory slot of any treatment machine at the time of the SSD measurement. The probe plate contains an ultrasonic transducer as both the source and the detector for measuring the distance between the transducer and the target surfaces on the basis of an echo-detecting technique. The device was calibrated by a mechanical ruler with an accuracy of 0.01 mm and corrected by an offset of 601.7 mm, which is the distance from the radiation source to the ultrasonic transducer surface for the Siemens Primus linear accelerator (Linac). The ultrasound device provided digital readout with an accuracy of {+-}0.1 mm for a flat surface after calibration. The SSD measurement experiments were done with the USD, an optical distance indicator (ODI), and an AKTINA 53-104 Mechanical Front Pointer (FP) on a Siemens Primus Linac with a full-sized female phantom. Ten measurements were carried out at each gantry angle of 0 deg , 52 deg , 85 deg , 90 deg , and 227 deg for anatomic locations of head, thorax, breast, and pelvis, to obtain the average values and standard deviations. Results: The comparison study with the ODI and FP showed that the USD had an accuracy of less than {+-}1.0 mm and that USD measurements had the minimum standard deviations among the three methods; therefore, USD gave more consistent and accurate readouts for SSD measurement. When considering the FP as a reference, the USD yields smaller deviations than the ODI for all measured locations (less than {+-}2 mm). The variation of USD digital readout with a room temperature change of {+-}2

  16. Progresses in cMUT device fabrication using low temperature processes

    NASA Astrophysics Data System (ADS)

    Bahette, E.; Michaud, J. F.; Certon, D.; Gross, D.; Alquier, D.

    2014-04-01

    In this paper, we present an original fabrication process of capacitive micromachined ultrasonic transducers (cMUTs) using a low temperature method for high frequency medical imaging applications. The process, which is limited to 400 °C, is based on surface micromachining. The material choices are adapted in order to respect the thermal specifications allowing monolithic integration. Thus, we have found alternative methods to replace the usual high temperature steps in cMUT elaboration. In this way, a nickel silicide layer, presenting good physical and electrical characteristics, is used as a bottom electrode. The membrane, silicon nitride, is deposited using a 200 °C PECVD process. Then, a metallic layer is chosen as a sacrificial layer, in order to achieve the cavity. For that, nickel has been chosen due to its low roughness and its high etching selectivity during the excavation. After their fabrication, the transducers have been tested to verify their functionality and, thus, to validate this low temperature process. Device physical properties have been determined by electrical and optical measurement in air. We evaluated resonance frequency, collapse voltage and electromechanical coupling coefficient in accordance with the simulation. Eventually, low charging effects and low initial deflections can predict good long-term use and ageing of the cMUTs.

  17. The Measurement of Temperature; Part i: Temperature Scales

    ERIC Educational Resources Information Center

    Forrest, A. M.

    1974-01-01

    Discusses the inter-relationships between some important temperature scales such as the Celsius scale, the Kelvin Thermodynamic scale, and the International Practical Temperature Scale (IPTS). Included is a description of the 1968 IPTS with emphasis on innovations introduced in the range below 273.15 k. (CC)

  18. Thermodynamic formalism of minimum heat source temperature for driving advanced adsorption cooling device

    NASA Astrophysics Data System (ADS)

    Saha, Bidyut Baran; Chakraborty, Anutosh; Koyama, Shigeru; Srinivasan, Kandadai; Ng, Kim Choon; Kashiwagi, Takao; Dutta, Pradip

    2007-09-01

    This letter presents a thermodynamic formulation to calculate the minimum driving heat source temperature of an advanced solid sorption cooling device, and it is validated with experimental data. This formalism has been developed from the rigor of the Boltzmann distribution function and the condensation approximation of adsorptive molecules. An interesting and useful finding has been established from this formalism that it is possible to construct a solid sorption refrigeration device that operates in a cycle transferring heat from a low temperature source to a heat sink with a driving heat source at a temperature close to but above ambient.

  19. Nonintrusive Measurement Of Temperature Of LED Junction

    NASA Technical Reports Server (NTRS)

    Leidecker, Henning; Powers, Charles

    1991-01-01

    Temperature inferred from spectrum of emitted light. Method of determining temperature of junction based on two relevant characteristics of LED. Gap between valence and conduction electron-energy bands in LED material decreases with increasing temperature, causing wavelength of emitted photon to increase with temperature. Other, as temperature increases, non-radiative processes dissipate more of input electrical energy as heat and less as photons in band-gap wavelenth region; optical and quantum efficiencies decrease with increasing temperature. In principal, either characteristic alone used to determine temperature. However, desirable to use both to obtain indication of uncertainty.

  20. Memory-assisted measurement-device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Panayi, Christiana; Razavi, Mohsen; Ma, Xiongfeng; Lütkenhaus, Norbert

    2014-04-01

    A protocol with the potential of beating the existing distance records for conventional quantum key distribution (QKD) systems is proposed. It borrows ideas from quantum repeaters by using memories in the middle of the link, and that of measurement-device-independent QKD, which only requires optical source equipment at the user's end. For certain memories with short access times, our scheme allows a higher repetition rate than that of quantum repeaters with single-mode memories, thereby requiring lower coherence times. By accounting for various sources of nonideality, such as memory decoherence, dark counts, misalignment errors, and background noise, as well as timing issues with memories, we develop a mathematical framework within which we can compare QKD systems with and without memories. In particular, we show that with the state-of-the-art technology for quantum memories, it is potentially possible to devise memory-assisted QKD systems that, at certain distances of practical interest, outperform current QKD implementations.

  1. Stage for texture measurements above room temperature in a Philips X'Pert Pro MPD diffractometer

    SciTech Connect

    Sobrero, Cesar E.; Castellani, Daniel; Bolmaro, Raul E.; Malarria, Jorge A.

    2009-11-15

    A special stage for texture measurements above room temperature was designed with the proper size and weight to be fitted onto the Eulerean cradle of the Philips X'Pert Pro MPD diffractometer. With such device, flat samples of 2x2 cm{sup 2} area can be analyzed at a nearly constant temperature with variations below {+-}4 deg. C in the range between ambient temperature and 200 deg. C.

  2. Gas thermometer for precision measurement of thermodynamic temperatures below 300/sup 0/K

    SciTech Connect

    Polunin, S.P.; Astrov, D.N.; Belyanskii, L.B.; Dedikov, Yu.A.; Zakharov, A.A.

    1987-08-01

    The authors discuss an apparatus for measuring thermodynamic temperatures of 3-300/sup 0/K by means of a constant-density gas thermometer. The main measuring device in the gas thermometer is a special mercury interference manometer. The flow cryostat for the range 2-300/sup 0/K is shown and the heat carriers are liquid or gaseous helium, hydrogen, and nitrogen. The thermodynamic temperatures measured by this thermometer have been transferred to several standard resistance thermometers made of platinum and rhodium-iron alloy. The gas thermometer examined here enables the measurement of temperatures on the thermodynamic scale with an error of not more than 1 mK.

  3. INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION

    SciTech Connect

    Seong W. Lee

    2004-10-01

    The systematic tests of the gasifier simulator on the clean thermocouple were completed in this reporting period. Within the systematic tests on the clean thermocouple, five (5) factors were considered as the experimental parameters including air flow rate, water flow rate, fine dust particle amount, ammonia addition and high/low frequency device (electric motor). The fractional factorial design method was used in the experiment design with sixteen (16) data sets of readings. Analysis of Variances (ANOVA) was applied to the results from systematic tests. The ANOVA results show that the un-balanced motor vibration frequency did not have the significant impact on the temperature changes in the gasifier simulator. For the fine dust particles testing, the amount of fine dust particles has significant impact to the temperature measurements in the gasifier simulator. The effects of the air and water on the temperature measurements show the same results as reported in the previous report. The ammonia concentration was included as an experimental parameter for the reducing environment in this reporting period. The ammonia concentration does not seem to be a significant factor on the temperature changes. The linear regression analysis was applied to the temperature reading with five (5) factors. The accuracy of the linear regression is relatively low, which is less than 10% accuracy. Nonlinear regression was also conducted to the temperature reading with the same factors. Since the experiments were designed in two (2) levels, the nonlinear regression is not very effective with the dataset (16 readings). An extra central point test was conducted. With the data of the center point testing, the accuracy of the nonlinear regression is much better than the linear regression.

  4. Low-temperature-grown InGaAs quantum wells for optical device applications

    NASA Astrophysics Data System (ADS)

    Juodawlkis, Paul William

    1999-11-01

    The large optical absorption and carrier-induced nonlinearities of semiconductor materials are useful for optical signal processing applications. For absorptive devices operating at ultrafast data rates (>100 Gb/s) or high optical intensities, it is necessary to reduce the intrinsic photo-excited carrier removal time. One method of achieving this reduction is to increase the nonradiative recombination rate through the controlled introduction of defects. In this thesis, we explore the use of low-temperature molecular-beam epitaxy (MBE) to introduce nonradiative recombination centers into InGaAs-based quantum-wells (QWs). The objectives of the thesis are: (i)to improve the understanding of the optoelectronic properties of low-temperature-grown (LTG) InGaAs/InAlAs QWs, and (ii)to assess the feasibility of using these materials for optical device applications in the 1.5-μm wavelength region. Time-resolved differential transmission measurements reveal that the nonlinear absorption recovery time in InGaAs/InAlAs QWs can be reduced from >100 ps to 0.6 ps through the combination of low-temperature growth (~250°C) and beryllium (Be) doping. The bandedge absorption slope and the nonlinear absorption cross- section are only diminished by factors of 2 to 3 relative to QWs grown at standard temperature (~500°C). The Be doping dependence of the recovery time and the residual electron density in the LTG-QWs can be mainly attributed to impurity-related compensation. Be doping also maintains the ultrafast recovery following thermal anneal. The recovery response results from fast electron- trapping followed by slow (>100 ps) trapped- electron/free-hole recombination. Detailed simulations of the nonlinear absorption saturation and recovery processes agree quantitatively with measured data and substantiate the importance of the photo-excitation wavelength on the observed recovery response. The absorption saturation model includes the competition between band-filling and band

  5. [Physical meaning of temperature measured by spectral line intensity method].

    PubMed

    Zhao, Wen-Hua; Tang, Huang-Zai; Shen, Yan; Shi, Yong; Hou, Ling-Yun

    2007-11-01

    The difference between electron temperature and excitation temperature is analyzed in the aspect of statistics thermodynamics. It is presented clearly that the temperature acquired by spectral line intensity method is not free electron temperature, but internal electronic excitation temperature of heavy particle. Under thermal equilibrium condition, the excitation temperature is equal to the electron temperature, while under non-thermal equilibrium condition, the excitation temperature is not equal to the electron temperature. In the study of arc jet plume in vacuum chamber, spectral line intensity method was employed to measure the apparent excitation temperature of arc jet plume, and Langmuir probe was employed to measure the electron temperature of arcjet plume. The big difference between the excitation temperature and the electron temperature proved that the temperature acquired by spectral line intensity method is not free electron temperature.

  6. Characterization of devices, circuits, and high-temperature superconductor transmission lines by electro-optic testing

    NASA Technical Reports Server (NTRS)

    Whitaker, John F.

    1991-01-01

    The development of a capability for testing transmission lines, devices, and circuits using the optically-based technique of electro-optics sampling was the goal of this project. Electro-optic network analysis of a high-speed device was demonstrated. The project involved research on all of the facets necessary in order to realize this result, including the discovery of the optimum electronic pulse source, development of an adequate test fixture, improvement of the electro-optic probe tip, and identification of a device which responded at high frequency but did not oscillate in the test fixture. In addition, during the process of investigating patterned high-critical-temperature superconductors, several non-contacting techniques for the determination of the transport properties of high T(sub c) films were developed and implemented. These are a transient, optical pump-probe, time-resolved reflectivity experiment, an impulsive-stimulated Raman scattering experiment, and a terahertz-beam coherent-spectroscopy experiment. The latter technique has enabled us to measure both the complex refractive index of an MgO substrate used for high-T(sub c) films and the complex conductivity of a YBa2Cu3O(7-x) sample. This information was acquired across an extremely wide frequency range: from the microwave to the submillimeter-wave regime. The experiments on the YBCO were conducted without patterning of, or contact to, the thin film. Thus, the need for the more difficult transmission-line experiments was eliminated. Progress in all of these areas was made and is documented in a number of papers. These papers may be found in the section listing the abstracts of the publications that were issued during the course of the research.

  7. Measurement Corner: Volume, Temperature and Pressure

    ERIC Educational Resources Information Center

    Teates, Thomas G.

    1977-01-01

    Boyle's Law and basic relationships between volume and pressure of a gas at constant temperature are presented. Suggests two laboratory activities for demonstrating the effect of temperature on the volume of a gas or liquid. (CS)

  8. Method for passively compensating for temperature coefficient of gain in silicon photomultipliers and similar devices

    DOEpatents

    McKisson, John E.; Barbosa, Fernando

    2015-09-01

    A method for designing a completely passive bias compensation circuit to stabilize the gain of multiple pixel avalanche photo detector devices. The method includes determining circuitry design and component values to achieve a desired precision of gain stability. The method can be used with any temperature sensitive device with a nominally linear coefficient of voltage dependent parameter that must be stabilized. The circuitry design includes a negative temperature coefficient resistor in thermal contact with the photomultiplier device to provide a varying resistance and a second fixed resistor to form a voltage divider that can be chosen to set the desired slope and intercept for the characteristic with a specific voltage source value. The addition of a third resistor to the divider network provides a solution set for a set of SiPM devices that requires only a single stabilized voltage source value.

  9. Simulated limnological effects of the Shasta Lake temperature control device

    USGS Publications Warehouse

    Bartholow, J.; Hanna, R.B.; Saito, L.; Lieberman, D.; Horn, M.

    2001-01-01

    Population ecologists have devoted disproportionate attention to the estimation and study of birth and death rates and far less effort to rates of movement. Movement and fidelity to wintering areas have important ecological and evolutionary implications for avian populations. Previous inferences about movement among and fidelity to wintering areas have been restricted by limitations of data and methodology. We use multiple observation data from a large-scale capture-resighting study of Canada Geese in the Atlantic flyway to estimate probabilities of returning to previous wintering locations and moving to new locations. Mark-resight data from 28,849 Canada Geese (Branta canadensis) banded woth individually coded neck bands in the mid-Atlantic (New York, Pennsylvania, New Jersey), Chesapeake (Delaware, Maryland, Virginia), and Carolinas (North and South Carolina) were used to estimate movement and site-fidelity. Two three-sample mark-resight models were developed and programmed using SURVIV to estimate the probability of moving among or remaining within these three wintering regions. The model (MV2) that incorporated tradition' or memory of previous wintering regions fit the data better than the model (MV1) that assumes that a first-order Markov chain described movement among regions. Considerable levels of movement occured among regions of the Atlantic flyway. The annual probability of remaining in the same region for two successive winters, used as a measure of site fidelity, was 0.710 plus or minus 0.016 (estimated mean plus or minus SE, 0.889 plus or minus 0.006, and 0.562 plus or minus 0.025, for the mid-Atlantic, Chesapeake, and Carolinas, respectively. The estimated probability of moving between years corresponded to changes in winter harshness. In warm years, geese moved north and in cold years, they moved south. Geese had a high probability of moving to and remaining in the Chesapeake. Annual changes in the movement probabilities did not correspond to annual

  10. [Mobile Health: IEEE Standard for Wearable Cuffless Blood Pressure Measuring Devices].

    PubMed

    Zhou, Xia; Wu, Wenli; Bao, Shudi

    2015-07-01

    IEEE Std 1708-2014 breaks through the traditional standards of cuff based blood pressure measuring devices and establishes a normative definition of wearable cuffless blood pressure measuring devices and the objective performance evaluation of this kind of devices. This study firstly introduces the background of the new standard. Then, the standard details will be described, and the impact of cuffless blood pressure measuring devices with the new standard on manufacturers and end users will be addressed.

  11. Silicon-On-Insulator (SOI) Devices and Mixed-Signal Circuits for Extreme Temperature Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Electronic systems in planetary exploration missions and in aerospace applications are expected to encounter extreme temperatures and wide thermal swings in their operational environments. Electronics designed for such applications must, therefore, be able to withstand exposure to extreme temperatures and to perform properly for the duration of the missions. Electronic parts based on silicon-on-insulator (SOI) technology are known, based on device structure, to provide faster switching, consume less power, and offer better radiation-tolerance compared to their silicon counterparts. They also exhibit reduced current leakage and are often tailored for high temperature operation. However, little is known about their performance at low temperature. The performance of several SOI devices and mixed-signal circuits was determined under extreme temperatures, cold-restart, and thermal cycling. The investigations were carried out to establish a baseline on the functionality and to determine suitability of these devices for use in space exploration missions under extreme temperatures. The experimental results obtained on selected SOI devices are presented and discussed in this paper.

  12. Spectral-based inferential measurement of grey-body's temperature

    NASA Astrophysics Data System (ADS)

    Zheng, Feng; Liu, Liying; Zhu, Lingxi; Huan, Kewei; Li, Ye; Shi, Xiaoguang

    2015-11-01

    Aiming at the problems of temperature measurement and the defects of radiance thermometry theory, one method of spectral-based inferential measurement is proposed, which adopts the Empirical Risk Minimization (ERM) functional model as the temperature measurement model. Then, the radiance thermometry theory and inferential measurement technology are discussed comparatively. Temperatures of some targets, such and tungsten lamp and solar surface, are measured by spectral-based inferential measurement.

  13. High-temperature archeointensity measurements from Mesopotamia

    NASA Astrophysics Data System (ADS)

    Gallet, Yves; Le Goff, Maxime

    2006-01-01

    We present new archeointensity results obtained from 127 potsherds and baked brick fragments dated from the last four millennia BC which were collected from different Syrian archeological excavations. High temperature magnetization measurements were carried out using a laboratory-built triaxial vibrating sample magnetometer (Triaxe), and ancient field intensity determinations were derived from the experimental procedure described by Le Goff and Gallet [Le Goff and Gallet. Earth Planet. Sci. Lett. 229 (2004) 31-43]. As some of the studied samples were previously analyzed using the classical Thellier and Thellier [Thellier and Thellier . Ann. Geophys. 15 (1959) 285-376] method revised by Coe [Coe. J. Geophys. Res. 72 (1967) 3247-3262], a comparison of the results is made from the two methods. The differences both at the fragment and site levels are mostly within ± 5%, which strengthens the validity of the experimental procedure developed for the Triaxe. The new data help to better constrain the geomagnetic field intensity variations in Mesopotamia during archeological times, with the probable occurrence of an archeomagnetic jerk around 2800-2600 BC.

  14. Spin-transfer switching of orthogonal spin-valve devices at cryogenic temperatures

    SciTech Connect

    Ye, L. Gopman, D. B.; Rehm, L.; Backes, D.; Wolf, G.; Kent, A. D.; Ohki, T.; Kirichenko, A. F.; Vernik, I. V.; Mukhanov, O. A.

    2014-05-07

    We present the quasi-static and dynamic switching characteristics of orthogonal spin-transfer devices incorporating an out-of-plane magnetized polarizing layer and an in-plane magnetized spin valve device at cryogenic temperatures. Switching at 12 K between parallel and anti-parallel spin-valve states is investigated for slowly varied current as well as for current pulses with durations as short as 200 ps. We demonstrate 100% switching probability with current pulses 0.6 ns in duration. We also present a switching probability diagram that summarizes device switching operation under a variety of pulse durations, amplitudes, and polarities.

  15. Distributed temperature measurement using a dual-core fiber with an integrated miniature turn-around

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoguang; Li, Jie; Hines, Michael J.

    2016-05-01

    Double-ended configuration is commonly deployed in Raman-based distributed temperature sensing (DTS) systems to achieve a high accuracy in temperature measurement. To show the feasibility of multicore optical fiber (MCF) in this application, we will demonstrate distributed temperature measurements using a sensor consisting of a dual-core MCF and an integrated, distal end turn-around in a doubled-ended configuration. The dual-core fiber and turn-around, both coated with polyimide, are suitable for high temperature use. Additionally, the device is ideal for long length, distributed temperature detection in confined spaces, with a finished outer diameter of less than 300 μm. The results show that wavelength dependent loss (WDL) is easily removed in the setup and an accurate temperature measurement can be achieved reliably over a wide temperature range.

  16. Soil moisture inferences from thermal infrared measurements of vegetation temperatures

    NASA Technical Reports Server (NTRS)

    Jackson, R. D. (Principal Investigator)

    1981-01-01

    Thermal infrared measurements of wheat (Triticum durum) canopy temperatures were used in a crop water stress index to infer root zone soil moisture. Results indicated that one time plant temperature measurement cannot produce precise estimates of root zone soil moisture due to complicating plant factors. Plant temperature measurements do yield useful qualitative information concerning soil moisture and plant condition.

  17. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  18. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  19. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  20. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  1. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  2. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  3. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  4. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  5. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  6. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  7. Fixation Stability Measurement Using Two Types of Microperimetry Devices

    PubMed Central

    Liu, Hongting; Bittencourt, Millena G.; Sophie, Raafay; Sepah, Yasir J.; Hanout, Mostafa; Rentiya, Zubir; Annam, Rachel; Scholl, Hendrik P. N.; Nguyen, Quan Dong

    2015-01-01

    Purpose We compared the fixation stability measurements obtained with two microperimeters, the Micro Perimeter 1 (MP-1) and the Spectral OCT/SLO (OCT/SLO), in subjects with and without maculopathies. Methods A total of 41 eyes with no known ocular diseases and 45 eyes with maculopathies were enrolled in the study. Both eyes of each participant had a 20-second fixation test using the MP-1 and OCT/SLO. The bivariate contour ellipse area (BCEA) was used for fixation stability evaluation. Results In the normal group, BCEA was 2.93 ± 0.32 log minarc2 on OCT/SLO and 2.89 ± 0.30 log minarc2 on MP-1. In the maculopathy group, BCEA was 3.05 ± 0.41 log minarc2 on OCT/SLO and 3.15 ± 0.46 log minarc2 on MP-1. There was no statistically significant difference between the BCEA measured by OCT/SLO and by MP-1 in both groups. A moderate correlation was found between the two devices (r = 0.45, P < 0.001). The sample size during the fixation test was 535.5 ± 14.6 pairs of coordinates in the normal group and 530.7 ± 14.9 pairs in the maculopathy group with MP-1, while it was 72.3 ± 6.9 and 59.9 ± 10.1, respectively, with OCT/SLO. This was due to different tracking frequencies between the two microperimeters. Conclusion Fixation stability assessment yields similar results using the OCT/SLO and MP-1. A major difference in sampling rate between the two microperimeters does not significantly affect BCEA measurements. Translational Relevance Fixation stability assessments are comparable and interchangeable between the OCT/SLO and the MP-1. PMID:25774329

  8. [FRONTAL, AXILLARY AND TYMPANIC TEMPERATURE MEASUREMENTS IN CHILDREN].

    PubMed

    Antabak, Anko; Sisko, Jerko; Romić, Ivan; Papes, Dino; Pasini, Miran; Haluzan, Damir; Bogović, Marko; Medancić, Suzana Srsen; Cavar, Stanko; Luetić, Tomislav; Fuchs, Nino; Andabak, Matej; Prlić, Ivica; Curković, Selena

    2016-01-01

    The purpose of this study was to compare the results of body temperature measurements obtained by standard axillary thermometers with the results of infrared tympanic and frontal skin thermometry in afebrile children. This study comprises a single-center, prospective comparison trial. A total of 345 afebrile children aged 4 to 16 years hospitalized in the pediatric surgery department for elective surgery were included. One thousand axillary, tympanic and frontal measurements were obtained and compared. We used two different infrared thermometers in this study; one type measured the tympanic temperature, the other the temperature on the forehead. The axillary temperature measured with the glass thermometer was set as the standard. Each patient was exposed to a constant environmental temperature for a minimum of 10 min before simultaneous temperature measurements. The mean-frontal temperature 36.9 ± 0.38 °C was equal to the axillary temperature 36.9 ± 0.16 °C. The mean tympanic temperature was 36.3 ± 0.98 °C. The mean difference between the tympanic and axillary temperatures was -0.4 °C. The tympanic temperature had a threefold greater dispersion than frontal and a fivefold greater dispersion than axillary temperature. The results of this study suggest that the axillary temperature measured with glass thermometer has the least dispersion. Somewhat less reliable is the frontal temperature measured with infrared thermometer. The least reliable is tympanic temperature measurement.

  9. [FRONTAL, AXILLARY AND TYMPANIC TEMPERATURE MEASUREMENTS IN CHILDREN].

    PubMed

    Antabak, Anko; Sisko, Jerko; Romić, Ivan; Papes, Dino; Pasini, Miran; Haluzan, Damir; Bogović, Marko; Medancić, Suzana Srsen; Cavar, Stanko; Luetić, Tomislav; Fuchs, Nino; Andabak, Matej; Prlić, Ivica; Curković, Selena

    2016-01-01

    The purpose of this study was to compare the results of body temperature measurements obtained by standard axillary thermometers with the results of infrared tympanic and frontal skin thermometry in afebrile children. This study comprises a single-center, prospective comparison trial. A total of 345 afebrile children aged 4 to 16 years hospitalized in the pediatric surgery department for elective surgery were included. One thousand axillary, tympanic and frontal measurements were obtained and compared. We used two different infrared thermometers in this study; one type measured the tympanic temperature, the other the temperature on the forehead. The axillary temperature measured with the glass thermometer was set as the standard. Each patient was exposed to a constant environmental temperature for a minimum of 10 min before simultaneous temperature measurements. The mean-frontal temperature 36.9 ± 0.38 °C was equal to the axillary temperature 36.9 ± 0.16 °C. The mean tympanic temperature was 36.3 ± 0.98 °C. The mean difference between the tympanic and axillary temperatures was -0.4 °C. The tympanic temperature had a threefold greater dispersion than frontal and a fivefold greater dispersion than axillary temperature. The results of this study suggest that the axillary temperature measured with glass thermometer has the least dispersion. Somewhat less reliable is the frontal temperature measured with infrared thermometer. The least reliable is tympanic temperature measurement. PMID:27290811

  10. Device and method for the measurement of depth of interaction using co-planar electrodes

    DOEpatents

    DeGeronimo, Gianluigi

    2007-09-18

    A device and method for measuring a depth of interaction of an ionizing event and improving resolution of a co-planar grid sensor (CPG) are provided. A time-of-occurrence is measured using a comparator to time the leading edge of the event pulse from the non-collecting or collecting grid. A difference signal between the grid signals obtained with a differential amplifier includes a pulse with a leading edge occurring at the time-of-detection, measured with another comparator. A timing difference between comparator outputs corresponds to the depth of interaction, calculated using a processor, which in turn weights the difference grid signal to improve spectral resolution of a CPG sensor. The device, which includes channels for grid inputs, may be integrated into an Application Specific Integrated Circuit. The combination of the device and sensor is included. An improved high-resolution CPG is provided, e.g., a gamma-ray Cadmium Zinc Telluride CPG sensor operating at room temperature.

  11. Measurement of Local Reactive and Resistive Photoresponse of a Superconducting Microwave Device

    NASA Astrophysics Data System (ADS)

    Anlage, Steven M.; Zhuravel, Alexander P.; Ustinov, Alexey V.

    2006-03-01

    Despite the voluminous work on the nature of nonlinear effects in high-temperature superconductors (HTS), the causes are not completely clear and remain under debate. The Laser Scanning Microscope (LSM) is a spatially-resolved method that can simultaneously measure optical and high frequency properties of HTS devices. Earlier results showed high resolution images of non-uniform microwave current distributions near the edge of a patterned transmission line structure [A. P. Zhuravel, A. V. Ustinov, K. S. Harshavardhan, and S. M. Anlage, Appl. Phys. Lett. 81, 4979 (2002)]. We have developed a new operational mode in which the microscope separately images the resistive and inductive components of the bolometric photoresponse. The two images show interesting and dramatic differences, leading to new insights about linear and nonlinear properties of HTS microwave devices.

  12. Interface engineering: broadband light and low temperature gas detection abilities using a nano-heterojunction device.

    PubMed

    Chang, Chien-Min; Hsu, Ching-Han; Liu, Yi-Wei; Chien, Tzu-Chiao; Sung, Chun-Han; Yeh, Ping-Hung

    2015-12-21

    Herein, we have designed a nano-heterojunction device using interface defects and band bending effects, which can have broadband light detection (from 365-940 nm) and low operating temperature (50 °C) gas detection abilities. The broadband light detection mechanism occurs because of the defects and band bending between the heterojunction interface. We have demonstrated this mechanism using CoSi2/SnO2, CoSi2/TiO2, Ge/SnO2 and Ge/TiO2 nano-heterojunction devices, and all these devices show broadband light detection ability. Furthermore, the nano-heterojunction of the nano-device has a local Joule-heating effect. For gas detection, the results show that the nano-heterojunction device presents a high detection ability. The reset time and sensitivity of the nano-heterojunction device are an order faster and larger than Schottky-contacted devices (previous works), which is due to the local Joule-heating effect between the interface of the nano-heterojunction. Based on the abovementioned idea, we can design diverse nano-devices for widespread use. PMID:26567487

  13. Interface engineering: broadband light and low temperature gas detection abilities using a nano-heterojunction device.

    PubMed

    Chang, Chien-Min; Hsu, Ching-Han; Liu, Yi-Wei; Chien, Tzu-Chiao; Sung, Chun-Han; Yeh, Ping-Hung

    2015-12-21

    Herein, we have designed a nano-heterojunction device using interface defects and band bending effects, which can have broadband light detection (from 365-940 nm) and low operating temperature (50 °C) gas detection abilities. The broadband light detection mechanism occurs because of the defects and band bending between the heterojunction interface. We have demonstrated this mechanism using CoSi2/SnO2, CoSi2/TiO2, Ge/SnO2 and Ge/TiO2 nano-heterojunction devices, and all these devices show broadband light detection ability. Furthermore, the nano-heterojunction of the nano-device has a local Joule-heating effect. For gas detection, the results show that the nano-heterojunction device presents a high detection ability. The reset time and sensitivity of the nano-heterojunction device are an order faster and larger than Schottky-contacted devices (previous works), which is due to the local Joule-heating effect between the interface of the nano-heterojunction. Based on the abovementioned idea, we can design diverse nano-devices for widespread use.

  14. Low temperature fiber optic pyrometer for fast time resolved temperature measurements

    NASA Astrophysics Data System (ADS)

    Willsch, M.; Bosselmann, T.; Gaenshirt, D.; Kaiser, J.; Villnow, M.; Banda, M.

    2016-05-01

    Low temperature Pyrometry at temperatures beyond 150°C is limited in the measurement speed due to slow pyroelectric detectors. To detect the circumferential temperature distribution of fast rotating machines a novel Fiber Optical Pyrometer Type is presented here.

  15. Imaging photorefractive optical vibration measurement method and device

    DOEpatents

    Telschow, Kenneth L.; Deason, Vance A.; Hale, Thomas C.

    2000-01-01

    A method and apparatus are disclosed for characterizing a vibrating image of an object of interest. The method includes providing a sensing media having a detection resolution within a limited bandwidth and providing an object of interest having a vibrating medium. Two or more wavefronts are provided, with at least one of the wavefronts being modulated by interacting the one wavefront with the vibrating medium of the object of interest. The another wavefront is modulated such that the difference frequency between the one wavefront and the another wavefront is within a response range of the sensing media. The modulated one wavefront and another wavefront are combined in association with the sensing media to interfere and produce simultaneous vibration measurements that are distributed over the object so as to provide an image of the vibrating medium. The image has an output intensity that is substantially linear with small physical variations within the vibrating medium. Furthermore, the method includes detecting the image. In one implementation, the apparatus comprises a vibration spectrum analyzer having an emitter, a modulator, sensing media and a detector configured so as to realize such method. According to another implementation, the apparatus comprises a vibration imaging device.

  16. Measurements of Beam Coupling in the Marshall Magnetic Mirror Device

    NASA Technical Reports Server (NTRS)

    Schneider, T. A.; Vaughn, J. A.; Carruth, M. R., Jr.; Edwards, D. L.; Heard, J. W.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Experimental investigations of the coupling of an electron beam into a magnetically confined plasma have been undertaken at the Marshall Space Flight Center using the Marshall Magnetic Mirror (M3) system. The M3 system is composed of the following: two magnet coils; a cylindrical vacuum vessel; microwave source; and electron beam source. The magnet coils, which form the magnetic mirror, have an inner diameter of 25.4 cm and an outer diameter of 50.8 cm. The coils are composed of 9 coil segments with 33 turns in each segment. Each coil segment is connected in series. To create the target plasma, a 2 kW microwave source (2.45 gHz) is coupled into the vacuum chamber via waveguide. The electron beam source is a hollow cathode device created by the EPL Corporation. The hollow cathode is capable of producing a 50 amp beam with a pulse length of 1 second. It is also capable of continuous operation at 5 amps. The hollow cathode is mounted on one end of the cylindrical vacuum vessel 24 cm outside of a magnet coil. A current sensor is placed in the hollow cathode keeper bias circuit to measure emission current.

  17. Bulk temperature measurement in thermally striped pipe flows

    SciTech Connect

    Lemure, N.; Olvera, J.R.; Ruggles, A.E.

    1995-12-01

    The hot leg flows in some Pressurized Water Reactor (PWR) designs have a temperature distribution across the pipe cross-section. This condition is often referred to as a thermally striped flow. Here, the bulk temperature measurement of pipe flows with thermal striping is explored. An experiment is conducted to examine the feasibility of using temperature measurements on the external surface of the pipe to estimate the bulk temperature of the flow. Simple mixing models are used to characterize the development of the temperature profile in the flow. Simple averaging techniques and Backward Propagating Neural Net are used to predict bulk temperature from the external temperature measurements. Accurate bulk temperatures can be predicted. However, some temperature distributions in the flow effectively mask the bulk temperature from the wall and cause significant error in the bulk temperature predicted using this technique.

  18. An enzymatic time/temperature device for monitoring the handling of perishable commodities.

    PubMed

    Blixt, K; Tiru, M

    1976-10-01

    Kockums Chemical AB, Malmö, Sweden, has developed a biochemical indicator, the i-point TTM (Time-Temperature Monitor). The indicator responds to temperature in much the same way as perishable commodities in which loss of quality is directly related to the combined effects of the degree and the duration of storage temperature. Primary application of such indicators are expected for frozen, refrigerated and fresh food products. The device can be useful in monitoring the handling of various temperature sensitive noon-food products as well. Reacting at a relatively low rate under optimum temperture conditions and at accelerated rates as temperature rises, the indicator chemically integrates and accumulates both the length and degree of all temperature experiences. When pre-selected time-temperature limits have been exceeded a distinct irreversible color change will occur, indicating that action is required--the particular depending upon the use being made of the commodity. PMID:20384

  19. Measurement of cloud point temperature in polymer solutions.

    PubMed

    Mannella, G A; La Carrubba, V; Brucato, V

    2013-07-01

    A temperature-controlled turbidity measurement apparatus for the characterization of polymer solutions has been instrumented and set up. The main features are the coupled temperature-light transmittance measurement and the accurate temperature control, achieved by means of peltier cells. The apparatus allows to measure cloud point temperatures by adopting different cooling protocols: low rate for quasi-equilibrium measurements and high rate for detect kinetic effects. A ternary polymeric solution was adopted as case study system showing that cooling rate affects the measured cloud point temperature.

  20. Atomic origin of high-temperature electron trapping in metal-oxide-semiconductor devices

    SciTech Connect

    Shen, Xiao; Dhar, Sarit; Pantelides, Sokrates T.

    2015-04-06

    MOSFETs based on wide-band-gap semiconductors are suitable for operation at high temperature, at which additional atomic-scale processes that are benign at lower temperatures can get activated, resulting in device degradation. Recently, significant enhancement of electron trapping was observed under positive bias in SiC MOSFETs at temperatures higher than 150 °C. Here, we report first-principles calculations showing that the enhanced electron trapping is associated with thermally activated capturing of a second electron by an oxygen vacancy in SiO{sub 2} by which the vacancy transforms into a structure that comprises one Si dangling bond and a bond between a five-fold and a four-fold Si atoms. The results suggest a key role of oxygen vacancies and their structural reconfigurations in the reliability of high-temperature MOS devices.